xref: /openbmc/qemu/target/arm/tcg/translate.h (revision 5f88dd43)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 
12 
13 /* internal defines */
14 
15 /*
16  * Save pc_save across a branch, so that we may restore the value from
17  * before the branch at the point the label is emitted.
18  */
19 typedef struct DisasLabel {
20     TCGLabel *label;
21     target_ulong pc_save;
22 } DisasLabel;
23 
24 typedef struct DisasContext {
25     DisasContextBase base;
26     const ARMISARegisters *isar;
27 
28     /* The address of the current instruction being translated. */
29     target_ulong pc_curr;
30     /*
31      * For CF_PCREL, the full value of cpu_pc is not known
32      * (although the page offset is known).  For convenience, the
33      * translation loop uses the full virtual address that triggered
34      * the translation, from base.pc_start through pc_curr.
35      * For efficiency, we do not update cpu_pc for every instruction.
36      * Instead, pc_save has the value of pc_curr at the time of the
37      * last update to cpu_pc, which allows us to compute the addend
38      * needed to bring cpu_pc current: pc_curr - pc_save.
39      * If cpu_pc now contains the destination of an indirect branch,
40      * pc_save contains -1 to indicate that relative updates are no
41      * longer possible.
42      */
43     target_ulong pc_save;
44     target_ulong page_start;
45     uint32_t insn;
46     /* Nonzero if this instruction has been conditionally skipped.  */
47     int condjmp;
48     /* The label that will be jumped to when the instruction is skipped.  */
49     DisasLabel condlabel;
50     /* Thumb-2 conditional execution bits.  */
51     int condexec_mask;
52     int condexec_cond;
53     /* M-profile ECI/ICI exception-continuable instruction state */
54     int eci;
55     /*
56      * trans_ functions for insns which are continuable should set this true
57      * after decode (ie after any UNDEF checks)
58      */
59     bool eci_handled;
60     int sctlr_b;
61     MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63     int user;
64 #endif
65     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66     uint8_t tbii;      /* TBI1|TBI0 for insns */
67     uint8_t tbid;      /* TBI1|TBI0 for data */
68     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
69     bool ns;        /* Use non-secure CPREG bank on access */
70     int fp_excp_el; /* FP exception EL or 0 if enabled */
71     int sve_excp_el; /* SVE exception EL or 0 if enabled */
72     int sme_excp_el; /* SME exception EL or 0 if enabled */
73     int vl;          /* current vector length in bytes */
74     int svl;         /* current streaming vector length in bytes */
75     bool vfp_enabled; /* FP enabled via FPSCR.EN */
76     int vec_len;
77     int vec_stride;
78     bool v7m_handler_mode;
79     bool v8m_secure; /* true if v8M and we're in Secure mode */
80     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83     bool v7m_lspact; /* FPCCR.LSPACT set */
84     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85      * so that top level loop can generate correct syndrome information.
86      */
87     uint32_t svc_imm;
88     int current_el;
89     GHashTable *cp_regs;
90     uint64_t features; /* CPU features bits */
91     bool aarch64;
92     bool thumb;
93     bool lse2;
94     /* Because unallocated encodings generate different exception syndrome
95      * information from traps due to FP being disabled, we can't do a single
96      * "is fp access disabled" check at a high level in the decode tree.
97      * To help in catching bugs where the access check was forgotten in some
98      * code path, we set this flag when the access check is done, and assert
99      * that it is set at the point where we actually touch the FP regs.
100      */
101     bool fp_access_checked;
102     bool sve_access_checked;
103     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104      * single-step support).
105      */
106     bool ss_active;
107     bool pstate_ss;
108     /* True if the insn just emitted was a load-exclusive instruction
109      * (necessary for syndrome information for single step exceptions),
110      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111      */
112     bool is_ldex;
113     /* True if AccType_UNPRIV should be used for LDTR et al */
114     bool unpriv;
115     /* True if v8.3-PAuth is active.  */
116     bool pauth_active;
117     /* True if v8.5-MTE access to tags is enabled.  */
118     bool ata;
119     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
120     bool mte_active[2];
121     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
122     bool bt;
123     /* True if any CP15 access is trapped by HSTR_EL2 */
124     bool hstr_active;
125     /* True if memory operations require alignment */
126     bool align_mem;
127     /* True if PSTATE.IL is set */
128     bool pstate_il;
129     /* True if PSTATE.SM is set. */
130     bool pstate_sm;
131     /* True if PSTATE.ZA is set. */
132     bool pstate_za;
133     /* True if non-streaming insns should raise an SME Streaming exception. */
134     bool sme_trap_nonstreaming;
135     /* True if the current instruction is non-streaming. */
136     bool is_nonstreaming;
137     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138     bool mve_no_pred;
139     /* True if fine-grained traps are active */
140     bool fgt_active;
141     /* True if fine-grained trap on ERET is enabled */
142     bool fgt_eret;
143     /* True if fine-grained trap on SVC is enabled */
144     bool fgt_svc;
145     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146     bool naa;
147     /*
148      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
149      *  < 0, set by the current instruction.
150      */
151     int8_t btype;
152     /* A copy of cpu->dcz_blocksize. */
153     uint8_t dcz_blocksize;
154     /* A copy of cpu->gm_blocksize. */
155     uint8_t gm_blocksize;
156     /* True if this page is guarded.  */
157     bool guarded_page;
158     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
159     int c15_cpar;
160     /* TCG op of the current insn_start.  */
161     TCGOp *insn_start;
162 } DisasContext;
163 
164 typedef struct DisasCompare {
165     TCGCond cond;
166     TCGv_i32 value;
167 } DisasCompare;
168 
169 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
170 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
171 extern TCGv_i64 cpu_exclusive_addr;
172 extern TCGv_i64 cpu_exclusive_val;
173 
174 /*
175  * Constant expanders for the decoders.
176  */
177 
178 static inline int negate(DisasContext *s, int x)
179 {
180     return -x;
181 }
182 
183 static inline int plus_1(DisasContext *s, int x)
184 {
185     return x + 1;
186 }
187 
188 static inline int plus_2(DisasContext *s, int x)
189 {
190     return x + 2;
191 }
192 
193 static inline int plus_12(DisasContext *s, int x)
194 {
195     return x + 12;
196 }
197 
198 static inline int times_2(DisasContext *s, int x)
199 {
200     return x * 2;
201 }
202 
203 static inline int times_4(DisasContext *s, int x)
204 {
205     return x * 4;
206 }
207 
208 static inline int times_2_plus_1(DisasContext *s, int x)
209 {
210     return x * 2 + 1;
211 }
212 
213 static inline int rsub_64(DisasContext *s, int x)
214 {
215     return 64 - x;
216 }
217 
218 static inline int rsub_32(DisasContext *s, int x)
219 {
220     return 32 - x;
221 }
222 
223 static inline int rsub_16(DisasContext *s, int x)
224 {
225     return 16 - x;
226 }
227 
228 static inline int rsub_8(DisasContext *s, int x)
229 {
230     return 8 - x;
231 }
232 
233 static inline int shl_12(DisasContext *s, int x)
234 {
235     return x << 12;
236 }
237 
238 static inline int neon_3same_fp_size(DisasContext *s, int x)
239 {
240     /* Convert 0==fp32, 1==fp16 into a MO_* value */
241     return MO_32 - x;
242 }
243 
244 static inline int arm_dc_feature(DisasContext *dc, int feature)
245 {
246     return (dc->features & (1ULL << feature)) != 0;
247 }
248 
249 static inline int get_mem_index(DisasContext *s)
250 {
251     return arm_to_core_mmu_idx(s->mmu_idx);
252 }
253 
254 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
255 {
256     /* We don't need to save all of the syndrome so we mask and shift
257      * out unneeded bits to help the sleb128 encoder do a better job.
258      */
259     syn &= ARM_INSN_START_WORD2_MASK;
260     syn >>= ARM_INSN_START_WORD2_SHIFT;
261 
262     /* We check and clear insn_start_idx to catch multiple updates.  */
263     assert(s->insn_start != NULL);
264     tcg_set_insn_start_param(s->insn_start, 2, syn);
265     s->insn_start = NULL;
266 }
267 
268 static inline int curr_insn_len(DisasContext *s)
269 {
270     return s->base.pc_next - s->pc_curr;
271 }
272 
273 /* is_jmp field values */
274 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
275 /* CPU state was modified dynamically; exit to main loop for interrupts. */
276 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
277 /* These instructions trap after executing, so the A32/T32 decoder must
278  * defer them until after the conditional execution state has been updated.
279  * WFI also needs special handling when single-stepping.
280  */
281 #define DISAS_WFI       DISAS_TARGET_2
282 #define DISAS_SWI       DISAS_TARGET_3
283 /* WFE */
284 #define DISAS_WFE       DISAS_TARGET_4
285 #define DISAS_HVC       DISAS_TARGET_5
286 #define DISAS_SMC       DISAS_TARGET_6
287 #define DISAS_YIELD     DISAS_TARGET_7
288 /* M profile branch which might be an exception return (and so needs
289  * custom end-of-TB code)
290  */
291 #define DISAS_BX_EXCRET DISAS_TARGET_8
292 /*
293  * For instructions which want an immediate exit to the main loop, as opposed
294  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
295  * doesn't write the PC on exiting the translation loop so you need to ensure
296  * something (gen_a64_update_pc or runtime helper) has done so before we reach
297  * return from cpu_tb_exec.
298  */
299 #define DISAS_EXIT      DISAS_TARGET_9
300 /* CPU state was modified dynamically; no need to exit, but do not chain. */
301 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
302 
303 #ifdef TARGET_AARCH64
304 void a64_translate_init(void);
305 void gen_a64_update_pc(DisasContext *s, target_long diff);
306 extern const TranslatorOps aarch64_translator_ops;
307 #else
308 static inline void a64_translate_init(void)
309 {
310 }
311 
312 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
313 {
314 }
315 #endif
316 
317 void arm_test_cc(DisasCompare *cmp, int cc);
318 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
319 void arm_gen_test_cc(int cc, TCGLabel *label);
320 MemOp pow2_align(unsigned i);
321 void unallocated_encoding(DisasContext *s);
322 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
323                            uint32_t syn, uint32_t target_el);
324 void gen_exception_insn(DisasContext *s, target_long pc_diff,
325                         int excp, uint32_t syn);
326 
327 /* Return state of Alternate Half-precision flag, caller frees result */
328 static inline TCGv_i32 get_ahp_flag(void)
329 {
330     TCGv_i32 ret = tcg_temp_new_i32();
331 
332     tcg_gen_ld_i32(ret, cpu_env,
333                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
334     tcg_gen_extract_i32(ret, ret, 26, 1);
335 
336     return ret;
337 }
338 
339 /* Set bits within PSTATE.  */
340 static inline void set_pstate_bits(uint32_t bits)
341 {
342     TCGv_i32 p = tcg_temp_new_i32();
343 
344     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
345 
346     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
347     tcg_gen_ori_i32(p, p, bits);
348     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
349 }
350 
351 /* Clear bits within PSTATE.  */
352 static inline void clear_pstate_bits(uint32_t bits)
353 {
354     TCGv_i32 p = tcg_temp_new_i32();
355 
356     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
357 
358     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
359     tcg_gen_andi_i32(p, p, ~bits);
360     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
361 }
362 
363 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
364 static inline void gen_ss_advance(DisasContext *s)
365 {
366     if (s->ss_active) {
367         s->pstate_ss = 0;
368         clear_pstate_bits(PSTATE_SS);
369     }
370 }
371 
372 /* Generate an architectural singlestep exception */
373 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
374 {
375     /* Fill in the same_el field of the syndrome in the helper. */
376     uint32_t syn = syn_swstep(false, isv, ex);
377     gen_helper_exception_swstep(cpu_env, tcg_constant_i32(syn));
378 }
379 
380 /*
381  * Given a VFP floating point constant encoded into an 8 bit immediate in an
382  * instruction, expand it to the actual constant value of the specified
383  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
384  */
385 uint64_t vfp_expand_imm(int size, uint8_t imm8);
386 
387 /* Vector operations shared between ARM and AArch64.  */
388 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
389                    uint32_t opr_sz, uint32_t max_sz);
390 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
391                    uint32_t opr_sz, uint32_t max_sz);
392 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
393                    uint32_t opr_sz, uint32_t max_sz);
394 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
395                    uint32_t opr_sz, uint32_t max_sz);
396 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
397                    uint32_t opr_sz, uint32_t max_sz);
398 
399 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
400                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
401 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
402                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
403 
404 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
407                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
408 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
409                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
410 
411 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
412 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
413 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
414 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
415 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
416 
417 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
418                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
419 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
420                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
421 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
422                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
423 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
424                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
425 
426 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
427                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
428 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
429                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
430 
431 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
432                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
434                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
435 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
436                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
437 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
438                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
439 
440 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
441                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
442 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
443                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
444 
445 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
446                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
448                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
449 
450 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
454 
455 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 
460 /*
461  * Forward to the isar_feature_* tests given a DisasContext pointer.
462  */
463 #define dc_isar_feature(name, ctx) \
464     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
465 
466 /* Note that the gvec expanders operate on offsets + sizes.  */
467 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
468 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
469                          uint32_t, uint32_t);
470 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
471                         uint32_t, uint32_t, uint32_t);
472 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
473                         uint32_t, uint32_t, uint32_t);
474 
475 /* Function prototype for gen_ functions for calling Neon helpers */
476 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
477 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
478 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
479 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
480 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
481                                  TCGv_i32, TCGv_i32);
482 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
483 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
484 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
485 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
486 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
487 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
488 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
489 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
490 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
491 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
492 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
493 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
494 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
495 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
496 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
497 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
498 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
499 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
500 
501 /**
502  * arm_tbflags_from_tb:
503  * @tb: the TranslationBlock
504  *
505  * Extract the flag values from @tb.
506  */
507 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
508 {
509     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
510 }
511 
512 /*
513  * Enum for argument to fpstatus_ptr().
514  */
515 typedef enum ARMFPStatusFlavour {
516     FPST_FPCR,
517     FPST_FPCR_F16,
518     FPST_STD,
519     FPST_STD_F16,
520 } ARMFPStatusFlavour;
521 
522 /**
523  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
524  *
525  * We have multiple softfloat float_status fields in the Arm CPU state struct
526  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
527  * been set up to point to the requested field in the CPU state struct.
528  * The options are:
529  *
530  * FPST_FPCR
531  *   for non-FP16 operations controlled by the FPCR
532  * FPST_FPCR_F16
533  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
534  * FPST_STD
535  *   for A32/T32 Neon operations using the "standard FPSCR value"
536  * FPST_STD_F16
537  *   as FPST_STD, but where FPCR.FZ16 is to be used
538  */
539 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
540 {
541     TCGv_ptr statusptr = tcg_temp_new_ptr();
542     int offset;
543 
544     switch (flavour) {
545     case FPST_FPCR:
546         offset = offsetof(CPUARMState, vfp.fp_status);
547         break;
548     case FPST_FPCR_F16:
549         offset = offsetof(CPUARMState, vfp.fp_status_f16);
550         break;
551     case FPST_STD:
552         offset = offsetof(CPUARMState, vfp.standard_fp_status);
553         break;
554     case FPST_STD_F16:
555         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
556         break;
557     default:
558         g_assert_not_reached();
559     }
560     tcg_gen_addi_ptr(statusptr, cpu_env, offset);
561     return statusptr;
562 }
563 
564 /**
565  * finalize_memop_atom:
566  * @s: DisasContext
567  * @opc: size+sign+align of the memory operation
568  * @atom: atomicity of the memory operation
569  *
570  * Build the complete MemOp for a memory operation, including alignment,
571  * endianness, and atomicity.
572  *
573  * If (op & MO_AMASK) then the operation already contains the required
574  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
575  * unaligned operation, e.g. for AccType_NORMAL.
576  *
577  * In the latter case, there are configuration bits that require alignment,
578  * and this is applied here.  Note that there is no way to indicate that
579  * no alignment should ever be enforced; this must be handled manually.
580  */
581 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
582 {
583     if (s->align_mem && !(opc & MO_AMASK)) {
584         opc |= MO_ALIGN;
585     }
586     return opc | atom | s->be_data;
587 }
588 
589 /**
590  * finalize_memop:
591  * @s: DisasContext
592  * @opc: size+sign+align of the memory operation
593  *
594  * Like finalize_memop_atom, but with default atomicity.
595  */
596 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
597 {
598     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
599     return finalize_memop_atom(s, opc, atom);
600 }
601 
602 /**
603  * finalize_memop_pair:
604  * @s: DisasContext
605  * @opc: size+sign+align of the memory operation
606  *
607  * Like finalize_memop_atom, but with atomicity for a pair.
608  * C.f. Pseudocode for Mem[], operand ispair.
609  */
610 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
611 {
612     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
613     return finalize_memop_atom(s, opc, atom);
614 }
615 
616 /**
617  * finalize_memop_asimd:
618  * @s: DisasContext
619  * @opc: size+sign+align of the memory operation
620  *
621  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
622  */
623 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
624 {
625     /*
626      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
627      * if IsAligned(8), the first case provides separate atomicity for
628      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
629      * do not apply, and we're left with the final case of no atomicity.
630      * Thus MO_ATOM_IFALIGN_PAIR.
631      *
632      * For other sizes, normal LSE2 rules apply.
633      */
634     if ((opc & MO_SIZE) == MO_128) {
635         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
636     }
637     return finalize_memop(s, opc);
638 }
639 
640 /**
641  * asimd_imm_const: Expand an encoded SIMD constant value
642  *
643  * Expand a SIMD constant value. This is essentially the pseudocode
644  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
645  * VMVN and VBIC (when cmode < 14 && op == 1).
646  *
647  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
648  * callers must catch this; we return the 64-bit constant value defined
649  * for AArch64.
650  *
651  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
652  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
653  * we produce an immediate constant value of 0 in these cases.
654  */
655 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
656 
657 /*
658  * gen_disas_label:
659  * Create a label and cache a copy of pc_save.
660  */
661 static inline DisasLabel gen_disas_label(DisasContext *s)
662 {
663     return (DisasLabel){
664         .label = gen_new_label(),
665         .pc_save = s->pc_save,
666     };
667 }
668 
669 /*
670  * set_disas_label:
671  * Emit a label and restore the cached copy of pc_save.
672  */
673 static inline void set_disas_label(DisasContext *s, DisasLabel l)
674 {
675     gen_set_label(l.label);
676     s->pc_save = l.pc_save;
677 }
678 
679 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
680 {
681     TCGv_ptr ret = tcg_temp_new_ptr();
682     gen_helper_lookup_cp_reg(ret, cpu_env, tcg_constant_i32(key));
683     return ret;
684 }
685 
686 /*
687  * Set and reset rounding mode around another operation.
688  */
689 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
690 {
691     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
692     TCGv_i32 old = tcg_temp_new_i32();
693 
694     gen_helper_set_rmode(old, new, fpst);
695     return old;
696 }
697 
698 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
699 {
700     gen_helper_set_rmode(old, old, fpst);
701 }
702 
703 /*
704  * Helpers for implementing sets of trans_* functions.
705  * Defer the implementation of NAME to FUNC, with optional extra arguments.
706  */
707 #define TRANS(NAME, FUNC, ...) \
708     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
709     { return FUNC(s, __VA_ARGS__); }
710 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
711     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
712     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
713 
714 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
715     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
716     {                                                             \
717         s->is_nonstreaming = true;                                \
718         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
719     }
720 
721 #endif /* TARGET_ARM_TRANSLATE_H */
722