xref: /openbmc/qemu/target/arm/tcg/translate.h (revision ec6f3fc3)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled; index with is_unpriv.  */
118     bool ata[2];
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on ERET is enabled */
142     bool fgt_eret;
143     /* True if fine-grained trap on SVC is enabled */
144     bool fgt_svc;
145     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146     bool naa;
147     /*
148      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
149      *  < 0, set by the current instruction.
150      */
151     int8_t btype;
152     /* A copy of cpu->dcz_blocksize. */
153     uint8_t dcz_blocksize;
154     /* A copy of cpu->gm_blocksize. */
155     uint8_t gm_blocksize;
156     /* True if this page is guarded.  */
157     bool guarded_page;
158     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
159     int c15_cpar;
160     /* TCG op of the current insn_start.  */
161     TCGOp *insn_start;
162 } DisasContext;
163 
164 typedef struct DisasCompare {
165     TCGCond cond;
166     TCGv_i32 value;
167 } DisasCompare;
168 
169 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
170 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
171 extern TCGv_i64 cpu_exclusive_addr;
172 extern TCGv_i64 cpu_exclusive_val;
173 
174 /*
175  * Constant expanders for the decoders.
176  */
177 
178 static inline int negate(DisasContext *s, int x)
179 {
180     return -x;
181 }
182 
183 static inline int plus_1(DisasContext *s, int x)
184 {
185     return x + 1;
186 }
187 
188 static inline int plus_2(DisasContext *s, int x)
189 {
190     return x + 2;
191 }
192 
193 static inline int plus_12(DisasContext *s, int x)
194 {
195     return x + 12;
196 }
197 
198 static inline int times_2(DisasContext *s, int x)
199 {
200     return x * 2;
201 }
202 
203 static inline int times_4(DisasContext *s, int x)
204 {
205     return x * 4;
206 }
207 
208 static inline int times_8(DisasContext *s, int x)
209 {
210     return x * 8;
211 }
212 
213 static inline int times_2_plus_1(DisasContext *s, int x)
214 {
215     return x * 2 + 1;
216 }
217 
218 static inline int rsub_64(DisasContext *s, int x)
219 {
220     return 64 - x;
221 }
222 
223 static inline int rsub_32(DisasContext *s, int x)
224 {
225     return 32 - x;
226 }
227 
228 static inline int rsub_16(DisasContext *s, int x)
229 {
230     return 16 - x;
231 }
232 
233 static inline int rsub_8(DisasContext *s, int x)
234 {
235     return 8 - x;
236 }
237 
238 static inline int shl_12(DisasContext *s, int x)
239 {
240     return x << 12;
241 }
242 
243 static inline int neon_3same_fp_size(DisasContext *s, int x)
244 {
245     /* Convert 0==fp32, 1==fp16 into a MO_* value */
246     return MO_32 - x;
247 }
248 
249 static inline int arm_dc_feature(DisasContext *dc, int feature)
250 {
251     return (dc->features & (1ULL << feature)) != 0;
252 }
253 
254 static inline int get_mem_index(DisasContext *s)
255 {
256     return arm_to_core_mmu_idx(s->mmu_idx);
257 }
258 
259 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
260 {
261     /* We don't need to save all of the syndrome so we mask and shift
262      * out unneeded bits to help the sleb128 encoder do a better job.
263      */
264     syn &= ARM_INSN_START_WORD2_MASK;
265     syn >>= ARM_INSN_START_WORD2_SHIFT;
266 
267     /* We check and clear insn_start_idx to catch multiple updates.  */
268     assert(s->insn_start != NULL);
269     tcg_set_insn_start_param(s->insn_start, 2, syn);
270     s->insn_start = NULL;
271 }
272 
273 static inline int curr_insn_len(DisasContext *s)
274 {
275     return s->base.pc_next - s->pc_curr;
276 }
277 
278 /* is_jmp field values */
279 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
280 /* CPU state was modified dynamically; exit to main loop for interrupts. */
281 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
282 /* These instructions trap after executing, so the A32/T32 decoder must
283  * defer them until after the conditional execution state has been updated.
284  * WFI also needs special handling when single-stepping.
285  */
286 #define DISAS_WFI       DISAS_TARGET_2
287 #define DISAS_SWI       DISAS_TARGET_3
288 /* WFE */
289 #define DISAS_WFE       DISAS_TARGET_4
290 #define DISAS_HVC       DISAS_TARGET_5
291 #define DISAS_SMC       DISAS_TARGET_6
292 #define DISAS_YIELD     DISAS_TARGET_7
293 /* M profile branch which might be an exception return (and so needs
294  * custom end-of-TB code)
295  */
296 #define DISAS_BX_EXCRET DISAS_TARGET_8
297 /*
298  * For instructions which want an immediate exit to the main loop, as opposed
299  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
300  * doesn't write the PC on exiting the translation loop so you need to ensure
301  * something (gen_a64_update_pc or runtime helper) has done so before we reach
302  * return from cpu_tb_exec.
303  */
304 #define DISAS_EXIT      DISAS_TARGET_9
305 /* CPU state was modified dynamically; no need to exit, but do not chain. */
306 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
307 
308 #ifdef TARGET_AARCH64
309 void a64_translate_init(void);
310 void gen_a64_update_pc(DisasContext *s, target_long diff);
311 extern const TranslatorOps aarch64_translator_ops;
312 #else
313 static inline void a64_translate_init(void)
314 {
315 }
316 
317 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
318 {
319 }
320 #endif
321 
322 void arm_test_cc(DisasCompare *cmp, int cc);
323 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
324 void arm_gen_test_cc(int cc, TCGLabel *label);
325 MemOp pow2_align(unsigned i);
326 void unallocated_encoding(DisasContext *s);
327 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
328                            uint32_t syn, uint32_t target_el);
329 void gen_exception_insn(DisasContext *s, target_long pc_diff,
330                         int excp, uint32_t syn);
331 
332 /* Return state of Alternate Half-precision flag, caller frees result */
333 static inline TCGv_i32 get_ahp_flag(void)
334 {
335     TCGv_i32 ret = tcg_temp_new_i32();
336 
337     tcg_gen_ld_i32(ret, tcg_env,
338                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
339     tcg_gen_extract_i32(ret, ret, 26, 1);
340 
341     return ret;
342 }
343 
344 /* Set bits within PSTATE.  */
345 static inline void set_pstate_bits(uint32_t bits)
346 {
347     TCGv_i32 p = tcg_temp_new_i32();
348 
349     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
350 
351     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
352     tcg_gen_ori_i32(p, p, bits);
353     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
354 }
355 
356 /* Clear bits within PSTATE.  */
357 static inline void clear_pstate_bits(uint32_t bits)
358 {
359     TCGv_i32 p = tcg_temp_new_i32();
360 
361     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
362 
363     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
364     tcg_gen_andi_i32(p, p, ~bits);
365     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
366 }
367 
368 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
369 static inline void gen_ss_advance(DisasContext *s)
370 {
371     if (s->ss_active) {
372         s->pstate_ss = 0;
373         clear_pstate_bits(PSTATE_SS);
374     }
375 }
376 
377 /* Generate an architectural singlestep exception */
378 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
379 {
380     /* Fill in the same_el field of the syndrome in the helper. */
381     uint32_t syn = syn_swstep(false, isv, ex);
382     gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
383 }
384 
385 /*
386  * Given a VFP floating point constant encoded into an 8 bit immediate in an
387  * instruction, expand it to the actual constant value of the specified
388  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
389  */
390 uint64_t vfp_expand_imm(int size, uint8_t imm8);
391 
392 /* Vector operations shared between ARM and AArch64.  */
393 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
394                    uint32_t opr_sz, uint32_t max_sz);
395 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
396                    uint32_t opr_sz, uint32_t max_sz);
397 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
398                    uint32_t opr_sz, uint32_t max_sz);
399 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
400                    uint32_t opr_sz, uint32_t max_sz);
401 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
402                    uint32_t opr_sz, uint32_t max_sz);
403 
404 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
407                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
408 
409 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
410                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
411 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
412                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
413 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
414                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
415 
416 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
417 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
418 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
419 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
420 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
421 
422 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
423                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
424 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
425                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
426 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
427                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
428 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
429                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
430 
431 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
432                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
434                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
435 
436 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
437                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
438 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
439                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
440 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
441                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
442 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
443                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
444 
445 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
448                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
449 
450 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
454 
455 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 
460 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
461                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
462 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
463                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
464 
465 /*
466  * Forward to the isar_feature_* tests given a DisasContext pointer.
467  */
468 #define dc_isar_feature(name, ctx) \
469     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
470 
471 /* Note that the gvec expanders operate on offsets + sizes.  */
472 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
473 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
474                          uint32_t, uint32_t);
475 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
476                         uint32_t, uint32_t, uint32_t);
477 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
478                         uint32_t, uint32_t, uint32_t);
479 
480 /* Function prototype for gen_ functions for calling Neon helpers */
481 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
482 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
483 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
484 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
485 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
486                                  TCGv_i32, TCGv_i32);
487 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
488 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
489 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
490 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
491 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
492 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
493 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
494 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
495 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
496 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
497 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
498 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
499 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
500 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
501 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
502 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
503 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
504 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
505 
506 /**
507  * arm_tbflags_from_tb:
508  * @tb: the TranslationBlock
509  *
510  * Extract the flag values from @tb.
511  */
512 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
513 {
514     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
515 }
516 
517 /*
518  * Enum for argument to fpstatus_ptr().
519  */
520 typedef enum ARMFPStatusFlavour {
521     FPST_FPCR,
522     FPST_FPCR_F16,
523     FPST_STD,
524     FPST_STD_F16,
525 } ARMFPStatusFlavour;
526 
527 /**
528  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
529  *
530  * We have multiple softfloat float_status fields in the Arm CPU state struct
531  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
532  * been set up to point to the requested field in the CPU state struct.
533  * The options are:
534  *
535  * FPST_FPCR
536  *   for non-FP16 operations controlled by the FPCR
537  * FPST_FPCR_F16
538  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
539  * FPST_STD
540  *   for A32/T32 Neon operations using the "standard FPSCR value"
541  * FPST_STD_F16
542  *   as FPST_STD, but where FPCR.FZ16 is to be used
543  */
544 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
545 {
546     TCGv_ptr statusptr = tcg_temp_new_ptr();
547     int offset;
548 
549     switch (flavour) {
550     case FPST_FPCR:
551         offset = offsetof(CPUARMState, vfp.fp_status);
552         break;
553     case FPST_FPCR_F16:
554         offset = offsetof(CPUARMState, vfp.fp_status_f16);
555         break;
556     case FPST_STD:
557         offset = offsetof(CPUARMState, vfp.standard_fp_status);
558         break;
559     case FPST_STD_F16:
560         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
561         break;
562     default:
563         g_assert_not_reached();
564     }
565     tcg_gen_addi_ptr(statusptr, tcg_env, offset);
566     return statusptr;
567 }
568 
569 /**
570  * finalize_memop_atom:
571  * @s: DisasContext
572  * @opc: size+sign+align of the memory operation
573  * @atom: atomicity of the memory operation
574  *
575  * Build the complete MemOp for a memory operation, including alignment,
576  * endianness, and atomicity.
577  *
578  * If (op & MO_AMASK) then the operation already contains the required
579  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
580  * unaligned operation, e.g. for AccType_NORMAL.
581  *
582  * In the latter case, there are configuration bits that require alignment,
583  * and this is applied here.  Note that there is no way to indicate that
584  * no alignment should ever be enforced; this must be handled manually.
585  */
586 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
587 {
588     if (s->align_mem && !(opc & MO_AMASK)) {
589         opc |= MO_ALIGN;
590     }
591     return opc | atom | s->be_data;
592 }
593 
594 /**
595  * finalize_memop:
596  * @s: DisasContext
597  * @opc: size+sign+align of the memory operation
598  *
599  * Like finalize_memop_atom, but with default atomicity.
600  */
601 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
602 {
603     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
604     return finalize_memop_atom(s, opc, atom);
605 }
606 
607 /**
608  * finalize_memop_pair:
609  * @s: DisasContext
610  * @opc: size+sign+align of the memory operation
611  *
612  * Like finalize_memop_atom, but with atomicity for a pair.
613  * C.f. Pseudocode for Mem[], operand ispair.
614  */
615 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
616 {
617     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
618     return finalize_memop_atom(s, opc, atom);
619 }
620 
621 /**
622  * finalize_memop_asimd:
623  * @s: DisasContext
624  * @opc: size+sign+align of the memory operation
625  *
626  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
627  */
628 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
629 {
630     /*
631      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
632      * if IsAligned(8), the first case provides separate atomicity for
633      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
634      * do not apply, and we're left with the final case of no atomicity.
635      * Thus MO_ATOM_IFALIGN_PAIR.
636      *
637      * For other sizes, normal LSE2 rules apply.
638      */
639     if ((opc & MO_SIZE) == MO_128) {
640         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
641     }
642     return finalize_memop(s, opc);
643 }
644 
645 /**
646  * asimd_imm_const: Expand an encoded SIMD constant value
647  *
648  * Expand a SIMD constant value. This is essentially the pseudocode
649  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
650  * VMVN and VBIC (when cmode < 14 && op == 1).
651  *
652  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
653  * callers must catch this; we return the 64-bit constant value defined
654  * for AArch64.
655  *
656  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
657  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
658  * we produce an immediate constant value of 0 in these cases.
659  */
660 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
661 
662 /*
663  * gen_disas_label:
664  * Create a label and cache a copy of pc_save.
665  */
666 static inline DisasLabel gen_disas_label(DisasContext *s)
667 {
668     return (DisasLabel){
669         .label = gen_new_label(),
670         .pc_save = s->pc_save,
671     };
672 }
673 
674 /*
675  * set_disas_label:
676  * Emit a label and restore the cached copy of pc_save.
677  */
678 static inline void set_disas_label(DisasContext *s, DisasLabel l)
679 {
680     gen_set_label(l.label);
681     s->pc_save = l.pc_save;
682 }
683 
684 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
685 {
686     TCGv_ptr ret = tcg_temp_new_ptr();
687     gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
688     return ret;
689 }
690 
691 /*
692  * Set and reset rounding mode around another operation.
693  */
694 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
695 {
696     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
697     TCGv_i32 old = tcg_temp_new_i32();
698 
699     gen_helper_set_rmode(old, new, fpst);
700     return old;
701 }
702 
703 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
704 {
705     gen_helper_set_rmode(old, old, fpst);
706 }
707 
708 /*
709  * Helpers for implementing sets of trans_* functions.
710  * Defer the implementation of NAME to FUNC, with optional extra arguments.
711  */
712 #define TRANS(NAME, FUNC, ...) \
713     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
714     { return FUNC(s, __VA_ARGS__); }
715 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
716     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
717     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
718 
719 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
720     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
721     {                                                             \
722         s->is_nonstreaming = true;                                \
723         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
724     }
725 
726 #endif /* TARGET_ARM_TRANSLATE_H */
727