1 /* 2 * ARM AdvSIMD / SVE Vector Operations 3 * 4 * Copyright (c) 2018 Linaro 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "tcg/tcg-gvec-desc.h" 24 #include "fpu/softfloat.h" 25 #include "qemu/int128.h" 26 #include "crypto/clmul.h" 27 #include "vec_internal.h" 28 29 /* 30 * Data for expanding active predicate bits to bytes, for byte elements. 31 * 32 * for (i = 0; i < 256; ++i) { 33 * unsigned long m = 0; 34 * for (j = 0; j < 8; j++) { 35 * if ((i >> j) & 1) { 36 * m |= 0xfful << (j << 3); 37 * } 38 * } 39 * printf("0x%016lx,\n", m); 40 * } 41 */ 42 const uint64_t expand_pred_b_data[256] = { 43 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00, 44 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff, 45 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000, 46 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff, 47 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00, 48 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff, 49 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000, 50 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff, 51 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00, 52 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff, 53 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000, 54 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff, 55 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00, 56 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff, 57 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000, 58 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff, 59 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00, 60 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff, 61 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000, 62 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff, 63 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00, 64 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff, 65 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000, 66 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff, 67 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00, 68 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff, 69 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000, 70 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff, 71 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 72 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff, 73 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000, 74 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff, 75 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00, 76 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff, 77 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000, 78 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff, 79 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00, 80 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff, 81 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000, 82 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff, 83 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00, 84 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff, 85 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000, 86 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff, 87 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00, 88 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff, 89 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000, 90 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff, 91 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00, 92 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff, 93 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000, 94 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff, 95 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00, 96 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff, 97 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000, 98 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff, 99 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 100 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff, 101 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000, 102 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff, 103 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00, 104 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff, 105 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000, 106 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff, 107 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00, 108 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff, 109 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000, 110 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff, 111 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00, 112 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff, 113 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000, 114 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff, 115 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00, 116 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff, 117 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000, 118 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff, 119 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00, 120 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff, 121 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000, 122 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff, 123 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00, 124 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff, 125 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000, 126 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff, 127 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00, 128 0xffffffffffffffff, 129 }; 130 131 /* 132 * Similarly for half-word elements. 133 * for (i = 0; i < 256; ++i) { 134 * unsigned long m = 0; 135 * if (i & 0xaa) { 136 * continue; 137 * } 138 * for (j = 0; j < 8; j += 2) { 139 * if ((i >> j) & 1) { 140 * m |= 0xfffful << (j << 3); 141 * } 142 * } 143 * printf("[0x%x] = 0x%016lx,\n", i, m); 144 * } 145 */ 146 const uint64_t expand_pred_h_data[0x55 + 1] = { 147 [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000, 148 [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000, 149 [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000, 150 [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000, 151 [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000, 152 [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000, 153 [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000, 154 [0x55] = 0xffffffffffffffff, 155 }; 156 157 /* Signed saturating rounding doubling multiply-accumulate high half, 8-bit */ 158 int8_t do_sqrdmlah_b(int8_t src1, int8_t src2, int8_t src3, 159 bool neg, bool round) 160 { 161 /* 162 * Simplify: 163 * = ((a3 << 8) + ((e1 * e2) << 1) + (round << 7)) >> 8 164 * = ((a3 << 7) + (e1 * e2) + (round << 6)) >> 7 165 */ 166 int32_t ret = (int32_t)src1 * src2; 167 if (neg) { 168 ret = -ret; 169 } 170 ret += ((int32_t)src3 << 7) + (round << 6); 171 ret >>= 7; 172 173 if (ret != (int8_t)ret) { 174 ret = (ret < 0 ? INT8_MIN : INT8_MAX); 175 } 176 return ret; 177 } 178 179 void HELPER(sve2_sqrdmlah_b)(void *vd, void *vn, void *vm, 180 void *va, uint32_t desc) 181 { 182 intptr_t i, opr_sz = simd_oprsz(desc); 183 int8_t *d = vd, *n = vn, *m = vm, *a = va; 184 185 for (i = 0; i < opr_sz; ++i) { 186 d[i] = do_sqrdmlah_b(n[i], m[i], a[i], false, true); 187 } 188 } 189 190 void HELPER(sve2_sqrdmlsh_b)(void *vd, void *vn, void *vm, 191 void *va, uint32_t desc) 192 { 193 intptr_t i, opr_sz = simd_oprsz(desc); 194 int8_t *d = vd, *n = vn, *m = vm, *a = va; 195 196 for (i = 0; i < opr_sz; ++i) { 197 d[i] = do_sqrdmlah_b(n[i], m[i], a[i], true, true); 198 } 199 } 200 201 void HELPER(sve2_sqdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc) 202 { 203 intptr_t i, opr_sz = simd_oprsz(desc); 204 int8_t *d = vd, *n = vn, *m = vm; 205 206 for (i = 0; i < opr_sz; ++i) { 207 d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, false); 208 } 209 } 210 211 void HELPER(sve2_sqrdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc) 212 { 213 intptr_t i, opr_sz = simd_oprsz(desc); 214 int8_t *d = vd, *n = vn, *m = vm; 215 216 for (i = 0; i < opr_sz; ++i) { 217 d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, true); 218 } 219 } 220 221 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */ 222 int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3, 223 bool neg, bool round, uint32_t *sat) 224 { 225 /* Simplify similarly to do_sqrdmlah_b above. */ 226 int32_t ret = (int32_t)src1 * src2; 227 if (neg) { 228 ret = -ret; 229 } 230 ret += ((int32_t)src3 << 15) + (round << 14); 231 ret >>= 15; 232 233 if (ret != (int16_t)ret) { 234 *sat = 1; 235 ret = (ret < 0 ? INT16_MIN : INT16_MAX); 236 } 237 return ret; 238 } 239 240 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1, 241 uint32_t src2, uint32_t src3) 242 { 243 uint32_t *sat = &env->vfp.qc[0]; 244 uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat); 245 uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16, 246 false, true, sat); 247 return deposit32(e1, 16, 16, e2); 248 } 249 250 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm, 251 void *vq, uint32_t desc) 252 { 253 uintptr_t opr_sz = simd_oprsz(desc); 254 int16_t *d = vd; 255 int16_t *n = vn; 256 int16_t *m = vm; 257 uintptr_t i; 258 259 for (i = 0; i < opr_sz / 2; ++i) { 260 d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq); 261 } 262 clear_tail(d, opr_sz, simd_maxsz(desc)); 263 } 264 265 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1, 266 uint32_t src2, uint32_t src3) 267 { 268 uint32_t *sat = &env->vfp.qc[0]; 269 uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat); 270 uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16, 271 true, true, sat); 272 return deposit32(e1, 16, 16, e2); 273 } 274 275 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm, 276 void *vq, uint32_t desc) 277 { 278 uintptr_t opr_sz = simd_oprsz(desc); 279 int16_t *d = vd; 280 int16_t *n = vn; 281 int16_t *m = vm; 282 uintptr_t i; 283 284 for (i = 0; i < opr_sz / 2; ++i) { 285 d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq); 286 } 287 clear_tail(d, opr_sz, simd_maxsz(desc)); 288 } 289 290 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm, 291 void *vq, uint32_t desc) 292 { 293 intptr_t i, opr_sz = simd_oprsz(desc); 294 int16_t *d = vd, *n = vn, *m = vm; 295 296 for (i = 0; i < opr_sz / 2; ++i) { 297 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq); 298 } 299 clear_tail(d, opr_sz, simd_maxsz(desc)); 300 } 301 302 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm, 303 void *vq, uint32_t desc) 304 { 305 intptr_t i, opr_sz = simd_oprsz(desc); 306 int16_t *d = vd, *n = vn, *m = vm; 307 308 for (i = 0; i < opr_sz / 2; ++i) { 309 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq); 310 } 311 clear_tail(d, opr_sz, simd_maxsz(desc)); 312 } 313 314 void HELPER(sve2_sqrdmlah_h)(void *vd, void *vn, void *vm, 315 void *va, uint32_t desc) 316 { 317 intptr_t i, opr_sz = simd_oprsz(desc); 318 int16_t *d = vd, *n = vn, *m = vm, *a = va; 319 uint32_t discard; 320 321 for (i = 0; i < opr_sz / 2; ++i) { 322 d[i] = do_sqrdmlah_h(n[i], m[i], a[i], false, true, &discard); 323 } 324 } 325 326 void HELPER(sve2_sqrdmlsh_h)(void *vd, void *vn, void *vm, 327 void *va, uint32_t desc) 328 { 329 intptr_t i, opr_sz = simd_oprsz(desc); 330 int16_t *d = vd, *n = vn, *m = vm, *a = va; 331 uint32_t discard; 332 333 for (i = 0; i < opr_sz / 2; ++i) { 334 d[i] = do_sqrdmlah_h(n[i], m[i], a[i], true, true, &discard); 335 } 336 } 337 338 void HELPER(sve2_sqdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc) 339 { 340 intptr_t i, opr_sz = simd_oprsz(desc); 341 int16_t *d = vd, *n = vn, *m = vm; 342 uint32_t discard; 343 344 for (i = 0; i < opr_sz / 2; ++i) { 345 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, &discard); 346 } 347 } 348 349 void HELPER(sve2_sqrdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc) 350 { 351 intptr_t i, opr_sz = simd_oprsz(desc); 352 int16_t *d = vd, *n = vn, *m = vm; 353 uint32_t discard; 354 355 for (i = 0; i < opr_sz / 2; ++i) { 356 d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, &discard); 357 } 358 } 359 360 void HELPER(sve2_sqdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) 361 { 362 intptr_t i, j, opr_sz = simd_oprsz(desc); 363 int idx = simd_data(desc); 364 int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); 365 uint32_t discard; 366 367 for (i = 0; i < opr_sz / 2; i += 16 / 2) { 368 int16_t mm = m[i]; 369 for (j = 0; j < 16 / 2; ++j) { 370 d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, false, &discard); 371 } 372 } 373 } 374 375 void HELPER(sve2_sqrdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) 376 { 377 intptr_t i, j, opr_sz = simd_oprsz(desc); 378 int idx = simd_data(desc); 379 int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); 380 uint32_t discard; 381 382 for (i = 0; i < opr_sz / 2; i += 16 / 2) { 383 int16_t mm = m[i]; 384 for (j = 0; j < 16 / 2; ++j) { 385 d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, true, &discard); 386 } 387 } 388 } 389 390 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */ 391 int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3, 392 bool neg, bool round, uint32_t *sat) 393 { 394 /* Simplify similarly to do_sqrdmlah_b above. */ 395 int64_t ret = (int64_t)src1 * src2; 396 if (neg) { 397 ret = -ret; 398 } 399 ret += ((int64_t)src3 << 31) + (round << 30); 400 ret >>= 31; 401 402 if (ret != (int32_t)ret) { 403 *sat = 1; 404 ret = (ret < 0 ? INT32_MIN : INT32_MAX); 405 } 406 return ret; 407 } 408 409 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1, 410 int32_t src2, int32_t src3) 411 { 412 uint32_t *sat = &env->vfp.qc[0]; 413 return do_sqrdmlah_s(src1, src2, src3, false, true, sat); 414 } 415 416 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm, 417 void *vq, uint32_t desc) 418 { 419 uintptr_t opr_sz = simd_oprsz(desc); 420 int32_t *d = vd; 421 int32_t *n = vn; 422 int32_t *m = vm; 423 uintptr_t i; 424 425 for (i = 0; i < opr_sz / 4; ++i) { 426 d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq); 427 } 428 clear_tail(d, opr_sz, simd_maxsz(desc)); 429 } 430 431 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1, 432 int32_t src2, int32_t src3) 433 { 434 uint32_t *sat = &env->vfp.qc[0]; 435 return do_sqrdmlah_s(src1, src2, src3, true, true, sat); 436 } 437 438 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm, 439 void *vq, uint32_t desc) 440 { 441 uintptr_t opr_sz = simd_oprsz(desc); 442 int32_t *d = vd; 443 int32_t *n = vn; 444 int32_t *m = vm; 445 uintptr_t i; 446 447 for (i = 0; i < opr_sz / 4; ++i) { 448 d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq); 449 } 450 clear_tail(d, opr_sz, simd_maxsz(desc)); 451 } 452 453 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm, 454 void *vq, uint32_t desc) 455 { 456 intptr_t i, opr_sz = simd_oprsz(desc); 457 int32_t *d = vd, *n = vn, *m = vm; 458 459 for (i = 0; i < opr_sz / 4; ++i) { 460 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq); 461 } 462 clear_tail(d, opr_sz, simd_maxsz(desc)); 463 } 464 465 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm, 466 void *vq, uint32_t desc) 467 { 468 intptr_t i, opr_sz = simd_oprsz(desc); 469 int32_t *d = vd, *n = vn, *m = vm; 470 471 for (i = 0; i < opr_sz / 4; ++i) { 472 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq); 473 } 474 clear_tail(d, opr_sz, simd_maxsz(desc)); 475 } 476 477 void HELPER(sve2_sqrdmlah_s)(void *vd, void *vn, void *vm, 478 void *va, uint32_t desc) 479 { 480 intptr_t i, opr_sz = simd_oprsz(desc); 481 int32_t *d = vd, *n = vn, *m = vm, *a = va; 482 uint32_t discard; 483 484 for (i = 0; i < opr_sz / 4; ++i) { 485 d[i] = do_sqrdmlah_s(n[i], m[i], a[i], false, true, &discard); 486 } 487 } 488 489 void HELPER(sve2_sqrdmlsh_s)(void *vd, void *vn, void *vm, 490 void *va, uint32_t desc) 491 { 492 intptr_t i, opr_sz = simd_oprsz(desc); 493 int32_t *d = vd, *n = vn, *m = vm, *a = va; 494 uint32_t discard; 495 496 for (i = 0; i < opr_sz / 4; ++i) { 497 d[i] = do_sqrdmlah_s(n[i], m[i], a[i], true, true, &discard); 498 } 499 } 500 501 void HELPER(sve2_sqdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc) 502 { 503 intptr_t i, opr_sz = simd_oprsz(desc); 504 int32_t *d = vd, *n = vn, *m = vm; 505 uint32_t discard; 506 507 for (i = 0; i < opr_sz / 4; ++i) { 508 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, &discard); 509 } 510 } 511 512 void HELPER(sve2_sqrdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc) 513 { 514 intptr_t i, opr_sz = simd_oprsz(desc); 515 int32_t *d = vd, *n = vn, *m = vm; 516 uint32_t discard; 517 518 for (i = 0; i < opr_sz / 4; ++i) { 519 d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, &discard); 520 } 521 } 522 523 void HELPER(sve2_sqdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc) 524 { 525 intptr_t i, j, opr_sz = simd_oprsz(desc); 526 int idx = simd_data(desc); 527 int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); 528 uint32_t discard; 529 530 for (i = 0; i < opr_sz / 4; i += 16 / 4) { 531 int32_t mm = m[i]; 532 for (j = 0; j < 16 / 4; ++j) { 533 d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, false, &discard); 534 } 535 } 536 } 537 538 void HELPER(sve2_sqrdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc) 539 { 540 intptr_t i, j, opr_sz = simd_oprsz(desc); 541 int idx = simd_data(desc); 542 int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); 543 uint32_t discard; 544 545 for (i = 0; i < opr_sz / 4; i += 16 / 4) { 546 int32_t mm = m[i]; 547 for (j = 0; j < 16 / 4; ++j) { 548 d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, true, &discard); 549 } 550 } 551 } 552 553 /* Signed saturating rounding doubling multiply-accumulate high half, 64-bit */ 554 static int64_t do_sat128_d(Int128 r) 555 { 556 int64_t ls = int128_getlo(r); 557 int64_t hs = int128_gethi(r); 558 559 if (unlikely(hs != (ls >> 63))) { 560 return hs < 0 ? INT64_MIN : INT64_MAX; 561 } 562 return ls; 563 } 564 565 int64_t do_sqrdmlah_d(int64_t n, int64_t m, int64_t a, bool neg, bool round) 566 { 567 uint64_t l, h; 568 Int128 r, t; 569 570 /* As in do_sqrdmlah_b, but with 128-bit arithmetic. */ 571 muls64(&l, &h, m, n); 572 r = int128_make128(l, h); 573 if (neg) { 574 r = int128_neg(r); 575 } 576 if (a) { 577 t = int128_exts64(a); 578 t = int128_lshift(t, 63); 579 r = int128_add(r, t); 580 } 581 if (round) { 582 t = int128_exts64(1ll << 62); 583 r = int128_add(r, t); 584 } 585 r = int128_rshift(r, 63); 586 587 return do_sat128_d(r); 588 } 589 590 void HELPER(sve2_sqrdmlah_d)(void *vd, void *vn, void *vm, 591 void *va, uint32_t desc) 592 { 593 intptr_t i, opr_sz = simd_oprsz(desc); 594 int64_t *d = vd, *n = vn, *m = vm, *a = va; 595 596 for (i = 0; i < opr_sz / 8; ++i) { 597 d[i] = do_sqrdmlah_d(n[i], m[i], a[i], false, true); 598 } 599 } 600 601 void HELPER(sve2_sqrdmlsh_d)(void *vd, void *vn, void *vm, 602 void *va, uint32_t desc) 603 { 604 intptr_t i, opr_sz = simd_oprsz(desc); 605 int64_t *d = vd, *n = vn, *m = vm, *a = va; 606 607 for (i = 0; i < opr_sz / 8; ++i) { 608 d[i] = do_sqrdmlah_d(n[i], m[i], a[i], true, true); 609 } 610 } 611 612 void HELPER(sve2_sqdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc) 613 { 614 intptr_t i, opr_sz = simd_oprsz(desc); 615 int64_t *d = vd, *n = vn, *m = vm; 616 617 for (i = 0; i < opr_sz / 8; ++i) { 618 d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, false); 619 } 620 } 621 622 void HELPER(sve2_sqrdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc) 623 { 624 intptr_t i, opr_sz = simd_oprsz(desc); 625 int64_t *d = vd, *n = vn, *m = vm; 626 627 for (i = 0; i < opr_sz / 8; ++i) { 628 d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, true); 629 } 630 } 631 632 void HELPER(sve2_sqdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc) 633 { 634 intptr_t i, j, opr_sz = simd_oprsz(desc); 635 int idx = simd_data(desc); 636 int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx; 637 638 for (i = 0; i < opr_sz / 8; i += 16 / 8) { 639 int64_t mm = m[i]; 640 for (j = 0; j < 16 / 8; ++j) { 641 d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, false); 642 } 643 } 644 } 645 646 void HELPER(sve2_sqrdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc) 647 { 648 intptr_t i, j, opr_sz = simd_oprsz(desc); 649 int idx = simd_data(desc); 650 int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx; 651 652 for (i = 0; i < opr_sz / 8; i += 16 / 8) { 653 int64_t mm = m[i]; 654 for (j = 0; j < 16 / 8; ++j) { 655 d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, true); 656 } 657 } 658 } 659 660 /* Integer 8 and 16-bit dot-product. 661 * 662 * Note that for the loops herein, host endianness does not matter 663 * with respect to the ordering of data within the quad-width lanes. 664 * All elements are treated equally, no matter where they are. 665 */ 666 667 #define DO_DOT(NAME, TYPED, TYPEN, TYPEM) \ 668 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 669 { \ 670 intptr_t i, opr_sz = simd_oprsz(desc); \ 671 TYPED *d = vd, *a = va; \ 672 TYPEN *n = vn; \ 673 TYPEM *m = vm; \ 674 for (i = 0; i < opr_sz / sizeof(TYPED); ++i) { \ 675 d[i] = (a[i] + \ 676 (TYPED)n[i * 4 + 0] * m[i * 4 + 0] + \ 677 (TYPED)n[i * 4 + 1] * m[i * 4 + 1] + \ 678 (TYPED)n[i * 4 + 2] * m[i * 4 + 2] + \ 679 (TYPED)n[i * 4 + 3] * m[i * 4 + 3]); \ 680 } \ 681 clear_tail(d, opr_sz, simd_maxsz(desc)); \ 682 } 683 684 DO_DOT(gvec_sdot_b, int32_t, int8_t, int8_t) 685 DO_DOT(gvec_udot_b, uint32_t, uint8_t, uint8_t) 686 DO_DOT(gvec_usdot_b, uint32_t, uint8_t, int8_t) 687 DO_DOT(gvec_sdot_h, int64_t, int16_t, int16_t) 688 DO_DOT(gvec_udot_h, uint64_t, uint16_t, uint16_t) 689 690 #define DO_DOT_IDX(NAME, TYPED, TYPEN, TYPEM, HD) \ 691 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 692 { \ 693 intptr_t i = 0, opr_sz = simd_oprsz(desc); \ 694 intptr_t opr_sz_n = opr_sz / sizeof(TYPED); \ 695 intptr_t segend = MIN(16 / sizeof(TYPED), opr_sz_n); \ 696 intptr_t index = simd_data(desc); \ 697 TYPED *d = vd, *a = va; \ 698 TYPEN *n = vn; \ 699 TYPEM *m_indexed = (TYPEM *)vm + HD(index) * 4; \ 700 do { \ 701 TYPED m0 = m_indexed[i * 4 + 0]; \ 702 TYPED m1 = m_indexed[i * 4 + 1]; \ 703 TYPED m2 = m_indexed[i * 4 + 2]; \ 704 TYPED m3 = m_indexed[i * 4 + 3]; \ 705 do { \ 706 d[i] = (a[i] + \ 707 n[i * 4 + 0] * m0 + \ 708 n[i * 4 + 1] * m1 + \ 709 n[i * 4 + 2] * m2 + \ 710 n[i * 4 + 3] * m3); \ 711 } while (++i < segend); \ 712 segend = i + 4; \ 713 } while (i < opr_sz_n); \ 714 clear_tail(d, opr_sz, simd_maxsz(desc)); \ 715 } 716 717 DO_DOT_IDX(gvec_sdot_idx_b, int32_t, int8_t, int8_t, H4) 718 DO_DOT_IDX(gvec_udot_idx_b, uint32_t, uint8_t, uint8_t, H4) 719 DO_DOT_IDX(gvec_sudot_idx_b, int32_t, int8_t, uint8_t, H4) 720 DO_DOT_IDX(gvec_usdot_idx_b, int32_t, uint8_t, int8_t, H4) 721 DO_DOT_IDX(gvec_sdot_idx_h, int64_t, int16_t, int16_t, H8) 722 DO_DOT_IDX(gvec_udot_idx_h, uint64_t, uint16_t, uint16_t, H8) 723 724 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, 725 void *vfpst, uint32_t desc) 726 { 727 uintptr_t opr_sz = simd_oprsz(desc); 728 float16 *d = vd; 729 float16 *n = vn; 730 float16 *m = vm; 731 float_status *fpst = vfpst; 732 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); 733 uint32_t neg_imag = neg_real ^ 1; 734 uintptr_t i; 735 736 /* Shift boolean to the sign bit so we can xor to negate. */ 737 neg_real <<= 15; 738 neg_imag <<= 15; 739 740 for (i = 0; i < opr_sz / 2; i += 2) { 741 float16 e0 = n[H2(i)]; 742 float16 e1 = m[H2(i + 1)] ^ neg_imag; 743 float16 e2 = n[H2(i + 1)]; 744 float16 e3 = m[H2(i)] ^ neg_real; 745 746 d[H2(i)] = float16_add(e0, e1, fpst); 747 d[H2(i + 1)] = float16_add(e2, e3, fpst); 748 } 749 clear_tail(d, opr_sz, simd_maxsz(desc)); 750 } 751 752 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, 753 void *vfpst, uint32_t desc) 754 { 755 uintptr_t opr_sz = simd_oprsz(desc); 756 float32 *d = vd; 757 float32 *n = vn; 758 float32 *m = vm; 759 float_status *fpst = vfpst; 760 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); 761 uint32_t neg_imag = neg_real ^ 1; 762 uintptr_t i; 763 764 /* Shift boolean to the sign bit so we can xor to negate. */ 765 neg_real <<= 31; 766 neg_imag <<= 31; 767 768 for (i = 0; i < opr_sz / 4; i += 2) { 769 float32 e0 = n[H4(i)]; 770 float32 e1 = m[H4(i + 1)] ^ neg_imag; 771 float32 e2 = n[H4(i + 1)]; 772 float32 e3 = m[H4(i)] ^ neg_real; 773 774 d[H4(i)] = float32_add(e0, e1, fpst); 775 d[H4(i + 1)] = float32_add(e2, e3, fpst); 776 } 777 clear_tail(d, opr_sz, simd_maxsz(desc)); 778 } 779 780 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, 781 void *vfpst, uint32_t desc) 782 { 783 uintptr_t opr_sz = simd_oprsz(desc); 784 float64 *d = vd; 785 float64 *n = vn; 786 float64 *m = vm; 787 float_status *fpst = vfpst; 788 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1); 789 uint64_t neg_imag = neg_real ^ 1; 790 uintptr_t i; 791 792 /* Shift boolean to the sign bit so we can xor to negate. */ 793 neg_real <<= 63; 794 neg_imag <<= 63; 795 796 for (i = 0; i < opr_sz / 8; i += 2) { 797 float64 e0 = n[i]; 798 float64 e1 = m[i + 1] ^ neg_imag; 799 float64 e2 = n[i + 1]; 800 float64 e3 = m[i] ^ neg_real; 801 802 d[i] = float64_add(e0, e1, fpst); 803 d[i + 1] = float64_add(e2, e3, fpst); 804 } 805 clear_tail(d, opr_sz, simd_maxsz(desc)); 806 } 807 808 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, void *va, 809 void *vfpst, uint32_t desc) 810 { 811 uintptr_t opr_sz = simd_oprsz(desc); 812 float16 *d = vd, *n = vn, *m = vm, *a = va; 813 float_status *fpst = vfpst; 814 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); 815 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 816 uint32_t neg_real = flip ^ neg_imag; 817 uintptr_t i; 818 819 /* Shift boolean to the sign bit so we can xor to negate. */ 820 neg_real <<= 15; 821 neg_imag <<= 15; 822 823 for (i = 0; i < opr_sz / 2; i += 2) { 824 float16 e2 = n[H2(i + flip)]; 825 float16 e1 = m[H2(i + flip)] ^ neg_real; 826 float16 e4 = e2; 827 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag; 828 829 d[H2(i)] = float16_muladd(e2, e1, a[H2(i)], 0, fpst); 830 d[H2(i + 1)] = float16_muladd(e4, e3, a[H2(i + 1)], 0, fpst); 831 } 832 clear_tail(d, opr_sz, simd_maxsz(desc)); 833 } 834 835 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, void *va, 836 void *vfpst, uint32_t desc) 837 { 838 uintptr_t opr_sz = simd_oprsz(desc); 839 float16 *d = vd, *n = vn, *m = vm, *a = va; 840 float_status *fpst = vfpst; 841 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); 842 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 843 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); 844 uint32_t neg_real = flip ^ neg_imag; 845 intptr_t elements = opr_sz / sizeof(float16); 846 intptr_t eltspersegment = 16 / sizeof(float16); 847 intptr_t i, j; 848 849 /* Shift boolean to the sign bit so we can xor to negate. */ 850 neg_real <<= 15; 851 neg_imag <<= 15; 852 853 for (i = 0; i < elements; i += eltspersegment) { 854 float16 mr = m[H2(i + 2 * index + 0)]; 855 float16 mi = m[H2(i + 2 * index + 1)]; 856 float16 e1 = neg_real ^ (flip ? mi : mr); 857 float16 e3 = neg_imag ^ (flip ? mr : mi); 858 859 for (j = i; j < i + eltspersegment; j += 2) { 860 float16 e2 = n[H2(j + flip)]; 861 float16 e4 = e2; 862 863 d[H2(j)] = float16_muladd(e2, e1, a[H2(j)], 0, fpst); 864 d[H2(j + 1)] = float16_muladd(e4, e3, a[H2(j + 1)], 0, fpst); 865 } 866 } 867 clear_tail(d, opr_sz, simd_maxsz(desc)); 868 } 869 870 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, void *va, 871 void *vfpst, uint32_t desc) 872 { 873 uintptr_t opr_sz = simd_oprsz(desc); 874 float32 *d = vd, *n = vn, *m = vm, *a = va; 875 float_status *fpst = vfpst; 876 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); 877 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 878 uint32_t neg_real = flip ^ neg_imag; 879 uintptr_t i; 880 881 /* Shift boolean to the sign bit so we can xor to negate. */ 882 neg_real <<= 31; 883 neg_imag <<= 31; 884 885 for (i = 0; i < opr_sz / 4; i += 2) { 886 float32 e2 = n[H4(i + flip)]; 887 float32 e1 = m[H4(i + flip)] ^ neg_real; 888 float32 e4 = e2; 889 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag; 890 891 d[H4(i)] = float32_muladd(e2, e1, a[H4(i)], 0, fpst); 892 d[H4(i + 1)] = float32_muladd(e4, e3, a[H4(i + 1)], 0, fpst); 893 } 894 clear_tail(d, opr_sz, simd_maxsz(desc)); 895 } 896 897 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, void *va, 898 void *vfpst, uint32_t desc) 899 { 900 uintptr_t opr_sz = simd_oprsz(desc); 901 float32 *d = vd, *n = vn, *m = vm, *a = va; 902 float_status *fpst = vfpst; 903 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); 904 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 905 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); 906 uint32_t neg_real = flip ^ neg_imag; 907 intptr_t elements = opr_sz / sizeof(float32); 908 intptr_t eltspersegment = 16 / sizeof(float32); 909 intptr_t i, j; 910 911 /* Shift boolean to the sign bit so we can xor to negate. */ 912 neg_real <<= 31; 913 neg_imag <<= 31; 914 915 for (i = 0; i < elements; i += eltspersegment) { 916 float32 mr = m[H4(i + 2 * index + 0)]; 917 float32 mi = m[H4(i + 2 * index + 1)]; 918 float32 e1 = neg_real ^ (flip ? mi : mr); 919 float32 e3 = neg_imag ^ (flip ? mr : mi); 920 921 for (j = i; j < i + eltspersegment; j += 2) { 922 float32 e2 = n[H4(j + flip)]; 923 float32 e4 = e2; 924 925 d[H4(j)] = float32_muladd(e2, e1, a[H4(j)], 0, fpst); 926 d[H4(j + 1)] = float32_muladd(e4, e3, a[H4(j + 1)], 0, fpst); 927 } 928 } 929 clear_tail(d, opr_sz, simd_maxsz(desc)); 930 } 931 932 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, void *va, 933 void *vfpst, uint32_t desc) 934 { 935 uintptr_t opr_sz = simd_oprsz(desc); 936 float64 *d = vd, *n = vn, *m = vm, *a = va; 937 float_status *fpst = vfpst; 938 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); 939 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 940 uint64_t neg_real = flip ^ neg_imag; 941 uintptr_t i; 942 943 /* Shift boolean to the sign bit so we can xor to negate. */ 944 neg_real <<= 63; 945 neg_imag <<= 63; 946 947 for (i = 0; i < opr_sz / 8; i += 2) { 948 float64 e2 = n[i + flip]; 949 float64 e1 = m[i + flip] ^ neg_real; 950 float64 e4 = e2; 951 float64 e3 = m[i + 1 - flip] ^ neg_imag; 952 953 d[i] = float64_muladd(e2, e1, a[i], 0, fpst); 954 d[i + 1] = float64_muladd(e4, e3, a[i + 1], 0, fpst); 955 } 956 clear_tail(d, opr_sz, simd_maxsz(desc)); 957 } 958 959 /* 960 * Floating point comparisons producing an integer result (all 1s or all 0s). 961 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. 962 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. 963 */ 964 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat) 965 { 966 return -float16_eq_quiet(op1, op2, stat); 967 } 968 969 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat) 970 { 971 return -float32_eq_quiet(op1, op2, stat); 972 } 973 974 static uint64_t float64_ceq(float64 op1, float64 op2, float_status *stat) 975 { 976 return -float64_eq_quiet(op1, op2, stat); 977 } 978 979 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat) 980 { 981 return -float16_le(op2, op1, stat); 982 } 983 984 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat) 985 { 986 return -float32_le(op2, op1, stat); 987 } 988 989 static uint64_t float64_cge(float64 op1, float64 op2, float_status *stat) 990 { 991 return -float64_le(op2, op1, stat); 992 } 993 994 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat) 995 { 996 return -float16_lt(op2, op1, stat); 997 } 998 999 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat) 1000 { 1001 return -float32_lt(op2, op1, stat); 1002 } 1003 1004 static uint64_t float64_cgt(float64 op1, float64 op2, float_status *stat) 1005 { 1006 return -float64_lt(op2, op1, stat); 1007 } 1008 1009 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat) 1010 { 1011 return -float16_le(float16_abs(op2), float16_abs(op1), stat); 1012 } 1013 1014 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat) 1015 { 1016 return -float32_le(float32_abs(op2), float32_abs(op1), stat); 1017 } 1018 1019 static uint64_t float64_acge(float64 op1, float64 op2, float_status *stat) 1020 { 1021 return -float64_le(float64_abs(op2), float64_abs(op1), stat); 1022 } 1023 1024 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat) 1025 { 1026 return -float16_lt(float16_abs(op2), float16_abs(op1), stat); 1027 } 1028 1029 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat) 1030 { 1031 return -float32_lt(float32_abs(op2), float32_abs(op1), stat); 1032 } 1033 1034 static uint64_t float64_acgt(float64 op1, float64 op2, float_status *stat) 1035 { 1036 return -float64_lt(float64_abs(op2), float64_abs(op1), stat); 1037 } 1038 1039 static int16_t vfp_tosszh(float16 x, void *fpstp) 1040 { 1041 float_status *fpst = fpstp; 1042 if (float16_is_any_nan(x)) { 1043 float_raise(float_flag_invalid, fpst); 1044 return 0; 1045 } 1046 return float16_to_int16_round_to_zero(x, fpst); 1047 } 1048 1049 static uint16_t vfp_touszh(float16 x, void *fpstp) 1050 { 1051 float_status *fpst = fpstp; 1052 if (float16_is_any_nan(x)) { 1053 float_raise(float_flag_invalid, fpst); 1054 return 0; 1055 } 1056 return float16_to_uint16_round_to_zero(x, fpst); 1057 } 1058 1059 #define DO_2OP(NAME, FUNC, TYPE) \ 1060 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ 1061 { \ 1062 intptr_t i, oprsz = simd_oprsz(desc); \ 1063 TYPE *d = vd, *n = vn; \ 1064 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1065 d[i] = FUNC(n[i], stat); \ 1066 } \ 1067 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1068 } 1069 1070 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16) 1071 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32) 1072 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64) 1073 1074 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16) 1075 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32) 1076 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64) 1077 1078 DO_2OP(gvec_vrintx_h, float16_round_to_int, float16) 1079 DO_2OP(gvec_vrintx_s, float32_round_to_int, float32) 1080 1081 DO_2OP(gvec_sitos, helper_vfp_sitos, int32_t) 1082 DO_2OP(gvec_uitos, helper_vfp_uitos, uint32_t) 1083 DO_2OP(gvec_tosizs, helper_vfp_tosizs, float32) 1084 DO_2OP(gvec_touizs, helper_vfp_touizs, float32) 1085 DO_2OP(gvec_sstoh, int16_to_float16, int16_t) 1086 DO_2OP(gvec_ustoh, uint16_to_float16, uint16_t) 1087 DO_2OP(gvec_tosszh, vfp_tosszh, float16) 1088 DO_2OP(gvec_touszh, vfp_touszh, float16) 1089 1090 #define WRAP_CMP0_FWD(FN, CMPOP, TYPE) \ 1091 static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \ 1092 { \ 1093 return TYPE##_##CMPOP(op, TYPE##_zero, stat); \ 1094 } 1095 1096 #define WRAP_CMP0_REV(FN, CMPOP, TYPE) \ 1097 static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \ 1098 { \ 1099 return TYPE##_##CMPOP(TYPE##_zero, op, stat); \ 1100 } 1101 1102 #define DO_2OP_CMP0(FN, CMPOP, DIRN) \ 1103 WRAP_CMP0_##DIRN(FN, CMPOP, float16) \ 1104 WRAP_CMP0_##DIRN(FN, CMPOP, float32) \ 1105 DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \ 1106 DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32) 1107 1108 DO_2OP_CMP0(cgt, cgt, FWD) 1109 DO_2OP_CMP0(cge, cge, FWD) 1110 DO_2OP_CMP0(ceq, ceq, FWD) 1111 DO_2OP_CMP0(clt, cgt, REV) 1112 DO_2OP_CMP0(cle, cge, REV) 1113 1114 #undef DO_2OP 1115 #undef DO_2OP_CMP0 1116 1117 /* Floating-point trigonometric starting value. 1118 * See the ARM ARM pseudocode function FPTrigSMul. 1119 */ 1120 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat) 1121 { 1122 float16 result = float16_mul(op1, op1, stat); 1123 if (!float16_is_any_nan(result)) { 1124 result = float16_set_sign(result, op2 & 1); 1125 } 1126 return result; 1127 } 1128 1129 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat) 1130 { 1131 float32 result = float32_mul(op1, op1, stat); 1132 if (!float32_is_any_nan(result)) { 1133 result = float32_set_sign(result, op2 & 1); 1134 } 1135 return result; 1136 } 1137 1138 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat) 1139 { 1140 float64 result = float64_mul(op1, op1, stat); 1141 if (!float64_is_any_nan(result)) { 1142 result = float64_set_sign(result, op2 & 1); 1143 } 1144 return result; 1145 } 1146 1147 static float16 float16_abd(float16 op1, float16 op2, float_status *stat) 1148 { 1149 return float16_abs(float16_sub(op1, op2, stat)); 1150 } 1151 1152 static float32 float32_abd(float32 op1, float32 op2, float_status *stat) 1153 { 1154 return float32_abs(float32_sub(op1, op2, stat)); 1155 } 1156 1157 static float64 float64_abd(float64 op1, float64 op2, float_status *stat) 1158 { 1159 return float64_abs(float64_sub(op1, op2, stat)); 1160 } 1161 1162 /* 1163 * Reciprocal step. These are the AArch32 version which uses a 1164 * non-fused multiply-and-subtract. 1165 */ 1166 static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat) 1167 { 1168 op1 = float16_squash_input_denormal(op1, stat); 1169 op2 = float16_squash_input_denormal(op2, stat); 1170 1171 if ((float16_is_infinity(op1) && float16_is_zero(op2)) || 1172 (float16_is_infinity(op2) && float16_is_zero(op1))) { 1173 return float16_two; 1174 } 1175 return float16_sub(float16_two, float16_mul(op1, op2, stat), stat); 1176 } 1177 1178 static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat) 1179 { 1180 op1 = float32_squash_input_denormal(op1, stat); 1181 op2 = float32_squash_input_denormal(op2, stat); 1182 1183 if ((float32_is_infinity(op1) && float32_is_zero(op2)) || 1184 (float32_is_infinity(op2) && float32_is_zero(op1))) { 1185 return float32_two; 1186 } 1187 return float32_sub(float32_two, float32_mul(op1, op2, stat), stat); 1188 } 1189 1190 /* Reciprocal square-root step. AArch32 non-fused semantics. */ 1191 static float16 float16_rsqrts_nf(float16 op1, float16 op2, float_status *stat) 1192 { 1193 op1 = float16_squash_input_denormal(op1, stat); 1194 op2 = float16_squash_input_denormal(op2, stat); 1195 1196 if ((float16_is_infinity(op1) && float16_is_zero(op2)) || 1197 (float16_is_infinity(op2) && float16_is_zero(op1))) { 1198 return float16_one_point_five; 1199 } 1200 op1 = float16_sub(float16_three, float16_mul(op1, op2, stat), stat); 1201 return float16_div(op1, float16_two, stat); 1202 } 1203 1204 static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat) 1205 { 1206 op1 = float32_squash_input_denormal(op1, stat); 1207 op2 = float32_squash_input_denormal(op2, stat); 1208 1209 if ((float32_is_infinity(op1) && float32_is_zero(op2)) || 1210 (float32_is_infinity(op2) && float32_is_zero(op1))) { 1211 return float32_one_point_five; 1212 } 1213 op1 = float32_sub(float32_three, float32_mul(op1, op2, stat), stat); 1214 return float32_div(op1, float32_two, stat); 1215 } 1216 1217 #define DO_3OP(NAME, FUNC, TYPE) \ 1218 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ 1219 { \ 1220 intptr_t i, oprsz = simd_oprsz(desc); \ 1221 TYPE *d = vd, *n = vn, *m = vm; \ 1222 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1223 d[i] = FUNC(n[i], m[i], stat); \ 1224 } \ 1225 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1226 } 1227 1228 DO_3OP(gvec_fadd_h, float16_add, float16) 1229 DO_3OP(gvec_fadd_s, float32_add, float32) 1230 DO_3OP(gvec_fadd_d, float64_add, float64) 1231 1232 DO_3OP(gvec_fsub_h, float16_sub, float16) 1233 DO_3OP(gvec_fsub_s, float32_sub, float32) 1234 DO_3OP(gvec_fsub_d, float64_sub, float64) 1235 1236 DO_3OP(gvec_fmul_h, float16_mul, float16) 1237 DO_3OP(gvec_fmul_s, float32_mul, float32) 1238 DO_3OP(gvec_fmul_d, float64_mul, float64) 1239 1240 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16) 1241 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32) 1242 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64) 1243 1244 DO_3OP(gvec_fabd_h, float16_abd, float16) 1245 DO_3OP(gvec_fabd_s, float32_abd, float32) 1246 DO_3OP(gvec_fabd_d, float64_abd, float64) 1247 1248 DO_3OP(gvec_fceq_h, float16_ceq, float16) 1249 DO_3OP(gvec_fceq_s, float32_ceq, float32) 1250 DO_3OP(gvec_fceq_d, float64_ceq, float64) 1251 1252 DO_3OP(gvec_fcge_h, float16_cge, float16) 1253 DO_3OP(gvec_fcge_s, float32_cge, float32) 1254 DO_3OP(gvec_fcge_d, float64_cge, float64) 1255 1256 DO_3OP(gvec_fcgt_h, float16_cgt, float16) 1257 DO_3OP(gvec_fcgt_s, float32_cgt, float32) 1258 DO_3OP(gvec_fcgt_d, float64_cgt, float64) 1259 1260 DO_3OP(gvec_facge_h, float16_acge, float16) 1261 DO_3OP(gvec_facge_s, float32_acge, float32) 1262 DO_3OP(gvec_facge_d, float64_acge, float64) 1263 1264 DO_3OP(gvec_facgt_h, float16_acgt, float16) 1265 DO_3OP(gvec_facgt_s, float32_acgt, float32) 1266 DO_3OP(gvec_facgt_d, float64_acgt, float64) 1267 1268 DO_3OP(gvec_fmax_h, float16_max, float16) 1269 DO_3OP(gvec_fmax_s, float32_max, float32) 1270 DO_3OP(gvec_fmax_d, float64_max, float64) 1271 1272 DO_3OP(gvec_fmin_h, float16_min, float16) 1273 DO_3OP(gvec_fmin_s, float32_min, float32) 1274 DO_3OP(gvec_fmin_d, float64_min, float64) 1275 1276 DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16) 1277 DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32) 1278 DO_3OP(gvec_fmaxnum_d, float64_maxnum, float64) 1279 1280 DO_3OP(gvec_fminnum_h, float16_minnum, float16) 1281 DO_3OP(gvec_fminnum_s, float32_minnum, float32) 1282 DO_3OP(gvec_fminnum_d, float64_minnum, float64) 1283 1284 DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16) 1285 DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32) 1286 1287 DO_3OP(gvec_rsqrts_nf_h, float16_rsqrts_nf, float16) 1288 DO_3OP(gvec_rsqrts_nf_s, float32_rsqrts_nf, float32) 1289 1290 #ifdef TARGET_AARCH64 1291 DO_3OP(gvec_fdiv_h, float16_div, float16) 1292 DO_3OP(gvec_fdiv_s, float32_div, float32) 1293 DO_3OP(gvec_fdiv_d, float64_div, float64) 1294 1295 DO_3OP(gvec_fmulx_h, helper_advsimd_mulxh, float16) 1296 DO_3OP(gvec_fmulx_s, helper_vfp_mulxs, float32) 1297 DO_3OP(gvec_fmulx_d, helper_vfp_mulxd, float64) 1298 1299 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16) 1300 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32) 1301 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64) 1302 1303 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16) 1304 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32) 1305 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64) 1306 1307 #endif 1308 #undef DO_3OP 1309 1310 /* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */ 1311 static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2, 1312 float_status *stat) 1313 { 1314 return float16_add(dest, float16_mul(op1, op2, stat), stat); 1315 } 1316 1317 static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2, 1318 float_status *stat) 1319 { 1320 return float32_add(dest, float32_mul(op1, op2, stat), stat); 1321 } 1322 1323 static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2, 1324 float_status *stat) 1325 { 1326 return float16_sub(dest, float16_mul(op1, op2, stat), stat); 1327 } 1328 1329 static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2, 1330 float_status *stat) 1331 { 1332 return float32_sub(dest, float32_mul(op1, op2, stat), stat); 1333 } 1334 1335 /* Fused versions; these have the semantics Neon VFMA/VFMS want */ 1336 static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2, 1337 float_status *stat) 1338 { 1339 return float16_muladd(op1, op2, dest, 0, stat); 1340 } 1341 1342 static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2, 1343 float_status *stat) 1344 { 1345 return float32_muladd(op1, op2, dest, 0, stat); 1346 } 1347 1348 static float64 float64_muladd_f(float64 dest, float64 op1, float64 op2, 1349 float_status *stat) 1350 { 1351 return float64_muladd(op1, op2, dest, 0, stat); 1352 } 1353 1354 static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2, 1355 float_status *stat) 1356 { 1357 return float16_muladd(float16_chs(op1), op2, dest, 0, stat); 1358 } 1359 1360 static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2, 1361 float_status *stat) 1362 { 1363 return float32_muladd(float32_chs(op1), op2, dest, 0, stat); 1364 } 1365 1366 static float64 float64_mulsub_f(float64 dest, float64 op1, float64 op2, 1367 float_status *stat) 1368 { 1369 return float64_muladd(float64_chs(op1), op2, dest, 0, stat); 1370 } 1371 1372 #define DO_MULADD(NAME, FUNC, TYPE) \ 1373 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ 1374 { \ 1375 intptr_t i, oprsz = simd_oprsz(desc); \ 1376 TYPE *d = vd, *n = vn, *m = vm; \ 1377 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1378 d[i] = FUNC(d[i], n[i], m[i], stat); \ 1379 } \ 1380 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1381 } 1382 1383 DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16) 1384 DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32) 1385 1386 DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16) 1387 DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32) 1388 1389 DO_MULADD(gvec_vfma_h, float16_muladd_f, float16) 1390 DO_MULADD(gvec_vfma_s, float32_muladd_f, float32) 1391 DO_MULADD(gvec_vfma_d, float64_muladd_f, float64) 1392 1393 DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16) 1394 DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32) 1395 DO_MULADD(gvec_vfms_d, float64_mulsub_f, float64) 1396 1397 /* For the indexed ops, SVE applies the index per 128-bit vector segment. 1398 * For AdvSIMD, there is of course only one such vector segment. 1399 */ 1400 1401 #define DO_MUL_IDX(NAME, TYPE, H) \ 1402 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 1403 { \ 1404 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1405 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ 1406 intptr_t idx = simd_data(desc); \ 1407 TYPE *d = vd, *n = vn, *m = vm; \ 1408 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ 1409 TYPE mm = m[H(i + idx)]; \ 1410 for (j = 0; j < segment; j++) { \ 1411 d[i + j] = n[i + j] * mm; \ 1412 } \ 1413 } \ 1414 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1415 } 1416 1417 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2) 1418 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4) 1419 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, H8) 1420 1421 #undef DO_MUL_IDX 1422 1423 #define DO_MLA_IDX(NAME, TYPE, OP, H) \ 1424 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 1425 { \ 1426 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1427 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ 1428 intptr_t idx = simd_data(desc); \ 1429 TYPE *d = vd, *n = vn, *m = vm, *a = va; \ 1430 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ 1431 TYPE mm = m[H(i + idx)]; \ 1432 for (j = 0; j < segment; j++) { \ 1433 d[i + j] = a[i + j] OP n[i + j] * mm; \ 1434 } \ 1435 } \ 1436 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1437 } 1438 1439 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2) 1440 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4) 1441 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +, H8) 1442 1443 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2) 1444 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4) 1445 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, H8) 1446 1447 #undef DO_MLA_IDX 1448 1449 #define DO_FMUL_IDX(NAME, ADD, MUL, TYPE, H) \ 1450 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ 1451 { \ 1452 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1453 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ 1454 intptr_t idx = simd_data(desc); \ 1455 TYPE *d = vd, *n = vn, *m = vm; \ 1456 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ 1457 TYPE mm = m[H(i + idx)]; \ 1458 for (j = 0; j < segment; j++) { \ 1459 d[i + j] = ADD(d[i + j], MUL(n[i + j], mm, stat), stat); \ 1460 } \ 1461 } \ 1462 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1463 } 1464 1465 #define nop(N, M, S) (M) 1466 1467 DO_FMUL_IDX(gvec_fmul_idx_h, nop, float16_mul, float16, H2) 1468 DO_FMUL_IDX(gvec_fmul_idx_s, nop, float32_mul, float32, H4) 1469 DO_FMUL_IDX(gvec_fmul_idx_d, nop, float64_mul, float64, H8) 1470 1471 #ifdef TARGET_AARCH64 1472 1473 DO_FMUL_IDX(gvec_fmulx_idx_h, nop, helper_advsimd_mulxh, float16, H2) 1474 DO_FMUL_IDX(gvec_fmulx_idx_s, nop, helper_vfp_mulxs, float32, H4) 1475 DO_FMUL_IDX(gvec_fmulx_idx_d, nop, helper_vfp_mulxd, float64, H8) 1476 1477 #endif 1478 1479 #undef nop 1480 1481 /* 1482 * Non-fused multiply-accumulate operations, for Neon. NB that unlike 1483 * the fused ops below they assume accumulate both from and into Vd. 1484 */ 1485 DO_FMUL_IDX(gvec_fmla_nf_idx_h, float16_add, float16_mul, float16, H2) 1486 DO_FMUL_IDX(gvec_fmla_nf_idx_s, float32_add, float32_mul, float32, H4) 1487 DO_FMUL_IDX(gvec_fmls_nf_idx_h, float16_sub, float16_mul, float16, H2) 1488 DO_FMUL_IDX(gvec_fmls_nf_idx_s, float32_sub, float32_mul, float32, H4) 1489 1490 #undef DO_FMUL_IDX 1491 1492 #define DO_FMLA_IDX(NAME, TYPE, H) \ 1493 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \ 1494 void *stat, uint32_t desc) \ 1495 { \ 1496 intptr_t i, j, oprsz = simd_oprsz(desc); \ 1497 intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ 1498 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \ 1499 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \ 1500 TYPE *d = vd, *n = vn, *m = vm, *a = va; \ 1501 op1_neg <<= (8 * sizeof(TYPE) - 1); \ 1502 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ 1503 TYPE mm = m[H(i + idx)]; \ 1504 for (j = 0; j < segment; j++) { \ 1505 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \ 1506 mm, a[i + j], 0, stat); \ 1507 } \ 1508 } \ 1509 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1510 } 1511 1512 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2) 1513 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4) 1514 DO_FMLA_IDX(gvec_fmla_idx_d, float64, H8) 1515 1516 #undef DO_FMLA_IDX 1517 1518 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \ 1519 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \ 1520 { \ 1521 intptr_t i, oprsz = simd_oprsz(desc); \ 1522 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \ 1523 bool q = false; \ 1524 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \ 1525 WTYPE dd = (WTYPE)n[i] OP m[i]; \ 1526 if (dd < MIN) { \ 1527 dd = MIN; \ 1528 q = true; \ 1529 } else if (dd > MAX) { \ 1530 dd = MAX; \ 1531 q = true; \ 1532 } \ 1533 d[i] = dd; \ 1534 } \ 1535 if (q) { \ 1536 uint32_t *qc = vq; \ 1537 qc[0] = 1; \ 1538 } \ 1539 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1540 } 1541 1542 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX) 1543 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX) 1544 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX) 1545 1546 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX) 1547 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX) 1548 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX) 1549 1550 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX) 1551 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX) 1552 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX) 1553 1554 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX) 1555 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX) 1556 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX) 1557 1558 #undef DO_SAT 1559 1560 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn, 1561 void *vm, uint32_t desc) 1562 { 1563 intptr_t i, oprsz = simd_oprsz(desc); 1564 uint64_t *d = vd, *n = vn, *m = vm; 1565 bool q = false; 1566 1567 for (i = 0; i < oprsz / 8; i++) { 1568 uint64_t nn = n[i], mm = m[i], dd = nn + mm; 1569 if (dd < nn) { 1570 dd = UINT64_MAX; 1571 q = true; 1572 } 1573 d[i] = dd; 1574 } 1575 if (q) { 1576 uint32_t *qc = vq; 1577 qc[0] = 1; 1578 } 1579 clear_tail(d, oprsz, simd_maxsz(desc)); 1580 } 1581 1582 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn, 1583 void *vm, uint32_t desc) 1584 { 1585 intptr_t i, oprsz = simd_oprsz(desc); 1586 uint64_t *d = vd, *n = vn, *m = vm; 1587 bool q = false; 1588 1589 for (i = 0; i < oprsz / 8; i++) { 1590 uint64_t nn = n[i], mm = m[i], dd = nn - mm; 1591 if (nn < mm) { 1592 dd = 0; 1593 q = true; 1594 } 1595 d[i] = dd; 1596 } 1597 if (q) { 1598 uint32_t *qc = vq; 1599 qc[0] = 1; 1600 } 1601 clear_tail(d, oprsz, simd_maxsz(desc)); 1602 } 1603 1604 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn, 1605 void *vm, uint32_t desc) 1606 { 1607 intptr_t i, oprsz = simd_oprsz(desc); 1608 int64_t *d = vd, *n = vn, *m = vm; 1609 bool q = false; 1610 1611 for (i = 0; i < oprsz / 8; i++) { 1612 int64_t nn = n[i], mm = m[i], dd = nn + mm; 1613 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) { 1614 dd = (nn >> 63) ^ ~INT64_MIN; 1615 q = true; 1616 } 1617 d[i] = dd; 1618 } 1619 if (q) { 1620 uint32_t *qc = vq; 1621 qc[0] = 1; 1622 } 1623 clear_tail(d, oprsz, simd_maxsz(desc)); 1624 } 1625 1626 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn, 1627 void *vm, uint32_t desc) 1628 { 1629 intptr_t i, oprsz = simd_oprsz(desc); 1630 int64_t *d = vd, *n = vn, *m = vm; 1631 bool q = false; 1632 1633 for (i = 0; i < oprsz / 8; i++) { 1634 int64_t nn = n[i], mm = m[i], dd = nn - mm; 1635 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) { 1636 dd = (nn >> 63) ^ ~INT64_MIN; 1637 q = true; 1638 } 1639 d[i] = dd; 1640 } 1641 if (q) { 1642 uint32_t *qc = vq; 1643 qc[0] = 1; 1644 } 1645 clear_tail(d, oprsz, simd_maxsz(desc)); 1646 } 1647 1648 1649 #define DO_SRA(NAME, TYPE) \ 1650 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1651 { \ 1652 intptr_t i, oprsz = simd_oprsz(desc); \ 1653 int shift = simd_data(desc); \ 1654 TYPE *d = vd, *n = vn; \ 1655 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1656 d[i] += n[i] >> shift; \ 1657 } \ 1658 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1659 } 1660 1661 DO_SRA(gvec_ssra_b, int8_t) 1662 DO_SRA(gvec_ssra_h, int16_t) 1663 DO_SRA(gvec_ssra_s, int32_t) 1664 DO_SRA(gvec_ssra_d, int64_t) 1665 1666 DO_SRA(gvec_usra_b, uint8_t) 1667 DO_SRA(gvec_usra_h, uint16_t) 1668 DO_SRA(gvec_usra_s, uint32_t) 1669 DO_SRA(gvec_usra_d, uint64_t) 1670 1671 #undef DO_SRA 1672 1673 #define DO_RSHR(NAME, TYPE) \ 1674 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1675 { \ 1676 intptr_t i, oprsz = simd_oprsz(desc); \ 1677 int shift = simd_data(desc); \ 1678 TYPE *d = vd, *n = vn; \ 1679 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1680 TYPE tmp = n[i] >> (shift - 1); \ 1681 d[i] = (tmp >> 1) + (tmp & 1); \ 1682 } \ 1683 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1684 } 1685 1686 DO_RSHR(gvec_srshr_b, int8_t) 1687 DO_RSHR(gvec_srshr_h, int16_t) 1688 DO_RSHR(gvec_srshr_s, int32_t) 1689 DO_RSHR(gvec_srshr_d, int64_t) 1690 1691 DO_RSHR(gvec_urshr_b, uint8_t) 1692 DO_RSHR(gvec_urshr_h, uint16_t) 1693 DO_RSHR(gvec_urshr_s, uint32_t) 1694 DO_RSHR(gvec_urshr_d, uint64_t) 1695 1696 #undef DO_RSHR 1697 1698 #define DO_RSRA(NAME, TYPE) \ 1699 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1700 { \ 1701 intptr_t i, oprsz = simd_oprsz(desc); \ 1702 int shift = simd_data(desc); \ 1703 TYPE *d = vd, *n = vn; \ 1704 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1705 TYPE tmp = n[i] >> (shift - 1); \ 1706 d[i] += (tmp >> 1) + (tmp & 1); \ 1707 } \ 1708 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1709 } 1710 1711 DO_RSRA(gvec_srsra_b, int8_t) 1712 DO_RSRA(gvec_srsra_h, int16_t) 1713 DO_RSRA(gvec_srsra_s, int32_t) 1714 DO_RSRA(gvec_srsra_d, int64_t) 1715 1716 DO_RSRA(gvec_ursra_b, uint8_t) 1717 DO_RSRA(gvec_ursra_h, uint16_t) 1718 DO_RSRA(gvec_ursra_s, uint32_t) 1719 DO_RSRA(gvec_ursra_d, uint64_t) 1720 1721 #undef DO_RSRA 1722 1723 #define DO_SRI(NAME, TYPE) \ 1724 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1725 { \ 1726 intptr_t i, oprsz = simd_oprsz(desc); \ 1727 int shift = simd_data(desc); \ 1728 TYPE *d = vd, *n = vn; \ 1729 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1730 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \ 1731 } \ 1732 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1733 } 1734 1735 DO_SRI(gvec_sri_b, uint8_t) 1736 DO_SRI(gvec_sri_h, uint16_t) 1737 DO_SRI(gvec_sri_s, uint32_t) 1738 DO_SRI(gvec_sri_d, uint64_t) 1739 1740 #undef DO_SRI 1741 1742 #define DO_SLI(NAME, TYPE) \ 1743 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 1744 { \ 1745 intptr_t i, oprsz = simd_oprsz(desc); \ 1746 int shift = simd_data(desc); \ 1747 TYPE *d = vd, *n = vn; \ 1748 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 1749 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \ 1750 } \ 1751 clear_tail(d, oprsz, simd_maxsz(desc)); \ 1752 } 1753 1754 DO_SLI(gvec_sli_b, uint8_t) 1755 DO_SLI(gvec_sli_h, uint16_t) 1756 DO_SLI(gvec_sli_s, uint32_t) 1757 DO_SLI(gvec_sli_d, uint64_t) 1758 1759 #undef DO_SLI 1760 1761 /* 1762 * Convert float16 to float32, raising no exceptions and 1763 * preserving exceptional values, including SNaN. 1764 * This is effectively an unpack+repack operation. 1765 */ 1766 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16) 1767 { 1768 const int f16_bias = 15; 1769 const int f32_bias = 127; 1770 uint32_t sign = extract32(f16, 15, 1); 1771 uint32_t exp = extract32(f16, 10, 5); 1772 uint32_t frac = extract32(f16, 0, 10); 1773 1774 if (exp == 0x1f) { 1775 /* Inf or NaN */ 1776 exp = 0xff; 1777 } else if (exp == 0) { 1778 /* Zero or denormal. */ 1779 if (frac != 0) { 1780 if (fz16) { 1781 frac = 0; 1782 } else { 1783 /* 1784 * Denormal; these are all normal float32. 1785 * Shift the fraction so that the msb is at bit 11, 1786 * then remove bit 11 as the implicit bit of the 1787 * normalized float32. Note that we still go through 1788 * the shift for normal numbers below, to put the 1789 * float32 fraction at the right place. 1790 */ 1791 int shift = clz32(frac) - 21; 1792 frac = (frac << shift) & 0x3ff; 1793 exp = f32_bias - f16_bias - shift + 1; 1794 } 1795 } 1796 } else { 1797 /* Normal number; adjust the bias. */ 1798 exp += f32_bias - f16_bias; 1799 } 1800 sign <<= 31; 1801 exp <<= 23; 1802 frac <<= 23 - 10; 1803 1804 return sign | exp | frac; 1805 } 1806 1807 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2) 1808 { 1809 /* 1810 * Branchless load of u32[0], u64[0], u32[1], or u64[1]. 1811 * Load the 2nd qword iff is_q & is_2. 1812 * Shift to the 2nd dword iff !is_q & is_2. 1813 * For !is_q & !is_2, the upper bits of the result are garbage. 1814 */ 1815 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5); 1816 } 1817 1818 /* 1819 * Note that FMLAL requires oprsz == 8 or oprsz == 16, 1820 * as there is not yet SVE versions that might use blocking. 1821 */ 1822 1823 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst, 1824 uint32_t desc, bool fz16) 1825 { 1826 intptr_t i, oprsz = simd_oprsz(desc); 1827 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); 1828 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 1829 int is_q = oprsz == 16; 1830 uint64_t n_4, m_4; 1831 1832 /* Pre-load all of the f16 data, avoiding overlap issues. */ 1833 n_4 = load4_f16(vn, is_q, is_2); 1834 m_4 = load4_f16(vm, is_q, is_2); 1835 1836 /* Negate all inputs for FMLSL at once. */ 1837 if (is_s) { 1838 n_4 ^= 0x8000800080008000ull; 1839 } 1840 1841 for (i = 0; i < oprsz / 4; i++) { 1842 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); 1843 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16); 1844 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); 1845 } 1846 clear_tail(d, oprsz, simd_maxsz(desc)); 1847 } 1848 1849 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm, 1850 void *venv, uint32_t desc) 1851 { 1852 CPUARMState *env = venv; 1853 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc, 1854 get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); 1855 } 1856 1857 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm, 1858 void *venv, uint32_t desc) 1859 { 1860 CPUARMState *env = venv; 1861 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc, 1862 get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); 1863 } 1864 1865 void HELPER(sve2_fmlal_zzzw_s)(void *vd, void *vn, void *vm, void *va, 1866 void *venv, uint32_t desc) 1867 { 1868 intptr_t i, oprsz = simd_oprsz(desc); 1869 uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; 1870 intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); 1871 CPUARMState *env = venv; 1872 float_status *status = &env->vfp.fp_status; 1873 bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); 1874 1875 for (i = 0; i < oprsz; i += sizeof(float32)) { 1876 float16 nn_16 = *(float16 *)(vn + H1_2(i + sel)) ^ negn; 1877 float16 mm_16 = *(float16 *)(vm + H1_2(i + sel)); 1878 float32 nn = float16_to_float32_by_bits(nn_16, fz16); 1879 float32 mm = float16_to_float32_by_bits(mm_16, fz16); 1880 float32 aa = *(float32 *)(va + H1_4(i)); 1881 1882 *(float32 *)(vd + H1_4(i)) = float32_muladd(nn, mm, aa, 0, status); 1883 } 1884 } 1885 1886 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst, 1887 uint32_t desc, bool fz16) 1888 { 1889 intptr_t i, oprsz = simd_oprsz(desc); 1890 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); 1891 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); 1892 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3); 1893 int is_q = oprsz == 16; 1894 uint64_t n_4; 1895 float32 m_1; 1896 1897 /* Pre-load all of the f16 data, avoiding overlap issues. */ 1898 n_4 = load4_f16(vn, is_q, is_2); 1899 1900 /* Negate all inputs for FMLSL at once. */ 1901 if (is_s) { 1902 n_4 ^= 0x8000800080008000ull; 1903 } 1904 1905 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16); 1906 1907 for (i = 0; i < oprsz / 4; i++) { 1908 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); 1909 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); 1910 } 1911 clear_tail(d, oprsz, simd_maxsz(desc)); 1912 } 1913 1914 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm, 1915 void *venv, uint32_t desc) 1916 { 1917 CPUARMState *env = venv; 1918 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc, 1919 get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); 1920 } 1921 1922 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm, 1923 void *venv, uint32_t desc) 1924 { 1925 CPUARMState *env = venv; 1926 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc, 1927 get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); 1928 } 1929 1930 void HELPER(sve2_fmlal_zzxw_s)(void *vd, void *vn, void *vm, void *va, 1931 void *venv, uint32_t desc) 1932 { 1933 intptr_t i, j, oprsz = simd_oprsz(desc); 1934 uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; 1935 intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); 1936 intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 3) * sizeof(float16); 1937 CPUARMState *env = venv; 1938 float_status *status = &env->vfp.fp_status; 1939 bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); 1940 1941 for (i = 0; i < oprsz; i += 16) { 1942 float16 mm_16 = *(float16 *)(vm + i + idx); 1943 float32 mm = float16_to_float32_by_bits(mm_16, fz16); 1944 1945 for (j = 0; j < 16; j += sizeof(float32)) { 1946 float16 nn_16 = *(float16 *)(vn + H1_2(i + j + sel)) ^ negn; 1947 float32 nn = float16_to_float32_by_bits(nn_16, fz16); 1948 float32 aa = *(float32 *)(va + H1_4(i + j)); 1949 1950 *(float32 *)(vd + H1_4(i + j)) = 1951 float32_muladd(nn, mm, aa, 0, status); 1952 } 1953 } 1954 } 1955 1956 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc) 1957 { 1958 intptr_t i, opr_sz = simd_oprsz(desc); 1959 int8_t *d = vd, *n = vn, *m = vm; 1960 1961 for (i = 0; i < opr_sz; ++i) { 1962 int8_t mm = m[i]; 1963 int8_t nn = n[i]; 1964 int8_t res = 0; 1965 if (mm >= 0) { 1966 if (mm < 8) { 1967 res = nn << mm; 1968 } 1969 } else { 1970 res = nn >> (mm > -8 ? -mm : 7); 1971 } 1972 d[i] = res; 1973 } 1974 clear_tail(d, opr_sz, simd_maxsz(desc)); 1975 } 1976 1977 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc) 1978 { 1979 intptr_t i, opr_sz = simd_oprsz(desc); 1980 int16_t *d = vd, *n = vn, *m = vm; 1981 1982 for (i = 0; i < opr_sz / 2; ++i) { 1983 int8_t mm = m[i]; /* only 8 bits of shift are significant */ 1984 int16_t nn = n[i]; 1985 int16_t res = 0; 1986 if (mm >= 0) { 1987 if (mm < 16) { 1988 res = nn << mm; 1989 } 1990 } else { 1991 res = nn >> (mm > -16 ? -mm : 15); 1992 } 1993 d[i] = res; 1994 } 1995 clear_tail(d, opr_sz, simd_maxsz(desc)); 1996 } 1997 1998 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc) 1999 { 2000 intptr_t i, opr_sz = simd_oprsz(desc); 2001 uint8_t *d = vd, *n = vn, *m = vm; 2002 2003 for (i = 0; i < opr_sz; ++i) { 2004 int8_t mm = m[i]; 2005 uint8_t nn = n[i]; 2006 uint8_t res = 0; 2007 if (mm >= 0) { 2008 if (mm < 8) { 2009 res = nn << mm; 2010 } 2011 } else { 2012 if (mm > -8) { 2013 res = nn >> -mm; 2014 } 2015 } 2016 d[i] = res; 2017 } 2018 clear_tail(d, opr_sz, simd_maxsz(desc)); 2019 } 2020 2021 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc) 2022 { 2023 intptr_t i, opr_sz = simd_oprsz(desc); 2024 uint16_t *d = vd, *n = vn, *m = vm; 2025 2026 for (i = 0; i < opr_sz / 2; ++i) { 2027 int8_t mm = m[i]; /* only 8 bits of shift are significant */ 2028 uint16_t nn = n[i]; 2029 uint16_t res = 0; 2030 if (mm >= 0) { 2031 if (mm < 16) { 2032 res = nn << mm; 2033 } 2034 } else { 2035 if (mm > -16) { 2036 res = nn >> -mm; 2037 } 2038 } 2039 d[i] = res; 2040 } 2041 clear_tail(d, opr_sz, simd_maxsz(desc)); 2042 } 2043 2044 /* 2045 * 8x8->8 polynomial multiply. 2046 * 2047 * Polynomial multiplication is like integer multiplication except the 2048 * partial products are XORed, not added. 2049 * 2050 * TODO: expose this as a generic vector operation, as it is a common 2051 * crypto building block. 2052 */ 2053 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc) 2054 { 2055 intptr_t i, opr_sz = simd_oprsz(desc); 2056 uint64_t *d = vd, *n = vn, *m = vm; 2057 2058 for (i = 0; i < opr_sz / 8; ++i) { 2059 d[i] = clmul_8x8_low(n[i], m[i]); 2060 } 2061 clear_tail(d, opr_sz, simd_maxsz(desc)); 2062 } 2063 2064 /* 2065 * 64x64->128 polynomial multiply. 2066 * Because of the lanes are not accessed in strict columns, 2067 * this probably cannot be turned into a generic helper. 2068 */ 2069 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc) 2070 { 2071 intptr_t i, opr_sz = simd_oprsz(desc); 2072 intptr_t hi = simd_data(desc); 2073 uint64_t *d = vd, *n = vn, *m = vm; 2074 2075 for (i = 0; i < opr_sz / 8; i += 2) { 2076 Int128 r = clmul_64(n[i + hi], m[i + hi]); 2077 d[i] = int128_getlo(r); 2078 d[i + 1] = int128_gethi(r); 2079 } 2080 clear_tail(d, opr_sz, simd_maxsz(desc)); 2081 } 2082 2083 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) 2084 { 2085 int hi = simd_data(desc); 2086 uint64_t *d = vd, *n = vn, *m = vm; 2087 uint64_t nn = n[hi], mm = m[hi]; 2088 2089 d[0] = clmul_8x4_packed(nn, mm); 2090 nn >>= 32; 2091 mm >>= 32; 2092 d[1] = clmul_8x4_packed(nn, mm); 2093 2094 clear_tail(d, 16, simd_maxsz(desc)); 2095 } 2096 2097 #ifdef TARGET_AARCH64 2098 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) 2099 { 2100 int shift = simd_data(desc) * 8; 2101 intptr_t i, opr_sz = simd_oprsz(desc); 2102 uint64_t *d = vd, *n = vn, *m = vm; 2103 2104 for (i = 0; i < opr_sz / 8; ++i) { 2105 d[i] = clmul_8x4_even(n[i] >> shift, m[i] >> shift); 2106 } 2107 } 2108 2109 void HELPER(sve2_pmull_d)(void *vd, void *vn, void *vm, uint32_t desc) 2110 { 2111 intptr_t sel = H4(simd_data(desc)); 2112 intptr_t i, opr_sz = simd_oprsz(desc); 2113 uint32_t *n = vn, *m = vm; 2114 uint64_t *d = vd; 2115 2116 for (i = 0; i < opr_sz / 8; ++i) { 2117 d[i] = clmul_32(n[2 * i + sel], m[2 * i + sel]); 2118 } 2119 } 2120 #endif 2121 2122 #define DO_CMP0(NAME, TYPE, OP) \ 2123 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ 2124 { \ 2125 intptr_t i, opr_sz = simd_oprsz(desc); \ 2126 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ 2127 TYPE nn = *(TYPE *)(vn + i); \ 2128 *(TYPE *)(vd + i) = -(nn OP 0); \ 2129 } \ 2130 clear_tail(vd, opr_sz, simd_maxsz(desc)); \ 2131 } 2132 2133 DO_CMP0(gvec_ceq0_b, int8_t, ==) 2134 DO_CMP0(gvec_clt0_b, int8_t, <) 2135 DO_CMP0(gvec_cle0_b, int8_t, <=) 2136 DO_CMP0(gvec_cgt0_b, int8_t, >) 2137 DO_CMP0(gvec_cge0_b, int8_t, >=) 2138 2139 DO_CMP0(gvec_ceq0_h, int16_t, ==) 2140 DO_CMP0(gvec_clt0_h, int16_t, <) 2141 DO_CMP0(gvec_cle0_h, int16_t, <=) 2142 DO_CMP0(gvec_cgt0_h, int16_t, >) 2143 DO_CMP0(gvec_cge0_h, int16_t, >=) 2144 2145 #undef DO_CMP0 2146 2147 #define DO_ABD(NAME, TYPE) \ 2148 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 2149 { \ 2150 intptr_t i, opr_sz = simd_oprsz(desc); \ 2151 TYPE *d = vd, *n = vn, *m = vm; \ 2152 \ 2153 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \ 2154 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \ 2155 } \ 2156 clear_tail(d, opr_sz, simd_maxsz(desc)); \ 2157 } 2158 2159 DO_ABD(gvec_sabd_b, int8_t) 2160 DO_ABD(gvec_sabd_h, int16_t) 2161 DO_ABD(gvec_sabd_s, int32_t) 2162 DO_ABD(gvec_sabd_d, int64_t) 2163 2164 DO_ABD(gvec_uabd_b, uint8_t) 2165 DO_ABD(gvec_uabd_h, uint16_t) 2166 DO_ABD(gvec_uabd_s, uint32_t) 2167 DO_ABD(gvec_uabd_d, uint64_t) 2168 2169 #undef DO_ABD 2170 2171 #define DO_ABA(NAME, TYPE) \ 2172 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ 2173 { \ 2174 intptr_t i, opr_sz = simd_oprsz(desc); \ 2175 TYPE *d = vd, *n = vn, *m = vm; \ 2176 \ 2177 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \ 2178 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \ 2179 } \ 2180 clear_tail(d, opr_sz, simd_maxsz(desc)); \ 2181 } 2182 2183 DO_ABA(gvec_saba_b, int8_t) 2184 DO_ABA(gvec_saba_h, int16_t) 2185 DO_ABA(gvec_saba_s, int32_t) 2186 DO_ABA(gvec_saba_d, int64_t) 2187 2188 DO_ABA(gvec_uaba_b, uint8_t) 2189 DO_ABA(gvec_uaba_h, uint16_t) 2190 DO_ABA(gvec_uaba_s, uint32_t) 2191 DO_ABA(gvec_uaba_d, uint64_t) 2192 2193 #undef DO_ABA 2194 2195 #define DO_NEON_PAIRWISE(NAME, OP) \ 2196 void HELPER(NAME##s)(void *vd, void *vn, void *vm, \ 2197 void *stat, uint32_t oprsz) \ 2198 { \ 2199 float_status *fpst = stat; \ 2200 float32 *d = vd; \ 2201 float32 *n = vn; \ 2202 float32 *m = vm; \ 2203 float32 r0, r1; \ 2204 \ 2205 /* Read all inputs before writing outputs in case vm == vd */ \ 2206 r0 = float32_##OP(n[H4(0)], n[H4(1)], fpst); \ 2207 r1 = float32_##OP(m[H4(0)], m[H4(1)], fpst); \ 2208 \ 2209 d[H4(0)] = r0; \ 2210 d[H4(1)] = r1; \ 2211 } \ 2212 \ 2213 void HELPER(NAME##h)(void *vd, void *vn, void *vm, \ 2214 void *stat, uint32_t oprsz) \ 2215 { \ 2216 float_status *fpst = stat; \ 2217 float16 *d = vd; \ 2218 float16 *n = vn; \ 2219 float16 *m = vm; \ 2220 float16 r0, r1, r2, r3; \ 2221 \ 2222 /* Read all inputs before writing outputs in case vm == vd */ \ 2223 r0 = float16_##OP(n[H2(0)], n[H2(1)], fpst); \ 2224 r1 = float16_##OP(n[H2(2)], n[H2(3)], fpst); \ 2225 r2 = float16_##OP(m[H2(0)], m[H2(1)], fpst); \ 2226 r3 = float16_##OP(m[H2(2)], m[H2(3)], fpst); \ 2227 \ 2228 d[H2(0)] = r0; \ 2229 d[H2(1)] = r1; \ 2230 d[H2(2)] = r2; \ 2231 d[H2(3)] = r3; \ 2232 } 2233 2234 DO_NEON_PAIRWISE(neon_padd, add) 2235 DO_NEON_PAIRWISE(neon_pmax, max) 2236 DO_NEON_PAIRWISE(neon_pmin, min) 2237 2238 #undef DO_NEON_PAIRWISE 2239 2240 #define DO_3OP_PAIR(NAME, FUNC, TYPE, H) \ 2241 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ 2242 { \ 2243 ARMVectorReg scratch; \ 2244 intptr_t oprsz = simd_oprsz(desc); \ 2245 intptr_t half = oprsz / sizeof(TYPE) / 2; \ 2246 TYPE *d = vd, *n = vn, *m = vm; \ 2247 if (unlikely(d == m)) { \ 2248 m = memcpy(&scratch, m, oprsz); \ 2249 } \ 2250 for (intptr_t i = 0; i < half; ++i) { \ 2251 d[H(i)] = FUNC(n[H(i * 2)], n[H(i * 2 + 1)], stat); \ 2252 } \ 2253 for (intptr_t i = 0; i < half; ++i) { \ 2254 d[H(i + half)] = FUNC(m[H(i * 2)], m[H(i * 2 + 1)], stat); \ 2255 } \ 2256 clear_tail(d, oprsz, simd_maxsz(desc)); \ 2257 } 2258 2259 DO_3OP_PAIR(gvec_faddp_h, float16_add, float16, H2) 2260 DO_3OP_PAIR(gvec_faddp_s, float32_add, float32, H4) 2261 DO_3OP_PAIR(gvec_faddp_d, float64_add, float64, ) 2262 2263 DO_3OP_PAIR(gvec_fmaxp_h, float16_max, float16, H2) 2264 DO_3OP_PAIR(gvec_fmaxp_s, float32_max, float32, H4) 2265 DO_3OP_PAIR(gvec_fmaxp_d, float64_max, float64, ) 2266 2267 DO_3OP_PAIR(gvec_fminp_h, float16_min, float16, H2) 2268 DO_3OP_PAIR(gvec_fminp_s, float32_min, float32, H4) 2269 DO_3OP_PAIR(gvec_fminp_d, float64_min, float64, ) 2270 2271 DO_3OP_PAIR(gvec_fmaxnump_h, float16_maxnum, float16, H2) 2272 DO_3OP_PAIR(gvec_fmaxnump_s, float32_maxnum, float32, H4) 2273 DO_3OP_PAIR(gvec_fmaxnump_d, float64_maxnum, float64, ) 2274 2275 DO_3OP_PAIR(gvec_fminnump_h, float16_minnum, float16, H2) 2276 DO_3OP_PAIR(gvec_fminnump_s, float32_minnum, float32, H4) 2277 DO_3OP_PAIR(gvec_fminnump_d, float64_minnum, float64, ) 2278 2279 #define DO_VCVT_FIXED(NAME, FUNC, TYPE) \ 2280 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ 2281 { \ 2282 intptr_t i, oprsz = simd_oprsz(desc); \ 2283 int shift = simd_data(desc); \ 2284 TYPE *d = vd, *n = vn; \ 2285 float_status *fpst = stat; \ 2286 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 2287 d[i] = FUNC(n[i], shift, fpst); \ 2288 } \ 2289 clear_tail(d, oprsz, simd_maxsz(desc)); \ 2290 } 2291 2292 DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t) 2293 DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t) 2294 DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t) 2295 DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t) 2296 DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t) 2297 DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t) 2298 DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t) 2299 DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t) 2300 2301 #undef DO_VCVT_FIXED 2302 2303 #define DO_VCVT_RMODE(NAME, FUNC, TYPE) \ 2304 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ 2305 { \ 2306 float_status *fpst = stat; \ 2307 intptr_t i, oprsz = simd_oprsz(desc); \ 2308 uint32_t rmode = simd_data(desc); \ 2309 uint32_t prev_rmode = get_float_rounding_mode(fpst); \ 2310 TYPE *d = vd, *n = vn; \ 2311 set_float_rounding_mode(rmode, fpst); \ 2312 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 2313 d[i] = FUNC(n[i], 0, fpst); \ 2314 } \ 2315 set_float_rounding_mode(prev_rmode, fpst); \ 2316 clear_tail(d, oprsz, simd_maxsz(desc)); \ 2317 } 2318 2319 DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t) 2320 DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t) 2321 DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t) 2322 DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t) 2323 2324 #undef DO_VCVT_RMODE 2325 2326 #define DO_VRINT_RMODE(NAME, FUNC, TYPE) \ 2327 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ 2328 { \ 2329 float_status *fpst = stat; \ 2330 intptr_t i, oprsz = simd_oprsz(desc); \ 2331 uint32_t rmode = simd_data(desc); \ 2332 uint32_t prev_rmode = get_float_rounding_mode(fpst); \ 2333 TYPE *d = vd, *n = vn; \ 2334 set_float_rounding_mode(rmode, fpst); \ 2335 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ 2336 d[i] = FUNC(n[i], fpst); \ 2337 } \ 2338 set_float_rounding_mode(prev_rmode, fpst); \ 2339 clear_tail(d, oprsz, simd_maxsz(desc)); \ 2340 } 2341 2342 DO_VRINT_RMODE(gvec_vrint_rm_h, helper_rinth, uint16_t) 2343 DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t) 2344 2345 #undef DO_VRINT_RMODE 2346 2347 #ifdef TARGET_AARCH64 2348 void HELPER(simd_tblx)(void *vd, void *vm, void *venv, uint32_t desc) 2349 { 2350 const uint8_t *indices = vm; 2351 CPUARMState *env = venv; 2352 size_t oprsz = simd_oprsz(desc); 2353 uint32_t rn = extract32(desc, SIMD_DATA_SHIFT, 5); 2354 bool is_tbx = extract32(desc, SIMD_DATA_SHIFT + 5, 1); 2355 uint32_t table_len = desc >> (SIMD_DATA_SHIFT + 6); 2356 union { 2357 uint8_t b[16]; 2358 uint64_t d[2]; 2359 } result; 2360 2361 /* 2362 * We must construct the final result in a temp, lest the output 2363 * overlaps the input table. For TBL, begin with zero; for TBX, 2364 * begin with the original register contents. Note that we always 2365 * copy 16 bytes here to avoid an extra branch; clearing the high 2366 * bits of the register for oprsz == 8 is handled below. 2367 */ 2368 if (is_tbx) { 2369 memcpy(&result, vd, 16); 2370 } else { 2371 memset(&result, 0, 16); 2372 } 2373 2374 for (size_t i = 0; i < oprsz; ++i) { 2375 uint32_t index = indices[H1(i)]; 2376 2377 if (index < table_len) { 2378 /* 2379 * Convert index (a byte offset into the virtual table 2380 * which is a series of 128-bit vectors concatenated) 2381 * into the correct register element, bearing in mind 2382 * that the table can wrap around from V31 to V0. 2383 */ 2384 const uint8_t *table = (const uint8_t *) 2385 aa64_vfp_qreg(env, (rn + (index >> 4)) % 32); 2386 result.b[H1(i)] = table[H1(index % 16)]; 2387 } 2388 } 2389 2390 memcpy(vd, &result, 16); 2391 clear_tail(vd, oprsz, simd_maxsz(desc)); 2392 } 2393 #endif 2394 2395 /* 2396 * NxN -> N highpart multiply 2397 * 2398 * TODO: expose this as a generic vector operation. 2399 */ 2400 2401 void HELPER(gvec_smulh_b)(void *vd, void *vn, void *vm, uint32_t desc) 2402 { 2403 intptr_t i, opr_sz = simd_oprsz(desc); 2404 int8_t *d = vd, *n = vn, *m = vm; 2405 2406 for (i = 0; i < opr_sz; ++i) { 2407 d[i] = ((int32_t)n[i] * m[i]) >> 8; 2408 } 2409 clear_tail(d, opr_sz, simd_maxsz(desc)); 2410 } 2411 2412 void HELPER(gvec_smulh_h)(void *vd, void *vn, void *vm, uint32_t desc) 2413 { 2414 intptr_t i, opr_sz = simd_oprsz(desc); 2415 int16_t *d = vd, *n = vn, *m = vm; 2416 2417 for (i = 0; i < opr_sz / 2; ++i) { 2418 d[i] = ((int32_t)n[i] * m[i]) >> 16; 2419 } 2420 clear_tail(d, opr_sz, simd_maxsz(desc)); 2421 } 2422 2423 void HELPER(gvec_smulh_s)(void *vd, void *vn, void *vm, uint32_t desc) 2424 { 2425 intptr_t i, opr_sz = simd_oprsz(desc); 2426 int32_t *d = vd, *n = vn, *m = vm; 2427 2428 for (i = 0; i < opr_sz / 4; ++i) { 2429 d[i] = ((int64_t)n[i] * m[i]) >> 32; 2430 } 2431 clear_tail(d, opr_sz, simd_maxsz(desc)); 2432 } 2433 2434 void HELPER(gvec_smulh_d)(void *vd, void *vn, void *vm, uint32_t desc) 2435 { 2436 intptr_t i, opr_sz = simd_oprsz(desc); 2437 uint64_t *d = vd, *n = vn, *m = vm; 2438 uint64_t discard; 2439 2440 for (i = 0; i < opr_sz / 8; ++i) { 2441 muls64(&discard, &d[i], n[i], m[i]); 2442 } 2443 clear_tail(d, opr_sz, simd_maxsz(desc)); 2444 } 2445 2446 void HELPER(gvec_umulh_b)(void *vd, void *vn, void *vm, uint32_t desc) 2447 { 2448 intptr_t i, opr_sz = simd_oprsz(desc); 2449 uint8_t *d = vd, *n = vn, *m = vm; 2450 2451 for (i = 0; i < opr_sz; ++i) { 2452 d[i] = ((uint32_t)n[i] * m[i]) >> 8; 2453 } 2454 clear_tail(d, opr_sz, simd_maxsz(desc)); 2455 } 2456 2457 void HELPER(gvec_umulh_h)(void *vd, void *vn, void *vm, uint32_t desc) 2458 { 2459 intptr_t i, opr_sz = simd_oprsz(desc); 2460 uint16_t *d = vd, *n = vn, *m = vm; 2461 2462 for (i = 0; i < opr_sz / 2; ++i) { 2463 d[i] = ((uint32_t)n[i] * m[i]) >> 16; 2464 } 2465 clear_tail(d, opr_sz, simd_maxsz(desc)); 2466 } 2467 2468 void HELPER(gvec_umulh_s)(void *vd, void *vn, void *vm, uint32_t desc) 2469 { 2470 intptr_t i, opr_sz = simd_oprsz(desc); 2471 uint32_t *d = vd, *n = vn, *m = vm; 2472 2473 for (i = 0; i < opr_sz / 4; ++i) { 2474 d[i] = ((uint64_t)n[i] * m[i]) >> 32; 2475 } 2476 clear_tail(d, opr_sz, simd_maxsz(desc)); 2477 } 2478 2479 void HELPER(gvec_umulh_d)(void *vd, void *vn, void *vm, uint32_t desc) 2480 { 2481 intptr_t i, opr_sz = simd_oprsz(desc); 2482 uint64_t *d = vd, *n = vn, *m = vm; 2483 uint64_t discard; 2484 2485 for (i = 0; i < opr_sz / 8; ++i) { 2486 mulu64(&discard, &d[i], n[i], m[i]); 2487 } 2488 clear_tail(d, opr_sz, simd_maxsz(desc)); 2489 } 2490 2491 void HELPER(gvec_xar_d)(void *vd, void *vn, void *vm, uint32_t desc) 2492 { 2493 intptr_t i, opr_sz = simd_oprsz(desc) / 8; 2494 int shr = simd_data(desc); 2495 uint64_t *d = vd, *n = vn, *m = vm; 2496 2497 for (i = 0; i < opr_sz; ++i) { 2498 d[i] = ror64(n[i] ^ m[i], shr); 2499 } 2500 clear_tail(d, opr_sz * 8, simd_maxsz(desc)); 2501 } 2502 2503 /* 2504 * Integer matrix-multiply accumulate 2505 */ 2506 2507 static uint32_t do_smmla_b(uint32_t sum, void *vn, void *vm) 2508 { 2509 int8_t *n = vn, *m = vm; 2510 2511 for (intptr_t k = 0; k < 8; ++k) { 2512 sum += n[H1(k)] * m[H1(k)]; 2513 } 2514 return sum; 2515 } 2516 2517 static uint32_t do_ummla_b(uint32_t sum, void *vn, void *vm) 2518 { 2519 uint8_t *n = vn, *m = vm; 2520 2521 for (intptr_t k = 0; k < 8; ++k) { 2522 sum += n[H1(k)] * m[H1(k)]; 2523 } 2524 return sum; 2525 } 2526 2527 static uint32_t do_usmmla_b(uint32_t sum, void *vn, void *vm) 2528 { 2529 uint8_t *n = vn; 2530 int8_t *m = vm; 2531 2532 for (intptr_t k = 0; k < 8; ++k) { 2533 sum += n[H1(k)] * m[H1(k)]; 2534 } 2535 return sum; 2536 } 2537 2538 static void do_mmla_b(void *vd, void *vn, void *vm, void *va, uint32_t desc, 2539 uint32_t (*inner_loop)(uint32_t, void *, void *)) 2540 { 2541 intptr_t seg, opr_sz = simd_oprsz(desc); 2542 2543 for (seg = 0; seg < opr_sz; seg += 16) { 2544 uint32_t *d = vd + seg; 2545 uint32_t *a = va + seg; 2546 uint32_t sum0, sum1, sum2, sum3; 2547 2548 /* 2549 * Process the entire segment at once, writing back the 2550 * results only after we've consumed all of the inputs. 2551 * 2552 * Key to indices by column: 2553 * i j i j 2554 */ 2555 sum0 = a[H4(0 + 0)]; 2556 sum0 = inner_loop(sum0, vn + seg + 0, vm + seg + 0); 2557 sum1 = a[H4(0 + 1)]; 2558 sum1 = inner_loop(sum1, vn + seg + 0, vm + seg + 8); 2559 sum2 = a[H4(2 + 0)]; 2560 sum2 = inner_loop(sum2, vn + seg + 8, vm + seg + 0); 2561 sum3 = a[H4(2 + 1)]; 2562 sum3 = inner_loop(sum3, vn + seg + 8, vm + seg + 8); 2563 2564 d[H4(0)] = sum0; 2565 d[H4(1)] = sum1; 2566 d[H4(2)] = sum2; 2567 d[H4(3)] = sum3; 2568 } 2569 clear_tail(vd, opr_sz, simd_maxsz(desc)); 2570 } 2571 2572 #define DO_MMLA_B(NAME, INNER) \ 2573 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ 2574 { do_mmla_b(vd, vn, vm, va, desc, INNER); } 2575 2576 DO_MMLA_B(gvec_smmla_b, do_smmla_b) 2577 DO_MMLA_B(gvec_ummla_b, do_ummla_b) 2578 DO_MMLA_B(gvec_usmmla_b, do_usmmla_b) 2579 2580 /* 2581 * BFloat16 Dot Product 2582 */ 2583 2584 float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2) 2585 { 2586 /* FPCR is ignored for BFDOT and BFMMLA. */ 2587 float_status bf_status = { 2588 .tininess_before_rounding = float_tininess_before_rounding, 2589 .float_rounding_mode = float_round_to_odd_inf, 2590 .flush_to_zero = true, 2591 .flush_inputs_to_zero = true, 2592 .default_nan_mode = true, 2593 }; 2594 float32 t1, t2; 2595 2596 /* 2597 * Extract each BFloat16 from the element pair, and shift 2598 * them such that they become float32. 2599 */ 2600 t1 = float32_mul(e1 << 16, e2 << 16, &bf_status); 2601 t2 = float32_mul(e1 & 0xffff0000u, e2 & 0xffff0000u, &bf_status); 2602 t1 = float32_add(t1, t2, &bf_status); 2603 t1 = float32_add(sum, t1, &bf_status); 2604 2605 return t1; 2606 } 2607 2608 void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va, uint32_t desc) 2609 { 2610 intptr_t i, opr_sz = simd_oprsz(desc); 2611 float32 *d = vd, *a = va; 2612 uint32_t *n = vn, *m = vm; 2613 2614 for (i = 0; i < opr_sz / 4; ++i) { 2615 d[i] = bfdotadd(a[i], n[i], m[i]); 2616 } 2617 clear_tail(d, opr_sz, simd_maxsz(desc)); 2618 } 2619 2620 void HELPER(gvec_bfdot_idx)(void *vd, void *vn, void *vm, 2621 void *va, uint32_t desc) 2622 { 2623 intptr_t i, j, opr_sz = simd_oprsz(desc); 2624 intptr_t index = simd_data(desc); 2625 intptr_t elements = opr_sz / 4; 2626 intptr_t eltspersegment = MIN(16 / 4, elements); 2627 float32 *d = vd, *a = va; 2628 uint32_t *n = vn, *m = vm; 2629 2630 for (i = 0; i < elements; i += eltspersegment) { 2631 uint32_t m_idx = m[i + H4(index)]; 2632 2633 for (j = i; j < i + eltspersegment; j++) { 2634 d[j] = bfdotadd(a[j], n[j], m_idx); 2635 } 2636 } 2637 clear_tail(d, opr_sz, simd_maxsz(desc)); 2638 } 2639 2640 void HELPER(gvec_bfmmla)(void *vd, void *vn, void *vm, void *va, uint32_t desc) 2641 { 2642 intptr_t s, opr_sz = simd_oprsz(desc); 2643 float32 *d = vd, *a = va; 2644 uint32_t *n = vn, *m = vm; 2645 2646 for (s = 0; s < opr_sz / 4; s += 4) { 2647 float32 sum00, sum01, sum10, sum11; 2648 2649 /* 2650 * Process the entire segment at once, writing back the 2651 * results only after we've consumed all of the inputs. 2652 * 2653 * Key to indices by column: 2654 * i j i k j k 2655 */ 2656 sum00 = a[s + H4(0 + 0)]; 2657 sum00 = bfdotadd(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)]); 2658 sum00 = bfdotadd(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)]); 2659 2660 sum01 = a[s + H4(0 + 1)]; 2661 sum01 = bfdotadd(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)]); 2662 sum01 = bfdotadd(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)]); 2663 2664 sum10 = a[s + H4(2 + 0)]; 2665 sum10 = bfdotadd(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)]); 2666 sum10 = bfdotadd(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)]); 2667 2668 sum11 = a[s + H4(2 + 1)]; 2669 sum11 = bfdotadd(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)]); 2670 sum11 = bfdotadd(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)]); 2671 2672 d[s + H4(0 + 0)] = sum00; 2673 d[s + H4(0 + 1)] = sum01; 2674 d[s + H4(2 + 0)] = sum10; 2675 d[s + H4(2 + 1)] = sum11; 2676 } 2677 clear_tail(d, opr_sz, simd_maxsz(desc)); 2678 } 2679 2680 void HELPER(gvec_bfmlal)(void *vd, void *vn, void *vm, void *va, 2681 void *stat, uint32_t desc) 2682 { 2683 intptr_t i, opr_sz = simd_oprsz(desc); 2684 intptr_t sel = simd_data(desc); 2685 float32 *d = vd, *a = va; 2686 bfloat16 *n = vn, *m = vm; 2687 2688 for (i = 0; i < opr_sz / 4; ++i) { 2689 float32 nn = n[H2(i * 2 + sel)] << 16; 2690 float32 mm = m[H2(i * 2 + sel)] << 16; 2691 d[H4(i)] = float32_muladd(nn, mm, a[H4(i)], 0, stat); 2692 } 2693 clear_tail(d, opr_sz, simd_maxsz(desc)); 2694 } 2695 2696 void HELPER(gvec_bfmlal_idx)(void *vd, void *vn, void *vm, 2697 void *va, void *stat, uint32_t desc) 2698 { 2699 intptr_t i, j, opr_sz = simd_oprsz(desc); 2700 intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1); 2701 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 1, 3); 2702 intptr_t elements = opr_sz / 4; 2703 intptr_t eltspersegment = MIN(16 / 4, elements); 2704 float32 *d = vd, *a = va; 2705 bfloat16 *n = vn, *m = vm; 2706 2707 for (i = 0; i < elements; i += eltspersegment) { 2708 float32 m_idx = m[H2(2 * i + index)] << 16; 2709 2710 for (j = i; j < i + eltspersegment; j++) { 2711 float32 n_j = n[H2(2 * j + sel)] << 16; 2712 d[H4(j)] = float32_muladd(n_j, m_idx, a[H4(j)], 0, stat); 2713 } 2714 } 2715 clear_tail(d, opr_sz, simd_maxsz(desc)); 2716 } 2717 2718 #define DO_CLAMP(NAME, TYPE) \ 2719 void HELPER(NAME)(void *d, void *n, void *m, void *a, uint32_t desc) \ 2720 { \ 2721 intptr_t i, opr_sz = simd_oprsz(desc); \ 2722 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ 2723 TYPE aa = *(TYPE *)(a + i); \ 2724 TYPE nn = *(TYPE *)(n + i); \ 2725 TYPE mm = *(TYPE *)(m + i); \ 2726 TYPE dd = MIN(MAX(aa, nn), mm); \ 2727 *(TYPE *)(d + i) = dd; \ 2728 } \ 2729 clear_tail(d, opr_sz, simd_maxsz(desc)); \ 2730 } 2731 2732 DO_CLAMP(gvec_sclamp_b, int8_t) 2733 DO_CLAMP(gvec_sclamp_h, int16_t) 2734 DO_CLAMP(gvec_sclamp_s, int32_t) 2735 DO_CLAMP(gvec_sclamp_d, int64_t) 2736 2737 DO_CLAMP(gvec_uclamp_b, uint8_t) 2738 DO_CLAMP(gvec_uclamp_h, uint16_t) 2739 DO_CLAMP(gvec_uclamp_s, uint32_t) 2740 DO_CLAMP(gvec_uclamp_d, uint64_t) 2741