1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ 118 bool ata[2]; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on ERET is enabled */ 142 bool fgt_eret; 143 /* True if fine-grained trap on SVC is enabled */ 144 bool fgt_svc; 145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ 146 bool naa; 147 /* 148 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 149 * < 0, set by the current instruction. 150 */ 151 int8_t btype; 152 /* A copy of cpu->dcz_blocksize. */ 153 uint8_t dcz_blocksize; 154 /* A copy of cpu->gm_blocksize. */ 155 uint8_t gm_blocksize; 156 /* True if this page is guarded. */ 157 bool guarded_page; 158 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 159 int c15_cpar; 160 /* TCG op of the current insn_start. */ 161 TCGOp *insn_start; 162 } DisasContext; 163 164 typedef struct DisasCompare { 165 TCGCond cond; 166 TCGv_i32 value; 167 } DisasCompare; 168 169 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 170 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 171 extern TCGv_i64 cpu_exclusive_addr; 172 extern TCGv_i64 cpu_exclusive_val; 173 174 /* 175 * Constant expanders for the decoders. 176 */ 177 178 static inline int negate(DisasContext *s, int x) 179 { 180 return -x; 181 } 182 183 static inline int plus_1(DisasContext *s, int x) 184 { 185 return x + 1; 186 } 187 188 static inline int plus_2(DisasContext *s, int x) 189 { 190 return x + 2; 191 } 192 193 static inline int plus_12(DisasContext *s, int x) 194 { 195 return x + 12; 196 } 197 198 static inline int times_2(DisasContext *s, int x) 199 { 200 return x * 2; 201 } 202 203 static inline int times_4(DisasContext *s, int x) 204 { 205 return x * 4; 206 } 207 208 static inline int times_2_plus_1(DisasContext *s, int x) 209 { 210 return x * 2 + 1; 211 } 212 213 static inline int rsub_64(DisasContext *s, int x) 214 { 215 return 64 - x; 216 } 217 218 static inline int rsub_32(DisasContext *s, int x) 219 { 220 return 32 - x; 221 } 222 223 static inline int rsub_16(DisasContext *s, int x) 224 { 225 return 16 - x; 226 } 227 228 static inline int rsub_8(DisasContext *s, int x) 229 { 230 return 8 - x; 231 } 232 233 static inline int shl_12(DisasContext *s, int x) 234 { 235 return x << 12; 236 } 237 238 static inline int neon_3same_fp_size(DisasContext *s, int x) 239 { 240 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 241 return MO_32 - x; 242 } 243 244 static inline int arm_dc_feature(DisasContext *dc, int feature) 245 { 246 return (dc->features & (1ULL << feature)) != 0; 247 } 248 249 static inline int get_mem_index(DisasContext *s) 250 { 251 return arm_to_core_mmu_idx(s->mmu_idx); 252 } 253 254 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 255 { 256 /* We don't need to save all of the syndrome so we mask and shift 257 * out unneeded bits to help the sleb128 encoder do a better job. 258 */ 259 syn &= ARM_INSN_START_WORD2_MASK; 260 syn >>= ARM_INSN_START_WORD2_SHIFT; 261 262 /* We check and clear insn_start_idx to catch multiple updates. */ 263 assert(s->insn_start != NULL); 264 tcg_set_insn_start_param(s->insn_start, 2, syn); 265 s->insn_start = NULL; 266 } 267 268 static inline int curr_insn_len(DisasContext *s) 269 { 270 return s->base.pc_next - s->pc_curr; 271 } 272 273 /* is_jmp field values */ 274 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 275 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 276 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 277 /* These instructions trap after executing, so the A32/T32 decoder must 278 * defer them until after the conditional execution state has been updated. 279 * WFI also needs special handling when single-stepping. 280 */ 281 #define DISAS_WFI DISAS_TARGET_2 282 #define DISAS_SWI DISAS_TARGET_3 283 /* WFE */ 284 #define DISAS_WFE DISAS_TARGET_4 285 #define DISAS_HVC DISAS_TARGET_5 286 #define DISAS_SMC DISAS_TARGET_6 287 #define DISAS_YIELD DISAS_TARGET_7 288 /* M profile branch which might be an exception return (and so needs 289 * custom end-of-TB code) 290 */ 291 #define DISAS_BX_EXCRET DISAS_TARGET_8 292 /* 293 * For instructions which want an immediate exit to the main loop, as opposed 294 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 295 * doesn't write the PC on exiting the translation loop so you need to ensure 296 * something (gen_a64_update_pc or runtime helper) has done so before we reach 297 * return from cpu_tb_exec. 298 */ 299 #define DISAS_EXIT DISAS_TARGET_9 300 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 301 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 302 303 #ifdef TARGET_AARCH64 304 void a64_translate_init(void); 305 void gen_a64_update_pc(DisasContext *s, target_long diff); 306 extern const TranslatorOps aarch64_translator_ops; 307 #else 308 static inline void a64_translate_init(void) 309 { 310 } 311 312 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 313 { 314 } 315 #endif 316 317 void arm_test_cc(DisasCompare *cmp, int cc); 318 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 319 void arm_gen_test_cc(int cc, TCGLabel *label); 320 MemOp pow2_align(unsigned i); 321 void unallocated_encoding(DisasContext *s); 322 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 323 uint32_t syn, uint32_t target_el); 324 void gen_exception_insn(DisasContext *s, target_long pc_diff, 325 int excp, uint32_t syn); 326 327 /* Return state of Alternate Half-precision flag, caller frees result */ 328 static inline TCGv_i32 get_ahp_flag(void) 329 { 330 TCGv_i32 ret = tcg_temp_new_i32(); 331 332 tcg_gen_ld_i32(ret, tcg_env, 333 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); 334 tcg_gen_extract_i32(ret, ret, 26, 1); 335 336 return ret; 337 } 338 339 /* Set bits within PSTATE. */ 340 static inline void set_pstate_bits(uint32_t bits) 341 { 342 TCGv_i32 p = tcg_temp_new_i32(); 343 344 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 345 346 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 347 tcg_gen_ori_i32(p, p, bits); 348 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 349 } 350 351 /* Clear bits within PSTATE. */ 352 static inline void clear_pstate_bits(uint32_t bits) 353 { 354 TCGv_i32 p = tcg_temp_new_i32(); 355 356 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 357 358 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 359 tcg_gen_andi_i32(p, p, ~bits); 360 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 361 } 362 363 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 364 static inline void gen_ss_advance(DisasContext *s) 365 { 366 if (s->ss_active) { 367 s->pstate_ss = 0; 368 clear_pstate_bits(PSTATE_SS); 369 } 370 } 371 372 /* Generate an architectural singlestep exception */ 373 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 374 { 375 /* Fill in the same_el field of the syndrome in the helper. */ 376 uint32_t syn = syn_swstep(false, isv, ex); 377 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); 378 } 379 380 /* 381 * Given a VFP floating point constant encoded into an 8 bit immediate in an 382 * instruction, expand it to the actual constant value of the specified 383 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 384 */ 385 uint64_t vfp_expand_imm(int size, uint8_t imm8); 386 387 /* Vector operations shared between ARM and AArch64. */ 388 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 389 uint32_t opr_sz, uint32_t max_sz); 390 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 391 uint32_t opr_sz, uint32_t max_sz); 392 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 393 uint32_t opr_sz, uint32_t max_sz); 394 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 395 uint32_t opr_sz, uint32_t max_sz); 396 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 397 uint32_t opr_sz, uint32_t max_sz); 398 399 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 400 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 401 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 402 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 403 404 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 405 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 406 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 407 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 408 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 409 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 410 411 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 412 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 413 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 414 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 415 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 416 417 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 418 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 419 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 420 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 421 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 422 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 423 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 424 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 425 426 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 427 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 428 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 429 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 430 431 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 432 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 433 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 434 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 435 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 436 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 437 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 438 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 439 440 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 441 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 442 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 443 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 444 445 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 446 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 447 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 448 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 449 450 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 452 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 454 455 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 457 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 459 460 /* 461 * Forward to the isar_feature_* tests given a DisasContext pointer. 462 */ 463 #define dc_isar_feature(name, ctx) \ 464 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 465 466 /* Note that the gvec expanders operate on offsets + sizes. */ 467 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 468 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 469 uint32_t, uint32_t); 470 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 471 uint32_t, uint32_t, uint32_t); 472 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 473 uint32_t, uint32_t, uint32_t); 474 475 /* Function prototype for gen_ functions for calling Neon helpers */ 476 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 477 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 478 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 479 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 480 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 481 TCGv_i32, TCGv_i32); 482 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 483 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 484 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 485 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 486 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 487 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 488 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 489 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 490 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 491 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 492 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 493 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 494 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 495 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 496 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 497 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 498 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 499 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 500 501 /** 502 * arm_tbflags_from_tb: 503 * @tb: the TranslationBlock 504 * 505 * Extract the flag values from @tb. 506 */ 507 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 508 { 509 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 510 } 511 512 /* 513 * Enum for argument to fpstatus_ptr(). 514 */ 515 typedef enum ARMFPStatusFlavour { 516 FPST_FPCR, 517 FPST_FPCR_F16, 518 FPST_STD, 519 FPST_STD_F16, 520 } ARMFPStatusFlavour; 521 522 /** 523 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 524 * 525 * We have multiple softfloat float_status fields in the Arm CPU state struct 526 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 527 * been set up to point to the requested field in the CPU state struct. 528 * The options are: 529 * 530 * FPST_FPCR 531 * for non-FP16 operations controlled by the FPCR 532 * FPST_FPCR_F16 533 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 534 * FPST_STD 535 * for A32/T32 Neon operations using the "standard FPSCR value" 536 * FPST_STD_F16 537 * as FPST_STD, but where FPCR.FZ16 is to be used 538 */ 539 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 540 { 541 TCGv_ptr statusptr = tcg_temp_new_ptr(); 542 int offset; 543 544 switch (flavour) { 545 case FPST_FPCR: 546 offset = offsetof(CPUARMState, vfp.fp_status); 547 break; 548 case FPST_FPCR_F16: 549 offset = offsetof(CPUARMState, vfp.fp_status_f16); 550 break; 551 case FPST_STD: 552 offset = offsetof(CPUARMState, vfp.standard_fp_status); 553 break; 554 case FPST_STD_F16: 555 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 556 break; 557 default: 558 g_assert_not_reached(); 559 } 560 tcg_gen_addi_ptr(statusptr, tcg_env, offset); 561 return statusptr; 562 } 563 564 /** 565 * finalize_memop_atom: 566 * @s: DisasContext 567 * @opc: size+sign+align of the memory operation 568 * @atom: atomicity of the memory operation 569 * 570 * Build the complete MemOp for a memory operation, including alignment, 571 * endianness, and atomicity. 572 * 573 * If (op & MO_AMASK) then the operation already contains the required 574 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 575 * unaligned operation, e.g. for AccType_NORMAL. 576 * 577 * In the latter case, there are configuration bits that require alignment, 578 * and this is applied here. Note that there is no way to indicate that 579 * no alignment should ever be enforced; this must be handled manually. 580 */ 581 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 582 { 583 if (s->align_mem && !(opc & MO_AMASK)) { 584 opc |= MO_ALIGN; 585 } 586 return opc | atom | s->be_data; 587 } 588 589 /** 590 * finalize_memop: 591 * @s: DisasContext 592 * @opc: size+sign+align of the memory operation 593 * 594 * Like finalize_memop_atom, but with default atomicity. 595 */ 596 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 597 { 598 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 599 return finalize_memop_atom(s, opc, atom); 600 } 601 602 /** 603 * finalize_memop_pair: 604 * @s: DisasContext 605 * @opc: size+sign+align of the memory operation 606 * 607 * Like finalize_memop_atom, but with atomicity for a pair. 608 * C.f. Pseudocode for Mem[], operand ispair. 609 */ 610 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 611 { 612 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 613 return finalize_memop_atom(s, opc, atom); 614 } 615 616 /** 617 * finalize_memop_asimd: 618 * @s: DisasContext 619 * @opc: size+sign+align of the memory operation 620 * 621 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 622 */ 623 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 624 { 625 /* 626 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 627 * if IsAligned(8), the first case provides separate atomicity for 628 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 629 * do not apply, and we're left with the final case of no atomicity. 630 * Thus MO_ATOM_IFALIGN_PAIR. 631 * 632 * For other sizes, normal LSE2 rules apply. 633 */ 634 if ((opc & MO_SIZE) == MO_128) { 635 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 636 } 637 return finalize_memop(s, opc); 638 } 639 640 /** 641 * asimd_imm_const: Expand an encoded SIMD constant value 642 * 643 * Expand a SIMD constant value. This is essentially the pseudocode 644 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 645 * VMVN and VBIC (when cmode < 14 && op == 1). 646 * 647 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 648 * callers must catch this; we return the 64-bit constant value defined 649 * for AArch64. 650 * 651 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 652 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 653 * we produce an immediate constant value of 0 in these cases. 654 */ 655 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 656 657 /* 658 * gen_disas_label: 659 * Create a label and cache a copy of pc_save. 660 */ 661 static inline DisasLabel gen_disas_label(DisasContext *s) 662 { 663 return (DisasLabel){ 664 .label = gen_new_label(), 665 .pc_save = s->pc_save, 666 }; 667 } 668 669 /* 670 * set_disas_label: 671 * Emit a label and restore the cached copy of pc_save. 672 */ 673 static inline void set_disas_label(DisasContext *s, DisasLabel l) 674 { 675 gen_set_label(l.label); 676 s->pc_save = l.pc_save; 677 } 678 679 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 680 { 681 TCGv_ptr ret = tcg_temp_new_ptr(); 682 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); 683 return ret; 684 } 685 686 /* 687 * Set and reset rounding mode around another operation. 688 */ 689 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 690 { 691 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 692 TCGv_i32 old = tcg_temp_new_i32(); 693 694 gen_helper_set_rmode(old, new, fpst); 695 return old; 696 } 697 698 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 699 { 700 gen_helper_set_rmode(old, old, fpst); 701 } 702 703 /* 704 * Helpers for implementing sets of trans_* functions. 705 * Defer the implementation of NAME to FUNC, with optional extra arguments. 706 */ 707 #define TRANS(NAME, FUNC, ...) \ 708 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 709 { return FUNC(s, __VA_ARGS__); } 710 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 711 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 712 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 713 714 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 715 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 716 { \ 717 s->is_nonstreaming = true; \ 718 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 719 } 720 721 #endif /* TARGET_ARM_TRANSLATE_H */ 722