1 /* 2 * ARM VFP floating-point operations 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "internals.h" 24 #ifdef CONFIG_TCG 25 #include "qemu/log.h" 26 #include "fpu/softfloat.h" 27 #endif 28 29 /* VFP support. We follow the convention used for VFP instructions: 30 Single precision routines have a "s" suffix, double precision a 31 "d" suffix. */ 32 33 #ifdef CONFIG_TCG 34 35 /* Convert host exception flags to vfp form. */ 36 static inline int vfp_exceptbits_from_host(int host_bits) 37 { 38 int target_bits = 0; 39 40 if (host_bits & float_flag_invalid) { 41 target_bits |= 1; 42 } 43 if (host_bits & float_flag_divbyzero) { 44 target_bits |= 2; 45 } 46 if (host_bits & float_flag_overflow) { 47 target_bits |= 4; 48 } 49 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) { 50 target_bits |= 8; 51 } 52 if (host_bits & float_flag_inexact) { 53 target_bits |= 0x10; 54 } 55 if (host_bits & float_flag_input_denormal) { 56 target_bits |= 0x80; 57 } 58 return target_bits; 59 } 60 61 /* Convert vfp exception flags to target form. */ 62 static inline int vfp_exceptbits_to_host(int target_bits) 63 { 64 int host_bits = 0; 65 66 if (target_bits & 1) { 67 host_bits |= float_flag_invalid; 68 } 69 if (target_bits & 2) { 70 host_bits |= float_flag_divbyzero; 71 } 72 if (target_bits & 4) { 73 host_bits |= float_flag_overflow; 74 } 75 if (target_bits & 8) { 76 host_bits |= float_flag_underflow; 77 } 78 if (target_bits & 0x10) { 79 host_bits |= float_flag_inexact; 80 } 81 if (target_bits & 0x80) { 82 host_bits |= float_flag_input_denormal; 83 } 84 return host_bits; 85 } 86 87 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) 88 { 89 uint32_t i; 90 91 i = get_float_exception_flags(&env->vfp.fp_status); 92 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 93 /* FZ16 does not generate an input denormal exception. */ 94 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 95 & ~float_flag_input_denormal); 96 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16) 97 & ~float_flag_input_denormal); 98 return vfp_exceptbits_from_host(i); 99 } 100 101 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) 102 { 103 int i; 104 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR]; 105 106 changed ^= val; 107 if (changed & (3 << 22)) { 108 i = (val >> 22) & 3; 109 switch (i) { 110 case FPROUNDING_TIEEVEN: 111 i = float_round_nearest_even; 112 break; 113 case FPROUNDING_POSINF: 114 i = float_round_up; 115 break; 116 case FPROUNDING_NEGINF: 117 i = float_round_down; 118 break; 119 case FPROUNDING_ZERO: 120 i = float_round_to_zero; 121 break; 122 } 123 set_float_rounding_mode(i, &env->vfp.fp_status); 124 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 125 } 126 if (changed & FPCR_FZ16) { 127 bool ftz_enabled = val & FPCR_FZ16; 128 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 129 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); 130 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); 132 } 133 if (changed & FPCR_FZ) { 134 bool ftz_enabled = val & FPCR_FZ; 135 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 136 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 137 } 138 if (changed & FPCR_DN) { 139 bool dnan_enabled = val & FPCR_DN; 140 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 142 } 143 144 /* 145 * The exception flags are ORed together when we read fpscr so we 146 * only need to preserve the current state in one of our 147 * float_status values. 148 */ 149 i = vfp_exceptbits_to_host(val); 150 set_float_exception_flags(i, &env->vfp.fp_status); 151 set_float_exception_flags(0, &env->vfp.fp_status_f16); 152 set_float_exception_flags(0, &env->vfp.standard_fp_status); 153 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16); 154 } 155 156 #else 157 158 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) 159 { 160 return 0; 161 } 162 163 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) 164 { 165 } 166 167 #endif 168 169 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 170 { 171 uint32_t i, fpscr; 172 173 fpscr = env->vfp.xregs[ARM_VFP_FPSCR] 174 | (env->vfp.vec_len << 16) 175 | (env->vfp.vec_stride << 20); 176 177 /* 178 * M-profile LTPSIZE overlaps A-profile Stride; whichever of the 179 * two is not applicable to this CPU will always be zero. 180 */ 181 fpscr |= env->v7m.ltpsize << 16; 182 183 fpscr |= vfp_get_fpscr_from_host(env); 184 185 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3]; 186 fpscr |= i ? FPCR_QC : 0; 187 188 return fpscr; 189 } 190 191 uint32_t vfp_get_fpscr(CPUARMState *env) 192 { 193 return HELPER(vfp_get_fpscr)(env); 194 } 195 196 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 197 { 198 ARMCPU *cpu = env_archcpu(env); 199 200 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 201 if (!cpu_isar_feature(any_fp16, cpu)) { 202 val &= ~FPCR_FZ16; 203 } 204 205 vfp_set_fpscr_to_host(env, val); 206 207 if (!arm_feature(env, ARM_FEATURE_M)) { 208 /* 209 * Short-vector length and stride; on M-profile these bits 210 * are used for different purposes. 211 * We can't make this conditional be "if MVFR0.FPShVec != 0", 212 * because in v7A no-short-vector-support cores still had to 213 * allow Stride/Len to be written with the only effect that 214 * some insns are required to UNDEF if the guest sets them. 215 */ 216 env->vfp.vec_len = extract32(val, 16, 3); 217 env->vfp.vec_stride = extract32(val, 20, 2); 218 } else if (cpu_isar_feature(aa32_mve, cpu)) { 219 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT, 220 FPCR_LTPSIZE_LENGTH); 221 } 222 223 if (arm_feature(env, ARM_FEATURE_NEON) || 224 cpu_isar_feature(aa32_mve, cpu)) { 225 /* 226 * The bit we set within fpscr_q is arbitrary; the register as a 227 * whole being zero/non-zero is what counts. 228 * TODO: M-profile MVE also has a QC bit. 229 */ 230 env->vfp.qc[0] = val & FPCR_QC; 231 env->vfp.qc[1] = 0; 232 env->vfp.qc[2] = 0; 233 env->vfp.qc[3] = 0; 234 } 235 236 /* 237 * We don't implement trapped exception handling, so the 238 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!) 239 * 240 * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in 241 * fp_status; QC, Len and Stride are stored separately earlier. 242 * Clear out all of those and the RES0 bits: only NZCV, AHP, DN, 243 * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR]. 244 */ 245 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000; 246 } 247 248 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 249 { 250 HELPER(vfp_set_fpscr)(env, val); 251 } 252 253 #ifdef CONFIG_TCG 254 255 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 256 257 #define VFP_BINOP(name) \ 258 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \ 259 { \ 260 float_status *fpst = fpstp; \ 261 return float16_ ## name(a, b, fpst); \ 262 } \ 263 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 264 { \ 265 float_status *fpst = fpstp; \ 266 return float32_ ## name(a, b, fpst); \ 267 } \ 268 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 269 { \ 270 float_status *fpst = fpstp; \ 271 return float64_ ## name(a, b, fpst); \ 272 } 273 VFP_BINOP(add) 274 VFP_BINOP(sub) 275 VFP_BINOP(mul) 276 VFP_BINOP(div) 277 VFP_BINOP(min) 278 VFP_BINOP(max) 279 VFP_BINOP(minnum) 280 VFP_BINOP(maxnum) 281 #undef VFP_BINOP 282 283 dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a) 284 { 285 return float16_chs(a); 286 } 287 288 float32 VFP_HELPER(neg, s)(float32 a) 289 { 290 return float32_chs(a); 291 } 292 293 float64 VFP_HELPER(neg, d)(float64 a) 294 { 295 return float64_chs(a); 296 } 297 298 dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a) 299 { 300 return float16_abs(a); 301 } 302 303 float32 VFP_HELPER(abs, s)(float32 a) 304 { 305 return float32_abs(a); 306 } 307 308 float64 VFP_HELPER(abs, d)(float64 a) 309 { 310 return float64_abs(a); 311 } 312 313 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env) 314 { 315 return float16_sqrt(a, &env->vfp.fp_status_f16); 316 } 317 318 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 319 { 320 return float32_sqrt(a, &env->vfp.fp_status); 321 } 322 323 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 324 { 325 return float64_sqrt(a, &env->vfp.fp_status); 326 } 327 328 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp) 329 { 330 uint32_t flags; 331 switch (cmp) { 332 case float_relation_equal: 333 flags = 0x6; 334 break; 335 case float_relation_less: 336 flags = 0x8; 337 break; 338 case float_relation_greater: 339 flags = 0x2; 340 break; 341 case float_relation_unordered: 342 flags = 0x3; 343 break; 344 default: 345 g_assert_not_reached(); 346 } 347 env->vfp.xregs[ARM_VFP_FPSCR] = 348 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags); 349 } 350 351 /* XXX: check quiet/signaling case */ 352 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \ 353 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ 354 { \ 355 softfloat_to_vfp_compare(env, \ 356 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \ 357 } \ 358 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ 359 { \ 360 softfloat_to_vfp_compare(env, \ 361 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \ 362 } 363 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16) 364 DO_VFP_cmp(s, float32, float32, fp_status) 365 DO_VFP_cmp(d, float64, float64, fp_status) 366 #undef DO_VFP_cmp 367 368 /* Integer to float and float to integer conversions */ 369 370 #define CONV_ITOF(name, ftype, fsz, sign) \ 371 ftype HELPER(name)(uint32_t x, void *fpstp) \ 372 { \ 373 float_status *fpst = fpstp; \ 374 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 375 } 376 377 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 378 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 379 { \ 380 float_status *fpst = fpstp; \ 381 if (float##fsz##_is_any_nan(x)) { \ 382 float_raise(float_flag_invalid, fpst); \ 383 return 0; \ 384 } \ 385 return float##fsz##_to_##sign##int32##round(x, fpst); \ 386 } 387 388 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 389 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 390 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 391 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 392 393 FLOAT_CONVS(si, h, uint32_t, 16, ) 394 FLOAT_CONVS(si, s, float32, 32, ) 395 FLOAT_CONVS(si, d, float64, 64, ) 396 FLOAT_CONVS(ui, h, uint32_t, 16, u) 397 FLOAT_CONVS(ui, s, float32, 32, u) 398 FLOAT_CONVS(ui, d, float64, 64, u) 399 400 #undef CONV_ITOF 401 #undef CONV_FTOI 402 #undef FLOAT_CONVS 403 404 /* floating point conversion */ 405 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 406 { 407 return float32_to_float64(x, &env->vfp.fp_status); 408 } 409 410 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 411 { 412 return float64_to_float32(x, &env->vfp.fp_status); 413 } 414 415 uint32_t HELPER(bfcvt)(float32 x, void *status) 416 { 417 return float32_to_bfloat16(x, status); 418 } 419 420 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status) 421 { 422 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status); 423 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status); 424 return deposit32(lo, 16, 16, hi); 425 } 426 427 /* 428 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float 429 * must always round-to-nearest; the AArch64 ones honour the FPSCR 430 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to 431 * round-to-nearest so either helper will work.) AArch32 float-to-fix 432 * must round-to-zero. 433 */ 434 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 435 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 436 void *fpstp) \ 437 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 438 439 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ 440 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \ 441 uint32_t shift, \ 442 void *fpstp) \ 443 { \ 444 ftype ret; \ 445 float_status *fpst = fpstp; \ 446 FloatRoundMode oldmode = fpst->float_rounding_mode; \ 447 fpst->float_rounding_mode = float_round_nearest_even; \ 448 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \ 449 fpst->float_rounding_mode = oldmode; \ 450 return ret; \ 451 } 452 453 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \ 454 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \ 455 void *fpst) \ 456 { \ 457 if (unlikely(float##fsz##_is_any_nan(x))) { \ 458 float_raise(float_flag_invalid, fpst); \ 459 return 0; \ 460 } \ 461 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 462 } 463 464 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \ 465 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 466 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ 467 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 468 float_round_to_zero, _round_to_zero) \ 469 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 470 get_float_rounding_mode(fpst), ) 471 472 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \ 473 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 474 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 475 get_float_rounding_mode(fpst), ) 476 477 VFP_CONV_FIX(sh, d, 64, float64, 64, int16) 478 VFP_CONV_FIX(sl, d, 64, float64, 64, int32) 479 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64) 480 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16) 481 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32) 482 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64) 483 VFP_CONV_FIX(sh, s, 32, float32, 32, int16) 484 VFP_CONV_FIX(sl, s, 32, float32, 32, int32) 485 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64) 486 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16) 487 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32) 488 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64) 489 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16) 490 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32) 491 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64) 492 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16) 493 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32) 494 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64) 495 496 #undef VFP_CONV_FIX 497 #undef VFP_CONV_FIX_FLOAT 498 #undef VFP_CONV_FLOAT_FIX_ROUND 499 #undef VFP_CONV_FIX_A64 500 501 /* Set the current fp rounding mode and return the old one. 502 * The argument is a softfloat float_round_ value. 503 */ 504 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 505 { 506 float_status *fp_status = fpstp; 507 508 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 509 set_float_rounding_mode(rmode, fp_status); 510 511 return prev_rmode; 512 } 513 514 /* Half precision conversions. */ 515 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 516 { 517 /* Squash FZ16 to 0 for the duration of conversion. In this case, 518 * it would affect flushing input denormals. 519 */ 520 float_status *fpst = fpstp; 521 bool save = get_flush_inputs_to_zero(fpst); 522 set_flush_inputs_to_zero(false, fpst); 523 float32 r = float16_to_float32(a, !ahp_mode, fpst); 524 set_flush_inputs_to_zero(save, fpst); 525 return r; 526 } 527 528 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 529 { 530 /* Squash FZ16 to 0 for the duration of conversion. In this case, 531 * it would affect flushing output denormals. 532 */ 533 float_status *fpst = fpstp; 534 bool save = get_flush_to_zero(fpst); 535 set_flush_to_zero(false, fpst); 536 float16 r = float32_to_float16(a, !ahp_mode, fpst); 537 set_flush_to_zero(save, fpst); 538 return r; 539 } 540 541 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 542 { 543 /* Squash FZ16 to 0 for the duration of conversion. In this case, 544 * it would affect flushing input denormals. 545 */ 546 float_status *fpst = fpstp; 547 bool save = get_flush_inputs_to_zero(fpst); 548 set_flush_inputs_to_zero(false, fpst); 549 float64 r = float16_to_float64(a, !ahp_mode, fpst); 550 set_flush_inputs_to_zero(save, fpst); 551 return r; 552 } 553 554 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 555 { 556 /* Squash FZ16 to 0 for the duration of conversion. In this case, 557 * it would affect flushing output denormals. 558 */ 559 float_status *fpst = fpstp; 560 bool save = get_flush_to_zero(fpst); 561 set_flush_to_zero(false, fpst); 562 float16 r = float64_to_float16(a, !ahp_mode, fpst); 563 set_flush_to_zero(save, fpst); 564 return r; 565 } 566 567 /* NEON helpers. */ 568 569 /* Constants 256 and 512 are used in some helpers; we avoid relying on 570 * int->float conversions at run-time. */ 571 #define float64_256 make_float64(0x4070000000000000LL) 572 #define float64_512 make_float64(0x4080000000000000LL) 573 #define float16_maxnorm make_float16(0x7bff) 574 #define float32_maxnorm make_float32(0x7f7fffff) 575 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 576 577 /* Reciprocal functions 578 * 579 * The algorithm that must be used to calculate the estimate 580 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 581 */ 582 583 /* See RecipEstimate() 584 * 585 * input is a 9 bit fixed point number 586 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 587 * result range 256 .. 511 for a number from 1.0 to 511/256. 588 */ 589 590 static int recip_estimate(int input) 591 { 592 int a, b, r; 593 assert(256 <= input && input < 512); 594 a = (input * 2) + 1; 595 b = (1 << 19) / a; 596 r = (b + 1) >> 1; 597 assert(256 <= r && r < 512); 598 return r; 599 } 600 601 /* 602 * Common wrapper to call recip_estimate 603 * 604 * The parameters are exponent and 64 bit fraction (without implicit 605 * bit) where the binary point is nominally at bit 52. Returns a 606 * float64 which can then be rounded to the appropriate size by the 607 * callee. 608 */ 609 610 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 611 { 612 uint32_t scaled, estimate; 613 uint64_t result_frac; 614 int result_exp; 615 616 /* Handle sub-normals */ 617 if (*exp == 0) { 618 if (extract64(frac, 51, 1) == 0) { 619 *exp = -1; 620 frac <<= 2; 621 } else { 622 frac <<= 1; 623 } 624 } 625 626 /* scaled = UInt('1':fraction<51:44>) */ 627 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 628 estimate = recip_estimate(scaled); 629 630 result_exp = exp_off - *exp; 631 result_frac = deposit64(0, 44, 8, estimate); 632 if (result_exp == 0) { 633 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 634 } else if (result_exp == -1) { 635 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 636 result_exp = 0; 637 } 638 639 *exp = result_exp; 640 641 return result_frac; 642 } 643 644 static bool round_to_inf(float_status *fpst, bool sign_bit) 645 { 646 switch (fpst->float_rounding_mode) { 647 case float_round_nearest_even: /* Round to Nearest */ 648 return true; 649 case float_round_up: /* Round to +Inf */ 650 return !sign_bit; 651 case float_round_down: /* Round to -Inf */ 652 return sign_bit; 653 case float_round_to_zero: /* Round to Zero */ 654 return false; 655 default: 656 g_assert_not_reached(); 657 } 658 } 659 660 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 661 { 662 float_status *fpst = fpstp; 663 float16 f16 = float16_squash_input_denormal(input, fpst); 664 uint32_t f16_val = float16_val(f16); 665 uint32_t f16_sign = float16_is_neg(f16); 666 int f16_exp = extract32(f16_val, 10, 5); 667 uint32_t f16_frac = extract32(f16_val, 0, 10); 668 uint64_t f64_frac; 669 670 if (float16_is_any_nan(f16)) { 671 float16 nan = f16; 672 if (float16_is_signaling_nan(f16, fpst)) { 673 float_raise(float_flag_invalid, fpst); 674 if (!fpst->default_nan_mode) { 675 nan = float16_silence_nan(f16, fpst); 676 } 677 } 678 if (fpst->default_nan_mode) { 679 nan = float16_default_nan(fpst); 680 } 681 return nan; 682 } else if (float16_is_infinity(f16)) { 683 return float16_set_sign(float16_zero, float16_is_neg(f16)); 684 } else if (float16_is_zero(f16)) { 685 float_raise(float_flag_divbyzero, fpst); 686 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 687 } else if (float16_abs(f16) < (1 << 8)) { 688 /* Abs(value) < 2.0^-16 */ 689 float_raise(float_flag_overflow | float_flag_inexact, fpst); 690 if (round_to_inf(fpst, f16_sign)) { 691 return float16_set_sign(float16_infinity, f16_sign); 692 } else { 693 return float16_set_sign(float16_maxnorm, f16_sign); 694 } 695 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 696 float_raise(float_flag_underflow, fpst); 697 return float16_set_sign(float16_zero, float16_is_neg(f16)); 698 } 699 700 f64_frac = call_recip_estimate(&f16_exp, 29, 701 ((uint64_t) f16_frac) << (52 - 10)); 702 703 /* result = sign : result_exp<4:0> : fraction<51:42> */ 704 f16_val = deposit32(0, 15, 1, f16_sign); 705 f16_val = deposit32(f16_val, 10, 5, f16_exp); 706 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 707 return make_float16(f16_val); 708 } 709 710 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 711 { 712 float_status *fpst = fpstp; 713 float32 f32 = float32_squash_input_denormal(input, fpst); 714 uint32_t f32_val = float32_val(f32); 715 bool f32_sign = float32_is_neg(f32); 716 int f32_exp = extract32(f32_val, 23, 8); 717 uint32_t f32_frac = extract32(f32_val, 0, 23); 718 uint64_t f64_frac; 719 720 if (float32_is_any_nan(f32)) { 721 float32 nan = f32; 722 if (float32_is_signaling_nan(f32, fpst)) { 723 float_raise(float_flag_invalid, fpst); 724 if (!fpst->default_nan_mode) { 725 nan = float32_silence_nan(f32, fpst); 726 } 727 } 728 if (fpst->default_nan_mode) { 729 nan = float32_default_nan(fpst); 730 } 731 return nan; 732 } else if (float32_is_infinity(f32)) { 733 return float32_set_sign(float32_zero, float32_is_neg(f32)); 734 } else if (float32_is_zero(f32)) { 735 float_raise(float_flag_divbyzero, fpst); 736 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 737 } else if (float32_abs(f32) < (1ULL << 21)) { 738 /* Abs(value) < 2.0^-128 */ 739 float_raise(float_flag_overflow | float_flag_inexact, fpst); 740 if (round_to_inf(fpst, f32_sign)) { 741 return float32_set_sign(float32_infinity, f32_sign); 742 } else { 743 return float32_set_sign(float32_maxnorm, f32_sign); 744 } 745 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 746 float_raise(float_flag_underflow, fpst); 747 return float32_set_sign(float32_zero, float32_is_neg(f32)); 748 } 749 750 f64_frac = call_recip_estimate(&f32_exp, 253, 751 ((uint64_t) f32_frac) << (52 - 23)); 752 753 /* result = sign : result_exp<7:0> : fraction<51:29> */ 754 f32_val = deposit32(0, 31, 1, f32_sign); 755 f32_val = deposit32(f32_val, 23, 8, f32_exp); 756 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 757 return make_float32(f32_val); 758 } 759 760 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 761 { 762 float_status *fpst = fpstp; 763 float64 f64 = float64_squash_input_denormal(input, fpst); 764 uint64_t f64_val = float64_val(f64); 765 bool f64_sign = float64_is_neg(f64); 766 int f64_exp = extract64(f64_val, 52, 11); 767 uint64_t f64_frac = extract64(f64_val, 0, 52); 768 769 /* Deal with any special cases */ 770 if (float64_is_any_nan(f64)) { 771 float64 nan = f64; 772 if (float64_is_signaling_nan(f64, fpst)) { 773 float_raise(float_flag_invalid, fpst); 774 if (!fpst->default_nan_mode) { 775 nan = float64_silence_nan(f64, fpst); 776 } 777 } 778 if (fpst->default_nan_mode) { 779 nan = float64_default_nan(fpst); 780 } 781 return nan; 782 } else if (float64_is_infinity(f64)) { 783 return float64_set_sign(float64_zero, float64_is_neg(f64)); 784 } else if (float64_is_zero(f64)) { 785 float_raise(float_flag_divbyzero, fpst); 786 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 787 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 788 /* Abs(value) < 2.0^-1024 */ 789 float_raise(float_flag_overflow | float_flag_inexact, fpst); 790 if (round_to_inf(fpst, f64_sign)) { 791 return float64_set_sign(float64_infinity, f64_sign); 792 } else { 793 return float64_set_sign(float64_maxnorm, f64_sign); 794 } 795 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 796 float_raise(float_flag_underflow, fpst); 797 return float64_set_sign(float64_zero, float64_is_neg(f64)); 798 } 799 800 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 801 802 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 803 f64_val = deposit64(0, 63, 1, f64_sign); 804 f64_val = deposit64(f64_val, 52, 11, f64_exp); 805 f64_val = deposit64(f64_val, 0, 52, f64_frac); 806 return make_float64(f64_val); 807 } 808 809 /* The algorithm that must be used to calculate the estimate 810 * is specified by the ARM ARM. 811 */ 812 813 static int do_recip_sqrt_estimate(int a) 814 { 815 int b, estimate; 816 817 assert(128 <= a && a < 512); 818 if (a < 256) { 819 a = a * 2 + 1; 820 } else { 821 a = (a >> 1) << 1; 822 a = (a + 1) * 2; 823 } 824 b = 512; 825 while (a * (b + 1) * (b + 1) < (1 << 28)) { 826 b += 1; 827 } 828 estimate = (b + 1) / 2; 829 assert(256 <= estimate && estimate < 512); 830 831 return estimate; 832 } 833 834 835 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 836 { 837 int estimate; 838 uint32_t scaled; 839 840 if (*exp == 0) { 841 while (extract64(frac, 51, 1) == 0) { 842 frac = frac << 1; 843 *exp -= 1; 844 } 845 frac = extract64(frac, 0, 51) << 1; 846 } 847 848 if (*exp & 1) { 849 /* scaled = UInt('01':fraction<51:45>) */ 850 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 851 } else { 852 /* scaled = UInt('1':fraction<51:44>) */ 853 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 854 } 855 estimate = do_recip_sqrt_estimate(scaled); 856 857 *exp = (exp_off - *exp) / 2; 858 return extract64(estimate, 0, 8) << 44; 859 } 860 861 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 862 { 863 float_status *s = fpstp; 864 float16 f16 = float16_squash_input_denormal(input, s); 865 uint16_t val = float16_val(f16); 866 bool f16_sign = float16_is_neg(f16); 867 int f16_exp = extract32(val, 10, 5); 868 uint16_t f16_frac = extract32(val, 0, 10); 869 uint64_t f64_frac; 870 871 if (float16_is_any_nan(f16)) { 872 float16 nan = f16; 873 if (float16_is_signaling_nan(f16, s)) { 874 float_raise(float_flag_invalid, s); 875 if (!s->default_nan_mode) { 876 nan = float16_silence_nan(f16, fpstp); 877 } 878 } 879 if (s->default_nan_mode) { 880 nan = float16_default_nan(s); 881 } 882 return nan; 883 } else if (float16_is_zero(f16)) { 884 float_raise(float_flag_divbyzero, s); 885 return float16_set_sign(float16_infinity, f16_sign); 886 } else if (f16_sign) { 887 float_raise(float_flag_invalid, s); 888 return float16_default_nan(s); 889 } else if (float16_is_infinity(f16)) { 890 return float16_zero; 891 } 892 893 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 894 * preserving the parity of the exponent. */ 895 896 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 897 898 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 899 900 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 901 val = deposit32(0, 15, 1, f16_sign); 902 val = deposit32(val, 10, 5, f16_exp); 903 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 904 return make_float16(val); 905 } 906 907 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 908 { 909 float_status *s = fpstp; 910 float32 f32 = float32_squash_input_denormal(input, s); 911 uint32_t val = float32_val(f32); 912 uint32_t f32_sign = float32_is_neg(f32); 913 int f32_exp = extract32(val, 23, 8); 914 uint32_t f32_frac = extract32(val, 0, 23); 915 uint64_t f64_frac; 916 917 if (float32_is_any_nan(f32)) { 918 float32 nan = f32; 919 if (float32_is_signaling_nan(f32, s)) { 920 float_raise(float_flag_invalid, s); 921 if (!s->default_nan_mode) { 922 nan = float32_silence_nan(f32, fpstp); 923 } 924 } 925 if (s->default_nan_mode) { 926 nan = float32_default_nan(s); 927 } 928 return nan; 929 } else if (float32_is_zero(f32)) { 930 float_raise(float_flag_divbyzero, s); 931 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 932 } else if (float32_is_neg(f32)) { 933 float_raise(float_flag_invalid, s); 934 return float32_default_nan(s); 935 } else if (float32_is_infinity(f32)) { 936 return float32_zero; 937 } 938 939 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 940 * preserving the parity of the exponent. */ 941 942 f64_frac = ((uint64_t) f32_frac) << 29; 943 944 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 945 946 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 947 val = deposit32(0, 31, 1, f32_sign); 948 val = deposit32(val, 23, 8, f32_exp); 949 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 950 return make_float32(val); 951 } 952 953 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 954 { 955 float_status *s = fpstp; 956 float64 f64 = float64_squash_input_denormal(input, s); 957 uint64_t val = float64_val(f64); 958 bool f64_sign = float64_is_neg(f64); 959 int f64_exp = extract64(val, 52, 11); 960 uint64_t f64_frac = extract64(val, 0, 52); 961 962 if (float64_is_any_nan(f64)) { 963 float64 nan = f64; 964 if (float64_is_signaling_nan(f64, s)) { 965 float_raise(float_flag_invalid, s); 966 if (!s->default_nan_mode) { 967 nan = float64_silence_nan(f64, fpstp); 968 } 969 } 970 if (s->default_nan_mode) { 971 nan = float64_default_nan(s); 972 } 973 return nan; 974 } else if (float64_is_zero(f64)) { 975 float_raise(float_flag_divbyzero, s); 976 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 977 } else if (float64_is_neg(f64)) { 978 float_raise(float_flag_invalid, s); 979 return float64_default_nan(s); 980 } else if (float64_is_infinity(f64)) { 981 return float64_zero; 982 } 983 984 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 985 986 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 987 val = deposit64(0, 61, 1, f64_sign); 988 val = deposit64(val, 52, 11, f64_exp); 989 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 990 return make_float64(val); 991 } 992 993 uint32_t HELPER(recpe_u32)(uint32_t a) 994 { 995 int input, estimate; 996 997 if ((a & 0x80000000) == 0) { 998 return 0xffffffff; 999 } 1000 1001 input = extract32(a, 23, 9); 1002 estimate = recip_estimate(input); 1003 1004 return deposit32(0, (32 - 9), 9, estimate); 1005 } 1006 1007 uint32_t HELPER(rsqrte_u32)(uint32_t a) 1008 { 1009 int estimate; 1010 1011 if ((a & 0xc0000000) == 0) { 1012 return 0xffffffff; 1013 } 1014 1015 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 1016 1017 return deposit32(0, 23, 9, estimate); 1018 } 1019 1020 /* VFPv4 fused multiply-accumulate */ 1021 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b, 1022 dh_ctype_f16 c, void *fpstp) 1023 { 1024 float_status *fpst = fpstp; 1025 return float16_muladd(a, b, c, 0, fpst); 1026 } 1027 1028 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 1029 { 1030 float_status *fpst = fpstp; 1031 return float32_muladd(a, b, c, 0, fpst); 1032 } 1033 1034 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 1035 { 1036 float_status *fpst = fpstp; 1037 return float64_muladd(a, b, c, 0, fpst); 1038 } 1039 1040 /* ARMv8 round to integral */ 1041 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status) 1042 { 1043 return float16_round_to_int(x, fp_status); 1044 } 1045 1046 float32 HELPER(rints_exact)(float32 x, void *fp_status) 1047 { 1048 return float32_round_to_int(x, fp_status); 1049 } 1050 1051 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 1052 { 1053 return float64_round_to_int(x, fp_status); 1054 } 1055 1056 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status) 1057 { 1058 int old_flags = get_float_exception_flags(fp_status), new_flags; 1059 float16 ret; 1060 1061 ret = float16_round_to_int(x, fp_status); 1062 1063 /* Suppress any inexact exceptions the conversion produced */ 1064 if (!(old_flags & float_flag_inexact)) { 1065 new_flags = get_float_exception_flags(fp_status); 1066 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1067 } 1068 1069 return ret; 1070 } 1071 1072 float32 HELPER(rints)(float32 x, void *fp_status) 1073 { 1074 int old_flags = get_float_exception_flags(fp_status), new_flags; 1075 float32 ret; 1076 1077 ret = float32_round_to_int(x, fp_status); 1078 1079 /* Suppress any inexact exceptions the conversion produced */ 1080 if (!(old_flags & float_flag_inexact)) { 1081 new_flags = get_float_exception_flags(fp_status); 1082 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1083 } 1084 1085 return ret; 1086 } 1087 1088 float64 HELPER(rintd)(float64 x, void *fp_status) 1089 { 1090 int old_flags = get_float_exception_flags(fp_status), new_flags; 1091 float64 ret; 1092 1093 ret = float64_round_to_int(x, fp_status); 1094 1095 new_flags = get_float_exception_flags(fp_status); 1096 1097 /* Suppress any inexact exceptions the conversion produced */ 1098 if (!(old_flags & float_flag_inexact)) { 1099 new_flags = get_float_exception_flags(fp_status); 1100 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1101 } 1102 1103 return ret; 1104 } 1105 1106 /* Convert ARM rounding mode to softfloat */ 1107 const FloatRoundMode arm_rmode_to_sf_map[] = { 1108 [FPROUNDING_TIEEVEN] = float_round_nearest_even, 1109 [FPROUNDING_POSINF] = float_round_up, 1110 [FPROUNDING_NEGINF] = float_round_down, 1111 [FPROUNDING_ZERO] = float_round_to_zero, 1112 [FPROUNDING_TIEAWAY] = float_round_ties_away, 1113 [FPROUNDING_ODD] = float_round_to_odd, 1114 }; 1115 1116 /* 1117 * Implement float64 to int32_t conversion without saturation; 1118 * the result is supplied modulo 2^32. 1119 */ 1120 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus) 1121 { 1122 float_status *status = vstatus; 1123 uint32_t exp, sign; 1124 uint64_t frac; 1125 uint32_t inexact = 1; /* !Z */ 1126 1127 sign = extract64(value, 63, 1); 1128 exp = extract64(value, 52, 11); 1129 frac = extract64(value, 0, 52); 1130 1131 if (exp == 0) { 1132 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */ 1133 inexact = sign; 1134 if (frac != 0) { 1135 if (status->flush_inputs_to_zero) { 1136 float_raise(float_flag_input_denormal, status); 1137 } else { 1138 float_raise(float_flag_inexact, status); 1139 inexact = 1; 1140 } 1141 } 1142 frac = 0; 1143 } else if (exp == 0x7ff) { 1144 /* This operation raises Invalid for both NaN and overflow (Inf). */ 1145 float_raise(float_flag_invalid, status); 1146 frac = 0; 1147 } else { 1148 int true_exp = exp - 1023; 1149 int shift = true_exp - 52; 1150 1151 /* Restore implicit bit. */ 1152 frac |= 1ull << 52; 1153 1154 /* Shift the fraction into place. */ 1155 if (shift >= 0) { 1156 /* The number is so large we must shift the fraction left. */ 1157 if (shift >= 64) { 1158 /* The fraction is shifted out entirely. */ 1159 frac = 0; 1160 } else { 1161 frac <<= shift; 1162 } 1163 } else if (shift > -64) { 1164 /* Normal case -- shift right and notice if bits shift out. */ 1165 inexact = (frac << (64 + shift)) != 0; 1166 frac >>= -shift; 1167 } else { 1168 /* The fraction is shifted out entirely. */ 1169 frac = 0; 1170 } 1171 1172 /* Notice overflow or inexact exceptions. */ 1173 if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) { 1174 /* Overflow, for which this operation raises invalid. */ 1175 float_raise(float_flag_invalid, status); 1176 inexact = 1; 1177 } else if (inexact) { 1178 float_raise(float_flag_inexact, status); 1179 } 1180 1181 /* Honor the sign. */ 1182 if (sign) { 1183 frac = -frac; 1184 } 1185 } 1186 1187 /* Pack the result and the env->ZF representation of Z together. */ 1188 return deposit64(frac, 32, 32, inexact); 1189 } 1190 1191 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env) 1192 { 1193 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status); 1194 uint32_t result = pair; 1195 uint32_t z = (pair >> 32) == 0; 1196 1197 /* Store Z, clear NCV, in FPSCR.NZCV. */ 1198 env->vfp.xregs[ARM_VFP_FPSCR] 1199 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z); 1200 1201 return result; 1202 } 1203 1204 /* Round a float32 to an integer that fits in int32_t or int64_t. */ 1205 static float32 frint_s(float32 f, float_status *fpst, int intsize) 1206 { 1207 int old_flags = get_float_exception_flags(fpst); 1208 uint32_t exp = extract32(f, 23, 8); 1209 1210 if (unlikely(exp == 0xff)) { 1211 /* NaN or Inf. */ 1212 goto overflow; 1213 } 1214 1215 /* Round and re-extract the exponent. */ 1216 f = float32_round_to_int(f, fpst); 1217 exp = extract32(f, 23, 8); 1218 1219 /* Validate the range of the result. */ 1220 if (exp < 126 + intsize) { 1221 /* abs(F) <= INT{N}_MAX */ 1222 return f; 1223 } 1224 if (exp == 126 + intsize) { 1225 uint32_t sign = extract32(f, 31, 1); 1226 uint32_t frac = extract32(f, 0, 23); 1227 if (sign && frac == 0) { 1228 /* F == INT{N}_MIN */ 1229 return f; 1230 } 1231 } 1232 1233 overflow: 1234 /* 1235 * Raise Invalid and return INT{N}_MIN as a float. Revert any 1236 * inexact exception float32_round_to_int may have raised. 1237 */ 1238 set_float_exception_flags(old_flags | float_flag_invalid, fpst); 1239 return (0x100u + 126u + intsize) << 23; 1240 } 1241 1242 float32 HELPER(frint32_s)(float32 f, void *fpst) 1243 { 1244 return frint_s(f, fpst, 32); 1245 } 1246 1247 float32 HELPER(frint64_s)(float32 f, void *fpst) 1248 { 1249 return frint_s(f, fpst, 64); 1250 } 1251 1252 /* Round a float64 to an integer that fits in int32_t or int64_t. */ 1253 static float64 frint_d(float64 f, float_status *fpst, int intsize) 1254 { 1255 int old_flags = get_float_exception_flags(fpst); 1256 uint32_t exp = extract64(f, 52, 11); 1257 1258 if (unlikely(exp == 0x7ff)) { 1259 /* NaN or Inf. */ 1260 goto overflow; 1261 } 1262 1263 /* Round and re-extract the exponent. */ 1264 f = float64_round_to_int(f, fpst); 1265 exp = extract64(f, 52, 11); 1266 1267 /* Validate the range of the result. */ 1268 if (exp < 1022 + intsize) { 1269 /* abs(F) <= INT{N}_MAX */ 1270 return f; 1271 } 1272 if (exp == 1022 + intsize) { 1273 uint64_t sign = extract64(f, 63, 1); 1274 uint64_t frac = extract64(f, 0, 52); 1275 if (sign && frac == 0) { 1276 /* F == INT{N}_MIN */ 1277 return f; 1278 } 1279 } 1280 1281 overflow: 1282 /* 1283 * Raise Invalid and return INT{N}_MIN as a float. Revert any 1284 * inexact exception float64_round_to_int may have raised. 1285 */ 1286 set_float_exception_flags(old_flags | float_flag_invalid, fpst); 1287 return (uint64_t)(0x800 + 1022 + intsize) << 52; 1288 } 1289 1290 float64 HELPER(frint32_d)(float64 f, void *fpst) 1291 { 1292 return frint_d(f, fpst, 32); 1293 } 1294 1295 float64 HELPER(frint64_d)(float64 f, void *fpst) 1296 { 1297 return frint_d(f, fpst, 64); 1298 } 1299 1300 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg) 1301 { 1302 uint32_t syndrome; 1303 1304 switch (reg) { 1305 case ARM_VFP_MVFR0: 1306 case ARM_VFP_MVFR1: 1307 case ARM_VFP_MVFR2: 1308 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) { 1309 return; 1310 } 1311 break; 1312 case ARM_VFP_FPSID: 1313 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) { 1314 return; 1315 } 1316 break; 1317 default: 1318 g_assert_not_reached(); 1319 } 1320 1321 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT) 1322 | ARM_EL_IL 1323 | (1 << 24) | (0xe << 20) | (7 << 14) 1324 | (reg << 10) | (rt << 5) | 1); 1325 1326 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); 1327 } 1328 1329 #endif 1330