1 /* 2 * ARM VFP floating-point operations 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "internals.h" 24 #include "cpu-features.h" 25 #ifdef CONFIG_TCG 26 #include "qemu/log.h" 27 #include "fpu/softfloat.h" 28 #endif 29 30 /* VFP support. We follow the convention used for VFP instructions: 31 Single precision routines have a "s" suffix, double precision a 32 "d" suffix. */ 33 34 #ifdef CONFIG_TCG 35 36 /* Convert host exception flags to vfp form. */ 37 static inline int vfp_exceptbits_from_host(int host_bits) 38 { 39 int target_bits = 0; 40 41 if (host_bits & float_flag_invalid) { 42 target_bits |= 1; 43 } 44 if (host_bits & float_flag_divbyzero) { 45 target_bits |= 2; 46 } 47 if (host_bits & float_flag_overflow) { 48 target_bits |= 4; 49 } 50 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) { 51 target_bits |= 8; 52 } 53 if (host_bits & float_flag_inexact) { 54 target_bits |= 0x10; 55 } 56 if (host_bits & float_flag_input_denormal) { 57 target_bits |= 0x80; 58 } 59 return target_bits; 60 } 61 62 /* Convert vfp exception flags to target form. */ 63 static inline int vfp_exceptbits_to_host(int target_bits) 64 { 65 int host_bits = 0; 66 67 if (target_bits & 1) { 68 host_bits |= float_flag_invalid; 69 } 70 if (target_bits & 2) { 71 host_bits |= float_flag_divbyzero; 72 } 73 if (target_bits & 4) { 74 host_bits |= float_flag_overflow; 75 } 76 if (target_bits & 8) { 77 host_bits |= float_flag_underflow; 78 } 79 if (target_bits & 0x10) { 80 host_bits |= float_flag_inexact; 81 } 82 if (target_bits & 0x80) { 83 host_bits |= float_flag_input_denormal; 84 } 85 return host_bits; 86 } 87 88 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) 89 { 90 uint32_t i; 91 92 i = get_float_exception_flags(&env->vfp.fp_status); 93 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 94 /* FZ16 does not generate an input denormal exception. */ 95 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 96 & ~float_flag_input_denormal); 97 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16) 98 & ~float_flag_input_denormal); 99 return vfp_exceptbits_from_host(i); 100 } 101 102 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) 103 { 104 int i; 105 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR]; 106 107 changed ^= val; 108 if (changed & (3 << 22)) { 109 i = (val >> 22) & 3; 110 switch (i) { 111 case FPROUNDING_TIEEVEN: 112 i = float_round_nearest_even; 113 break; 114 case FPROUNDING_POSINF: 115 i = float_round_up; 116 break; 117 case FPROUNDING_NEGINF: 118 i = float_round_down; 119 break; 120 case FPROUNDING_ZERO: 121 i = float_round_to_zero; 122 break; 123 } 124 set_float_rounding_mode(i, &env->vfp.fp_status); 125 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 126 } 127 if (changed & FPCR_FZ16) { 128 bool ftz_enabled = val & FPCR_FZ16; 129 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 130 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); 131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 132 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16); 133 } 134 if (changed & FPCR_FZ) { 135 bool ftz_enabled = val & FPCR_FZ; 136 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 137 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 138 } 139 if (changed & FPCR_DN) { 140 bool dnan_enabled = val & FPCR_DN; 141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 142 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 143 } 144 145 /* 146 * The exception flags are ORed together when we read fpscr so we 147 * only need to preserve the current state in one of our 148 * float_status values. 149 */ 150 i = vfp_exceptbits_to_host(val); 151 set_float_exception_flags(i, &env->vfp.fp_status); 152 set_float_exception_flags(0, &env->vfp.fp_status_f16); 153 set_float_exception_flags(0, &env->vfp.standard_fp_status); 154 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16); 155 } 156 157 #else 158 159 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) 160 { 161 return 0; 162 } 163 164 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) 165 { 166 } 167 168 #endif 169 170 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 171 { 172 uint32_t i, fpscr; 173 174 fpscr = env->vfp.xregs[ARM_VFP_FPSCR] 175 | (env->vfp.vec_len << 16) 176 | (env->vfp.vec_stride << 20); 177 178 /* 179 * M-profile LTPSIZE overlaps A-profile Stride; whichever of the 180 * two is not applicable to this CPU will always be zero. 181 */ 182 fpscr |= env->v7m.ltpsize << 16; 183 184 fpscr |= vfp_get_fpscr_from_host(env); 185 186 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3]; 187 fpscr |= i ? FPCR_QC : 0; 188 189 return fpscr; 190 } 191 192 uint32_t vfp_get_fpscr(CPUARMState *env) 193 { 194 return HELPER(vfp_get_fpscr)(env); 195 } 196 197 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 198 { 199 ARMCPU *cpu = env_archcpu(env); 200 201 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 202 if (!cpu_isar_feature(any_fp16, cpu)) { 203 val &= ~FPCR_FZ16; 204 } 205 206 vfp_set_fpscr_to_host(env, val); 207 208 if (!arm_feature(env, ARM_FEATURE_M)) { 209 /* 210 * Short-vector length and stride; on M-profile these bits 211 * are used for different purposes. 212 * We can't make this conditional be "if MVFR0.FPShVec != 0", 213 * because in v7A no-short-vector-support cores still had to 214 * allow Stride/Len to be written with the only effect that 215 * some insns are required to UNDEF if the guest sets them. 216 */ 217 env->vfp.vec_len = extract32(val, 16, 3); 218 env->vfp.vec_stride = extract32(val, 20, 2); 219 } else if (cpu_isar_feature(aa32_mve, cpu)) { 220 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT, 221 FPCR_LTPSIZE_LENGTH); 222 } 223 224 if (arm_feature(env, ARM_FEATURE_NEON) || 225 cpu_isar_feature(aa32_mve, cpu)) { 226 /* 227 * The bit we set within fpscr_q is arbitrary; the register as a 228 * whole being zero/non-zero is what counts. 229 * TODO: M-profile MVE also has a QC bit. 230 */ 231 env->vfp.qc[0] = val & FPCR_QC; 232 env->vfp.qc[1] = 0; 233 env->vfp.qc[2] = 0; 234 env->vfp.qc[3] = 0; 235 } 236 237 /* 238 * We don't implement trapped exception handling, so the 239 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!) 240 * 241 * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in 242 * fp_status; QC, Len and Stride are stored separately earlier. 243 * Clear out all of those and the RES0 bits: only NZCV, AHP, DN, 244 * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR]. 245 */ 246 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000; 247 } 248 249 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 250 { 251 HELPER(vfp_set_fpscr)(env, val); 252 } 253 254 #ifdef CONFIG_TCG 255 256 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 257 258 #define VFP_BINOP(name) \ 259 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \ 260 { \ 261 float_status *fpst = fpstp; \ 262 return float16_ ## name(a, b, fpst); \ 263 } \ 264 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 265 { \ 266 float_status *fpst = fpstp; \ 267 return float32_ ## name(a, b, fpst); \ 268 } \ 269 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 270 { \ 271 float_status *fpst = fpstp; \ 272 return float64_ ## name(a, b, fpst); \ 273 } 274 VFP_BINOP(add) 275 VFP_BINOP(sub) 276 VFP_BINOP(mul) 277 VFP_BINOP(div) 278 VFP_BINOP(min) 279 VFP_BINOP(max) 280 VFP_BINOP(minnum) 281 VFP_BINOP(maxnum) 282 #undef VFP_BINOP 283 284 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env) 285 { 286 return float16_sqrt(a, &env->vfp.fp_status_f16); 287 } 288 289 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 290 { 291 return float32_sqrt(a, &env->vfp.fp_status); 292 } 293 294 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 295 { 296 return float64_sqrt(a, &env->vfp.fp_status); 297 } 298 299 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp) 300 { 301 uint32_t flags; 302 switch (cmp) { 303 case float_relation_equal: 304 flags = 0x6; 305 break; 306 case float_relation_less: 307 flags = 0x8; 308 break; 309 case float_relation_greater: 310 flags = 0x2; 311 break; 312 case float_relation_unordered: 313 flags = 0x3; 314 break; 315 default: 316 g_assert_not_reached(); 317 } 318 env->vfp.xregs[ARM_VFP_FPSCR] = 319 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags); 320 } 321 322 /* XXX: check quiet/signaling case */ 323 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \ 324 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ 325 { \ 326 softfloat_to_vfp_compare(env, \ 327 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \ 328 } \ 329 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \ 330 { \ 331 softfloat_to_vfp_compare(env, \ 332 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \ 333 } 334 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16) 335 DO_VFP_cmp(s, float32, float32, fp_status) 336 DO_VFP_cmp(d, float64, float64, fp_status) 337 #undef DO_VFP_cmp 338 339 /* Integer to float and float to integer conversions */ 340 341 #define CONV_ITOF(name, ftype, fsz, sign) \ 342 ftype HELPER(name)(uint32_t x, void *fpstp) \ 343 { \ 344 float_status *fpst = fpstp; \ 345 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 346 } 347 348 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 349 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 350 { \ 351 float_status *fpst = fpstp; \ 352 if (float##fsz##_is_any_nan(x)) { \ 353 float_raise(float_flag_invalid, fpst); \ 354 return 0; \ 355 } \ 356 return float##fsz##_to_##sign##int32##round(x, fpst); \ 357 } 358 359 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 360 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 361 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 362 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 363 364 FLOAT_CONVS(si, h, uint32_t, 16, ) 365 FLOAT_CONVS(si, s, float32, 32, ) 366 FLOAT_CONVS(si, d, float64, 64, ) 367 FLOAT_CONVS(ui, h, uint32_t, 16, u) 368 FLOAT_CONVS(ui, s, float32, 32, u) 369 FLOAT_CONVS(ui, d, float64, 64, u) 370 371 #undef CONV_ITOF 372 #undef CONV_FTOI 373 #undef FLOAT_CONVS 374 375 /* floating point conversion */ 376 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 377 { 378 return float32_to_float64(x, &env->vfp.fp_status); 379 } 380 381 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 382 { 383 return float64_to_float32(x, &env->vfp.fp_status); 384 } 385 386 uint32_t HELPER(bfcvt)(float32 x, void *status) 387 { 388 return float32_to_bfloat16(x, status); 389 } 390 391 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status) 392 { 393 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status); 394 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status); 395 return deposit32(lo, 16, 16, hi); 396 } 397 398 /* 399 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float 400 * must always round-to-nearest; the AArch64 ones honour the FPSCR 401 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to 402 * round-to-nearest so either helper will work.) AArch32 float-to-fix 403 * must round-to-zero. 404 */ 405 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 406 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 407 void *fpstp) \ 408 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 409 410 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ 411 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \ 412 uint32_t shift, \ 413 void *fpstp) \ 414 { \ 415 ftype ret; \ 416 float_status *fpst = fpstp; \ 417 FloatRoundMode oldmode = fpst->float_rounding_mode; \ 418 fpst->float_rounding_mode = float_round_nearest_even; \ 419 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \ 420 fpst->float_rounding_mode = oldmode; \ 421 return ret; \ 422 } 423 424 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \ 425 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \ 426 void *fpst) \ 427 { \ 428 if (unlikely(float##fsz##_is_any_nan(x))) { \ 429 float_raise(float_flag_invalid, fpst); \ 430 return 0; \ 431 } \ 432 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 433 } 434 435 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \ 436 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 437 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \ 438 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 439 float_round_to_zero, _round_to_zero) \ 440 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 441 get_float_rounding_mode(fpst), ) 442 443 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \ 444 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \ 445 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \ 446 get_float_rounding_mode(fpst), ) 447 448 VFP_CONV_FIX(sh, d, 64, float64, 64, int16) 449 VFP_CONV_FIX(sl, d, 64, float64, 64, int32) 450 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64) 451 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16) 452 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32) 453 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64) 454 VFP_CONV_FIX(sh, s, 32, float32, 32, int16) 455 VFP_CONV_FIX(sl, s, 32, float32, 32, int32) 456 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64) 457 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16) 458 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32) 459 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64) 460 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16) 461 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32) 462 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64) 463 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16) 464 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32) 465 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64) 466 467 #undef VFP_CONV_FIX 468 #undef VFP_CONV_FIX_FLOAT 469 #undef VFP_CONV_FLOAT_FIX_ROUND 470 #undef VFP_CONV_FIX_A64 471 472 /* Set the current fp rounding mode and return the old one. 473 * The argument is a softfloat float_round_ value. 474 */ 475 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 476 { 477 float_status *fp_status = fpstp; 478 479 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 480 set_float_rounding_mode(rmode, fp_status); 481 482 return prev_rmode; 483 } 484 485 /* Half precision conversions. */ 486 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 487 { 488 /* Squash FZ16 to 0 for the duration of conversion. In this case, 489 * it would affect flushing input denormals. 490 */ 491 float_status *fpst = fpstp; 492 bool save = get_flush_inputs_to_zero(fpst); 493 set_flush_inputs_to_zero(false, fpst); 494 float32 r = float16_to_float32(a, !ahp_mode, fpst); 495 set_flush_inputs_to_zero(save, fpst); 496 return r; 497 } 498 499 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 500 { 501 /* Squash FZ16 to 0 for the duration of conversion. In this case, 502 * it would affect flushing output denormals. 503 */ 504 float_status *fpst = fpstp; 505 bool save = get_flush_to_zero(fpst); 506 set_flush_to_zero(false, fpst); 507 float16 r = float32_to_float16(a, !ahp_mode, fpst); 508 set_flush_to_zero(save, fpst); 509 return r; 510 } 511 512 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 513 { 514 /* Squash FZ16 to 0 for the duration of conversion. In this case, 515 * it would affect flushing input denormals. 516 */ 517 float_status *fpst = fpstp; 518 bool save = get_flush_inputs_to_zero(fpst); 519 set_flush_inputs_to_zero(false, fpst); 520 float64 r = float16_to_float64(a, !ahp_mode, fpst); 521 set_flush_inputs_to_zero(save, fpst); 522 return r; 523 } 524 525 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 526 { 527 /* Squash FZ16 to 0 for the duration of conversion. In this case, 528 * it would affect flushing output denormals. 529 */ 530 float_status *fpst = fpstp; 531 bool save = get_flush_to_zero(fpst); 532 set_flush_to_zero(false, fpst); 533 float16 r = float64_to_float16(a, !ahp_mode, fpst); 534 set_flush_to_zero(save, fpst); 535 return r; 536 } 537 538 /* NEON helpers. */ 539 540 /* Constants 256 and 512 are used in some helpers; we avoid relying on 541 * int->float conversions at run-time. */ 542 #define float64_256 make_float64(0x4070000000000000LL) 543 #define float64_512 make_float64(0x4080000000000000LL) 544 #define float16_maxnorm make_float16(0x7bff) 545 #define float32_maxnorm make_float32(0x7f7fffff) 546 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 547 548 /* Reciprocal functions 549 * 550 * The algorithm that must be used to calculate the estimate 551 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 552 */ 553 554 /* See RecipEstimate() 555 * 556 * input is a 9 bit fixed point number 557 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 558 * result range 256 .. 511 for a number from 1.0 to 511/256. 559 */ 560 561 static int recip_estimate(int input) 562 { 563 int a, b, r; 564 assert(256 <= input && input < 512); 565 a = (input * 2) + 1; 566 b = (1 << 19) / a; 567 r = (b + 1) >> 1; 568 assert(256 <= r && r < 512); 569 return r; 570 } 571 572 /* 573 * Common wrapper to call recip_estimate 574 * 575 * The parameters are exponent and 64 bit fraction (without implicit 576 * bit) where the binary point is nominally at bit 52. Returns a 577 * float64 which can then be rounded to the appropriate size by the 578 * callee. 579 */ 580 581 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 582 { 583 uint32_t scaled, estimate; 584 uint64_t result_frac; 585 int result_exp; 586 587 /* Handle sub-normals */ 588 if (*exp == 0) { 589 if (extract64(frac, 51, 1) == 0) { 590 *exp = -1; 591 frac <<= 2; 592 } else { 593 frac <<= 1; 594 } 595 } 596 597 /* scaled = UInt('1':fraction<51:44>) */ 598 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 599 estimate = recip_estimate(scaled); 600 601 result_exp = exp_off - *exp; 602 result_frac = deposit64(0, 44, 8, estimate); 603 if (result_exp == 0) { 604 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 605 } else if (result_exp == -1) { 606 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 607 result_exp = 0; 608 } 609 610 *exp = result_exp; 611 612 return result_frac; 613 } 614 615 static bool round_to_inf(float_status *fpst, bool sign_bit) 616 { 617 switch (fpst->float_rounding_mode) { 618 case float_round_nearest_even: /* Round to Nearest */ 619 return true; 620 case float_round_up: /* Round to +Inf */ 621 return !sign_bit; 622 case float_round_down: /* Round to -Inf */ 623 return sign_bit; 624 case float_round_to_zero: /* Round to Zero */ 625 return false; 626 default: 627 g_assert_not_reached(); 628 } 629 } 630 631 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 632 { 633 float_status *fpst = fpstp; 634 float16 f16 = float16_squash_input_denormal(input, fpst); 635 uint32_t f16_val = float16_val(f16); 636 uint32_t f16_sign = float16_is_neg(f16); 637 int f16_exp = extract32(f16_val, 10, 5); 638 uint32_t f16_frac = extract32(f16_val, 0, 10); 639 uint64_t f64_frac; 640 641 if (float16_is_any_nan(f16)) { 642 float16 nan = f16; 643 if (float16_is_signaling_nan(f16, fpst)) { 644 float_raise(float_flag_invalid, fpst); 645 if (!fpst->default_nan_mode) { 646 nan = float16_silence_nan(f16, fpst); 647 } 648 } 649 if (fpst->default_nan_mode) { 650 nan = float16_default_nan(fpst); 651 } 652 return nan; 653 } else if (float16_is_infinity(f16)) { 654 return float16_set_sign(float16_zero, float16_is_neg(f16)); 655 } else if (float16_is_zero(f16)) { 656 float_raise(float_flag_divbyzero, fpst); 657 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 658 } else if (float16_abs(f16) < (1 << 8)) { 659 /* Abs(value) < 2.0^-16 */ 660 float_raise(float_flag_overflow | float_flag_inexact, fpst); 661 if (round_to_inf(fpst, f16_sign)) { 662 return float16_set_sign(float16_infinity, f16_sign); 663 } else { 664 return float16_set_sign(float16_maxnorm, f16_sign); 665 } 666 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 667 float_raise(float_flag_underflow, fpst); 668 return float16_set_sign(float16_zero, float16_is_neg(f16)); 669 } 670 671 f64_frac = call_recip_estimate(&f16_exp, 29, 672 ((uint64_t) f16_frac) << (52 - 10)); 673 674 /* result = sign : result_exp<4:0> : fraction<51:42> */ 675 f16_val = deposit32(0, 15, 1, f16_sign); 676 f16_val = deposit32(f16_val, 10, 5, f16_exp); 677 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 678 return make_float16(f16_val); 679 } 680 681 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 682 { 683 float_status *fpst = fpstp; 684 float32 f32 = float32_squash_input_denormal(input, fpst); 685 uint32_t f32_val = float32_val(f32); 686 bool f32_sign = float32_is_neg(f32); 687 int f32_exp = extract32(f32_val, 23, 8); 688 uint32_t f32_frac = extract32(f32_val, 0, 23); 689 uint64_t f64_frac; 690 691 if (float32_is_any_nan(f32)) { 692 float32 nan = f32; 693 if (float32_is_signaling_nan(f32, fpst)) { 694 float_raise(float_flag_invalid, fpst); 695 if (!fpst->default_nan_mode) { 696 nan = float32_silence_nan(f32, fpst); 697 } 698 } 699 if (fpst->default_nan_mode) { 700 nan = float32_default_nan(fpst); 701 } 702 return nan; 703 } else if (float32_is_infinity(f32)) { 704 return float32_set_sign(float32_zero, float32_is_neg(f32)); 705 } else if (float32_is_zero(f32)) { 706 float_raise(float_flag_divbyzero, fpst); 707 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 708 } else if (float32_abs(f32) < (1ULL << 21)) { 709 /* Abs(value) < 2.0^-128 */ 710 float_raise(float_flag_overflow | float_flag_inexact, fpst); 711 if (round_to_inf(fpst, f32_sign)) { 712 return float32_set_sign(float32_infinity, f32_sign); 713 } else { 714 return float32_set_sign(float32_maxnorm, f32_sign); 715 } 716 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 717 float_raise(float_flag_underflow, fpst); 718 return float32_set_sign(float32_zero, float32_is_neg(f32)); 719 } 720 721 f64_frac = call_recip_estimate(&f32_exp, 253, 722 ((uint64_t) f32_frac) << (52 - 23)); 723 724 /* result = sign : result_exp<7:0> : fraction<51:29> */ 725 f32_val = deposit32(0, 31, 1, f32_sign); 726 f32_val = deposit32(f32_val, 23, 8, f32_exp); 727 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 728 return make_float32(f32_val); 729 } 730 731 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 732 { 733 float_status *fpst = fpstp; 734 float64 f64 = float64_squash_input_denormal(input, fpst); 735 uint64_t f64_val = float64_val(f64); 736 bool f64_sign = float64_is_neg(f64); 737 int f64_exp = extract64(f64_val, 52, 11); 738 uint64_t f64_frac = extract64(f64_val, 0, 52); 739 740 /* Deal with any special cases */ 741 if (float64_is_any_nan(f64)) { 742 float64 nan = f64; 743 if (float64_is_signaling_nan(f64, fpst)) { 744 float_raise(float_flag_invalid, fpst); 745 if (!fpst->default_nan_mode) { 746 nan = float64_silence_nan(f64, fpst); 747 } 748 } 749 if (fpst->default_nan_mode) { 750 nan = float64_default_nan(fpst); 751 } 752 return nan; 753 } else if (float64_is_infinity(f64)) { 754 return float64_set_sign(float64_zero, float64_is_neg(f64)); 755 } else if (float64_is_zero(f64)) { 756 float_raise(float_flag_divbyzero, fpst); 757 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 758 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 759 /* Abs(value) < 2.0^-1024 */ 760 float_raise(float_flag_overflow | float_flag_inexact, fpst); 761 if (round_to_inf(fpst, f64_sign)) { 762 return float64_set_sign(float64_infinity, f64_sign); 763 } else { 764 return float64_set_sign(float64_maxnorm, f64_sign); 765 } 766 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 767 float_raise(float_flag_underflow, fpst); 768 return float64_set_sign(float64_zero, float64_is_neg(f64)); 769 } 770 771 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 772 773 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 774 f64_val = deposit64(0, 63, 1, f64_sign); 775 f64_val = deposit64(f64_val, 52, 11, f64_exp); 776 f64_val = deposit64(f64_val, 0, 52, f64_frac); 777 return make_float64(f64_val); 778 } 779 780 /* The algorithm that must be used to calculate the estimate 781 * is specified by the ARM ARM. 782 */ 783 784 static int do_recip_sqrt_estimate(int a) 785 { 786 int b, estimate; 787 788 assert(128 <= a && a < 512); 789 if (a < 256) { 790 a = a * 2 + 1; 791 } else { 792 a = (a >> 1) << 1; 793 a = (a + 1) * 2; 794 } 795 b = 512; 796 while (a * (b + 1) * (b + 1) < (1 << 28)) { 797 b += 1; 798 } 799 estimate = (b + 1) / 2; 800 assert(256 <= estimate && estimate < 512); 801 802 return estimate; 803 } 804 805 806 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 807 { 808 int estimate; 809 uint32_t scaled; 810 811 if (*exp == 0) { 812 while (extract64(frac, 51, 1) == 0) { 813 frac = frac << 1; 814 *exp -= 1; 815 } 816 frac = extract64(frac, 0, 51) << 1; 817 } 818 819 if (*exp & 1) { 820 /* scaled = UInt('01':fraction<51:45>) */ 821 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 822 } else { 823 /* scaled = UInt('1':fraction<51:44>) */ 824 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 825 } 826 estimate = do_recip_sqrt_estimate(scaled); 827 828 *exp = (exp_off - *exp) / 2; 829 return extract64(estimate, 0, 8) << 44; 830 } 831 832 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 833 { 834 float_status *s = fpstp; 835 float16 f16 = float16_squash_input_denormal(input, s); 836 uint16_t val = float16_val(f16); 837 bool f16_sign = float16_is_neg(f16); 838 int f16_exp = extract32(val, 10, 5); 839 uint16_t f16_frac = extract32(val, 0, 10); 840 uint64_t f64_frac; 841 842 if (float16_is_any_nan(f16)) { 843 float16 nan = f16; 844 if (float16_is_signaling_nan(f16, s)) { 845 float_raise(float_flag_invalid, s); 846 if (!s->default_nan_mode) { 847 nan = float16_silence_nan(f16, fpstp); 848 } 849 } 850 if (s->default_nan_mode) { 851 nan = float16_default_nan(s); 852 } 853 return nan; 854 } else if (float16_is_zero(f16)) { 855 float_raise(float_flag_divbyzero, s); 856 return float16_set_sign(float16_infinity, f16_sign); 857 } else if (f16_sign) { 858 float_raise(float_flag_invalid, s); 859 return float16_default_nan(s); 860 } else if (float16_is_infinity(f16)) { 861 return float16_zero; 862 } 863 864 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 865 * preserving the parity of the exponent. */ 866 867 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 868 869 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 870 871 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 872 val = deposit32(0, 15, 1, f16_sign); 873 val = deposit32(val, 10, 5, f16_exp); 874 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 875 return make_float16(val); 876 } 877 878 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 879 { 880 float_status *s = fpstp; 881 float32 f32 = float32_squash_input_denormal(input, s); 882 uint32_t val = float32_val(f32); 883 uint32_t f32_sign = float32_is_neg(f32); 884 int f32_exp = extract32(val, 23, 8); 885 uint32_t f32_frac = extract32(val, 0, 23); 886 uint64_t f64_frac; 887 888 if (float32_is_any_nan(f32)) { 889 float32 nan = f32; 890 if (float32_is_signaling_nan(f32, s)) { 891 float_raise(float_flag_invalid, s); 892 if (!s->default_nan_mode) { 893 nan = float32_silence_nan(f32, fpstp); 894 } 895 } 896 if (s->default_nan_mode) { 897 nan = float32_default_nan(s); 898 } 899 return nan; 900 } else if (float32_is_zero(f32)) { 901 float_raise(float_flag_divbyzero, s); 902 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 903 } else if (float32_is_neg(f32)) { 904 float_raise(float_flag_invalid, s); 905 return float32_default_nan(s); 906 } else if (float32_is_infinity(f32)) { 907 return float32_zero; 908 } 909 910 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 911 * preserving the parity of the exponent. */ 912 913 f64_frac = ((uint64_t) f32_frac) << 29; 914 915 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 916 917 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 918 val = deposit32(0, 31, 1, f32_sign); 919 val = deposit32(val, 23, 8, f32_exp); 920 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 921 return make_float32(val); 922 } 923 924 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 925 { 926 float_status *s = fpstp; 927 float64 f64 = float64_squash_input_denormal(input, s); 928 uint64_t val = float64_val(f64); 929 bool f64_sign = float64_is_neg(f64); 930 int f64_exp = extract64(val, 52, 11); 931 uint64_t f64_frac = extract64(val, 0, 52); 932 933 if (float64_is_any_nan(f64)) { 934 float64 nan = f64; 935 if (float64_is_signaling_nan(f64, s)) { 936 float_raise(float_flag_invalid, s); 937 if (!s->default_nan_mode) { 938 nan = float64_silence_nan(f64, fpstp); 939 } 940 } 941 if (s->default_nan_mode) { 942 nan = float64_default_nan(s); 943 } 944 return nan; 945 } else if (float64_is_zero(f64)) { 946 float_raise(float_flag_divbyzero, s); 947 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 948 } else if (float64_is_neg(f64)) { 949 float_raise(float_flag_invalid, s); 950 return float64_default_nan(s); 951 } else if (float64_is_infinity(f64)) { 952 return float64_zero; 953 } 954 955 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 956 957 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 958 val = deposit64(0, 61, 1, f64_sign); 959 val = deposit64(val, 52, 11, f64_exp); 960 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 961 return make_float64(val); 962 } 963 964 uint32_t HELPER(recpe_u32)(uint32_t a) 965 { 966 int input, estimate; 967 968 if ((a & 0x80000000) == 0) { 969 return 0xffffffff; 970 } 971 972 input = extract32(a, 23, 9); 973 estimate = recip_estimate(input); 974 975 return deposit32(0, (32 - 9), 9, estimate); 976 } 977 978 uint32_t HELPER(rsqrte_u32)(uint32_t a) 979 { 980 int estimate; 981 982 if ((a & 0xc0000000) == 0) { 983 return 0xffffffff; 984 } 985 986 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 987 988 return deposit32(0, 23, 9, estimate); 989 } 990 991 /* VFPv4 fused multiply-accumulate */ 992 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b, 993 dh_ctype_f16 c, void *fpstp) 994 { 995 float_status *fpst = fpstp; 996 return float16_muladd(a, b, c, 0, fpst); 997 } 998 999 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 1000 { 1001 float_status *fpst = fpstp; 1002 return float32_muladd(a, b, c, 0, fpst); 1003 } 1004 1005 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 1006 { 1007 float_status *fpst = fpstp; 1008 return float64_muladd(a, b, c, 0, fpst); 1009 } 1010 1011 /* ARMv8 round to integral */ 1012 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status) 1013 { 1014 return float16_round_to_int(x, fp_status); 1015 } 1016 1017 float32 HELPER(rints_exact)(float32 x, void *fp_status) 1018 { 1019 return float32_round_to_int(x, fp_status); 1020 } 1021 1022 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 1023 { 1024 return float64_round_to_int(x, fp_status); 1025 } 1026 1027 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status) 1028 { 1029 int old_flags = get_float_exception_flags(fp_status), new_flags; 1030 float16 ret; 1031 1032 ret = float16_round_to_int(x, fp_status); 1033 1034 /* Suppress any inexact exceptions the conversion produced */ 1035 if (!(old_flags & float_flag_inexact)) { 1036 new_flags = get_float_exception_flags(fp_status); 1037 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1038 } 1039 1040 return ret; 1041 } 1042 1043 float32 HELPER(rints)(float32 x, void *fp_status) 1044 { 1045 int old_flags = get_float_exception_flags(fp_status), new_flags; 1046 float32 ret; 1047 1048 ret = float32_round_to_int(x, fp_status); 1049 1050 /* Suppress any inexact exceptions the conversion produced */ 1051 if (!(old_flags & float_flag_inexact)) { 1052 new_flags = get_float_exception_flags(fp_status); 1053 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1054 } 1055 1056 return ret; 1057 } 1058 1059 float64 HELPER(rintd)(float64 x, void *fp_status) 1060 { 1061 int old_flags = get_float_exception_flags(fp_status), new_flags; 1062 float64 ret; 1063 1064 ret = float64_round_to_int(x, fp_status); 1065 1066 new_flags = get_float_exception_flags(fp_status); 1067 1068 /* Suppress any inexact exceptions the conversion produced */ 1069 if (!(old_flags & float_flag_inexact)) { 1070 new_flags = get_float_exception_flags(fp_status); 1071 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 1072 } 1073 1074 return ret; 1075 } 1076 1077 /* Convert ARM rounding mode to softfloat */ 1078 const FloatRoundMode arm_rmode_to_sf_map[] = { 1079 [FPROUNDING_TIEEVEN] = float_round_nearest_even, 1080 [FPROUNDING_POSINF] = float_round_up, 1081 [FPROUNDING_NEGINF] = float_round_down, 1082 [FPROUNDING_ZERO] = float_round_to_zero, 1083 [FPROUNDING_TIEAWAY] = float_round_ties_away, 1084 [FPROUNDING_ODD] = float_round_to_odd, 1085 }; 1086 1087 /* 1088 * Implement float64 to int32_t conversion without saturation; 1089 * the result is supplied modulo 2^32. 1090 */ 1091 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus) 1092 { 1093 float_status *status = vstatus; 1094 uint32_t frac, e_old, e_new; 1095 bool inexact; 1096 1097 e_old = get_float_exception_flags(status); 1098 set_float_exception_flags(0, status); 1099 frac = float64_to_int32_modulo(value, float_round_to_zero, status); 1100 e_new = get_float_exception_flags(status); 1101 set_float_exception_flags(e_old | e_new, status); 1102 1103 /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */ 1104 inexact = e_new & (float_flag_inexact | 1105 float_flag_input_denormal | 1106 float_flag_invalid); 1107 1108 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */ 1109 inexact |= value == float64_chs(float64_zero); 1110 1111 /* Pack the result and the env->ZF representation of Z together. */ 1112 return deposit64(frac, 32, 32, inexact); 1113 } 1114 1115 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env) 1116 { 1117 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status); 1118 uint32_t result = pair; 1119 uint32_t z = (pair >> 32) == 0; 1120 1121 /* Store Z, clear NCV, in FPSCR.NZCV. */ 1122 env->vfp.xregs[ARM_VFP_FPSCR] 1123 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z); 1124 1125 return result; 1126 } 1127 1128 /* Round a float32 to an integer that fits in int32_t or int64_t. */ 1129 static float32 frint_s(float32 f, float_status *fpst, int intsize) 1130 { 1131 int old_flags = get_float_exception_flags(fpst); 1132 uint32_t exp = extract32(f, 23, 8); 1133 1134 if (unlikely(exp == 0xff)) { 1135 /* NaN or Inf. */ 1136 goto overflow; 1137 } 1138 1139 /* Round and re-extract the exponent. */ 1140 f = float32_round_to_int(f, fpst); 1141 exp = extract32(f, 23, 8); 1142 1143 /* Validate the range of the result. */ 1144 if (exp < 126 + intsize) { 1145 /* abs(F) <= INT{N}_MAX */ 1146 return f; 1147 } 1148 if (exp == 126 + intsize) { 1149 uint32_t sign = extract32(f, 31, 1); 1150 uint32_t frac = extract32(f, 0, 23); 1151 if (sign && frac == 0) { 1152 /* F == INT{N}_MIN */ 1153 return f; 1154 } 1155 } 1156 1157 overflow: 1158 /* 1159 * Raise Invalid and return INT{N}_MIN as a float. Revert any 1160 * inexact exception float32_round_to_int may have raised. 1161 */ 1162 set_float_exception_flags(old_flags | float_flag_invalid, fpst); 1163 return (0x100u + 126u + intsize) << 23; 1164 } 1165 1166 float32 HELPER(frint32_s)(float32 f, void *fpst) 1167 { 1168 return frint_s(f, fpst, 32); 1169 } 1170 1171 float32 HELPER(frint64_s)(float32 f, void *fpst) 1172 { 1173 return frint_s(f, fpst, 64); 1174 } 1175 1176 /* Round a float64 to an integer that fits in int32_t or int64_t. */ 1177 static float64 frint_d(float64 f, float_status *fpst, int intsize) 1178 { 1179 int old_flags = get_float_exception_flags(fpst); 1180 uint32_t exp = extract64(f, 52, 11); 1181 1182 if (unlikely(exp == 0x7ff)) { 1183 /* NaN or Inf. */ 1184 goto overflow; 1185 } 1186 1187 /* Round and re-extract the exponent. */ 1188 f = float64_round_to_int(f, fpst); 1189 exp = extract64(f, 52, 11); 1190 1191 /* Validate the range of the result. */ 1192 if (exp < 1022 + intsize) { 1193 /* abs(F) <= INT{N}_MAX */ 1194 return f; 1195 } 1196 if (exp == 1022 + intsize) { 1197 uint64_t sign = extract64(f, 63, 1); 1198 uint64_t frac = extract64(f, 0, 52); 1199 if (sign && frac == 0) { 1200 /* F == INT{N}_MIN */ 1201 return f; 1202 } 1203 } 1204 1205 overflow: 1206 /* 1207 * Raise Invalid and return INT{N}_MIN as a float. Revert any 1208 * inexact exception float64_round_to_int may have raised. 1209 */ 1210 set_float_exception_flags(old_flags | float_flag_invalid, fpst); 1211 return (uint64_t)(0x800 + 1022 + intsize) << 52; 1212 } 1213 1214 float64 HELPER(frint32_d)(float64 f, void *fpst) 1215 { 1216 return frint_d(f, fpst, 32); 1217 } 1218 1219 float64 HELPER(frint64_d)(float64 f, void *fpst) 1220 { 1221 return frint_d(f, fpst, 64); 1222 } 1223 1224 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg) 1225 { 1226 uint32_t syndrome; 1227 1228 switch (reg) { 1229 case ARM_VFP_MVFR0: 1230 case ARM_VFP_MVFR1: 1231 case ARM_VFP_MVFR2: 1232 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) { 1233 return; 1234 } 1235 break; 1236 case ARM_VFP_FPSID: 1237 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) { 1238 return; 1239 } 1240 break; 1241 default: 1242 g_assert_not_reached(); 1243 } 1244 1245 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT) 1246 | ARM_EL_IL 1247 | (1 << 24) | (0xe << 20) | (7 << 14) 1248 | (reg << 10) | (rt << 5) | 1); 1249 1250 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); 1251 } 1252 1253 #endif 1254