1 #ifndef TARGET_ARM_TRANSLATE_H 2 #define TARGET_ARM_TRANSLATE_H 3 4 #include "cpu.h" 5 #include "tcg/tcg-op.h" 6 #include "tcg/tcg-op-gvec.h" 7 #include "exec/exec-all.h" 8 #include "exec/translator.h" 9 #include "exec/helper-gen.h" 10 #include "internals.h" 11 #include "cpu-features.h" 12 13 /* internal defines */ 14 15 /* 16 * Save pc_save across a branch, so that we may restore the value from 17 * before the branch at the point the label is emitted. 18 */ 19 typedef struct DisasLabel { 20 TCGLabel *label; 21 target_ulong pc_save; 22 } DisasLabel; 23 24 typedef struct DisasContext { 25 DisasContextBase base; 26 const ARMISARegisters *isar; 27 28 /* The address of the current instruction being translated. */ 29 target_ulong pc_curr; 30 /* 31 * For CF_PCREL, the full value of cpu_pc is not known 32 * (although the page offset is known). For convenience, the 33 * translation loop uses the full virtual address that triggered 34 * the translation, from base.pc_start through pc_curr. 35 * For efficiency, we do not update cpu_pc for every instruction. 36 * Instead, pc_save has the value of pc_curr at the time of the 37 * last update to cpu_pc, which allows us to compute the addend 38 * needed to bring cpu_pc current: pc_curr - pc_save. 39 * If cpu_pc now contains the destination of an indirect branch, 40 * pc_save contains -1 to indicate that relative updates are no 41 * longer possible. 42 */ 43 target_ulong pc_save; 44 target_ulong page_start; 45 uint32_t insn; 46 /* Nonzero if this instruction has been conditionally skipped. */ 47 int condjmp; 48 /* The label that will be jumped to when the instruction is skipped. */ 49 DisasLabel condlabel; 50 /* Thumb-2 conditional execution bits. */ 51 int condexec_mask; 52 int condexec_cond; 53 /* M-profile ECI/ICI exception-continuable instruction state */ 54 int eci; 55 /* 56 * trans_ functions for insns which are continuable should set this true 57 * after decode (ie after any UNDEF checks) 58 */ 59 bool eci_handled; 60 int sctlr_b; 61 MemOp be_data; 62 #if !defined(CONFIG_USER_ONLY) 63 int user; 64 #endif 65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ 66 uint8_t tbii; /* TBI1|TBI0 for insns */ 67 uint8_t tbid; /* TBI1|TBI0 for data */ 68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */ 69 bool ns; /* Use non-secure CPREG bank on access */ 70 int fp_excp_el; /* FP exception EL or 0 if enabled */ 71 int sve_excp_el; /* SVE exception EL or 0 if enabled */ 72 int sme_excp_el; /* SME exception EL or 0 if enabled */ 73 int vl; /* current vector length in bytes */ 74 int svl; /* current streaming vector length in bytes */ 75 bool vfp_enabled; /* FP enabled via FPSCR.EN */ 76 int vec_len; 77 int vec_stride; 78 bool v7m_handler_mode; 79 bool v8m_secure; /* true if v8M and we're in Secure mode */ 80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ 81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ 82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ 83 bool v7m_lspact; /* FPCCR.LSPACT set */ 84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI 85 * so that top level loop can generate correct syndrome information. 86 */ 87 uint32_t svc_imm; 88 int current_el; 89 GHashTable *cp_regs; 90 uint64_t features; /* CPU features bits */ 91 bool aarch64; 92 bool thumb; 93 bool lse2; 94 /* Because unallocated encodings generate different exception syndrome 95 * information from traps due to FP being disabled, we can't do a single 96 * "is fp access disabled" check at a high level in the decode tree. 97 * To help in catching bugs where the access check was forgotten in some 98 * code path, we set this flag when the access check is done, and assert 99 * that it is set at the point where we actually touch the FP regs. 100 */ 101 bool fp_access_checked; 102 bool sve_access_checked; 103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub 104 * single-step support). 105 */ 106 bool ss_active; 107 bool pstate_ss; 108 /* True if the insn just emitted was a load-exclusive instruction 109 * (necessary for syndrome information for single step exceptions), 110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. 111 */ 112 bool is_ldex; 113 /* True if AccType_UNPRIV should be used for LDTR et al */ 114 bool unpriv; 115 /* True if v8.3-PAuth is active. */ 116 bool pauth_active; 117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ 118 bool ata[2]; 119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ 120 bool mte_active[2]; 121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ 122 bool bt; 123 /* True if any CP15 access is trapped by HSTR_EL2 */ 124 bool hstr_active; 125 /* True if memory operations require alignment */ 126 bool align_mem; 127 /* True if PSTATE.IL is set */ 128 bool pstate_il; 129 /* True if PSTATE.SM is set. */ 130 bool pstate_sm; 131 /* True if PSTATE.ZA is set. */ 132 bool pstate_za; 133 /* True if non-streaming insns should raise an SME Streaming exception. */ 134 bool sme_trap_nonstreaming; 135 /* True if the current instruction is non-streaming. */ 136 bool is_nonstreaming; 137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ 138 bool mve_no_pred; 139 /* True if fine-grained traps are active */ 140 bool fgt_active; 141 /* True if fine-grained trap on SVC is enabled */ 142 bool fgt_svc; 143 /* True if a trap on ERET is enabled (FGT or NV) */ 144 bool trap_eret; 145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ 146 bool naa; 147 /* True if FEAT_NV HCR_EL2.NV is enabled */ 148 bool nv; 149 /* 150 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. 151 * < 0, set by the current instruction. 152 */ 153 int8_t btype; 154 /* A copy of cpu->dcz_blocksize. */ 155 uint8_t dcz_blocksize; 156 /* A copy of cpu->gm_blocksize. */ 157 uint8_t gm_blocksize; 158 /* True if this page is guarded. */ 159 bool guarded_page; 160 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ 161 int c15_cpar; 162 /* TCG op of the current insn_start. */ 163 TCGOp *insn_start; 164 } DisasContext; 165 166 typedef struct DisasCompare { 167 TCGCond cond; 168 TCGv_i32 value; 169 } DisasCompare; 170 171 /* Share the TCG temporaries common between 32 and 64 bit modes. */ 172 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; 173 extern TCGv_i64 cpu_exclusive_addr; 174 extern TCGv_i64 cpu_exclusive_val; 175 176 /* 177 * Constant expanders for the decoders. 178 */ 179 180 static inline int negate(DisasContext *s, int x) 181 { 182 return -x; 183 } 184 185 static inline int plus_1(DisasContext *s, int x) 186 { 187 return x + 1; 188 } 189 190 static inline int plus_2(DisasContext *s, int x) 191 { 192 return x + 2; 193 } 194 195 static inline int plus_12(DisasContext *s, int x) 196 { 197 return x + 12; 198 } 199 200 static inline int times_2(DisasContext *s, int x) 201 { 202 return x * 2; 203 } 204 205 static inline int times_4(DisasContext *s, int x) 206 { 207 return x * 4; 208 } 209 210 static inline int times_8(DisasContext *s, int x) 211 { 212 return x * 8; 213 } 214 215 static inline int times_2_plus_1(DisasContext *s, int x) 216 { 217 return x * 2 + 1; 218 } 219 220 static inline int rsub_64(DisasContext *s, int x) 221 { 222 return 64 - x; 223 } 224 225 static inline int rsub_32(DisasContext *s, int x) 226 { 227 return 32 - x; 228 } 229 230 static inline int rsub_16(DisasContext *s, int x) 231 { 232 return 16 - x; 233 } 234 235 static inline int rsub_8(DisasContext *s, int x) 236 { 237 return 8 - x; 238 } 239 240 static inline int shl_12(DisasContext *s, int x) 241 { 242 return x << 12; 243 } 244 245 static inline int neon_3same_fp_size(DisasContext *s, int x) 246 { 247 /* Convert 0==fp32, 1==fp16 into a MO_* value */ 248 return MO_32 - x; 249 } 250 251 static inline int arm_dc_feature(DisasContext *dc, int feature) 252 { 253 return (dc->features & (1ULL << feature)) != 0; 254 } 255 256 static inline int get_mem_index(DisasContext *s) 257 { 258 return arm_to_core_mmu_idx(s->mmu_idx); 259 } 260 261 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) 262 { 263 /* We don't need to save all of the syndrome so we mask and shift 264 * out unneeded bits to help the sleb128 encoder do a better job. 265 */ 266 syn &= ARM_INSN_START_WORD2_MASK; 267 syn >>= ARM_INSN_START_WORD2_SHIFT; 268 269 /* We check and clear insn_start_idx to catch multiple updates. */ 270 assert(s->insn_start != NULL); 271 tcg_set_insn_start_param(s->insn_start, 2, syn); 272 s->insn_start = NULL; 273 } 274 275 static inline int curr_insn_len(DisasContext *s) 276 { 277 return s->base.pc_next - s->pc_curr; 278 } 279 280 /* is_jmp field values */ 281 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ 282 /* CPU state was modified dynamically; exit to main loop for interrupts. */ 283 #define DISAS_UPDATE_EXIT DISAS_TARGET_1 284 /* These instructions trap after executing, so the A32/T32 decoder must 285 * defer them until after the conditional execution state has been updated. 286 * WFI also needs special handling when single-stepping. 287 */ 288 #define DISAS_WFI DISAS_TARGET_2 289 #define DISAS_SWI DISAS_TARGET_3 290 /* WFE */ 291 #define DISAS_WFE DISAS_TARGET_4 292 #define DISAS_HVC DISAS_TARGET_5 293 #define DISAS_SMC DISAS_TARGET_6 294 #define DISAS_YIELD DISAS_TARGET_7 295 /* M profile branch which might be an exception return (and so needs 296 * custom end-of-TB code) 297 */ 298 #define DISAS_BX_EXCRET DISAS_TARGET_8 299 /* 300 * For instructions which want an immediate exit to the main loop, as opposed 301 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this 302 * doesn't write the PC on exiting the translation loop so you need to ensure 303 * something (gen_a64_update_pc or runtime helper) has done so before we reach 304 * return from cpu_tb_exec. 305 */ 306 #define DISAS_EXIT DISAS_TARGET_9 307 /* CPU state was modified dynamically; no need to exit, but do not chain. */ 308 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 309 310 #ifdef TARGET_AARCH64 311 void a64_translate_init(void); 312 void gen_a64_update_pc(DisasContext *s, target_long diff); 313 extern const TranslatorOps aarch64_translator_ops; 314 #else 315 static inline void a64_translate_init(void) 316 { 317 } 318 319 static inline void gen_a64_update_pc(DisasContext *s, target_long diff) 320 { 321 } 322 #endif 323 324 void arm_test_cc(DisasCompare *cmp, int cc); 325 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); 326 void arm_gen_test_cc(int cc, TCGLabel *label); 327 MemOp pow2_align(unsigned i); 328 void unallocated_encoding(DisasContext *s); 329 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 330 uint32_t syn, uint32_t target_el); 331 void gen_exception_insn(DisasContext *s, target_long pc_diff, 332 int excp, uint32_t syn); 333 334 /* Return state of Alternate Half-precision flag, caller frees result */ 335 static inline TCGv_i32 get_ahp_flag(void) 336 { 337 TCGv_i32 ret = tcg_temp_new_i32(); 338 339 tcg_gen_ld_i32(ret, tcg_env, 340 offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); 341 tcg_gen_extract_i32(ret, ret, 26, 1); 342 343 return ret; 344 } 345 346 /* Set bits within PSTATE. */ 347 static inline void set_pstate_bits(uint32_t bits) 348 { 349 TCGv_i32 p = tcg_temp_new_i32(); 350 351 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 352 353 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 354 tcg_gen_ori_i32(p, p, bits); 355 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 356 } 357 358 /* Clear bits within PSTATE. */ 359 static inline void clear_pstate_bits(uint32_t bits) 360 { 361 TCGv_i32 p = tcg_temp_new_i32(); 362 363 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); 364 365 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 366 tcg_gen_andi_i32(p, p, ~bits); 367 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); 368 } 369 370 /* If the singlestep state is Active-not-pending, advance to Active-pending. */ 371 static inline void gen_ss_advance(DisasContext *s) 372 { 373 if (s->ss_active) { 374 s->pstate_ss = 0; 375 clear_pstate_bits(PSTATE_SS); 376 } 377 } 378 379 /* Generate an architectural singlestep exception */ 380 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) 381 { 382 /* Fill in the same_el field of the syndrome in the helper. */ 383 uint32_t syn = syn_swstep(false, isv, ex); 384 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); 385 } 386 387 /* 388 * Given a VFP floating point constant encoded into an 8 bit immediate in an 389 * instruction, expand it to the actual constant value of the specified 390 * size, as per the VFPExpandImm() pseudocode in the Arm ARM. 391 */ 392 uint64_t vfp_expand_imm(int size, uint8_t imm8); 393 394 /* Vector operations shared between ARM and AArch64. */ 395 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 396 uint32_t opr_sz, uint32_t max_sz); 397 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 398 uint32_t opr_sz, uint32_t max_sz); 399 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 400 uint32_t opr_sz, uint32_t max_sz); 401 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 402 uint32_t opr_sz, uint32_t max_sz); 403 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 404 uint32_t opr_sz, uint32_t max_sz); 405 406 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 407 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 408 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 409 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 410 411 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 412 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 413 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 414 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 415 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 416 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 417 418 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 419 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 420 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); 421 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 422 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); 423 424 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 425 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 426 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 427 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 428 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 429 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 430 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 431 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 432 433 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 434 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 435 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 436 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 437 438 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 439 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 440 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 441 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 442 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 443 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 444 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 445 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 446 447 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 448 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 449 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 450 int64_t shift, uint32_t opr_sz, uint32_t max_sz); 451 452 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 454 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 455 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 456 457 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 459 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 461 462 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 463 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 464 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 465 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); 466 467 /* 468 * Forward to the isar_feature_* tests given a DisasContext pointer. 469 */ 470 #define dc_isar_feature(name, ctx) \ 471 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) 472 473 /* Note that the gvec expanders operate on offsets + sizes. */ 474 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); 475 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 476 uint32_t, uint32_t); 477 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 478 uint32_t, uint32_t, uint32_t); 479 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, 480 uint32_t, uint32_t, uint32_t); 481 482 /* Function prototype for gen_ functions for calling Neon helpers */ 483 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); 484 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); 485 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); 486 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 487 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, 488 TCGv_i32, TCGv_i32); 489 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); 490 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); 491 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); 492 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); 493 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); 494 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); 495 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); 496 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 497 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 498 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); 499 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); 500 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); 501 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); 502 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); 503 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); 504 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); 505 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); 506 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); 507 508 /** 509 * arm_tbflags_from_tb: 510 * @tb: the TranslationBlock 511 * 512 * Extract the flag values from @tb. 513 */ 514 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) 515 { 516 return (CPUARMTBFlags){ tb->flags, tb->cs_base }; 517 } 518 519 /* 520 * Enum for argument to fpstatus_ptr(). 521 */ 522 typedef enum ARMFPStatusFlavour { 523 FPST_FPCR, 524 FPST_FPCR_F16, 525 FPST_STD, 526 FPST_STD_F16, 527 } ARMFPStatusFlavour; 528 529 /** 530 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field 531 * 532 * We have multiple softfloat float_status fields in the Arm CPU state struct 533 * (see the comment in cpu.h for details). Return a TCGv_ptr which has 534 * been set up to point to the requested field in the CPU state struct. 535 * The options are: 536 * 537 * FPST_FPCR 538 * for non-FP16 operations controlled by the FPCR 539 * FPST_FPCR_F16 540 * for operations controlled by the FPCR where FPCR.FZ16 is to be used 541 * FPST_STD 542 * for A32/T32 Neon operations using the "standard FPSCR value" 543 * FPST_STD_F16 544 * as FPST_STD, but where FPCR.FZ16 is to be used 545 */ 546 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) 547 { 548 TCGv_ptr statusptr = tcg_temp_new_ptr(); 549 int offset; 550 551 switch (flavour) { 552 case FPST_FPCR: 553 offset = offsetof(CPUARMState, vfp.fp_status); 554 break; 555 case FPST_FPCR_F16: 556 offset = offsetof(CPUARMState, vfp.fp_status_f16); 557 break; 558 case FPST_STD: 559 offset = offsetof(CPUARMState, vfp.standard_fp_status); 560 break; 561 case FPST_STD_F16: 562 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); 563 break; 564 default: 565 g_assert_not_reached(); 566 } 567 tcg_gen_addi_ptr(statusptr, tcg_env, offset); 568 return statusptr; 569 } 570 571 /** 572 * finalize_memop_atom: 573 * @s: DisasContext 574 * @opc: size+sign+align of the memory operation 575 * @atom: atomicity of the memory operation 576 * 577 * Build the complete MemOp for a memory operation, including alignment, 578 * endianness, and atomicity. 579 * 580 * If (op & MO_AMASK) then the operation already contains the required 581 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally 582 * unaligned operation, e.g. for AccType_NORMAL. 583 * 584 * In the latter case, there are configuration bits that require alignment, 585 * and this is applied here. Note that there is no way to indicate that 586 * no alignment should ever be enforced; this must be handled manually. 587 */ 588 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) 589 { 590 if (s->align_mem && !(opc & MO_AMASK)) { 591 opc |= MO_ALIGN; 592 } 593 return opc | atom | s->be_data; 594 } 595 596 /** 597 * finalize_memop: 598 * @s: DisasContext 599 * @opc: size+sign+align of the memory operation 600 * 601 * Like finalize_memop_atom, but with default atomicity. 602 */ 603 static inline MemOp finalize_memop(DisasContext *s, MemOp opc) 604 { 605 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; 606 return finalize_memop_atom(s, opc, atom); 607 } 608 609 /** 610 * finalize_memop_pair: 611 * @s: DisasContext 612 * @opc: size+sign+align of the memory operation 613 * 614 * Like finalize_memop_atom, but with atomicity for a pair. 615 * C.f. Pseudocode for Mem[], operand ispair. 616 */ 617 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) 618 { 619 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; 620 return finalize_memop_atom(s, opc, atom); 621 } 622 623 /** 624 * finalize_memop_asimd: 625 * @s: DisasContext 626 * @opc: size+sign+align of the memory operation 627 * 628 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. 629 */ 630 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) 631 { 632 /* 633 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, 634 * if IsAligned(8), the first case provides separate atomicity for 635 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases 636 * do not apply, and we're left with the final case of no atomicity. 637 * Thus MO_ATOM_IFALIGN_PAIR. 638 * 639 * For other sizes, normal LSE2 rules apply. 640 */ 641 if ((opc & MO_SIZE) == MO_128) { 642 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); 643 } 644 return finalize_memop(s, opc); 645 } 646 647 /** 648 * asimd_imm_const: Expand an encoded SIMD constant value 649 * 650 * Expand a SIMD constant value. This is essentially the pseudocode 651 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for 652 * VMVN and VBIC (when cmode < 14 && op == 1). 653 * 654 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; 655 * callers must catch this; we return the 64-bit constant value defined 656 * for AArch64. 657 * 658 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but 659 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; 660 * we produce an immediate constant value of 0 in these cases. 661 */ 662 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); 663 664 /* 665 * gen_disas_label: 666 * Create a label and cache a copy of pc_save. 667 */ 668 static inline DisasLabel gen_disas_label(DisasContext *s) 669 { 670 return (DisasLabel){ 671 .label = gen_new_label(), 672 .pc_save = s->pc_save, 673 }; 674 } 675 676 /* 677 * set_disas_label: 678 * Emit a label and restore the cached copy of pc_save. 679 */ 680 static inline void set_disas_label(DisasContext *s, DisasLabel l) 681 { 682 gen_set_label(l.label); 683 s->pc_save = l.pc_save; 684 } 685 686 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) 687 { 688 TCGv_ptr ret = tcg_temp_new_ptr(); 689 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); 690 return ret; 691 } 692 693 /* 694 * Set and reset rounding mode around another operation. 695 */ 696 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) 697 { 698 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); 699 TCGv_i32 old = tcg_temp_new_i32(); 700 701 gen_helper_set_rmode(old, new, fpst); 702 return old; 703 } 704 705 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) 706 { 707 gen_helper_set_rmode(old, old, fpst); 708 } 709 710 /* 711 * Helpers for implementing sets of trans_* functions. 712 * Defer the implementation of NAME to FUNC, with optional extra arguments. 713 */ 714 #define TRANS(NAME, FUNC, ...) \ 715 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 716 { return FUNC(s, __VA_ARGS__); } 717 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ 718 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 719 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } 720 721 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ 722 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ 723 { \ 724 s->is_nonstreaming = true; \ 725 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ 726 } 727 728 #endif /* TARGET_ARM_TRANSLATE_H */ 729