xref: /openbmc/qemu/target/arm/tcg/translate.h (revision f1d73a0e1125b7061a41f016b1dc044da9039876)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled; index with is_unpriv.  */
118     bool ata[2];
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on SVC is enabled */
142     bool fgt_svc;
143     /* True if a trap on ERET is enabled (FGT or NV) */
144     bool trap_eret;
145     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146     bool naa;
147     /* True if FEAT_NV HCR_EL2.NV is enabled */
148     bool nv;
149     /* True if NV enabled and HCR_EL2.NV1 is set */
150     bool nv1;
151     /* True if NV enabled and HCR_EL2.NV2 is set */
152     bool nv2;
153     /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
154     bool nv2_mem_e20;
155     /* True if NV2 enabled and NV2 RAM accesses are big-endian */
156     bool nv2_mem_be;
157     /*
158      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
159      *  < 0, set by the current instruction.
160      */
161     int8_t btype;
162     /* A copy of cpu->dcz_blocksize. */
163     uint8_t dcz_blocksize;
164     /* A copy of cpu->gm_blocksize. */
165     uint8_t gm_blocksize;
166     /* True if the current insn_start has been updated. */
167     bool insn_start_updated;
168     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
169     int c15_cpar;
170     /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
171     uint32_t nv2_redirect_offset;
172 } DisasContext;
173 
174 typedef struct DisasCompare {
175     TCGCond cond;
176     TCGv_i32 value;
177 } DisasCompare;
178 
179 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
180 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
181 extern TCGv_i64 cpu_exclusive_addr;
182 extern TCGv_i64 cpu_exclusive_val;
183 
184 /*
185  * Constant expanders for the decoders.
186  */
187 
188 static inline int negate(DisasContext *s, int x)
189 {
190     return -x;
191 }
192 
193 static inline int plus_1(DisasContext *s, int x)
194 {
195     return x + 1;
196 }
197 
198 static inline int plus_2(DisasContext *s, int x)
199 {
200     return x + 2;
201 }
202 
203 static inline int plus_12(DisasContext *s, int x)
204 {
205     return x + 12;
206 }
207 
208 static inline int times_2(DisasContext *s, int x)
209 {
210     return x * 2;
211 }
212 
213 static inline int times_4(DisasContext *s, int x)
214 {
215     return x * 4;
216 }
217 
218 static inline int times_8(DisasContext *s, int x)
219 {
220     return x * 8;
221 }
222 
223 static inline int times_2_plus_1(DisasContext *s, int x)
224 {
225     return x * 2 + 1;
226 }
227 
228 static inline int rsub_64(DisasContext *s, int x)
229 {
230     return 64 - x;
231 }
232 
233 static inline int rsub_32(DisasContext *s, int x)
234 {
235     return 32 - x;
236 }
237 
238 static inline int rsub_16(DisasContext *s, int x)
239 {
240     return 16 - x;
241 }
242 
243 static inline int rsub_8(DisasContext *s, int x)
244 {
245     return 8 - x;
246 }
247 
248 static inline int shl_12(DisasContext *s, int x)
249 {
250     return x << 12;
251 }
252 
253 static inline int xor_2(DisasContext *s, int x)
254 {
255     return x ^ 2;
256 }
257 
258 static inline int neon_3same_fp_size(DisasContext *s, int x)
259 {
260     /* Convert 0==fp32, 1==fp16 into a MO_* value */
261     return MO_32 - x;
262 }
263 
264 static inline int arm_dc_feature(DisasContext *dc, int feature)
265 {
266     return (dc->features & (1ULL << feature)) != 0;
267 }
268 
269 static inline int get_mem_index(DisasContext *s)
270 {
271     return arm_to_core_mmu_idx(s->mmu_idx);
272 }
273 
274 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
275 {
276     /* We don't need to save all of the syndrome so we mask and shift
277      * out unneeded bits to help the sleb128 encoder do a better job.
278      */
279     syn &= ARM_INSN_START_WORD2_MASK;
280     syn >>= ARM_INSN_START_WORD2_SHIFT;
281 
282     /* Check for multiple updates.  */
283     assert(!s->insn_start_updated);
284     s->insn_start_updated = true;
285     tcg_set_insn_start_param(s->base.insn_start, 2, syn);
286 }
287 
288 static inline int curr_insn_len(DisasContext *s)
289 {
290     return s->base.pc_next - s->pc_curr;
291 }
292 
293 /* is_jmp field values */
294 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
295 /* CPU state was modified dynamically; exit to main loop for interrupts. */
296 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
297 /* These instructions trap after executing, so the A32/T32 decoder must
298  * defer them until after the conditional execution state has been updated.
299  * WFI also needs special handling when single-stepping.
300  */
301 #define DISAS_WFI       DISAS_TARGET_2
302 #define DISAS_SWI       DISAS_TARGET_3
303 /* WFE */
304 #define DISAS_WFE       DISAS_TARGET_4
305 #define DISAS_HVC       DISAS_TARGET_5
306 #define DISAS_SMC       DISAS_TARGET_6
307 #define DISAS_YIELD     DISAS_TARGET_7
308 /* M profile branch which might be an exception return (and so needs
309  * custom end-of-TB code)
310  */
311 #define DISAS_BX_EXCRET DISAS_TARGET_8
312 /*
313  * For instructions which want an immediate exit to the main loop, as opposed
314  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
315  * doesn't write the PC on exiting the translation loop so you need to ensure
316  * something (gen_a64_update_pc or runtime helper) has done so before we reach
317  * return from cpu_tb_exec.
318  */
319 #define DISAS_EXIT      DISAS_TARGET_9
320 /* CPU state was modified dynamically; no need to exit, but do not chain. */
321 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
322 
323 #ifdef TARGET_AARCH64
324 void a64_translate_init(void);
325 void gen_a64_update_pc(DisasContext *s, target_long diff);
326 extern const TranslatorOps aarch64_translator_ops;
327 #else
328 static inline void a64_translate_init(void)
329 {
330 }
331 
332 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
333 {
334 }
335 #endif
336 
337 void arm_test_cc(DisasCompare *cmp, int cc);
338 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
339 void arm_gen_test_cc(int cc, TCGLabel *label);
340 MemOp pow2_align(unsigned i);
341 void unallocated_encoding(DisasContext *s);
342 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
343                            uint32_t syn, uint32_t target_el);
344 void gen_exception_insn(DisasContext *s, target_long pc_diff,
345                         int excp, uint32_t syn);
346 
347 /* Return state of Alternate Half-precision flag, caller frees result */
348 static inline TCGv_i32 get_ahp_flag(void)
349 {
350     TCGv_i32 ret = tcg_temp_new_i32();
351 
352     tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
353     tcg_gen_extract_i32(ret, ret, 26, 1);
354 
355     return ret;
356 }
357 
358 /* Set bits within PSTATE.  */
359 static inline void set_pstate_bits(uint32_t bits)
360 {
361     TCGv_i32 p = tcg_temp_new_i32();
362 
363     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
364 
365     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
366     tcg_gen_ori_i32(p, p, bits);
367     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
368 }
369 
370 /* Clear bits within PSTATE.  */
371 static inline void clear_pstate_bits(uint32_t bits)
372 {
373     TCGv_i32 p = tcg_temp_new_i32();
374 
375     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
376 
377     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
378     tcg_gen_andi_i32(p, p, ~bits);
379     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
380 }
381 
382 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
383 static inline void gen_ss_advance(DisasContext *s)
384 {
385     if (s->ss_active) {
386         s->pstate_ss = 0;
387         clear_pstate_bits(PSTATE_SS);
388     }
389 }
390 
391 /* Generate an architectural singlestep exception */
392 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
393 {
394     /* Fill in the same_el field of the syndrome in the helper. */
395     uint32_t syn = syn_swstep(false, isv, ex);
396     gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
397 }
398 
399 /*
400  * Given a VFP floating point constant encoded into an 8 bit immediate in an
401  * instruction, expand it to the actual constant value of the specified
402  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
403  */
404 uint64_t vfp_expand_imm(int size, uint8_t imm8);
405 
406 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
407 {
408     tcg_gen_andi_i32(d, s, INT16_MAX);
409 }
410 
411 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
412 {
413     tcg_gen_andi_i32(d, s, INT32_MAX);
414 }
415 
416 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
417 {
418     tcg_gen_andi_i64(d, s, INT64_MAX);
419 }
420 
421 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
422 {
423     tcg_gen_xori_i32(d, s, 1u << 15);
424 }
425 
426 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
427 {
428     tcg_gen_xori_i32(d, s, 1u << 31);
429 }
430 
431 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
432 {
433     tcg_gen_xori_i64(d, s, 1ull << 63);
434 }
435 
436 /* Vector operations shared between ARM and AArch64.  */
437 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
438                    uint32_t opr_sz, uint32_t max_sz);
439 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
440                    uint32_t opr_sz, uint32_t max_sz);
441 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
442                    uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
444                    uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446                    uint32_t opr_sz, uint32_t max_sz);
447 
448 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
449                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
450 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 
453 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
454                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
455 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
466                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
467 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
468                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
469 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
470                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
471 
472 void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
473                      int64_t c, uint32_t opr_sz, uint32_t max_sz);
474 void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
475                      int64_t c, uint32_t opr_sz, uint32_t max_sz);
476 void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477                       int64_t c, uint32_t opr_sz, uint32_t max_sz);
478 
479 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
480                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
481 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
482                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
483 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
484                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
485 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
486                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
487 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
488                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
489 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
490                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
491 
492 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
493 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
494 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
495 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
496 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
497 
498 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
499                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
500 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
501 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
502                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
503 
504 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
505                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
506 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
507 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
508                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
509 
510 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
511                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
512 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
513 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
514                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
515 
516 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
517                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
518 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
519 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
520                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
521 
522 void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
523                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
524 void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
525                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
526 
527 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
528                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
529 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
530                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
531 
532 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
533 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
534 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
535 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
536 
537 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
538                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
539 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
540                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
541 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
542                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
543 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
544                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
545 
546 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
547                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
548 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
549                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
550 
551 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
552                          uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
553 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
554                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
555 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
556                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
557 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
558                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
559 
560 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
561                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
562 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
563                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
564 
565 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
566                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
567 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
568                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
569 
570 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
571                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
572 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
573                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
574 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
575                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
576 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
577                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
578 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
579                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
580 
581 /*
582  * Forward to the isar_feature_* tests given a DisasContext pointer.
583  */
584 #define dc_isar_feature(name, ctx) \
585     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
586 
587 /* Note that the gvec expanders operate on offsets + sizes.  */
588 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
589 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
590                          uint32_t, uint32_t);
591 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
592                         uint32_t, uint32_t, uint32_t);
593 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
594                         uint32_t, uint32_t, uint32_t);
595 
596 /* Function prototype for gen_ functions for calling Neon helpers */
597 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
598 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
599 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
600 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
601 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
602                                  TCGv_i32, TCGv_i32);
603 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
604 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
605 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
606 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
607 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
608 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
609 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
610 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
611 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
612 typedef void NeonGenOne64OpEnvFn(TCGv_i64, TCGv_env, TCGv_i64);
613 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
614 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
615 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
616 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
617 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
618 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
619 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
620 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
621 
622 /**
623  * arm_tbflags_from_tb:
624  * @tb: the TranslationBlock
625  *
626  * Extract the flag values from @tb.
627  */
628 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
629 {
630     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
631 }
632 
633 /*
634  * Enum for argument to fpstatus_ptr().
635  */
636 typedef enum ARMFPStatusFlavour {
637     FPST_FPCR,
638     FPST_FPCR_F16,
639     FPST_STD,
640     FPST_STD_F16,
641 } ARMFPStatusFlavour;
642 
643 /**
644  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
645  *
646  * We have multiple softfloat float_status fields in the Arm CPU state struct
647  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
648  * been set up to point to the requested field in the CPU state struct.
649  * The options are:
650  *
651  * FPST_FPCR
652  *   for non-FP16 operations controlled by the FPCR
653  * FPST_FPCR_F16
654  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
655  * FPST_STD
656  *   for A32/T32 Neon operations using the "standard FPSCR value"
657  * FPST_STD_F16
658  *   as FPST_STD, but where FPCR.FZ16 is to be used
659  */
660 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
661 {
662     TCGv_ptr statusptr = tcg_temp_new_ptr();
663     int offset;
664 
665     switch (flavour) {
666     case FPST_FPCR:
667         offset = offsetof(CPUARMState, vfp.fp_status);
668         break;
669     case FPST_FPCR_F16:
670         offset = offsetof(CPUARMState, vfp.fp_status_f16);
671         break;
672     case FPST_STD:
673         offset = offsetof(CPUARMState, vfp.standard_fp_status);
674         break;
675     case FPST_STD_F16:
676         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
677         break;
678     default:
679         g_assert_not_reached();
680     }
681     tcg_gen_addi_ptr(statusptr, tcg_env, offset);
682     return statusptr;
683 }
684 
685 /**
686  * finalize_memop_atom:
687  * @s: DisasContext
688  * @opc: size+sign+align of the memory operation
689  * @atom: atomicity of the memory operation
690  *
691  * Build the complete MemOp for a memory operation, including alignment,
692  * endianness, and atomicity.
693  *
694  * If (op & MO_AMASK) then the operation already contains the required
695  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
696  * unaligned operation, e.g. for AccType_NORMAL.
697  *
698  * In the latter case, there are configuration bits that require alignment,
699  * and this is applied here.  Note that there is no way to indicate that
700  * no alignment should ever be enforced; this must be handled manually.
701  */
702 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
703 {
704     if (s->align_mem && !(opc & MO_AMASK)) {
705         opc |= MO_ALIGN;
706     }
707     return opc | atom | s->be_data;
708 }
709 
710 /**
711  * finalize_memop:
712  * @s: DisasContext
713  * @opc: size+sign+align of the memory operation
714  *
715  * Like finalize_memop_atom, but with default atomicity.
716  */
717 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
718 {
719     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
720     return finalize_memop_atom(s, opc, atom);
721 }
722 
723 /**
724  * finalize_memop_pair:
725  * @s: DisasContext
726  * @opc: size+sign+align of the memory operation
727  *
728  * Like finalize_memop_atom, but with atomicity for a pair.
729  * C.f. Pseudocode for Mem[], operand ispair.
730  */
731 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
732 {
733     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
734     return finalize_memop_atom(s, opc, atom);
735 }
736 
737 /**
738  * finalize_memop_asimd:
739  * @s: DisasContext
740  * @opc: size+sign+align of the memory operation
741  *
742  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
743  */
744 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
745 {
746     /*
747      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
748      * if IsAligned(8), the first case provides separate atomicity for
749      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
750      * do not apply, and we're left with the final case of no atomicity.
751      * Thus MO_ATOM_IFALIGN_PAIR.
752      *
753      * For other sizes, normal LSE2 rules apply.
754      */
755     if ((opc & MO_SIZE) == MO_128) {
756         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
757     }
758     return finalize_memop(s, opc);
759 }
760 
761 /**
762  * asimd_imm_const: Expand an encoded SIMD constant value
763  *
764  * Expand a SIMD constant value. This is essentially the pseudocode
765  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
766  * VMVN and VBIC (when cmode < 14 && op == 1).
767  *
768  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
769  * callers must catch this; we return the 64-bit constant value defined
770  * for AArch64.
771  *
772  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
773  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
774  * we produce an immediate constant value of 0 in these cases.
775  */
776 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
777 
778 /*
779  * gen_disas_label:
780  * Create a label and cache a copy of pc_save.
781  */
782 static inline DisasLabel gen_disas_label(DisasContext *s)
783 {
784     return (DisasLabel){
785         .label = gen_new_label(),
786         .pc_save = s->pc_save,
787     };
788 }
789 
790 /*
791  * set_disas_label:
792  * Emit a label and restore the cached copy of pc_save.
793  */
794 static inline void set_disas_label(DisasContext *s, DisasLabel l)
795 {
796     gen_set_label(l.label);
797     s->pc_save = l.pc_save;
798 }
799 
800 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
801 {
802     TCGv_ptr ret = tcg_temp_new_ptr();
803     gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
804     return ret;
805 }
806 
807 /*
808  * Set and reset rounding mode around another operation.
809  */
810 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
811 {
812     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
813     TCGv_i32 old = tcg_temp_new_i32();
814 
815     gen_helper_set_rmode(old, new, fpst);
816     return old;
817 }
818 
819 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
820 {
821     gen_helper_set_rmode(old, old, fpst);
822 }
823 
824 /*
825  * Helpers for implementing sets of trans_* functions.
826  * Defer the implementation of NAME to FUNC, with optional extra arguments.
827  */
828 #define TRANS(NAME, FUNC, ...) \
829     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
830     { return FUNC(s, __VA_ARGS__); }
831 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
832     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
833     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
834 
835 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
836     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
837     {                                                             \
838         s->is_nonstreaming = true;                                \
839         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
840     }
841 
842 #endif /* TARGET_ARM_TRANSLATE_H */
843