1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled. */ 118 bool ata; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on ERET is enabled */ 142 bool fgt_eret; 143 /* True if fine-grained trap on SVC is enabled */ 144 bool fgt_svc; 145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ 146 bool naa; 147 /* 148 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 149 * < 0, set by the current instruction. 150 */ 151 int8_t btype; 152 /* A copy of cpu->dcz_blocksize. */ 153 uint8_t dcz_blocksize; 154 /* True if this page is guarded. */ 155 bool guarded_page; 156 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 157 int c15_cpar; 158 /* TCG op of the current insn_start. */ 159 TCGOp *insn_start; 160 } DisasContext; 161 162 typedef struct DisasCompare { 163 TCGCond cond; 164 TCGv_i32 value; 165 } DisasCompare; 166 167 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 168 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 169 extern TCGv_i64 cpu_exclusive_addr; 170 extern TCGv_i64 cpu_exclusive_val; 171 172 /* 173 * Constant expanders for the decoders. 174 */ 175 176 static inline int negate(DisasContext *s, int x) 177 { 178 return -x; 179 } 180 181 static inline int plus_1(DisasContext *s, int x) 182 { 183 return x + 1; 184 } 185 186 static inline int plus_2(DisasContext *s, int x) 187 { 188 return x + 2; 189 } 190 191 static inline int plus_12(DisasContext *s, int x) 192 { 193 return x + 12; 194 } 195 196 static inline int times_2(DisasContext *s, int x) 197 { 198 return x * 2; 199 } 200 201 static inline int times_4(DisasContext *s, int x) 202 { 203 return x * 4; 204 } 205 206 static inline int times_2_plus_1(DisasContext *s, int x) 207 { 208 return x * 2 + 1; 209 } 210 211 static inline int rsub_64(DisasContext *s, int x) 212 { 213 return 64 - x; 214 } 215 216 static inline int rsub_32(DisasContext *s, int x) 217 { 218 return 32 - x; 219 } 220 221 static inline int rsub_16(DisasContext *s, int x) 222 { 223 return 16 - x; 224 } 225 226 static inline int rsub_8(DisasContext *s, int x) 227 { 228 return 8 - x; 229 } 230 231 static inline int shl_12(DisasContext *s, int x) 232 { 233 return x << 12; 234 } 235 236 static inline int neon_3same_fp_size(DisasContext *s, int x) 237 { 238 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 239 return MO_32 - x; 240 } 241 242 static inline int arm_dc_feature(DisasContext *dc, int feature) 243 { 244 return (dc->features & (1ULL << feature)) != 0; 245 } 246 247 static inline int get_mem_index(DisasContext *s) 248 { 249 return arm_to_core_mmu_idx(s->mmu_idx); 250 } 251 252 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 253 { 254 /* We don't need to save all of the syndrome so we mask and shift 255 * out unneeded bits to help the sleb128 encoder do a better job. 256 */ 257 syn &= ARM_INSN_START_WORD2_MASK; 258 syn >>= ARM_INSN_START_WORD2_SHIFT; 259 260 /* We check and clear insn_start_idx to catch multiple updates. */ 261 assert(s->insn_start != NULL); 262 tcg_set_insn_start_param(s->insn_start, 2, syn); 263 s->insn_start = NULL; 264 } 265 266 static inline int curr_insn_len(DisasContext *s) 267 { 268 return s->base.pc_next - s->pc_curr; 269 } 270 271 /* is_jmp field values */ 272 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 273 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 274 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 275 /* These instructions trap after executing, so the A32/T32 decoder must 276 * defer them until after the conditional execution state has been updated. 277 * WFI also needs special handling when single-stepping. 278 */ 279 #define DISAS_WFI DISAS_TARGET_2 280 #define DISAS_SWI DISAS_TARGET_3 281 /* WFE */ 282 #define DISAS_WFE DISAS_TARGET_4 283 #define DISAS_HVC DISAS_TARGET_5 284 #define DISAS_SMC DISAS_TARGET_6 285 #define DISAS_YIELD DISAS_TARGET_7 286 /* M profile branch which might be an exception return (and so needs 287 * custom end-of-TB code) 288 */ 289 #define DISAS_BX_EXCRET DISAS_TARGET_8 290 /* 291 * For instructions which want an immediate exit to the main loop, as opposed 292 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 293 * doesn't write the PC on exiting the translation loop so you need to ensure 294 * something (gen_a64_update_pc or runtime helper) has done so before we reach 295 * return from cpu_tb_exec. 296 */ 297 #define DISAS_EXIT DISAS_TARGET_9 298 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 299 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 300 301 #ifdef TARGET_AARCH64 302 void a64_translate_init(void); 303 void gen_a64_update_pc(DisasContext *s, target_long diff); 304 extern const TranslatorOps aarch64_translator_ops; 305 #else 306 static inline void a64_translate_init(void) 307 { 308 } 309 310 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 311 { 312 } 313 #endif 314 315 void arm_test_cc(DisasCompare *cmp, int cc); 316 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 317 void arm_gen_test_cc(int cc, TCGLabel *label); 318 MemOp pow2_align(unsigned i); 319 void unallocated_encoding(DisasContext *s); 320 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 321 uint32_t syn, uint32_t target_el); 322 void gen_exception_insn(DisasContext *s, target_long pc_diff, 323 int excp, uint32_t syn); 324 325 /* Return state of Alternate Half-precision flag, caller frees result */ 326 static inline TCGv_i32 get_ahp_flag(void) 327 { 328 TCGv_i32 ret = tcg_temp_new_i32(); 329 330 tcg_gen_ld_i32(ret, cpu_env, 331 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); 332 tcg_gen_extract_i32(ret, ret, 26, 1); 333 334 return ret; 335 } 336 337 /* Set bits within PSTATE. */ 338 static inline void set_pstate_bits(uint32_t bits) 339 { 340 TCGv_i32 p = tcg_temp_new_i32(); 341 342 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 343 344 tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 345 tcg_gen_ori_i32(p, p, bits); 346 tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 347 } 348 349 /* Clear bits within PSTATE. */ 350 static inline void clear_pstate_bits(uint32_t bits) 351 { 352 TCGv_i32 p = tcg_temp_new_i32(); 353 354 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 355 356 tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 357 tcg_gen_andi_i32(p, p, ~bits); 358 tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate)); 359 } 360 361 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 362 static inline void gen_ss_advance(DisasContext *s) 363 { 364 if (s->ss_active) { 365 s->pstate_ss = 0; 366 clear_pstate_bits(PSTATE_SS); 367 } 368 } 369 370 /* Generate an architectural singlestep exception */ 371 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 372 { 373 /* Fill in the same_el field of the syndrome in the helper. */ 374 uint32_t syn = syn_swstep(false, isv, ex); 375 gen_helper_exception_swstep(cpu_env, tcg_constant_i32(syn)); 376 } 377 378 /* 379 * Given a VFP floating point constant encoded into an 8 bit immediate in an 380 * instruction, expand it to the actual constant value of the specified 381 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 382 */ 383 uint64_t vfp_expand_imm(int size, uint8_t imm8); 384 385 /* Vector operations shared between ARM and AArch64. */ 386 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 387 uint32_t opr_sz, uint32_t max_sz); 388 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 389 uint32_t opr_sz, uint32_t max_sz); 390 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 391 uint32_t opr_sz, uint32_t max_sz); 392 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 393 uint32_t opr_sz, uint32_t max_sz); 394 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 395 uint32_t opr_sz, uint32_t max_sz); 396 397 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 398 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 399 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 400 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 401 402 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 403 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 404 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 405 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 406 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 407 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 408 409 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 410 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 411 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 412 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 413 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 414 415 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 416 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 417 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 418 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 419 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 420 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 421 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 422 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 423 424 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 425 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 426 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 427 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 428 429 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 430 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 431 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 432 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 433 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 434 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 435 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 436 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 437 438 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 439 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 440 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 441 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 442 443 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 444 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 445 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 446 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 447 448 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 449 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 450 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 452 453 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 454 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 455 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 457 458 /* 459 * Forward to the isar_feature_* tests given a DisasContext pointer. 460 */ 461 #define dc_isar_feature(name, ctx) \ 462 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 463 464 /* Note that the gvec expanders operate on offsets + sizes. */ 465 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 466 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 467 uint32_t, uint32_t); 468 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 469 uint32_t, uint32_t, uint32_t); 470 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 471 uint32_t, uint32_t, uint32_t); 472 473 /* Function prototype for gen_ functions for calling Neon helpers */ 474 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 475 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 476 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 477 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 478 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 479 TCGv_i32, TCGv_i32); 480 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 481 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 482 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 483 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 484 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 485 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 486 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 487 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 488 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 489 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 490 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 491 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 492 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 493 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 494 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 495 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 496 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 497 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 498 499 /** 500 * arm_tbflags_from_tb: 501 * @tb: the TranslationBlock 502 * 503 * Extract the flag values from @tb. 504 */ 505 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 506 { 507 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 508 } 509 510 /* 511 * Enum for argument to fpstatus_ptr(). 512 */ 513 typedef enum ARMFPStatusFlavour { 514 FPST_FPCR, 515 FPST_FPCR_F16, 516 FPST_STD, 517 FPST_STD_F16, 518 } ARMFPStatusFlavour; 519 520 /** 521 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 522 * 523 * We have multiple softfloat float_status fields in the Arm CPU state struct 524 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 525 * been set up to point to the requested field in the CPU state struct. 526 * The options are: 527 * 528 * FPST_FPCR 529 * for non-FP16 operations controlled by the FPCR 530 * FPST_FPCR_F16 531 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 532 * FPST_STD 533 * for A32/T32 Neon operations using the "standard FPSCR value" 534 * FPST_STD_F16 535 * as FPST_STD, but where FPCR.FZ16 is to be used 536 */ 537 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 538 { 539 TCGv_ptr statusptr = tcg_temp_new_ptr(); 540 int offset; 541 542 switch (flavour) { 543 case FPST_FPCR: 544 offset = offsetof(CPUARMState, vfp.fp_status); 545 break; 546 case FPST_FPCR_F16: 547 offset = offsetof(CPUARMState, vfp.fp_status_f16); 548 break; 549 case FPST_STD: 550 offset = offsetof(CPUARMState, vfp.standard_fp_status); 551 break; 552 case FPST_STD_F16: 553 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 554 break; 555 default: 556 g_assert_not_reached(); 557 } 558 tcg_gen_addi_ptr(statusptr, cpu_env, offset); 559 return statusptr; 560 } 561 562 /** 563 * finalize_memop_atom: 564 * @s: DisasContext 565 * @opc: size+sign+align of the memory operation 566 * @atom: atomicity of the memory operation 567 * 568 * Build the complete MemOp for a memory operation, including alignment, 569 * endianness, and atomicity. 570 * 571 * If (op & MO_AMASK) then the operation already contains the required 572 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 573 * unaligned operation, e.g. for AccType_NORMAL. 574 * 575 * In the latter case, there are configuration bits that require alignment, 576 * and this is applied here. Note that there is no way to indicate that 577 * no alignment should ever be enforced; this must be handled manually. 578 */ 579 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 580 { 581 if (s->align_mem && !(opc & MO_AMASK)) { 582 opc |= MO_ALIGN; 583 } 584 return opc | atom | s->be_data; 585 } 586 587 /** 588 * finalize_memop: 589 * @s: DisasContext 590 * @opc: size+sign+align of the memory operation 591 * 592 * Like finalize_memop_atom, but with default atomicity. 593 */ 594 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 595 { 596 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 597 return finalize_memop_atom(s, opc, atom); 598 } 599 600 /** 601 * finalize_memop_pair: 602 * @s: DisasContext 603 * @opc: size+sign+align of the memory operation 604 * 605 * Like finalize_memop_atom, but with atomicity for a pair. 606 * C.f. Pseudocode for Mem[], operand ispair. 607 */ 608 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 609 { 610 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 611 return finalize_memop_atom(s, opc, atom); 612 } 613 614 /** 615 * finalize_memop_asimd: 616 * @s: DisasContext 617 * @opc: size+sign+align of the memory operation 618 * 619 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 620 */ 621 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 622 { 623 /* 624 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 625 * if IsAligned(8), the first case provides separate atomicity for 626 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 627 * do not apply, and we're left with the final case of no atomicity. 628 * Thus MO_ATOM_IFALIGN_PAIR. 629 * 630 * For other sizes, normal LSE2 rules apply. 631 */ 632 if ((opc & MO_SIZE) == MO_128) { 633 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 634 } 635 return finalize_memop(s, opc); 636 } 637 638 /** 639 * asimd_imm_const: Expand an encoded SIMD constant value 640 * 641 * Expand a SIMD constant value. This is essentially the pseudocode 642 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 643 * VMVN and VBIC (when cmode < 14 && op == 1). 644 * 645 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 646 * callers must catch this; we return the 64-bit constant value defined 647 * for AArch64. 648 * 649 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 650 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 651 * we produce an immediate constant value of 0 in these cases. 652 */ 653 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 654 655 /* 656 * gen_disas_label: 657 * Create a label and cache a copy of pc_save. 658 */ 659 static inline DisasLabel gen_disas_label(DisasContext *s) 660 { 661 return (DisasLabel){ 662 .label = gen_new_label(), 663 .pc_save = s->pc_save, 664 }; 665 } 666 667 /* 668 * set_disas_label: 669 * Emit a label and restore the cached copy of pc_save. 670 */ 671 static inline void set_disas_label(DisasContext *s, DisasLabel l) 672 { 673 gen_set_label(l.label); 674 s->pc_save = l.pc_save; 675 } 676 677 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 678 { 679 TCGv_ptr ret = tcg_temp_new_ptr(); 680 gen_helper_lookup_cp_reg(ret, cpu_env, tcg_constant_i32(key)); 681 return ret; 682 } 683 684 /* 685 * Set and reset rounding mode around another operation. 686 */ 687 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 688 { 689 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 690 TCGv_i32 old = tcg_temp_new_i32(); 691 692 gen_helper_set_rmode(old, new, fpst); 693 return old; 694 } 695 696 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 697 { 698 gen_helper_set_rmode(old, old, fpst); 699 } 700 701 /* 702 * Helpers for implementing sets of trans_* functions. 703 * Defer the implementation of NAME to FUNC, with optional extra arguments. 704 */ 705 #define TRANS(NAME, FUNC, ...) \ 706 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 707 { return FUNC(s, __VA_ARGS__); } 708 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 709 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 710 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 711 712 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 713 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 714 { \ 715 s->is_nonstreaming = true; \ 716 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 717 } 718 719 #endif /* TARGET_ARM_TRANSLATE_H */ 720