xref: /openbmc/qemu/target/arm/tcg/translate.h (revision 7f750efc)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled.  */
118     bool ata;
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on ERET is enabled */
142     bool fgt_eret;
143     /* True if fine-grained trap on SVC is enabled */
144     bool fgt_svc;
145     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146     bool naa;
147     /*
148      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
149      *  < 0, set by the current instruction.
150      */
151     int8_t btype;
152     /* A copy of cpu->dcz_blocksize. */
153     uint8_t dcz_blocksize;
154     /* True if this page is guarded.  */
155     bool guarded_page;
156     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
157     int c15_cpar;
158     /* TCG op of the current insn_start.  */
159     TCGOp *insn_start;
160 } DisasContext;
161 
162 typedef struct DisasCompare {
163     TCGCond cond;
164     TCGv_i32 value;
165 } DisasCompare;
166 
167 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
168 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
169 extern TCGv_i64 cpu_exclusive_addr;
170 extern TCGv_i64 cpu_exclusive_val;
171 
172 /*
173  * Constant expanders for the decoders.
174  */
175 
176 static inline int negate(DisasContext *s, int x)
177 {
178     return -x;
179 }
180 
181 static inline int plus_1(DisasContext *s, int x)
182 {
183     return x + 1;
184 }
185 
186 static inline int plus_2(DisasContext *s, int x)
187 {
188     return x + 2;
189 }
190 
191 static inline int plus_12(DisasContext *s, int x)
192 {
193     return x + 12;
194 }
195 
196 static inline int times_2(DisasContext *s, int x)
197 {
198     return x * 2;
199 }
200 
201 static inline int times_4(DisasContext *s, int x)
202 {
203     return x * 4;
204 }
205 
206 static inline int times_2_plus_1(DisasContext *s, int x)
207 {
208     return x * 2 + 1;
209 }
210 
211 static inline int rsub_64(DisasContext *s, int x)
212 {
213     return 64 - x;
214 }
215 
216 static inline int rsub_32(DisasContext *s, int x)
217 {
218     return 32 - x;
219 }
220 
221 static inline int rsub_16(DisasContext *s, int x)
222 {
223     return 16 - x;
224 }
225 
226 static inline int rsub_8(DisasContext *s, int x)
227 {
228     return 8 - x;
229 }
230 
231 static inline int shl_12(DisasContext *s, int x)
232 {
233     return x << 12;
234 }
235 
236 static inline int neon_3same_fp_size(DisasContext *s, int x)
237 {
238     /* Convert 0==fp32, 1==fp16 into a MO_* value */
239     return MO_32 - x;
240 }
241 
242 static inline int arm_dc_feature(DisasContext *dc, int feature)
243 {
244     return (dc->features & (1ULL << feature)) != 0;
245 }
246 
247 static inline int get_mem_index(DisasContext *s)
248 {
249     return arm_to_core_mmu_idx(s->mmu_idx);
250 }
251 
252 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
253 {
254     /* We don't need to save all of the syndrome so we mask and shift
255      * out unneeded bits to help the sleb128 encoder do a better job.
256      */
257     syn &= ARM_INSN_START_WORD2_MASK;
258     syn >>= ARM_INSN_START_WORD2_SHIFT;
259 
260     /* We check and clear insn_start_idx to catch multiple updates.  */
261     assert(s->insn_start != NULL);
262     tcg_set_insn_start_param(s->insn_start, 2, syn);
263     s->insn_start = NULL;
264 }
265 
266 static inline int curr_insn_len(DisasContext *s)
267 {
268     return s->base.pc_next - s->pc_curr;
269 }
270 
271 /* is_jmp field values */
272 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
273 /* CPU state was modified dynamically; exit to main loop for interrupts. */
274 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
275 /* These instructions trap after executing, so the A32/T32 decoder must
276  * defer them until after the conditional execution state has been updated.
277  * WFI also needs special handling when single-stepping.
278  */
279 #define DISAS_WFI       DISAS_TARGET_2
280 #define DISAS_SWI       DISAS_TARGET_3
281 /* WFE */
282 #define DISAS_WFE       DISAS_TARGET_4
283 #define DISAS_HVC       DISAS_TARGET_5
284 #define DISAS_SMC       DISAS_TARGET_6
285 #define DISAS_YIELD     DISAS_TARGET_7
286 /* M profile branch which might be an exception return (and so needs
287  * custom end-of-TB code)
288  */
289 #define DISAS_BX_EXCRET DISAS_TARGET_8
290 /*
291  * For instructions which want an immediate exit to the main loop, as opposed
292  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
293  * doesn't write the PC on exiting the translation loop so you need to ensure
294  * something (gen_a64_update_pc or runtime helper) has done so before we reach
295  * return from cpu_tb_exec.
296  */
297 #define DISAS_EXIT      DISAS_TARGET_9
298 /* CPU state was modified dynamically; no need to exit, but do not chain. */
299 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
300 
301 #ifdef TARGET_AARCH64
302 void a64_translate_init(void);
303 void gen_a64_update_pc(DisasContext *s, target_long diff);
304 extern const TranslatorOps aarch64_translator_ops;
305 #else
306 static inline void a64_translate_init(void)
307 {
308 }
309 
310 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
311 {
312 }
313 #endif
314 
315 void arm_test_cc(DisasCompare *cmp, int cc);
316 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
317 void arm_gen_test_cc(int cc, TCGLabel *label);
318 MemOp pow2_align(unsigned i);
319 void unallocated_encoding(DisasContext *s);
320 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
321                            uint32_t syn, uint32_t target_el);
322 void gen_exception_insn(DisasContext *s, target_long pc_diff,
323                         int excp, uint32_t syn);
324 
325 /* Return state of Alternate Half-precision flag, caller frees result */
326 static inline TCGv_i32 get_ahp_flag(void)
327 {
328     TCGv_i32 ret = tcg_temp_new_i32();
329 
330     tcg_gen_ld_i32(ret, cpu_env,
331                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
332     tcg_gen_extract_i32(ret, ret, 26, 1);
333 
334     return ret;
335 }
336 
337 /* Set bits within PSTATE.  */
338 static inline void set_pstate_bits(uint32_t bits)
339 {
340     TCGv_i32 p = tcg_temp_new_i32();
341 
342     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
343 
344     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
345     tcg_gen_ori_i32(p, p, bits);
346     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
347 }
348 
349 /* Clear bits within PSTATE.  */
350 static inline void clear_pstate_bits(uint32_t bits)
351 {
352     TCGv_i32 p = tcg_temp_new_i32();
353 
354     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
355 
356     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
357     tcg_gen_andi_i32(p, p, ~bits);
358     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
359 }
360 
361 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
362 static inline void gen_ss_advance(DisasContext *s)
363 {
364     if (s->ss_active) {
365         s->pstate_ss = 0;
366         clear_pstate_bits(PSTATE_SS);
367     }
368 }
369 
370 /* Generate an architectural singlestep exception */
371 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
372 {
373     /* Fill in the same_el field of the syndrome in the helper. */
374     uint32_t syn = syn_swstep(false, isv, ex);
375     gen_helper_exception_swstep(cpu_env, tcg_constant_i32(syn));
376 }
377 
378 /*
379  * Given a VFP floating point constant encoded into an 8 bit immediate in an
380  * instruction, expand it to the actual constant value of the specified
381  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
382  */
383 uint64_t vfp_expand_imm(int size, uint8_t imm8);
384 
385 /* Vector operations shared between ARM and AArch64.  */
386 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
387                    uint32_t opr_sz, uint32_t max_sz);
388 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
389                    uint32_t opr_sz, uint32_t max_sz);
390 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
391                    uint32_t opr_sz, uint32_t max_sz);
392 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
393                    uint32_t opr_sz, uint32_t max_sz);
394 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
395                    uint32_t opr_sz, uint32_t max_sz);
396 
397 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
398                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
399 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
400                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
401 
402 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
403                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
404 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
407                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
408 
409 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
410 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
411 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
412 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
413 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
414 
415 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
416                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
417 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
418                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
419 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
420                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
421 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
422                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
423 
424 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
425                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
426 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
427                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
428 
429 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
430                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
431 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
432                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
434                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
435 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
436                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
437 
438 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
439                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
440 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
441                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
442 
443 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
444                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
446                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
447 
448 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
449                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
450 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 
453 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
454                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
455 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 
458 /*
459  * Forward to the isar_feature_* tests given a DisasContext pointer.
460  */
461 #define dc_isar_feature(name, ctx) \
462     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
463 
464 /* Note that the gvec expanders operate on offsets + sizes.  */
465 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
466 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
467                          uint32_t, uint32_t);
468 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
469                         uint32_t, uint32_t, uint32_t);
470 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
471                         uint32_t, uint32_t, uint32_t);
472 
473 /* Function prototype for gen_ functions for calling Neon helpers */
474 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
475 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
476 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
477 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
478 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
479                                  TCGv_i32, TCGv_i32);
480 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
481 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
482 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
483 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
484 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
485 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
486 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
487 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
488 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
489 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
490 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
491 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
492 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
493 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
494 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
495 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
496 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
497 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
498 
499 /**
500  * arm_tbflags_from_tb:
501  * @tb: the TranslationBlock
502  *
503  * Extract the flag values from @tb.
504  */
505 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
506 {
507     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
508 }
509 
510 /*
511  * Enum for argument to fpstatus_ptr().
512  */
513 typedef enum ARMFPStatusFlavour {
514     FPST_FPCR,
515     FPST_FPCR_F16,
516     FPST_STD,
517     FPST_STD_F16,
518 } ARMFPStatusFlavour;
519 
520 /**
521  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
522  *
523  * We have multiple softfloat float_status fields in the Arm CPU state struct
524  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
525  * been set up to point to the requested field in the CPU state struct.
526  * The options are:
527  *
528  * FPST_FPCR
529  *   for non-FP16 operations controlled by the FPCR
530  * FPST_FPCR_F16
531  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
532  * FPST_STD
533  *   for A32/T32 Neon operations using the "standard FPSCR value"
534  * FPST_STD_F16
535  *   as FPST_STD, but where FPCR.FZ16 is to be used
536  */
537 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
538 {
539     TCGv_ptr statusptr = tcg_temp_new_ptr();
540     int offset;
541 
542     switch (flavour) {
543     case FPST_FPCR:
544         offset = offsetof(CPUARMState, vfp.fp_status);
545         break;
546     case FPST_FPCR_F16:
547         offset = offsetof(CPUARMState, vfp.fp_status_f16);
548         break;
549     case FPST_STD:
550         offset = offsetof(CPUARMState, vfp.standard_fp_status);
551         break;
552     case FPST_STD_F16:
553         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
554         break;
555     default:
556         g_assert_not_reached();
557     }
558     tcg_gen_addi_ptr(statusptr, cpu_env, offset);
559     return statusptr;
560 }
561 
562 /**
563  * finalize_memop_atom:
564  * @s: DisasContext
565  * @opc: size+sign+align of the memory operation
566  * @atom: atomicity of the memory operation
567  *
568  * Build the complete MemOp for a memory operation, including alignment,
569  * endianness, and atomicity.
570  *
571  * If (op & MO_AMASK) then the operation already contains the required
572  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
573  * unaligned operation, e.g. for AccType_NORMAL.
574  *
575  * In the latter case, there are configuration bits that require alignment,
576  * and this is applied here.  Note that there is no way to indicate that
577  * no alignment should ever be enforced; this must be handled manually.
578  */
579 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
580 {
581     if (s->align_mem && !(opc & MO_AMASK)) {
582         opc |= MO_ALIGN;
583     }
584     return opc | atom | s->be_data;
585 }
586 
587 /**
588  * finalize_memop:
589  * @s: DisasContext
590  * @opc: size+sign+align of the memory operation
591  *
592  * Like finalize_memop_atom, but with default atomicity.
593  */
594 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
595 {
596     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
597     return finalize_memop_atom(s, opc, atom);
598 }
599 
600 /**
601  * finalize_memop_pair:
602  * @s: DisasContext
603  * @opc: size+sign+align of the memory operation
604  *
605  * Like finalize_memop_atom, but with atomicity for a pair.
606  * C.f. Pseudocode for Mem[], operand ispair.
607  */
608 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
609 {
610     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
611     return finalize_memop_atom(s, opc, atom);
612 }
613 
614 /**
615  * finalize_memop_asimd:
616  * @s: DisasContext
617  * @opc: size+sign+align of the memory operation
618  *
619  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
620  */
621 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
622 {
623     /*
624      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
625      * if IsAligned(8), the first case provides separate atomicity for
626      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
627      * do not apply, and we're left with the final case of no atomicity.
628      * Thus MO_ATOM_IFALIGN_PAIR.
629      *
630      * For other sizes, normal LSE2 rules apply.
631      */
632     if ((opc & MO_SIZE) == MO_128) {
633         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
634     }
635     return finalize_memop(s, opc);
636 }
637 
638 /**
639  * asimd_imm_const: Expand an encoded SIMD constant value
640  *
641  * Expand a SIMD constant value. This is essentially the pseudocode
642  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
643  * VMVN and VBIC (when cmode < 14 && op == 1).
644  *
645  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
646  * callers must catch this; we return the 64-bit constant value defined
647  * for AArch64.
648  *
649  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
650  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
651  * we produce an immediate constant value of 0 in these cases.
652  */
653 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
654 
655 /*
656  * gen_disas_label:
657  * Create a label and cache a copy of pc_save.
658  */
659 static inline DisasLabel gen_disas_label(DisasContext *s)
660 {
661     return (DisasLabel){
662         .label = gen_new_label(),
663         .pc_save = s->pc_save,
664     };
665 }
666 
667 /*
668  * set_disas_label:
669  * Emit a label and restore the cached copy of pc_save.
670  */
671 static inline void set_disas_label(DisasContext *s, DisasLabel l)
672 {
673     gen_set_label(l.label);
674     s->pc_save = l.pc_save;
675 }
676 
677 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
678 {
679     TCGv_ptr ret = tcg_temp_new_ptr();
680     gen_helper_lookup_cp_reg(ret, cpu_env, tcg_constant_i32(key));
681     return ret;
682 }
683 
684 /*
685  * Set and reset rounding mode around another operation.
686  */
687 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
688 {
689     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
690     TCGv_i32 old = tcg_temp_new_i32();
691 
692     gen_helper_set_rmode(old, new, fpst);
693     return old;
694 }
695 
696 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
697 {
698     gen_helper_set_rmode(old, old, fpst);
699 }
700 
701 /*
702  * Helpers for implementing sets of trans_* functions.
703  * Defer the implementation of NAME to FUNC, with optional extra arguments.
704  */
705 #define TRANS(NAME, FUNC, ...) \
706     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
707     { return FUNC(s, __VA_ARGS__); }
708 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
709     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
710     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
711 
712 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
713     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
714     {                                                             \
715         s->is_nonstreaming = true;                                \
716         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
717     }
718 
719 #endif /* TARGET_ARM_TRANSLATE_H */
720