xref: /openbmc/qemu/target/arm/vfp_helper.c (revision 05caa062)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
29 
30 /* VFP support.  We follow the convention used for VFP instructions:
31    Single precision routines have a "s" suffix, double precision a
32    "d" suffix.  */
33 
34 #ifdef CONFIG_TCG
35 
36 /* Convert host exception flags to vfp form.  */
37 static inline int vfp_exceptbits_from_host(int host_bits)
38 {
39     int target_bits = 0;
40 
41     if (host_bits & float_flag_invalid) {
42         target_bits |= 1;
43     }
44     if (host_bits & float_flag_divbyzero) {
45         target_bits |= 2;
46     }
47     if (host_bits & float_flag_overflow) {
48         target_bits |= 4;
49     }
50     if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51         target_bits |= 8;
52     }
53     if (host_bits & float_flag_inexact) {
54         target_bits |= 0x10;
55     }
56     if (host_bits & float_flag_input_denormal) {
57         target_bits |= 0x80;
58     }
59     return target_bits;
60 }
61 
62 /* Convert vfp exception flags to target form.  */
63 static inline int vfp_exceptbits_to_host(int target_bits)
64 {
65     int host_bits = 0;
66 
67     if (target_bits & 1) {
68         host_bits |= float_flag_invalid;
69     }
70     if (target_bits & 2) {
71         host_bits |= float_flag_divbyzero;
72     }
73     if (target_bits & 4) {
74         host_bits |= float_flag_overflow;
75     }
76     if (target_bits & 8) {
77         host_bits |= float_flag_underflow;
78     }
79     if (target_bits & 0x10) {
80         host_bits |= float_flag_inexact;
81     }
82     if (target_bits & 0x80) {
83         host_bits |= float_flag_input_denormal;
84     }
85     return host_bits;
86 }
87 
88 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
89 {
90     uint32_t i;
91 
92     i = get_float_exception_flags(&env->vfp.fp_status);
93     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94     /* FZ16 does not generate an input denormal exception.  */
95     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96           & ~float_flag_input_denormal);
97     i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
98           & ~float_flag_input_denormal);
99     return vfp_exceptbits_from_host(i);
100 }
101 
102 static void vfp_set_fpsr_to_host(CPUARMState *env, uint32_t val)
103 {
104     /*
105      * The exception flags are ORed together when we read fpscr so we
106      * only need to preserve the current state in one of our
107      * float_status values.
108      */
109     int i = vfp_exceptbits_to_host(val);
110     set_float_exception_flags(i, &env->vfp.fp_status);
111     set_float_exception_flags(0, &env->vfp.fp_status_f16);
112     set_float_exception_flags(0, &env->vfp.standard_fp_status);
113     set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
114 }
115 
116 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
117 {
118     uint64_t changed = env->vfp.fpcr;
119 
120     changed ^= val;
121     changed &= mask;
122     if (changed & (3 << 22)) {
123         int i = (val >> 22) & 3;
124         switch (i) {
125         case FPROUNDING_TIEEVEN:
126             i = float_round_nearest_even;
127             break;
128         case FPROUNDING_POSINF:
129             i = float_round_up;
130             break;
131         case FPROUNDING_NEGINF:
132             i = float_round_down;
133             break;
134         case FPROUNDING_ZERO:
135             i = float_round_to_zero;
136             break;
137         }
138         set_float_rounding_mode(i, &env->vfp.fp_status);
139         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
140     }
141     if (changed & FPCR_FZ16) {
142         bool ftz_enabled = val & FPCR_FZ16;
143         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
144         set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
145         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
146         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
147     }
148     if (changed & FPCR_FZ) {
149         bool ftz_enabled = val & FPCR_FZ;
150         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
151         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
152     }
153     if (changed & FPCR_DN) {
154         bool dnan_enabled = val & FPCR_DN;
155         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
156         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
157     }
158 }
159 
160 #else
161 
162 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
163 {
164     return 0;
165 }
166 
167 static void vfp_set_fpsr_to_host(CPUARMState *env, uint32_t val)
168 {
169 }
170 
171 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
172 {
173 }
174 
175 #endif
176 
177 uint32_t vfp_get_fpcr(CPUARMState *env)
178 {
179     uint32_t fpcr = env->vfp.fpcr
180         | (env->vfp.vec_len << 16)
181         | (env->vfp.vec_stride << 20);
182 
183     /*
184      * M-profile LTPSIZE is the same bits [18:16] as A-profile Len; whichever
185      * of the two is not applicable to this CPU will always be zero.
186      */
187     fpcr |= env->v7m.ltpsize << 16;
188 
189     return fpcr;
190 }
191 
192 uint32_t vfp_get_fpsr(CPUARMState *env)
193 {
194     uint32_t fpsr = env->vfp.fpsr;
195     uint32_t i;
196 
197     fpsr |= vfp_get_fpsr_from_host(env);
198 
199     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
200     fpsr |= i ? FPSR_QC : 0;
201     return fpsr;
202 }
203 
204 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
205 {
206     return (vfp_get_fpcr(env) & FPSCR_FPCR_MASK) |
207         (vfp_get_fpsr(env) & FPSCR_FPSR_MASK);
208 }
209 
210 uint32_t vfp_get_fpscr(CPUARMState *env)
211 {
212     return HELPER(vfp_get_fpscr)(env);
213 }
214 
215 void vfp_set_fpsr(CPUARMState *env, uint32_t val)
216 {
217     ARMCPU *cpu = env_archcpu(env);
218 
219     vfp_set_fpsr_to_host(env, val);
220 
221     if (arm_feature(env, ARM_FEATURE_NEON) ||
222         cpu_isar_feature(aa32_mve, cpu)) {
223         /*
224          * The bit we set within vfp.qc[] is arbitrary; the array as a
225          * whole being zero/non-zero is what counts.
226          */
227         env->vfp.qc[0] = val & FPSR_QC;
228         env->vfp.qc[1] = 0;
229         env->vfp.qc[2] = 0;
230         env->vfp.qc[3] = 0;
231     }
232 
233     /*
234      * The only FPSR bits we keep in vfp.fpsr are NZCV:
235      * the exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
236      * fp_status, and QC is in vfp.qc[]. Store the NZCV bits there,
237      * and zero any of the other FPSR bits.
238      */
239     val &= FPSR_NZCV_MASK;
240     env->vfp.fpsr = val;
241 }
242 
243 static void vfp_set_fpcr_masked(CPUARMState *env, uint32_t val, uint32_t mask)
244 {
245     /*
246      * We only set FPCR bits defined by mask, and leave the others alone.
247      * We assume the mask is sensible (e.g. doesn't try to set only
248      * part of a field)
249      */
250     ARMCPU *cpu = env_archcpu(env);
251 
252     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
253     if (!cpu_isar_feature(any_fp16, cpu)) {
254         val &= ~FPCR_FZ16;
255     }
256 
257     vfp_set_fpcr_to_host(env, val, mask);
258 
259     if (mask & (FPCR_LEN_MASK | FPCR_STRIDE_MASK)) {
260         if (!arm_feature(env, ARM_FEATURE_M)) {
261             /*
262              * Short-vector length and stride; on M-profile these bits
263              * are used for different purposes.
264              * We can't make this conditional be "if MVFR0.FPShVec != 0",
265              * because in v7A no-short-vector-support cores still had to
266              * allow Stride/Len to be written with the only effect that
267              * some insns are required to UNDEF if the guest sets them.
268              */
269             env->vfp.vec_len = extract32(val, 16, 3);
270             env->vfp.vec_stride = extract32(val, 20, 2);
271         } else if (cpu_isar_feature(aa32_mve, cpu)) {
272             env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
273                                          FPCR_LTPSIZE_LENGTH);
274         }
275     }
276 
277     /*
278      * We don't implement trapped exception handling, so the
279      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
280      *
281      * The FPCR bits we keep in vfp.fpcr are AHP, DN, FZ, RMode
282      * and FZ16. Len, Stride and LTPSIZE we just handled. Store those bits
283      * there, and zero any of the other FPCR bits and the RES0 and RAZ/WI
284      * bits.
285      */
286     val &= FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK | FPCR_FZ16;
287     env->vfp.fpcr &= ~mask;
288     env->vfp.fpcr |= val;
289 }
290 
291 void vfp_set_fpcr(CPUARMState *env, uint32_t val)
292 {
293     vfp_set_fpcr_masked(env, val, MAKE_64BIT_MASK(0, 32));
294 }
295 
296 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
297 {
298     vfp_set_fpcr_masked(env, val, FPSCR_FPCR_MASK);
299     vfp_set_fpsr(env, val & FPSCR_FPSR_MASK);
300 }
301 
302 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
303 {
304     HELPER(vfp_set_fpscr)(env, val);
305 }
306 
307 #ifdef CONFIG_TCG
308 
309 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
310 
311 #define VFP_BINOP(name) \
312 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
313 { \
314     float_status *fpst = fpstp; \
315     return float16_ ## name(a, b, fpst); \
316 } \
317 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
318 { \
319     float_status *fpst = fpstp; \
320     return float32_ ## name(a, b, fpst); \
321 } \
322 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
323 { \
324     float_status *fpst = fpstp; \
325     return float64_ ## name(a, b, fpst); \
326 }
327 VFP_BINOP(add)
328 VFP_BINOP(sub)
329 VFP_BINOP(mul)
330 VFP_BINOP(div)
331 VFP_BINOP(min)
332 VFP_BINOP(max)
333 VFP_BINOP(minnum)
334 VFP_BINOP(maxnum)
335 #undef VFP_BINOP
336 
337 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
338 {
339     return float16_sqrt(a, &env->vfp.fp_status_f16);
340 }
341 
342 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
343 {
344     return float32_sqrt(a, &env->vfp.fp_status);
345 }
346 
347 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
348 {
349     return float64_sqrt(a, &env->vfp.fp_status);
350 }
351 
352 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
353 {
354     uint32_t flags;
355     switch (cmp) {
356     case float_relation_equal:
357         flags = 0x6;
358         break;
359     case float_relation_less:
360         flags = 0x8;
361         break;
362     case float_relation_greater:
363         flags = 0x2;
364         break;
365     case float_relation_unordered:
366         flags = 0x3;
367         break;
368     default:
369         g_assert_not_reached();
370     }
371     env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
372 }
373 
374 /* XXX: check quiet/signaling case */
375 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
376 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
377 { \
378     softfloat_to_vfp_compare(env, \
379         FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
380 } \
381 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
382 { \
383     softfloat_to_vfp_compare(env, \
384         FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
385 }
386 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
387 DO_VFP_cmp(s, float32, float32, fp_status)
388 DO_VFP_cmp(d, float64, float64, fp_status)
389 #undef DO_VFP_cmp
390 
391 /* Integer to float and float to integer conversions */
392 
393 #define CONV_ITOF(name, ftype, fsz, sign)                           \
394 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
395 {                                                                   \
396     float_status *fpst = fpstp;                                     \
397     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
398 }
399 
400 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
401 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
402 {                                                               \
403     float_status *fpst = fpstp;                                 \
404     if (float##fsz##_is_any_nan(x)) {                           \
405         float_raise(float_flag_invalid, fpst);                  \
406         return 0;                                               \
407     }                                                           \
408     return float##fsz##_to_##sign##int32##round(x, fpst);       \
409 }
410 
411 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
412     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
413     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
414     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
415 
416 FLOAT_CONVS(si, h, uint32_t, 16, )
417 FLOAT_CONVS(si, s, float32, 32, )
418 FLOAT_CONVS(si, d, float64, 64, )
419 FLOAT_CONVS(ui, h, uint32_t, 16, u)
420 FLOAT_CONVS(ui, s, float32, 32, u)
421 FLOAT_CONVS(ui, d, float64, 64, u)
422 
423 #undef CONV_ITOF
424 #undef CONV_FTOI
425 #undef FLOAT_CONVS
426 
427 /* floating point conversion */
428 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
429 {
430     return float32_to_float64(x, &env->vfp.fp_status);
431 }
432 
433 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
434 {
435     return float64_to_float32(x, &env->vfp.fp_status);
436 }
437 
438 uint32_t HELPER(bfcvt)(float32 x, void *status)
439 {
440     return float32_to_bfloat16(x, status);
441 }
442 
443 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
444 {
445     bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
446     bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
447     return deposit32(lo, 16, 16, hi);
448 }
449 
450 /*
451  * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
452  * must always round-to-nearest; the AArch64 ones honour the FPSCR
453  * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
454  * round-to-nearest so either helper will work.) AArch32 float-to-fix
455  * must round-to-zero.
456  */
457 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
458 ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
459                                      void *fpstp) \
460 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
461 
462 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
463     ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
464                                                      uint32_t shift,   \
465                                                      void *fpstp)      \
466     {                                                                  \
467         ftype ret;                                                     \
468         float_status *fpst = fpstp;                                    \
469         FloatRoundMode oldmode = fpst->float_rounding_mode;            \
470         fpst->float_rounding_mode = float_round_nearest_even;          \
471         ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
472         fpst->float_rounding_mode = oldmode;                           \
473         return ret;                                                    \
474     }
475 
476 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
477 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
478                                             void *fpst)                   \
479 {                                                                         \
480     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
481         float_raise(float_flag_invalid, fpst);                            \
482         return 0;                                                         \
483     }                                                                     \
484     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
485 }
486 
487 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
488 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
489 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
490 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
491                          float_round_to_zero, _round_to_zero)    \
492 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
493                          get_float_rounding_mode(fpst), )
494 
495 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
496 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
497 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
498                          get_float_rounding_mode(fpst), )
499 
500 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
501 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
502 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
503 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
504 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
505 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
506 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
507 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
508 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
509 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
510 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
511 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
512 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
513 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
514 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
515 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
516 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
517 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
518 
519 #undef VFP_CONV_FIX
520 #undef VFP_CONV_FIX_FLOAT
521 #undef VFP_CONV_FLOAT_FIX_ROUND
522 #undef VFP_CONV_FIX_A64
523 
524 /* Set the current fp rounding mode and return the old one.
525  * The argument is a softfloat float_round_ value.
526  */
527 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
528 {
529     float_status *fp_status = fpstp;
530 
531     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
532     set_float_rounding_mode(rmode, fp_status);
533 
534     return prev_rmode;
535 }
536 
537 /* Half precision conversions.  */
538 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
539 {
540     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
541      * it would affect flushing input denormals.
542      */
543     float_status *fpst = fpstp;
544     bool save = get_flush_inputs_to_zero(fpst);
545     set_flush_inputs_to_zero(false, fpst);
546     float32 r = float16_to_float32(a, !ahp_mode, fpst);
547     set_flush_inputs_to_zero(save, fpst);
548     return r;
549 }
550 
551 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
552 {
553     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
554      * it would affect flushing output denormals.
555      */
556     float_status *fpst = fpstp;
557     bool save = get_flush_to_zero(fpst);
558     set_flush_to_zero(false, fpst);
559     float16 r = float32_to_float16(a, !ahp_mode, fpst);
560     set_flush_to_zero(save, fpst);
561     return r;
562 }
563 
564 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
565 {
566     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
567      * it would affect flushing input denormals.
568      */
569     float_status *fpst = fpstp;
570     bool save = get_flush_inputs_to_zero(fpst);
571     set_flush_inputs_to_zero(false, fpst);
572     float64 r = float16_to_float64(a, !ahp_mode, fpst);
573     set_flush_inputs_to_zero(save, fpst);
574     return r;
575 }
576 
577 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
578 {
579     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
580      * it would affect flushing output denormals.
581      */
582     float_status *fpst = fpstp;
583     bool save = get_flush_to_zero(fpst);
584     set_flush_to_zero(false, fpst);
585     float16 r = float64_to_float16(a, !ahp_mode, fpst);
586     set_flush_to_zero(save, fpst);
587     return r;
588 }
589 
590 /* NEON helpers.  */
591 
592 /* Constants 256 and 512 are used in some helpers; we avoid relying on
593  * int->float conversions at run-time.  */
594 #define float64_256 make_float64(0x4070000000000000LL)
595 #define float64_512 make_float64(0x4080000000000000LL)
596 #define float16_maxnorm make_float16(0x7bff)
597 #define float32_maxnorm make_float32(0x7f7fffff)
598 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
599 
600 /* Reciprocal functions
601  *
602  * The algorithm that must be used to calculate the estimate
603  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
604  */
605 
606 /* See RecipEstimate()
607  *
608  * input is a 9 bit fixed point number
609  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
610  * result range 256 .. 511 for a number from 1.0 to 511/256.
611  */
612 
613 static int recip_estimate(int input)
614 {
615     int a, b, r;
616     assert(256 <= input && input < 512);
617     a = (input * 2) + 1;
618     b = (1 << 19) / a;
619     r = (b + 1) >> 1;
620     assert(256 <= r && r < 512);
621     return r;
622 }
623 
624 /*
625  * Common wrapper to call recip_estimate
626  *
627  * The parameters are exponent and 64 bit fraction (without implicit
628  * bit) where the binary point is nominally at bit 52. Returns a
629  * float64 which can then be rounded to the appropriate size by the
630  * callee.
631  */
632 
633 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
634 {
635     uint32_t scaled, estimate;
636     uint64_t result_frac;
637     int result_exp;
638 
639     /* Handle sub-normals */
640     if (*exp == 0) {
641         if (extract64(frac, 51, 1) == 0) {
642             *exp = -1;
643             frac <<= 2;
644         } else {
645             frac <<= 1;
646         }
647     }
648 
649     /* scaled = UInt('1':fraction<51:44>) */
650     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
651     estimate = recip_estimate(scaled);
652 
653     result_exp = exp_off - *exp;
654     result_frac = deposit64(0, 44, 8, estimate);
655     if (result_exp == 0) {
656         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
657     } else if (result_exp == -1) {
658         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
659         result_exp = 0;
660     }
661 
662     *exp = result_exp;
663 
664     return result_frac;
665 }
666 
667 static bool round_to_inf(float_status *fpst, bool sign_bit)
668 {
669     switch (fpst->float_rounding_mode) {
670     case float_round_nearest_even: /* Round to Nearest */
671         return true;
672     case float_round_up: /* Round to +Inf */
673         return !sign_bit;
674     case float_round_down: /* Round to -Inf */
675         return sign_bit;
676     case float_round_to_zero: /* Round to Zero */
677         return false;
678     default:
679         g_assert_not_reached();
680     }
681 }
682 
683 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
684 {
685     float_status *fpst = fpstp;
686     float16 f16 = float16_squash_input_denormal(input, fpst);
687     uint32_t f16_val = float16_val(f16);
688     uint32_t f16_sign = float16_is_neg(f16);
689     int f16_exp = extract32(f16_val, 10, 5);
690     uint32_t f16_frac = extract32(f16_val, 0, 10);
691     uint64_t f64_frac;
692 
693     if (float16_is_any_nan(f16)) {
694         float16 nan = f16;
695         if (float16_is_signaling_nan(f16, fpst)) {
696             float_raise(float_flag_invalid, fpst);
697             if (!fpst->default_nan_mode) {
698                 nan = float16_silence_nan(f16, fpst);
699             }
700         }
701         if (fpst->default_nan_mode) {
702             nan =  float16_default_nan(fpst);
703         }
704         return nan;
705     } else if (float16_is_infinity(f16)) {
706         return float16_set_sign(float16_zero, float16_is_neg(f16));
707     } else if (float16_is_zero(f16)) {
708         float_raise(float_flag_divbyzero, fpst);
709         return float16_set_sign(float16_infinity, float16_is_neg(f16));
710     } else if (float16_abs(f16) < (1 << 8)) {
711         /* Abs(value) < 2.0^-16 */
712         float_raise(float_flag_overflow | float_flag_inexact, fpst);
713         if (round_to_inf(fpst, f16_sign)) {
714             return float16_set_sign(float16_infinity, f16_sign);
715         } else {
716             return float16_set_sign(float16_maxnorm, f16_sign);
717         }
718     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
719         float_raise(float_flag_underflow, fpst);
720         return float16_set_sign(float16_zero, float16_is_neg(f16));
721     }
722 
723     f64_frac = call_recip_estimate(&f16_exp, 29,
724                                    ((uint64_t) f16_frac) << (52 - 10));
725 
726     /* result = sign : result_exp<4:0> : fraction<51:42> */
727     f16_val = deposit32(0, 15, 1, f16_sign);
728     f16_val = deposit32(f16_val, 10, 5, f16_exp);
729     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
730     return make_float16(f16_val);
731 }
732 
733 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
734 {
735     float_status *fpst = fpstp;
736     float32 f32 = float32_squash_input_denormal(input, fpst);
737     uint32_t f32_val = float32_val(f32);
738     bool f32_sign = float32_is_neg(f32);
739     int f32_exp = extract32(f32_val, 23, 8);
740     uint32_t f32_frac = extract32(f32_val, 0, 23);
741     uint64_t f64_frac;
742 
743     if (float32_is_any_nan(f32)) {
744         float32 nan = f32;
745         if (float32_is_signaling_nan(f32, fpst)) {
746             float_raise(float_flag_invalid, fpst);
747             if (!fpst->default_nan_mode) {
748                 nan = float32_silence_nan(f32, fpst);
749             }
750         }
751         if (fpst->default_nan_mode) {
752             nan =  float32_default_nan(fpst);
753         }
754         return nan;
755     } else if (float32_is_infinity(f32)) {
756         return float32_set_sign(float32_zero, float32_is_neg(f32));
757     } else if (float32_is_zero(f32)) {
758         float_raise(float_flag_divbyzero, fpst);
759         return float32_set_sign(float32_infinity, float32_is_neg(f32));
760     } else if (float32_abs(f32) < (1ULL << 21)) {
761         /* Abs(value) < 2.0^-128 */
762         float_raise(float_flag_overflow | float_flag_inexact, fpst);
763         if (round_to_inf(fpst, f32_sign)) {
764             return float32_set_sign(float32_infinity, f32_sign);
765         } else {
766             return float32_set_sign(float32_maxnorm, f32_sign);
767         }
768     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
769         float_raise(float_flag_underflow, fpst);
770         return float32_set_sign(float32_zero, float32_is_neg(f32));
771     }
772 
773     f64_frac = call_recip_estimate(&f32_exp, 253,
774                                    ((uint64_t) f32_frac) << (52 - 23));
775 
776     /* result = sign : result_exp<7:0> : fraction<51:29> */
777     f32_val = deposit32(0, 31, 1, f32_sign);
778     f32_val = deposit32(f32_val, 23, 8, f32_exp);
779     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
780     return make_float32(f32_val);
781 }
782 
783 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
784 {
785     float_status *fpst = fpstp;
786     float64 f64 = float64_squash_input_denormal(input, fpst);
787     uint64_t f64_val = float64_val(f64);
788     bool f64_sign = float64_is_neg(f64);
789     int f64_exp = extract64(f64_val, 52, 11);
790     uint64_t f64_frac = extract64(f64_val, 0, 52);
791 
792     /* Deal with any special cases */
793     if (float64_is_any_nan(f64)) {
794         float64 nan = f64;
795         if (float64_is_signaling_nan(f64, fpst)) {
796             float_raise(float_flag_invalid, fpst);
797             if (!fpst->default_nan_mode) {
798                 nan = float64_silence_nan(f64, fpst);
799             }
800         }
801         if (fpst->default_nan_mode) {
802             nan =  float64_default_nan(fpst);
803         }
804         return nan;
805     } else if (float64_is_infinity(f64)) {
806         return float64_set_sign(float64_zero, float64_is_neg(f64));
807     } else if (float64_is_zero(f64)) {
808         float_raise(float_flag_divbyzero, fpst);
809         return float64_set_sign(float64_infinity, float64_is_neg(f64));
810     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
811         /* Abs(value) < 2.0^-1024 */
812         float_raise(float_flag_overflow | float_flag_inexact, fpst);
813         if (round_to_inf(fpst, f64_sign)) {
814             return float64_set_sign(float64_infinity, f64_sign);
815         } else {
816             return float64_set_sign(float64_maxnorm, f64_sign);
817         }
818     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
819         float_raise(float_flag_underflow, fpst);
820         return float64_set_sign(float64_zero, float64_is_neg(f64));
821     }
822 
823     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
824 
825     /* result = sign : result_exp<10:0> : fraction<51:0>; */
826     f64_val = deposit64(0, 63, 1, f64_sign);
827     f64_val = deposit64(f64_val, 52, 11, f64_exp);
828     f64_val = deposit64(f64_val, 0, 52, f64_frac);
829     return make_float64(f64_val);
830 }
831 
832 /* The algorithm that must be used to calculate the estimate
833  * is specified by the ARM ARM.
834  */
835 
836 static int do_recip_sqrt_estimate(int a)
837 {
838     int b, estimate;
839 
840     assert(128 <= a && a < 512);
841     if (a < 256) {
842         a = a * 2 + 1;
843     } else {
844         a = (a >> 1) << 1;
845         a = (a + 1) * 2;
846     }
847     b = 512;
848     while (a * (b + 1) * (b + 1) < (1 << 28)) {
849         b += 1;
850     }
851     estimate = (b + 1) / 2;
852     assert(256 <= estimate && estimate < 512);
853 
854     return estimate;
855 }
856 
857 
858 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
859 {
860     int estimate;
861     uint32_t scaled;
862 
863     if (*exp == 0) {
864         while (extract64(frac, 51, 1) == 0) {
865             frac = frac << 1;
866             *exp -= 1;
867         }
868         frac = extract64(frac, 0, 51) << 1;
869     }
870 
871     if (*exp & 1) {
872         /* scaled = UInt('01':fraction<51:45>) */
873         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
874     } else {
875         /* scaled = UInt('1':fraction<51:44>) */
876         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
877     }
878     estimate = do_recip_sqrt_estimate(scaled);
879 
880     *exp = (exp_off - *exp) / 2;
881     return extract64(estimate, 0, 8) << 44;
882 }
883 
884 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
885 {
886     float_status *s = fpstp;
887     float16 f16 = float16_squash_input_denormal(input, s);
888     uint16_t val = float16_val(f16);
889     bool f16_sign = float16_is_neg(f16);
890     int f16_exp = extract32(val, 10, 5);
891     uint16_t f16_frac = extract32(val, 0, 10);
892     uint64_t f64_frac;
893 
894     if (float16_is_any_nan(f16)) {
895         float16 nan = f16;
896         if (float16_is_signaling_nan(f16, s)) {
897             float_raise(float_flag_invalid, s);
898             if (!s->default_nan_mode) {
899                 nan = float16_silence_nan(f16, fpstp);
900             }
901         }
902         if (s->default_nan_mode) {
903             nan =  float16_default_nan(s);
904         }
905         return nan;
906     } else if (float16_is_zero(f16)) {
907         float_raise(float_flag_divbyzero, s);
908         return float16_set_sign(float16_infinity, f16_sign);
909     } else if (f16_sign) {
910         float_raise(float_flag_invalid, s);
911         return float16_default_nan(s);
912     } else if (float16_is_infinity(f16)) {
913         return float16_zero;
914     }
915 
916     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
917      * preserving the parity of the exponent.  */
918 
919     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
920 
921     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
922 
923     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
924     val = deposit32(0, 15, 1, f16_sign);
925     val = deposit32(val, 10, 5, f16_exp);
926     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
927     return make_float16(val);
928 }
929 
930 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
931 {
932     float_status *s = fpstp;
933     float32 f32 = float32_squash_input_denormal(input, s);
934     uint32_t val = float32_val(f32);
935     uint32_t f32_sign = float32_is_neg(f32);
936     int f32_exp = extract32(val, 23, 8);
937     uint32_t f32_frac = extract32(val, 0, 23);
938     uint64_t f64_frac;
939 
940     if (float32_is_any_nan(f32)) {
941         float32 nan = f32;
942         if (float32_is_signaling_nan(f32, s)) {
943             float_raise(float_flag_invalid, s);
944             if (!s->default_nan_mode) {
945                 nan = float32_silence_nan(f32, fpstp);
946             }
947         }
948         if (s->default_nan_mode) {
949             nan =  float32_default_nan(s);
950         }
951         return nan;
952     } else if (float32_is_zero(f32)) {
953         float_raise(float_flag_divbyzero, s);
954         return float32_set_sign(float32_infinity, float32_is_neg(f32));
955     } else if (float32_is_neg(f32)) {
956         float_raise(float_flag_invalid, s);
957         return float32_default_nan(s);
958     } else if (float32_is_infinity(f32)) {
959         return float32_zero;
960     }
961 
962     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
963      * preserving the parity of the exponent.  */
964 
965     f64_frac = ((uint64_t) f32_frac) << 29;
966 
967     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
968 
969     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
970     val = deposit32(0, 31, 1, f32_sign);
971     val = deposit32(val, 23, 8, f32_exp);
972     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
973     return make_float32(val);
974 }
975 
976 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
977 {
978     float_status *s = fpstp;
979     float64 f64 = float64_squash_input_denormal(input, s);
980     uint64_t val = float64_val(f64);
981     bool f64_sign = float64_is_neg(f64);
982     int f64_exp = extract64(val, 52, 11);
983     uint64_t f64_frac = extract64(val, 0, 52);
984 
985     if (float64_is_any_nan(f64)) {
986         float64 nan = f64;
987         if (float64_is_signaling_nan(f64, s)) {
988             float_raise(float_flag_invalid, s);
989             if (!s->default_nan_mode) {
990                 nan = float64_silence_nan(f64, fpstp);
991             }
992         }
993         if (s->default_nan_mode) {
994             nan =  float64_default_nan(s);
995         }
996         return nan;
997     } else if (float64_is_zero(f64)) {
998         float_raise(float_flag_divbyzero, s);
999         return float64_set_sign(float64_infinity, float64_is_neg(f64));
1000     } else if (float64_is_neg(f64)) {
1001         float_raise(float_flag_invalid, s);
1002         return float64_default_nan(s);
1003     } else if (float64_is_infinity(f64)) {
1004         return float64_zero;
1005     }
1006 
1007     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
1008 
1009     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1010     val = deposit64(0, 61, 1, f64_sign);
1011     val = deposit64(val, 52, 11, f64_exp);
1012     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
1013     return make_float64(val);
1014 }
1015 
1016 uint32_t HELPER(recpe_u32)(uint32_t a)
1017 {
1018     int input, estimate;
1019 
1020     if ((a & 0x80000000) == 0) {
1021         return 0xffffffff;
1022     }
1023 
1024     input = extract32(a, 23, 9);
1025     estimate = recip_estimate(input);
1026 
1027     return deposit32(0, (32 - 9), 9, estimate);
1028 }
1029 
1030 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1031 {
1032     int estimate;
1033 
1034     if ((a & 0xc0000000) == 0) {
1035         return 0xffffffff;
1036     }
1037 
1038     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1039 
1040     return deposit32(0, 23, 9, estimate);
1041 }
1042 
1043 /* VFPv4 fused multiply-accumulate */
1044 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1045                                    dh_ctype_f16 c, void *fpstp)
1046 {
1047     float_status *fpst = fpstp;
1048     return float16_muladd(a, b, c, 0, fpst);
1049 }
1050 
1051 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1052 {
1053     float_status *fpst = fpstp;
1054     return float32_muladd(a, b, c, 0, fpst);
1055 }
1056 
1057 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1058 {
1059     float_status *fpst = fpstp;
1060     return float64_muladd(a, b, c, 0, fpst);
1061 }
1062 
1063 /* ARMv8 round to integral */
1064 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1065 {
1066     return float16_round_to_int(x, fp_status);
1067 }
1068 
1069 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1070 {
1071     return float32_round_to_int(x, fp_status);
1072 }
1073 
1074 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1075 {
1076     return float64_round_to_int(x, fp_status);
1077 }
1078 
1079 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1080 {
1081     int old_flags = get_float_exception_flags(fp_status), new_flags;
1082     float16 ret;
1083 
1084     ret = float16_round_to_int(x, fp_status);
1085 
1086     /* Suppress any inexact exceptions the conversion produced */
1087     if (!(old_flags & float_flag_inexact)) {
1088         new_flags = get_float_exception_flags(fp_status);
1089         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1090     }
1091 
1092     return ret;
1093 }
1094 
1095 float32 HELPER(rints)(float32 x, void *fp_status)
1096 {
1097     int old_flags = get_float_exception_flags(fp_status), new_flags;
1098     float32 ret;
1099 
1100     ret = float32_round_to_int(x, fp_status);
1101 
1102     /* Suppress any inexact exceptions the conversion produced */
1103     if (!(old_flags & float_flag_inexact)) {
1104         new_flags = get_float_exception_flags(fp_status);
1105         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1106     }
1107 
1108     return ret;
1109 }
1110 
1111 float64 HELPER(rintd)(float64 x, void *fp_status)
1112 {
1113     int old_flags = get_float_exception_flags(fp_status), new_flags;
1114     float64 ret;
1115 
1116     ret = float64_round_to_int(x, fp_status);
1117 
1118     new_flags = get_float_exception_flags(fp_status);
1119 
1120     /* Suppress any inexact exceptions the conversion produced */
1121     if (!(old_flags & float_flag_inexact)) {
1122         new_flags = get_float_exception_flags(fp_status);
1123         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1124     }
1125 
1126     return ret;
1127 }
1128 
1129 /* Convert ARM rounding mode to softfloat */
1130 const FloatRoundMode arm_rmode_to_sf_map[] = {
1131     [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1132     [FPROUNDING_POSINF] = float_round_up,
1133     [FPROUNDING_NEGINF] = float_round_down,
1134     [FPROUNDING_ZERO] = float_round_to_zero,
1135     [FPROUNDING_TIEAWAY] = float_round_ties_away,
1136     [FPROUNDING_ODD] = float_round_to_odd,
1137 };
1138 
1139 /*
1140  * Implement float64 to int32_t conversion without saturation;
1141  * the result is supplied modulo 2^32.
1142  */
1143 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1144 {
1145     float_status *status = vstatus;
1146     uint32_t frac, e_old, e_new;
1147     bool inexact;
1148 
1149     e_old = get_float_exception_flags(status);
1150     set_float_exception_flags(0, status);
1151     frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1152     e_new = get_float_exception_flags(status);
1153     set_float_exception_flags(e_old | e_new, status);
1154 
1155     /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1156     inexact = e_new & (float_flag_inexact |
1157                        float_flag_input_denormal |
1158                        float_flag_invalid);
1159 
1160     /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1161     inexact |= value == float64_chs(float64_zero);
1162 
1163     /* Pack the result and the env->ZF representation of Z together.  */
1164     return deposit64(frac, 32, 32, inexact);
1165 }
1166 
1167 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1168 {
1169     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1170     uint32_t result = pair;
1171     uint32_t z = (pair >> 32) == 0;
1172 
1173     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1174     env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
1175 
1176     return result;
1177 }
1178 
1179 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1180 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1181 {
1182     int old_flags = get_float_exception_flags(fpst);
1183     uint32_t exp = extract32(f, 23, 8);
1184 
1185     if (unlikely(exp == 0xff)) {
1186         /* NaN or Inf.  */
1187         goto overflow;
1188     }
1189 
1190     /* Round and re-extract the exponent.  */
1191     f = float32_round_to_int(f, fpst);
1192     exp = extract32(f, 23, 8);
1193 
1194     /* Validate the range of the result.  */
1195     if (exp < 126 + intsize) {
1196         /* abs(F) <= INT{N}_MAX */
1197         return f;
1198     }
1199     if (exp == 126 + intsize) {
1200         uint32_t sign = extract32(f, 31, 1);
1201         uint32_t frac = extract32(f, 0, 23);
1202         if (sign && frac == 0) {
1203             /* F == INT{N}_MIN */
1204             return f;
1205         }
1206     }
1207 
1208  overflow:
1209     /*
1210      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1211      * inexact exception float32_round_to_int may have raised.
1212      */
1213     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1214     return (0x100u + 126u + intsize) << 23;
1215 }
1216 
1217 float32 HELPER(frint32_s)(float32 f, void *fpst)
1218 {
1219     return frint_s(f, fpst, 32);
1220 }
1221 
1222 float32 HELPER(frint64_s)(float32 f, void *fpst)
1223 {
1224     return frint_s(f, fpst, 64);
1225 }
1226 
1227 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1228 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1229 {
1230     int old_flags = get_float_exception_flags(fpst);
1231     uint32_t exp = extract64(f, 52, 11);
1232 
1233     if (unlikely(exp == 0x7ff)) {
1234         /* NaN or Inf.  */
1235         goto overflow;
1236     }
1237 
1238     /* Round and re-extract the exponent.  */
1239     f = float64_round_to_int(f, fpst);
1240     exp = extract64(f, 52, 11);
1241 
1242     /* Validate the range of the result.  */
1243     if (exp < 1022 + intsize) {
1244         /* abs(F) <= INT{N}_MAX */
1245         return f;
1246     }
1247     if (exp == 1022 + intsize) {
1248         uint64_t sign = extract64(f, 63, 1);
1249         uint64_t frac = extract64(f, 0, 52);
1250         if (sign && frac == 0) {
1251             /* F == INT{N}_MIN */
1252             return f;
1253         }
1254     }
1255 
1256  overflow:
1257     /*
1258      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1259      * inexact exception float64_round_to_int may have raised.
1260      */
1261     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1262     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1263 }
1264 
1265 float64 HELPER(frint32_d)(float64 f, void *fpst)
1266 {
1267     return frint_d(f, fpst, 32);
1268 }
1269 
1270 float64 HELPER(frint64_d)(float64 f, void *fpst)
1271 {
1272     return frint_d(f, fpst, 64);
1273 }
1274 
1275 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1276 {
1277     uint32_t syndrome;
1278 
1279     switch (reg) {
1280     case ARM_VFP_MVFR0:
1281     case ARM_VFP_MVFR1:
1282     case ARM_VFP_MVFR2:
1283         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1284             return;
1285         }
1286         break;
1287     case ARM_VFP_FPSID:
1288         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1289             return;
1290         }
1291         break;
1292     default:
1293         g_assert_not_reached();
1294     }
1295 
1296     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1297                 | ARM_EL_IL
1298                 | (1 << 24) | (0xe << 20) | (7 << 14)
1299                 | (reg << 10) | (rt << 5) | 1);
1300 
1301     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1302 }
1303 
1304 #endif
1305