xref: /openbmc/qemu/target/arm/vfp_helper.c (revision 5a894dd7)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #ifdef CONFIG_TCG
25 #include "qemu/log.h"
26 #include "fpu/softfloat.h"
27 #endif
28 
29 /* VFP support.  We follow the convention used for VFP instructions:
30    Single precision routines have a "s" suffix, double precision a
31    "d" suffix.  */
32 
33 #ifdef CONFIG_TCG
34 
35 /* Convert host exception flags to vfp form.  */
36 static inline int vfp_exceptbits_from_host(int host_bits)
37 {
38     int target_bits = 0;
39 
40     if (host_bits & float_flag_invalid) {
41         target_bits |= 1;
42     }
43     if (host_bits & float_flag_divbyzero) {
44         target_bits |= 2;
45     }
46     if (host_bits & float_flag_overflow) {
47         target_bits |= 4;
48     }
49     if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
50         target_bits |= 8;
51     }
52     if (host_bits & float_flag_inexact) {
53         target_bits |= 0x10;
54     }
55     if (host_bits & float_flag_input_denormal) {
56         target_bits |= 0x80;
57     }
58     return target_bits;
59 }
60 
61 /* Convert vfp exception flags to target form.  */
62 static inline int vfp_exceptbits_to_host(int target_bits)
63 {
64     int host_bits = 0;
65 
66     if (target_bits & 1) {
67         host_bits |= float_flag_invalid;
68     }
69     if (target_bits & 2) {
70         host_bits |= float_flag_divbyzero;
71     }
72     if (target_bits & 4) {
73         host_bits |= float_flag_overflow;
74     }
75     if (target_bits & 8) {
76         host_bits |= float_flag_underflow;
77     }
78     if (target_bits & 0x10) {
79         host_bits |= float_flag_inexact;
80     }
81     if (target_bits & 0x80) {
82         host_bits |= float_flag_input_denormal;
83     }
84     return host_bits;
85 }
86 
87 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
88 {
89     uint32_t i;
90 
91     i = get_float_exception_flags(&env->vfp.fp_status);
92     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
93     /* FZ16 does not generate an input denormal exception.  */
94     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
95           & ~float_flag_input_denormal);
96     i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
97           & ~float_flag_input_denormal);
98     return vfp_exceptbits_from_host(i);
99 }
100 
101 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
102 {
103     int i;
104     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
105 
106     changed ^= val;
107     if (changed & (3 << 22)) {
108         i = (val >> 22) & 3;
109         switch (i) {
110         case FPROUNDING_TIEEVEN:
111             i = float_round_nearest_even;
112             break;
113         case FPROUNDING_POSINF:
114             i = float_round_up;
115             break;
116         case FPROUNDING_NEGINF:
117             i = float_round_down;
118             break;
119         case FPROUNDING_ZERO:
120             i = float_round_to_zero;
121             break;
122         }
123         set_float_rounding_mode(i, &env->vfp.fp_status);
124         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
125     }
126     if (changed & FPCR_FZ16) {
127         bool ftz_enabled = val & FPCR_FZ16;
128         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
129         set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
130         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
131         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
132     }
133     if (changed & FPCR_FZ) {
134         bool ftz_enabled = val & FPCR_FZ;
135         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
136         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
137     }
138     if (changed & FPCR_DN) {
139         bool dnan_enabled = val & FPCR_DN;
140         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
141         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
142     }
143 
144     /*
145      * The exception flags are ORed together when we read fpscr so we
146      * only need to preserve the current state in one of our
147      * float_status values.
148      */
149     i = vfp_exceptbits_to_host(val);
150     set_float_exception_flags(i, &env->vfp.fp_status);
151     set_float_exception_flags(0, &env->vfp.fp_status_f16);
152     set_float_exception_flags(0, &env->vfp.standard_fp_status);
153     set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
154 }
155 
156 #else
157 
158 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
159 {
160     return 0;
161 }
162 
163 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
164 {
165 }
166 
167 #endif
168 
169 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
170 {
171     uint32_t i, fpscr;
172 
173     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
174             | (env->vfp.vec_len << 16)
175             | (env->vfp.vec_stride << 20);
176 
177     fpscr |= vfp_get_fpscr_from_host(env);
178 
179     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
180     fpscr |= i ? FPCR_QC : 0;
181 
182     return fpscr;
183 }
184 
185 uint32_t vfp_get_fpscr(CPUARMState *env)
186 {
187     return HELPER(vfp_get_fpscr)(env);
188 }
189 
190 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
191 {
192     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
193     if (!cpu_isar_feature(any_fp16, env_archcpu(env))) {
194         val &= ~FPCR_FZ16;
195     }
196 
197     if (arm_feature(env, ARM_FEATURE_M)) {
198         /*
199          * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
200          * and also for the trapped-exception-handling bits IxE.
201          */
202         val &= 0xf7c0009f;
203     }
204 
205     vfp_set_fpscr_to_host(env, val);
206 
207     /*
208      * We don't implement trapped exception handling, so the
209      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
210      *
211      * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
212      * (which are stored in fp_status), and the other RES0 bits
213      * in between, then we clear all of the low 16 bits.
214      */
215     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
216     env->vfp.vec_len = (val >> 16) & 7;
217     env->vfp.vec_stride = (val >> 20) & 3;
218 
219     /*
220      * The bit we set within fpscr_q is arbitrary; the register as a
221      * whole being zero/non-zero is what counts.
222      */
223     env->vfp.qc[0] = val & FPCR_QC;
224     env->vfp.qc[1] = 0;
225     env->vfp.qc[2] = 0;
226     env->vfp.qc[3] = 0;
227 }
228 
229 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
230 {
231     HELPER(vfp_set_fpscr)(env, val);
232 }
233 
234 #ifdef CONFIG_TCG
235 
236 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
237 
238 #define VFP_BINOP(name) \
239 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
240 { \
241     float_status *fpst = fpstp; \
242     return float32_ ## name(a, b, fpst); \
243 } \
244 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
245 { \
246     float_status *fpst = fpstp; \
247     return float64_ ## name(a, b, fpst); \
248 }
249 VFP_BINOP(add)
250 VFP_BINOP(sub)
251 VFP_BINOP(mul)
252 VFP_BINOP(div)
253 VFP_BINOP(min)
254 VFP_BINOP(max)
255 VFP_BINOP(minnum)
256 VFP_BINOP(maxnum)
257 #undef VFP_BINOP
258 
259 float32 VFP_HELPER(neg, s)(float32 a)
260 {
261     return float32_chs(a);
262 }
263 
264 float64 VFP_HELPER(neg, d)(float64 a)
265 {
266     return float64_chs(a);
267 }
268 
269 float32 VFP_HELPER(abs, s)(float32 a)
270 {
271     return float32_abs(a);
272 }
273 
274 float64 VFP_HELPER(abs, d)(float64 a)
275 {
276     return float64_abs(a);
277 }
278 
279 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
280 {
281     return float32_sqrt(a, &env->vfp.fp_status);
282 }
283 
284 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
285 {
286     return float64_sqrt(a, &env->vfp.fp_status);
287 }
288 
289 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
290 {
291     uint32_t flags;
292     switch (cmp) {
293     case float_relation_equal:
294         flags = 0x6;
295         break;
296     case float_relation_less:
297         flags = 0x8;
298         break;
299     case float_relation_greater:
300         flags = 0x2;
301         break;
302     case float_relation_unordered:
303         flags = 0x3;
304         break;
305     default:
306         g_assert_not_reached();
307     }
308     env->vfp.xregs[ARM_VFP_FPSCR] =
309         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
310 }
311 
312 /* XXX: check quiet/signaling case */
313 #define DO_VFP_cmp(p, type) \
314 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
315 { \
316     softfloat_to_vfp_compare(env, \
317         type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
318 } \
319 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
320 { \
321     softfloat_to_vfp_compare(env, \
322         type ## _compare(a, b, &env->vfp.fp_status)); \
323 }
324 DO_VFP_cmp(s, float32)
325 DO_VFP_cmp(d, float64)
326 #undef DO_VFP_cmp
327 
328 /* Integer to float and float to integer conversions */
329 
330 #define CONV_ITOF(name, ftype, fsz, sign)                           \
331 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
332 {                                                                   \
333     float_status *fpst = fpstp;                                     \
334     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
335 }
336 
337 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
338 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
339 {                                                               \
340     float_status *fpst = fpstp;                                 \
341     if (float##fsz##_is_any_nan(x)) {                           \
342         float_raise(float_flag_invalid, fpst);                  \
343         return 0;                                               \
344     }                                                           \
345     return float##fsz##_to_##sign##int32##round(x, fpst);       \
346 }
347 
348 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
349     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
350     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
351     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
352 
353 FLOAT_CONVS(si, h, uint32_t, 16, )
354 FLOAT_CONVS(si, s, float32, 32, )
355 FLOAT_CONVS(si, d, float64, 64, )
356 FLOAT_CONVS(ui, h, uint32_t, 16, u)
357 FLOAT_CONVS(ui, s, float32, 32, u)
358 FLOAT_CONVS(ui, d, float64, 64, u)
359 
360 #undef CONV_ITOF
361 #undef CONV_FTOI
362 #undef FLOAT_CONVS
363 
364 /* floating point conversion */
365 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
366 {
367     return float32_to_float64(x, &env->vfp.fp_status);
368 }
369 
370 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
371 {
372     return float64_to_float32(x, &env->vfp.fp_status);
373 }
374 
375 /* VFP3 fixed point conversion.  */
376 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
377 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
378                                      void *fpstp) \
379 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
380 
381 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
382 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
383                                             void *fpst)                   \
384 {                                                                         \
385     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
386         float_raise(float_flag_invalid, fpst);                            \
387         return 0;                                                         \
388     }                                                                     \
389     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
390 }
391 
392 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
393 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
394 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
395                          float_round_to_zero, _round_to_zero)    \
396 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
397                          get_float_rounding_mode(fpst), )
398 
399 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
400 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
401 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
402                          get_float_rounding_mode(fpst), )
403 
404 VFP_CONV_FIX(sh, d, 64, 64, int16)
405 VFP_CONV_FIX(sl, d, 64, 64, int32)
406 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
407 VFP_CONV_FIX(uh, d, 64, 64, uint16)
408 VFP_CONV_FIX(ul, d, 64, 64, uint32)
409 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
410 VFP_CONV_FIX(sh, s, 32, 32, int16)
411 VFP_CONV_FIX(sl, s, 32, 32, int32)
412 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
413 VFP_CONV_FIX(uh, s, 32, 32, uint16)
414 VFP_CONV_FIX(ul, s, 32, 32, uint32)
415 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
416 
417 #undef VFP_CONV_FIX
418 #undef VFP_CONV_FIX_FLOAT
419 #undef VFP_CONV_FLOAT_FIX_ROUND
420 #undef VFP_CONV_FIX_A64
421 
422 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
423 {
424     return int32_to_float16_scalbn(x, -shift, fpst);
425 }
426 
427 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
428 {
429     return uint32_to_float16_scalbn(x, -shift, fpst);
430 }
431 
432 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
433 {
434     return int64_to_float16_scalbn(x, -shift, fpst);
435 }
436 
437 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
438 {
439     return uint64_to_float16_scalbn(x, -shift, fpst);
440 }
441 
442 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
443 {
444     if (unlikely(float16_is_any_nan(x))) {
445         float_raise(float_flag_invalid, fpst);
446         return 0;
447     }
448     return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
449                                    shift, fpst);
450 }
451 
452 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
453 {
454     if (unlikely(float16_is_any_nan(x))) {
455         float_raise(float_flag_invalid, fpst);
456         return 0;
457     }
458     return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
459                                     shift, fpst);
460 }
461 
462 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
463 {
464     if (unlikely(float16_is_any_nan(x))) {
465         float_raise(float_flag_invalid, fpst);
466         return 0;
467     }
468     return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
469                                    shift, fpst);
470 }
471 
472 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
473 {
474     if (unlikely(float16_is_any_nan(x))) {
475         float_raise(float_flag_invalid, fpst);
476         return 0;
477     }
478     return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
479                                     shift, fpst);
480 }
481 
482 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
483 {
484     if (unlikely(float16_is_any_nan(x))) {
485         float_raise(float_flag_invalid, fpst);
486         return 0;
487     }
488     return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
489                                    shift, fpst);
490 }
491 
492 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
493 {
494     if (unlikely(float16_is_any_nan(x))) {
495         float_raise(float_flag_invalid, fpst);
496         return 0;
497     }
498     return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
499                                     shift, fpst);
500 }
501 
502 /* Set the current fp rounding mode and return the old one.
503  * The argument is a softfloat float_round_ value.
504  */
505 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
506 {
507     float_status *fp_status = fpstp;
508 
509     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
510     set_float_rounding_mode(rmode, fp_status);
511 
512     return prev_rmode;
513 }
514 
515 /* Set the current fp rounding mode in the standard fp status and return
516  * the old one. This is for NEON instructions that need to change the
517  * rounding mode but wish to use the standard FPSCR values for everything
518  * else. Always set the rounding mode back to the correct value after
519  * modifying it.
520  * The argument is a softfloat float_round_ value.
521  */
522 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
523 {
524     float_status *fp_status = &env->vfp.standard_fp_status;
525 
526     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
527     set_float_rounding_mode(rmode, fp_status);
528 
529     return prev_rmode;
530 }
531 
532 /* Half precision conversions.  */
533 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
534 {
535     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
536      * it would affect flushing input denormals.
537      */
538     float_status *fpst = fpstp;
539     bool save = get_flush_inputs_to_zero(fpst);
540     set_flush_inputs_to_zero(false, fpst);
541     float32 r = float16_to_float32(a, !ahp_mode, fpst);
542     set_flush_inputs_to_zero(save, fpst);
543     return r;
544 }
545 
546 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
547 {
548     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
549      * it would affect flushing output denormals.
550      */
551     float_status *fpst = fpstp;
552     bool save = get_flush_to_zero(fpst);
553     set_flush_to_zero(false, fpst);
554     float16 r = float32_to_float16(a, !ahp_mode, fpst);
555     set_flush_to_zero(save, fpst);
556     return r;
557 }
558 
559 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
560 {
561     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
562      * it would affect flushing input denormals.
563      */
564     float_status *fpst = fpstp;
565     bool save = get_flush_inputs_to_zero(fpst);
566     set_flush_inputs_to_zero(false, fpst);
567     float64 r = float16_to_float64(a, !ahp_mode, fpst);
568     set_flush_inputs_to_zero(save, fpst);
569     return r;
570 }
571 
572 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
573 {
574     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
575      * it would affect flushing output denormals.
576      */
577     float_status *fpst = fpstp;
578     bool save = get_flush_to_zero(fpst);
579     set_flush_to_zero(false, fpst);
580     float16 r = float64_to_float16(a, !ahp_mode, fpst);
581     set_flush_to_zero(save, fpst);
582     return r;
583 }
584 
585 #define float32_two make_float32(0x40000000)
586 #define float32_three make_float32(0x40400000)
587 #define float32_one_point_five make_float32(0x3fc00000)
588 
589 float32 HELPER(recps_f32)(CPUARMState *env, float32 a, float32 b)
590 {
591     float_status *s = &env->vfp.standard_fp_status;
592     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
593         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
594         if (!(float32_is_zero(a) || float32_is_zero(b))) {
595             float_raise(float_flag_input_denormal, s);
596         }
597         return float32_two;
598     }
599     return float32_sub(float32_two, float32_mul(a, b, s), s);
600 }
601 
602 float32 HELPER(rsqrts_f32)(CPUARMState *env, float32 a, float32 b)
603 {
604     float_status *s = &env->vfp.standard_fp_status;
605     float32 product;
606     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
607         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
608         if (!(float32_is_zero(a) || float32_is_zero(b))) {
609             float_raise(float_flag_input_denormal, s);
610         }
611         return float32_one_point_five;
612     }
613     product = float32_mul(a, b, s);
614     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
615 }
616 
617 /* NEON helpers.  */
618 
619 /* Constants 256 and 512 are used in some helpers; we avoid relying on
620  * int->float conversions at run-time.  */
621 #define float64_256 make_float64(0x4070000000000000LL)
622 #define float64_512 make_float64(0x4080000000000000LL)
623 #define float16_maxnorm make_float16(0x7bff)
624 #define float32_maxnorm make_float32(0x7f7fffff)
625 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
626 
627 /* Reciprocal functions
628  *
629  * The algorithm that must be used to calculate the estimate
630  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
631  */
632 
633 /* See RecipEstimate()
634  *
635  * input is a 9 bit fixed point number
636  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
637  * result range 256 .. 511 for a number from 1.0 to 511/256.
638  */
639 
640 static int recip_estimate(int input)
641 {
642     int a, b, r;
643     assert(256 <= input && input < 512);
644     a = (input * 2) + 1;
645     b = (1 << 19) / a;
646     r = (b + 1) >> 1;
647     assert(256 <= r && r < 512);
648     return r;
649 }
650 
651 /*
652  * Common wrapper to call recip_estimate
653  *
654  * The parameters are exponent and 64 bit fraction (without implicit
655  * bit) where the binary point is nominally at bit 52. Returns a
656  * float64 which can then be rounded to the appropriate size by the
657  * callee.
658  */
659 
660 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
661 {
662     uint32_t scaled, estimate;
663     uint64_t result_frac;
664     int result_exp;
665 
666     /* Handle sub-normals */
667     if (*exp == 0) {
668         if (extract64(frac, 51, 1) == 0) {
669             *exp = -1;
670             frac <<= 2;
671         } else {
672             frac <<= 1;
673         }
674     }
675 
676     /* scaled = UInt('1':fraction<51:44>) */
677     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
678     estimate = recip_estimate(scaled);
679 
680     result_exp = exp_off - *exp;
681     result_frac = deposit64(0, 44, 8, estimate);
682     if (result_exp == 0) {
683         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
684     } else if (result_exp == -1) {
685         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
686         result_exp = 0;
687     }
688 
689     *exp = result_exp;
690 
691     return result_frac;
692 }
693 
694 static bool round_to_inf(float_status *fpst, bool sign_bit)
695 {
696     switch (fpst->float_rounding_mode) {
697     case float_round_nearest_even: /* Round to Nearest */
698         return true;
699     case float_round_up: /* Round to +Inf */
700         return !sign_bit;
701     case float_round_down: /* Round to -Inf */
702         return sign_bit;
703     case float_round_to_zero: /* Round to Zero */
704         return false;
705     default:
706         g_assert_not_reached();
707     }
708 }
709 
710 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
711 {
712     float_status *fpst = fpstp;
713     float16 f16 = float16_squash_input_denormal(input, fpst);
714     uint32_t f16_val = float16_val(f16);
715     uint32_t f16_sign = float16_is_neg(f16);
716     int f16_exp = extract32(f16_val, 10, 5);
717     uint32_t f16_frac = extract32(f16_val, 0, 10);
718     uint64_t f64_frac;
719 
720     if (float16_is_any_nan(f16)) {
721         float16 nan = f16;
722         if (float16_is_signaling_nan(f16, fpst)) {
723             float_raise(float_flag_invalid, fpst);
724             nan = float16_silence_nan(f16, fpst);
725         }
726         if (fpst->default_nan_mode) {
727             nan =  float16_default_nan(fpst);
728         }
729         return nan;
730     } else if (float16_is_infinity(f16)) {
731         return float16_set_sign(float16_zero, float16_is_neg(f16));
732     } else if (float16_is_zero(f16)) {
733         float_raise(float_flag_divbyzero, fpst);
734         return float16_set_sign(float16_infinity, float16_is_neg(f16));
735     } else if (float16_abs(f16) < (1 << 8)) {
736         /* Abs(value) < 2.0^-16 */
737         float_raise(float_flag_overflow | float_flag_inexact, fpst);
738         if (round_to_inf(fpst, f16_sign)) {
739             return float16_set_sign(float16_infinity, f16_sign);
740         } else {
741             return float16_set_sign(float16_maxnorm, f16_sign);
742         }
743     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
744         float_raise(float_flag_underflow, fpst);
745         return float16_set_sign(float16_zero, float16_is_neg(f16));
746     }
747 
748     f64_frac = call_recip_estimate(&f16_exp, 29,
749                                    ((uint64_t) f16_frac) << (52 - 10));
750 
751     /* result = sign : result_exp<4:0> : fraction<51:42> */
752     f16_val = deposit32(0, 15, 1, f16_sign);
753     f16_val = deposit32(f16_val, 10, 5, f16_exp);
754     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
755     return make_float16(f16_val);
756 }
757 
758 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
759 {
760     float_status *fpst = fpstp;
761     float32 f32 = float32_squash_input_denormal(input, fpst);
762     uint32_t f32_val = float32_val(f32);
763     bool f32_sign = float32_is_neg(f32);
764     int f32_exp = extract32(f32_val, 23, 8);
765     uint32_t f32_frac = extract32(f32_val, 0, 23);
766     uint64_t f64_frac;
767 
768     if (float32_is_any_nan(f32)) {
769         float32 nan = f32;
770         if (float32_is_signaling_nan(f32, fpst)) {
771             float_raise(float_flag_invalid, fpst);
772             nan = float32_silence_nan(f32, fpst);
773         }
774         if (fpst->default_nan_mode) {
775             nan =  float32_default_nan(fpst);
776         }
777         return nan;
778     } else if (float32_is_infinity(f32)) {
779         return float32_set_sign(float32_zero, float32_is_neg(f32));
780     } else if (float32_is_zero(f32)) {
781         float_raise(float_flag_divbyzero, fpst);
782         return float32_set_sign(float32_infinity, float32_is_neg(f32));
783     } else if (float32_abs(f32) < (1ULL << 21)) {
784         /* Abs(value) < 2.0^-128 */
785         float_raise(float_flag_overflow | float_flag_inexact, fpst);
786         if (round_to_inf(fpst, f32_sign)) {
787             return float32_set_sign(float32_infinity, f32_sign);
788         } else {
789             return float32_set_sign(float32_maxnorm, f32_sign);
790         }
791     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
792         float_raise(float_flag_underflow, fpst);
793         return float32_set_sign(float32_zero, float32_is_neg(f32));
794     }
795 
796     f64_frac = call_recip_estimate(&f32_exp, 253,
797                                    ((uint64_t) f32_frac) << (52 - 23));
798 
799     /* result = sign : result_exp<7:0> : fraction<51:29> */
800     f32_val = deposit32(0, 31, 1, f32_sign);
801     f32_val = deposit32(f32_val, 23, 8, f32_exp);
802     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
803     return make_float32(f32_val);
804 }
805 
806 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
807 {
808     float_status *fpst = fpstp;
809     float64 f64 = float64_squash_input_denormal(input, fpst);
810     uint64_t f64_val = float64_val(f64);
811     bool f64_sign = float64_is_neg(f64);
812     int f64_exp = extract64(f64_val, 52, 11);
813     uint64_t f64_frac = extract64(f64_val, 0, 52);
814 
815     /* Deal with any special cases */
816     if (float64_is_any_nan(f64)) {
817         float64 nan = f64;
818         if (float64_is_signaling_nan(f64, fpst)) {
819             float_raise(float_flag_invalid, fpst);
820             nan = float64_silence_nan(f64, fpst);
821         }
822         if (fpst->default_nan_mode) {
823             nan =  float64_default_nan(fpst);
824         }
825         return nan;
826     } else if (float64_is_infinity(f64)) {
827         return float64_set_sign(float64_zero, float64_is_neg(f64));
828     } else if (float64_is_zero(f64)) {
829         float_raise(float_flag_divbyzero, fpst);
830         return float64_set_sign(float64_infinity, float64_is_neg(f64));
831     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
832         /* Abs(value) < 2.0^-1024 */
833         float_raise(float_flag_overflow | float_flag_inexact, fpst);
834         if (round_to_inf(fpst, f64_sign)) {
835             return float64_set_sign(float64_infinity, f64_sign);
836         } else {
837             return float64_set_sign(float64_maxnorm, f64_sign);
838         }
839     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
840         float_raise(float_flag_underflow, fpst);
841         return float64_set_sign(float64_zero, float64_is_neg(f64));
842     }
843 
844     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
845 
846     /* result = sign : result_exp<10:0> : fraction<51:0>; */
847     f64_val = deposit64(0, 63, 1, f64_sign);
848     f64_val = deposit64(f64_val, 52, 11, f64_exp);
849     f64_val = deposit64(f64_val, 0, 52, f64_frac);
850     return make_float64(f64_val);
851 }
852 
853 /* The algorithm that must be used to calculate the estimate
854  * is specified by the ARM ARM.
855  */
856 
857 static int do_recip_sqrt_estimate(int a)
858 {
859     int b, estimate;
860 
861     assert(128 <= a && a < 512);
862     if (a < 256) {
863         a = a * 2 + 1;
864     } else {
865         a = (a >> 1) << 1;
866         a = (a + 1) * 2;
867     }
868     b = 512;
869     while (a * (b + 1) * (b + 1) < (1 << 28)) {
870         b += 1;
871     }
872     estimate = (b + 1) / 2;
873     assert(256 <= estimate && estimate < 512);
874 
875     return estimate;
876 }
877 
878 
879 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
880 {
881     int estimate;
882     uint32_t scaled;
883 
884     if (*exp == 0) {
885         while (extract64(frac, 51, 1) == 0) {
886             frac = frac << 1;
887             *exp -= 1;
888         }
889         frac = extract64(frac, 0, 51) << 1;
890     }
891 
892     if (*exp & 1) {
893         /* scaled = UInt('01':fraction<51:45>) */
894         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
895     } else {
896         /* scaled = UInt('1':fraction<51:44>) */
897         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
898     }
899     estimate = do_recip_sqrt_estimate(scaled);
900 
901     *exp = (exp_off - *exp) / 2;
902     return extract64(estimate, 0, 8) << 44;
903 }
904 
905 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
906 {
907     float_status *s = fpstp;
908     float16 f16 = float16_squash_input_denormal(input, s);
909     uint16_t val = float16_val(f16);
910     bool f16_sign = float16_is_neg(f16);
911     int f16_exp = extract32(val, 10, 5);
912     uint16_t f16_frac = extract32(val, 0, 10);
913     uint64_t f64_frac;
914 
915     if (float16_is_any_nan(f16)) {
916         float16 nan = f16;
917         if (float16_is_signaling_nan(f16, s)) {
918             float_raise(float_flag_invalid, s);
919             nan = float16_silence_nan(f16, s);
920         }
921         if (s->default_nan_mode) {
922             nan =  float16_default_nan(s);
923         }
924         return nan;
925     } else if (float16_is_zero(f16)) {
926         float_raise(float_flag_divbyzero, s);
927         return float16_set_sign(float16_infinity, f16_sign);
928     } else if (f16_sign) {
929         float_raise(float_flag_invalid, s);
930         return float16_default_nan(s);
931     } else if (float16_is_infinity(f16)) {
932         return float16_zero;
933     }
934 
935     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
936      * preserving the parity of the exponent.  */
937 
938     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
939 
940     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
941 
942     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
943     val = deposit32(0, 15, 1, f16_sign);
944     val = deposit32(val, 10, 5, f16_exp);
945     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
946     return make_float16(val);
947 }
948 
949 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
950 {
951     float_status *s = fpstp;
952     float32 f32 = float32_squash_input_denormal(input, s);
953     uint32_t val = float32_val(f32);
954     uint32_t f32_sign = float32_is_neg(f32);
955     int f32_exp = extract32(val, 23, 8);
956     uint32_t f32_frac = extract32(val, 0, 23);
957     uint64_t f64_frac;
958 
959     if (float32_is_any_nan(f32)) {
960         float32 nan = f32;
961         if (float32_is_signaling_nan(f32, s)) {
962             float_raise(float_flag_invalid, s);
963             nan = float32_silence_nan(f32, s);
964         }
965         if (s->default_nan_mode) {
966             nan =  float32_default_nan(s);
967         }
968         return nan;
969     } else if (float32_is_zero(f32)) {
970         float_raise(float_flag_divbyzero, s);
971         return float32_set_sign(float32_infinity, float32_is_neg(f32));
972     } else if (float32_is_neg(f32)) {
973         float_raise(float_flag_invalid, s);
974         return float32_default_nan(s);
975     } else if (float32_is_infinity(f32)) {
976         return float32_zero;
977     }
978 
979     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
980      * preserving the parity of the exponent.  */
981 
982     f64_frac = ((uint64_t) f32_frac) << 29;
983 
984     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
985 
986     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
987     val = deposit32(0, 31, 1, f32_sign);
988     val = deposit32(val, 23, 8, f32_exp);
989     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
990     return make_float32(val);
991 }
992 
993 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
994 {
995     float_status *s = fpstp;
996     float64 f64 = float64_squash_input_denormal(input, s);
997     uint64_t val = float64_val(f64);
998     bool f64_sign = float64_is_neg(f64);
999     int f64_exp = extract64(val, 52, 11);
1000     uint64_t f64_frac = extract64(val, 0, 52);
1001 
1002     if (float64_is_any_nan(f64)) {
1003         float64 nan = f64;
1004         if (float64_is_signaling_nan(f64, s)) {
1005             float_raise(float_flag_invalid, s);
1006             nan = float64_silence_nan(f64, s);
1007         }
1008         if (s->default_nan_mode) {
1009             nan =  float64_default_nan(s);
1010         }
1011         return nan;
1012     } else if (float64_is_zero(f64)) {
1013         float_raise(float_flag_divbyzero, s);
1014         return float64_set_sign(float64_infinity, float64_is_neg(f64));
1015     } else if (float64_is_neg(f64)) {
1016         float_raise(float_flag_invalid, s);
1017         return float64_default_nan(s);
1018     } else if (float64_is_infinity(f64)) {
1019         return float64_zero;
1020     }
1021 
1022     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
1023 
1024     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1025     val = deposit64(0, 61, 1, f64_sign);
1026     val = deposit64(val, 52, 11, f64_exp);
1027     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
1028     return make_float64(val);
1029 }
1030 
1031 uint32_t HELPER(recpe_u32)(uint32_t a)
1032 {
1033     int input, estimate;
1034 
1035     if ((a & 0x80000000) == 0) {
1036         return 0xffffffff;
1037     }
1038 
1039     input = extract32(a, 23, 9);
1040     estimate = recip_estimate(input);
1041 
1042     return deposit32(0, (32 - 9), 9, estimate);
1043 }
1044 
1045 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1046 {
1047     int estimate;
1048 
1049     if ((a & 0xc0000000) == 0) {
1050         return 0xffffffff;
1051     }
1052 
1053     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1054 
1055     return deposit32(0, 23, 9, estimate);
1056 }
1057 
1058 /* VFPv4 fused multiply-accumulate */
1059 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1060 {
1061     float_status *fpst = fpstp;
1062     return float32_muladd(a, b, c, 0, fpst);
1063 }
1064 
1065 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1066 {
1067     float_status *fpst = fpstp;
1068     return float64_muladd(a, b, c, 0, fpst);
1069 }
1070 
1071 /* ARMv8 round to integral */
1072 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1073 {
1074     return float32_round_to_int(x, fp_status);
1075 }
1076 
1077 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1078 {
1079     return float64_round_to_int(x, fp_status);
1080 }
1081 
1082 float32 HELPER(rints)(float32 x, void *fp_status)
1083 {
1084     int old_flags = get_float_exception_flags(fp_status), new_flags;
1085     float32 ret;
1086 
1087     ret = float32_round_to_int(x, fp_status);
1088 
1089     /* Suppress any inexact exceptions the conversion produced */
1090     if (!(old_flags & float_flag_inexact)) {
1091         new_flags = get_float_exception_flags(fp_status);
1092         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1093     }
1094 
1095     return ret;
1096 }
1097 
1098 float64 HELPER(rintd)(float64 x, void *fp_status)
1099 {
1100     int old_flags = get_float_exception_flags(fp_status), new_flags;
1101     float64 ret;
1102 
1103     ret = float64_round_to_int(x, fp_status);
1104 
1105     new_flags = get_float_exception_flags(fp_status);
1106 
1107     /* Suppress any inexact exceptions the conversion produced */
1108     if (!(old_flags & float_flag_inexact)) {
1109         new_flags = get_float_exception_flags(fp_status);
1110         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1111     }
1112 
1113     return ret;
1114 }
1115 
1116 /* Convert ARM rounding mode to softfloat */
1117 int arm_rmode_to_sf(int rmode)
1118 {
1119     switch (rmode) {
1120     case FPROUNDING_TIEAWAY:
1121         rmode = float_round_ties_away;
1122         break;
1123     case FPROUNDING_ODD:
1124         /* FIXME: add support for TIEAWAY and ODD */
1125         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1126                       rmode);
1127         /* fall through for now */
1128     case FPROUNDING_TIEEVEN:
1129     default:
1130         rmode = float_round_nearest_even;
1131         break;
1132     case FPROUNDING_POSINF:
1133         rmode = float_round_up;
1134         break;
1135     case FPROUNDING_NEGINF:
1136         rmode = float_round_down;
1137         break;
1138     case FPROUNDING_ZERO:
1139         rmode = float_round_to_zero;
1140         break;
1141     }
1142     return rmode;
1143 }
1144 
1145 /*
1146  * Implement float64 to int32_t conversion without saturation;
1147  * the result is supplied modulo 2^32.
1148  */
1149 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1150 {
1151     float_status *status = vstatus;
1152     uint32_t exp, sign;
1153     uint64_t frac;
1154     uint32_t inexact = 1; /* !Z */
1155 
1156     sign = extract64(value, 63, 1);
1157     exp = extract64(value, 52, 11);
1158     frac = extract64(value, 0, 52);
1159 
1160     if (exp == 0) {
1161         /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
1162         inexact = sign;
1163         if (frac != 0) {
1164             if (status->flush_inputs_to_zero) {
1165                 float_raise(float_flag_input_denormal, status);
1166             } else {
1167                 float_raise(float_flag_inexact, status);
1168                 inexact = 1;
1169             }
1170         }
1171         frac = 0;
1172     } else if (exp == 0x7ff) {
1173         /* This operation raises Invalid for both NaN and overflow (Inf).  */
1174         float_raise(float_flag_invalid, status);
1175         frac = 0;
1176     } else {
1177         int true_exp = exp - 1023;
1178         int shift = true_exp - 52;
1179 
1180         /* Restore implicit bit.  */
1181         frac |= 1ull << 52;
1182 
1183         /* Shift the fraction into place.  */
1184         if (shift >= 0) {
1185             /* The number is so large we must shift the fraction left.  */
1186             if (shift >= 64) {
1187                 /* The fraction is shifted out entirely.  */
1188                 frac = 0;
1189             } else {
1190                 frac <<= shift;
1191             }
1192         } else if (shift > -64) {
1193             /* Normal case -- shift right and notice if bits shift out.  */
1194             inexact = (frac << (64 + shift)) != 0;
1195             frac >>= -shift;
1196         } else {
1197             /* The fraction is shifted out entirely.  */
1198             frac = 0;
1199         }
1200 
1201         /* Notice overflow or inexact exceptions.  */
1202         if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1203             /* Overflow, for which this operation raises invalid.  */
1204             float_raise(float_flag_invalid, status);
1205             inexact = 1;
1206         } else if (inexact) {
1207             float_raise(float_flag_inexact, status);
1208         }
1209 
1210         /* Honor the sign.  */
1211         if (sign) {
1212             frac = -frac;
1213         }
1214     }
1215 
1216     /* Pack the result and the env->ZF representation of Z together.  */
1217     return deposit64(frac, 32, 32, inexact);
1218 }
1219 
1220 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1221 {
1222     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1223     uint32_t result = pair;
1224     uint32_t z = (pair >> 32) == 0;
1225 
1226     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1227     env->vfp.xregs[ARM_VFP_FPSCR]
1228         = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1229 
1230     return result;
1231 }
1232 
1233 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1234 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1235 {
1236     int old_flags = get_float_exception_flags(fpst);
1237     uint32_t exp = extract32(f, 23, 8);
1238 
1239     if (unlikely(exp == 0xff)) {
1240         /* NaN or Inf.  */
1241         goto overflow;
1242     }
1243 
1244     /* Round and re-extract the exponent.  */
1245     f = float32_round_to_int(f, fpst);
1246     exp = extract32(f, 23, 8);
1247 
1248     /* Validate the range of the result.  */
1249     if (exp < 126 + intsize) {
1250         /* abs(F) <= INT{N}_MAX */
1251         return f;
1252     }
1253     if (exp == 126 + intsize) {
1254         uint32_t sign = extract32(f, 31, 1);
1255         uint32_t frac = extract32(f, 0, 23);
1256         if (sign && frac == 0) {
1257             /* F == INT{N}_MIN */
1258             return f;
1259         }
1260     }
1261 
1262  overflow:
1263     /*
1264      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1265      * inexact exception float32_round_to_int may have raised.
1266      */
1267     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1268     return (0x100u + 126u + intsize) << 23;
1269 }
1270 
1271 float32 HELPER(frint32_s)(float32 f, void *fpst)
1272 {
1273     return frint_s(f, fpst, 32);
1274 }
1275 
1276 float32 HELPER(frint64_s)(float32 f, void *fpst)
1277 {
1278     return frint_s(f, fpst, 64);
1279 }
1280 
1281 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1282 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1283 {
1284     int old_flags = get_float_exception_flags(fpst);
1285     uint32_t exp = extract64(f, 52, 11);
1286 
1287     if (unlikely(exp == 0x7ff)) {
1288         /* NaN or Inf.  */
1289         goto overflow;
1290     }
1291 
1292     /* Round and re-extract the exponent.  */
1293     f = float64_round_to_int(f, fpst);
1294     exp = extract64(f, 52, 11);
1295 
1296     /* Validate the range of the result.  */
1297     if (exp < 1022 + intsize) {
1298         /* abs(F) <= INT{N}_MAX */
1299         return f;
1300     }
1301     if (exp == 1022 + intsize) {
1302         uint64_t sign = extract64(f, 63, 1);
1303         uint64_t frac = extract64(f, 0, 52);
1304         if (sign && frac == 0) {
1305             /* F == INT{N}_MIN */
1306             return f;
1307         }
1308     }
1309 
1310  overflow:
1311     /*
1312      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1313      * inexact exception float64_round_to_int may have raised.
1314      */
1315     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1316     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1317 }
1318 
1319 float64 HELPER(frint32_d)(float64 f, void *fpst)
1320 {
1321     return frint_d(f, fpst, 32);
1322 }
1323 
1324 float64 HELPER(frint64_d)(float64 f, void *fpst)
1325 {
1326     return frint_d(f, fpst, 64);
1327 }
1328 
1329 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1330 {
1331     uint32_t syndrome;
1332 
1333     switch (reg) {
1334     case ARM_VFP_MVFR0:
1335     case ARM_VFP_MVFR1:
1336     case ARM_VFP_MVFR2:
1337         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1338             return;
1339         }
1340         break;
1341     case ARM_VFP_FPSID:
1342         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1343             return;
1344         }
1345         break;
1346     default:
1347         g_assert_not_reached();
1348     }
1349 
1350     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1351                 | ARM_EL_IL
1352                 | (1 << 24) | (0xe << 20) | (7 << 14)
1353                 | (reg << 10) | (rt << 5) | 1);
1354 
1355     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1356 }
1357 
1358 #endif
1359