xref: /openbmc/qemu/target/arm/tcg/translate.h (revision c35da11d)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled; index with is_unpriv.  */
118     bool ata[2];
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on SVC is enabled */
142     bool fgt_svc;
143     /* True if a trap on ERET is enabled (FGT or NV) */
144     bool trap_eret;
145     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146     bool naa;
147     /* True if FEAT_NV HCR_EL2.NV is enabled */
148     bool nv;
149     /* True if NV enabled and HCR_EL2.NV1 is set */
150     bool nv1;
151     /* True if NV enabled and HCR_EL2.NV2 is set */
152     bool nv2;
153     /*
154      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
155      *  < 0, set by the current instruction.
156      */
157     int8_t btype;
158     /* A copy of cpu->dcz_blocksize. */
159     uint8_t dcz_blocksize;
160     /* A copy of cpu->gm_blocksize. */
161     uint8_t gm_blocksize;
162     /* True if this page is guarded.  */
163     bool guarded_page;
164     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
165     int c15_cpar;
166     /* TCG op of the current insn_start.  */
167     TCGOp *insn_start;
168 } DisasContext;
169 
170 typedef struct DisasCompare {
171     TCGCond cond;
172     TCGv_i32 value;
173 } DisasCompare;
174 
175 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
176 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
177 extern TCGv_i64 cpu_exclusive_addr;
178 extern TCGv_i64 cpu_exclusive_val;
179 
180 /*
181  * Constant expanders for the decoders.
182  */
183 
184 static inline int negate(DisasContext *s, int x)
185 {
186     return -x;
187 }
188 
189 static inline int plus_1(DisasContext *s, int x)
190 {
191     return x + 1;
192 }
193 
194 static inline int plus_2(DisasContext *s, int x)
195 {
196     return x + 2;
197 }
198 
199 static inline int plus_12(DisasContext *s, int x)
200 {
201     return x + 12;
202 }
203 
204 static inline int times_2(DisasContext *s, int x)
205 {
206     return x * 2;
207 }
208 
209 static inline int times_4(DisasContext *s, int x)
210 {
211     return x * 4;
212 }
213 
214 static inline int times_8(DisasContext *s, int x)
215 {
216     return x * 8;
217 }
218 
219 static inline int times_2_plus_1(DisasContext *s, int x)
220 {
221     return x * 2 + 1;
222 }
223 
224 static inline int rsub_64(DisasContext *s, int x)
225 {
226     return 64 - x;
227 }
228 
229 static inline int rsub_32(DisasContext *s, int x)
230 {
231     return 32 - x;
232 }
233 
234 static inline int rsub_16(DisasContext *s, int x)
235 {
236     return 16 - x;
237 }
238 
239 static inline int rsub_8(DisasContext *s, int x)
240 {
241     return 8 - x;
242 }
243 
244 static inline int shl_12(DisasContext *s, int x)
245 {
246     return x << 12;
247 }
248 
249 static inline int neon_3same_fp_size(DisasContext *s, int x)
250 {
251     /* Convert 0==fp32, 1==fp16 into a MO_* value */
252     return MO_32 - x;
253 }
254 
255 static inline int arm_dc_feature(DisasContext *dc, int feature)
256 {
257     return (dc->features & (1ULL << feature)) != 0;
258 }
259 
260 static inline int get_mem_index(DisasContext *s)
261 {
262     return arm_to_core_mmu_idx(s->mmu_idx);
263 }
264 
265 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
266 {
267     /* We don't need to save all of the syndrome so we mask and shift
268      * out unneeded bits to help the sleb128 encoder do a better job.
269      */
270     syn &= ARM_INSN_START_WORD2_MASK;
271     syn >>= ARM_INSN_START_WORD2_SHIFT;
272 
273     /* We check and clear insn_start_idx to catch multiple updates.  */
274     assert(s->insn_start != NULL);
275     tcg_set_insn_start_param(s->insn_start, 2, syn);
276     s->insn_start = NULL;
277 }
278 
279 static inline int curr_insn_len(DisasContext *s)
280 {
281     return s->base.pc_next - s->pc_curr;
282 }
283 
284 /* is_jmp field values */
285 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
286 /* CPU state was modified dynamically; exit to main loop for interrupts. */
287 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
288 /* These instructions trap after executing, so the A32/T32 decoder must
289  * defer them until after the conditional execution state has been updated.
290  * WFI also needs special handling when single-stepping.
291  */
292 #define DISAS_WFI       DISAS_TARGET_2
293 #define DISAS_SWI       DISAS_TARGET_3
294 /* WFE */
295 #define DISAS_WFE       DISAS_TARGET_4
296 #define DISAS_HVC       DISAS_TARGET_5
297 #define DISAS_SMC       DISAS_TARGET_6
298 #define DISAS_YIELD     DISAS_TARGET_7
299 /* M profile branch which might be an exception return (and so needs
300  * custom end-of-TB code)
301  */
302 #define DISAS_BX_EXCRET DISAS_TARGET_8
303 /*
304  * For instructions which want an immediate exit to the main loop, as opposed
305  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
306  * doesn't write the PC on exiting the translation loop so you need to ensure
307  * something (gen_a64_update_pc or runtime helper) has done so before we reach
308  * return from cpu_tb_exec.
309  */
310 #define DISAS_EXIT      DISAS_TARGET_9
311 /* CPU state was modified dynamically; no need to exit, but do not chain. */
312 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
313 
314 #ifdef TARGET_AARCH64
315 void a64_translate_init(void);
316 void gen_a64_update_pc(DisasContext *s, target_long diff);
317 extern const TranslatorOps aarch64_translator_ops;
318 #else
319 static inline void a64_translate_init(void)
320 {
321 }
322 
323 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
324 {
325 }
326 #endif
327 
328 void arm_test_cc(DisasCompare *cmp, int cc);
329 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
330 void arm_gen_test_cc(int cc, TCGLabel *label);
331 MemOp pow2_align(unsigned i);
332 void unallocated_encoding(DisasContext *s);
333 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
334                            uint32_t syn, uint32_t target_el);
335 void gen_exception_insn(DisasContext *s, target_long pc_diff,
336                         int excp, uint32_t syn);
337 
338 /* Return state of Alternate Half-precision flag, caller frees result */
339 static inline TCGv_i32 get_ahp_flag(void)
340 {
341     TCGv_i32 ret = tcg_temp_new_i32();
342 
343     tcg_gen_ld_i32(ret, tcg_env,
344                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
345     tcg_gen_extract_i32(ret, ret, 26, 1);
346 
347     return ret;
348 }
349 
350 /* Set bits within PSTATE.  */
351 static inline void set_pstate_bits(uint32_t bits)
352 {
353     TCGv_i32 p = tcg_temp_new_i32();
354 
355     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
356 
357     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
358     tcg_gen_ori_i32(p, p, bits);
359     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
360 }
361 
362 /* Clear bits within PSTATE.  */
363 static inline void clear_pstate_bits(uint32_t bits)
364 {
365     TCGv_i32 p = tcg_temp_new_i32();
366 
367     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
368 
369     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
370     tcg_gen_andi_i32(p, p, ~bits);
371     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
372 }
373 
374 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
375 static inline void gen_ss_advance(DisasContext *s)
376 {
377     if (s->ss_active) {
378         s->pstate_ss = 0;
379         clear_pstate_bits(PSTATE_SS);
380     }
381 }
382 
383 /* Generate an architectural singlestep exception */
384 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
385 {
386     /* Fill in the same_el field of the syndrome in the helper. */
387     uint32_t syn = syn_swstep(false, isv, ex);
388     gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
389 }
390 
391 /*
392  * Given a VFP floating point constant encoded into an 8 bit immediate in an
393  * instruction, expand it to the actual constant value of the specified
394  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
395  */
396 uint64_t vfp_expand_imm(int size, uint8_t imm8);
397 
398 /* Vector operations shared between ARM and AArch64.  */
399 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
400                    uint32_t opr_sz, uint32_t max_sz);
401 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
402                    uint32_t opr_sz, uint32_t max_sz);
403 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
404                    uint32_t opr_sz, uint32_t max_sz);
405 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
406                    uint32_t opr_sz, uint32_t max_sz);
407 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
408                    uint32_t opr_sz, uint32_t max_sz);
409 
410 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
411                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
412 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
413                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
414 
415 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
416                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
417 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
418                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
419 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
420                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
421 
422 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
423 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
424 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
425 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
426 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
427 
428 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
429                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
430 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
431                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
432 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
433                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
434 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
435                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
436 
437 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
438                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
439 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
440                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
441 
442 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
443                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
444 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
445                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
446 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
447                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
448 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
449                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
450 
451 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
452                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
453 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
454                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
455 
456 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
457                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
458 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
459                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
460 
461 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 
466 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
467                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
468 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
469                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
470 
471 /*
472  * Forward to the isar_feature_* tests given a DisasContext pointer.
473  */
474 #define dc_isar_feature(name, ctx) \
475     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
476 
477 /* Note that the gvec expanders operate on offsets + sizes.  */
478 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
479 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
480                          uint32_t, uint32_t);
481 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
482                         uint32_t, uint32_t, uint32_t);
483 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
484                         uint32_t, uint32_t, uint32_t);
485 
486 /* Function prototype for gen_ functions for calling Neon helpers */
487 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
488 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
489 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
490 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
491 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
492                                  TCGv_i32, TCGv_i32);
493 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
494 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
495 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
496 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
497 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
498 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
499 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
500 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
501 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
502 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
503 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
504 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
505 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
506 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
507 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
508 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
509 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
510 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
511 
512 /**
513  * arm_tbflags_from_tb:
514  * @tb: the TranslationBlock
515  *
516  * Extract the flag values from @tb.
517  */
518 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
519 {
520     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
521 }
522 
523 /*
524  * Enum for argument to fpstatus_ptr().
525  */
526 typedef enum ARMFPStatusFlavour {
527     FPST_FPCR,
528     FPST_FPCR_F16,
529     FPST_STD,
530     FPST_STD_F16,
531 } ARMFPStatusFlavour;
532 
533 /**
534  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
535  *
536  * We have multiple softfloat float_status fields in the Arm CPU state struct
537  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
538  * been set up to point to the requested field in the CPU state struct.
539  * The options are:
540  *
541  * FPST_FPCR
542  *   for non-FP16 operations controlled by the FPCR
543  * FPST_FPCR_F16
544  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
545  * FPST_STD
546  *   for A32/T32 Neon operations using the "standard FPSCR value"
547  * FPST_STD_F16
548  *   as FPST_STD, but where FPCR.FZ16 is to be used
549  */
550 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
551 {
552     TCGv_ptr statusptr = tcg_temp_new_ptr();
553     int offset;
554 
555     switch (flavour) {
556     case FPST_FPCR:
557         offset = offsetof(CPUARMState, vfp.fp_status);
558         break;
559     case FPST_FPCR_F16:
560         offset = offsetof(CPUARMState, vfp.fp_status_f16);
561         break;
562     case FPST_STD:
563         offset = offsetof(CPUARMState, vfp.standard_fp_status);
564         break;
565     case FPST_STD_F16:
566         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
567         break;
568     default:
569         g_assert_not_reached();
570     }
571     tcg_gen_addi_ptr(statusptr, tcg_env, offset);
572     return statusptr;
573 }
574 
575 /**
576  * finalize_memop_atom:
577  * @s: DisasContext
578  * @opc: size+sign+align of the memory operation
579  * @atom: atomicity of the memory operation
580  *
581  * Build the complete MemOp for a memory operation, including alignment,
582  * endianness, and atomicity.
583  *
584  * If (op & MO_AMASK) then the operation already contains the required
585  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
586  * unaligned operation, e.g. for AccType_NORMAL.
587  *
588  * In the latter case, there are configuration bits that require alignment,
589  * and this is applied here.  Note that there is no way to indicate that
590  * no alignment should ever be enforced; this must be handled manually.
591  */
592 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
593 {
594     if (s->align_mem && !(opc & MO_AMASK)) {
595         opc |= MO_ALIGN;
596     }
597     return opc | atom | s->be_data;
598 }
599 
600 /**
601  * finalize_memop:
602  * @s: DisasContext
603  * @opc: size+sign+align of the memory operation
604  *
605  * Like finalize_memop_atom, but with default atomicity.
606  */
607 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
608 {
609     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
610     return finalize_memop_atom(s, opc, atom);
611 }
612 
613 /**
614  * finalize_memop_pair:
615  * @s: DisasContext
616  * @opc: size+sign+align of the memory operation
617  *
618  * Like finalize_memop_atom, but with atomicity for a pair.
619  * C.f. Pseudocode for Mem[], operand ispair.
620  */
621 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
622 {
623     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
624     return finalize_memop_atom(s, opc, atom);
625 }
626 
627 /**
628  * finalize_memop_asimd:
629  * @s: DisasContext
630  * @opc: size+sign+align of the memory operation
631  *
632  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
633  */
634 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
635 {
636     /*
637      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
638      * if IsAligned(8), the first case provides separate atomicity for
639      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
640      * do not apply, and we're left with the final case of no atomicity.
641      * Thus MO_ATOM_IFALIGN_PAIR.
642      *
643      * For other sizes, normal LSE2 rules apply.
644      */
645     if ((opc & MO_SIZE) == MO_128) {
646         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
647     }
648     return finalize_memop(s, opc);
649 }
650 
651 /**
652  * asimd_imm_const: Expand an encoded SIMD constant value
653  *
654  * Expand a SIMD constant value. This is essentially the pseudocode
655  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
656  * VMVN and VBIC (when cmode < 14 && op == 1).
657  *
658  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
659  * callers must catch this; we return the 64-bit constant value defined
660  * for AArch64.
661  *
662  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
663  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
664  * we produce an immediate constant value of 0 in these cases.
665  */
666 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
667 
668 /*
669  * gen_disas_label:
670  * Create a label and cache a copy of pc_save.
671  */
672 static inline DisasLabel gen_disas_label(DisasContext *s)
673 {
674     return (DisasLabel){
675         .label = gen_new_label(),
676         .pc_save = s->pc_save,
677     };
678 }
679 
680 /*
681  * set_disas_label:
682  * Emit a label and restore the cached copy of pc_save.
683  */
684 static inline void set_disas_label(DisasContext *s, DisasLabel l)
685 {
686     gen_set_label(l.label);
687     s->pc_save = l.pc_save;
688 }
689 
690 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
691 {
692     TCGv_ptr ret = tcg_temp_new_ptr();
693     gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
694     return ret;
695 }
696 
697 /*
698  * Set and reset rounding mode around another operation.
699  */
700 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
701 {
702     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
703     TCGv_i32 old = tcg_temp_new_i32();
704 
705     gen_helper_set_rmode(old, new, fpst);
706     return old;
707 }
708 
709 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
710 {
711     gen_helper_set_rmode(old, old, fpst);
712 }
713 
714 /*
715  * Helpers for implementing sets of trans_* functions.
716  * Defer the implementation of NAME to FUNC, with optional extra arguments.
717  */
718 #define TRANS(NAME, FUNC, ...) \
719     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
720     { return FUNC(s, __VA_ARGS__); }
721 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
722     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
723     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
724 
725 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
726     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
727     {                                                             \
728         s->is_nonstreaming = true;                                \
729         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
730     }
731 
732 #endif /* TARGET_ARM_TRANSLATE_H */
733