xref: /openbmc/qemu/target/arm/vfp_helper.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
26 
27 
28 /* VFP support.  We follow the convention used for VFP instructions:
29    Single precision routines have a "s" suffix, double precision a
30    "d" suffix.  */
31 
32 /* Convert host exception flags to vfp form.  */
33 static inline int vfp_exceptbits_from_host(int host_bits)
34 {
35     int target_bits = 0;
36 
37     if (host_bits & float_flag_invalid)
38         target_bits |= 1;
39     if (host_bits & float_flag_divbyzero)
40         target_bits |= 2;
41     if (host_bits & float_flag_overflow)
42         target_bits |= 4;
43     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
44         target_bits |= 8;
45     if (host_bits & float_flag_inexact)
46         target_bits |= 0x10;
47     if (host_bits & float_flag_input_denormal)
48         target_bits |= 0x80;
49     return target_bits;
50 }
51 
52 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
53 {
54     uint32_t i, fpscr;
55 
56     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
57             | (env->vfp.vec_len << 16)
58             | (env->vfp.vec_stride << 20);
59 
60     i = get_float_exception_flags(&env->vfp.fp_status);
61     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
62     /* FZ16 does not generate an input denormal exception.  */
63     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
64           & ~float_flag_input_denormal);
65     fpscr |= vfp_exceptbits_from_host(i);
66 
67     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
68     fpscr |= i ? FPCR_QC : 0;
69 
70     return fpscr;
71 }
72 
73 uint32_t vfp_get_fpscr(CPUARMState *env)
74 {
75     return HELPER(vfp_get_fpscr)(env);
76 }
77 
78 /* Convert vfp exception flags to target form.  */
79 static inline int vfp_exceptbits_to_host(int target_bits)
80 {
81     int host_bits = 0;
82 
83     if (target_bits & 1)
84         host_bits |= float_flag_invalid;
85     if (target_bits & 2)
86         host_bits |= float_flag_divbyzero;
87     if (target_bits & 4)
88         host_bits |= float_flag_overflow;
89     if (target_bits & 8)
90         host_bits |= float_flag_underflow;
91     if (target_bits & 0x10)
92         host_bits |= float_flag_inexact;
93     if (target_bits & 0x80)
94         host_bits |= float_flag_input_denormal;
95     return host_bits;
96 }
97 
98 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
99 {
100     int i;
101     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
102 
103     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
104     if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
105         val &= ~FPCR_FZ16;
106     }
107 
108     if (arm_feature(env, ARM_FEATURE_M)) {
109         /*
110          * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
111          * and also for the trapped-exception-handling bits IxE.
112          */
113         val &= 0xf7c0009f;
114     }
115 
116     /*
117      * We don't implement trapped exception handling, so the
118      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
119      *
120      * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
121      * (which are stored in fp_status), and the other RES0 bits
122      * in between, then we clear all of the low 16 bits.
123      */
124     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
125     env->vfp.vec_len = (val >> 16) & 7;
126     env->vfp.vec_stride = (val >> 20) & 3;
127 
128     /*
129      * The bit we set within fpscr_q is arbitrary; the register as a
130      * whole being zero/non-zero is what counts.
131      */
132     env->vfp.qc[0] = val & FPCR_QC;
133     env->vfp.qc[1] = 0;
134     env->vfp.qc[2] = 0;
135     env->vfp.qc[3] = 0;
136 
137     changed ^= val;
138     if (changed & (3 << 22)) {
139         i = (val >> 22) & 3;
140         switch (i) {
141         case FPROUNDING_TIEEVEN:
142             i = float_round_nearest_even;
143             break;
144         case FPROUNDING_POSINF:
145             i = float_round_up;
146             break;
147         case FPROUNDING_NEGINF:
148             i = float_round_down;
149             break;
150         case FPROUNDING_ZERO:
151             i = float_round_to_zero;
152             break;
153         }
154         set_float_rounding_mode(i, &env->vfp.fp_status);
155         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
156     }
157     if (changed & FPCR_FZ16) {
158         bool ftz_enabled = val & FPCR_FZ16;
159         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
160         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
161     }
162     if (changed & FPCR_FZ) {
163         bool ftz_enabled = val & FPCR_FZ;
164         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
165         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
166     }
167     if (changed & FPCR_DN) {
168         bool dnan_enabled = val & FPCR_DN;
169         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
170         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
171     }
172 
173     /* The exception flags are ORed together when we read fpscr so we
174      * only need to preserve the current state in one of our
175      * float_status values.
176      */
177     i = vfp_exceptbits_to_host(val);
178     set_float_exception_flags(i, &env->vfp.fp_status);
179     set_float_exception_flags(0, &env->vfp.fp_status_f16);
180     set_float_exception_flags(0, &env->vfp.standard_fp_status);
181 }
182 
183 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
184 {
185     HELPER(vfp_set_fpscr)(env, val);
186 }
187 
188 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
189 
190 #define VFP_BINOP(name) \
191 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
192 { \
193     float_status *fpst = fpstp; \
194     return float32_ ## name(a, b, fpst); \
195 } \
196 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
197 { \
198     float_status *fpst = fpstp; \
199     return float64_ ## name(a, b, fpst); \
200 }
201 VFP_BINOP(add)
202 VFP_BINOP(sub)
203 VFP_BINOP(mul)
204 VFP_BINOP(div)
205 VFP_BINOP(min)
206 VFP_BINOP(max)
207 VFP_BINOP(minnum)
208 VFP_BINOP(maxnum)
209 #undef VFP_BINOP
210 
211 float32 VFP_HELPER(neg, s)(float32 a)
212 {
213     return float32_chs(a);
214 }
215 
216 float64 VFP_HELPER(neg, d)(float64 a)
217 {
218     return float64_chs(a);
219 }
220 
221 float32 VFP_HELPER(abs, s)(float32 a)
222 {
223     return float32_abs(a);
224 }
225 
226 float64 VFP_HELPER(abs, d)(float64 a)
227 {
228     return float64_abs(a);
229 }
230 
231 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
232 {
233     return float32_sqrt(a, &env->vfp.fp_status);
234 }
235 
236 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
237 {
238     return float64_sqrt(a, &env->vfp.fp_status);
239 }
240 
241 static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
242 {
243     uint32_t flags;
244     switch (cmp) {
245     case float_relation_equal:
246         flags = 0x6;
247         break;
248     case float_relation_less:
249         flags = 0x8;
250         break;
251     case float_relation_greater:
252         flags = 0x2;
253         break;
254     case float_relation_unordered:
255         flags = 0x3;
256         break;
257     default:
258         g_assert_not_reached();
259     }
260     env->vfp.xregs[ARM_VFP_FPSCR] =
261         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
262 }
263 
264 /* XXX: check quiet/signaling case */
265 #define DO_VFP_cmp(p, type) \
266 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
267 { \
268     softfloat_to_vfp_compare(env, \
269         type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
270 } \
271 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
272 { \
273     softfloat_to_vfp_compare(env, \
274         type ## _compare(a, b, &env->vfp.fp_status)); \
275 }
276 DO_VFP_cmp(s, float32)
277 DO_VFP_cmp(d, float64)
278 #undef DO_VFP_cmp
279 
280 /* Integer to float and float to integer conversions */
281 
282 #define CONV_ITOF(name, ftype, fsz, sign)                           \
283 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
284 {                                                                   \
285     float_status *fpst = fpstp;                                     \
286     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
287 }
288 
289 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
290 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
291 {                                                               \
292     float_status *fpst = fpstp;                                 \
293     if (float##fsz##_is_any_nan(x)) {                           \
294         float_raise(float_flag_invalid, fpst);                  \
295         return 0;                                               \
296     }                                                           \
297     return float##fsz##_to_##sign##int32##round(x, fpst);       \
298 }
299 
300 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
301     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
302     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
303     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
304 
305 FLOAT_CONVS(si, h, uint32_t, 16, )
306 FLOAT_CONVS(si, s, float32, 32, )
307 FLOAT_CONVS(si, d, float64, 64, )
308 FLOAT_CONVS(ui, h, uint32_t, 16, u)
309 FLOAT_CONVS(ui, s, float32, 32, u)
310 FLOAT_CONVS(ui, d, float64, 64, u)
311 
312 #undef CONV_ITOF
313 #undef CONV_FTOI
314 #undef FLOAT_CONVS
315 
316 /* floating point conversion */
317 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
318 {
319     return float32_to_float64(x, &env->vfp.fp_status);
320 }
321 
322 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
323 {
324     return float64_to_float32(x, &env->vfp.fp_status);
325 }
326 
327 /* VFP3 fixed point conversion.  */
328 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
329 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
330                                      void *fpstp) \
331 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
332 
333 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
334 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
335                                             void *fpst)                   \
336 {                                                                         \
337     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
338         float_raise(float_flag_invalid, fpst);                            \
339         return 0;                                                         \
340     }                                                                     \
341     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
342 }
343 
344 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
345 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
346 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
347                          float_round_to_zero, _round_to_zero)    \
348 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
349                          get_float_rounding_mode(fpst), )
350 
351 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
352 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
353 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
354                          get_float_rounding_mode(fpst), )
355 
356 VFP_CONV_FIX(sh, d, 64, 64, int16)
357 VFP_CONV_FIX(sl, d, 64, 64, int32)
358 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
359 VFP_CONV_FIX(uh, d, 64, 64, uint16)
360 VFP_CONV_FIX(ul, d, 64, 64, uint32)
361 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
362 VFP_CONV_FIX(sh, s, 32, 32, int16)
363 VFP_CONV_FIX(sl, s, 32, 32, int32)
364 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
365 VFP_CONV_FIX(uh, s, 32, 32, uint16)
366 VFP_CONV_FIX(ul, s, 32, 32, uint32)
367 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
368 
369 #undef VFP_CONV_FIX
370 #undef VFP_CONV_FIX_FLOAT
371 #undef VFP_CONV_FLOAT_FIX_ROUND
372 #undef VFP_CONV_FIX_A64
373 
374 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
375 {
376     return int32_to_float16_scalbn(x, -shift, fpst);
377 }
378 
379 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
380 {
381     return uint32_to_float16_scalbn(x, -shift, fpst);
382 }
383 
384 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
385 {
386     return int64_to_float16_scalbn(x, -shift, fpst);
387 }
388 
389 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
390 {
391     return uint64_to_float16_scalbn(x, -shift, fpst);
392 }
393 
394 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
395 {
396     if (unlikely(float16_is_any_nan(x))) {
397         float_raise(float_flag_invalid, fpst);
398         return 0;
399     }
400     return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
401                                    shift, fpst);
402 }
403 
404 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
405 {
406     if (unlikely(float16_is_any_nan(x))) {
407         float_raise(float_flag_invalid, fpst);
408         return 0;
409     }
410     return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
411                                     shift, fpst);
412 }
413 
414 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
415 {
416     if (unlikely(float16_is_any_nan(x))) {
417         float_raise(float_flag_invalid, fpst);
418         return 0;
419     }
420     return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
421                                    shift, fpst);
422 }
423 
424 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
425 {
426     if (unlikely(float16_is_any_nan(x))) {
427         float_raise(float_flag_invalid, fpst);
428         return 0;
429     }
430     return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
431                                     shift, fpst);
432 }
433 
434 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
435 {
436     if (unlikely(float16_is_any_nan(x))) {
437         float_raise(float_flag_invalid, fpst);
438         return 0;
439     }
440     return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
441                                    shift, fpst);
442 }
443 
444 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
445 {
446     if (unlikely(float16_is_any_nan(x))) {
447         float_raise(float_flag_invalid, fpst);
448         return 0;
449     }
450     return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
451                                     shift, fpst);
452 }
453 
454 /* Set the current fp rounding mode and return the old one.
455  * The argument is a softfloat float_round_ value.
456  */
457 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
458 {
459     float_status *fp_status = fpstp;
460 
461     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
462     set_float_rounding_mode(rmode, fp_status);
463 
464     return prev_rmode;
465 }
466 
467 /* Set the current fp rounding mode in the standard fp status and return
468  * the old one. This is for NEON instructions that need to change the
469  * rounding mode but wish to use the standard FPSCR values for everything
470  * else. Always set the rounding mode back to the correct value after
471  * modifying it.
472  * The argument is a softfloat float_round_ value.
473  */
474 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
475 {
476     float_status *fp_status = &env->vfp.standard_fp_status;
477 
478     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
479     set_float_rounding_mode(rmode, fp_status);
480 
481     return prev_rmode;
482 }
483 
484 /* Half precision conversions.  */
485 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
486 {
487     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
488      * it would affect flushing input denormals.
489      */
490     float_status *fpst = fpstp;
491     flag save = get_flush_inputs_to_zero(fpst);
492     set_flush_inputs_to_zero(false, fpst);
493     float32 r = float16_to_float32(a, !ahp_mode, fpst);
494     set_flush_inputs_to_zero(save, fpst);
495     return r;
496 }
497 
498 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
499 {
500     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
501      * it would affect flushing output denormals.
502      */
503     float_status *fpst = fpstp;
504     flag save = get_flush_to_zero(fpst);
505     set_flush_to_zero(false, fpst);
506     float16 r = float32_to_float16(a, !ahp_mode, fpst);
507     set_flush_to_zero(save, fpst);
508     return r;
509 }
510 
511 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
512 {
513     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
514      * it would affect flushing input denormals.
515      */
516     float_status *fpst = fpstp;
517     flag save = get_flush_inputs_to_zero(fpst);
518     set_flush_inputs_to_zero(false, fpst);
519     float64 r = float16_to_float64(a, !ahp_mode, fpst);
520     set_flush_inputs_to_zero(save, fpst);
521     return r;
522 }
523 
524 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
525 {
526     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
527      * it would affect flushing output denormals.
528      */
529     float_status *fpst = fpstp;
530     flag save = get_flush_to_zero(fpst);
531     set_flush_to_zero(false, fpst);
532     float16 r = float64_to_float16(a, !ahp_mode, fpst);
533     set_flush_to_zero(save, fpst);
534     return r;
535 }
536 
537 #define float32_two make_float32(0x40000000)
538 #define float32_three make_float32(0x40400000)
539 #define float32_one_point_five make_float32(0x3fc00000)
540 
541 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
542 {
543     float_status *s = &env->vfp.standard_fp_status;
544     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
545         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
546         if (!(float32_is_zero(a) || float32_is_zero(b))) {
547             float_raise(float_flag_input_denormal, s);
548         }
549         return float32_two;
550     }
551     return float32_sub(float32_two, float32_mul(a, b, s), s);
552 }
553 
554 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
555 {
556     float_status *s = &env->vfp.standard_fp_status;
557     float32 product;
558     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
559         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
560         if (!(float32_is_zero(a) || float32_is_zero(b))) {
561             float_raise(float_flag_input_denormal, s);
562         }
563         return float32_one_point_five;
564     }
565     product = float32_mul(a, b, s);
566     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
567 }
568 
569 /* NEON helpers.  */
570 
571 /* Constants 256 and 512 are used in some helpers; we avoid relying on
572  * int->float conversions at run-time.  */
573 #define float64_256 make_float64(0x4070000000000000LL)
574 #define float64_512 make_float64(0x4080000000000000LL)
575 #define float16_maxnorm make_float16(0x7bff)
576 #define float32_maxnorm make_float32(0x7f7fffff)
577 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
578 
579 /* Reciprocal functions
580  *
581  * The algorithm that must be used to calculate the estimate
582  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
583  */
584 
585 /* See RecipEstimate()
586  *
587  * input is a 9 bit fixed point number
588  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
589  * result range 256 .. 511 for a number from 1.0 to 511/256.
590  */
591 
592 static int recip_estimate(int input)
593 {
594     int a, b, r;
595     assert(256 <= input && input < 512);
596     a = (input * 2) + 1;
597     b = (1 << 19) / a;
598     r = (b + 1) >> 1;
599     assert(256 <= r && r < 512);
600     return r;
601 }
602 
603 /*
604  * Common wrapper to call recip_estimate
605  *
606  * The parameters are exponent and 64 bit fraction (without implicit
607  * bit) where the binary point is nominally at bit 52. Returns a
608  * float64 which can then be rounded to the appropriate size by the
609  * callee.
610  */
611 
612 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
613 {
614     uint32_t scaled, estimate;
615     uint64_t result_frac;
616     int result_exp;
617 
618     /* Handle sub-normals */
619     if (*exp == 0) {
620         if (extract64(frac, 51, 1) == 0) {
621             *exp = -1;
622             frac <<= 2;
623         } else {
624             frac <<= 1;
625         }
626     }
627 
628     /* scaled = UInt('1':fraction<51:44>) */
629     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
630     estimate = recip_estimate(scaled);
631 
632     result_exp = exp_off - *exp;
633     result_frac = deposit64(0, 44, 8, estimate);
634     if (result_exp == 0) {
635         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
636     } else if (result_exp == -1) {
637         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
638         result_exp = 0;
639     }
640 
641     *exp = result_exp;
642 
643     return result_frac;
644 }
645 
646 static bool round_to_inf(float_status *fpst, bool sign_bit)
647 {
648     switch (fpst->float_rounding_mode) {
649     case float_round_nearest_even: /* Round to Nearest */
650         return true;
651     case float_round_up: /* Round to +Inf */
652         return !sign_bit;
653     case float_round_down: /* Round to -Inf */
654         return sign_bit;
655     case float_round_to_zero: /* Round to Zero */
656         return false;
657     }
658 
659     g_assert_not_reached();
660 }
661 
662 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
663 {
664     float_status *fpst = fpstp;
665     float16 f16 = float16_squash_input_denormal(input, fpst);
666     uint32_t f16_val = float16_val(f16);
667     uint32_t f16_sign = float16_is_neg(f16);
668     int f16_exp = extract32(f16_val, 10, 5);
669     uint32_t f16_frac = extract32(f16_val, 0, 10);
670     uint64_t f64_frac;
671 
672     if (float16_is_any_nan(f16)) {
673         float16 nan = f16;
674         if (float16_is_signaling_nan(f16, fpst)) {
675             float_raise(float_flag_invalid, fpst);
676             nan = float16_silence_nan(f16, fpst);
677         }
678         if (fpst->default_nan_mode) {
679             nan =  float16_default_nan(fpst);
680         }
681         return nan;
682     } else if (float16_is_infinity(f16)) {
683         return float16_set_sign(float16_zero, float16_is_neg(f16));
684     } else if (float16_is_zero(f16)) {
685         float_raise(float_flag_divbyzero, fpst);
686         return float16_set_sign(float16_infinity, float16_is_neg(f16));
687     } else if (float16_abs(f16) < (1 << 8)) {
688         /* Abs(value) < 2.0^-16 */
689         float_raise(float_flag_overflow | float_flag_inexact, fpst);
690         if (round_to_inf(fpst, f16_sign)) {
691             return float16_set_sign(float16_infinity, f16_sign);
692         } else {
693             return float16_set_sign(float16_maxnorm, f16_sign);
694         }
695     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
696         float_raise(float_flag_underflow, fpst);
697         return float16_set_sign(float16_zero, float16_is_neg(f16));
698     }
699 
700     f64_frac = call_recip_estimate(&f16_exp, 29,
701                                    ((uint64_t) f16_frac) << (52 - 10));
702 
703     /* result = sign : result_exp<4:0> : fraction<51:42> */
704     f16_val = deposit32(0, 15, 1, f16_sign);
705     f16_val = deposit32(f16_val, 10, 5, f16_exp);
706     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
707     return make_float16(f16_val);
708 }
709 
710 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
711 {
712     float_status *fpst = fpstp;
713     float32 f32 = float32_squash_input_denormal(input, fpst);
714     uint32_t f32_val = float32_val(f32);
715     bool f32_sign = float32_is_neg(f32);
716     int f32_exp = extract32(f32_val, 23, 8);
717     uint32_t f32_frac = extract32(f32_val, 0, 23);
718     uint64_t f64_frac;
719 
720     if (float32_is_any_nan(f32)) {
721         float32 nan = f32;
722         if (float32_is_signaling_nan(f32, fpst)) {
723             float_raise(float_flag_invalid, fpst);
724             nan = float32_silence_nan(f32, fpst);
725         }
726         if (fpst->default_nan_mode) {
727             nan =  float32_default_nan(fpst);
728         }
729         return nan;
730     } else if (float32_is_infinity(f32)) {
731         return float32_set_sign(float32_zero, float32_is_neg(f32));
732     } else if (float32_is_zero(f32)) {
733         float_raise(float_flag_divbyzero, fpst);
734         return float32_set_sign(float32_infinity, float32_is_neg(f32));
735     } else if (float32_abs(f32) < (1ULL << 21)) {
736         /* Abs(value) < 2.0^-128 */
737         float_raise(float_flag_overflow | float_flag_inexact, fpst);
738         if (round_to_inf(fpst, f32_sign)) {
739             return float32_set_sign(float32_infinity, f32_sign);
740         } else {
741             return float32_set_sign(float32_maxnorm, f32_sign);
742         }
743     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
744         float_raise(float_flag_underflow, fpst);
745         return float32_set_sign(float32_zero, float32_is_neg(f32));
746     }
747 
748     f64_frac = call_recip_estimate(&f32_exp, 253,
749                                    ((uint64_t) f32_frac) << (52 - 23));
750 
751     /* result = sign : result_exp<7:0> : fraction<51:29> */
752     f32_val = deposit32(0, 31, 1, f32_sign);
753     f32_val = deposit32(f32_val, 23, 8, f32_exp);
754     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
755     return make_float32(f32_val);
756 }
757 
758 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
759 {
760     float_status *fpst = fpstp;
761     float64 f64 = float64_squash_input_denormal(input, fpst);
762     uint64_t f64_val = float64_val(f64);
763     bool f64_sign = float64_is_neg(f64);
764     int f64_exp = extract64(f64_val, 52, 11);
765     uint64_t f64_frac = extract64(f64_val, 0, 52);
766 
767     /* Deal with any special cases */
768     if (float64_is_any_nan(f64)) {
769         float64 nan = f64;
770         if (float64_is_signaling_nan(f64, fpst)) {
771             float_raise(float_flag_invalid, fpst);
772             nan = float64_silence_nan(f64, fpst);
773         }
774         if (fpst->default_nan_mode) {
775             nan =  float64_default_nan(fpst);
776         }
777         return nan;
778     } else if (float64_is_infinity(f64)) {
779         return float64_set_sign(float64_zero, float64_is_neg(f64));
780     } else if (float64_is_zero(f64)) {
781         float_raise(float_flag_divbyzero, fpst);
782         return float64_set_sign(float64_infinity, float64_is_neg(f64));
783     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
784         /* Abs(value) < 2.0^-1024 */
785         float_raise(float_flag_overflow | float_flag_inexact, fpst);
786         if (round_to_inf(fpst, f64_sign)) {
787             return float64_set_sign(float64_infinity, f64_sign);
788         } else {
789             return float64_set_sign(float64_maxnorm, f64_sign);
790         }
791     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
792         float_raise(float_flag_underflow, fpst);
793         return float64_set_sign(float64_zero, float64_is_neg(f64));
794     }
795 
796     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
797 
798     /* result = sign : result_exp<10:0> : fraction<51:0>; */
799     f64_val = deposit64(0, 63, 1, f64_sign);
800     f64_val = deposit64(f64_val, 52, 11, f64_exp);
801     f64_val = deposit64(f64_val, 0, 52, f64_frac);
802     return make_float64(f64_val);
803 }
804 
805 /* The algorithm that must be used to calculate the estimate
806  * is specified by the ARM ARM.
807  */
808 
809 static int do_recip_sqrt_estimate(int a)
810 {
811     int b, estimate;
812 
813     assert(128 <= a && a < 512);
814     if (a < 256) {
815         a = a * 2 + 1;
816     } else {
817         a = (a >> 1) << 1;
818         a = (a + 1) * 2;
819     }
820     b = 512;
821     while (a * (b + 1) * (b + 1) < (1 << 28)) {
822         b += 1;
823     }
824     estimate = (b + 1) / 2;
825     assert(256 <= estimate && estimate < 512);
826 
827     return estimate;
828 }
829 
830 
831 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
832 {
833     int estimate;
834     uint32_t scaled;
835 
836     if (*exp == 0) {
837         while (extract64(frac, 51, 1) == 0) {
838             frac = frac << 1;
839             *exp -= 1;
840         }
841         frac = extract64(frac, 0, 51) << 1;
842     }
843 
844     if (*exp & 1) {
845         /* scaled = UInt('01':fraction<51:45>) */
846         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
847     } else {
848         /* scaled = UInt('1':fraction<51:44>) */
849         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
850     }
851     estimate = do_recip_sqrt_estimate(scaled);
852 
853     *exp = (exp_off - *exp) / 2;
854     return extract64(estimate, 0, 8) << 44;
855 }
856 
857 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
858 {
859     float_status *s = fpstp;
860     float16 f16 = float16_squash_input_denormal(input, s);
861     uint16_t val = float16_val(f16);
862     bool f16_sign = float16_is_neg(f16);
863     int f16_exp = extract32(val, 10, 5);
864     uint16_t f16_frac = extract32(val, 0, 10);
865     uint64_t f64_frac;
866 
867     if (float16_is_any_nan(f16)) {
868         float16 nan = f16;
869         if (float16_is_signaling_nan(f16, s)) {
870             float_raise(float_flag_invalid, s);
871             nan = float16_silence_nan(f16, s);
872         }
873         if (s->default_nan_mode) {
874             nan =  float16_default_nan(s);
875         }
876         return nan;
877     } else if (float16_is_zero(f16)) {
878         float_raise(float_flag_divbyzero, s);
879         return float16_set_sign(float16_infinity, f16_sign);
880     } else if (f16_sign) {
881         float_raise(float_flag_invalid, s);
882         return float16_default_nan(s);
883     } else if (float16_is_infinity(f16)) {
884         return float16_zero;
885     }
886 
887     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
888      * preserving the parity of the exponent.  */
889 
890     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
891 
892     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
893 
894     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
895     val = deposit32(0, 15, 1, f16_sign);
896     val = deposit32(val, 10, 5, f16_exp);
897     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
898     return make_float16(val);
899 }
900 
901 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
902 {
903     float_status *s = fpstp;
904     float32 f32 = float32_squash_input_denormal(input, s);
905     uint32_t val = float32_val(f32);
906     uint32_t f32_sign = float32_is_neg(f32);
907     int f32_exp = extract32(val, 23, 8);
908     uint32_t f32_frac = extract32(val, 0, 23);
909     uint64_t f64_frac;
910 
911     if (float32_is_any_nan(f32)) {
912         float32 nan = f32;
913         if (float32_is_signaling_nan(f32, s)) {
914             float_raise(float_flag_invalid, s);
915             nan = float32_silence_nan(f32, s);
916         }
917         if (s->default_nan_mode) {
918             nan =  float32_default_nan(s);
919         }
920         return nan;
921     } else if (float32_is_zero(f32)) {
922         float_raise(float_flag_divbyzero, s);
923         return float32_set_sign(float32_infinity, float32_is_neg(f32));
924     } else if (float32_is_neg(f32)) {
925         float_raise(float_flag_invalid, s);
926         return float32_default_nan(s);
927     } else if (float32_is_infinity(f32)) {
928         return float32_zero;
929     }
930 
931     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
932      * preserving the parity of the exponent.  */
933 
934     f64_frac = ((uint64_t) f32_frac) << 29;
935 
936     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
937 
938     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
939     val = deposit32(0, 31, 1, f32_sign);
940     val = deposit32(val, 23, 8, f32_exp);
941     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
942     return make_float32(val);
943 }
944 
945 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
946 {
947     float_status *s = fpstp;
948     float64 f64 = float64_squash_input_denormal(input, s);
949     uint64_t val = float64_val(f64);
950     bool f64_sign = float64_is_neg(f64);
951     int f64_exp = extract64(val, 52, 11);
952     uint64_t f64_frac = extract64(val, 0, 52);
953 
954     if (float64_is_any_nan(f64)) {
955         float64 nan = f64;
956         if (float64_is_signaling_nan(f64, s)) {
957             float_raise(float_flag_invalid, s);
958             nan = float64_silence_nan(f64, s);
959         }
960         if (s->default_nan_mode) {
961             nan =  float64_default_nan(s);
962         }
963         return nan;
964     } else if (float64_is_zero(f64)) {
965         float_raise(float_flag_divbyzero, s);
966         return float64_set_sign(float64_infinity, float64_is_neg(f64));
967     } else if (float64_is_neg(f64)) {
968         float_raise(float_flag_invalid, s);
969         return float64_default_nan(s);
970     } else if (float64_is_infinity(f64)) {
971         return float64_zero;
972     }
973 
974     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
975 
976     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
977     val = deposit64(0, 61, 1, f64_sign);
978     val = deposit64(val, 52, 11, f64_exp);
979     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
980     return make_float64(val);
981 }
982 
983 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
984 {
985     /* float_status *s = fpstp; */
986     int input, estimate;
987 
988     if ((a & 0x80000000) == 0) {
989         return 0xffffffff;
990     }
991 
992     input = extract32(a, 23, 9);
993     estimate = recip_estimate(input);
994 
995     return deposit32(0, (32 - 9), 9, estimate);
996 }
997 
998 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
999 {
1000     int estimate;
1001 
1002     if ((a & 0xc0000000) == 0) {
1003         return 0xffffffff;
1004     }
1005 
1006     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1007 
1008     return deposit32(0, 23, 9, estimate);
1009 }
1010 
1011 /* VFPv4 fused multiply-accumulate */
1012 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1013 {
1014     float_status *fpst = fpstp;
1015     return float32_muladd(a, b, c, 0, fpst);
1016 }
1017 
1018 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1019 {
1020     float_status *fpst = fpstp;
1021     return float64_muladd(a, b, c, 0, fpst);
1022 }
1023 
1024 /* ARMv8 round to integral */
1025 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1026 {
1027     return float32_round_to_int(x, fp_status);
1028 }
1029 
1030 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1031 {
1032     return float64_round_to_int(x, fp_status);
1033 }
1034 
1035 float32 HELPER(rints)(float32 x, void *fp_status)
1036 {
1037     int old_flags = get_float_exception_flags(fp_status), new_flags;
1038     float32 ret;
1039 
1040     ret = float32_round_to_int(x, fp_status);
1041 
1042     /* Suppress any inexact exceptions the conversion produced */
1043     if (!(old_flags & float_flag_inexact)) {
1044         new_flags = get_float_exception_flags(fp_status);
1045         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1046     }
1047 
1048     return ret;
1049 }
1050 
1051 float64 HELPER(rintd)(float64 x, void *fp_status)
1052 {
1053     int old_flags = get_float_exception_flags(fp_status), new_flags;
1054     float64 ret;
1055 
1056     ret = float64_round_to_int(x, fp_status);
1057 
1058     new_flags = get_float_exception_flags(fp_status);
1059 
1060     /* Suppress any inexact exceptions the conversion produced */
1061     if (!(old_flags & float_flag_inexact)) {
1062         new_flags = get_float_exception_flags(fp_status);
1063         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1064     }
1065 
1066     return ret;
1067 }
1068 
1069 /* Convert ARM rounding mode to softfloat */
1070 int arm_rmode_to_sf(int rmode)
1071 {
1072     switch (rmode) {
1073     case FPROUNDING_TIEAWAY:
1074         rmode = float_round_ties_away;
1075         break;
1076     case FPROUNDING_ODD:
1077         /* FIXME: add support for TIEAWAY and ODD */
1078         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1079                       rmode);
1080         /* fall through for now */
1081     case FPROUNDING_TIEEVEN:
1082     default:
1083         rmode = float_round_nearest_even;
1084         break;
1085     case FPROUNDING_POSINF:
1086         rmode = float_round_up;
1087         break;
1088     case FPROUNDING_NEGINF:
1089         rmode = float_round_down;
1090         break;
1091     case FPROUNDING_ZERO:
1092         rmode = float_round_to_zero;
1093         break;
1094     }
1095     return rmode;
1096 }
1097 
1098 /*
1099  * Implement float64 to int32_t conversion without saturation;
1100  * the result is supplied modulo 2^32.
1101  */
1102 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1103 {
1104     float_status *status = vstatus;
1105     uint32_t exp, sign;
1106     uint64_t frac;
1107     uint32_t inexact = 1; /* !Z */
1108 
1109     sign = extract64(value, 63, 1);
1110     exp = extract64(value, 52, 11);
1111     frac = extract64(value, 0, 52);
1112 
1113     if (exp == 0) {
1114         /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
1115         inexact = sign;
1116         if (frac != 0) {
1117             if (status->flush_inputs_to_zero) {
1118                 float_raise(float_flag_input_denormal, status);
1119             } else {
1120                 float_raise(float_flag_inexact, status);
1121                 inexact = 1;
1122             }
1123         }
1124         frac = 0;
1125     } else if (exp == 0x7ff) {
1126         /* This operation raises Invalid for both NaN and overflow (Inf).  */
1127         float_raise(float_flag_invalid, status);
1128         frac = 0;
1129     } else {
1130         int true_exp = exp - 1023;
1131         int shift = true_exp - 52;
1132 
1133         /* Restore implicit bit.  */
1134         frac |= 1ull << 52;
1135 
1136         /* Shift the fraction into place.  */
1137         if (shift >= 0) {
1138             /* The number is so large we must shift the fraction left.  */
1139             if (shift >= 64) {
1140                 /* The fraction is shifted out entirely.  */
1141                 frac = 0;
1142             } else {
1143                 frac <<= shift;
1144             }
1145         } else if (shift > -64) {
1146             /* Normal case -- shift right and notice if bits shift out.  */
1147             inexact = (frac << (64 + shift)) != 0;
1148             frac >>= -shift;
1149         } else {
1150             /* The fraction is shifted out entirely.  */
1151             frac = 0;
1152         }
1153 
1154         /* Notice overflow or inexact exceptions.  */
1155         if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1156             /* Overflow, for which this operation raises invalid.  */
1157             float_raise(float_flag_invalid, status);
1158             inexact = 1;
1159         } else if (inexact) {
1160             float_raise(float_flag_inexact, status);
1161         }
1162 
1163         /* Honor the sign.  */
1164         if (sign) {
1165             frac = -frac;
1166         }
1167     }
1168 
1169     /* Pack the result and the env->ZF representation of Z together.  */
1170     return deposit64(frac, 32, 32, inexact);
1171 }
1172 
1173 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1174 {
1175     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1176     uint32_t result = pair;
1177     uint32_t z = (pair >> 32) == 0;
1178 
1179     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1180     env->vfp.xregs[ARM_VFP_FPSCR]
1181         = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1182 
1183     return result;
1184 }
1185 
1186 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1187 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1188 {
1189     int old_flags = get_float_exception_flags(fpst);
1190     uint32_t exp = extract32(f, 23, 8);
1191 
1192     if (unlikely(exp == 0xff)) {
1193         /* NaN or Inf.  */
1194         goto overflow;
1195     }
1196 
1197     /* Round and re-extract the exponent.  */
1198     f = float32_round_to_int(f, fpst);
1199     exp = extract32(f, 23, 8);
1200 
1201     /* Validate the range of the result.  */
1202     if (exp < 126 + intsize) {
1203         /* abs(F) <= INT{N}_MAX */
1204         return f;
1205     }
1206     if (exp == 126 + intsize) {
1207         uint32_t sign = extract32(f, 31, 1);
1208         uint32_t frac = extract32(f, 0, 23);
1209         if (sign && frac == 0) {
1210             /* F == INT{N}_MIN */
1211             return f;
1212         }
1213     }
1214 
1215  overflow:
1216     /*
1217      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1218      * inexact exception float32_round_to_int may have raised.
1219      */
1220     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1221     return (0x100u + 126u + intsize) << 23;
1222 }
1223 
1224 float32 HELPER(frint32_s)(float32 f, void *fpst)
1225 {
1226     return frint_s(f, fpst, 32);
1227 }
1228 
1229 float32 HELPER(frint64_s)(float32 f, void *fpst)
1230 {
1231     return frint_s(f, fpst, 64);
1232 }
1233 
1234 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1235 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1236 {
1237     int old_flags = get_float_exception_flags(fpst);
1238     uint32_t exp = extract64(f, 52, 11);
1239 
1240     if (unlikely(exp == 0x7ff)) {
1241         /* NaN or Inf.  */
1242         goto overflow;
1243     }
1244 
1245     /* Round and re-extract the exponent.  */
1246     f = float64_round_to_int(f, fpst);
1247     exp = extract64(f, 52, 11);
1248 
1249     /* Validate the range of the result.  */
1250     if (exp < 1022 + intsize) {
1251         /* abs(F) <= INT{N}_MAX */
1252         return f;
1253     }
1254     if (exp == 1022 + intsize) {
1255         uint64_t sign = extract64(f, 63, 1);
1256         uint64_t frac = extract64(f, 0, 52);
1257         if (sign && frac == 0) {
1258             /* F == INT{N}_MIN */
1259             return f;
1260         }
1261     }
1262 
1263  overflow:
1264     /*
1265      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1266      * inexact exception float64_round_to_int may have raised.
1267      */
1268     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1269     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1270 }
1271 
1272 float64 HELPER(frint32_d)(float64 f, void *fpst)
1273 {
1274     return frint_d(f, fpst, 32);
1275 }
1276 
1277 float64 HELPER(frint64_d)(float64 f, void *fpst)
1278 {
1279     return frint_d(f, fpst, 64);
1280 }
1281