xref: /openbmc/qemu/target/arm/vfp_helper.c (revision 322b038c)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
29 
30 /* VFP support.  We follow the convention used for VFP instructions:
31    Single precision routines have a "s" suffix, double precision a
32    "d" suffix.  */
33 
34 #ifdef CONFIG_TCG
35 
36 /* Convert host exception flags to vfp form.  */
37 static inline int vfp_exceptbits_from_host(int host_bits)
38 {
39     int target_bits = 0;
40 
41     if (host_bits & float_flag_invalid) {
42         target_bits |= 1;
43     }
44     if (host_bits & float_flag_divbyzero) {
45         target_bits |= 2;
46     }
47     if (host_bits & float_flag_overflow) {
48         target_bits |= 4;
49     }
50     if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51         target_bits |= 8;
52     }
53     if (host_bits & float_flag_inexact) {
54         target_bits |= 0x10;
55     }
56     if (host_bits & float_flag_input_denormal) {
57         target_bits |= 0x80;
58     }
59     return target_bits;
60 }
61 
62 /* Convert vfp exception flags to target form.  */
63 static inline int vfp_exceptbits_to_host(int target_bits)
64 {
65     int host_bits = 0;
66 
67     if (target_bits & 1) {
68         host_bits |= float_flag_invalid;
69     }
70     if (target_bits & 2) {
71         host_bits |= float_flag_divbyzero;
72     }
73     if (target_bits & 4) {
74         host_bits |= float_flag_overflow;
75     }
76     if (target_bits & 8) {
77         host_bits |= float_flag_underflow;
78     }
79     if (target_bits & 0x10) {
80         host_bits |= float_flag_inexact;
81     }
82     if (target_bits & 0x80) {
83         host_bits |= float_flag_input_denormal;
84     }
85     return host_bits;
86 }
87 
88 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
89 {
90     uint32_t i;
91 
92     i = get_float_exception_flags(&env->vfp.fp_status);
93     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94     /* FZ16 does not generate an input denormal exception.  */
95     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96           & ~float_flag_input_denormal);
97     i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
98           & ~float_flag_input_denormal);
99     return vfp_exceptbits_from_host(i);
100 }
101 
102 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
103 {
104     int i;
105     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
106 
107     changed ^= val;
108     if (changed & (3 << 22)) {
109         i = (val >> 22) & 3;
110         switch (i) {
111         case FPROUNDING_TIEEVEN:
112             i = float_round_nearest_even;
113             break;
114         case FPROUNDING_POSINF:
115             i = float_round_up;
116             break;
117         case FPROUNDING_NEGINF:
118             i = float_round_down;
119             break;
120         case FPROUNDING_ZERO:
121             i = float_round_to_zero;
122             break;
123         }
124         set_float_rounding_mode(i, &env->vfp.fp_status);
125         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
126     }
127     if (changed & FPCR_FZ16) {
128         bool ftz_enabled = val & FPCR_FZ16;
129         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
130         set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
131         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
132         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
133     }
134     if (changed & FPCR_FZ) {
135         bool ftz_enabled = val & FPCR_FZ;
136         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
137         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
138     }
139     if (changed & FPCR_DN) {
140         bool dnan_enabled = val & FPCR_DN;
141         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
142         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
143     }
144 
145     /*
146      * The exception flags are ORed together when we read fpscr so we
147      * only need to preserve the current state in one of our
148      * float_status values.
149      */
150     i = vfp_exceptbits_to_host(val);
151     set_float_exception_flags(i, &env->vfp.fp_status);
152     set_float_exception_flags(0, &env->vfp.fp_status_f16);
153     set_float_exception_flags(0, &env->vfp.standard_fp_status);
154     set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
155 }
156 
157 #else
158 
159 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
160 {
161     return 0;
162 }
163 
164 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
165 {
166 }
167 
168 #endif
169 
170 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
171 {
172     uint32_t i, fpscr;
173 
174     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
175             | (env->vfp.vec_len << 16)
176             | (env->vfp.vec_stride << 20);
177 
178     /*
179      * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
180      * two is not applicable to this CPU will always be zero.
181      */
182     fpscr |= env->v7m.ltpsize << 16;
183 
184     fpscr |= vfp_get_fpscr_from_host(env);
185 
186     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
187     fpscr |= i ? FPCR_QC : 0;
188 
189     return fpscr;
190 }
191 
192 uint32_t vfp_get_fpscr(CPUARMState *env)
193 {
194     return HELPER(vfp_get_fpscr)(env);
195 }
196 
197 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
198 {
199     ARMCPU *cpu = env_archcpu(env);
200 
201     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
202     if (!cpu_isar_feature(any_fp16, cpu)) {
203         val &= ~FPCR_FZ16;
204     }
205 
206     vfp_set_fpscr_to_host(env, val);
207 
208     if (!arm_feature(env, ARM_FEATURE_M)) {
209         /*
210          * Short-vector length and stride; on M-profile these bits
211          * are used for different purposes.
212          * We can't make this conditional be "if MVFR0.FPShVec != 0",
213          * because in v7A no-short-vector-support cores still had to
214          * allow Stride/Len to be written with the only effect that
215          * some insns are required to UNDEF if the guest sets them.
216          */
217         env->vfp.vec_len = extract32(val, 16, 3);
218         env->vfp.vec_stride = extract32(val, 20, 2);
219     } else if (cpu_isar_feature(aa32_mve, cpu)) {
220         env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
221                                      FPCR_LTPSIZE_LENGTH);
222     }
223 
224     if (arm_feature(env, ARM_FEATURE_NEON) ||
225         cpu_isar_feature(aa32_mve, cpu)) {
226         /*
227          * The bit we set within fpscr_q is arbitrary; the register as a
228          * whole being zero/non-zero is what counts.
229          * TODO: M-profile MVE also has a QC bit.
230          */
231         env->vfp.qc[0] = val & FPCR_QC;
232         env->vfp.qc[1] = 0;
233         env->vfp.qc[2] = 0;
234         env->vfp.qc[3] = 0;
235     }
236 
237     /*
238      * We don't implement trapped exception handling, so the
239      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
240      *
241      * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
242      * fp_status; QC, Len and Stride are stored separately earlier.
243      * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
244      * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
245      */
246     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
247 }
248 
249 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
250 {
251     HELPER(vfp_set_fpscr)(env, val);
252 }
253 
254 #ifdef CONFIG_TCG
255 
256 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
257 
258 #define VFP_BINOP(name) \
259 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
260 { \
261     float_status *fpst = fpstp; \
262     return float16_ ## name(a, b, fpst); \
263 } \
264 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
265 { \
266     float_status *fpst = fpstp; \
267     return float32_ ## name(a, b, fpst); \
268 } \
269 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
270 { \
271     float_status *fpst = fpstp; \
272     return float64_ ## name(a, b, fpst); \
273 }
274 VFP_BINOP(add)
275 VFP_BINOP(sub)
276 VFP_BINOP(mul)
277 VFP_BINOP(div)
278 VFP_BINOP(min)
279 VFP_BINOP(max)
280 VFP_BINOP(minnum)
281 VFP_BINOP(maxnum)
282 #undef VFP_BINOP
283 
284 dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
285 {
286     return float16_chs(a);
287 }
288 
289 float32 VFP_HELPER(neg, s)(float32 a)
290 {
291     return float32_chs(a);
292 }
293 
294 float64 VFP_HELPER(neg, d)(float64 a)
295 {
296     return float64_chs(a);
297 }
298 
299 dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
300 {
301     return float16_abs(a);
302 }
303 
304 float32 VFP_HELPER(abs, s)(float32 a)
305 {
306     return float32_abs(a);
307 }
308 
309 float64 VFP_HELPER(abs, d)(float64 a)
310 {
311     return float64_abs(a);
312 }
313 
314 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
315 {
316     return float16_sqrt(a, &env->vfp.fp_status_f16);
317 }
318 
319 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
320 {
321     return float32_sqrt(a, &env->vfp.fp_status);
322 }
323 
324 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
325 {
326     return float64_sqrt(a, &env->vfp.fp_status);
327 }
328 
329 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
330 {
331     uint32_t flags;
332     switch (cmp) {
333     case float_relation_equal:
334         flags = 0x6;
335         break;
336     case float_relation_less:
337         flags = 0x8;
338         break;
339     case float_relation_greater:
340         flags = 0x2;
341         break;
342     case float_relation_unordered:
343         flags = 0x3;
344         break;
345     default:
346         g_assert_not_reached();
347     }
348     env->vfp.xregs[ARM_VFP_FPSCR] =
349         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
350 }
351 
352 /* XXX: check quiet/signaling case */
353 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
354 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
355 { \
356     softfloat_to_vfp_compare(env, \
357         FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
358 } \
359 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
360 { \
361     softfloat_to_vfp_compare(env, \
362         FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
363 }
364 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
365 DO_VFP_cmp(s, float32, float32, fp_status)
366 DO_VFP_cmp(d, float64, float64, fp_status)
367 #undef DO_VFP_cmp
368 
369 /* Integer to float and float to integer conversions */
370 
371 #define CONV_ITOF(name, ftype, fsz, sign)                           \
372 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
373 {                                                                   \
374     float_status *fpst = fpstp;                                     \
375     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
376 }
377 
378 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
379 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
380 {                                                               \
381     float_status *fpst = fpstp;                                 \
382     if (float##fsz##_is_any_nan(x)) {                           \
383         float_raise(float_flag_invalid, fpst);                  \
384         return 0;                                               \
385     }                                                           \
386     return float##fsz##_to_##sign##int32##round(x, fpst);       \
387 }
388 
389 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
390     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
391     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
392     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
393 
394 FLOAT_CONVS(si, h, uint32_t, 16, )
395 FLOAT_CONVS(si, s, float32, 32, )
396 FLOAT_CONVS(si, d, float64, 64, )
397 FLOAT_CONVS(ui, h, uint32_t, 16, u)
398 FLOAT_CONVS(ui, s, float32, 32, u)
399 FLOAT_CONVS(ui, d, float64, 64, u)
400 
401 #undef CONV_ITOF
402 #undef CONV_FTOI
403 #undef FLOAT_CONVS
404 
405 /* floating point conversion */
406 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
407 {
408     return float32_to_float64(x, &env->vfp.fp_status);
409 }
410 
411 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
412 {
413     return float64_to_float32(x, &env->vfp.fp_status);
414 }
415 
416 uint32_t HELPER(bfcvt)(float32 x, void *status)
417 {
418     return float32_to_bfloat16(x, status);
419 }
420 
421 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
422 {
423     bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
424     bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
425     return deposit32(lo, 16, 16, hi);
426 }
427 
428 /*
429  * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
430  * must always round-to-nearest; the AArch64 ones honour the FPSCR
431  * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
432  * round-to-nearest so either helper will work.) AArch32 float-to-fix
433  * must round-to-zero.
434  */
435 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
436 ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
437                                      void *fpstp) \
438 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
439 
440 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
441     ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
442                                                      uint32_t shift,   \
443                                                      void *fpstp)      \
444     {                                                                  \
445         ftype ret;                                                     \
446         float_status *fpst = fpstp;                                    \
447         FloatRoundMode oldmode = fpst->float_rounding_mode;            \
448         fpst->float_rounding_mode = float_round_nearest_even;          \
449         ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
450         fpst->float_rounding_mode = oldmode;                           \
451         return ret;                                                    \
452     }
453 
454 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
455 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
456                                             void *fpst)                   \
457 {                                                                         \
458     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
459         float_raise(float_flag_invalid, fpst);                            \
460         return 0;                                                         \
461     }                                                                     \
462     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
463 }
464 
465 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
466 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
467 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
468 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
469                          float_round_to_zero, _round_to_zero)    \
470 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
471                          get_float_rounding_mode(fpst), )
472 
473 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
474 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
475 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
476                          get_float_rounding_mode(fpst), )
477 
478 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
479 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
480 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
481 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
482 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
483 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
484 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
485 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
486 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
487 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
488 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
489 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
490 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
491 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
492 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
493 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
494 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
495 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
496 
497 #undef VFP_CONV_FIX
498 #undef VFP_CONV_FIX_FLOAT
499 #undef VFP_CONV_FLOAT_FIX_ROUND
500 #undef VFP_CONV_FIX_A64
501 
502 /* Set the current fp rounding mode and return the old one.
503  * The argument is a softfloat float_round_ value.
504  */
505 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
506 {
507     float_status *fp_status = fpstp;
508 
509     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
510     set_float_rounding_mode(rmode, fp_status);
511 
512     return prev_rmode;
513 }
514 
515 /* Half precision conversions.  */
516 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
517 {
518     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
519      * it would affect flushing input denormals.
520      */
521     float_status *fpst = fpstp;
522     bool save = get_flush_inputs_to_zero(fpst);
523     set_flush_inputs_to_zero(false, fpst);
524     float32 r = float16_to_float32(a, !ahp_mode, fpst);
525     set_flush_inputs_to_zero(save, fpst);
526     return r;
527 }
528 
529 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
530 {
531     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
532      * it would affect flushing output denormals.
533      */
534     float_status *fpst = fpstp;
535     bool save = get_flush_to_zero(fpst);
536     set_flush_to_zero(false, fpst);
537     float16 r = float32_to_float16(a, !ahp_mode, fpst);
538     set_flush_to_zero(save, fpst);
539     return r;
540 }
541 
542 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
543 {
544     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
545      * it would affect flushing input denormals.
546      */
547     float_status *fpst = fpstp;
548     bool save = get_flush_inputs_to_zero(fpst);
549     set_flush_inputs_to_zero(false, fpst);
550     float64 r = float16_to_float64(a, !ahp_mode, fpst);
551     set_flush_inputs_to_zero(save, fpst);
552     return r;
553 }
554 
555 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
556 {
557     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
558      * it would affect flushing output denormals.
559      */
560     float_status *fpst = fpstp;
561     bool save = get_flush_to_zero(fpst);
562     set_flush_to_zero(false, fpst);
563     float16 r = float64_to_float16(a, !ahp_mode, fpst);
564     set_flush_to_zero(save, fpst);
565     return r;
566 }
567 
568 /* NEON helpers.  */
569 
570 /* Constants 256 and 512 are used in some helpers; we avoid relying on
571  * int->float conversions at run-time.  */
572 #define float64_256 make_float64(0x4070000000000000LL)
573 #define float64_512 make_float64(0x4080000000000000LL)
574 #define float16_maxnorm make_float16(0x7bff)
575 #define float32_maxnorm make_float32(0x7f7fffff)
576 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
577 
578 /* Reciprocal functions
579  *
580  * The algorithm that must be used to calculate the estimate
581  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
582  */
583 
584 /* See RecipEstimate()
585  *
586  * input is a 9 bit fixed point number
587  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
588  * result range 256 .. 511 for a number from 1.0 to 511/256.
589  */
590 
591 static int recip_estimate(int input)
592 {
593     int a, b, r;
594     assert(256 <= input && input < 512);
595     a = (input * 2) + 1;
596     b = (1 << 19) / a;
597     r = (b + 1) >> 1;
598     assert(256 <= r && r < 512);
599     return r;
600 }
601 
602 /*
603  * Common wrapper to call recip_estimate
604  *
605  * The parameters are exponent and 64 bit fraction (without implicit
606  * bit) where the binary point is nominally at bit 52. Returns a
607  * float64 which can then be rounded to the appropriate size by the
608  * callee.
609  */
610 
611 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
612 {
613     uint32_t scaled, estimate;
614     uint64_t result_frac;
615     int result_exp;
616 
617     /* Handle sub-normals */
618     if (*exp == 0) {
619         if (extract64(frac, 51, 1) == 0) {
620             *exp = -1;
621             frac <<= 2;
622         } else {
623             frac <<= 1;
624         }
625     }
626 
627     /* scaled = UInt('1':fraction<51:44>) */
628     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
629     estimate = recip_estimate(scaled);
630 
631     result_exp = exp_off - *exp;
632     result_frac = deposit64(0, 44, 8, estimate);
633     if (result_exp == 0) {
634         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
635     } else if (result_exp == -1) {
636         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
637         result_exp = 0;
638     }
639 
640     *exp = result_exp;
641 
642     return result_frac;
643 }
644 
645 static bool round_to_inf(float_status *fpst, bool sign_bit)
646 {
647     switch (fpst->float_rounding_mode) {
648     case float_round_nearest_even: /* Round to Nearest */
649         return true;
650     case float_round_up: /* Round to +Inf */
651         return !sign_bit;
652     case float_round_down: /* Round to -Inf */
653         return sign_bit;
654     case float_round_to_zero: /* Round to Zero */
655         return false;
656     default:
657         g_assert_not_reached();
658     }
659 }
660 
661 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
662 {
663     float_status *fpst = fpstp;
664     float16 f16 = float16_squash_input_denormal(input, fpst);
665     uint32_t f16_val = float16_val(f16);
666     uint32_t f16_sign = float16_is_neg(f16);
667     int f16_exp = extract32(f16_val, 10, 5);
668     uint32_t f16_frac = extract32(f16_val, 0, 10);
669     uint64_t f64_frac;
670 
671     if (float16_is_any_nan(f16)) {
672         float16 nan = f16;
673         if (float16_is_signaling_nan(f16, fpst)) {
674             float_raise(float_flag_invalid, fpst);
675             if (!fpst->default_nan_mode) {
676                 nan = float16_silence_nan(f16, fpst);
677             }
678         }
679         if (fpst->default_nan_mode) {
680             nan =  float16_default_nan(fpst);
681         }
682         return nan;
683     } else if (float16_is_infinity(f16)) {
684         return float16_set_sign(float16_zero, float16_is_neg(f16));
685     } else if (float16_is_zero(f16)) {
686         float_raise(float_flag_divbyzero, fpst);
687         return float16_set_sign(float16_infinity, float16_is_neg(f16));
688     } else if (float16_abs(f16) < (1 << 8)) {
689         /* Abs(value) < 2.0^-16 */
690         float_raise(float_flag_overflow | float_flag_inexact, fpst);
691         if (round_to_inf(fpst, f16_sign)) {
692             return float16_set_sign(float16_infinity, f16_sign);
693         } else {
694             return float16_set_sign(float16_maxnorm, f16_sign);
695         }
696     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
697         float_raise(float_flag_underflow, fpst);
698         return float16_set_sign(float16_zero, float16_is_neg(f16));
699     }
700 
701     f64_frac = call_recip_estimate(&f16_exp, 29,
702                                    ((uint64_t) f16_frac) << (52 - 10));
703 
704     /* result = sign : result_exp<4:0> : fraction<51:42> */
705     f16_val = deposit32(0, 15, 1, f16_sign);
706     f16_val = deposit32(f16_val, 10, 5, f16_exp);
707     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
708     return make_float16(f16_val);
709 }
710 
711 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
712 {
713     float_status *fpst = fpstp;
714     float32 f32 = float32_squash_input_denormal(input, fpst);
715     uint32_t f32_val = float32_val(f32);
716     bool f32_sign = float32_is_neg(f32);
717     int f32_exp = extract32(f32_val, 23, 8);
718     uint32_t f32_frac = extract32(f32_val, 0, 23);
719     uint64_t f64_frac;
720 
721     if (float32_is_any_nan(f32)) {
722         float32 nan = f32;
723         if (float32_is_signaling_nan(f32, fpst)) {
724             float_raise(float_flag_invalid, fpst);
725             if (!fpst->default_nan_mode) {
726                 nan = float32_silence_nan(f32, fpst);
727             }
728         }
729         if (fpst->default_nan_mode) {
730             nan =  float32_default_nan(fpst);
731         }
732         return nan;
733     } else if (float32_is_infinity(f32)) {
734         return float32_set_sign(float32_zero, float32_is_neg(f32));
735     } else if (float32_is_zero(f32)) {
736         float_raise(float_flag_divbyzero, fpst);
737         return float32_set_sign(float32_infinity, float32_is_neg(f32));
738     } else if (float32_abs(f32) < (1ULL << 21)) {
739         /* Abs(value) < 2.0^-128 */
740         float_raise(float_flag_overflow | float_flag_inexact, fpst);
741         if (round_to_inf(fpst, f32_sign)) {
742             return float32_set_sign(float32_infinity, f32_sign);
743         } else {
744             return float32_set_sign(float32_maxnorm, f32_sign);
745         }
746     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
747         float_raise(float_flag_underflow, fpst);
748         return float32_set_sign(float32_zero, float32_is_neg(f32));
749     }
750 
751     f64_frac = call_recip_estimate(&f32_exp, 253,
752                                    ((uint64_t) f32_frac) << (52 - 23));
753 
754     /* result = sign : result_exp<7:0> : fraction<51:29> */
755     f32_val = deposit32(0, 31, 1, f32_sign);
756     f32_val = deposit32(f32_val, 23, 8, f32_exp);
757     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
758     return make_float32(f32_val);
759 }
760 
761 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
762 {
763     float_status *fpst = fpstp;
764     float64 f64 = float64_squash_input_denormal(input, fpst);
765     uint64_t f64_val = float64_val(f64);
766     bool f64_sign = float64_is_neg(f64);
767     int f64_exp = extract64(f64_val, 52, 11);
768     uint64_t f64_frac = extract64(f64_val, 0, 52);
769 
770     /* Deal with any special cases */
771     if (float64_is_any_nan(f64)) {
772         float64 nan = f64;
773         if (float64_is_signaling_nan(f64, fpst)) {
774             float_raise(float_flag_invalid, fpst);
775             if (!fpst->default_nan_mode) {
776                 nan = float64_silence_nan(f64, fpst);
777             }
778         }
779         if (fpst->default_nan_mode) {
780             nan =  float64_default_nan(fpst);
781         }
782         return nan;
783     } else if (float64_is_infinity(f64)) {
784         return float64_set_sign(float64_zero, float64_is_neg(f64));
785     } else if (float64_is_zero(f64)) {
786         float_raise(float_flag_divbyzero, fpst);
787         return float64_set_sign(float64_infinity, float64_is_neg(f64));
788     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
789         /* Abs(value) < 2.0^-1024 */
790         float_raise(float_flag_overflow | float_flag_inexact, fpst);
791         if (round_to_inf(fpst, f64_sign)) {
792             return float64_set_sign(float64_infinity, f64_sign);
793         } else {
794             return float64_set_sign(float64_maxnorm, f64_sign);
795         }
796     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
797         float_raise(float_flag_underflow, fpst);
798         return float64_set_sign(float64_zero, float64_is_neg(f64));
799     }
800 
801     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
802 
803     /* result = sign : result_exp<10:0> : fraction<51:0>; */
804     f64_val = deposit64(0, 63, 1, f64_sign);
805     f64_val = deposit64(f64_val, 52, 11, f64_exp);
806     f64_val = deposit64(f64_val, 0, 52, f64_frac);
807     return make_float64(f64_val);
808 }
809 
810 /* The algorithm that must be used to calculate the estimate
811  * is specified by the ARM ARM.
812  */
813 
814 static int do_recip_sqrt_estimate(int a)
815 {
816     int b, estimate;
817 
818     assert(128 <= a && a < 512);
819     if (a < 256) {
820         a = a * 2 + 1;
821     } else {
822         a = (a >> 1) << 1;
823         a = (a + 1) * 2;
824     }
825     b = 512;
826     while (a * (b + 1) * (b + 1) < (1 << 28)) {
827         b += 1;
828     }
829     estimate = (b + 1) / 2;
830     assert(256 <= estimate && estimate < 512);
831 
832     return estimate;
833 }
834 
835 
836 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
837 {
838     int estimate;
839     uint32_t scaled;
840 
841     if (*exp == 0) {
842         while (extract64(frac, 51, 1) == 0) {
843             frac = frac << 1;
844             *exp -= 1;
845         }
846         frac = extract64(frac, 0, 51) << 1;
847     }
848 
849     if (*exp & 1) {
850         /* scaled = UInt('01':fraction<51:45>) */
851         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
852     } else {
853         /* scaled = UInt('1':fraction<51:44>) */
854         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
855     }
856     estimate = do_recip_sqrt_estimate(scaled);
857 
858     *exp = (exp_off - *exp) / 2;
859     return extract64(estimate, 0, 8) << 44;
860 }
861 
862 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
863 {
864     float_status *s = fpstp;
865     float16 f16 = float16_squash_input_denormal(input, s);
866     uint16_t val = float16_val(f16);
867     bool f16_sign = float16_is_neg(f16);
868     int f16_exp = extract32(val, 10, 5);
869     uint16_t f16_frac = extract32(val, 0, 10);
870     uint64_t f64_frac;
871 
872     if (float16_is_any_nan(f16)) {
873         float16 nan = f16;
874         if (float16_is_signaling_nan(f16, s)) {
875             float_raise(float_flag_invalid, s);
876             if (!s->default_nan_mode) {
877                 nan = float16_silence_nan(f16, fpstp);
878             }
879         }
880         if (s->default_nan_mode) {
881             nan =  float16_default_nan(s);
882         }
883         return nan;
884     } else if (float16_is_zero(f16)) {
885         float_raise(float_flag_divbyzero, s);
886         return float16_set_sign(float16_infinity, f16_sign);
887     } else if (f16_sign) {
888         float_raise(float_flag_invalid, s);
889         return float16_default_nan(s);
890     } else if (float16_is_infinity(f16)) {
891         return float16_zero;
892     }
893 
894     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
895      * preserving the parity of the exponent.  */
896 
897     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
898 
899     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
900 
901     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
902     val = deposit32(0, 15, 1, f16_sign);
903     val = deposit32(val, 10, 5, f16_exp);
904     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
905     return make_float16(val);
906 }
907 
908 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
909 {
910     float_status *s = fpstp;
911     float32 f32 = float32_squash_input_denormal(input, s);
912     uint32_t val = float32_val(f32);
913     uint32_t f32_sign = float32_is_neg(f32);
914     int f32_exp = extract32(val, 23, 8);
915     uint32_t f32_frac = extract32(val, 0, 23);
916     uint64_t f64_frac;
917 
918     if (float32_is_any_nan(f32)) {
919         float32 nan = f32;
920         if (float32_is_signaling_nan(f32, s)) {
921             float_raise(float_flag_invalid, s);
922             if (!s->default_nan_mode) {
923                 nan = float32_silence_nan(f32, fpstp);
924             }
925         }
926         if (s->default_nan_mode) {
927             nan =  float32_default_nan(s);
928         }
929         return nan;
930     } else if (float32_is_zero(f32)) {
931         float_raise(float_flag_divbyzero, s);
932         return float32_set_sign(float32_infinity, float32_is_neg(f32));
933     } else if (float32_is_neg(f32)) {
934         float_raise(float_flag_invalid, s);
935         return float32_default_nan(s);
936     } else if (float32_is_infinity(f32)) {
937         return float32_zero;
938     }
939 
940     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
941      * preserving the parity of the exponent.  */
942 
943     f64_frac = ((uint64_t) f32_frac) << 29;
944 
945     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
946 
947     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
948     val = deposit32(0, 31, 1, f32_sign);
949     val = deposit32(val, 23, 8, f32_exp);
950     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
951     return make_float32(val);
952 }
953 
954 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
955 {
956     float_status *s = fpstp;
957     float64 f64 = float64_squash_input_denormal(input, s);
958     uint64_t val = float64_val(f64);
959     bool f64_sign = float64_is_neg(f64);
960     int f64_exp = extract64(val, 52, 11);
961     uint64_t f64_frac = extract64(val, 0, 52);
962 
963     if (float64_is_any_nan(f64)) {
964         float64 nan = f64;
965         if (float64_is_signaling_nan(f64, s)) {
966             float_raise(float_flag_invalid, s);
967             if (!s->default_nan_mode) {
968                 nan = float64_silence_nan(f64, fpstp);
969             }
970         }
971         if (s->default_nan_mode) {
972             nan =  float64_default_nan(s);
973         }
974         return nan;
975     } else if (float64_is_zero(f64)) {
976         float_raise(float_flag_divbyzero, s);
977         return float64_set_sign(float64_infinity, float64_is_neg(f64));
978     } else if (float64_is_neg(f64)) {
979         float_raise(float_flag_invalid, s);
980         return float64_default_nan(s);
981     } else if (float64_is_infinity(f64)) {
982         return float64_zero;
983     }
984 
985     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
986 
987     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
988     val = deposit64(0, 61, 1, f64_sign);
989     val = deposit64(val, 52, 11, f64_exp);
990     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
991     return make_float64(val);
992 }
993 
994 uint32_t HELPER(recpe_u32)(uint32_t a)
995 {
996     int input, estimate;
997 
998     if ((a & 0x80000000) == 0) {
999         return 0xffffffff;
1000     }
1001 
1002     input = extract32(a, 23, 9);
1003     estimate = recip_estimate(input);
1004 
1005     return deposit32(0, (32 - 9), 9, estimate);
1006 }
1007 
1008 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1009 {
1010     int estimate;
1011 
1012     if ((a & 0xc0000000) == 0) {
1013         return 0xffffffff;
1014     }
1015 
1016     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1017 
1018     return deposit32(0, 23, 9, estimate);
1019 }
1020 
1021 /* VFPv4 fused multiply-accumulate */
1022 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1023                                    dh_ctype_f16 c, void *fpstp)
1024 {
1025     float_status *fpst = fpstp;
1026     return float16_muladd(a, b, c, 0, fpst);
1027 }
1028 
1029 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1030 {
1031     float_status *fpst = fpstp;
1032     return float32_muladd(a, b, c, 0, fpst);
1033 }
1034 
1035 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1036 {
1037     float_status *fpst = fpstp;
1038     return float64_muladd(a, b, c, 0, fpst);
1039 }
1040 
1041 /* ARMv8 round to integral */
1042 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1043 {
1044     return float16_round_to_int(x, fp_status);
1045 }
1046 
1047 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1048 {
1049     return float32_round_to_int(x, fp_status);
1050 }
1051 
1052 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1053 {
1054     return float64_round_to_int(x, fp_status);
1055 }
1056 
1057 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1058 {
1059     int old_flags = get_float_exception_flags(fp_status), new_flags;
1060     float16 ret;
1061 
1062     ret = float16_round_to_int(x, fp_status);
1063 
1064     /* Suppress any inexact exceptions the conversion produced */
1065     if (!(old_flags & float_flag_inexact)) {
1066         new_flags = get_float_exception_flags(fp_status);
1067         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1068     }
1069 
1070     return ret;
1071 }
1072 
1073 float32 HELPER(rints)(float32 x, void *fp_status)
1074 {
1075     int old_flags = get_float_exception_flags(fp_status), new_flags;
1076     float32 ret;
1077 
1078     ret = float32_round_to_int(x, fp_status);
1079 
1080     /* Suppress any inexact exceptions the conversion produced */
1081     if (!(old_flags & float_flag_inexact)) {
1082         new_flags = get_float_exception_flags(fp_status);
1083         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1084     }
1085 
1086     return ret;
1087 }
1088 
1089 float64 HELPER(rintd)(float64 x, void *fp_status)
1090 {
1091     int old_flags = get_float_exception_flags(fp_status), new_flags;
1092     float64 ret;
1093 
1094     ret = float64_round_to_int(x, fp_status);
1095 
1096     new_flags = get_float_exception_flags(fp_status);
1097 
1098     /* Suppress any inexact exceptions the conversion produced */
1099     if (!(old_flags & float_flag_inexact)) {
1100         new_flags = get_float_exception_flags(fp_status);
1101         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1102     }
1103 
1104     return ret;
1105 }
1106 
1107 /* Convert ARM rounding mode to softfloat */
1108 const FloatRoundMode arm_rmode_to_sf_map[] = {
1109     [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1110     [FPROUNDING_POSINF] = float_round_up,
1111     [FPROUNDING_NEGINF] = float_round_down,
1112     [FPROUNDING_ZERO] = float_round_to_zero,
1113     [FPROUNDING_TIEAWAY] = float_round_ties_away,
1114     [FPROUNDING_ODD] = float_round_to_odd,
1115 };
1116 
1117 /*
1118  * Implement float64 to int32_t conversion without saturation;
1119  * the result is supplied modulo 2^32.
1120  */
1121 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1122 {
1123     float_status *status = vstatus;
1124     uint32_t inexact, frac;
1125     uint32_t e_old, e_new;
1126 
1127     e_old = get_float_exception_flags(status);
1128     set_float_exception_flags(0, status);
1129     frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1130     e_new = get_float_exception_flags(status);
1131     set_float_exception_flags(e_old | e_new, status);
1132 
1133     if (value == float64_chs(float64_zero)) {
1134         /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1135         inexact = 1;
1136     } else {
1137         /* Normal inexact or overflow or NaN */
1138         inexact = e_new & (float_flag_inexact | float_flag_invalid);
1139     }
1140 
1141     /* Pack the result and the env->ZF representation of Z together.  */
1142     return deposit64(frac, 32, 32, inexact);
1143 }
1144 
1145 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1146 {
1147     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1148     uint32_t result = pair;
1149     uint32_t z = (pair >> 32) == 0;
1150 
1151     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1152     env->vfp.xregs[ARM_VFP_FPSCR]
1153         = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1154 
1155     return result;
1156 }
1157 
1158 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1159 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1160 {
1161     int old_flags = get_float_exception_flags(fpst);
1162     uint32_t exp = extract32(f, 23, 8);
1163 
1164     if (unlikely(exp == 0xff)) {
1165         /* NaN or Inf.  */
1166         goto overflow;
1167     }
1168 
1169     /* Round and re-extract the exponent.  */
1170     f = float32_round_to_int(f, fpst);
1171     exp = extract32(f, 23, 8);
1172 
1173     /* Validate the range of the result.  */
1174     if (exp < 126 + intsize) {
1175         /* abs(F) <= INT{N}_MAX */
1176         return f;
1177     }
1178     if (exp == 126 + intsize) {
1179         uint32_t sign = extract32(f, 31, 1);
1180         uint32_t frac = extract32(f, 0, 23);
1181         if (sign && frac == 0) {
1182             /* F == INT{N}_MIN */
1183             return f;
1184         }
1185     }
1186 
1187  overflow:
1188     /*
1189      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1190      * inexact exception float32_round_to_int may have raised.
1191      */
1192     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1193     return (0x100u + 126u + intsize) << 23;
1194 }
1195 
1196 float32 HELPER(frint32_s)(float32 f, void *fpst)
1197 {
1198     return frint_s(f, fpst, 32);
1199 }
1200 
1201 float32 HELPER(frint64_s)(float32 f, void *fpst)
1202 {
1203     return frint_s(f, fpst, 64);
1204 }
1205 
1206 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1207 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1208 {
1209     int old_flags = get_float_exception_flags(fpst);
1210     uint32_t exp = extract64(f, 52, 11);
1211 
1212     if (unlikely(exp == 0x7ff)) {
1213         /* NaN or Inf.  */
1214         goto overflow;
1215     }
1216 
1217     /* Round and re-extract the exponent.  */
1218     f = float64_round_to_int(f, fpst);
1219     exp = extract64(f, 52, 11);
1220 
1221     /* Validate the range of the result.  */
1222     if (exp < 1022 + intsize) {
1223         /* abs(F) <= INT{N}_MAX */
1224         return f;
1225     }
1226     if (exp == 1022 + intsize) {
1227         uint64_t sign = extract64(f, 63, 1);
1228         uint64_t frac = extract64(f, 0, 52);
1229         if (sign && frac == 0) {
1230             /* F == INT{N}_MIN */
1231             return f;
1232         }
1233     }
1234 
1235  overflow:
1236     /*
1237      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1238      * inexact exception float64_round_to_int may have raised.
1239      */
1240     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1241     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1242 }
1243 
1244 float64 HELPER(frint32_d)(float64 f, void *fpst)
1245 {
1246     return frint_d(f, fpst, 32);
1247 }
1248 
1249 float64 HELPER(frint64_d)(float64 f, void *fpst)
1250 {
1251     return frint_d(f, fpst, 64);
1252 }
1253 
1254 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1255 {
1256     uint32_t syndrome;
1257 
1258     switch (reg) {
1259     case ARM_VFP_MVFR0:
1260     case ARM_VFP_MVFR1:
1261     case ARM_VFP_MVFR2:
1262         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1263             return;
1264         }
1265         break;
1266     case ARM_VFP_FPSID:
1267         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1268             return;
1269         }
1270         break;
1271     default:
1272         g_assert_not_reached();
1273     }
1274 
1275     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1276                 | ARM_EL_IL
1277                 | (1 << 24) | (0xe << 20) | (7 << 14)
1278                 | (reg << 10) | (rt << 5) | 1);
1279 
1280     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1281 }
1282 
1283 #endif
1284