xref: /openbmc/qemu/target/arm/tcg/translate.h (revision d450bd01)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled.  */
118     bool ata;
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on ERET is enabled */
142     bool fgt_eret;
143     /* True if fine-grained trap on SVC is enabled */
144     bool fgt_svc;
145     /*
146      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
147      *  < 0, set by the current instruction.
148      */
149     int8_t btype;
150     /* A copy of cpu->dcz_blocksize. */
151     uint8_t dcz_blocksize;
152     /* True if this page is guarded.  */
153     bool guarded_page;
154     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
155     int c15_cpar;
156     /* TCG op of the current insn_start.  */
157     TCGOp *insn_start;
158 } DisasContext;
159 
160 typedef struct DisasCompare {
161     TCGCond cond;
162     TCGv_i32 value;
163 } DisasCompare;
164 
165 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
166 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
167 extern TCGv_i64 cpu_exclusive_addr;
168 extern TCGv_i64 cpu_exclusive_val;
169 
170 /*
171  * Constant expanders for the decoders.
172  */
173 
174 static inline int negate(DisasContext *s, int x)
175 {
176     return -x;
177 }
178 
179 static inline int plus_1(DisasContext *s, int x)
180 {
181     return x + 1;
182 }
183 
184 static inline int plus_2(DisasContext *s, int x)
185 {
186     return x + 2;
187 }
188 
189 static inline int plus_12(DisasContext *s, int x)
190 {
191     return x + 12;
192 }
193 
194 static inline int times_2(DisasContext *s, int x)
195 {
196     return x * 2;
197 }
198 
199 static inline int times_4(DisasContext *s, int x)
200 {
201     return x * 4;
202 }
203 
204 static inline int times_2_plus_1(DisasContext *s, int x)
205 {
206     return x * 2 + 1;
207 }
208 
209 static inline int rsub_64(DisasContext *s, int x)
210 {
211     return 64 - x;
212 }
213 
214 static inline int rsub_32(DisasContext *s, int x)
215 {
216     return 32 - x;
217 }
218 
219 static inline int rsub_16(DisasContext *s, int x)
220 {
221     return 16 - x;
222 }
223 
224 static inline int rsub_8(DisasContext *s, int x)
225 {
226     return 8 - x;
227 }
228 
229 static inline int shl_12(DisasContext *s, int x)
230 {
231     return x << 12;
232 }
233 
234 static inline int neon_3same_fp_size(DisasContext *s, int x)
235 {
236     /* Convert 0==fp32, 1==fp16 into a MO_* value */
237     return MO_32 - x;
238 }
239 
240 static inline int arm_dc_feature(DisasContext *dc, int feature)
241 {
242     return (dc->features & (1ULL << feature)) != 0;
243 }
244 
245 static inline int get_mem_index(DisasContext *s)
246 {
247     return arm_to_core_mmu_idx(s->mmu_idx);
248 }
249 
250 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
251 {
252     /* We don't need to save all of the syndrome so we mask and shift
253      * out unneeded bits to help the sleb128 encoder do a better job.
254      */
255     syn &= ARM_INSN_START_WORD2_MASK;
256     syn >>= ARM_INSN_START_WORD2_SHIFT;
257 
258     /* We check and clear insn_start_idx to catch multiple updates.  */
259     assert(s->insn_start != NULL);
260     tcg_set_insn_start_param(s->insn_start, 2, syn);
261     s->insn_start = NULL;
262 }
263 
264 static inline int curr_insn_len(DisasContext *s)
265 {
266     return s->base.pc_next - s->pc_curr;
267 }
268 
269 /* is_jmp field values */
270 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
271 /* CPU state was modified dynamically; exit to main loop for interrupts. */
272 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
273 /* These instructions trap after executing, so the A32/T32 decoder must
274  * defer them until after the conditional execution state has been updated.
275  * WFI also needs special handling when single-stepping.
276  */
277 #define DISAS_WFI       DISAS_TARGET_2
278 #define DISAS_SWI       DISAS_TARGET_3
279 /* WFE */
280 #define DISAS_WFE       DISAS_TARGET_4
281 #define DISAS_HVC       DISAS_TARGET_5
282 #define DISAS_SMC       DISAS_TARGET_6
283 #define DISAS_YIELD     DISAS_TARGET_7
284 /* M profile branch which might be an exception return (and so needs
285  * custom end-of-TB code)
286  */
287 #define DISAS_BX_EXCRET DISAS_TARGET_8
288 /*
289  * For instructions which want an immediate exit to the main loop, as opposed
290  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
291  * doesn't write the PC on exiting the translation loop so you need to ensure
292  * something (gen_a64_update_pc or runtime helper) has done so before we reach
293  * return from cpu_tb_exec.
294  */
295 #define DISAS_EXIT      DISAS_TARGET_9
296 /* CPU state was modified dynamically; no need to exit, but do not chain. */
297 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
298 
299 #ifdef TARGET_AARCH64
300 void a64_translate_init(void);
301 void gen_a64_update_pc(DisasContext *s, target_long diff);
302 extern const TranslatorOps aarch64_translator_ops;
303 #else
304 static inline void a64_translate_init(void)
305 {
306 }
307 
308 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
309 {
310 }
311 #endif
312 
313 void arm_test_cc(DisasCompare *cmp, int cc);
314 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
315 void arm_gen_test_cc(int cc, TCGLabel *label);
316 MemOp pow2_align(unsigned i);
317 void unallocated_encoding(DisasContext *s);
318 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
319                            uint32_t syn, uint32_t target_el);
320 void gen_exception_insn(DisasContext *s, target_long pc_diff,
321                         int excp, uint32_t syn);
322 
323 /* Return state of Alternate Half-precision flag, caller frees result */
324 static inline TCGv_i32 get_ahp_flag(void)
325 {
326     TCGv_i32 ret = tcg_temp_new_i32();
327 
328     tcg_gen_ld_i32(ret, cpu_env,
329                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
330     tcg_gen_extract_i32(ret, ret, 26, 1);
331 
332     return ret;
333 }
334 
335 /* Set bits within PSTATE.  */
336 static inline void set_pstate_bits(uint32_t bits)
337 {
338     TCGv_i32 p = tcg_temp_new_i32();
339 
340     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
341 
342     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
343     tcg_gen_ori_i32(p, p, bits);
344     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
345 }
346 
347 /* Clear bits within PSTATE.  */
348 static inline void clear_pstate_bits(uint32_t bits)
349 {
350     TCGv_i32 p = tcg_temp_new_i32();
351 
352     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
353 
354     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
355     tcg_gen_andi_i32(p, p, ~bits);
356     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
357 }
358 
359 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
360 static inline void gen_ss_advance(DisasContext *s)
361 {
362     if (s->ss_active) {
363         s->pstate_ss = 0;
364         clear_pstate_bits(PSTATE_SS);
365     }
366 }
367 
368 /* Generate an architectural singlestep exception */
369 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
370 {
371     /* Fill in the same_el field of the syndrome in the helper. */
372     uint32_t syn = syn_swstep(false, isv, ex);
373     gen_helper_exception_swstep(cpu_env, tcg_constant_i32(syn));
374 }
375 
376 /*
377  * Given a VFP floating point constant encoded into an 8 bit immediate in an
378  * instruction, expand it to the actual constant value of the specified
379  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
380  */
381 uint64_t vfp_expand_imm(int size, uint8_t imm8);
382 
383 /* Vector operations shared between ARM and AArch64.  */
384 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
385                    uint32_t opr_sz, uint32_t max_sz);
386 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
387                    uint32_t opr_sz, uint32_t max_sz);
388 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
389                    uint32_t opr_sz, uint32_t max_sz);
390 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
391                    uint32_t opr_sz, uint32_t max_sz);
392 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
393                    uint32_t opr_sz, uint32_t max_sz);
394 
395 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
396                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
397 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
398                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
399 
400 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
401                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
402 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
403                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
404 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 
407 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
408 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
409 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
410 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
411 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
412 
413 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
414                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
415 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
416                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
417 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
418                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
419 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
420                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
421 
422 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
423                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
424 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
425                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
426 
427 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
428                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
429 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
430                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
431 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
432                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
434                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
435 
436 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
437                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
438 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
439                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
440 
441 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
442                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
444                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
445 
446 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
447                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
448 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
449                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
450 
451 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
452                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
453 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
454                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
455 
456 /*
457  * Forward to the isar_feature_* tests given a DisasContext pointer.
458  */
459 #define dc_isar_feature(name, ctx) \
460     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
461 
462 /* Note that the gvec expanders operate on offsets + sizes.  */
463 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
464 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
465                          uint32_t, uint32_t);
466 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
467                         uint32_t, uint32_t, uint32_t);
468 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
469                         uint32_t, uint32_t, uint32_t);
470 
471 /* Function prototype for gen_ functions for calling Neon helpers */
472 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
473 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
474 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
475 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
476 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
477                                  TCGv_i32, TCGv_i32);
478 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
479 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
480 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
481 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
482 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
483 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
484 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
485 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
486 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
487 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
488 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
489 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
490 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
491 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
492 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
493 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
494 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
495 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
496 
497 /**
498  * arm_tbflags_from_tb:
499  * @tb: the TranslationBlock
500  *
501  * Extract the flag values from @tb.
502  */
503 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
504 {
505     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
506 }
507 
508 /*
509  * Enum for argument to fpstatus_ptr().
510  */
511 typedef enum ARMFPStatusFlavour {
512     FPST_FPCR,
513     FPST_FPCR_F16,
514     FPST_STD,
515     FPST_STD_F16,
516 } ARMFPStatusFlavour;
517 
518 /**
519  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
520  *
521  * We have multiple softfloat float_status fields in the Arm CPU state struct
522  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
523  * been set up to point to the requested field in the CPU state struct.
524  * The options are:
525  *
526  * FPST_FPCR
527  *   for non-FP16 operations controlled by the FPCR
528  * FPST_FPCR_F16
529  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
530  * FPST_STD
531  *   for A32/T32 Neon operations using the "standard FPSCR value"
532  * FPST_STD_F16
533  *   as FPST_STD, but where FPCR.FZ16 is to be used
534  */
535 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
536 {
537     TCGv_ptr statusptr = tcg_temp_new_ptr();
538     int offset;
539 
540     switch (flavour) {
541     case FPST_FPCR:
542         offset = offsetof(CPUARMState, vfp.fp_status);
543         break;
544     case FPST_FPCR_F16:
545         offset = offsetof(CPUARMState, vfp.fp_status_f16);
546         break;
547     case FPST_STD:
548         offset = offsetof(CPUARMState, vfp.standard_fp_status);
549         break;
550     case FPST_STD_F16:
551         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
552         break;
553     default:
554         g_assert_not_reached();
555     }
556     tcg_gen_addi_ptr(statusptr, cpu_env, offset);
557     return statusptr;
558 }
559 
560 /**
561  * finalize_memop_atom:
562  * @s: DisasContext
563  * @opc: size+sign+align of the memory operation
564  * @atom: atomicity of the memory operation
565  *
566  * Build the complete MemOp for a memory operation, including alignment,
567  * endianness, and atomicity.
568  *
569  * If (op & MO_AMASK) then the operation already contains the required
570  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
571  * unaligned operation, e.g. for AccType_NORMAL.
572  *
573  * In the latter case, there are configuration bits that require alignment,
574  * and this is applied here.  Note that there is no way to indicate that
575  * no alignment should ever be enforced; this must be handled manually.
576  */
577 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
578 {
579     if (s->align_mem && !(opc & MO_AMASK)) {
580         opc |= MO_ALIGN;
581     }
582     return opc | atom | s->be_data;
583 }
584 
585 /**
586  * finalize_memop:
587  * @s: DisasContext
588  * @opc: size+sign+align of the memory operation
589  *
590  * Like finalize_memop_atom, but with default atomicity.
591  */
592 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
593 {
594     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
595     return finalize_memop_atom(s, opc, atom);
596 }
597 
598 /**
599  * finalize_memop_pair:
600  * @s: DisasContext
601  * @opc: size+sign+align of the memory operation
602  *
603  * Like finalize_memop_atom, but with atomicity for a pair.
604  * C.f. Pseudocode for Mem[], operand ispair.
605  */
606 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
607 {
608     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
609     return finalize_memop_atom(s, opc, atom);
610 }
611 
612 /**
613  * finalize_memop_asimd:
614  * @s: DisasContext
615  * @opc: size+sign+align of the memory operation
616  *
617  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
618  */
619 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
620 {
621     /*
622      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
623      * if IsAligned(8), the first case provides separate atomicity for
624      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
625      * do not apply, and we're left with the final case of no atomicity.
626      * Thus MO_ATOM_IFALIGN_PAIR.
627      *
628      * For other sizes, normal LSE2 rules apply.
629      */
630     if ((opc & MO_SIZE) == MO_128) {
631         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
632     }
633     return finalize_memop(s, opc);
634 }
635 
636 /**
637  * asimd_imm_const: Expand an encoded SIMD constant value
638  *
639  * Expand a SIMD constant value. This is essentially the pseudocode
640  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
641  * VMVN and VBIC (when cmode < 14 && op == 1).
642  *
643  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
644  * callers must catch this; we return the 64-bit constant value defined
645  * for AArch64.
646  *
647  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
648  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
649  * we produce an immediate constant value of 0 in these cases.
650  */
651 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
652 
653 /*
654  * gen_disas_label:
655  * Create a label and cache a copy of pc_save.
656  */
657 static inline DisasLabel gen_disas_label(DisasContext *s)
658 {
659     return (DisasLabel){
660         .label = gen_new_label(),
661         .pc_save = s->pc_save,
662     };
663 }
664 
665 /*
666  * set_disas_label:
667  * Emit a label and restore the cached copy of pc_save.
668  */
669 static inline void set_disas_label(DisasContext *s, DisasLabel l)
670 {
671     gen_set_label(l.label);
672     s->pc_save = l.pc_save;
673 }
674 
675 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
676 {
677     TCGv_ptr ret = tcg_temp_new_ptr();
678     gen_helper_lookup_cp_reg(ret, cpu_env, tcg_constant_i32(key));
679     return ret;
680 }
681 
682 /*
683  * Set and reset rounding mode around another operation.
684  */
685 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
686 {
687     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
688     TCGv_i32 old = tcg_temp_new_i32();
689 
690     gen_helper_set_rmode(old, new, fpst);
691     return old;
692 }
693 
694 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
695 {
696     gen_helper_set_rmode(old, old, fpst);
697 }
698 
699 /*
700  * Helpers for implementing sets of trans_* functions.
701  * Defer the implementation of NAME to FUNC, with optional extra arguments.
702  */
703 #define TRANS(NAME, FUNC, ...) \
704     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
705     { return FUNC(s, __VA_ARGS__); }
706 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
707     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
708     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
709 
710 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
711     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
712     {                                                             \
713         s->is_nonstreaming = true;                                \
714         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
715     }
716 
717 #endif /* TARGET_ARM_TRANSLATE_H */
718