1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled. */ 118 bool ata; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on ERET is enabled */ 142 bool fgt_eret; 143 /* True if fine-grained trap on SVC is enabled */ 144 bool fgt_svc; 145 /* 146 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 147 * < 0, set by the current instruction. 148 */ 149 int8_t btype; 150 /* A copy of cpu->dcz_blocksize. */ 151 uint8_t dcz_blocksize; 152 /* True if this page is guarded. */ 153 bool guarded_page; 154 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 155 int c15_cpar; 156 /* TCG op of the current insn_start. */ 157 TCGOp *insn_start; 158 } DisasContext; 159 160 typedef struct DisasCompare { 161 TCGCond cond; 162 TCGv_i32 value; 163 } DisasCompare; 164 165 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 166 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 167 extern TCGv_i64 cpu_exclusive_addr; 168 extern TCGv_i64 cpu_exclusive_val; 169 170 /* 171 * Constant expanders for the decoders. 172 */ 173 174 static inline int negate(DisasContext *s, int x) 175 { 176 return -x; 177 } 178 179 static inline int plus_1(DisasContext *s, int x) 180 { 181 return x + 1; 182 } 183 184 static inline int plus_2(DisasContext *s, int x) 185 { 186 return x + 2; 187 } 188 189 static inline int plus_12(DisasContext *s, int x) 190 { 191 return x + 12; 192 } 193 194 static inline int times_2(DisasContext *s, int x) 195 { 196 return x * 2; 197 } 198 199 static inline int times_4(DisasContext *s, int x) 200 { 201 return x * 4; 202 } 203 204 static inline int times_2_plus_1(DisasContext *s, int x) 205 { 206 return x * 2 + 1; 207 } 208 209 static inline int rsub_64(DisasContext *s, int x) 210 { 211 return 64 - x; 212 } 213 214 static inline int rsub_32(DisasContext *s, int x) 215 { 216 return 32 - x; 217 } 218 219 static inline int rsub_16(DisasContext *s, int x) 220 { 221 return 16 - x; 222 } 223 224 static inline int rsub_8(DisasContext *s, int x) 225 { 226 return 8 - x; 227 } 228 229 static inline int shl_12(DisasContext *s, int x) 230 { 231 return x << 12; 232 } 233 234 static inline int neon_3same_fp_size(DisasContext *s, int x) 235 { 236 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 237 return MO_32 - x; 238 } 239 240 static inline int arm_dc_feature(DisasContext *dc, int feature) 241 { 242 return (dc->features & (1ULL << feature)) != 0; 243 } 244 245 static inline int get_mem_index(DisasContext *s) 246 { 247 return arm_to_core_mmu_idx(s->mmu_idx); 248 } 249 250 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 251 { 252 /* We don't need to save all of the syndrome so we mask and shift 253 * out unneeded bits to help the sleb128 encoder do a better job. 254 */ 255 syn &= ARM_INSN_START_WORD2_MASK; 256 syn >>= ARM_INSN_START_WORD2_SHIFT; 257 258 /* We check and clear insn_start_idx to catch multiple updates. */ 259 assert(s->insn_start != NULL); 260 tcg_set_insn_start_param(s->insn_start, 2, syn); 261 s->insn_start = NULL; 262 } 263 264 static inline int curr_insn_len(DisasContext *s) 265 { 266 return s->base.pc_next - s->pc_curr; 267 } 268 269 /* is_jmp field values */ 270 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 271 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 272 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 273 /* These instructions trap after executing, so the A32/T32 decoder must 274 * defer them until after the conditional execution state has been updated. 275 * WFI also needs special handling when single-stepping. 276 */ 277 #define DISAS_WFI DISAS_TARGET_2 278 #define DISAS_SWI DISAS_TARGET_3 279 /* WFE */ 280 #define DISAS_WFE DISAS_TARGET_4 281 #define DISAS_HVC DISAS_TARGET_5 282 #define DISAS_SMC DISAS_TARGET_6 283 #define DISAS_YIELD DISAS_TARGET_7 284 /* M profile branch which might be an exception return (and so needs 285 * custom end-of-TB code) 286 */ 287 #define DISAS_BX_EXCRET DISAS_TARGET_8 288 /* 289 * For instructions which want an immediate exit to the main loop, as opposed 290 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 291 * doesn't write the PC on exiting the translation loop so you need to ensure 292 * something (gen_a64_update_pc or runtime helper) has done so before we reach 293 * return from cpu_tb_exec. 294 */ 295 #define DISAS_EXIT DISAS_TARGET_9 296 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 297 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 298 299 #ifdef TARGET_AARCH64 300 void a64_translate_init(void); 301 void gen_a64_update_pc(DisasContext *s, target_long diff); 302 extern const TranslatorOps aarch64_translator_ops; 303 #else 304 static inline void a64_translate_init(void) 305 { 306 } 307 308 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 309 { 310 } 311 #endif 312 313 void arm_test_cc(DisasCompare *cmp, int cc); 314 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 315 void arm_gen_test_cc(int cc, TCGLabel *label); 316 MemOp pow2_align(unsigned i); 317 void unallocated_encoding(DisasContext *s); 318 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 319 uint32_t syn, uint32_t target_el); 320 void gen_exception_insn(DisasContext *s, target_long pc_diff, 321 int excp, uint32_t syn); 322 323 /* Return state of Alternate Half-precision flag, caller frees result */ 324 static inline TCGv_i32 get_ahp_flag(void) 325 { 326 TCGv_i32 ret = tcg_temp_new_i32(); 327 328 tcg_gen_ld_i32(ret, cpu_env, 329 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); 330 tcg_gen_extract_i32(ret, ret, 26, 1); 331 332 return ret; 333 } 334 335 /* Set bits within PSTATE. */ 336 static inline void set_pstate_bits(uint32_t bits) 337 { 338 TCGv_i32 p = tcg_temp_new_i32(); 339 340 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 341 342 tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 343 tcg_gen_ori_i32(p, p, bits); 344 tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 345 } 346 347 /* Clear bits within PSTATE. */ 348 static inline void clear_pstate_bits(uint32_t bits) 349 { 350 TCGv_i32 p = tcg_temp_new_i32(); 351 352 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 353 354 tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 355 tcg_gen_andi_i32(p, p, ~bits); 356 tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 357 } 358 359 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 360 static inline void gen_ss_advance(DisasContext *s) 361 { 362 if (s->ss_active) { 363 s->pstate_ss = 0; 364 clear_pstate_bits(PSTATE_SS); 365 } 366 } 367 368 /* Generate an architectural singlestep exception */ 369 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 370 { 371 /* Fill in the same_el field of the syndrome in the helper. */ 372 uint32_t syn = syn_swstep(false, isv, ex); 373 gen_helper_exception_swstep(cpu_env, tcg_constant_i32(syn)); 374 } 375 376 /* 377 * Given a VFP floating point constant encoded into an 8 bit immediate in an 378 * instruction, expand it to the actual constant value of the specified 379 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 380 */ 381 uint64_t vfp_expand_imm(int size, uint8_t imm8); 382 383 /* Vector operations shared between ARM and AArch64. */ 384 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 385 uint32_t opr_sz, uint32_t max_sz); 386 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 387 uint32_t opr_sz, uint32_t max_sz); 388 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 389 uint32_t opr_sz, uint32_t max_sz); 390 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 391 uint32_t opr_sz, uint32_t max_sz); 392 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 393 uint32_t opr_sz, uint32_t max_sz); 394 395 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 396 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 397 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 398 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 399 400 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 401 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 402 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 403 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 404 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 405 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 406 407 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 408 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 409 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 410 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 411 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 412 413 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 414 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 415 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 416 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 417 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 418 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 419 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 420 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 421 422 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 423 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 424 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 425 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 426 427 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 428 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 429 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 430 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 431 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 432 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 433 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 434 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 435 436 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 437 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 438 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 439 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 440 441 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 442 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 443 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 444 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 445 446 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 447 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 448 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 449 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 450 451 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 452 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 453 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 454 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 455 456 /* 457 * Forward to the isar_feature_* tests given a DisasContext pointer. 458 */ 459 #define dc_isar_feature(name, ctx) \ 460 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 461 462 /* Note that the gvec expanders operate on offsets + sizes. */ 463 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 464 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 465 uint32_t, uint32_t); 466 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 467 uint32_t, uint32_t, uint32_t); 468 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 469 uint32_t, uint32_t, uint32_t); 470 471 /* Function prototype for gen_ functions for calling Neon helpers */ 472 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 473 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 474 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 475 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 476 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 477 TCGv_i32, TCGv_i32); 478 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 479 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 480 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 481 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 482 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 483 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 484 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 485 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 486 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 487 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 488 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 489 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 490 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 491 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 492 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 493 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 494 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 495 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 496 497 /** 498 * arm_tbflags_from_tb: 499 * @tb: the TranslationBlock 500 * 501 * Extract the flag values from @tb. 502 */ 503 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 504 { 505 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 506 } 507 508 /* 509 * Enum for argument to fpstatus_ptr(). 510 */ 511 typedef enum ARMFPStatusFlavour { 512 FPST_FPCR, 513 FPST_FPCR_F16, 514 FPST_STD, 515 FPST_STD_F16, 516 } ARMFPStatusFlavour; 517 518 /** 519 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 520 * 521 * We have multiple softfloat float_status fields in the Arm CPU state struct 522 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 523 * been set up to point to the requested field in the CPU state struct. 524 * The options are: 525 * 526 * FPST_FPCR 527 * for non-FP16 operations controlled by the FPCR 528 * FPST_FPCR_F16 529 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 530 * FPST_STD 531 * for A32/T32 Neon operations using the "standard FPSCR value" 532 * FPST_STD_F16 533 * as FPST_STD, but where FPCR.FZ16 is to be used 534 */ 535 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 536 { 537 TCGv_ptr statusptr = tcg_temp_new_ptr(); 538 int offset; 539 540 switch (flavour) { 541 case FPST_FPCR: 542 offset = offsetof(CPUARMState, vfp.fp_status); 543 break; 544 case FPST_FPCR_F16: 545 offset = offsetof(CPUARMState, vfp.fp_status_f16); 546 break; 547 case FPST_STD: 548 offset = offsetof(CPUARMState, vfp.standard_fp_status); 549 break; 550 case FPST_STD_F16: 551 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 552 break; 553 default: 554 g_assert_not_reached(); 555 } 556 tcg_gen_addi_ptr(statusptr, cpu_env, offset); 557 return statusptr; 558 } 559 560 /** 561 * finalize_memop_atom: 562 * @s: DisasContext 563 * @opc: size+sign+align of the memory operation 564 * @atom: atomicity of the memory operation 565 * 566 * Build the complete MemOp for a memory operation, including alignment, 567 * endianness, and atomicity. 568 * 569 * If (op & MO_AMASK) then the operation already contains the required 570 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 571 * unaligned operation, e.g. for AccType_NORMAL. 572 * 573 * In the latter case, there are configuration bits that require alignment, 574 * and this is applied here. Note that there is no way to indicate that 575 * no alignment should ever be enforced; this must be handled manually. 576 */ 577 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 578 { 579 if (s->align_mem && !(opc & MO_AMASK)) { 580 opc |= MO_ALIGN; 581 } 582 return opc | atom | s->be_data; 583 } 584 585 /** 586 * finalize_memop: 587 * @s: DisasContext 588 * @opc: size+sign+align of the memory operation 589 * 590 * Like finalize_memop_atom, but with default atomicity. 591 */ 592 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 593 { 594 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 595 return finalize_memop_atom(s, opc, atom); 596 } 597 598 /** 599 * finalize_memop_pair: 600 * @s: DisasContext 601 * @opc: size+sign+align of the memory operation 602 * 603 * Like finalize_memop_atom, but with atomicity for a pair. 604 * C.f. Pseudocode for Mem[], operand ispair. 605 */ 606 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 607 { 608 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 609 return finalize_memop_atom(s, opc, atom); 610 } 611 612 /** 613 * finalize_memop_asimd: 614 * @s: DisasContext 615 * @opc: size+sign+align of the memory operation 616 * 617 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 618 */ 619 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 620 { 621 /* 622 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 623 * if IsAligned(8), the first case provides separate atomicity for 624 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 625 * do not apply, and we're left with the final case of no atomicity. 626 * Thus MO_ATOM_IFALIGN_PAIR. 627 * 628 * For other sizes, normal LSE2 rules apply. 629 */ 630 if ((opc & MO_SIZE) == MO_128) { 631 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 632 } 633 return finalize_memop(s, opc); 634 } 635 636 /** 637 * asimd_imm_const: Expand an encoded SIMD constant value 638 * 639 * Expand a SIMD constant value. This is essentially the pseudocode 640 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 641 * VMVN and VBIC (when cmode < 14 && op == 1). 642 * 643 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 644 * callers must catch this; we return the 64-bit constant value defined 645 * for AArch64. 646 * 647 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 648 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 649 * we produce an immediate constant value of 0 in these cases. 650 */ 651 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 652 653 /* 654 * gen_disas_label: 655 * Create a label and cache a copy of pc_save. 656 */ 657 static inline DisasLabel gen_disas_label(DisasContext *s) 658 { 659 return (DisasLabel){ 660 .label = gen_new_label(), 661 .pc_save = s->pc_save, 662 }; 663 } 664 665 /* 666 * set_disas_label: 667 * Emit a label and restore the cached copy of pc_save. 668 */ 669 static inline void set_disas_label(DisasContext *s, DisasLabel l) 670 { 671 gen_set_label(l.label); 672 s->pc_save = l.pc_save; 673 } 674 675 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 676 { 677 TCGv_ptr ret = tcg_temp_new_ptr(); 678 gen_helper_lookup_cp_reg(ret, cpu_env, tcg_constant_i32(key)); 679 return ret; 680 } 681 682 /* 683 * Set and reset rounding mode around another operation. 684 */ 685 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 686 { 687 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 688 TCGv_i32 old = tcg_temp_new_i32(); 689 690 gen_helper_set_rmode(old, new, fpst); 691 return old; 692 } 693 694 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 695 { 696 gen_helper_set_rmode(old, old, fpst); 697 } 698 699 /* 700 * Helpers for implementing sets of trans_* functions. 701 * Defer the implementation of NAME to FUNC, with optional extra arguments. 702 */ 703 #define TRANS(NAME, FUNC, ...) \ 704 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 705 { return FUNC(s, __VA_ARGS__); } 706 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 707 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 708 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 709 710 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 711 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 712 { \ 713 s->is_nonstreaming = true; \ 714 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 715 } 716 717 #endif /* TARGET_ARM_TRANSLATE_H */ 718