1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 #include "cpu-features.h" 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ 118 bool ata[2]; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on SVC is enabled */ 142 bool fgt_svc; 143 /* True if a trap on ERET is enabled (FGT or NV) */ 144 bool trap_eret; 145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ 146 bool naa; 147 /* True if FEAT_NV HCR_EL2.NV is enabled */ 148 bool nv; 149 /* True if NV enabled and HCR_EL2.NV1 is set */ 150 bool nv1; 151 /* True if NV enabled and HCR_EL2.NV2 is set */ 152 bool nv2; 153 /* 154 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 155 * < 0, set by the current instruction. 156 */ 157 int8_t btype; 158 /* A copy of cpu->dcz_blocksize. */ 159 uint8_t dcz_blocksize; 160 /* A copy of cpu->gm_blocksize. */ 161 uint8_t gm_blocksize; 162 /* True if this page is guarded. */ 163 bool guarded_page; 164 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 165 int c15_cpar; 166 /* TCG op of the current insn_start. */ 167 TCGOp *insn_start; 168 } DisasContext; 169 170 typedef struct DisasCompare { 171 TCGCond cond; 172 TCGv_i32 value; 173 } DisasCompare; 174 175 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 176 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 177 extern TCGv_i64 cpu_exclusive_addr; 178 extern TCGv_i64 cpu_exclusive_val; 179 180 /* 181 * Constant expanders for the decoders. 182 */ 183 184 static inline int negate(DisasContext *s, int x) 185 { 186 return -x; 187 } 188 189 static inline int plus_1(DisasContext *s, int x) 190 { 191 return x + 1; 192 } 193 194 static inline int plus_2(DisasContext *s, int x) 195 { 196 return x + 2; 197 } 198 199 static inline int plus_12(DisasContext *s, int x) 200 { 201 return x + 12; 202 } 203 204 static inline int times_2(DisasContext *s, int x) 205 { 206 return x * 2; 207 } 208 209 static inline int times_4(DisasContext *s, int x) 210 { 211 return x * 4; 212 } 213 214 static inline int times_8(DisasContext *s, int x) 215 { 216 return x * 8; 217 } 218 219 static inline int times_2_plus_1(DisasContext *s, int x) 220 { 221 return x * 2 + 1; 222 } 223 224 static inline int rsub_64(DisasContext *s, int x) 225 { 226 return 64 - x; 227 } 228 229 static inline int rsub_32(DisasContext *s, int x) 230 { 231 return 32 - x; 232 } 233 234 static inline int rsub_16(DisasContext *s, int x) 235 { 236 return 16 - x; 237 } 238 239 static inline int rsub_8(DisasContext *s, int x) 240 { 241 return 8 - x; 242 } 243 244 static inline int shl_12(DisasContext *s, int x) 245 { 246 return x << 12; 247 } 248 249 static inline int neon_3same_fp_size(DisasContext *s, int x) 250 { 251 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 252 return MO_32 - x; 253 } 254 255 static inline int arm_dc_feature(DisasContext *dc, int feature) 256 { 257 return (dc->features & (1ULL << feature)) != 0; 258 } 259 260 static inline int get_mem_index(DisasContext *s) 261 { 262 return arm_to_core_mmu_idx(s->mmu_idx); 263 } 264 265 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 266 { 267 /* We don't need to save all of the syndrome so we mask and shift 268 * out unneeded bits to help the sleb128 encoder do a better job. 269 */ 270 syn &= ARM_INSN_START_WORD2_MASK; 271 syn >>= ARM_INSN_START_WORD2_SHIFT; 272 273 /* We check and clear insn_start_idx to catch multiple updates. */ 274 assert(s->insn_start != NULL); 275 tcg_set_insn_start_param(s->insn_start, 2, syn); 276 s->insn_start = NULL; 277 } 278 279 static inline int curr_insn_len(DisasContext *s) 280 { 281 return s->base.pc_next - s->pc_curr; 282 } 283 284 /* is_jmp field values */ 285 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 286 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 287 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 288 /* These instructions trap after executing, so the A32/T32 decoder must 289 * defer them until after the conditional execution state has been updated. 290 * WFI also needs special handling when single-stepping. 291 */ 292 #define DISAS_WFI DISAS_TARGET_2 293 #define DISAS_SWI DISAS_TARGET_3 294 /* WFE */ 295 #define DISAS_WFE DISAS_TARGET_4 296 #define DISAS_HVC DISAS_TARGET_5 297 #define DISAS_SMC DISAS_TARGET_6 298 #define DISAS_YIELD DISAS_TARGET_7 299 /* M profile branch which might be an exception return (and so needs 300 * custom end-of-TB code) 301 */ 302 #define DISAS_BX_EXCRET DISAS_TARGET_8 303 /* 304 * For instructions which want an immediate exit to the main loop, as opposed 305 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 306 * doesn't write the PC on exiting the translation loop so you need to ensure 307 * something (gen_a64_update_pc or runtime helper) has done so before we reach 308 * return from cpu_tb_exec. 309 */ 310 #define DISAS_EXIT DISAS_TARGET_9 311 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 312 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 313 314 #ifdef TARGET_AARCH64 315 void a64_translate_init(void); 316 void gen_a64_update_pc(DisasContext *s, target_long diff); 317 extern const TranslatorOps aarch64_translator_ops; 318 #else 319 static inline void a64_translate_init(void) 320 { 321 } 322 323 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 324 { 325 } 326 #endif 327 328 void arm_test_cc(DisasCompare *cmp, int cc); 329 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 330 void arm_gen_test_cc(int cc, TCGLabel *label); 331 MemOp pow2_align(unsigned i); 332 void unallocated_encoding(DisasContext *s); 333 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 334 uint32_t syn, uint32_t target_el); 335 void gen_exception_insn(DisasContext *s, target_long pc_diff, 336 int excp, uint32_t syn); 337 338 /* Return state of Alternate Half-precision flag, caller frees result */ 339 static inline TCGv_i32 get_ahp_flag(void) 340 { 341 TCGv_i32 ret = tcg_temp_new_i32(); 342 343 tcg_gen_ld_i32(ret, tcg_env, 344 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); 345 tcg_gen_extract_i32(ret, ret, 26, 1); 346 347 return ret; 348 } 349 350 /* Set bits within PSTATE. */ 351 static inline void set_pstate_bits(uint32_t bits) 352 { 353 TCGv_i32 p = tcg_temp_new_i32(); 354 355 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 356 357 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 358 tcg_gen_ori_i32(p, p, bits); 359 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 360 } 361 362 /* Clear bits within PSTATE. */ 363 static inline void clear_pstate_bits(uint32_t bits) 364 { 365 TCGv_i32 p = tcg_temp_new_i32(); 366 367 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 368 369 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 370 tcg_gen_andi_i32(p, p, ~bits); 371 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 372 } 373 374 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 375 static inline void gen_ss_advance(DisasContext *s) 376 { 377 if (s->ss_active) { 378 s->pstate_ss = 0; 379 clear_pstate_bits(PSTATE_SS); 380 } 381 } 382 383 /* Generate an architectural singlestep exception */ 384 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 385 { 386 /* Fill in the same_el field of the syndrome in the helper. */ 387 uint32_t syn = syn_swstep(false, isv, ex); 388 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); 389 } 390 391 /* 392 * Given a VFP floating point constant encoded into an 8 bit immediate in an 393 * instruction, expand it to the actual constant value of the specified 394 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 395 */ 396 uint64_t vfp_expand_imm(int size, uint8_t imm8); 397 398 /* Vector operations shared between ARM and AArch64. */ 399 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 400 uint32_t opr_sz, uint32_t max_sz); 401 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 402 uint32_t opr_sz, uint32_t max_sz); 403 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 404 uint32_t opr_sz, uint32_t max_sz); 405 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 406 uint32_t opr_sz, uint32_t max_sz); 407 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 408 uint32_t opr_sz, uint32_t max_sz); 409 410 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 411 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 412 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 413 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 414 415 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 416 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 417 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 418 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 419 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 420 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 421 422 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 423 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 424 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 425 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 426 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 427 428 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 429 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 430 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 431 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 432 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 433 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 434 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 435 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 436 437 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 438 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 439 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 440 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 441 442 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 443 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 444 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 445 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 446 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 447 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 448 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 449 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 450 451 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 452 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 453 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 454 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 455 456 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 457 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 458 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 459 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 460 461 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 463 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 465 466 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 467 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 468 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 469 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 470 471 /* 472 * Forward to the isar_feature_* tests given a DisasContext pointer. 473 */ 474 #define dc_isar_feature(name, ctx) \ 475 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 476 477 /* Note that the gvec expanders operate on offsets + sizes. */ 478 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 479 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 480 uint32_t, uint32_t); 481 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 482 uint32_t, uint32_t, uint32_t); 483 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 484 uint32_t, uint32_t, uint32_t); 485 486 /* Function prototype for gen_ functions for calling Neon helpers */ 487 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 488 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 489 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 490 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 491 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 492 TCGv_i32, TCGv_i32); 493 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 494 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 495 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 496 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 497 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 498 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 499 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 500 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 501 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 502 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 503 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 504 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 505 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 506 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 507 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 508 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 509 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 510 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 511 512 /** 513 * arm_tbflags_from_tb: 514 * @tb: the TranslationBlock 515 * 516 * Extract the flag values from @tb. 517 */ 518 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 519 { 520 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 521 } 522 523 /* 524 * Enum for argument to fpstatus_ptr(). 525 */ 526 typedef enum ARMFPStatusFlavour { 527 FPST_FPCR, 528 FPST_FPCR_F16, 529 FPST_STD, 530 FPST_STD_F16, 531 } ARMFPStatusFlavour; 532 533 /** 534 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 535 * 536 * We have multiple softfloat float_status fields in the Arm CPU state struct 537 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 538 * been set up to point to the requested field in the CPU state struct. 539 * The options are: 540 * 541 * FPST_FPCR 542 * for non-FP16 operations controlled by the FPCR 543 * FPST_FPCR_F16 544 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 545 * FPST_STD 546 * for A32/T32 Neon operations using the "standard FPSCR value" 547 * FPST_STD_F16 548 * as FPST_STD, but where FPCR.FZ16 is to be used 549 */ 550 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 551 { 552 TCGv_ptr statusptr = tcg_temp_new_ptr(); 553 int offset; 554 555 switch (flavour) { 556 case FPST_FPCR: 557 offset = offsetof(CPUARMState, vfp.fp_status); 558 break; 559 case FPST_FPCR_F16: 560 offset = offsetof(CPUARMState, vfp.fp_status_f16); 561 break; 562 case FPST_STD: 563 offset = offsetof(CPUARMState, vfp.standard_fp_status); 564 break; 565 case FPST_STD_F16: 566 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 567 break; 568 default: 569 g_assert_not_reached(); 570 } 571 tcg_gen_addi_ptr(statusptr, tcg_env, offset); 572 return statusptr; 573 } 574 575 /** 576 * finalize_memop_atom: 577 * @s: DisasContext 578 * @opc: size+sign+align of the memory operation 579 * @atom: atomicity of the memory operation 580 * 581 * Build the complete MemOp for a memory operation, including alignment, 582 * endianness, and atomicity. 583 * 584 * If (op & MO_AMASK) then the operation already contains the required 585 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 586 * unaligned operation, e.g. for AccType_NORMAL. 587 * 588 * In the latter case, there are configuration bits that require alignment, 589 * and this is applied here. Note that there is no way to indicate that 590 * no alignment should ever be enforced; this must be handled manually. 591 */ 592 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 593 { 594 if (s->align_mem && !(opc & MO_AMASK)) { 595 opc |= MO_ALIGN; 596 } 597 return opc | atom | s->be_data; 598 } 599 600 /** 601 * finalize_memop: 602 * @s: DisasContext 603 * @opc: size+sign+align of the memory operation 604 * 605 * Like finalize_memop_atom, but with default atomicity. 606 */ 607 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 608 { 609 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 610 return finalize_memop_atom(s, opc, atom); 611 } 612 613 /** 614 * finalize_memop_pair: 615 * @s: DisasContext 616 * @opc: size+sign+align of the memory operation 617 * 618 * Like finalize_memop_atom, but with atomicity for a pair. 619 * C.f. Pseudocode for Mem[], operand ispair. 620 */ 621 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 622 { 623 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 624 return finalize_memop_atom(s, opc, atom); 625 } 626 627 /** 628 * finalize_memop_asimd: 629 * @s: DisasContext 630 * @opc: size+sign+align of the memory operation 631 * 632 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 633 */ 634 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 635 { 636 /* 637 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 638 * if IsAligned(8), the first case provides separate atomicity for 639 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 640 * do not apply, and we're left with the final case of no atomicity. 641 * Thus MO_ATOM_IFALIGN_PAIR. 642 * 643 * For other sizes, normal LSE2 rules apply. 644 */ 645 if ((opc & MO_SIZE) == MO_128) { 646 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 647 } 648 return finalize_memop(s, opc); 649 } 650 651 /** 652 * asimd_imm_const: Expand an encoded SIMD constant value 653 * 654 * Expand a SIMD constant value. This is essentially the pseudocode 655 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 656 * VMVN and VBIC (when cmode < 14 && op == 1). 657 * 658 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 659 * callers must catch this; we return the 64-bit constant value defined 660 * for AArch64. 661 * 662 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 663 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 664 * we produce an immediate constant value of 0 in these cases. 665 */ 666 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 667 668 /* 669 * gen_disas_label: 670 * Create a label and cache a copy of pc_save. 671 */ 672 static inline DisasLabel gen_disas_label(DisasContext *s) 673 { 674 return (DisasLabel){ 675 .label = gen_new_label(), 676 .pc_save = s->pc_save, 677 }; 678 } 679 680 /* 681 * set_disas_label: 682 * Emit a label and restore the cached copy of pc_save. 683 */ 684 static inline void set_disas_label(DisasContext *s, DisasLabel l) 685 { 686 gen_set_label(l.label); 687 s->pc_save = l.pc_save; 688 } 689 690 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 691 { 692 TCGv_ptr ret = tcg_temp_new_ptr(); 693 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); 694 return ret; 695 } 696 697 /* 698 * Set and reset rounding mode around another operation. 699 */ 700 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 701 { 702 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 703 TCGv_i32 old = tcg_temp_new_i32(); 704 705 gen_helper_set_rmode(old, new, fpst); 706 return old; 707 } 708 709 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 710 { 711 gen_helper_set_rmode(old, old, fpst); 712 } 713 714 /* 715 * Helpers for implementing sets of trans_* functions. 716 * Defer the implementation of NAME to FUNC, with optional extra arguments. 717 */ 718 #define TRANS(NAME, FUNC, ...) \ 719 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 720 { return FUNC(s, __VA_ARGS__); } 721 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 722 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 723 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 724 725 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 726 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 727 { \ 728 s->is_nonstreaming = true; \ 729 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 730 } 731 732 #endif /* TARGET_ARM_TRANSLATE_H */ 733