1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2019-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "qemu/qemu-print.h" 24 #include "exec/exec-all.h" 25 #include "cpu.h" 26 #include "disas/dis-asm.h" 27 28 static void avr_cpu_set_pc(CPUState *cs, vaddr value) 29 { 30 AVRCPU *cpu = AVR_CPU(cs); 31 32 cpu->env.pc_w = value / 2; /* internally PC points to words */ 33 } 34 35 static bool avr_cpu_has_work(CPUState *cs) 36 { 37 AVRCPU *cpu = AVR_CPU(cs); 38 CPUAVRState *env = &cpu->env; 39 40 return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET)) 41 && cpu_interrupts_enabled(env); 42 } 43 44 static void avr_cpu_synchronize_from_tb(CPUState *cs, 45 const TranslationBlock *tb) 46 { 47 AVRCPU *cpu = AVR_CPU(cs); 48 CPUAVRState *env = &cpu->env; 49 50 env->pc_w = tb->pc / 2; /* internally PC points to words */ 51 } 52 53 static void avr_cpu_reset(DeviceState *ds) 54 { 55 CPUState *cs = CPU(ds); 56 AVRCPU *cpu = AVR_CPU(cs); 57 AVRCPUClass *mcc = AVR_CPU_GET_CLASS(cpu); 58 CPUAVRState *env = &cpu->env; 59 60 mcc->parent_reset(ds); 61 62 env->pc_w = 0; 63 env->sregI = 1; 64 env->sregC = 0; 65 env->sregZ = 0; 66 env->sregN = 0; 67 env->sregV = 0; 68 env->sregS = 0; 69 env->sregH = 0; 70 env->sregT = 0; 71 72 env->rampD = 0; 73 env->rampX = 0; 74 env->rampY = 0; 75 env->rampZ = 0; 76 env->eind = 0; 77 env->sp = 0; 78 79 env->skip = 0; 80 81 memset(env->r, 0, sizeof(env->r)); 82 } 83 84 static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info) 85 { 86 info->mach = bfd_arch_avr; 87 info->print_insn = avr_print_insn; 88 } 89 90 static void avr_cpu_realizefn(DeviceState *dev, Error **errp) 91 { 92 CPUState *cs = CPU(dev); 93 AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev); 94 Error *local_err = NULL; 95 96 cpu_exec_realizefn(cs, &local_err); 97 if (local_err != NULL) { 98 error_propagate(errp, local_err); 99 return; 100 } 101 qemu_init_vcpu(cs); 102 cpu_reset(cs); 103 104 mcc->parent_realize(dev, errp); 105 } 106 107 static void avr_cpu_set_int(void *opaque, int irq, int level) 108 { 109 AVRCPU *cpu = opaque; 110 CPUAVRState *env = &cpu->env; 111 CPUState *cs = CPU(cpu); 112 uint64_t mask = (1ull << irq); 113 114 if (level) { 115 env->intsrc |= mask; 116 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 117 } else { 118 env->intsrc &= ~mask; 119 if (env->intsrc == 0) { 120 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 121 } 122 } 123 } 124 125 static void avr_cpu_initfn(Object *obj) 126 { 127 AVRCPU *cpu = AVR_CPU(obj); 128 129 cpu_set_cpustate_pointers(cpu); 130 131 /* Set the number of interrupts supported by the CPU. */ 132 qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, 133 sizeof(cpu->env.intsrc) * 8); 134 } 135 136 static ObjectClass *avr_cpu_class_by_name(const char *cpu_model) 137 { 138 ObjectClass *oc; 139 140 oc = object_class_by_name(cpu_model); 141 if (object_class_dynamic_cast(oc, TYPE_AVR_CPU) == NULL || 142 object_class_is_abstract(oc)) { 143 oc = NULL; 144 } 145 return oc; 146 } 147 148 static void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags) 149 { 150 AVRCPU *cpu = AVR_CPU(cs); 151 CPUAVRState *env = &cpu->env; 152 int i; 153 154 qemu_fprintf(f, "\n"); 155 qemu_fprintf(f, "PC: %06x\n", env->pc_w * 2); /* PC points to words */ 156 qemu_fprintf(f, "SP: %04x\n", env->sp); 157 qemu_fprintf(f, "rampD: %02x\n", env->rampD >> 16); 158 qemu_fprintf(f, "rampX: %02x\n", env->rampX >> 16); 159 qemu_fprintf(f, "rampY: %02x\n", env->rampY >> 16); 160 qemu_fprintf(f, "rampZ: %02x\n", env->rampZ >> 16); 161 qemu_fprintf(f, "EIND: %02x\n", env->eind >> 16); 162 qemu_fprintf(f, "X: %02x%02x\n", env->r[27], env->r[26]); 163 qemu_fprintf(f, "Y: %02x%02x\n", env->r[29], env->r[28]); 164 qemu_fprintf(f, "Z: %02x%02x\n", env->r[31], env->r[30]); 165 qemu_fprintf(f, "SREG: [ %c %c %c %c %c %c %c %c ]\n", 166 env->sregI ? 'I' : '-', 167 env->sregT ? 'T' : '-', 168 env->sregH ? 'H' : '-', 169 env->sregS ? 'S' : '-', 170 env->sregV ? 'V' : '-', 171 env->sregN ? '-' : 'N', /* Zf has negative logic */ 172 env->sregZ ? 'Z' : '-', 173 env->sregC ? 'I' : '-'); 174 qemu_fprintf(f, "SKIP: %02x\n", env->skip); 175 176 qemu_fprintf(f, "\n"); 177 for (i = 0; i < ARRAY_SIZE(env->r); i++) { 178 qemu_fprintf(f, "R[%02d]: %02x ", i, env->r[i]); 179 180 if ((i % 8) == 7) { 181 qemu_fprintf(f, "\n"); 182 } 183 } 184 qemu_fprintf(f, "\n"); 185 } 186 187 #include "hw/core/sysemu-cpu-ops.h" 188 189 static const struct SysemuCPUOps avr_sysemu_ops = { 190 .get_phys_page_debug = avr_cpu_get_phys_page_debug, 191 }; 192 193 #include "hw/core/tcg-cpu-ops.h" 194 195 static const struct TCGCPUOps avr_tcg_ops = { 196 .initialize = avr_cpu_tcg_init, 197 .synchronize_from_tb = avr_cpu_synchronize_from_tb, 198 .cpu_exec_interrupt = avr_cpu_exec_interrupt, 199 .tlb_fill = avr_cpu_tlb_fill, 200 201 #ifndef CONFIG_USER_ONLY 202 .do_interrupt = avr_cpu_do_interrupt, 203 #endif /* !CONFIG_USER_ONLY */ 204 }; 205 206 static void avr_cpu_class_init(ObjectClass *oc, void *data) 207 { 208 DeviceClass *dc = DEVICE_CLASS(oc); 209 CPUClass *cc = CPU_CLASS(oc); 210 AVRCPUClass *mcc = AVR_CPU_CLASS(oc); 211 212 device_class_set_parent_realize(dc, avr_cpu_realizefn, &mcc->parent_realize); 213 device_class_set_parent_reset(dc, avr_cpu_reset, &mcc->parent_reset); 214 215 cc->class_by_name = avr_cpu_class_by_name; 216 217 cc->has_work = avr_cpu_has_work; 218 cc->dump_state = avr_cpu_dump_state; 219 cc->set_pc = avr_cpu_set_pc; 220 cc->memory_rw_debug = avr_cpu_memory_rw_debug; 221 dc->vmsd = &vms_avr_cpu; 222 cc->sysemu_ops = &avr_sysemu_ops; 223 cc->disas_set_info = avr_cpu_disas_set_info; 224 cc->gdb_read_register = avr_cpu_gdb_read_register; 225 cc->gdb_write_register = avr_cpu_gdb_write_register; 226 cc->gdb_adjust_breakpoint = avr_cpu_gdb_adjust_breakpoint; 227 cc->gdb_num_core_regs = 35; 228 cc->gdb_core_xml_file = "avr-cpu.xml"; 229 cc->tcg_ops = &avr_tcg_ops; 230 } 231 232 /* 233 * Setting features of AVR core type avr5 234 * -------------------------------------- 235 * 236 * This type of AVR core is present in the following AVR MCUs: 237 * 238 * ata5702m322, ata5782, ata5790, ata5790n, ata5791, ata5795, ata5831, ata6613c, 239 * ata6614q, ata8210, ata8510, atmega16, atmega16a, atmega161, atmega162, 240 * atmega163, atmega164a, atmega164p, atmega164pa, atmega165, atmega165a, 241 * atmega165p, atmega165pa, atmega168, atmega168a, atmega168p, atmega168pa, 242 * atmega168pb, atmega169, atmega169a, atmega169p, atmega169pa, atmega16hvb, 243 * atmega16hvbrevb, atmega16m1, atmega16u4, atmega32a, atmega32, atmega323, 244 * atmega324a, atmega324p, atmega324pa, atmega325, atmega325a, atmega325p, 245 * atmega325pa, atmega3250, atmega3250a, atmega3250p, atmega3250pa, atmega328, 246 * atmega328p, atmega328pb, atmega329, atmega329a, atmega329p, atmega329pa, 247 * atmega3290, atmega3290a, atmega3290p, atmega3290pa, atmega32c1, atmega32m1, 248 * atmega32u4, atmega32u6, atmega406, atmega64, atmega64a, atmega640, atmega644, 249 * atmega644a, atmega644p, atmega644pa, atmega645, atmega645a, atmega645p, 250 * atmega6450, atmega6450a, atmega6450p, atmega649, atmega649a, atmega649p, 251 * atmega6490, atmega16hva, atmega16hva2, atmega32hvb, atmega6490a, atmega6490p, 252 * atmega64c1, atmega64m1, atmega64hve, atmega64hve2, atmega64rfr2, 253 * atmega644rfr2, atmega32hvbrevb, at90can32, at90can64, at90pwm161, at90pwm216, 254 * at90pwm316, at90scr100, at90usb646, at90usb647, at94k, m3000 255 */ 256 static void avr_avr5_initfn(Object *obj) 257 { 258 AVRCPU *cpu = AVR_CPU(obj); 259 CPUAVRState *env = &cpu->env; 260 261 set_avr_feature(env, AVR_FEATURE_LPM); 262 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 263 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 264 set_avr_feature(env, AVR_FEATURE_SRAM); 265 set_avr_feature(env, AVR_FEATURE_BREAK); 266 267 set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); 268 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 269 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 270 set_avr_feature(env, AVR_FEATURE_LPMX); 271 set_avr_feature(env, AVR_FEATURE_MOVW); 272 set_avr_feature(env, AVR_FEATURE_MUL); 273 } 274 275 /* 276 * Setting features of AVR core type avr51 277 * -------------------------------------- 278 * 279 * This type of AVR core is present in the following AVR MCUs: 280 * 281 * atmega128, atmega128a, atmega1280, atmega1281, atmega1284, atmega1284p, 282 * atmega128rfa1, atmega128rfr2, atmega1284rfr2, at90can128, at90usb1286, 283 * at90usb1287 284 */ 285 static void avr_avr51_initfn(Object *obj) 286 { 287 AVRCPU *cpu = AVR_CPU(obj); 288 CPUAVRState *env = &cpu->env; 289 290 set_avr_feature(env, AVR_FEATURE_LPM); 291 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 292 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 293 set_avr_feature(env, AVR_FEATURE_SRAM); 294 set_avr_feature(env, AVR_FEATURE_BREAK); 295 296 set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); 297 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 298 set_avr_feature(env, AVR_FEATURE_RAMPZ); 299 set_avr_feature(env, AVR_FEATURE_ELPMX); 300 set_avr_feature(env, AVR_FEATURE_ELPM); 301 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 302 set_avr_feature(env, AVR_FEATURE_LPMX); 303 set_avr_feature(env, AVR_FEATURE_MOVW); 304 set_avr_feature(env, AVR_FEATURE_MUL); 305 } 306 307 /* 308 * Setting features of AVR core type avr6 309 * -------------------------------------- 310 * 311 * This type of AVR core is present in the following AVR MCUs: 312 * 313 * atmega2560, atmega2561, atmega256rfr2, atmega2564rfr2 314 */ 315 static void avr_avr6_initfn(Object *obj) 316 { 317 AVRCPU *cpu = AVR_CPU(obj); 318 CPUAVRState *env = &cpu->env; 319 320 set_avr_feature(env, AVR_FEATURE_LPM); 321 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 322 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 323 set_avr_feature(env, AVR_FEATURE_SRAM); 324 set_avr_feature(env, AVR_FEATURE_BREAK); 325 326 set_avr_feature(env, AVR_FEATURE_3_BYTE_PC); 327 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 328 set_avr_feature(env, AVR_FEATURE_RAMPZ); 329 set_avr_feature(env, AVR_FEATURE_EIJMP_EICALL); 330 set_avr_feature(env, AVR_FEATURE_ELPMX); 331 set_avr_feature(env, AVR_FEATURE_ELPM); 332 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 333 set_avr_feature(env, AVR_FEATURE_LPMX); 334 set_avr_feature(env, AVR_FEATURE_MOVW); 335 set_avr_feature(env, AVR_FEATURE_MUL); 336 } 337 338 typedef struct AVRCPUInfo { 339 const char *name; 340 void (*initfn)(Object *obj); 341 } AVRCPUInfo; 342 343 344 static void avr_cpu_list_entry(gpointer data, gpointer user_data) 345 { 346 const char *typename = object_class_get_name(OBJECT_CLASS(data)); 347 348 qemu_printf("%s\n", typename); 349 } 350 351 void avr_cpu_list(void) 352 { 353 GSList *list; 354 list = object_class_get_list_sorted(TYPE_AVR_CPU, false); 355 g_slist_foreach(list, avr_cpu_list_entry, NULL); 356 g_slist_free(list); 357 } 358 359 #define DEFINE_AVR_CPU_TYPE(model, initfn) \ 360 { \ 361 .parent = TYPE_AVR_CPU, \ 362 .instance_init = initfn, \ 363 .name = AVR_CPU_TYPE_NAME(model), \ 364 } 365 366 static const TypeInfo avr_cpu_type_info[] = { 367 { 368 .name = TYPE_AVR_CPU, 369 .parent = TYPE_CPU, 370 .instance_size = sizeof(AVRCPU), 371 .instance_init = avr_cpu_initfn, 372 .class_size = sizeof(AVRCPUClass), 373 .class_init = avr_cpu_class_init, 374 .abstract = true, 375 }, 376 DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn), 377 DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn), 378 DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn), 379 }; 380 381 DEFINE_TYPES(avr_cpu_type_info) 382