1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 #include "cpu-features.h" 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ 118 bool ata[2]; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on SVC is enabled */ 142 bool fgt_svc; 143 /* True if a trap on ERET is enabled (FGT or NV) */ 144 bool trap_eret; 145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ 146 bool naa; 147 /* True if FEAT_NV HCR_EL2.NV is enabled */ 148 bool nv; 149 /* True if NV enabled and HCR_EL2.NV1 is set */ 150 bool nv1; 151 /* True if NV enabled and HCR_EL2.NV2 is set */ 152 bool nv2; 153 /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */ 154 bool nv2_mem_e20; 155 /* True if NV2 enabled and NV2 RAM accesses are big-endian */ 156 bool nv2_mem_be; 157 /* 158 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 159 * < 0, set by the current instruction. 160 */ 161 int8_t btype; 162 /* A copy of cpu->dcz_blocksize. */ 163 uint8_t dcz_blocksize; 164 /* A copy of cpu->gm_blocksize. */ 165 uint8_t gm_blocksize; 166 /* True if the current insn_start has been updated. */ 167 bool insn_start_updated; 168 /* True if this is the AArch32 Secure PL1&0 translation regime */ 169 bool s_pl1_0; 170 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 171 int c15_cpar; 172 /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */ 173 uint32_t nv2_redirect_offset; 174 } DisasContext; 175 176 typedef struct DisasCompare { 177 TCGCond cond; 178 TCGv_i32 value; 179 } DisasCompare; 180 181 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 182 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 183 extern TCGv_i64 cpu_exclusive_addr; 184 extern TCGv_i64 cpu_exclusive_val; 185 186 /* 187 * Constant expanders for the decoders. 188 */ 189 190 static inline int negate(DisasContext *s, int x) 191 { 192 return -x; 193 } 194 195 static inline int plus_1(DisasContext *s, int x) 196 { 197 return x + 1; 198 } 199 200 static inline int plus_2(DisasContext *s, int x) 201 { 202 return x + 2; 203 } 204 205 static inline int plus_12(DisasContext *s, int x) 206 { 207 return x + 12; 208 } 209 210 static inline int times_2(DisasContext *s, int x) 211 { 212 return x * 2; 213 } 214 215 static inline int times_4(DisasContext *s, int x) 216 { 217 return x * 4; 218 } 219 220 static inline int times_8(DisasContext *s, int x) 221 { 222 return x * 8; 223 } 224 225 static inline int times_2_plus_1(DisasContext *s, int x) 226 { 227 return x * 2 + 1; 228 } 229 230 static inline int rsub_64(DisasContext *s, int x) 231 { 232 return 64 - x; 233 } 234 235 static inline int rsub_32(DisasContext *s, int x) 236 { 237 return 32 - x; 238 } 239 240 static inline int rsub_16(DisasContext *s, int x) 241 { 242 return 16 - x; 243 } 244 245 static inline int rsub_8(DisasContext *s, int x) 246 { 247 return 8 - x; 248 } 249 250 static inline int shl_12(DisasContext *s, int x) 251 { 252 return x << 12; 253 } 254 255 static inline int xor_2(DisasContext *s, int x) 256 { 257 return x ^ 2; 258 } 259 260 static inline int neon_3same_fp_size(DisasContext *s, int x) 261 { 262 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 263 return MO_32 - x; 264 } 265 266 static inline int arm_dc_feature(DisasContext *dc, int feature) 267 { 268 return (dc->features & (1ULL << feature)) != 0; 269 } 270 271 static inline int get_mem_index(DisasContext *s) 272 { 273 return arm_to_core_mmu_idx(s->mmu_idx); 274 } 275 276 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 277 { 278 /* We don't need to save all of the syndrome so we mask and shift 279 * out unneeded bits to help the sleb128 encoder do a better job. 280 */ 281 syn &= ARM_INSN_START_WORD2_MASK; 282 syn >>= ARM_INSN_START_WORD2_SHIFT; 283 284 /* Check for multiple updates. */ 285 assert(!s->insn_start_updated); 286 s->insn_start_updated = true; 287 tcg_set_insn_start_param(s->base.insn_start, 2, syn); 288 } 289 290 static inline int curr_insn_len(DisasContext *s) 291 { 292 return s->base.pc_next - s->pc_curr; 293 } 294 295 /* is_jmp field values */ 296 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 297 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 298 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 299 /* These instructions trap after executing, so the A32/T32 decoder must 300 * defer them until after the conditional execution state has been updated. 301 * WFI also needs special handling when single-stepping. 302 */ 303 #define DISAS_WFI DISAS_TARGET_2 304 #define DISAS_SWI DISAS_TARGET_3 305 /* WFE */ 306 #define DISAS_WFE DISAS_TARGET_4 307 #define DISAS_HVC DISAS_TARGET_5 308 #define DISAS_SMC DISAS_TARGET_6 309 #define DISAS_YIELD DISAS_TARGET_7 310 /* M profile branch which might be an exception return (and so needs 311 * custom end-of-TB code) 312 */ 313 #define DISAS_BX_EXCRET DISAS_TARGET_8 314 /* 315 * For instructions which want an immediate exit to the main loop, as opposed 316 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 317 * doesn't write the PC on exiting the translation loop so you need to ensure 318 * something (gen_a64_update_pc or runtime helper) has done so before we reach 319 * return from cpu_tb_exec. 320 */ 321 #define DISAS_EXIT DISAS_TARGET_9 322 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 323 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 324 325 #ifdef TARGET_AARCH64 326 void a64_translate_init(void); 327 void gen_a64_update_pc(DisasContext *s, target_long diff); 328 extern const TranslatorOps aarch64_translator_ops; 329 #else 330 static inline void a64_translate_init(void) 331 { 332 } 333 334 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 335 { 336 } 337 #endif 338 339 void arm_test_cc(DisasCompare *cmp, int cc); 340 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 341 void arm_gen_test_cc(int cc, TCGLabel *label); 342 MemOp pow2_align(unsigned i); 343 void unallocated_encoding(DisasContext *s); 344 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 345 uint32_t syn, uint32_t target_el); 346 void gen_exception_insn(DisasContext *s, target_long pc_diff, 347 int excp, uint32_t syn); 348 349 /* Return state of Alternate Half-precision flag, caller frees result */ 350 static inline TCGv_i32 get_ahp_flag(void) 351 { 352 TCGv_i32 ret = tcg_temp_new_i32(); 353 354 tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr)); 355 tcg_gen_extract_i32(ret, ret, 26, 1); 356 357 return ret; 358 } 359 360 /* Set bits within PSTATE. */ 361 static inline void set_pstate_bits(uint32_t bits) 362 { 363 TCGv_i32 p = tcg_temp_new_i32(); 364 365 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 366 367 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 368 tcg_gen_ori_i32(p, p, bits); 369 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 370 } 371 372 /* Clear bits within PSTATE. */ 373 static inline void clear_pstate_bits(uint32_t bits) 374 { 375 TCGv_i32 p = tcg_temp_new_i32(); 376 377 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 378 379 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 380 tcg_gen_andi_i32(p, p, ~bits); 381 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 382 } 383 384 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 385 static inline void gen_ss_advance(DisasContext *s) 386 { 387 if (s->ss_active) { 388 s->pstate_ss = 0; 389 clear_pstate_bits(PSTATE_SS); 390 } 391 } 392 393 /* Generate an architectural singlestep exception */ 394 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 395 { 396 /* Fill in the same_el field of the syndrome in the helper. */ 397 uint32_t syn = syn_swstep(false, isv, ex); 398 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); 399 } 400 401 /* 402 * Given a VFP floating point constant encoded into an 8 bit immediate in an 403 * instruction, expand it to the actual constant value of the specified 404 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 405 */ 406 uint64_t vfp_expand_imm(int size, uint8_t imm8); 407 408 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s) 409 { 410 tcg_gen_andi_i32(d, s, INT16_MAX); 411 } 412 413 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s) 414 { 415 tcg_gen_andi_i32(d, s, INT32_MAX); 416 } 417 418 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s) 419 { 420 tcg_gen_andi_i64(d, s, INT64_MAX); 421 } 422 423 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s) 424 { 425 tcg_gen_xori_i32(d, s, 1u << 15); 426 } 427 428 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s) 429 { 430 tcg_gen_xori_i32(d, s, 1u << 31); 431 } 432 433 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s) 434 { 435 tcg_gen_xori_i64(d, s, 1ull << 63); 436 } 437 438 /* Vector operations shared between ARM and AArch64. */ 439 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 440 uint32_t opr_sz, uint32_t max_sz); 441 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 442 uint32_t opr_sz, uint32_t max_sz); 443 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 444 uint32_t opr_sz, uint32_t max_sz); 445 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 446 uint32_t opr_sz, uint32_t max_sz); 447 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 448 uint32_t opr_sz, uint32_t max_sz); 449 450 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 452 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 454 455 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 457 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 459 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 461 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 463 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 465 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 466 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 467 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 468 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 469 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 470 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 471 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 472 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 473 474 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 475 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 476 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 477 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 478 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 479 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 480 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 481 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 482 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 483 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 484 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 485 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 486 487 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 488 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 489 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 490 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 491 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 492 493 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc, 494 TCGv_i64 a, TCGv_i64 b, MemOp esz); 495 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); 496 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 497 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 498 499 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc, 500 TCGv_i64 a, TCGv_i64 b, MemOp esz); 501 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); 502 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 503 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 504 505 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc, 506 TCGv_i64 a, TCGv_i64 b, MemOp esz); 507 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); 508 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 509 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 510 511 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc, 512 TCGv_i64 a, TCGv_i64 b, MemOp esz); 513 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); 514 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 515 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 516 517 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 518 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 519 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 520 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 521 522 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); 523 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); 524 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); 525 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); 526 527 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 528 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 529 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 530 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 531 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 532 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 533 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 534 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 535 536 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 537 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 538 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 539 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 540 541 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 542 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 543 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 544 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 545 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 546 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 547 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 548 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 549 550 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 551 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 552 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 553 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 554 555 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 556 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 557 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 558 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 559 560 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 561 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 562 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 563 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 564 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 565 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 566 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 567 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 568 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 569 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 570 571 /* 572 * Forward to the isar_feature_* tests given a DisasContext pointer. 573 */ 574 #define dc_isar_feature(name, ctx) \ 575 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 576 577 /* Note that the gvec expanders operate on offsets + sizes. */ 578 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 579 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 580 uint32_t, uint32_t); 581 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 582 uint32_t, uint32_t, uint32_t); 583 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 584 uint32_t, uint32_t, uint32_t); 585 586 /* Function prototype for gen_ functions for calling Neon helpers */ 587 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 588 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 589 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 590 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 591 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 592 TCGv_i32, TCGv_i32); 593 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 594 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 595 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 596 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 597 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 598 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 599 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 600 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 601 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 602 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 603 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 604 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 605 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 606 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 607 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 608 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 609 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 610 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 611 612 /** 613 * arm_tbflags_from_tb: 614 * @tb: the TranslationBlock 615 * 616 * Extract the flag values from @tb. 617 */ 618 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 619 { 620 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 621 } 622 623 /* 624 * Enum for argument to fpstatus_ptr(). 625 */ 626 typedef enum ARMFPStatusFlavour { 627 FPST_FPCR, 628 FPST_FPCR_F16, 629 FPST_STD, 630 FPST_STD_F16, 631 } ARMFPStatusFlavour; 632 633 /** 634 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 635 * 636 * We have multiple softfloat float_status fields in the Arm CPU state struct 637 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 638 * been set up to point to the requested field in the CPU state struct. 639 * The options are: 640 * 641 * FPST_FPCR 642 * for non-FP16 operations controlled by the FPCR 643 * FPST_FPCR_F16 644 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 645 * FPST_STD 646 * for A32/T32 Neon operations using the "standard FPSCR value" 647 * FPST_STD_F16 648 * as FPST_STD, but where FPCR.FZ16 is to be used 649 */ 650 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 651 { 652 TCGv_ptr statusptr = tcg_temp_new_ptr(); 653 int offset; 654 655 switch (flavour) { 656 case FPST_FPCR: 657 offset = offsetof(CPUARMState, vfp.fp_status); 658 break; 659 case FPST_FPCR_F16: 660 offset = offsetof(CPUARMState, vfp.fp_status_f16); 661 break; 662 case FPST_STD: 663 offset = offsetof(CPUARMState, vfp.standard_fp_status); 664 break; 665 case FPST_STD_F16: 666 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 667 break; 668 default: 669 g_assert_not_reached(); 670 } 671 tcg_gen_addi_ptr(statusptr, tcg_env, offset); 672 return statusptr; 673 } 674 675 /** 676 * finalize_memop_atom: 677 * @s: DisasContext 678 * @opc: size+sign+align of the memory operation 679 * @atom: atomicity of the memory operation 680 * 681 * Build the complete MemOp for a memory operation, including alignment, 682 * endianness, and atomicity. 683 * 684 * If (op & MO_AMASK) then the operation already contains the required 685 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 686 * unaligned operation, e.g. for AccType_NORMAL. 687 * 688 * In the latter case, there are configuration bits that require alignment, 689 * and this is applied here. Note that there is no way to indicate that 690 * no alignment should ever be enforced; this must be handled manually. 691 */ 692 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 693 { 694 if (s->align_mem && !(opc & MO_AMASK)) { 695 opc |= MO_ALIGN; 696 } 697 return opc | atom | s->be_data; 698 } 699 700 /** 701 * finalize_memop: 702 * @s: DisasContext 703 * @opc: size+sign+align of the memory operation 704 * 705 * Like finalize_memop_atom, but with default atomicity. 706 */ 707 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 708 { 709 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 710 return finalize_memop_atom(s, opc, atom); 711 } 712 713 /** 714 * finalize_memop_pair: 715 * @s: DisasContext 716 * @opc: size+sign+align of the memory operation 717 * 718 * Like finalize_memop_atom, but with atomicity for a pair. 719 * C.f. Pseudocode for Mem[], operand ispair. 720 */ 721 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 722 { 723 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 724 return finalize_memop_atom(s, opc, atom); 725 } 726 727 /** 728 * finalize_memop_asimd: 729 * @s: DisasContext 730 * @opc: size+sign+align of the memory operation 731 * 732 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 733 */ 734 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 735 { 736 /* 737 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 738 * if IsAligned(8), the first case provides separate atomicity for 739 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 740 * do not apply, and we're left with the final case of no atomicity. 741 * Thus MO_ATOM_IFALIGN_PAIR. 742 * 743 * For other sizes, normal LSE2 rules apply. 744 */ 745 if ((opc & MO_SIZE) == MO_128) { 746 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 747 } 748 return finalize_memop(s, opc); 749 } 750 751 /** 752 * asimd_imm_const: Expand an encoded SIMD constant value 753 * 754 * Expand a SIMD constant value. This is essentially the pseudocode 755 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 756 * VMVN and VBIC (when cmode < 14 && op == 1). 757 * 758 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 759 * callers must catch this; we return the 64-bit constant value defined 760 * for AArch64. 761 * 762 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 763 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 764 * we produce an immediate constant value of 0 in these cases. 765 */ 766 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 767 768 /* 769 * gen_disas_label: 770 * Create a label and cache a copy of pc_save. 771 */ 772 static inline DisasLabel gen_disas_label(DisasContext *s) 773 { 774 return (DisasLabel){ 775 .label = gen_new_label(), 776 .pc_save = s->pc_save, 777 }; 778 } 779 780 /* 781 * set_disas_label: 782 * Emit a label and restore the cached copy of pc_save. 783 */ 784 static inline void set_disas_label(DisasContext *s, DisasLabel l) 785 { 786 gen_set_label(l.label); 787 s->pc_save = l.pc_save; 788 } 789 790 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 791 { 792 TCGv_ptr ret = tcg_temp_new_ptr(); 793 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); 794 return ret; 795 } 796 797 /* 798 * Set and reset rounding mode around another operation. 799 */ 800 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 801 { 802 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 803 TCGv_i32 old = tcg_temp_new_i32(); 804 805 gen_helper_set_rmode(old, new, fpst); 806 return old; 807 } 808 809 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 810 { 811 gen_helper_set_rmode(old, old, fpst); 812 } 813 814 /* 815 * Helpers for implementing sets of trans_* functions. 816 * Defer the implementation of NAME to FUNC, with optional extra arguments. 817 */ 818 #define TRANS(NAME, FUNC, ...) \ 819 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 820 { return FUNC(s, __VA_ARGS__); } 821 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 822 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 823 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 824 825 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 826 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 827 { \ 828 s->is_nonstreaming = true; \ 829 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 830 } 831 832 #endif /* TARGET_ARM_TRANSLATE_H */ 833