1 /* 2 * ARM translation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * Copyright (c) 2005-2007 CodeSourcery 6 * Copyright (c) 2007 OpenedHand, Ltd. 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 #include "qemu/osdep.h" 22 23 #include "cpu.h" 24 #include "internals.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg/tcg-op.h" 28 #include "tcg/tcg-op-gvec.h" 29 #include "qemu/log.h" 30 #include "qemu/bitops.h" 31 #include "arm_ldst.h" 32 #include "semihosting/semihost.h" 33 #include "exec/helper-proto.h" 34 #include "exec/helper-gen.h" 35 #include "exec/log.h" 36 #include "cpregs.h" 37 38 39 #define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T) 40 #define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5) 41 /* currently all emulated v5 cores are also v5TE, so don't bother */ 42 #define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5) 43 #define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s) 44 #define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6) 45 #define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K) 46 #define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2) 47 #define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7) 48 #define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8) 49 50 #include "translate.h" 51 #include "translate-a32.h" 52 53 /* These are TCG temporaries used only by the legacy iwMMXt decoder */ 54 static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; 55 /* These are TCG globals which alias CPUARMState fields */ 56 static TCGv_i32 cpu_R[16]; 57 TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF; 58 TCGv_i64 cpu_exclusive_addr; 59 TCGv_i64 cpu_exclusive_val; 60 61 #include "exec/gen-icount.h" 62 63 static const char * const regnames[] = 64 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" }; 66 67 68 /* initialize TCG globals. */ 69 void arm_translate_init(void) 70 { 71 int i; 72 73 for (i = 0; i < 16; i++) { 74 cpu_R[i] = tcg_global_mem_new_i32(cpu_env, 75 offsetof(CPUARMState, regs[i]), 76 regnames[i]); 77 } 78 cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF"); 79 cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF"); 80 cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF"); 81 cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF"); 82 83 cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env, 84 offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); 85 cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env, 86 offsetof(CPUARMState, exclusive_val), "exclusive_val"); 87 88 a64_translate_init(); 89 } 90 91 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op) 92 { 93 /* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */ 94 switch (cmode) { 95 case 0: case 1: 96 /* no-op */ 97 break; 98 case 2: case 3: 99 imm <<= 8; 100 break; 101 case 4: case 5: 102 imm <<= 16; 103 break; 104 case 6: case 7: 105 imm <<= 24; 106 break; 107 case 8: case 9: 108 imm |= imm << 16; 109 break; 110 case 10: case 11: 111 imm = (imm << 8) | (imm << 24); 112 break; 113 case 12: 114 imm = (imm << 8) | 0xff; 115 break; 116 case 13: 117 imm = (imm << 16) | 0xffff; 118 break; 119 case 14: 120 if (op) { 121 /* 122 * This and cmode == 15 op == 1 are the only cases where 123 * the top and bottom 32 bits of the encoded constant differ. 124 */ 125 uint64_t imm64 = 0; 126 int n; 127 128 for (n = 0; n < 8; n++) { 129 if (imm & (1 << n)) { 130 imm64 |= (0xffULL << (n * 8)); 131 } 132 } 133 return imm64; 134 } 135 imm |= (imm << 8) | (imm << 16) | (imm << 24); 136 break; 137 case 15: 138 if (op) { 139 /* Reserved encoding for AArch32; valid for AArch64 */ 140 uint64_t imm64 = (uint64_t)(imm & 0x3f) << 48; 141 if (imm & 0x80) { 142 imm64 |= 0x8000000000000000ULL; 143 } 144 if (imm & 0x40) { 145 imm64 |= 0x3fc0000000000000ULL; 146 } else { 147 imm64 |= 0x4000000000000000ULL; 148 } 149 return imm64; 150 } 151 imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) 152 | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); 153 break; 154 } 155 if (op) { 156 imm = ~imm; 157 } 158 return dup_const(MO_32, imm); 159 } 160 161 /* Generate a label used for skipping this instruction */ 162 void arm_gen_condlabel(DisasContext *s) 163 { 164 if (!s->condjmp) { 165 s->condlabel = gen_disas_label(s); 166 s->condjmp = 1; 167 } 168 } 169 170 /* Flags for the disas_set_da_iss info argument: 171 * lower bits hold the Rt register number, higher bits are flags. 172 */ 173 typedef enum ISSInfo { 174 ISSNone = 0, 175 ISSRegMask = 0x1f, 176 ISSInvalid = (1 << 5), 177 ISSIsAcqRel = (1 << 6), 178 ISSIsWrite = (1 << 7), 179 ISSIs16Bit = (1 << 8), 180 } ISSInfo; 181 182 /* 183 * Store var into env + offset to a member with size bytes. 184 * Free var after use. 185 */ 186 void store_cpu_offset(TCGv_i32 var, int offset, int size) 187 { 188 switch (size) { 189 case 1: 190 tcg_gen_st8_i32(var, cpu_env, offset); 191 break; 192 case 4: 193 tcg_gen_st_i32(var, cpu_env, offset); 194 break; 195 default: 196 g_assert_not_reached(); 197 } 198 tcg_temp_free_i32(var); 199 } 200 201 /* Save the syndrome information for a Data Abort */ 202 static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo) 203 { 204 uint32_t syn; 205 int sas = memop & MO_SIZE; 206 bool sse = memop & MO_SIGN; 207 bool is_acqrel = issinfo & ISSIsAcqRel; 208 bool is_write = issinfo & ISSIsWrite; 209 bool is_16bit = issinfo & ISSIs16Bit; 210 int srt = issinfo & ISSRegMask; 211 212 if (issinfo & ISSInvalid) { 213 /* Some callsites want to conditionally provide ISS info, 214 * eg "only if this was not a writeback" 215 */ 216 return; 217 } 218 219 if (srt == 15) { 220 /* For AArch32, insns where the src/dest is R15 never generate 221 * ISS information. Catching that here saves checking at all 222 * the call sites. 223 */ 224 return; 225 } 226 227 syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel, 228 0, 0, 0, is_write, 0, is_16bit); 229 disas_set_insn_syndrome(s, syn); 230 } 231 232 static inline int get_a32_user_mem_index(DisasContext *s) 233 { 234 /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store" 235 * insns: 236 * if PL2, UNPREDICTABLE (we choose to implement as if PL0) 237 * otherwise, access as if at PL0. 238 */ 239 switch (s->mmu_idx) { 240 case ARMMMUIdx_E3: 241 case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */ 242 case ARMMMUIdx_E10_0: 243 case ARMMMUIdx_E10_1: 244 case ARMMMUIdx_E10_1_PAN: 245 return arm_to_core_mmu_idx(ARMMMUIdx_E10_0); 246 case ARMMMUIdx_MUser: 247 case ARMMMUIdx_MPriv: 248 return arm_to_core_mmu_idx(ARMMMUIdx_MUser); 249 case ARMMMUIdx_MUserNegPri: 250 case ARMMMUIdx_MPrivNegPri: 251 return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri); 252 case ARMMMUIdx_MSUser: 253 case ARMMMUIdx_MSPriv: 254 return arm_to_core_mmu_idx(ARMMMUIdx_MSUser); 255 case ARMMMUIdx_MSUserNegPri: 256 case ARMMMUIdx_MSPrivNegPri: 257 return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri); 258 default: 259 g_assert_not_reached(); 260 } 261 } 262 263 /* The pc_curr difference for an architectural jump. */ 264 static target_long jmp_diff(DisasContext *s, target_long diff) 265 { 266 return diff + (s->thumb ? 4 : 8); 267 } 268 269 static void gen_pc_plus_diff(DisasContext *s, TCGv_i32 var, target_long diff) 270 { 271 assert(s->pc_save != -1); 272 if (tb_cflags(s->base.tb) & CF_PCREL) { 273 tcg_gen_addi_i32(var, cpu_R[15], (s->pc_curr - s->pc_save) + diff); 274 } else { 275 tcg_gen_movi_i32(var, s->pc_curr + diff); 276 } 277 } 278 279 /* Set a variable to the value of a CPU register. */ 280 void load_reg_var(DisasContext *s, TCGv_i32 var, int reg) 281 { 282 if (reg == 15) { 283 gen_pc_plus_diff(s, var, jmp_diff(s, 0)); 284 } else { 285 tcg_gen_mov_i32(var, cpu_R[reg]); 286 } 287 } 288 289 /* 290 * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4). 291 * This is used for load/store for which use of PC implies (literal), 292 * or ADD that implies ADR. 293 */ 294 TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs) 295 { 296 TCGv_i32 tmp = tcg_temp_new_i32(); 297 298 if (reg == 15) { 299 /* 300 * This address is computed from an aligned PC: 301 * subtract off the low bits. 302 */ 303 gen_pc_plus_diff(s, tmp, jmp_diff(s, ofs - (s->pc_curr & 3))); 304 } else { 305 tcg_gen_addi_i32(tmp, cpu_R[reg], ofs); 306 } 307 return tmp; 308 } 309 310 /* Set a CPU register. The source must be a temporary and will be 311 marked as dead. */ 312 void store_reg(DisasContext *s, int reg, TCGv_i32 var) 313 { 314 if (reg == 15) { 315 /* In Thumb mode, we must ignore bit 0. 316 * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0] 317 * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0]. 318 * We choose to ignore [1:0] in ARM mode for all architecture versions. 319 */ 320 tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3); 321 s->base.is_jmp = DISAS_JUMP; 322 s->pc_save = -1; 323 } else if (reg == 13 && arm_dc_feature(s, ARM_FEATURE_M)) { 324 /* For M-profile SP bits [1:0] are always zero */ 325 tcg_gen_andi_i32(var, var, ~3); 326 } 327 tcg_gen_mov_i32(cpu_R[reg], var); 328 tcg_temp_free_i32(var); 329 } 330 331 /* 332 * Variant of store_reg which applies v8M stack-limit checks before updating 333 * SP. If the check fails this will result in an exception being taken. 334 * We disable the stack checks for CONFIG_USER_ONLY because we have 335 * no idea what the stack limits should be in that case. 336 * If stack checking is not being done this just acts like store_reg(). 337 */ 338 static void store_sp_checked(DisasContext *s, TCGv_i32 var) 339 { 340 #ifndef CONFIG_USER_ONLY 341 if (s->v8m_stackcheck) { 342 gen_helper_v8m_stackcheck(cpu_env, var); 343 } 344 #endif 345 store_reg(s, 13, var); 346 } 347 348 /* Value extensions. */ 349 #define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) 350 #define gen_uxth(var) tcg_gen_ext16u_i32(var, var) 351 #define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) 352 #define gen_sxth(var) tcg_gen_ext16s_i32(var, var) 353 354 #define gen_sxtb16(var) gen_helper_sxtb16(var, var) 355 #define gen_uxtb16(var) gen_helper_uxtb16(var, var) 356 357 void gen_set_cpsr(TCGv_i32 var, uint32_t mask) 358 { 359 gen_helper_cpsr_write(cpu_env, var, tcg_constant_i32(mask)); 360 } 361 362 static void gen_rebuild_hflags(DisasContext *s, bool new_el) 363 { 364 bool m_profile = arm_dc_feature(s, ARM_FEATURE_M); 365 366 if (new_el) { 367 if (m_profile) { 368 gen_helper_rebuild_hflags_m32_newel(cpu_env); 369 } else { 370 gen_helper_rebuild_hflags_a32_newel(cpu_env); 371 } 372 } else { 373 TCGv_i32 tcg_el = tcg_constant_i32(s->current_el); 374 if (m_profile) { 375 gen_helper_rebuild_hflags_m32(cpu_env, tcg_el); 376 } else { 377 gen_helper_rebuild_hflags_a32(cpu_env, tcg_el); 378 } 379 } 380 } 381 382 static void gen_exception_internal(int excp) 383 { 384 assert(excp_is_internal(excp)); 385 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 386 } 387 388 static void gen_singlestep_exception(DisasContext *s) 389 { 390 /* We just completed step of an insn. Move from Active-not-pending 391 * to Active-pending, and then also take the swstep exception. 392 * This corresponds to making the (IMPDEF) choice to prioritize 393 * swstep exceptions over asynchronous exceptions taken to an exception 394 * level where debug is disabled. This choice has the advantage that 395 * we do not need to maintain internal state corresponding to the 396 * ISV/EX syndrome bits between completion of the step and generation 397 * of the exception, and our syndrome information is always correct. 398 */ 399 gen_ss_advance(s); 400 gen_swstep_exception(s, 1, s->is_ldex); 401 s->base.is_jmp = DISAS_NORETURN; 402 } 403 404 void clear_eci_state(DisasContext *s) 405 { 406 /* 407 * Clear any ECI/ICI state: used when a load multiple/store 408 * multiple insn executes. 409 */ 410 if (s->eci) { 411 store_cpu_field_constant(0, condexec_bits); 412 s->eci = 0; 413 } 414 } 415 416 static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) 417 { 418 TCGv_i32 tmp1 = tcg_temp_new_i32(); 419 TCGv_i32 tmp2 = tcg_temp_new_i32(); 420 tcg_gen_ext16s_i32(tmp1, a); 421 tcg_gen_ext16s_i32(tmp2, b); 422 tcg_gen_mul_i32(tmp1, tmp1, tmp2); 423 tcg_temp_free_i32(tmp2); 424 tcg_gen_sari_i32(a, a, 16); 425 tcg_gen_sari_i32(b, b, 16); 426 tcg_gen_mul_i32(b, b, a); 427 tcg_gen_mov_i32(a, tmp1); 428 tcg_temp_free_i32(tmp1); 429 } 430 431 /* Byteswap each halfword. */ 432 void gen_rev16(TCGv_i32 dest, TCGv_i32 var) 433 { 434 TCGv_i32 tmp = tcg_temp_new_i32(); 435 TCGv_i32 mask = tcg_constant_i32(0x00ff00ff); 436 tcg_gen_shri_i32(tmp, var, 8); 437 tcg_gen_and_i32(tmp, tmp, mask); 438 tcg_gen_and_i32(var, var, mask); 439 tcg_gen_shli_i32(var, var, 8); 440 tcg_gen_or_i32(dest, var, tmp); 441 tcg_temp_free_i32(tmp); 442 } 443 444 /* Byteswap low halfword and sign extend. */ 445 static void gen_revsh(TCGv_i32 dest, TCGv_i32 var) 446 { 447 tcg_gen_bswap16_i32(var, var, TCG_BSWAP_OS); 448 } 449 450 /* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. 451 tmp = (t0 ^ t1) & 0x8000; 452 t0 &= ~0x8000; 453 t1 &= ~0x8000; 454 t0 = (t0 + t1) ^ tmp; 455 */ 456 457 static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 458 { 459 TCGv_i32 tmp = tcg_temp_new_i32(); 460 tcg_gen_xor_i32(tmp, t0, t1); 461 tcg_gen_andi_i32(tmp, tmp, 0x8000); 462 tcg_gen_andi_i32(t0, t0, ~0x8000); 463 tcg_gen_andi_i32(t1, t1, ~0x8000); 464 tcg_gen_add_i32(t0, t0, t1); 465 tcg_gen_xor_i32(dest, t0, tmp); 466 tcg_temp_free_i32(tmp); 467 } 468 469 /* Set N and Z flags from var. */ 470 static inline void gen_logic_CC(TCGv_i32 var) 471 { 472 tcg_gen_mov_i32(cpu_NF, var); 473 tcg_gen_mov_i32(cpu_ZF, var); 474 } 475 476 /* dest = T0 + T1 + CF. */ 477 static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 478 { 479 tcg_gen_add_i32(dest, t0, t1); 480 tcg_gen_add_i32(dest, dest, cpu_CF); 481 } 482 483 /* dest = T0 - T1 + CF - 1. */ 484 static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 485 { 486 tcg_gen_sub_i32(dest, t0, t1); 487 tcg_gen_add_i32(dest, dest, cpu_CF); 488 tcg_gen_subi_i32(dest, dest, 1); 489 } 490 491 /* dest = T0 + T1. Compute C, N, V and Z flags */ 492 static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 493 { 494 TCGv_i32 tmp = tcg_temp_new_i32(); 495 tcg_gen_movi_i32(tmp, 0); 496 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp); 497 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 498 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 499 tcg_gen_xor_i32(tmp, t0, t1); 500 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 501 tcg_temp_free_i32(tmp); 502 tcg_gen_mov_i32(dest, cpu_NF); 503 } 504 505 /* dest = T0 + T1 + CF. Compute C, N, V and Z flags */ 506 static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 507 { 508 TCGv_i32 tmp = tcg_temp_new_i32(); 509 if (TCG_TARGET_HAS_add2_i32) { 510 tcg_gen_movi_i32(tmp, 0); 511 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp); 512 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp); 513 } else { 514 TCGv_i64 q0 = tcg_temp_new_i64(); 515 TCGv_i64 q1 = tcg_temp_new_i64(); 516 tcg_gen_extu_i32_i64(q0, t0); 517 tcg_gen_extu_i32_i64(q1, t1); 518 tcg_gen_add_i64(q0, q0, q1); 519 tcg_gen_extu_i32_i64(q1, cpu_CF); 520 tcg_gen_add_i64(q0, q0, q1); 521 tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0); 522 tcg_temp_free_i64(q0); 523 tcg_temp_free_i64(q1); 524 } 525 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 526 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 527 tcg_gen_xor_i32(tmp, t0, t1); 528 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 529 tcg_temp_free_i32(tmp); 530 tcg_gen_mov_i32(dest, cpu_NF); 531 } 532 533 /* dest = T0 - T1. Compute C, N, V and Z flags */ 534 static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 535 { 536 TCGv_i32 tmp; 537 tcg_gen_sub_i32(cpu_NF, t0, t1); 538 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 539 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1); 540 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); 541 tmp = tcg_temp_new_i32(); 542 tcg_gen_xor_i32(tmp, t0, t1); 543 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 544 tcg_temp_free_i32(tmp); 545 tcg_gen_mov_i32(dest, cpu_NF); 546 } 547 548 /* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */ 549 static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 550 { 551 TCGv_i32 tmp = tcg_temp_new_i32(); 552 tcg_gen_not_i32(tmp, t1); 553 gen_adc_CC(dest, t0, tmp); 554 tcg_temp_free_i32(tmp); 555 } 556 557 #define GEN_SHIFT(name) \ 558 static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \ 559 { \ 560 TCGv_i32 tmpd = tcg_temp_new_i32(); \ 561 TCGv_i32 tmp1 = tcg_temp_new_i32(); \ 562 TCGv_i32 zero = tcg_constant_i32(0); \ 563 tcg_gen_andi_i32(tmp1, t1, 0x1f); \ 564 tcg_gen_##name##_i32(tmpd, t0, tmp1); \ 565 tcg_gen_andi_i32(tmp1, t1, 0xe0); \ 566 tcg_gen_movcond_i32(TCG_COND_NE, dest, tmp1, zero, zero, tmpd); \ 567 tcg_temp_free_i32(tmpd); \ 568 tcg_temp_free_i32(tmp1); \ 569 } 570 GEN_SHIFT(shl) 571 GEN_SHIFT(shr) 572 #undef GEN_SHIFT 573 574 static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) 575 { 576 TCGv_i32 tmp1 = tcg_temp_new_i32(); 577 578 tcg_gen_andi_i32(tmp1, t1, 0xff); 579 tcg_gen_umin_i32(tmp1, tmp1, tcg_constant_i32(31)); 580 tcg_gen_sar_i32(dest, t0, tmp1); 581 tcg_temp_free_i32(tmp1); 582 } 583 584 static void shifter_out_im(TCGv_i32 var, int shift) 585 { 586 tcg_gen_extract_i32(cpu_CF, var, shift, 1); 587 } 588 589 /* Shift by immediate. Includes special handling for shift == 0. */ 590 static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop, 591 int shift, int flags) 592 { 593 switch (shiftop) { 594 case 0: /* LSL */ 595 if (shift != 0) { 596 if (flags) 597 shifter_out_im(var, 32 - shift); 598 tcg_gen_shli_i32(var, var, shift); 599 } 600 break; 601 case 1: /* LSR */ 602 if (shift == 0) { 603 if (flags) { 604 tcg_gen_shri_i32(cpu_CF, var, 31); 605 } 606 tcg_gen_movi_i32(var, 0); 607 } else { 608 if (flags) 609 shifter_out_im(var, shift - 1); 610 tcg_gen_shri_i32(var, var, shift); 611 } 612 break; 613 case 2: /* ASR */ 614 if (shift == 0) 615 shift = 32; 616 if (flags) 617 shifter_out_im(var, shift - 1); 618 if (shift == 32) 619 shift = 31; 620 tcg_gen_sari_i32(var, var, shift); 621 break; 622 case 3: /* ROR/RRX */ 623 if (shift != 0) { 624 if (flags) 625 shifter_out_im(var, shift - 1); 626 tcg_gen_rotri_i32(var, var, shift); break; 627 } else { 628 TCGv_i32 tmp = tcg_temp_new_i32(); 629 tcg_gen_shli_i32(tmp, cpu_CF, 31); 630 if (flags) 631 shifter_out_im(var, 0); 632 tcg_gen_shri_i32(var, var, 1); 633 tcg_gen_or_i32(var, var, tmp); 634 tcg_temp_free_i32(tmp); 635 } 636 } 637 }; 638 639 static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop, 640 TCGv_i32 shift, int flags) 641 { 642 if (flags) { 643 switch (shiftop) { 644 case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break; 645 case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break; 646 case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break; 647 case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break; 648 } 649 } else { 650 switch (shiftop) { 651 case 0: 652 gen_shl(var, var, shift); 653 break; 654 case 1: 655 gen_shr(var, var, shift); 656 break; 657 case 2: 658 gen_sar(var, var, shift); 659 break; 660 case 3: tcg_gen_andi_i32(shift, shift, 0x1f); 661 tcg_gen_rotr_i32(var, var, shift); break; 662 } 663 } 664 tcg_temp_free_i32(shift); 665 } 666 667 /* 668 * Generate a conditional based on ARM condition code cc. 669 * This is common between ARM and Aarch64 targets. 670 */ 671 void arm_test_cc(DisasCompare *cmp, int cc) 672 { 673 TCGv_i32 value; 674 TCGCond cond; 675 bool global = true; 676 677 switch (cc) { 678 case 0: /* eq: Z */ 679 case 1: /* ne: !Z */ 680 cond = TCG_COND_EQ; 681 value = cpu_ZF; 682 break; 683 684 case 2: /* cs: C */ 685 case 3: /* cc: !C */ 686 cond = TCG_COND_NE; 687 value = cpu_CF; 688 break; 689 690 case 4: /* mi: N */ 691 case 5: /* pl: !N */ 692 cond = TCG_COND_LT; 693 value = cpu_NF; 694 break; 695 696 case 6: /* vs: V */ 697 case 7: /* vc: !V */ 698 cond = TCG_COND_LT; 699 value = cpu_VF; 700 break; 701 702 case 8: /* hi: C && !Z */ 703 case 9: /* ls: !C || Z -> !(C && !Z) */ 704 cond = TCG_COND_NE; 705 value = tcg_temp_new_i32(); 706 global = false; 707 /* CF is 1 for C, so -CF is an all-bits-set mask for C; 708 ZF is non-zero for !Z; so AND the two subexpressions. */ 709 tcg_gen_neg_i32(value, cpu_CF); 710 tcg_gen_and_i32(value, value, cpu_ZF); 711 break; 712 713 case 10: /* ge: N == V -> N ^ V == 0 */ 714 case 11: /* lt: N != V -> N ^ V != 0 */ 715 /* Since we're only interested in the sign bit, == 0 is >= 0. */ 716 cond = TCG_COND_GE; 717 value = tcg_temp_new_i32(); 718 global = false; 719 tcg_gen_xor_i32(value, cpu_VF, cpu_NF); 720 break; 721 722 case 12: /* gt: !Z && N == V */ 723 case 13: /* le: Z || N != V */ 724 cond = TCG_COND_NE; 725 value = tcg_temp_new_i32(); 726 global = false; 727 /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate 728 * the sign bit then AND with ZF to yield the result. */ 729 tcg_gen_xor_i32(value, cpu_VF, cpu_NF); 730 tcg_gen_sari_i32(value, value, 31); 731 tcg_gen_andc_i32(value, cpu_ZF, value); 732 break; 733 734 case 14: /* always */ 735 case 15: /* always */ 736 /* Use the ALWAYS condition, which will fold early. 737 * It doesn't matter what we use for the value. */ 738 cond = TCG_COND_ALWAYS; 739 value = cpu_ZF; 740 goto no_invert; 741 742 default: 743 fprintf(stderr, "Bad condition code 0x%x\n", cc); 744 abort(); 745 } 746 747 if (cc & 1) { 748 cond = tcg_invert_cond(cond); 749 } 750 751 no_invert: 752 cmp->cond = cond; 753 cmp->value = value; 754 cmp->value_global = global; 755 } 756 757 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label) 758 { 759 tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label); 760 } 761 762 void arm_gen_test_cc(int cc, TCGLabel *label) 763 { 764 DisasCompare cmp; 765 arm_test_cc(&cmp, cc); 766 arm_jump_cc(&cmp, label); 767 } 768 769 void gen_set_condexec(DisasContext *s) 770 { 771 if (s->condexec_mask) { 772 uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); 773 774 store_cpu_field_constant(val, condexec_bits); 775 } 776 } 777 778 void gen_update_pc(DisasContext *s, target_long diff) 779 { 780 gen_pc_plus_diff(s, cpu_R[15], diff); 781 s->pc_save = s->pc_curr + diff; 782 } 783 784 /* Set PC and Thumb state from var. var is marked as dead. */ 785 static inline void gen_bx(DisasContext *s, TCGv_i32 var) 786 { 787 s->base.is_jmp = DISAS_JUMP; 788 tcg_gen_andi_i32(cpu_R[15], var, ~1); 789 tcg_gen_andi_i32(var, var, 1); 790 store_cpu_field(var, thumb); 791 s->pc_save = -1; 792 } 793 794 /* 795 * Set PC and Thumb state from var. var is marked as dead. 796 * For M-profile CPUs, include logic to detect exception-return 797 * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC, 798 * and BX reg, and no others, and happens only for code in Handler mode. 799 * The Security Extension also requires us to check for the FNC_RETURN 800 * which signals a function return from non-secure state; this can happen 801 * in both Handler and Thread mode. 802 * To avoid having to do multiple comparisons in inline generated code, 803 * we make the check we do here loose, so it will match for EXC_RETURN 804 * in Thread mode. For system emulation do_v7m_exception_exit() checks 805 * for these spurious cases and returns without doing anything (giving 806 * the same behaviour as for a branch to a non-magic address). 807 * 808 * In linux-user mode it is unclear what the right behaviour for an 809 * attempted FNC_RETURN should be, because in real hardware this will go 810 * directly to Secure code (ie not the Linux kernel) which will then treat 811 * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN 812 * attempt behave the way it would on a CPU without the security extension, 813 * which is to say "like a normal branch". That means we can simply treat 814 * all branches as normal with no magic address behaviour. 815 */ 816 static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var) 817 { 818 /* Generate the same code here as for a simple bx, but flag via 819 * s->base.is_jmp that we need to do the rest of the work later. 820 */ 821 gen_bx(s, var); 822 #ifndef CONFIG_USER_ONLY 823 if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) || 824 (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) { 825 s->base.is_jmp = DISAS_BX_EXCRET; 826 } 827 #endif 828 } 829 830 static inline void gen_bx_excret_final_code(DisasContext *s) 831 { 832 /* Generate the code to finish possible exception return and end the TB */ 833 DisasLabel excret_label = gen_disas_label(s); 834 uint32_t min_magic; 835 836 if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) { 837 /* Covers FNC_RETURN and EXC_RETURN magic */ 838 min_magic = FNC_RETURN_MIN_MAGIC; 839 } else { 840 /* EXC_RETURN magic only */ 841 min_magic = EXC_RETURN_MIN_MAGIC; 842 } 843 844 /* Is the new PC value in the magic range indicating exception return? */ 845 tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label.label); 846 /* No: end the TB as we would for a DISAS_JMP */ 847 if (s->ss_active) { 848 gen_singlestep_exception(s); 849 } else { 850 tcg_gen_exit_tb(NULL, 0); 851 } 852 set_disas_label(s, excret_label); 853 /* Yes: this is an exception return. 854 * At this point in runtime env->regs[15] and env->thumb will hold 855 * the exception-return magic number, which do_v7m_exception_exit() 856 * will read. Nothing else will be able to see those values because 857 * the cpu-exec main loop guarantees that we will always go straight 858 * from raising the exception to the exception-handling code. 859 * 860 * gen_ss_advance(s) does nothing on M profile currently but 861 * calling it is conceptually the right thing as we have executed 862 * this instruction (compare SWI, HVC, SMC handling). 863 */ 864 gen_ss_advance(s); 865 gen_exception_internal(EXCP_EXCEPTION_EXIT); 866 } 867 868 static inline void gen_bxns(DisasContext *s, int rm) 869 { 870 TCGv_i32 var = load_reg(s, rm); 871 872 /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory 873 * we need to sync state before calling it, but: 874 * - we don't need to do gen_update_pc() because the bxns helper will 875 * always set the PC itself 876 * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE 877 * unless it's outside an IT block or the last insn in an IT block, 878 * so we know that condexec == 0 (already set at the top of the TB) 879 * is correct in the non-UNPREDICTABLE cases, and we can choose 880 * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise. 881 */ 882 gen_helper_v7m_bxns(cpu_env, var); 883 tcg_temp_free_i32(var); 884 s->base.is_jmp = DISAS_EXIT; 885 } 886 887 static inline void gen_blxns(DisasContext *s, int rm) 888 { 889 TCGv_i32 var = load_reg(s, rm); 890 891 /* We don't need to sync condexec state, for the same reason as bxns. 892 * We do however need to set the PC, because the blxns helper reads it. 893 * The blxns helper may throw an exception. 894 */ 895 gen_update_pc(s, curr_insn_len(s)); 896 gen_helper_v7m_blxns(cpu_env, var); 897 tcg_temp_free_i32(var); 898 s->base.is_jmp = DISAS_EXIT; 899 } 900 901 /* Variant of store_reg which uses branch&exchange logic when storing 902 to r15 in ARM architecture v7 and above. The source must be a temporary 903 and will be marked as dead. */ 904 static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var) 905 { 906 if (reg == 15 && ENABLE_ARCH_7) { 907 gen_bx(s, var); 908 } else { 909 store_reg(s, reg, var); 910 } 911 } 912 913 /* Variant of store_reg which uses branch&exchange logic when storing 914 * to r15 in ARM architecture v5T and above. This is used for storing 915 * the results of a LDR/LDM/POP into r15, and corresponds to the cases 916 * in the ARM ARM which use the LoadWritePC() pseudocode function. */ 917 static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var) 918 { 919 if (reg == 15 && ENABLE_ARCH_5) { 920 gen_bx_excret(s, var); 921 } else { 922 store_reg(s, reg, var); 923 } 924 } 925 926 #ifdef CONFIG_USER_ONLY 927 #define IS_USER_ONLY 1 928 #else 929 #define IS_USER_ONLY 0 930 #endif 931 932 MemOp pow2_align(unsigned i) 933 { 934 static const MemOp mop_align[] = { 935 0, MO_ALIGN_2, MO_ALIGN_4, MO_ALIGN_8, MO_ALIGN_16, 936 /* 937 * FIXME: TARGET_PAGE_BITS_MIN affects TLB_FLAGS_MASK such 938 * that 256-bit alignment (MO_ALIGN_32) cannot be supported: 939 * see get_alignment_bits(). Enforce only 128-bit alignment for now. 940 */ 941 MO_ALIGN_16 942 }; 943 g_assert(i < ARRAY_SIZE(mop_align)); 944 return mop_align[i]; 945 } 946 947 /* 948 * Abstractions of "generate code to do a guest load/store for 949 * AArch32", where a vaddr is always 32 bits (and is zero 950 * extended if we're a 64 bit core) and data is also 951 * 32 bits unless specifically doing a 64 bit access. 952 * These functions work like tcg_gen_qemu_{ld,st}* except 953 * that the address argument is TCGv_i32 rather than TCGv. 954 */ 955 956 static TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op) 957 { 958 TCGv addr = tcg_temp_new(); 959 tcg_gen_extu_i32_tl(addr, a32); 960 961 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 962 if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) { 963 tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE))); 964 } 965 return addr; 966 } 967 968 /* 969 * Internal routines are used for NEON cases where the endianness 970 * and/or alignment has already been taken into account and manipulated. 971 */ 972 void gen_aa32_ld_internal_i32(DisasContext *s, TCGv_i32 val, 973 TCGv_i32 a32, int index, MemOp opc) 974 { 975 TCGv addr = gen_aa32_addr(s, a32, opc); 976 tcg_gen_qemu_ld_i32(val, addr, index, opc); 977 tcg_temp_free(addr); 978 } 979 980 void gen_aa32_st_internal_i32(DisasContext *s, TCGv_i32 val, 981 TCGv_i32 a32, int index, MemOp opc) 982 { 983 TCGv addr = gen_aa32_addr(s, a32, opc); 984 tcg_gen_qemu_st_i32(val, addr, index, opc); 985 tcg_temp_free(addr); 986 } 987 988 void gen_aa32_ld_internal_i64(DisasContext *s, TCGv_i64 val, 989 TCGv_i32 a32, int index, MemOp opc) 990 { 991 TCGv addr = gen_aa32_addr(s, a32, opc); 992 993 tcg_gen_qemu_ld_i64(val, addr, index, opc); 994 995 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 996 if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { 997 tcg_gen_rotri_i64(val, val, 32); 998 } 999 tcg_temp_free(addr); 1000 } 1001 1002 void gen_aa32_st_internal_i64(DisasContext *s, TCGv_i64 val, 1003 TCGv_i32 a32, int index, MemOp opc) 1004 { 1005 TCGv addr = gen_aa32_addr(s, a32, opc); 1006 1007 /* Not needed for user-mode BE32, where we use MO_BE instead. */ 1008 if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { 1009 TCGv_i64 tmp = tcg_temp_new_i64(); 1010 tcg_gen_rotri_i64(tmp, val, 32); 1011 tcg_gen_qemu_st_i64(tmp, addr, index, opc); 1012 tcg_temp_free_i64(tmp); 1013 } else { 1014 tcg_gen_qemu_st_i64(val, addr, index, opc); 1015 } 1016 tcg_temp_free(addr); 1017 } 1018 1019 void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, 1020 int index, MemOp opc) 1021 { 1022 gen_aa32_ld_internal_i32(s, val, a32, index, finalize_memop(s, opc)); 1023 } 1024 1025 void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, 1026 int index, MemOp opc) 1027 { 1028 gen_aa32_st_internal_i32(s, val, a32, index, finalize_memop(s, opc)); 1029 } 1030 1031 void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, 1032 int index, MemOp opc) 1033 { 1034 gen_aa32_ld_internal_i64(s, val, a32, index, finalize_memop(s, opc)); 1035 } 1036 1037 void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, 1038 int index, MemOp opc) 1039 { 1040 gen_aa32_st_internal_i64(s, val, a32, index, finalize_memop(s, opc)); 1041 } 1042 1043 #define DO_GEN_LD(SUFF, OPC) \ 1044 static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \ 1045 TCGv_i32 a32, int index) \ 1046 { \ 1047 gen_aa32_ld_i32(s, val, a32, index, OPC); \ 1048 } 1049 1050 #define DO_GEN_ST(SUFF, OPC) \ 1051 static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \ 1052 TCGv_i32 a32, int index) \ 1053 { \ 1054 gen_aa32_st_i32(s, val, a32, index, OPC); \ 1055 } 1056 1057 static inline void gen_hvc(DisasContext *s, int imm16) 1058 { 1059 /* The pre HVC helper handles cases when HVC gets trapped 1060 * as an undefined insn by runtime configuration (ie before 1061 * the insn really executes). 1062 */ 1063 gen_update_pc(s, 0); 1064 gen_helper_pre_hvc(cpu_env); 1065 /* Otherwise we will treat this as a real exception which 1066 * happens after execution of the insn. (The distinction matters 1067 * for the PC value reported to the exception handler and also 1068 * for single stepping.) 1069 */ 1070 s->svc_imm = imm16; 1071 gen_update_pc(s, curr_insn_len(s)); 1072 s->base.is_jmp = DISAS_HVC; 1073 } 1074 1075 static inline void gen_smc(DisasContext *s) 1076 { 1077 /* As with HVC, we may take an exception either before or after 1078 * the insn executes. 1079 */ 1080 gen_update_pc(s, 0); 1081 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa32_smc())); 1082 gen_update_pc(s, curr_insn_len(s)); 1083 s->base.is_jmp = DISAS_SMC; 1084 } 1085 1086 static void gen_exception_internal_insn(DisasContext *s, int excp) 1087 { 1088 gen_set_condexec(s); 1089 gen_update_pc(s, 0); 1090 gen_exception_internal(excp); 1091 s->base.is_jmp = DISAS_NORETURN; 1092 } 1093 1094 static void gen_exception_el_v(int excp, uint32_t syndrome, TCGv_i32 tcg_el) 1095 { 1096 gen_helper_exception_with_syndrome_el(cpu_env, tcg_constant_i32(excp), 1097 tcg_constant_i32(syndrome), tcg_el); 1098 } 1099 1100 static void gen_exception_el(int excp, uint32_t syndrome, uint32_t target_el) 1101 { 1102 gen_exception_el_v(excp, syndrome, tcg_constant_i32(target_el)); 1103 } 1104 1105 static void gen_exception(int excp, uint32_t syndrome) 1106 { 1107 gen_helper_exception_with_syndrome(cpu_env, tcg_constant_i32(excp), 1108 tcg_constant_i32(syndrome)); 1109 } 1110 1111 static void gen_exception_insn_el_v(DisasContext *s, target_long pc_diff, 1112 int excp, uint32_t syn, TCGv_i32 tcg_el) 1113 { 1114 if (s->aarch64) { 1115 gen_a64_update_pc(s, pc_diff); 1116 } else { 1117 gen_set_condexec(s); 1118 gen_update_pc(s, pc_diff); 1119 } 1120 gen_exception_el_v(excp, syn, tcg_el); 1121 s->base.is_jmp = DISAS_NORETURN; 1122 } 1123 1124 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, 1125 uint32_t syn, uint32_t target_el) 1126 { 1127 gen_exception_insn_el_v(s, pc_diff, excp, syn, 1128 tcg_constant_i32(target_el)); 1129 } 1130 1131 void gen_exception_insn(DisasContext *s, target_long pc_diff, 1132 int excp, uint32_t syn) 1133 { 1134 if (s->aarch64) { 1135 gen_a64_update_pc(s, pc_diff); 1136 } else { 1137 gen_set_condexec(s); 1138 gen_update_pc(s, pc_diff); 1139 } 1140 gen_exception(excp, syn); 1141 s->base.is_jmp = DISAS_NORETURN; 1142 } 1143 1144 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn) 1145 { 1146 gen_set_condexec(s); 1147 gen_update_pc(s, 0); 1148 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syn)); 1149 s->base.is_jmp = DISAS_NORETURN; 1150 } 1151 1152 void unallocated_encoding(DisasContext *s) 1153 { 1154 /* Unallocated and reserved encodings are uncategorized */ 1155 gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); 1156 } 1157 1158 /* Force a TB lookup after an instruction that changes the CPU state. */ 1159 void gen_lookup_tb(DisasContext *s) 1160 { 1161 gen_pc_plus_diff(s, cpu_R[15], curr_insn_len(s)); 1162 s->base.is_jmp = DISAS_EXIT; 1163 } 1164 1165 static inline void gen_hlt(DisasContext *s, int imm) 1166 { 1167 /* HLT. This has two purposes. 1168 * Architecturally, it is an external halting debug instruction. 1169 * Since QEMU doesn't implement external debug, we treat this as 1170 * it is required for halting debug disabled: it will UNDEF. 1171 * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction, 1172 * and "HLT 0xF000" is an A32 semihosting syscall. These traps 1173 * must trigger semihosting even for ARMv7 and earlier, where 1174 * HLT was an undefined encoding. 1175 * In system mode, we don't allow userspace access to 1176 * semihosting, to provide some semblance of security 1177 * (and for consistency with our 32-bit semihosting). 1178 */ 1179 if (semihosting_enabled(s->current_el == 0) && 1180 (imm == (s->thumb ? 0x3c : 0xf000))) { 1181 gen_exception_internal_insn(s, EXCP_SEMIHOST); 1182 return; 1183 } 1184 1185 unallocated_encoding(s); 1186 } 1187 1188 /* 1189 * Return the offset of a "full" NEON Dreg. 1190 */ 1191 long neon_full_reg_offset(unsigned reg) 1192 { 1193 return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]); 1194 } 1195 1196 /* 1197 * Return the offset of a 2**SIZE piece of a NEON register, at index ELE, 1198 * where 0 is the least significant end of the register. 1199 */ 1200 long neon_element_offset(int reg, int element, MemOp memop) 1201 { 1202 int element_size = 1 << (memop & MO_SIZE); 1203 int ofs = element * element_size; 1204 #if HOST_BIG_ENDIAN 1205 /* 1206 * Calculate the offset assuming fully little-endian, 1207 * then XOR to account for the order of the 8-byte units. 1208 */ 1209 if (element_size < 8) { 1210 ofs ^= 8 - element_size; 1211 } 1212 #endif 1213 return neon_full_reg_offset(reg) + ofs; 1214 } 1215 1216 /* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */ 1217 long vfp_reg_offset(bool dp, unsigned reg) 1218 { 1219 if (dp) { 1220 return neon_element_offset(reg, 0, MO_64); 1221 } else { 1222 return neon_element_offset(reg >> 1, reg & 1, MO_32); 1223 } 1224 } 1225 1226 void read_neon_element32(TCGv_i32 dest, int reg, int ele, MemOp memop) 1227 { 1228 long off = neon_element_offset(reg, ele, memop); 1229 1230 switch (memop) { 1231 case MO_SB: 1232 tcg_gen_ld8s_i32(dest, cpu_env, off); 1233 break; 1234 case MO_UB: 1235 tcg_gen_ld8u_i32(dest, cpu_env, off); 1236 break; 1237 case MO_SW: 1238 tcg_gen_ld16s_i32(dest, cpu_env, off); 1239 break; 1240 case MO_UW: 1241 tcg_gen_ld16u_i32(dest, cpu_env, off); 1242 break; 1243 case MO_UL: 1244 case MO_SL: 1245 tcg_gen_ld_i32(dest, cpu_env, off); 1246 break; 1247 default: 1248 g_assert_not_reached(); 1249 } 1250 } 1251 1252 void read_neon_element64(TCGv_i64 dest, int reg, int ele, MemOp memop) 1253 { 1254 long off = neon_element_offset(reg, ele, memop); 1255 1256 switch (memop) { 1257 case MO_SL: 1258 tcg_gen_ld32s_i64(dest, cpu_env, off); 1259 break; 1260 case MO_UL: 1261 tcg_gen_ld32u_i64(dest, cpu_env, off); 1262 break; 1263 case MO_UQ: 1264 tcg_gen_ld_i64(dest, cpu_env, off); 1265 break; 1266 default: 1267 g_assert_not_reached(); 1268 } 1269 } 1270 1271 void write_neon_element32(TCGv_i32 src, int reg, int ele, MemOp memop) 1272 { 1273 long off = neon_element_offset(reg, ele, memop); 1274 1275 switch (memop) { 1276 case MO_8: 1277 tcg_gen_st8_i32(src, cpu_env, off); 1278 break; 1279 case MO_16: 1280 tcg_gen_st16_i32(src, cpu_env, off); 1281 break; 1282 case MO_32: 1283 tcg_gen_st_i32(src, cpu_env, off); 1284 break; 1285 default: 1286 g_assert_not_reached(); 1287 } 1288 } 1289 1290 void write_neon_element64(TCGv_i64 src, int reg, int ele, MemOp memop) 1291 { 1292 long off = neon_element_offset(reg, ele, memop); 1293 1294 switch (memop) { 1295 case MO_32: 1296 tcg_gen_st32_i64(src, cpu_env, off); 1297 break; 1298 case MO_64: 1299 tcg_gen_st_i64(src, cpu_env, off); 1300 break; 1301 default: 1302 g_assert_not_reached(); 1303 } 1304 } 1305 1306 #define ARM_CP_RW_BIT (1 << 20) 1307 1308 static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) 1309 { 1310 tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); 1311 } 1312 1313 static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) 1314 { 1315 tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); 1316 } 1317 1318 static inline TCGv_i32 iwmmxt_load_creg(int reg) 1319 { 1320 TCGv_i32 var = tcg_temp_new_i32(); 1321 tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); 1322 return var; 1323 } 1324 1325 static inline void iwmmxt_store_creg(int reg, TCGv_i32 var) 1326 { 1327 tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); 1328 tcg_temp_free_i32(var); 1329 } 1330 1331 static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) 1332 { 1333 iwmmxt_store_reg(cpu_M0, rn); 1334 } 1335 1336 static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) 1337 { 1338 iwmmxt_load_reg(cpu_M0, rn); 1339 } 1340 1341 static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) 1342 { 1343 iwmmxt_load_reg(cpu_V1, rn); 1344 tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); 1345 } 1346 1347 static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) 1348 { 1349 iwmmxt_load_reg(cpu_V1, rn); 1350 tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); 1351 } 1352 1353 static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) 1354 { 1355 iwmmxt_load_reg(cpu_V1, rn); 1356 tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); 1357 } 1358 1359 #define IWMMXT_OP(name) \ 1360 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ 1361 { \ 1362 iwmmxt_load_reg(cpu_V1, rn); \ 1363 gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ 1364 } 1365 1366 #define IWMMXT_OP_ENV(name) \ 1367 static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ 1368 { \ 1369 iwmmxt_load_reg(cpu_V1, rn); \ 1370 gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \ 1371 } 1372 1373 #define IWMMXT_OP_ENV_SIZE(name) \ 1374 IWMMXT_OP_ENV(name##b) \ 1375 IWMMXT_OP_ENV(name##w) \ 1376 IWMMXT_OP_ENV(name##l) 1377 1378 #define IWMMXT_OP_ENV1(name) \ 1379 static inline void gen_op_iwmmxt_##name##_M0(void) \ 1380 { \ 1381 gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \ 1382 } 1383 1384 IWMMXT_OP(maddsq) 1385 IWMMXT_OP(madduq) 1386 IWMMXT_OP(sadb) 1387 IWMMXT_OP(sadw) 1388 IWMMXT_OP(mulslw) 1389 IWMMXT_OP(mulshw) 1390 IWMMXT_OP(mululw) 1391 IWMMXT_OP(muluhw) 1392 IWMMXT_OP(macsw) 1393 IWMMXT_OP(macuw) 1394 1395 IWMMXT_OP_ENV_SIZE(unpackl) 1396 IWMMXT_OP_ENV_SIZE(unpackh) 1397 1398 IWMMXT_OP_ENV1(unpacklub) 1399 IWMMXT_OP_ENV1(unpackluw) 1400 IWMMXT_OP_ENV1(unpacklul) 1401 IWMMXT_OP_ENV1(unpackhub) 1402 IWMMXT_OP_ENV1(unpackhuw) 1403 IWMMXT_OP_ENV1(unpackhul) 1404 IWMMXT_OP_ENV1(unpacklsb) 1405 IWMMXT_OP_ENV1(unpacklsw) 1406 IWMMXT_OP_ENV1(unpacklsl) 1407 IWMMXT_OP_ENV1(unpackhsb) 1408 IWMMXT_OP_ENV1(unpackhsw) 1409 IWMMXT_OP_ENV1(unpackhsl) 1410 1411 IWMMXT_OP_ENV_SIZE(cmpeq) 1412 IWMMXT_OP_ENV_SIZE(cmpgtu) 1413 IWMMXT_OP_ENV_SIZE(cmpgts) 1414 1415 IWMMXT_OP_ENV_SIZE(mins) 1416 IWMMXT_OP_ENV_SIZE(minu) 1417 IWMMXT_OP_ENV_SIZE(maxs) 1418 IWMMXT_OP_ENV_SIZE(maxu) 1419 1420 IWMMXT_OP_ENV_SIZE(subn) 1421 IWMMXT_OP_ENV_SIZE(addn) 1422 IWMMXT_OP_ENV_SIZE(subu) 1423 IWMMXT_OP_ENV_SIZE(addu) 1424 IWMMXT_OP_ENV_SIZE(subs) 1425 IWMMXT_OP_ENV_SIZE(adds) 1426 1427 IWMMXT_OP_ENV(avgb0) 1428 IWMMXT_OP_ENV(avgb1) 1429 IWMMXT_OP_ENV(avgw0) 1430 IWMMXT_OP_ENV(avgw1) 1431 1432 IWMMXT_OP_ENV(packuw) 1433 IWMMXT_OP_ENV(packul) 1434 IWMMXT_OP_ENV(packuq) 1435 IWMMXT_OP_ENV(packsw) 1436 IWMMXT_OP_ENV(packsl) 1437 IWMMXT_OP_ENV(packsq) 1438 1439 static void gen_op_iwmmxt_set_mup(void) 1440 { 1441 TCGv_i32 tmp; 1442 tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); 1443 tcg_gen_ori_i32(tmp, tmp, 2); 1444 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); 1445 } 1446 1447 static void gen_op_iwmmxt_set_cup(void) 1448 { 1449 TCGv_i32 tmp; 1450 tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); 1451 tcg_gen_ori_i32(tmp, tmp, 1); 1452 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); 1453 } 1454 1455 static void gen_op_iwmmxt_setpsr_nz(void) 1456 { 1457 TCGv_i32 tmp = tcg_temp_new_i32(); 1458 gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); 1459 store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); 1460 } 1461 1462 static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) 1463 { 1464 iwmmxt_load_reg(cpu_V1, rn); 1465 tcg_gen_ext32u_i64(cpu_V1, cpu_V1); 1466 tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); 1467 } 1468 1469 static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, 1470 TCGv_i32 dest) 1471 { 1472 int rd; 1473 uint32_t offset; 1474 TCGv_i32 tmp; 1475 1476 rd = (insn >> 16) & 0xf; 1477 tmp = load_reg(s, rd); 1478 1479 offset = (insn & 0xff) << ((insn >> 7) & 2); 1480 if (insn & (1 << 24)) { 1481 /* Pre indexed */ 1482 if (insn & (1 << 23)) 1483 tcg_gen_addi_i32(tmp, tmp, offset); 1484 else 1485 tcg_gen_addi_i32(tmp, tmp, -offset); 1486 tcg_gen_mov_i32(dest, tmp); 1487 if (insn & (1 << 21)) 1488 store_reg(s, rd, tmp); 1489 else 1490 tcg_temp_free_i32(tmp); 1491 } else if (insn & (1 << 21)) { 1492 /* Post indexed */ 1493 tcg_gen_mov_i32(dest, tmp); 1494 if (insn & (1 << 23)) 1495 tcg_gen_addi_i32(tmp, tmp, offset); 1496 else 1497 tcg_gen_addi_i32(tmp, tmp, -offset); 1498 store_reg(s, rd, tmp); 1499 } else if (!(insn & (1 << 23))) 1500 return 1; 1501 return 0; 1502 } 1503 1504 static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest) 1505 { 1506 int rd = (insn >> 0) & 0xf; 1507 TCGv_i32 tmp; 1508 1509 if (insn & (1 << 8)) { 1510 if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { 1511 return 1; 1512 } else { 1513 tmp = iwmmxt_load_creg(rd); 1514 } 1515 } else { 1516 tmp = tcg_temp_new_i32(); 1517 iwmmxt_load_reg(cpu_V0, rd); 1518 tcg_gen_extrl_i64_i32(tmp, cpu_V0); 1519 } 1520 tcg_gen_andi_i32(tmp, tmp, mask); 1521 tcg_gen_mov_i32(dest, tmp); 1522 tcg_temp_free_i32(tmp); 1523 return 0; 1524 } 1525 1526 /* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred 1527 (ie. an undefined instruction). */ 1528 static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn) 1529 { 1530 int rd, wrd; 1531 int rdhi, rdlo, rd0, rd1, i; 1532 TCGv_i32 addr; 1533 TCGv_i32 tmp, tmp2, tmp3; 1534 1535 if ((insn & 0x0e000e00) == 0x0c000000) { 1536 if ((insn & 0x0fe00ff0) == 0x0c400000) { 1537 wrd = insn & 0xf; 1538 rdlo = (insn >> 12) & 0xf; 1539 rdhi = (insn >> 16) & 0xf; 1540 if (insn & ARM_CP_RW_BIT) { /* TMRRC */ 1541 iwmmxt_load_reg(cpu_V0, wrd); 1542 tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); 1543 tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); 1544 } else { /* TMCRR */ 1545 tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); 1546 iwmmxt_store_reg(cpu_V0, wrd); 1547 gen_op_iwmmxt_set_mup(); 1548 } 1549 return 0; 1550 } 1551 1552 wrd = (insn >> 12) & 0xf; 1553 addr = tcg_temp_new_i32(); 1554 if (gen_iwmmxt_address(s, insn, addr)) { 1555 tcg_temp_free_i32(addr); 1556 return 1; 1557 } 1558 if (insn & ARM_CP_RW_BIT) { 1559 if ((insn >> 28) == 0xf) { /* WLDRW wCx */ 1560 tmp = tcg_temp_new_i32(); 1561 gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); 1562 iwmmxt_store_creg(wrd, tmp); 1563 } else { 1564 i = 1; 1565 if (insn & (1 << 8)) { 1566 if (insn & (1 << 22)) { /* WLDRD */ 1567 gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s)); 1568 i = 0; 1569 } else { /* WLDRW wRd */ 1570 tmp = tcg_temp_new_i32(); 1571 gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); 1572 } 1573 } else { 1574 tmp = tcg_temp_new_i32(); 1575 if (insn & (1 << 22)) { /* WLDRH */ 1576 gen_aa32_ld16u(s, tmp, addr, get_mem_index(s)); 1577 } else { /* WLDRB */ 1578 gen_aa32_ld8u(s, tmp, addr, get_mem_index(s)); 1579 } 1580 } 1581 if (i) { 1582 tcg_gen_extu_i32_i64(cpu_M0, tmp); 1583 tcg_temp_free_i32(tmp); 1584 } 1585 gen_op_iwmmxt_movq_wRn_M0(wrd); 1586 } 1587 } else { 1588 if ((insn >> 28) == 0xf) { /* WSTRW wCx */ 1589 tmp = iwmmxt_load_creg(wrd); 1590 gen_aa32_st32(s, tmp, addr, get_mem_index(s)); 1591 } else { 1592 gen_op_iwmmxt_movq_M0_wRn(wrd); 1593 tmp = tcg_temp_new_i32(); 1594 if (insn & (1 << 8)) { 1595 if (insn & (1 << 22)) { /* WSTRD */ 1596 gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s)); 1597 } else { /* WSTRW wRd */ 1598 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1599 gen_aa32_st32(s, tmp, addr, get_mem_index(s)); 1600 } 1601 } else { 1602 if (insn & (1 << 22)) { /* WSTRH */ 1603 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1604 gen_aa32_st16(s, tmp, addr, get_mem_index(s)); 1605 } else { /* WSTRB */ 1606 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1607 gen_aa32_st8(s, tmp, addr, get_mem_index(s)); 1608 } 1609 } 1610 } 1611 tcg_temp_free_i32(tmp); 1612 } 1613 tcg_temp_free_i32(addr); 1614 return 0; 1615 } 1616 1617 if ((insn & 0x0f000000) != 0x0e000000) 1618 return 1; 1619 1620 switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { 1621 case 0x000: /* WOR */ 1622 wrd = (insn >> 12) & 0xf; 1623 rd0 = (insn >> 0) & 0xf; 1624 rd1 = (insn >> 16) & 0xf; 1625 gen_op_iwmmxt_movq_M0_wRn(rd0); 1626 gen_op_iwmmxt_orq_M0_wRn(rd1); 1627 gen_op_iwmmxt_setpsr_nz(); 1628 gen_op_iwmmxt_movq_wRn_M0(wrd); 1629 gen_op_iwmmxt_set_mup(); 1630 gen_op_iwmmxt_set_cup(); 1631 break; 1632 case 0x011: /* TMCR */ 1633 if (insn & 0xf) 1634 return 1; 1635 rd = (insn >> 12) & 0xf; 1636 wrd = (insn >> 16) & 0xf; 1637 switch (wrd) { 1638 case ARM_IWMMXT_wCID: 1639 case ARM_IWMMXT_wCASF: 1640 break; 1641 case ARM_IWMMXT_wCon: 1642 gen_op_iwmmxt_set_cup(); 1643 /* Fall through. */ 1644 case ARM_IWMMXT_wCSSF: 1645 tmp = iwmmxt_load_creg(wrd); 1646 tmp2 = load_reg(s, rd); 1647 tcg_gen_andc_i32(tmp, tmp, tmp2); 1648 tcg_temp_free_i32(tmp2); 1649 iwmmxt_store_creg(wrd, tmp); 1650 break; 1651 case ARM_IWMMXT_wCGR0: 1652 case ARM_IWMMXT_wCGR1: 1653 case ARM_IWMMXT_wCGR2: 1654 case ARM_IWMMXT_wCGR3: 1655 gen_op_iwmmxt_set_cup(); 1656 tmp = load_reg(s, rd); 1657 iwmmxt_store_creg(wrd, tmp); 1658 break; 1659 default: 1660 return 1; 1661 } 1662 break; 1663 case 0x100: /* WXOR */ 1664 wrd = (insn >> 12) & 0xf; 1665 rd0 = (insn >> 0) & 0xf; 1666 rd1 = (insn >> 16) & 0xf; 1667 gen_op_iwmmxt_movq_M0_wRn(rd0); 1668 gen_op_iwmmxt_xorq_M0_wRn(rd1); 1669 gen_op_iwmmxt_setpsr_nz(); 1670 gen_op_iwmmxt_movq_wRn_M0(wrd); 1671 gen_op_iwmmxt_set_mup(); 1672 gen_op_iwmmxt_set_cup(); 1673 break; 1674 case 0x111: /* TMRC */ 1675 if (insn & 0xf) 1676 return 1; 1677 rd = (insn >> 12) & 0xf; 1678 wrd = (insn >> 16) & 0xf; 1679 tmp = iwmmxt_load_creg(wrd); 1680 store_reg(s, rd, tmp); 1681 break; 1682 case 0x300: /* WANDN */ 1683 wrd = (insn >> 12) & 0xf; 1684 rd0 = (insn >> 0) & 0xf; 1685 rd1 = (insn >> 16) & 0xf; 1686 gen_op_iwmmxt_movq_M0_wRn(rd0); 1687 tcg_gen_neg_i64(cpu_M0, cpu_M0); 1688 gen_op_iwmmxt_andq_M0_wRn(rd1); 1689 gen_op_iwmmxt_setpsr_nz(); 1690 gen_op_iwmmxt_movq_wRn_M0(wrd); 1691 gen_op_iwmmxt_set_mup(); 1692 gen_op_iwmmxt_set_cup(); 1693 break; 1694 case 0x200: /* WAND */ 1695 wrd = (insn >> 12) & 0xf; 1696 rd0 = (insn >> 0) & 0xf; 1697 rd1 = (insn >> 16) & 0xf; 1698 gen_op_iwmmxt_movq_M0_wRn(rd0); 1699 gen_op_iwmmxt_andq_M0_wRn(rd1); 1700 gen_op_iwmmxt_setpsr_nz(); 1701 gen_op_iwmmxt_movq_wRn_M0(wrd); 1702 gen_op_iwmmxt_set_mup(); 1703 gen_op_iwmmxt_set_cup(); 1704 break; 1705 case 0x810: case 0xa10: /* WMADD */ 1706 wrd = (insn >> 12) & 0xf; 1707 rd0 = (insn >> 0) & 0xf; 1708 rd1 = (insn >> 16) & 0xf; 1709 gen_op_iwmmxt_movq_M0_wRn(rd0); 1710 if (insn & (1 << 21)) 1711 gen_op_iwmmxt_maddsq_M0_wRn(rd1); 1712 else 1713 gen_op_iwmmxt_madduq_M0_wRn(rd1); 1714 gen_op_iwmmxt_movq_wRn_M0(wrd); 1715 gen_op_iwmmxt_set_mup(); 1716 break; 1717 case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */ 1718 wrd = (insn >> 12) & 0xf; 1719 rd0 = (insn >> 16) & 0xf; 1720 rd1 = (insn >> 0) & 0xf; 1721 gen_op_iwmmxt_movq_M0_wRn(rd0); 1722 switch ((insn >> 22) & 3) { 1723 case 0: 1724 gen_op_iwmmxt_unpacklb_M0_wRn(rd1); 1725 break; 1726 case 1: 1727 gen_op_iwmmxt_unpacklw_M0_wRn(rd1); 1728 break; 1729 case 2: 1730 gen_op_iwmmxt_unpackll_M0_wRn(rd1); 1731 break; 1732 case 3: 1733 return 1; 1734 } 1735 gen_op_iwmmxt_movq_wRn_M0(wrd); 1736 gen_op_iwmmxt_set_mup(); 1737 gen_op_iwmmxt_set_cup(); 1738 break; 1739 case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */ 1740 wrd = (insn >> 12) & 0xf; 1741 rd0 = (insn >> 16) & 0xf; 1742 rd1 = (insn >> 0) & 0xf; 1743 gen_op_iwmmxt_movq_M0_wRn(rd0); 1744 switch ((insn >> 22) & 3) { 1745 case 0: 1746 gen_op_iwmmxt_unpackhb_M0_wRn(rd1); 1747 break; 1748 case 1: 1749 gen_op_iwmmxt_unpackhw_M0_wRn(rd1); 1750 break; 1751 case 2: 1752 gen_op_iwmmxt_unpackhl_M0_wRn(rd1); 1753 break; 1754 case 3: 1755 return 1; 1756 } 1757 gen_op_iwmmxt_movq_wRn_M0(wrd); 1758 gen_op_iwmmxt_set_mup(); 1759 gen_op_iwmmxt_set_cup(); 1760 break; 1761 case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */ 1762 wrd = (insn >> 12) & 0xf; 1763 rd0 = (insn >> 16) & 0xf; 1764 rd1 = (insn >> 0) & 0xf; 1765 gen_op_iwmmxt_movq_M0_wRn(rd0); 1766 if (insn & (1 << 22)) 1767 gen_op_iwmmxt_sadw_M0_wRn(rd1); 1768 else 1769 gen_op_iwmmxt_sadb_M0_wRn(rd1); 1770 if (!(insn & (1 << 20))) 1771 gen_op_iwmmxt_addl_M0_wRn(wrd); 1772 gen_op_iwmmxt_movq_wRn_M0(wrd); 1773 gen_op_iwmmxt_set_mup(); 1774 break; 1775 case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */ 1776 wrd = (insn >> 12) & 0xf; 1777 rd0 = (insn >> 16) & 0xf; 1778 rd1 = (insn >> 0) & 0xf; 1779 gen_op_iwmmxt_movq_M0_wRn(rd0); 1780 if (insn & (1 << 21)) { 1781 if (insn & (1 << 20)) 1782 gen_op_iwmmxt_mulshw_M0_wRn(rd1); 1783 else 1784 gen_op_iwmmxt_mulslw_M0_wRn(rd1); 1785 } else { 1786 if (insn & (1 << 20)) 1787 gen_op_iwmmxt_muluhw_M0_wRn(rd1); 1788 else 1789 gen_op_iwmmxt_mululw_M0_wRn(rd1); 1790 } 1791 gen_op_iwmmxt_movq_wRn_M0(wrd); 1792 gen_op_iwmmxt_set_mup(); 1793 break; 1794 case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */ 1795 wrd = (insn >> 12) & 0xf; 1796 rd0 = (insn >> 16) & 0xf; 1797 rd1 = (insn >> 0) & 0xf; 1798 gen_op_iwmmxt_movq_M0_wRn(rd0); 1799 if (insn & (1 << 21)) 1800 gen_op_iwmmxt_macsw_M0_wRn(rd1); 1801 else 1802 gen_op_iwmmxt_macuw_M0_wRn(rd1); 1803 if (!(insn & (1 << 20))) { 1804 iwmmxt_load_reg(cpu_V1, wrd); 1805 tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); 1806 } 1807 gen_op_iwmmxt_movq_wRn_M0(wrd); 1808 gen_op_iwmmxt_set_mup(); 1809 break; 1810 case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */ 1811 wrd = (insn >> 12) & 0xf; 1812 rd0 = (insn >> 16) & 0xf; 1813 rd1 = (insn >> 0) & 0xf; 1814 gen_op_iwmmxt_movq_M0_wRn(rd0); 1815 switch ((insn >> 22) & 3) { 1816 case 0: 1817 gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); 1818 break; 1819 case 1: 1820 gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); 1821 break; 1822 case 2: 1823 gen_op_iwmmxt_cmpeql_M0_wRn(rd1); 1824 break; 1825 case 3: 1826 return 1; 1827 } 1828 gen_op_iwmmxt_movq_wRn_M0(wrd); 1829 gen_op_iwmmxt_set_mup(); 1830 gen_op_iwmmxt_set_cup(); 1831 break; 1832 case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */ 1833 wrd = (insn >> 12) & 0xf; 1834 rd0 = (insn >> 16) & 0xf; 1835 rd1 = (insn >> 0) & 0xf; 1836 gen_op_iwmmxt_movq_M0_wRn(rd0); 1837 if (insn & (1 << 22)) { 1838 if (insn & (1 << 20)) 1839 gen_op_iwmmxt_avgw1_M0_wRn(rd1); 1840 else 1841 gen_op_iwmmxt_avgw0_M0_wRn(rd1); 1842 } else { 1843 if (insn & (1 << 20)) 1844 gen_op_iwmmxt_avgb1_M0_wRn(rd1); 1845 else 1846 gen_op_iwmmxt_avgb0_M0_wRn(rd1); 1847 } 1848 gen_op_iwmmxt_movq_wRn_M0(wrd); 1849 gen_op_iwmmxt_set_mup(); 1850 gen_op_iwmmxt_set_cup(); 1851 break; 1852 case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */ 1853 wrd = (insn >> 12) & 0xf; 1854 rd0 = (insn >> 16) & 0xf; 1855 rd1 = (insn >> 0) & 0xf; 1856 gen_op_iwmmxt_movq_M0_wRn(rd0); 1857 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); 1858 tcg_gen_andi_i32(tmp, tmp, 7); 1859 iwmmxt_load_reg(cpu_V1, rd1); 1860 gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); 1861 tcg_temp_free_i32(tmp); 1862 gen_op_iwmmxt_movq_wRn_M0(wrd); 1863 gen_op_iwmmxt_set_mup(); 1864 break; 1865 case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */ 1866 if (((insn >> 6) & 3) == 3) 1867 return 1; 1868 rd = (insn >> 12) & 0xf; 1869 wrd = (insn >> 16) & 0xf; 1870 tmp = load_reg(s, rd); 1871 gen_op_iwmmxt_movq_M0_wRn(wrd); 1872 switch ((insn >> 6) & 3) { 1873 case 0: 1874 tmp2 = tcg_constant_i32(0xff); 1875 tmp3 = tcg_constant_i32((insn & 7) << 3); 1876 break; 1877 case 1: 1878 tmp2 = tcg_constant_i32(0xffff); 1879 tmp3 = tcg_constant_i32((insn & 3) << 4); 1880 break; 1881 case 2: 1882 tmp2 = tcg_constant_i32(0xffffffff); 1883 tmp3 = tcg_constant_i32((insn & 1) << 5); 1884 break; 1885 default: 1886 g_assert_not_reached(); 1887 } 1888 gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); 1889 tcg_temp_free_i32(tmp); 1890 gen_op_iwmmxt_movq_wRn_M0(wrd); 1891 gen_op_iwmmxt_set_mup(); 1892 break; 1893 case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */ 1894 rd = (insn >> 12) & 0xf; 1895 wrd = (insn >> 16) & 0xf; 1896 if (rd == 15 || ((insn >> 22) & 3) == 3) 1897 return 1; 1898 gen_op_iwmmxt_movq_M0_wRn(wrd); 1899 tmp = tcg_temp_new_i32(); 1900 switch ((insn >> 22) & 3) { 1901 case 0: 1902 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); 1903 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1904 if (insn & 8) { 1905 tcg_gen_ext8s_i32(tmp, tmp); 1906 } else { 1907 tcg_gen_andi_i32(tmp, tmp, 0xff); 1908 } 1909 break; 1910 case 1: 1911 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); 1912 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1913 if (insn & 8) { 1914 tcg_gen_ext16s_i32(tmp, tmp); 1915 } else { 1916 tcg_gen_andi_i32(tmp, tmp, 0xffff); 1917 } 1918 break; 1919 case 2: 1920 tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); 1921 tcg_gen_extrl_i64_i32(tmp, cpu_M0); 1922 break; 1923 } 1924 store_reg(s, rd, tmp); 1925 break; 1926 case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */ 1927 if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) 1928 return 1; 1929 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 1930 switch ((insn >> 22) & 3) { 1931 case 0: 1932 tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); 1933 break; 1934 case 1: 1935 tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); 1936 break; 1937 case 2: 1938 tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); 1939 break; 1940 } 1941 tcg_gen_shli_i32(tmp, tmp, 28); 1942 gen_set_nzcv(tmp); 1943 tcg_temp_free_i32(tmp); 1944 break; 1945 case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */ 1946 if (((insn >> 6) & 3) == 3) 1947 return 1; 1948 rd = (insn >> 12) & 0xf; 1949 wrd = (insn >> 16) & 0xf; 1950 tmp = load_reg(s, rd); 1951 switch ((insn >> 6) & 3) { 1952 case 0: 1953 gen_helper_iwmmxt_bcstb(cpu_M0, tmp); 1954 break; 1955 case 1: 1956 gen_helper_iwmmxt_bcstw(cpu_M0, tmp); 1957 break; 1958 case 2: 1959 gen_helper_iwmmxt_bcstl(cpu_M0, tmp); 1960 break; 1961 } 1962 tcg_temp_free_i32(tmp); 1963 gen_op_iwmmxt_movq_wRn_M0(wrd); 1964 gen_op_iwmmxt_set_mup(); 1965 break; 1966 case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */ 1967 if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) 1968 return 1; 1969 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 1970 tmp2 = tcg_temp_new_i32(); 1971 tcg_gen_mov_i32(tmp2, tmp); 1972 switch ((insn >> 22) & 3) { 1973 case 0: 1974 for (i = 0; i < 7; i ++) { 1975 tcg_gen_shli_i32(tmp2, tmp2, 4); 1976 tcg_gen_and_i32(tmp, tmp, tmp2); 1977 } 1978 break; 1979 case 1: 1980 for (i = 0; i < 3; i ++) { 1981 tcg_gen_shli_i32(tmp2, tmp2, 8); 1982 tcg_gen_and_i32(tmp, tmp, tmp2); 1983 } 1984 break; 1985 case 2: 1986 tcg_gen_shli_i32(tmp2, tmp2, 16); 1987 tcg_gen_and_i32(tmp, tmp, tmp2); 1988 break; 1989 } 1990 gen_set_nzcv(tmp); 1991 tcg_temp_free_i32(tmp2); 1992 tcg_temp_free_i32(tmp); 1993 break; 1994 case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */ 1995 wrd = (insn >> 12) & 0xf; 1996 rd0 = (insn >> 16) & 0xf; 1997 gen_op_iwmmxt_movq_M0_wRn(rd0); 1998 switch ((insn >> 22) & 3) { 1999 case 0: 2000 gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); 2001 break; 2002 case 1: 2003 gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); 2004 break; 2005 case 2: 2006 gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); 2007 break; 2008 case 3: 2009 return 1; 2010 } 2011 gen_op_iwmmxt_movq_wRn_M0(wrd); 2012 gen_op_iwmmxt_set_mup(); 2013 break; 2014 case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */ 2015 if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) 2016 return 1; 2017 tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); 2018 tmp2 = tcg_temp_new_i32(); 2019 tcg_gen_mov_i32(tmp2, tmp); 2020 switch ((insn >> 22) & 3) { 2021 case 0: 2022 for (i = 0; i < 7; i ++) { 2023 tcg_gen_shli_i32(tmp2, tmp2, 4); 2024 tcg_gen_or_i32(tmp, tmp, tmp2); 2025 } 2026 break; 2027 case 1: 2028 for (i = 0; i < 3; i ++) { 2029 tcg_gen_shli_i32(tmp2, tmp2, 8); 2030 tcg_gen_or_i32(tmp, tmp, tmp2); 2031 } 2032 break; 2033 case 2: 2034 tcg_gen_shli_i32(tmp2, tmp2, 16); 2035 tcg_gen_or_i32(tmp, tmp, tmp2); 2036 break; 2037 } 2038 gen_set_nzcv(tmp); 2039 tcg_temp_free_i32(tmp2); 2040 tcg_temp_free_i32(tmp); 2041 break; 2042 case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */ 2043 rd = (insn >> 12) & 0xf; 2044 rd0 = (insn >> 16) & 0xf; 2045 if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) 2046 return 1; 2047 gen_op_iwmmxt_movq_M0_wRn(rd0); 2048 tmp = tcg_temp_new_i32(); 2049 switch ((insn >> 22) & 3) { 2050 case 0: 2051 gen_helper_iwmmxt_msbb(tmp, cpu_M0); 2052 break; 2053 case 1: 2054 gen_helper_iwmmxt_msbw(tmp, cpu_M0); 2055 break; 2056 case 2: 2057 gen_helper_iwmmxt_msbl(tmp, cpu_M0); 2058 break; 2059 } 2060 store_reg(s, rd, tmp); 2061 break; 2062 case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */ 2063 case 0x906: case 0xb06: case 0xd06: case 0xf06: 2064 wrd = (insn >> 12) & 0xf; 2065 rd0 = (insn >> 16) & 0xf; 2066 rd1 = (insn >> 0) & 0xf; 2067 gen_op_iwmmxt_movq_M0_wRn(rd0); 2068 switch ((insn >> 22) & 3) { 2069 case 0: 2070 if (insn & (1 << 21)) 2071 gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); 2072 else 2073 gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); 2074 break; 2075 case 1: 2076 if (insn & (1 << 21)) 2077 gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); 2078 else 2079 gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); 2080 break; 2081 case 2: 2082 if (insn & (1 << 21)) 2083 gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); 2084 else 2085 gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); 2086 break; 2087 case 3: 2088 return 1; 2089 } 2090 gen_op_iwmmxt_movq_wRn_M0(wrd); 2091 gen_op_iwmmxt_set_mup(); 2092 gen_op_iwmmxt_set_cup(); 2093 break; 2094 case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */ 2095 case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e: 2096 wrd = (insn >> 12) & 0xf; 2097 rd0 = (insn >> 16) & 0xf; 2098 gen_op_iwmmxt_movq_M0_wRn(rd0); 2099 switch ((insn >> 22) & 3) { 2100 case 0: 2101 if (insn & (1 << 21)) 2102 gen_op_iwmmxt_unpacklsb_M0(); 2103 else 2104 gen_op_iwmmxt_unpacklub_M0(); 2105 break; 2106 case 1: 2107 if (insn & (1 << 21)) 2108 gen_op_iwmmxt_unpacklsw_M0(); 2109 else 2110 gen_op_iwmmxt_unpackluw_M0(); 2111 break; 2112 case 2: 2113 if (insn & (1 << 21)) 2114 gen_op_iwmmxt_unpacklsl_M0(); 2115 else 2116 gen_op_iwmmxt_unpacklul_M0(); 2117 break; 2118 case 3: 2119 return 1; 2120 } 2121 gen_op_iwmmxt_movq_wRn_M0(wrd); 2122 gen_op_iwmmxt_set_mup(); 2123 gen_op_iwmmxt_set_cup(); 2124 break; 2125 case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */ 2126 case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c: 2127 wrd = (insn >> 12) & 0xf; 2128 rd0 = (insn >> 16) & 0xf; 2129 gen_op_iwmmxt_movq_M0_wRn(rd0); 2130 switch ((insn >> 22) & 3) { 2131 case 0: 2132 if (insn & (1 << 21)) 2133 gen_op_iwmmxt_unpackhsb_M0(); 2134 else 2135 gen_op_iwmmxt_unpackhub_M0(); 2136 break; 2137 case 1: 2138 if (insn & (1 << 21)) 2139 gen_op_iwmmxt_unpackhsw_M0(); 2140 else 2141 gen_op_iwmmxt_unpackhuw_M0(); 2142 break; 2143 case 2: 2144 if (insn & (1 << 21)) 2145 gen_op_iwmmxt_unpackhsl_M0(); 2146 else 2147 gen_op_iwmmxt_unpackhul_M0(); 2148 break; 2149 case 3: 2150 return 1; 2151 } 2152 gen_op_iwmmxt_movq_wRn_M0(wrd); 2153 gen_op_iwmmxt_set_mup(); 2154 gen_op_iwmmxt_set_cup(); 2155 break; 2156 case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */ 2157 case 0x214: case 0x614: case 0xa14: case 0xe14: 2158 if (((insn >> 22) & 3) == 0) 2159 return 1; 2160 wrd = (insn >> 12) & 0xf; 2161 rd0 = (insn >> 16) & 0xf; 2162 gen_op_iwmmxt_movq_M0_wRn(rd0); 2163 tmp = tcg_temp_new_i32(); 2164 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2165 tcg_temp_free_i32(tmp); 2166 return 1; 2167 } 2168 switch ((insn >> 22) & 3) { 2169 case 1: 2170 gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp); 2171 break; 2172 case 2: 2173 gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp); 2174 break; 2175 case 3: 2176 gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp); 2177 break; 2178 } 2179 tcg_temp_free_i32(tmp); 2180 gen_op_iwmmxt_movq_wRn_M0(wrd); 2181 gen_op_iwmmxt_set_mup(); 2182 gen_op_iwmmxt_set_cup(); 2183 break; 2184 case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */ 2185 case 0x014: case 0x414: case 0x814: case 0xc14: 2186 if (((insn >> 22) & 3) == 0) 2187 return 1; 2188 wrd = (insn >> 12) & 0xf; 2189 rd0 = (insn >> 16) & 0xf; 2190 gen_op_iwmmxt_movq_M0_wRn(rd0); 2191 tmp = tcg_temp_new_i32(); 2192 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2193 tcg_temp_free_i32(tmp); 2194 return 1; 2195 } 2196 switch ((insn >> 22) & 3) { 2197 case 1: 2198 gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp); 2199 break; 2200 case 2: 2201 gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp); 2202 break; 2203 case 3: 2204 gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp); 2205 break; 2206 } 2207 tcg_temp_free_i32(tmp); 2208 gen_op_iwmmxt_movq_wRn_M0(wrd); 2209 gen_op_iwmmxt_set_mup(); 2210 gen_op_iwmmxt_set_cup(); 2211 break; 2212 case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */ 2213 case 0x114: case 0x514: case 0x914: case 0xd14: 2214 if (((insn >> 22) & 3) == 0) 2215 return 1; 2216 wrd = (insn >> 12) & 0xf; 2217 rd0 = (insn >> 16) & 0xf; 2218 gen_op_iwmmxt_movq_M0_wRn(rd0); 2219 tmp = tcg_temp_new_i32(); 2220 if (gen_iwmmxt_shift(insn, 0xff, tmp)) { 2221 tcg_temp_free_i32(tmp); 2222 return 1; 2223 } 2224 switch ((insn >> 22) & 3) { 2225 case 1: 2226 gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp); 2227 break; 2228 case 2: 2229 gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp); 2230 break; 2231 case 3: 2232 gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp); 2233 break; 2234 } 2235 tcg_temp_free_i32(tmp); 2236 gen_op_iwmmxt_movq_wRn_M0(wrd); 2237 gen_op_iwmmxt_set_mup(); 2238 gen_op_iwmmxt_set_cup(); 2239 break; 2240 case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */ 2241 case 0x314: case 0x714: case 0xb14: case 0xf14: 2242 if (((insn >> 22) & 3) == 0) 2243 return 1; 2244 wrd = (insn >> 12) & 0xf; 2245 rd0 = (insn >> 16) & 0xf; 2246 gen_op_iwmmxt_movq_M0_wRn(rd0); 2247 tmp = tcg_temp_new_i32(); 2248 switch ((insn >> 22) & 3) { 2249 case 1: 2250 if (gen_iwmmxt_shift(insn, 0xf, tmp)) { 2251 tcg_temp_free_i32(tmp); 2252 return 1; 2253 } 2254 gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp); 2255 break; 2256 case 2: 2257 if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { 2258 tcg_temp_free_i32(tmp); 2259 return 1; 2260 } 2261 gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp); 2262 break; 2263 case 3: 2264 if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { 2265 tcg_temp_free_i32(tmp); 2266 return 1; 2267 } 2268 gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp); 2269 break; 2270 } 2271 tcg_temp_free_i32(tmp); 2272 gen_op_iwmmxt_movq_wRn_M0(wrd); 2273 gen_op_iwmmxt_set_mup(); 2274 gen_op_iwmmxt_set_cup(); 2275 break; 2276 case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */ 2277 case 0x916: case 0xb16: case 0xd16: case 0xf16: 2278 wrd = (insn >> 12) & 0xf; 2279 rd0 = (insn >> 16) & 0xf; 2280 rd1 = (insn >> 0) & 0xf; 2281 gen_op_iwmmxt_movq_M0_wRn(rd0); 2282 switch ((insn >> 22) & 3) { 2283 case 0: 2284 if (insn & (1 << 21)) 2285 gen_op_iwmmxt_minsb_M0_wRn(rd1); 2286 else 2287 gen_op_iwmmxt_minub_M0_wRn(rd1); 2288 break; 2289 case 1: 2290 if (insn & (1 << 21)) 2291 gen_op_iwmmxt_minsw_M0_wRn(rd1); 2292 else 2293 gen_op_iwmmxt_minuw_M0_wRn(rd1); 2294 break; 2295 case 2: 2296 if (insn & (1 << 21)) 2297 gen_op_iwmmxt_minsl_M0_wRn(rd1); 2298 else 2299 gen_op_iwmmxt_minul_M0_wRn(rd1); 2300 break; 2301 case 3: 2302 return 1; 2303 } 2304 gen_op_iwmmxt_movq_wRn_M0(wrd); 2305 gen_op_iwmmxt_set_mup(); 2306 break; 2307 case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */ 2308 case 0x816: case 0xa16: case 0xc16: case 0xe16: 2309 wrd = (insn >> 12) & 0xf; 2310 rd0 = (insn >> 16) & 0xf; 2311 rd1 = (insn >> 0) & 0xf; 2312 gen_op_iwmmxt_movq_M0_wRn(rd0); 2313 switch ((insn >> 22) & 3) { 2314 case 0: 2315 if (insn & (1 << 21)) 2316 gen_op_iwmmxt_maxsb_M0_wRn(rd1); 2317 else 2318 gen_op_iwmmxt_maxub_M0_wRn(rd1); 2319 break; 2320 case 1: 2321 if (insn & (1 << 21)) 2322 gen_op_iwmmxt_maxsw_M0_wRn(rd1); 2323 else 2324 gen_op_iwmmxt_maxuw_M0_wRn(rd1); 2325 break; 2326 case 2: 2327 if (insn & (1 << 21)) 2328 gen_op_iwmmxt_maxsl_M0_wRn(rd1); 2329 else 2330 gen_op_iwmmxt_maxul_M0_wRn(rd1); 2331 break; 2332 case 3: 2333 return 1; 2334 } 2335 gen_op_iwmmxt_movq_wRn_M0(wrd); 2336 gen_op_iwmmxt_set_mup(); 2337 break; 2338 case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */ 2339 case 0x402: case 0x502: case 0x602: case 0x702: 2340 wrd = (insn >> 12) & 0xf; 2341 rd0 = (insn >> 16) & 0xf; 2342 rd1 = (insn >> 0) & 0xf; 2343 gen_op_iwmmxt_movq_M0_wRn(rd0); 2344 iwmmxt_load_reg(cpu_V1, rd1); 2345 gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, 2346 tcg_constant_i32((insn >> 20) & 3)); 2347 gen_op_iwmmxt_movq_wRn_M0(wrd); 2348 gen_op_iwmmxt_set_mup(); 2349 break; 2350 case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */ 2351 case 0x41a: case 0x51a: case 0x61a: case 0x71a: 2352 case 0x81a: case 0x91a: case 0xa1a: case 0xb1a: 2353 case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a: 2354 wrd = (insn >> 12) & 0xf; 2355 rd0 = (insn >> 16) & 0xf; 2356 rd1 = (insn >> 0) & 0xf; 2357 gen_op_iwmmxt_movq_M0_wRn(rd0); 2358 switch ((insn >> 20) & 0xf) { 2359 case 0x0: 2360 gen_op_iwmmxt_subnb_M0_wRn(rd1); 2361 break; 2362 case 0x1: 2363 gen_op_iwmmxt_subub_M0_wRn(rd1); 2364 break; 2365 case 0x3: 2366 gen_op_iwmmxt_subsb_M0_wRn(rd1); 2367 break; 2368 case 0x4: 2369 gen_op_iwmmxt_subnw_M0_wRn(rd1); 2370 break; 2371 case 0x5: 2372 gen_op_iwmmxt_subuw_M0_wRn(rd1); 2373 break; 2374 case 0x7: 2375 gen_op_iwmmxt_subsw_M0_wRn(rd1); 2376 break; 2377 case 0x8: 2378 gen_op_iwmmxt_subnl_M0_wRn(rd1); 2379 break; 2380 case 0x9: 2381 gen_op_iwmmxt_subul_M0_wRn(rd1); 2382 break; 2383 case 0xb: 2384 gen_op_iwmmxt_subsl_M0_wRn(rd1); 2385 break; 2386 default: 2387 return 1; 2388 } 2389 gen_op_iwmmxt_movq_wRn_M0(wrd); 2390 gen_op_iwmmxt_set_mup(); 2391 gen_op_iwmmxt_set_cup(); 2392 break; 2393 case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */ 2394 case 0x41e: case 0x51e: case 0x61e: case 0x71e: 2395 case 0x81e: case 0x91e: case 0xa1e: case 0xb1e: 2396 case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e: 2397 wrd = (insn >> 12) & 0xf; 2398 rd0 = (insn >> 16) & 0xf; 2399 gen_op_iwmmxt_movq_M0_wRn(rd0); 2400 tmp = tcg_constant_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); 2401 gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp); 2402 gen_op_iwmmxt_movq_wRn_M0(wrd); 2403 gen_op_iwmmxt_set_mup(); 2404 gen_op_iwmmxt_set_cup(); 2405 break; 2406 case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */ 2407 case 0x418: case 0x518: case 0x618: case 0x718: 2408 case 0x818: case 0x918: case 0xa18: case 0xb18: 2409 case 0xc18: case 0xd18: case 0xe18: case 0xf18: 2410 wrd = (insn >> 12) & 0xf; 2411 rd0 = (insn >> 16) & 0xf; 2412 rd1 = (insn >> 0) & 0xf; 2413 gen_op_iwmmxt_movq_M0_wRn(rd0); 2414 switch ((insn >> 20) & 0xf) { 2415 case 0x0: 2416 gen_op_iwmmxt_addnb_M0_wRn(rd1); 2417 break; 2418 case 0x1: 2419 gen_op_iwmmxt_addub_M0_wRn(rd1); 2420 break; 2421 case 0x3: 2422 gen_op_iwmmxt_addsb_M0_wRn(rd1); 2423 break; 2424 case 0x4: 2425 gen_op_iwmmxt_addnw_M0_wRn(rd1); 2426 break; 2427 case 0x5: 2428 gen_op_iwmmxt_adduw_M0_wRn(rd1); 2429 break; 2430 case 0x7: 2431 gen_op_iwmmxt_addsw_M0_wRn(rd1); 2432 break; 2433 case 0x8: 2434 gen_op_iwmmxt_addnl_M0_wRn(rd1); 2435 break; 2436 case 0x9: 2437 gen_op_iwmmxt_addul_M0_wRn(rd1); 2438 break; 2439 case 0xb: 2440 gen_op_iwmmxt_addsl_M0_wRn(rd1); 2441 break; 2442 default: 2443 return 1; 2444 } 2445 gen_op_iwmmxt_movq_wRn_M0(wrd); 2446 gen_op_iwmmxt_set_mup(); 2447 gen_op_iwmmxt_set_cup(); 2448 break; 2449 case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */ 2450 case 0x408: case 0x508: case 0x608: case 0x708: 2451 case 0x808: case 0x908: case 0xa08: case 0xb08: 2452 case 0xc08: case 0xd08: case 0xe08: case 0xf08: 2453 if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) 2454 return 1; 2455 wrd = (insn >> 12) & 0xf; 2456 rd0 = (insn >> 16) & 0xf; 2457 rd1 = (insn >> 0) & 0xf; 2458 gen_op_iwmmxt_movq_M0_wRn(rd0); 2459 switch ((insn >> 22) & 3) { 2460 case 1: 2461 if (insn & (1 << 21)) 2462 gen_op_iwmmxt_packsw_M0_wRn(rd1); 2463 else 2464 gen_op_iwmmxt_packuw_M0_wRn(rd1); 2465 break; 2466 case 2: 2467 if (insn & (1 << 21)) 2468 gen_op_iwmmxt_packsl_M0_wRn(rd1); 2469 else 2470 gen_op_iwmmxt_packul_M0_wRn(rd1); 2471 break; 2472 case 3: 2473 if (insn & (1 << 21)) 2474 gen_op_iwmmxt_packsq_M0_wRn(rd1); 2475 else 2476 gen_op_iwmmxt_packuq_M0_wRn(rd1); 2477 break; 2478 } 2479 gen_op_iwmmxt_movq_wRn_M0(wrd); 2480 gen_op_iwmmxt_set_mup(); 2481 gen_op_iwmmxt_set_cup(); 2482 break; 2483 case 0x201: case 0x203: case 0x205: case 0x207: 2484 case 0x209: case 0x20b: case 0x20d: case 0x20f: 2485 case 0x211: case 0x213: case 0x215: case 0x217: 2486 case 0x219: case 0x21b: case 0x21d: case 0x21f: 2487 wrd = (insn >> 5) & 0xf; 2488 rd0 = (insn >> 12) & 0xf; 2489 rd1 = (insn >> 0) & 0xf; 2490 if (rd0 == 0xf || rd1 == 0xf) 2491 return 1; 2492 gen_op_iwmmxt_movq_M0_wRn(wrd); 2493 tmp = load_reg(s, rd0); 2494 tmp2 = load_reg(s, rd1); 2495 switch ((insn >> 16) & 0xf) { 2496 case 0x0: /* TMIA */ 2497 gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); 2498 break; 2499 case 0x8: /* TMIAPH */ 2500 gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); 2501 break; 2502 case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */ 2503 if (insn & (1 << 16)) 2504 tcg_gen_shri_i32(tmp, tmp, 16); 2505 if (insn & (1 << 17)) 2506 tcg_gen_shri_i32(tmp2, tmp2, 16); 2507 gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); 2508 break; 2509 default: 2510 tcg_temp_free_i32(tmp2); 2511 tcg_temp_free_i32(tmp); 2512 return 1; 2513 } 2514 tcg_temp_free_i32(tmp2); 2515 tcg_temp_free_i32(tmp); 2516 gen_op_iwmmxt_movq_wRn_M0(wrd); 2517 gen_op_iwmmxt_set_mup(); 2518 break; 2519 default: 2520 return 1; 2521 } 2522 2523 return 0; 2524 } 2525 2526 /* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred 2527 (ie. an undefined instruction). */ 2528 static int disas_dsp_insn(DisasContext *s, uint32_t insn) 2529 { 2530 int acc, rd0, rd1, rdhi, rdlo; 2531 TCGv_i32 tmp, tmp2; 2532 2533 if ((insn & 0x0ff00f10) == 0x0e200010) { 2534 /* Multiply with Internal Accumulate Format */ 2535 rd0 = (insn >> 12) & 0xf; 2536 rd1 = insn & 0xf; 2537 acc = (insn >> 5) & 7; 2538 2539 if (acc != 0) 2540 return 1; 2541 2542 tmp = load_reg(s, rd0); 2543 tmp2 = load_reg(s, rd1); 2544 switch ((insn >> 16) & 0xf) { 2545 case 0x0: /* MIA */ 2546 gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); 2547 break; 2548 case 0x8: /* MIAPH */ 2549 gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); 2550 break; 2551 case 0xc: /* MIABB */ 2552 case 0xd: /* MIABT */ 2553 case 0xe: /* MIATB */ 2554 case 0xf: /* MIATT */ 2555 if (insn & (1 << 16)) 2556 tcg_gen_shri_i32(tmp, tmp, 16); 2557 if (insn & (1 << 17)) 2558 tcg_gen_shri_i32(tmp2, tmp2, 16); 2559 gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); 2560 break; 2561 default: 2562 return 1; 2563 } 2564 tcg_temp_free_i32(tmp2); 2565 tcg_temp_free_i32(tmp); 2566 2567 gen_op_iwmmxt_movq_wRn_M0(acc); 2568 return 0; 2569 } 2570 2571 if ((insn & 0x0fe00ff8) == 0x0c400000) { 2572 /* Internal Accumulator Access Format */ 2573 rdhi = (insn >> 16) & 0xf; 2574 rdlo = (insn >> 12) & 0xf; 2575 acc = insn & 7; 2576 2577 if (acc != 0) 2578 return 1; 2579 2580 if (insn & ARM_CP_RW_BIT) { /* MRA */ 2581 iwmmxt_load_reg(cpu_V0, acc); 2582 tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); 2583 tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); 2584 tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); 2585 } else { /* MAR */ 2586 tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); 2587 iwmmxt_store_reg(cpu_V0, acc); 2588 } 2589 return 0; 2590 } 2591 2592 return 1; 2593 } 2594 2595 static void gen_goto_ptr(void) 2596 { 2597 tcg_gen_lookup_and_goto_ptr(); 2598 } 2599 2600 /* This will end the TB but doesn't guarantee we'll return to 2601 * cpu_loop_exec. Any live exit_requests will be processed as we 2602 * enter the next TB. 2603 */ 2604 static void gen_goto_tb(DisasContext *s, int n, target_long diff) 2605 { 2606 if (translator_use_goto_tb(&s->base, s->pc_curr + diff)) { 2607 /* 2608 * For pcrel, the pc must always be up-to-date on entry to 2609 * the linked TB, so that it can use simple additions for all 2610 * further adjustments. For !pcrel, the linked TB is compiled 2611 * to know its full virtual address, so we can delay the 2612 * update to pc to the unlinked path. A long chain of links 2613 * can thus avoid many updates to the PC. 2614 */ 2615 if (tb_cflags(s->base.tb) & CF_PCREL) { 2616 gen_update_pc(s, diff); 2617 tcg_gen_goto_tb(n); 2618 } else { 2619 tcg_gen_goto_tb(n); 2620 gen_update_pc(s, diff); 2621 } 2622 tcg_gen_exit_tb(s->base.tb, n); 2623 } else { 2624 gen_update_pc(s, diff); 2625 gen_goto_ptr(); 2626 } 2627 s->base.is_jmp = DISAS_NORETURN; 2628 } 2629 2630 /* Jump, specifying which TB number to use if we gen_goto_tb() */ 2631 static void gen_jmp_tb(DisasContext *s, target_long diff, int tbno) 2632 { 2633 if (unlikely(s->ss_active)) { 2634 /* An indirect jump so that we still trigger the debug exception. */ 2635 gen_update_pc(s, diff); 2636 s->base.is_jmp = DISAS_JUMP; 2637 return; 2638 } 2639 switch (s->base.is_jmp) { 2640 case DISAS_NEXT: 2641 case DISAS_TOO_MANY: 2642 case DISAS_NORETURN: 2643 /* 2644 * The normal case: just go to the destination TB. 2645 * NB: NORETURN happens if we generate code like 2646 * gen_brcondi(l); 2647 * gen_jmp(); 2648 * gen_set_label(l); 2649 * gen_jmp(); 2650 * on the second call to gen_jmp(). 2651 */ 2652 gen_goto_tb(s, tbno, diff); 2653 break; 2654 case DISAS_UPDATE_NOCHAIN: 2655 case DISAS_UPDATE_EXIT: 2656 /* 2657 * We already decided we're leaving the TB for some other reason. 2658 * Avoid using goto_tb so we really do exit back to the main loop 2659 * and don't chain to another TB. 2660 */ 2661 gen_update_pc(s, diff); 2662 gen_goto_ptr(); 2663 s->base.is_jmp = DISAS_NORETURN; 2664 break; 2665 default: 2666 /* 2667 * We shouldn't be emitting code for a jump and also have 2668 * is_jmp set to one of the special cases like DISAS_SWI. 2669 */ 2670 g_assert_not_reached(); 2671 } 2672 } 2673 2674 static inline void gen_jmp(DisasContext *s, target_long diff) 2675 { 2676 gen_jmp_tb(s, diff, 0); 2677 } 2678 2679 static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y) 2680 { 2681 if (x) 2682 tcg_gen_sari_i32(t0, t0, 16); 2683 else 2684 gen_sxth(t0); 2685 if (y) 2686 tcg_gen_sari_i32(t1, t1, 16); 2687 else 2688 gen_sxth(t1); 2689 tcg_gen_mul_i32(t0, t0, t1); 2690 } 2691 2692 /* Return the mask of PSR bits set by a MSR instruction. */ 2693 static uint32_t msr_mask(DisasContext *s, int flags, int spsr) 2694 { 2695 uint32_t mask = 0; 2696 2697 if (flags & (1 << 0)) { 2698 mask |= 0xff; 2699 } 2700 if (flags & (1 << 1)) { 2701 mask |= 0xff00; 2702 } 2703 if (flags & (1 << 2)) { 2704 mask |= 0xff0000; 2705 } 2706 if (flags & (1 << 3)) { 2707 mask |= 0xff000000; 2708 } 2709 2710 /* Mask out undefined and reserved bits. */ 2711 mask &= aarch32_cpsr_valid_mask(s->features, s->isar); 2712 2713 /* Mask out execution state. */ 2714 if (!spsr) { 2715 mask &= ~CPSR_EXEC; 2716 } 2717 2718 /* Mask out privileged bits. */ 2719 if (IS_USER(s)) { 2720 mask &= CPSR_USER; 2721 } 2722 return mask; 2723 } 2724 2725 /* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ 2726 static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0) 2727 { 2728 TCGv_i32 tmp; 2729 if (spsr) { 2730 /* ??? This is also undefined in system mode. */ 2731 if (IS_USER(s)) 2732 return 1; 2733 2734 tmp = load_cpu_field(spsr); 2735 tcg_gen_andi_i32(tmp, tmp, ~mask); 2736 tcg_gen_andi_i32(t0, t0, mask); 2737 tcg_gen_or_i32(tmp, tmp, t0); 2738 store_cpu_field(tmp, spsr); 2739 } else { 2740 gen_set_cpsr(t0, mask); 2741 } 2742 tcg_temp_free_i32(t0); 2743 gen_lookup_tb(s); 2744 return 0; 2745 } 2746 2747 /* Returns nonzero if access to the PSR is not permitted. */ 2748 static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) 2749 { 2750 TCGv_i32 tmp; 2751 tmp = tcg_temp_new_i32(); 2752 tcg_gen_movi_i32(tmp, val); 2753 return gen_set_psr(s, mask, spsr, tmp); 2754 } 2755 2756 static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn, 2757 int *tgtmode, int *regno) 2758 { 2759 /* Decode the r and sysm fields of MSR/MRS banked accesses into 2760 * the target mode and register number, and identify the various 2761 * unpredictable cases. 2762 * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if: 2763 * + executed in user mode 2764 * + using R15 as the src/dest register 2765 * + accessing an unimplemented register 2766 * + accessing a register that's inaccessible at current PL/security state* 2767 * + accessing a register that you could access with a different insn 2768 * We choose to UNDEF in all these cases. 2769 * Since we don't know which of the various AArch32 modes we are in 2770 * we have to defer some checks to runtime. 2771 * Accesses to Monitor mode registers from Secure EL1 (which implies 2772 * that EL3 is AArch64) must trap to EL3. 2773 * 2774 * If the access checks fail this function will emit code to take 2775 * an exception and return false. Otherwise it will return true, 2776 * and set *tgtmode and *regno appropriately. 2777 */ 2778 /* These instructions are present only in ARMv8, or in ARMv7 with the 2779 * Virtualization Extensions. 2780 */ 2781 if (!arm_dc_feature(s, ARM_FEATURE_V8) && 2782 !arm_dc_feature(s, ARM_FEATURE_EL2)) { 2783 goto undef; 2784 } 2785 2786 if (IS_USER(s) || rn == 15) { 2787 goto undef; 2788 } 2789 2790 /* The table in the v8 ARM ARM section F5.2.3 describes the encoding 2791 * of registers into (r, sysm). 2792 */ 2793 if (r) { 2794 /* SPSRs for other modes */ 2795 switch (sysm) { 2796 case 0xe: /* SPSR_fiq */ 2797 *tgtmode = ARM_CPU_MODE_FIQ; 2798 break; 2799 case 0x10: /* SPSR_irq */ 2800 *tgtmode = ARM_CPU_MODE_IRQ; 2801 break; 2802 case 0x12: /* SPSR_svc */ 2803 *tgtmode = ARM_CPU_MODE_SVC; 2804 break; 2805 case 0x14: /* SPSR_abt */ 2806 *tgtmode = ARM_CPU_MODE_ABT; 2807 break; 2808 case 0x16: /* SPSR_und */ 2809 *tgtmode = ARM_CPU_MODE_UND; 2810 break; 2811 case 0x1c: /* SPSR_mon */ 2812 *tgtmode = ARM_CPU_MODE_MON; 2813 break; 2814 case 0x1e: /* SPSR_hyp */ 2815 *tgtmode = ARM_CPU_MODE_HYP; 2816 break; 2817 default: /* unallocated */ 2818 goto undef; 2819 } 2820 /* We arbitrarily assign SPSR a register number of 16. */ 2821 *regno = 16; 2822 } else { 2823 /* general purpose registers for other modes */ 2824 switch (sysm) { 2825 case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */ 2826 *tgtmode = ARM_CPU_MODE_USR; 2827 *regno = sysm + 8; 2828 break; 2829 case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */ 2830 *tgtmode = ARM_CPU_MODE_FIQ; 2831 *regno = sysm; 2832 break; 2833 case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */ 2834 *tgtmode = ARM_CPU_MODE_IRQ; 2835 *regno = sysm & 1 ? 13 : 14; 2836 break; 2837 case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */ 2838 *tgtmode = ARM_CPU_MODE_SVC; 2839 *regno = sysm & 1 ? 13 : 14; 2840 break; 2841 case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */ 2842 *tgtmode = ARM_CPU_MODE_ABT; 2843 *regno = sysm & 1 ? 13 : 14; 2844 break; 2845 case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */ 2846 *tgtmode = ARM_CPU_MODE_UND; 2847 *regno = sysm & 1 ? 13 : 14; 2848 break; 2849 case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */ 2850 *tgtmode = ARM_CPU_MODE_MON; 2851 *regno = sysm & 1 ? 13 : 14; 2852 break; 2853 case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */ 2854 *tgtmode = ARM_CPU_MODE_HYP; 2855 /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */ 2856 *regno = sysm & 1 ? 13 : 17; 2857 break; 2858 default: /* unallocated */ 2859 goto undef; 2860 } 2861 } 2862 2863 /* Catch the 'accessing inaccessible register' cases we can detect 2864 * at translate time. 2865 */ 2866 switch (*tgtmode) { 2867 case ARM_CPU_MODE_MON: 2868 if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) { 2869 goto undef; 2870 } 2871 if (s->current_el == 1) { 2872 /* If we're in Secure EL1 (which implies that EL3 is AArch64) 2873 * then accesses to Mon registers trap to Secure EL2, if it exists, 2874 * otherwise EL3. 2875 */ 2876 TCGv_i32 tcg_el; 2877 2878 if (arm_dc_feature(s, ARM_FEATURE_AARCH64) && 2879 dc_isar_feature(aa64_sel2, s)) { 2880 /* Target EL is EL<3 minus SCR_EL3.EEL2> */ 2881 tcg_el = load_cpu_field(cp15.scr_el3); 2882 tcg_gen_sextract_i32(tcg_el, tcg_el, ctz32(SCR_EEL2), 1); 2883 tcg_gen_addi_i32(tcg_el, tcg_el, 3); 2884 } else { 2885 tcg_el = tcg_constant_i32(3); 2886 } 2887 2888 gen_exception_insn_el_v(s, 0, EXCP_UDEF, 2889 syn_uncategorized(), tcg_el); 2890 tcg_temp_free_i32(tcg_el); 2891 return false; 2892 } 2893 break; 2894 case ARM_CPU_MODE_HYP: 2895 /* 2896 * SPSR_hyp and r13_hyp can only be accessed from Monitor mode 2897 * (and so we can forbid accesses from EL2 or below). elr_hyp 2898 * can be accessed also from Hyp mode, so forbid accesses from 2899 * EL0 or EL1. 2900 */ 2901 if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 || 2902 (s->current_el < 3 && *regno != 17)) { 2903 goto undef; 2904 } 2905 break; 2906 default: 2907 break; 2908 } 2909 2910 return true; 2911 2912 undef: 2913 /* If we get here then some access check did not pass */ 2914 gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); 2915 return false; 2916 } 2917 2918 static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn) 2919 { 2920 TCGv_i32 tcg_reg; 2921 int tgtmode = 0, regno = 0; 2922 2923 if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { 2924 return; 2925 } 2926 2927 /* Sync state because msr_banked() can raise exceptions */ 2928 gen_set_condexec(s); 2929 gen_update_pc(s, 0); 2930 tcg_reg = load_reg(s, rn); 2931 gen_helper_msr_banked(cpu_env, tcg_reg, 2932 tcg_constant_i32(tgtmode), 2933 tcg_constant_i32(regno)); 2934 tcg_temp_free_i32(tcg_reg); 2935 s->base.is_jmp = DISAS_UPDATE_EXIT; 2936 } 2937 2938 static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn) 2939 { 2940 TCGv_i32 tcg_reg; 2941 int tgtmode = 0, regno = 0; 2942 2943 if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { 2944 return; 2945 } 2946 2947 /* Sync state because mrs_banked() can raise exceptions */ 2948 gen_set_condexec(s); 2949 gen_update_pc(s, 0); 2950 tcg_reg = tcg_temp_new_i32(); 2951 gen_helper_mrs_banked(tcg_reg, cpu_env, 2952 tcg_constant_i32(tgtmode), 2953 tcg_constant_i32(regno)); 2954 store_reg(s, rn, tcg_reg); 2955 s->base.is_jmp = DISAS_UPDATE_EXIT; 2956 } 2957 2958 /* Store value to PC as for an exception return (ie don't 2959 * mask bits). The subsequent call to gen_helper_cpsr_write_eret() 2960 * will do the masking based on the new value of the Thumb bit. 2961 */ 2962 static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc) 2963 { 2964 tcg_gen_mov_i32(cpu_R[15], pc); 2965 tcg_temp_free_i32(pc); 2966 } 2967 2968 /* Generate a v6 exception return. Marks both values as dead. */ 2969 static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) 2970 { 2971 store_pc_exc_ret(s, pc); 2972 /* The cpsr_write_eret helper will mask the low bits of PC 2973 * appropriately depending on the new Thumb bit, so it must 2974 * be called after storing the new PC. 2975 */ 2976 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2977 gen_io_start(); 2978 } 2979 gen_helper_cpsr_write_eret(cpu_env, cpsr); 2980 tcg_temp_free_i32(cpsr); 2981 /* Must exit loop to check un-masked IRQs */ 2982 s->base.is_jmp = DISAS_EXIT; 2983 } 2984 2985 /* Generate an old-style exception return. Marks pc as dead. */ 2986 static void gen_exception_return(DisasContext *s, TCGv_i32 pc) 2987 { 2988 gen_rfe(s, pc, load_cpu_field(spsr)); 2989 } 2990 2991 static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, 2992 uint32_t opr_sz, uint32_t max_sz, 2993 gen_helper_gvec_3_ptr *fn) 2994 { 2995 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 2996 2997 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 2998 tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr, 2999 opr_sz, max_sz, 0, fn); 3000 tcg_temp_free_ptr(qc_ptr); 3001 } 3002 3003 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3004 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3005 { 3006 static gen_helper_gvec_3_ptr * const fns[2] = { 3007 gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32 3008 }; 3009 tcg_debug_assert(vece >= 1 && vece <= 2); 3010 gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); 3011 } 3012 3013 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3014 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3015 { 3016 static gen_helper_gvec_3_ptr * const fns[2] = { 3017 gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32 3018 }; 3019 tcg_debug_assert(vece >= 1 && vece <= 2); 3020 gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); 3021 } 3022 3023 #define GEN_CMP0(NAME, COND) \ 3024 static void gen_##NAME##0_i32(TCGv_i32 d, TCGv_i32 a) \ 3025 { \ 3026 tcg_gen_setcondi_i32(COND, d, a, 0); \ 3027 tcg_gen_neg_i32(d, d); \ 3028 } \ 3029 static void gen_##NAME##0_i64(TCGv_i64 d, TCGv_i64 a) \ 3030 { \ 3031 tcg_gen_setcondi_i64(COND, d, a, 0); \ 3032 tcg_gen_neg_i64(d, d); \ 3033 } \ 3034 static void gen_##NAME##0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) \ 3035 { \ 3036 TCGv_vec zero = tcg_constant_vec_matching(d, vece, 0); \ 3037 tcg_gen_cmp_vec(COND, vece, d, a, zero); \ 3038 } \ 3039 void gen_gvec_##NAME##0(unsigned vece, uint32_t d, uint32_t m, \ 3040 uint32_t opr_sz, uint32_t max_sz) \ 3041 { \ 3042 const GVecGen2 op[4] = { \ 3043 { .fno = gen_helper_gvec_##NAME##0_b, \ 3044 .fniv = gen_##NAME##0_vec, \ 3045 .opt_opc = vecop_list_cmp, \ 3046 .vece = MO_8 }, \ 3047 { .fno = gen_helper_gvec_##NAME##0_h, \ 3048 .fniv = gen_##NAME##0_vec, \ 3049 .opt_opc = vecop_list_cmp, \ 3050 .vece = MO_16 }, \ 3051 { .fni4 = gen_##NAME##0_i32, \ 3052 .fniv = gen_##NAME##0_vec, \ 3053 .opt_opc = vecop_list_cmp, \ 3054 .vece = MO_32 }, \ 3055 { .fni8 = gen_##NAME##0_i64, \ 3056 .fniv = gen_##NAME##0_vec, \ 3057 .opt_opc = vecop_list_cmp, \ 3058 .prefer_i64 = TCG_TARGET_REG_BITS == 64, \ 3059 .vece = MO_64 }, \ 3060 }; \ 3061 tcg_gen_gvec_2(d, m, opr_sz, max_sz, &op[vece]); \ 3062 } 3063 3064 static const TCGOpcode vecop_list_cmp[] = { 3065 INDEX_op_cmp_vec, 0 3066 }; 3067 3068 GEN_CMP0(ceq, TCG_COND_EQ) 3069 GEN_CMP0(cle, TCG_COND_LE) 3070 GEN_CMP0(cge, TCG_COND_GE) 3071 GEN_CMP0(clt, TCG_COND_LT) 3072 GEN_CMP0(cgt, TCG_COND_GT) 3073 3074 #undef GEN_CMP0 3075 3076 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3077 { 3078 tcg_gen_vec_sar8i_i64(a, a, shift); 3079 tcg_gen_vec_add8_i64(d, d, a); 3080 } 3081 3082 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3083 { 3084 tcg_gen_vec_sar16i_i64(a, a, shift); 3085 tcg_gen_vec_add16_i64(d, d, a); 3086 } 3087 3088 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3089 { 3090 tcg_gen_sari_i32(a, a, shift); 3091 tcg_gen_add_i32(d, d, a); 3092 } 3093 3094 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3095 { 3096 tcg_gen_sari_i64(a, a, shift); 3097 tcg_gen_add_i64(d, d, a); 3098 } 3099 3100 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3101 { 3102 tcg_gen_sari_vec(vece, a, a, sh); 3103 tcg_gen_add_vec(vece, d, d, a); 3104 } 3105 3106 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3107 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3108 { 3109 static const TCGOpcode vecop_list[] = { 3110 INDEX_op_sari_vec, INDEX_op_add_vec, 0 3111 }; 3112 static const GVecGen2i ops[4] = { 3113 { .fni8 = gen_ssra8_i64, 3114 .fniv = gen_ssra_vec, 3115 .fno = gen_helper_gvec_ssra_b, 3116 .load_dest = true, 3117 .opt_opc = vecop_list, 3118 .vece = MO_8 }, 3119 { .fni8 = gen_ssra16_i64, 3120 .fniv = gen_ssra_vec, 3121 .fno = gen_helper_gvec_ssra_h, 3122 .load_dest = true, 3123 .opt_opc = vecop_list, 3124 .vece = MO_16 }, 3125 { .fni4 = gen_ssra32_i32, 3126 .fniv = gen_ssra_vec, 3127 .fno = gen_helper_gvec_ssra_s, 3128 .load_dest = true, 3129 .opt_opc = vecop_list, 3130 .vece = MO_32 }, 3131 { .fni8 = gen_ssra64_i64, 3132 .fniv = gen_ssra_vec, 3133 .fno = gen_helper_gvec_ssra_b, 3134 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3135 .opt_opc = vecop_list, 3136 .load_dest = true, 3137 .vece = MO_64 }, 3138 }; 3139 3140 /* tszimm encoding produces immediates in the range [1..esize]. */ 3141 tcg_debug_assert(shift > 0); 3142 tcg_debug_assert(shift <= (8 << vece)); 3143 3144 /* 3145 * Shifts larger than the element size are architecturally valid. 3146 * Signed results in all sign bits. 3147 */ 3148 shift = MIN(shift, (8 << vece) - 1); 3149 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3150 } 3151 3152 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3153 { 3154 tcg_gen_vec_shr8i_i64(a, a, shift); 3155 tcg_gen_vec_add8_i64(d, d, a); 3156 } 3157 3158 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3159 { 3160 tcg_gen_vec_shr16i_i64(a, a, shift); 3161 tcg_gen_vec_add16_i64(d, d, a); 3162 } 3163 3164 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3165 { 3166 tcg_gen_shri_i32(a, a, shift); 3167 tcg_gen_add_i32(d, d, a); 3168 } 3169 3170 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3171 { 3172 tcg_gen_shri_i64(a, a, shift); 3173 tcg_gen_add_i64(d, d, a); 3174 } 3175 3176 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3177 { 3178 tcg_gen_shri_vec(vece, a, a, sh); 3179 tcg_gen_add_vec(vece, d, d, a); 3180 } 3181 3182 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3183 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3184 { 3185 static const TCGOpcode vecop_list[] = { 3186 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3187 }; 3188 static const GVecGen2i ops[4] = { 3189 { .fni8 = gen_usra8_i64, 3190 .fniv = gen_usra_vec, 3191 .fno = gen_helper_gvec_usra_b, 3192 .load_dest = true, 3193 .opt_opc = vecop_list, 3194 .vece = MO_8, }, 3195 { .fni8 = gen_usra16_i64, 3196 .fniv = gen_usra_vec, 3197 .fno = gen_helper_gvec_usra_h, 3198 .load_dest = true, 3199 .opt_opc = vecop_list, 3200 .vece = MO_16, }, 3201 { .fni4 = gen_usra32_i32, 3202 .fniv = gen_usra_vec, 3203 .fno = gen_helper_gvec_usra_s, 3204 .load_dest = true, 3205 .opt_opc = vecop_list, 3206 .vece = MO_32, }, 3207 { .fni8 = gen_usra64_i64, 3208 .fniv = gen_usra_vec, 3209 .fno = gen_helper_gvec_usra_d, 3210 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3211 .load_dest = true, 3212 .opt_opc = vecop_list, 3213 .vece = MO_64, }, 3214 }; 3215 3216 /* tszimm encoding produces immediates in the range [1..esize]. */ 3217 tcg_debug_assert(shift > 0); 3218 tcg_debug_assert(shift <= (8 << vece)); 3219 3220 /* 3221 * Shifts larger than the element size are architecturally valid. 3222 * Unsigned results in all zeros as input to accumulate: nop. 3223 */ 3224 if (shift < (8 << vece)) { 3225 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3226 } else { 3227 /* Nop, but we do need to clear the tail. */ 3228 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3229 } 3230 } 3231 3232 /* 3233 * Shift one less than the requested amount, and the low bit is 3234 * the rounding bit. For the 8 and 16-bit operations, because we 3235 * mask the low bit, we can perform a normal integer shift instead 3236 * of a vector shift. 3237 */ 3238 static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3239 { 3240 TCGv_i64 t = tcg_temp_new_i64(); 3241 3242 tcg_gen_shri_i64(t, a, sh - 1); 3243 tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); 3244 tcg_gen_vec_sar8i_i64(d, a, sh); 3245 tcg_gen_vec_add8_i64(d, d, t); 3246 tcg_temp_free_i64(t); 3247 } 3248 3249 static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3250 { 3251 TCGv_i64 t = tcg_temp_new_i64(); 3252 3253 tcg_gen_shri_i64(t, a, sh - 1); 3254 tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); 3255 tcg_gen_vec_sar16i_i64(d, a, sh); 3256 tcg_gen_vec_add16_i64(d, d, t); 3257 tcg_temp_free_i64(t); 3258 } 3259 3260 static void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3261 { 3262 TCGv_i32 t; 3263 3264 /* Handle shift by the input size for the benefit of trans_SRSHR_ri */ 3265 if (sh == 32) { 3266 tcg_gen_movi_i32(d, 0); 3267 return; 3268 } 3269 t = tcg_temp_new_i32(); 3270 tcg_gen_extract_i32(t, a, sh - 1, 1); 3271 tcg_gen_sari_i32(d, a, sh); 3272 tcg_gen_add_i32(d, d, t); 3273 tcg_temp_free_i32(t); 3274 } 3275 3276 static void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3277 { 3278 TCGv_i64 t = tcg_temp_new_i64(); 3279 3280 tcg_gen_extract_i64(t, a, sh - 1, 1); 3281 tcg_gen_sari_i64(d, a, sh); 3282 tcg_gen_add_i64(d, d, t); 3283 tcg_temp_free_i64(t); 3284 } 3285 3286 static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3287 { 3288 TCGv_vec t = tcg_temp_new_vec_matching(d); 3289 TCGv_vec ones = tcg_temp_new_vec_matching(d); 3290 3291 tcg_gen_shri_vec(vece, t, a, sh - 1); 3292 tcg_gen_dupi_vec(vece, ones, 1); 3293 tcg_gen_and_vec(vece, t, t, ones); 3294 tcg_gen_sari_vec(vece, d, a, sh); 3295 tcg_gen_add_vec(vece, d, d, t); 3296 3297 tcg_temp_free_vec(t); 3298 tcg_temp_free_vec(ones); 3299 } 3300 3301 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3302 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3303 { 3304 static const TCGOpcode vecop_list[] = { 3305 INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 3306 }; 3307 static const GVecGen2i ops[4] = { 3308 { .fni8 = gen_srshr8_i64, 3309 .fniv = gen_srshr_vec, 3310 .fno = gen_helper_gvec_srshr_b, 3311 .opt_opc = vecop_list, 3312 .vece = MO_8 }, 3313 { .fni8 = gen_srshr16_i64, 3314 .fniv = gen_srshr_vec, 3315 .fno = gen_helper_gvec_srshr_h, 3316 .opt_opc = vecop_list, 3317 .vece = MO_16 }, 3318 { .fni4 = gen_srshr32_i32, 3319 .fniv = gen_srshr_vec, 3320 .fno = gen_helper_gvec_srshr_s, 3321 .opt_opc = vecop_list, 3322 .vece = MO_32 }, 3323 { .fni8 = gen_srshr64_i64, 3324 .fniv = gen_srshr_vec, 3325 .fno = gen_helper_gvec_srshr_d, 3326 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3327 .opt_opc = vecop_list, 3328 .vece = MO_64 }, 3329 }; 3330 3331 /* tszimm encoding produces immediates in the range [1..esize] */ 3332 tcg_debug_assert(shift > 0); 3333 tcg_debug_assert(shift <= (8 << vece)); 3334 3335 if (shift == (8 << vece)) { 3336 /* 3337 * Shifts larger than the element size are architecturally valid. 3338 * Signed results in all sign bits. With rounding, this produces 3339 * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. 3340 * I.e. always zero. 3341 */ 3342 tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); 3343 } else { 3344 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3345 } 3346 } 3347 3348 static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3349 { 3350 TCGv_i64 t = tcg_temp_new_i64(); 3351 3352 gen_srshr8_i64(t, a, sh); 3353 tcg_gen_vec_add8_i64(d, d, t); 3354 tcg_temp_free_i64(t); 3355 } 3356 3357 static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3358 { 3359 TCGv_i64 t = tcg_temp_new_i64(); 3360 3361 gen_srshr16_i64(t, a, sh); 3362 tcg_gen_vec_add16_i64(d, d, t); 3363 tcg_temp_free_i64(t); 3364 } 3365 3366 static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3367 { 3368 TCGv_i32 t = tcg_temp_new_i32(); 3369 3370 gen_srshr32_i32(t, a, sh); 3371 tcg_gen_add_i32(d, d, t); 3372 tcg_temp_free_i32(t); 3373 } 3374 3375 static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3376 { 3377 TCGv_i64 t = tcg_temp_new_i64(); 3378 3379 gen_srshr64_i64(t, a, sh); 3380 tcg_gen_add_i64(d, d, t); 3381 tcg_temp_free_i64(t); 3382 } 3383 3384 static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3385 { 3386 TCGv_vec t = tcg_temp_new_vec_matching(d); 3387 3388 gen_srshr_vec(vece, t, a, sh); 3389 tcg_gen_add_vec(vece, d, d, t); 3390 tcg_temp_free_vec(t); 3391 } 3392 3393 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3394 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3395 { 3396 static const TCGOpcode vecop_list[] = { 3397 INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 3398 }; 3399 static const GVecGen2i ops[4] = { 3400 { .fni8 = gen_srsra8_i64, 3401 .fniv = gen_srsra_vec, 3402 .fno = gen_helper_gvec_srsra_b, 3403 .opt_opc = vecop_list, 3404 .load_dest = true, 3405 .vece = MO_8 }, 3406 { .fni8 = gen_srsra16_i64, 3407 .fniv = gen_srsra_vec, 3408 .fno = gen_helper_gvec_srsra_h, 3409 .opt_opc = vecop_list, 3410 .load_dest = true, 3411 .vece = MO_16 }, 3412 { .fni4 = gen_srsra32_i32, 3413 .fniv = gen_srsra_vec, 3414 .fno = gen_helper_gvec_srsra_s, 3415 .opt_opc = vecop_list, 3416 .load_dest = true, 3417 .vece = MO_32 }, 3418 { .fni8 = gen_srsra64_i64, 3419 .fniv = gen_srsra_vec, 3420 .fno = gen_helper_gvec_srsra_d, 3421 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3422 .opt_opc = vecop_list, 3423 .load_dest = true, 3424 .vece = MO_64 }, 3425 }; 3426 3427 /* tszimm encoding produces immediates in the range [1..esize] */ 3428 tcg_debug_assert(shift > 0); 3429 tcg_debug_assert(shift <= (8 << vece)); 3430 3431 /* 3432 * Shifts larger than the element size are architecturally valid. 3433 * Signed results in all sign bits. With rounding, this produces 3434 * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. 3435 * I.e. always zero. With accumulation, this leaves D unchanged. 3436 */ 3437 if (shift == (8 << vece)) { 3438 /* Nop, but we do need to clear the tail. */ 3439 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3440 } else { 3441 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3442 } 3443 } 3444 3445 static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3446 { 3447 TCGv_i64 t = tcg_temp_new_i64(); 3448 3449 tcg_gen_shri_i64(t, a, sh - 1); 3450 tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); 3451 tcg_gen_vec_shr8i_i64(d, a, sh); 3452 tcg_gen_vec_add8_i64(d, d, t); 3453 tcg_temp_free_i64(t); 3454 } 3455 3456 static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3457 { 3458 TCGv_i64 t = tcg_temp_new_i64(); 3459 3460 tcg_gen_shri_i64(t, a, sh - 1); 3461 tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); 3462 tcg_gen_vec_shr16i_i64(d, a, sh); 3463 tcg_gen_vec_add16_i64(d, d, t); 3464 tcg_temp_free_i64(t); 3465 } 3466 3467 static void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3468 { 3469 TCGv_i32 t; 3470 3471 /* Handle shift by the input size for the benefit of trans_URSHR_ri */ 3472 if (sh == 32) { 3473 tcg_gen_extract_i32(d, a, sh - 1, 1); 3474 return; 3475 } 3476 t = tcg_temp_new_i32(); 3477 tcg_gen_extract_i32(t, a, sh - 1, 1); 3478 tcg_gen_shri_i32(d, a, sh); 3479 tcg_gen_add_i32(d, d, t); 3480 tcg_temp_free_i32(t); 3481 } 3482 3483 static void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3484 { 3485 TCGv_i64 t = tcg_temp_new_i64(); 3486 3487 tcg_gen_extract_i64(t, a, sh - 1, 1); 3488 tcg_gen_shri_i64(d, a, sh); 3489 tcg_gen_add_i64(d, d, t); 3490 tcg_temp_free_i64(t); 3491 } 3492 3493 static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift) 3494 { 3495 TCGv_vec t = tcg_temp_new_vec_matching(d); 3496 TCGv_vec ones = tcg_temp_new_vec_matching(d); 3497 3498 tcg_gen_shri_vec(vece, t, a, shift - 1); 3499 tcg_gen_dupi_vec(vece, ones, 1); 3500 tcg_gen_and_vec(vece, t, t, ones); 3501 tcg_gen_shri_vec(vece, d, a, shift); 3502 tcg_gen_add_vec(vece, d, d, t); 3503 3504 tcg_temp_free_vec(t); 3505 tcg_temp_free_vec(ones); 3506 } 3507 3508 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3509 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3510 { 3511 static const TCGOpcode vecop_list[] = { 3512 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3513 }; 3514 static const GVecGen2i ops[4] = { 3515 { .fni8 = gen_urshr8_i64, 3516 .fniv = gen_urshr_vec, 3517 .fno = gen_helper_gvec_urshr_b, 3518 .opt_opc = vecop_list, 3519 .vece = MO_8 }, 3520 { .fni8 = gen_urshr16_i64, 3521 .fniv = gen_urshr_vec, 3522 .fno = gen_helper_gvec_urshr_h, 3523 .opt_opc = vecop_list, 3524 .vece = MO_16 }, 3525 { .fni4 = gen_urshr32_i32, 3526 .fniv = gen_urshr_vec, 3527 .fno = gen_helper_gvec_urshr_s, 3528 .opt_opc = vecop_list, 3529 .vece = MO_32 }, 3530 { .fni8 = gen_urshr64_i64, 3531 .fniv = gen_urshr_vec, 3532 .fno = gen_helper_gvec_urshr_d, 3533 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3534 .opt_opc = vecop_list, 3535 .vece = MO_64 }, 3536 }; 3537 3538 /* tszimm encoding produces immediates in the range [1..esize] */ 3539 tcg_debug_assert(shift > 0); 3540 tcg_debug_assert(shift <= (8 << vece)); 3541 3542 if (shift == (8 << vece)) { 3543 /* 3544 * Shifts larger than the element size are architecturally valid. 3545 * Unsigned results in zero. With rounding, this produces a 3546 * copy of the most significant bit. 3547 */ 3548 tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz); 3549 } else { 3550 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3551 } 3552 } 3553 3554 static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3555 { 3556 TCGv_i64 t = tcg_temp_new_i64(); 3557 3558 if (sh == 8) { 3559 tcg_gen_vec_shr8i_i64(t, a, 7); 3560 } else { 3561 gen_urshr8_i64(t, a, sh); 3562 } 3563 tcg_gen_vec_add8_i64(d, d, t); 3564 tcg_temp_free_i64(t); 3565 } 3566 3567 static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3568 { 3569 TCGv_i64 t = tcg_temp_new_i64(); 3570 3571 if (sh == 16) { 3572 tcg_gen_vec_shr16i_i64(t, a, 15); 3573 } else { 3574 gen_urshr16_i64(t, a, sh); 3575 } 3576 tcg_gen_vec_add16_i64(d, d, t); 3577 tcg_temp_free_i64(t); 3578 } 3579 3580 static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) 3581 { 3582 TCGv_i32 t = tcg_temp_new_i32(); 3583 3584 if (sh == 32) { 3585 tcg_gen_shri_i32(t, a, 31); 3586 } else { 3587 gen_urshr32_i32(t, a, sh); 3588 } 3589 tcg_gen_add_i32(d, d, t); 3590 tcg_temp_free_i32(t); 3591 } 3592 3593 static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) 3594 { 3595 TCGv_i64 t = tcg_temp_new_i64(); 3596 3597 if (sh == 64) { 3598 tcg_gen_shri_i64(t, a, 63); 3599 } else { 3600 gen_urshr64_i64(t, a, sh); 3601 } 3602 tcg_gen_add_i64(d, d, t); 3603 tcg_temp_free_i64(t); 3604 } 3605 3606 static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3607 { 3608 TCGv_vec t = tcg_temp_new_vec_matching(d); 3609 3610 if (sh == (8 << vece)) { 3611 tcg_gen_shri_vec(vece, t, a, sh - 1); 3612 } else { 3613 gen_urshr_vec(vece, t, a, sh); 3614 } 3615 tcg_gen_add_vec(vece, d, d, t); 3616 tcg_temp_free_vec(t); 3617 } 3618 3619 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3620 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3621 { 3622 static const TCGOpcode vecop_list[] = { 3623 INDEX_op_shri_vec, INDEX_op_add_vec, 0 3624 }; 3625 static const GVecGen2i ops[4] = { 3626 { .fni8 = gen_ursra8_i64, 3627 .fniv = gen_ursra_vec, 3628 .fno = gen_helper_gvec_ursra_b, 3629 .opt_opc = vecop_list, 3630 .load_dest = true, 3631 .vece = MO_8 }, 3632 { .fni8 = gen_ursra16_i64, 3633 .fniv = gen_ursra_vec, 3634 .fno = gen_helper_gvec_ursra_h, 3635 .opt_opc = vecop_list, 3636 .load_dest = true, 3637 .vece = MO_16 }, 3638 { .fni4 = gen_ursra32_i32, 3639 .fniv = gen_ursra_vec, 3640 .fno = gen_helper_gvec_ursra_s, 3641 .opt_opc = vecop_list, 3642 .load_dest = true, 3643 .vece = MO_32 }, 3644 { .fni8 = gen_ursra64_i64, 3645 .fniv = gen_ursra_vec, 3646 .fno = gen_helper_gvec_ursra_d, 3647 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3648 .opt_opc = vecop_list, 3649 .load_dest = true, 3650 .vece = MO_64 }, 3651 }; 3652 3653 /* tszimm encoding produces immediates in the range [1..esize] */ 3654 tcg_debug_assert(shift > 0); 3655 tcg_debug_assert(shift <= (8 << vece)); 3656 3657 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3658 } 3659 3660 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3661 { 3662 uint64_t mask = dup_const(MO_8, 0xff >> shift); 3663 TCGv_i64 t = tcg_temp_new_i64(); 3664 3665 tcg_gen_shri_i64(t, a, shift); 3666 tcg_gen_andi_i64(t, t, mask); 3667 tcg_gen_andi_i64(d, d, ~mask); 3668 tcg_gen_or_i64(d, d, t); 3669 tcg_temp_free_i64(t); 3670 } 3671 3672 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3673 { 3674 uint64_t mask = dup_const(MO_16, 0xffff >> shift); 3675 TCGv_i64 t = tcg_temp_new_i64(); 3676 3677 tcg_gen_shri_i64(t, a, shift); 3678 tcg_gen_andi_i64(t, t, mask); 3679 tcg_gen_andi_i64(d, d, ~mask); 3680 tcg_gen_or_i64(d, d, t); 3681 tcg_temp_free_i64(t); 3682 } 3683 3684 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3685 { 3686 tcg_gen_shri_i32(a, a, shift); 3687 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); 3688 } 3689 3690 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3691 { 3692 tcg_gen_shri_i64(a, a, shift); 3693 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); 3694 } 3695 3696 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3697 { 3698 TCGv_vec t = tcg_temp_new_vec_matching(d); 3699 TCGv_vec m = tcg_temp_new_vec_matching(d); 3700 3701 tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh)); 3702 tcg_gen_shri_vec(vece, t, a, sh); 3703 tcg_gen_and_vec(vece, d, d, m); 3704 tcg_gen_or_vec(vece, d, d, t); 3705 3706 tcg_temp_free_vec(t); 3707 tcg_temp_free_vec(m); 3708 } 3709 3710 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3711 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3712 { 3713 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; 3714 const GVecGen2i ops[4] = { 3715 { .fni8 = gen_shr8_ins_i64, 3716 .fniv = gen_shr_ins_vec, 3717 .fno = gen_helper_gvec_sri_b, 3718 .load_dest = true, 3719 .opt_opc = vecop_list, 3720 .vece = MO_8 }, 3721 { .fni8 = gen_shr16_ins_i64, 3722 .fniv = gen_shr_ins_vec, 3723 .fno = gen_helper_gvec_sri_h, 3724 .load_dest = true, 3725 .opt_opc = vecop_list, 3726 .vece = MO_16 }, 3727 { .fni4 = gen_shr32_ins_i32, 3728 .fniv = gen_shr_ins_vec, 3729 .fno = gen_helper_gvec_sri_s, 3730 .load_dest = true, 3731 .opt_opc = vecop_list, 3732 .vece = MO_32 }, 3733 { .fni8 = gen_shr64_ins_i64, 3734 .fniv = gen_shr_ins_vec, 3735 .fno = gen_helper_gvec_sri_d, 3736 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3737 .load_dest = true, 3738 .opt_opc = vecop_list, 3739 .vece = MO_64 }, 3740 }; 3741 3742 /* tszimm encoding produces immediates in the range [1..esize]. */ 3743 tcg_debug_assert(shift > 0); 3744 tcg_debug_assert(shift <= (8 << vece)); 3745 3746 /* Shift of esize leaves destination unchanged. */ 3747 if (shift < (8 << vece)) { 3748 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3749 } else { 3750 /* Nop, but we do need to clear the tail. */ 3751 tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); 3752 } 3753 } 3754 3755 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3756 { 3757 uint64_t mask = dup_const(MO_8, 0xff << shift); 3758 TCGv_i64 t = tcg_temp_new_i64(); 3759 3760 tcg_gen_shli_i64(t, a, shift); 3761 tcg_gen_andi_i64(t, t, mask); 3762 tcg_gen_andi_i64(d, d, ~mask); 3763 tcg_gen_or_i64(d, d, t); 3764 tcg_temp_free_i64(t); 3765 } 3766 3767 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3768 { 3769 uint64_t mask = dup_const(MO_16, 0xffff << shift); 3770 TCGv_i64 t = tcg_temp_new_i64(); 3771 3772 tcg_gen_shli_i64(t, a, shift); 3773 tcg_gen_andi_i64(t, t, mask); 3774 tcg_gen_andi_i64(d, d, ~mask); 3775 tcg_gen_or_i64(d, d, t); 3776 tcg_temp_free_i64(t); 3777 } 3778 3779 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) 3780 { 3781 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); 3782 } 3783 3784 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) 3785 { 3786 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); 3787 } 3788 3789 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) 3790 { 3791 TCGv_vec t = tcg_temp_new_vec_matching(d); 3792 TCGv_vec m = tcg_temp_new_vec_matching(d); 3793 3794 tcg_gen_shli_vec(vece, t, a, sh); 3795 tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh)); 3796 tcg_gen_and_vec(vece, d, d, m); 3797 tcg_gen_or_vec(vece, d, d, t); 3798 3799 tcg_temp_free_vec(t); 3800 tcg_temp_free_vec(m); 3801 } 3802 3803 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, 3804 int64_t shift, uint32_t opr_sz, uint32_t max_sz) 3805 { 3806 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; 3807 const GVecGen2i ops[4] = { 3808 { .fni8 = gen_shl8_ins_i64, 3809 .fniv = gen_shl_ins_vec, 3810 .fno = gen_helper_gvec_sli_b, 3811 .load_dest = true, 3812 .opt_opc = vecop_list, 3813 .vece = MO_8 }, 3814 { .fni8 = gen_shl16_ins_i64, 3815 .fniv = gen_shl_ins_vec, 3816 .fno = gen_helper_gvec_sli_h, 3817 .load_dest = true, 3818 .opt_opc = vecop_list, 3819 .vece = MO_16 }, 3820 { .fni4 = gen_shl32_ins_i32, 3821 .fniv = gen_shl_ins_vec, 3822 .fno = gen_helper_gvec_sli_s, 3823 .load_dest = true, 3824 .opt_opc = vecop_list, 3825 .vece = MO_32 }, 3826 { .fni8 = gen_shl64_ins_i64, 3827 .fniv = gen_shl_ins_vec, 3828 .fno = gen_helper_gvec_sli_d, 3829 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3830 .load_dest = true, 3831 .opt_opc = vecop_list, 3832 .vece = MO_64 }, 3833 }; 3834 3835 /* tszimm encoding produces immediates in the range [0..esize-1]. */ 3836 tcg_debug_assert(shift >= 0); 3837 tcg_debug_assert(shift < (8 << vece)); 3838 3839 if (shift == 0) { 3840 tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz); 3841 } else { 3842 tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); 3843 } 3844 } 3845 3846 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3847 { 3848 gen_helper_neon_mul_u8(a, a, b); 3849 gen_helper_neon_add_u8(d, d, a); 3850 } 3851 3852 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3853 { 3854 gen_helper_neon_mul_u8(a, a, b); 3855 gen_helper_neon_sub_u8(d, d, a); 3856 } 3857 3858 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3859 { 3860 gen_helper_neon_mul_u16(a, a, b); 3861 gen_helper_neon_add_u16(d, d, a); 3862 } 3863 3864 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3865 { 3866 gen_helper_neon_mul_u16(a, a, b); 3867 gen_helper_neon_sub_u16(d, d, a); 3868 } 3869 3870 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3871 { 3872 tcg_gen_mul_i32(a, a, b); 3873 tcg_gen_add_i32(d, d, a); 3874 } 3875 3876 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3877 { 3878 tcg_gen_mul_i32(a, a, b); 3879 tcg_gen_sub_i32(d, d, a); 3880 } 3881 3882 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3883 { 3884 tcg_gen_mul_i64(a, a, b); 3885 tcg_gen_add_i64(d, d, a); 3886 } 3887 3888 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3889 { 3890 tcg_gen_mul_i64(a, a, b); 3891 tcg_gen_sub_i64(d, d, a); 3892 } 3893 3894 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3895 { 3896 tcg_gen_mul_vec(vece, a, a, b); 3897 tcg_gen_add_vec(vece, d, d, a); 3898 } 3899 3900 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3901 { 3902 tcg_gen_mul_vec(vece, a, a, b); 3903 tcg_gen_sub_vec(vece, d, d, a); 3904 } 3905 3906 /* Note that while NEON does not support VMLA and VMLS as 64-bit ops, 3907 * these tables are shared with AArch64 which does support them. 3908 */ 3909 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3910 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3911 { 3912 static const TCGOpcode vecop_list[] = { 3913 INDEX_op_mul_vec, INDEX_op_add_vec, 0 3914 }; 3915 static const GVecGen3 ops[4] = { 3916 { .fni4 = gen_mla8_i32, 3917 .fniv = gen_mla_vec, 3918 .load_dest = true, 3919 .opt_opc = vecop_list, 3920 .vece = MO_8 }, 3921 { .fni4 = gen_mla16_i32, 3922 .fniv = gen_mla_vec, 3923 .load_dest = true, 3924 .opt_opc = vecop_list, 3925 .vece = MO_16 }, 3926 { .fni4 = gen_mla32_i32, 3927 .fniv = gen_mla_vec, 3928 .load_dest = true, 3929 .opt_opc = vecop_list, 3930 .vece = MO_32 }, 3931 { .fni8 = gen_mla64_i64, 3932 .fniv = gen_mla_vec, 3933 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3934 .load_dest = true, 3935 .opt_opc = vecop_list, 3936 .vece = MO_64 }, 3937 }; 3938 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3939 } 3940 3941 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3942 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3943 { 3944 static const TCGOpcode vecop_list[] = { 3945 INDEX_op_mul_vec, INDEX_op_sub_vec, 0 3946 }; 3947 static const GVecGen3 ops[4] = { 3948 { .fni4 = gen_mls8_i32, 3949 .fniv = gen_mls_vec, 3950 .load_dest = true, 3951 .opt_opc = vecop_list, 3952 .vece = MO_8 }, 3953 { .fni4 = gen_mls16_i32, 3954 .fniv = gen_mls_vec, 3955 .load_dest = true, 3956 .opt_opc = vecop_list, 3957 .vece = MO_16 }, 3958 { .fni4 = gen_mls32_i32, 3959 .fniv = gen_mls_vec, 3960 .load_dest = true, 3961 .opt_opc = vecop_list, 3962 .vece = MO_32 }, 3963 { .fni8 = gen_mls64_i64, 3964 .fniv = gen_mls_vec, 3965 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3966 .load_dest = true, 3967 .opt_opc = vecop_list, 3968 .vece = MO_64 }, 3969 }; 3970 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 3971 } 3972 3973 /* CMTST : test is "if (X & Y != 0)". */ 3974 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3975 { 3976 tcg_gen_and_i32(d, a, b); 3977 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0); 3978 tcg_gen_neg_i32(d, d); 3979 } 3980 3981 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3982 { 3983 tcg_gen_and_i64(d, a, b); 3984 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0); 3985 tcg_gen_neg_i64(d, d); 3986 } 3987 3988 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 3989 { 3990 tcg_gen_and_vec(vece, d, a, b); 3991 tcg_gen_dupi_vec(vece, a, 0); 3992 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); 3993 } 3994 3995 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 3996 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 3997 { 3998 static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 }; 3999 static const GVecGen3 ops[4] = { 4000 { .fni4 = gen_helper_neon_tst_u8, 4001 .fniv = gen_cmtst_vec, 4002 .opt_opc = vecop_list, 4003 .vece = MO_8 }, 4004 { .fni4 = gen_helper_neon_tst_u16, 4005 .fniv = gen_cmtst_vec, 4006 .opt_opc = vecop_list, 4007 .vece = MO_16 }, 4008 { .fni4 = gen_cmtst_i32, 4009 .fniv = gen_cmtst_vec, 4010 .opt_opc = vecop_list, 4011 .vece = MO_32 }, 4012 { .fni8 = gen_cmtst_i64, 4013 .fniv = gen_cmtst_vec, 4014 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4015 .opt_opc = vecop_list, 4016 .vece = MO_64 }, 4017 }; 4018 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4019 } 4020 4021 void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) 4022 { 4023 TCGv_i32 lval = tcg_temp_new_i32(); 4024 TCGv_i32 rval = tcg_temp_new_i32(); 4025 TCGv_i32 lsh = tcg_temp_new_i32(); 4026 TCGv_i32 rsh = tcg_temp_new_i32(); 4027 TCGv_i32 zero = tcg_constant_i32(0); 4028 TCGv_i32 max = tcg_constant_i32(32); 4029 4030 /* 4031 * Rely on the TCG guarantee that out of range shifts produce 4032 * unspecified results, not undefined behaviour (i.e. no trap). 4033 * Discard out-of-range results after the fact. 4034 */ 4035 tcg_gen_ext8s_i32(lsh, shift); 4036 tcg_gen_neg_i32(rsh, lsh); 4037 tcg_gen_shl_i32(lval, src, lsh); 4038 tcg_gen_shr_i32(rval, src, rsh); 4039 tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); 4040 tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); 4041 4042 tcg_temp_free_i32(lval); 4043 tcg_temp_free_i32(rval); 4044 tcg_temp_free_i32(lsh); 4045 tcg_temp_free_i32(rsh); 4046 } 4047 4048 void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) 4049 { 4050 TCGv_i64 lval = tcg_temp_new_i64(); 4051 TCGv_i64 rval = tcg_temp_new_i64(); 4052 TCGv_i64 lsh = tcg_temp_new_i64(); 4053 TCGv_i64 rsh = tcg_temp_new_i64(); 4054 TCGv_i64 zero = tcg_constant_i64(0); 4055 TCGv_i64 max = tcg_constant_i64(64); 4056 4057 /* 4058 * Rely on the TCG guarantee that out of range shifts produce 4059 * unspecified results, not undefined behaviour (i.e. no trap). 4060 * Discard out-of-range results after the fact. 4061 */ 4062 tcg_gen_ext8s_i64(lsh, shift); 4063 tcg_gen_neg_i64(rsh, lsh); 4064 tcg_gen_shl_i64(lval, src, lsh); 4065 tcg_gen_shr_i64(rval, src, rsh); 4066 tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); 4067 tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); 4068 4069 tcg_temp_free_i64(lval); 4070 tcg_temp_free_i64(rval); 4071 tcg_temp_free_i64(lsh); 4072 tcg_temp_free_i64(rsh); 4073 } 4074 4075 static void gen_ushl_vec(unsigned vece, TCGv_vec dst, 4076 TCGv_vec src, TCGv_vec shift) 4077 { 4078 TCGv_vec lval = tcg_temp_new_vec_matching(dst); 4079 TCGv_vec rval = tcg_temp_new_vec_matching(dst); 4080 TCGv_vec lsh = tcg_temp_new_vec_matching(dst); 4081 TCGv_vec rsh = tcg_temp_new_vec_matching(dst); 4082 TCGv_vec msk, max; 4083 4084 tcg_gen_neg_vec(vece, rsh, shift); 4085 if (vece == MO_8) { 4086 tcg_gen_mov_vec(lsh, shift); 4087 } else { 4088 msk = tcg_temp_new_vec_matching(dst); 4089 tcg_gen_dupi_vec(vece, msk, 0xff); 4090 tcg_gen_and_vec(vece, lsh, shift, msk); 4091 tcg_gen_and_vec(vece, rsh, rsh, msk); 4092 tcg_temp_free_vec(msk); 4093 } 4094 4095 /* 4096 * Rely on the TCG guarantee that out of range shifts produce 4097 * unspecified results, not undefined behaviour (i.e. no trap). 4098 * Discard out-of-range results after the fact. 4099 */ 4100 tcg_gen_shlv_vec(vece, lval, src, lsh); 4101 tcg_gen_shrv_vec(vece, rval, src, rsh); 4102 4103 max = tcg_temp_new_vec_matching(dst); 4104 tcg_gen_dupi_vec(vece, max, 8 << vece); 4105 4106 /* 4107 * The choice of LT (signed) and GEU (unsigned) are biased toward 4108 * the instructions of the x86_64 host. For MO_8, the whole byte 4109 * is significant so we must use an unsigned compare; otherwise we 4110 * have already masked to a byte and so a signed compare works. 4111 * Other tcg hosts have a full set of comparisons and do not care. 4112 */ 4113 if (vece == MO_8) { 4114 tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max); 4115 tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max); 4116 tcg_gen_andc_vec(vece, lval, lval, lsh); 4117 tcg_gen_andc_vec(vece, rval, rval, rsh); 4118 } else { 4119 tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max); 4120 tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max); 4121 tcg_gen_and_vec(vece, lval, lval, lsh); 4122 tcg_gen_and_vec(vece, rval, rval, rsh); 4123 } 4124 tcg_gen_or_vec(vece, dst, lval, rval); 4125 4126 tcg_temp_free_vec(max); 4127 tcg_temp_free_vec(lval); 4128 tcg_temp_free_vec(rval); 4129 tcg_temp_free_vec(lsh); 4130 tcg_temp_free_vec(rsh); 4131 } 4132 4133 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4134 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4135 { 4136 static const TCGOpcode vecop_list[] = { 4137 INDEX_op_neg_vec, INDEX_op_shlv_vec, 4138 INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0 4139 }; 4140 static const GVecGen3 ops[4] = { 4141 { .fniv = gen_ushl_vec, 4142 .fno = gen_helper_gvec_ushl_b, 4143 .opt_opc = vecop_list, 4144 .vece = MO_8 }, 4145 { .fniv = gen_ushl_vec, 4146 .fno = gen_helper_gvec_ushl_h, 4147 .opt_opc = vecop_list, 4148 .vece = MO_16 }, 4149 { .fni4 = gen_ushl_i32, 4150 .fniv = gen_ushl_vec, 4151 .opt_opc = vecop_list, 4152 .vece = MO_32 }, 4153 { .fni8 = gen_ushl_i64, 4154 .fniv = gen_ushl_vec, 4155 .opt_opc = vecop_list, 4156 .vece = MO_64 }, 4157 }; 4158 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4159 } 4160 4161 void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) 4162 { 4163 TCGv_i32 lval = tcg_temp_new_i32(); 4164 TCGv_i32 rval = tcg_temp_new_i32(); 4165 TCGv_i32 lsh = tcg_temp_new_i32(); 4166 TCGv_i32 rsh = tcg_temp_new_i32(); 4167 TCGv_i32 zero = tcg_constant_i32(0); 4168 TCGv_i32 max = tcg_constant_i32(31); 4169 4170 /* 4171 * Rely on the TCG guarantee that out of range shifts produce 4172 * unspecified results, not undefined behaviour (i.e. no trap). 4173 * Discard out-of-range results after the fact. 4174 */ 4175 tcg_gen_ext8s_i32(lsh, shift); 4176 tcg_gen_neg_i32(rsh, lsh); 4177 tcg_gen_shl_i32(lval, src, lsh); 4178 tcg_gen_umin_i32(rsh, rsh, max); 4179 tcg_gen_sar_i32(rval, src, rsh); 4180 tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); 4181 tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); 4182 4183 tcg_temp_free_i32(lval); 4184 tcg_temp_free_i32(rval); 4185 tcg_temp_free_i32(lsh); 4186 tcg_temp_free_i32(rsh); 4187 } 4188 4189 void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) 4190 { 4191 TCGv_i64 lval = tcg_temp_new_i64(); 4192 TCGv_i64 rval = tcg_temp_new_i64(); 4193 TCGv_i64 lsh = tcg_temp_new_i64(); 4194 TCGv_i64 rsh = tcg_temp_new_i64(); 4195 TCGv_i64 zero = tcg_constant_i64(0); 4196 TCGv_i64 max = tcg_constant_i64(63); 4197 4198 /* 4199 * Rely on the TCG guarantee that out of range shifts produce 4200 * unspecified results, not undefined behaviour (i.e. no trap). 4201 * Discard out-of-range results after the fact. 4202 */ 4203 tcg_gen_ext8s_i64(lsh, shift); 4204 tcg_gen_neg_i64(rsh, lsh); 4205 tcg_gen_shl_i64(lval, src, lsh); 4206 tcg_gen_umin_i64(rsh, rsh, max); 4207 tcg_gen_sar_i64(rval, src, rsh); 4208 tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); 4209 tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); 4210 4211 tcg_temp_free_i64(lval); 4212 tcg_temp_free_i64(rval); 4213 tcg_temp_free_i64(lsh); 4214 tcg_temp_free_i64(rsh); 4215 } 4216 4217 static void gen_sshl_vec(unsigned vece, TCGv_vec dst, 4218 TCGv_vec src, TCGv_vec shift) 4219 { 4220 TCGv_vec lval = tcg_temp_new_vec_matching(dst); 4221 TCGv_vec rval = tcg_temp_new_vec_matching(dst); 4222 TCGv_vec lsh = tcg_temp_new_vec_matching(dst); 4223 TCGv_vec rsh = tcg_temp_new_vec_matching(dst); 4224 TCGv_vec tmp = tcg_temp_new_vec_matching(dst); 4225 4226 /* 4227 * Rely on the TCG guarantee that out of range shifts produce 4228 * unspecified results, not undefined behaviour (i.e. no trap). 4229 * Discard out-of-range results after the fact. 4230 */ 4231 tcg_gen_neg_vec(vece, rsh, shift); 4232 if (vece == MO_8) { 4233 tcg_gen_mov_vec(lsh, shift); 4234 } else { 4235 tcg_gen_dupi_vec(vece, tmp, 0xff); 4236 tcg_gen_and_vec(vece, lsh, shift, tmp); 4237 tcg_gen_and_vec(vece, rsh, rsh, tmp); 4238 } 4239 4240 /* Bound rsh so out of bound right shift gets -1. */ 4241 tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1); 4242 tcg_gen_umin_vec(vece, rsh, rsh, tmp); 4243 tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp); 4244 4245 tcg_gen_shlv_vec(vece, lval, src, lsh); 4246 tcg_gen_sarv_vec(vece, rval, src, rsh); 4247 4248 /* Select in-bound left shift. */ 4249 tcg_gen_andc_vec(vece, lval, lval, tmp); 4250 4251 /* Select between left and right shift. */ 4252 if (vece == MO_8) { 4253 tcg_gen_dupi_vec(vece, tmp, 0); 4254 tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval); 4255 } else { 4256 tcg_gen_dupi_vec(vece, tmp, 0x80); 4257 tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval); 4258 } 4259 4260 tcg_temp_free_vec(lval); 4261 tcg_temp_free_vec(rval); 4262 tcg_temp_free_vec(lsh); 4263 tcg_temp_free_vec(rsh); 4264 tcg_temp_free_vec(tmp); 4265 } 4266 4267 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4268 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4269 { 4270 static const TCGOpcode vecop_list[] = { 4271 INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, 4272 INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0 4273 }; 4274 static const GVecGen3 ops[4] = { 4275 { .fniv = gen_sshl_vec, 4276 .fno = gen_helper_gvec_sshl_b, 4277 .opt_opc = vecop_list, 4278 .vece = MO_8 }, 4279 { .fniv = gen_sshl_vec, 4280 .fno = gen_helper_gvec_sshl_h, 4281 .opt_opc = vecop_list, 4282 .vece = MO_16 }, 4283 { .fni4 = gen_sshl_i32, 4284 .fniv = gen_sshl_vec, 4285 .opt_opc = vecop_list, 4286 .vece = MO_32 }, 4287 { .fni8 = gen_sshl_i64, 4288 .fniv = gen_sshl_vec, 4289 .opt_opc = vecop_list, 4290 .vece = MO_64 }, 4291 }; 4292 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4293 } 4294 4295 static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4296 TCGv_vec a, TCGv_vec b) 4297 { 4298 TCGv_vec x = tcg_temp_new_vec_matching(t); 4299 tcg_gen_add_vec(vece, x, a, b); 4300 tcg_gen_usadd_vec(vece, t, a, b); 4301 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4302 tcg_gen_or_vec(vece, sat, sat, x); 4303 tcg_temp_free_vec(x); 4304 } 4305 4306 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4307 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4308 { 4309 static const TCGOpcode vecop_list[] = { 4310 INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 4311 }; 4312 static const GVecGen4 ops[4] = { 4313 { .fniv = gen_uqadd_vec, 4314 .fno = gen_helper_gvec_uqadd_b, 4315 .write_aofs = true, 4316 .opt_opc = vecop_list, 4317 .vece = MO_8 }, 4318 { .fniv = gen_uqadd_vec, 4319 .fno = gen_helper_gvec_uqadd_h, 4320 .write_aofs = true, 4321 .opt_opc = vecop_list, 4322 .vece = MO_16 }, 4323 { .fniv = gen_uqadd_vec, 4324 .fno = gen_helper_gvec_uqadd_s, 4325 .write_aofs = true, 4326 .opt_opc = vecop_list, 4327 .vece = MO_32 }, 4328 { .fniv = gen_uqadd_vec, 4329 .fno = gen_helper_gvec_uqadd_d, 4330 .write_aofs = true, 4331 .opt_opc = vecop_list, 4332 .vece = MO_64 }, 4333 }; 4334 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4335 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4336 } 4337 4338 static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4339 TCGv_vec a, TCGv_vec b) 4340 { 4341 TCGv_vec x = tcg_temp_new_vec_matching(t); 4342 tcg_gen_add_vec(vece, x, a, b); 4343 tcg_gen_ssadd_vec(vece, t, a, b); 4344 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4345 tcg_gen_or_vec(vece, sat, sat, x); 4346 tcg_temp_free_vec(x); 4347 } 4348 4349 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4350 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4351 { 4352 static const TCGOpcode vecop_list[] = { 4353 INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 4354 }; 4355 static const GVecGen4 ops[4] = { 4356 { .fniv = gen_sqadd_vec, 4357 .fno = gen_helper_gvec_sqadd_b, 4358 .opt_opc = vecop_list, 4359 .write_aofs = true, 4360 .vece = MO_8 }, 4361 { .fniv = gen_sqadd_vec, 4362 .fno = gen_helper_gvec_sqadd_h, 4363 .opt_opc = vecop_list, 4364 .write_aofs = true, 4365 .vece = MO_16 }, 4366 { .fniv = gen_sqadd_vec, 4367 .fno = gen_helper_gvec_sqadd_s, 4368 .opt_opc = vecop_list, 4369 .write_aofs = true, 4370 .vece = MO_32 }, 4371 { .fniv = gen_sqadd_vec, 4372 .fno = gen_helper_gvec_sqadd_d, 4373 .opt_opc = vecop_list, 4374 .write_aofs = true, 4375 .vece = MO_64 }, 4376 }; 4377 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4378 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4379 } 4380 4381 static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4382 TCGv_vec a, TCGv_vec b) 4383 { 4384 TCGv_vec x = tcg_temp_new_vec_matching(t); 4385 tcg_gen_sub_vec(vece, x, a, b); 4386 tcg_gen_ussub_vec(vece, t, a, b); 4387 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4388 tcg_gen_or_vec(vece, sat, sat, x); 4389 tcg_temp_free_vec(x); 4390 } 4391 4392 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4393 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4394 { 4395 static const TCGOpcode vecop_list[] = { 4396 INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 4397 }; 4398 static const GVecGen4 ops[4] = { 4399 { .fniv = gen_uqsub_vec, 4400 .fno = gen_helper_gvec_uqsub_b, 4401 .opt_opc = vecop_list, 4402 .write_aofs = true, 4403 .vece = MO_8 }, 4404 { .fniv = gen_uqsub_vec, 4405 .fno = gen_helper_gvec_uqsub_h, 4406 .opt_opc = vecop_list, 4407 .write_aofs = true, 4408 .vece = MO_16 }, 4409 { .fniv = gen_uqsub_vec, 4410 .fno = gen_helper_gvec_uqsub_s, 4411 .opt_opc = vecop_list, 4412 .write_aofs = true, 4413 .vece = MO_32 }, 4414 { .fniv = gen_uqsub_vec, 4415 .fno = gen_helper_gvec_uqsub_d, 4416 .opt_opc = vecop_list, 4417 .write_aofs = true, 4418 .vece = MO_64 }, 4419 }; 4420 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4421 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4422 } 4423 4424 static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, 4425 TCGv_vec a, TCGv_vec b) 4426 { 4427 TCGv_vec x = tcg_temp_new_vec_matching(t); 4428 tcg_gen_sub_vec(vece, x, a, b); 4429 tcg_gen_sssub_vec(vece, t, a, b); 4430 tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); 4431 tcg_gen_or_vec(vece, sat, sat, x); 4432 tcg_temp_free_vec(x); 4433 } 4434 4435 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4436 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4437 { 4438 static const TCGOpcode vecop_list[] = { 4439 INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 4440 }; 4441 static const GVecGen4 ops[4] = { 4442 { .fniv = gen_sqsub_vec, 4443 .fno = gen_helper_gvec_sqsub_b, 4444 .opt_opc = vecop_list, 4445 .write_aofs = true, 4446 .vece = MO_8 }, 4447 { .fniv = gen_sqsub_vec, 4448 .fno = gen_helper_gvec_sqsub_h, 4449 .opt_opc = vecop_list, 4450 .write_aofs = true, 4451 .vece = MO_16 }, 4452 { .fniv = gen_sqsub_vec, 4453 .fno = gen_helper_gvec_sqsub_s, 4454 .opt_opc = vecop_list, 4455 .write_aofs = true, 4456 .vece = MO_32 }, 4457 { .fniv = gen_sqsub_vec, 4458 .fno = gen_helper_gvec_sqsub_d, 4459 .opt_opc = vecop_list, 4460 .write_aofs = true, 4461 .vece = MO_64 }, 4462 }; 4463 tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), 4464 rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4465 } 4466 4467 static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4468 { 4469 TCGv_i32 t = tcg_temp_new_i32(); 4470 4471 tcg_gen_sub_i32(t, a, b); 4472 tcg_gen_sub_i32(d, b, a); 4473 tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t); 4474 tcg_temp_free_i32(t); 4475 } 4476 4477 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4478 { 4479 TCGv_i64 t = tcg_temp_new_i64(); 4480 4481 tcg_gen_sub_i64(t, a, b); 4482 tcg_gen_sub_i64(d, b, a); 4483 tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t); 4484 tcg_temp_free_i64(t); 4485 } 4486 4487 static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4488 { 4489 TCGv_vec t = tcg_temp_new_vec_matching(d); 4490 4491 tcg_gen_smin_vec(vece, t, a, b); 4492 tcg_gen_smax_vec(vece, d, a, b); 4493 tcg_gen_sub_vec(vece, d, d, t); 4494 tcg_temp_free_vec(t); 4495 } 4496 4497 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4498 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4499 { 4500 static const TCGOpcode vecop_list[] = { 4501 INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 4502 }; 4503 static const GVecGen3 ops[4] = { 4504 { .fniv = gen_sabd_vec, 4505 .fno = gen_helper_gvec_sabd_b, 4506 .opt_opc = vecop_list, 4507 .vece = MO_8 }, 4508 { .fniv = gen_sabd_vec, 4509 .fno = gen_helper_gvec_sabd_h, 4510 .opt_opc = vecop_list, 4511 .vece = MO_16 }, 4512 { .fni4 = gen_sabd_i32, 4513 .fniv = gen_sabd_vec, 4514 .fno = gen_helper_gvec_sabd_s, 4515 .opt_opc = vecop_list, 4516 .vece = MO_32 }, 4517 { .fni8 = gen_sabd_i64, 4518 .fniv = gen_sabd_vec, 4519 .fno = gen_helper_gvec_sabd_d, 4520 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4521 .opt_opc = vecop_list, 4522 .vece = MO_64 }, 4523 }; 4524 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4525 } 4526 4527 static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4528 { 4529 TCGv_i32 t = tcg_temp_new_i32(); 4530 4531 tcg_gen_sub_i32(t, a, b); 4532 tcg_gen_sub_i32(d, b, a); 4533 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t); 4534 tcg_temp_free_i32(t); 4535 } 4536 4537 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4538 { 4539 TCGv_i64 t = tcg_temp_new_i64(); 4540 4541 tcg_gen_sub_i64(t, a, b); 4542 tcg_gen_sub_i64(d, b, a); 4543 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t); 4544 tcg_temp_free_i64(t); 4545 } 4546 4547 static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4548 { 4549 TCGv_vec t = tcg_temp_new_vec_matching(d); 4550 4551 tcg_gen_umin_vec(vece, t, a, b); 4552 tcg_gen_umax_vec(vece, d, a, b); 4553 tcg_gen_sub_vec(vece, d, d, t); 4554 tcg_temp_free_vec(t); 4555 } 4556 4557 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4558 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4559 { 4560 static const TCGOpcode vecop_list[] = { 4561 INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 4562 }; 4563 static const GVecGen3 ops[4] = { 4564 { .fniv = gen_uabd_vec, 4565 .fno = gen_helper_gvec_uabd_b, 4566 .opt_opc = vecop_list, 4567 .vece = MO_8 }, 4568 { .fniv = gen_uabd_vec, 4569 .fno = gen_helper_gvec_uabd_h, 4570 .opt_opc = vecop_list, 4571 .vece = MO_16 }, 4572 { .fni4 = gen_uabd_i32, 4573 .fniv = gen_uabd_vec, 4574 .fno = gen_helper_gvec_uabd_s, 4575 .opt_opc = vecop_list, 4576 .vece = MO_32 }, 4577 { .fni8 = gen_uabd_i64, 4578 .fniv = gen_uabd_vec, 4579 .fno = gen_helper_gvec_uabd_d, 4580 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4581 .opt_opc = vecop_list, 4582 .vece = MO_64 }, 4583 }; 4584 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4585 } 4586 4587 static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4588 { 4589 TCGv_i32 t = tcg_temp_new_i32(); 4590 gen_sabd_i32(t, a, b); 4591 tcg_gen_add_i32(d, d, t); 4592 tcg_temp_free_i32(t); 4593 } 4594 4595 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4596 { 4597 TCGv_i64 t = tcg_temp_new_i64(); 4598 gen_sabd_i64(t, a, b); 4599 tcg_gen_add_i64(d, d, t); 4600 tcg_temp_free_i64(t); 4601 } 4602 4603 static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4604 { 4605 TCGv_vec t = tcg_temp_new_vec_matching(d); 4606 gen_sabd_vec(vece, t, a, b); 4607 tcg_gen_add_vec(vece, d, d, t); 4608 tcg_temp_free_vec(t); 4609 } 4610 4611 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4612 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4613 { 4614 static const TCGOpcode vecop_list[] = { 4615 INDEX_op_sub_vec, INDEX_op_add_vec, 4616 INDEX_op_smin_vec, INDEX_op_smax_vec, 0 4617 }; 4618 static const GVecGen3 ops[4] = { 4619 { .fniv = gen_saba_vec, 4620 .fno = gen_helper_gvec_saba_b, 4621 .opt_opc = vecop_list, 4622 .load_dest = true, 4623 .vece = MO_8 }, 4624 { .fniv = gen_saba_vec, 4625 .fno = gen_helper_gvec_saba_h, 4626 .opt_opc = vecop_list, 4627 .load_dest = true, 4628 .vece = MO_16 }, 4629 { .fni4 = gen_saba_i32, 4630 .fniv = gen_saba_vec, 4631 .fno = gen_helper_gvec_saba_s, 4632 .opt_opc = vecop_list, 4633 .load_dest = true, 4634 .vece = MO_32 }, 4635 { .fni8 = gen_saba_i64, 4636 .fniv = gen_saba_vec, 4637 .fno = gen_helper_gvec_saba_d, 4638 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4639 .opt_opc = vecop_list, 4640 .load_dest = true, 4641 .vece = MO_64 }, 4642 }; 4643 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4644 } 4645 4646 static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 4647 { 4648 TCGv_i32 t = tcg_temp_new_i32(); 4649 gen_uabd_i32(t, a, b); 4650 tcg_gen_add_i32(d, d, t); 4651 tcg_temp_free_i32(t); 4652 } 4653 4654 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 4655 { 4656 TCGv_i64 t = tcg_temp_new_i64(); 4657 gen_uabd_i64(t, a, b); 4658 tcg_gen_add_i64(d, d, t); 4659 tcg_temp_free_i64(t); 4660 } 4661 4662 static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) 4663 { 4664 TCGv_vec t = tcg_temp_new_vec_matching(d); 4665 gen_uabd_vec(vece, t, a, b); 4666 tcg_gen_add_vec(vece, d, d, t); 4667 tcg_temp_free_vec(t); 4668 } 4669 4670 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 4671 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 4672 { 4673 static const TCGOpcode vecop_list[] = { 4674 INDEX_op_sub_vec, INDEX_op_add_vec, 4675 INDEX_op_umin_vec, INDEX_op_umax_vec, 0 4676 }; 4677 static const GVecGen3 ops[4] = { 4678 { .fniv = gen_uaba_vec, 4679 .fno = gen_helper_gvec_uaba_b, 4680 .opt_opc = vecop_list, 4681 .load_dest = true, 4682 .vece = MO_8 }, 4683 { .fniv = gen_uaba_vec, 4684 .fno = gen_helper_gvec_uaba_h, 4685 .opt_opc = vecop_list, 4686 .load_dest = true, 4687 .vece = MO_16 }, 4688 { .fni4 = gen_uaba_i32, 4689 .fniv = gen_uaba_vec, 4690 .fno = gen_helper_gvec_uaba_s, 4691 .opt_opc = vecop_list, 4692 .load_dest = true, 4693 .vece = MO_32 }, 4694 { .fni8 = gen_uaba_i64, 4695 .fniv = gen_uaba_vec, 4696 .fno = gen_helper_gvec_uaba_d, 4697 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 4698 .opt_opc = vecop_list, 4699 .load_dest = true, 4700 .vece = MO_64 }, 4701 }; 4702 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); 4703 } 4704 4705 static void do_coproc_insn(DisasContext *s, int cpnum, int is64, 4706 int opc1, int crn, int crm, int opc2, 4707 bool isread, int rt, int rt2) 4708 { 4709 uint32_t key = ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2); 4710 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 4711 TCGv_ptr tcg_ri = NULL; 4712 bool need_exit_tb; 4713 uint32_t syndrome; 4714 4715 /* 4716 * Note that since we are an implementation which takes an 4717 * exception on a trapped conditional instruction only if the 4718 * instruction passes its condition code check, we can take 4719 * advantage of the clause in the ARM ARM that allows us to set 4720 * the COND field in the instruction to 0xE in all cases. 4721 * We could fish the actual condition out of the insn (ARM) 4722 * or the condexec bits (Thumb) but it isn't necessary. 4723 */ 4724 switch (cpnum) { 4725 case 14: 4726 if (is64) { 4727 syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2, 4728 isread, false); 4729 } else { 4730 syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm, 4731 rt, isread, false); 4732 } 4733 break; 4734 case 15: 4735 if (is64) { 4736 syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2, 4737 isread, false); 4738 } else { 4739 syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm, 4740 rt, isread, false); 4741 } 4742 break; 4743 default: 4744 /* 4745 * ARMv8 defines that only coprocessors 14 and 15 exist, 4746 * so this can only happen if this is an ARMv7 or earlier CPU, 4747 * in which case the syndrome information won't actually be 4748 * guest visible. 4749 */ 4750 assert(!arm_dc_feature(s, ARM_FEATURE_V8)); 4751 syndrome = syn_uncategorized(); 4752 break; 4753 } 4754 4755 if (s->hstr_active && cpnum == 15 && s->current_el == 1) { 4756 /* 4757 * At EL1, check for a HSTR_EL2 trap, which must take precedence 4758 * over the UNDEF for "no such register" or the UNDEF for "access 4759 * permissions forbid this EL1 access". HSTR_EL2 traps from EL0 4760 * only happen if the cpreg doesn't UNDEF at EL0, so we do those in 4761 * access_check_cp_reg(), after the checks for whether the access 4762 * configurably trapped to EL1. 4763 */ 4764 uint32_t maskbit = is64 ? crm : crn; 4765 4766 if (maskbit != 4 && maskbit != 14) { 4767 /* T4 and T14 are RES0 so never cause traps */ 4768 TCGv_i32 t; 4769 DisasLabel over = gen_disas_label(s); 4770 4771 t = load_cpu_offset(offsetoflow32(CPUARMState, cp15.hstr_el2)); 4772 tcg_gen_andi_i32(t, t, 1u << maskbit); 4773 tcg_gen_brcondi_i32(TCG_COND_EQ, t, 0, over.label); 4774 tcg_temp_free_i32(t); 4775 4776 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 4777 set_disas_label(s, over); 4778 } 4779 } 4780 4781 if (!ri) { 4782 /* 4783 * Unknown register; this might be a guest error or a QEMU 4784 * unimplemented feature. 4785 */ 4786 if (is64) { 4787 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " 4788 "64 bit system register cp:%d opc1: %d crm:%d " 4789 "(%s)\n", 4790 isread ? "read" : "write", cpnum, opc1, crm, 4791 s->ns ? "non-secure" : "secure"); 4792 } else { 4793 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " 4794 "system register cp:%d opc1:%d crn:%d crm:%d " 4795 "opc2:%d (%s)\n", 4796 isread ? "read" : "write", cpnum, opc1, crn, 4797 crm, opc2, s->ns ? "non-secure" : "secure"); 4798 } 4799 unallocated_encoding(s); 4800 return; 4801 } 4802 4803 /* Check access permissions */ 4804 if (!cp_access_ok(s->current_el, ri, isread)) { 4805 unallocated_encoding(s); 4806 return; 4807 } 4808 4809 if ((s->hstr_active && s->current_el == 0) || ri->accessfn || 4810 (ri->fgt && s->fgt_active) || 4811 (arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) { 4812 /* 4813 * Emit code to perform further access permissions checks at 4814 * runtime; this may result in an exception. 4815 * Note that on XScale all cp0..c13 registers do an access check 4816 * call in order to handle c15_cpar. 4817 */ 4818 gen_set_condexec(s); 4819 gen_update_pc(s, 0); 4820 tcg_ri = tcg_temp_new_ptr(); 4821 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 4822 tcg_constant_i32(key), 4823 tcg_constant_i32(syndrome), 4824 tcg_constant_i32(isread)); 4825 } else if (ri->type & ARM_CP_RAISES_EXC) { 4826 /* 4827 * The readfn or writefn might raise an exception; 4828 * synchronize the CPU state in case it does. 4829 */ 4830 gen_set_condexec(s); 4831 gen_update_pc(s, 0); 4832 } 4833 4834 /* Handle special cases first */ 4835 switch (ri->type & ARM_CP_SPECIAL_MASK) { 4836 case 0: 4837 break; 4838 case ARM_CP_NOP: 4839 goto exit; 4840 case ARM_CP_WFI: 4841 if (isread) { 4842 unallocated_encoding(s); 4843 } else { 4844 gen_update_pc(s, curr_insn_len(s)); 4845 s->base.is_jmp = DISAS_WFI; 4846 } 4847 goto exit; 4848 default: 4849 g_assert_not_reached(); 4850 } 4851 4852 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 4853 gen_io_start(); 4854 } 4855 4856 if (isread) { 4857 /* Read */ 4858 if (is64) { 4859 TCGv_i64 tmp64; 4860 TCGv_i32 tmp; 4861 if (ri->type & ARM_CP_CONST) { 4862 tmp64 = tcg_constant_i64(ri->resetvalue); 4863 } else if (ri->readfn) { 4864 if (!tcg_ri) { 4865 tcg_ri = gen_lookup_cp_reg(key); 4866 } 4867 tmp64 = tcg_temp_new_i64(); 4868 gen_helper_get_cp_reg64(tmp64, cpu_env, tcg_ri); 4869 } else { 4870 tmp64 = tcg_temp_new_i64(); 4871 tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset); 4872 } 4873 tmp = tcg_temp_new_i32(); 4874 tcg_gen_extrl_i64_i32(tmp, tmp64); 4875 store_reg(s, rt, tmp); 4876 tmp = tcg_temp_new_i32(); 4877 tcg_gen_extrh_i64_i32(tmp, tmp64); 4878 tcg_temp_free_i64(tmp64); 4879 store_reg(s, rt2, tmp); 4880 } else { 4881 TCGv_i32 tmp; 4882 if (ri->type & ARM_CP_CONST) { 4883 tmp = tcg_constant_i32(ri->resetvalue); 4884 } else if (ri->readfn) { 4885 if (!tcg_ri) { 4886 tcg_ri = gen_lookup_cp_reg(key); 4887 } 4888 tmp = tcg_temp_new_i32(); 4889 gen_helper_get_cp_reg(tmp, cpu_env, tcg_ri); 4890 } else { 4891 tmp = load_cpu_offset(ri->fieldoffset); 4892 } 4893 if (rt == 15) { 4894 /* Destination register of r15 for 32 bit loads sets 4895 * the condition codes from the high 4 bits of the value 4896 */ 4897 gen_set_nzcv(tmp); 4898 tcg_temp_free_i32(tmp); 4899 } else { 4900 store_reg(s, rt, tmp); 4901 } 4902 } 4903 } else { 4904 /* Write */ 4905 if (ri->type & ARM_CP_CONST) { 4906 /* If not forbidden by access permissions, treat as WI */ 4907 goto exit; 4908 } 4909 4910 if (is64) { 4911 TCGv_i32 tmplo, tmphi; 4912 TCGv_i64 tmp64 = tcg_temp_new_i64(); 4913 tmplo = load_reg(s, rt); 4914 tmphi = load_reg(s, rt2); 4915 tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi); 4916 tcg_temp_free_i32(tmplo); 4917 tcg_temp_free_i32(tmphi); 4918 if (ri->writefn) { 4919 if (!tcg_ri) { 4920 tcg_ri = gen_lookup_cp_reg(key); 4921 } 4922 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tmp64); 4923 } else { 4924 tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset); 4925 } 4926 tcg_temp_free_i64(tmp64); 4927 } else { 4928 TCGv_i32 tmp = load_reg(s, rt); 4929 if (ri->writefn) { 4930 if (!tcg_ri) { 4931 tcg_ri = gen_lookup_cp_reg(key); 4932 } 4933 gen_helper_set_cp_reg(cpu_env, tcg_ri, tmp); 4934 tcg_temp_free_i32(tmp); 4935 } else { 4936 store_cpu_offset(tmp, ri->fieldoffset, 4); 4937 } 4938 } 4939 } 4940 4941 /* I/O operations must end the TB here (whether read or write) */ 4942 need_exit_tb = ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && 4943 (ri->type & ARM_CP_IO)); 4944 4945 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 4946 /* 4947 * A write to any coprocessor register that ends a TB 4948 * must rebuild the hflags for the next TB. 4949 */ 4950 gen_rebuild_hflags(s, ri->type & ARM_CP_NEWEL); 4951 /* 4952 * We default to ending the TB on a coprocessor register write, 4953 * but allow this to be suppressed by the register definition 4954 * (usually only necessary to work around guest bugs). 4955 */ 4956 need_exit_tb = true; 4957 } 4958 if (need_exit_tb) { 4959 gen_lookup_tb(s); 4960 } 4961 4962 exit: 4963 if (tcg_ri) { 4964 tcg_temp_free_ptr(tcg_ri); 4965 } 4966 } 4967 4968 /* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */ 4969 static void disas_xscale_insn(DisasContext *s, uint32_t insn) 4970 { 4971 int cpnum = (insn >> 8) & 0xf; 4972 4973 if (extract32(s->c15_cpar, cpnum, 1) == 0) { 4974 unallocated_encoding(s); 4975 } else if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { 4976 if (disas_iwmmxt_insn(s, insn)) { 4977 unallocated_encoding(s); 4978 } 4979 } else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { 4980 if (disas_dsp_insn(s, insn)) { 4981 unallocated_encoding(s); 4982 } 4983 } 4984 } 4985 4986 /* Store a 64-bit value to a register pair. Clobbers val. */ 4987 static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) 4988 { 4989 TCGv_i32 tmp; 4990 tmp = tcg_temp_new_i32(); 4991 tcg_gen_extrl_i64_i32(tmp, val); 4992 store_reg(s, rlow, tmp); 4993 tmp = tcg_temp_new_i32(); 4994 tcg_gen_extrh_i64_i32(tmp, val); 4995 store_reg(s, rhigh, tmp); 4996 } 4997 4998 /* load and add a 64-bit value from a register pair. */ 4999 static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) 5000 { 5001 TCGv_i64 tmp; 5002 TCGv_i32 tmpl; 5003 TCGv_i32 tmph; 5004 5005 /* Load 64-bit value rd:rn. */ 5006 tmpl = load_reg(s, rlow); 5007 tmph = load_reg(s, rhigh); 5008 tmp = tcg_temp_new_i64(); 5009 tcg_gen_concat_i32_i64(tmp, tmpl, tmph); 5010 tcg_temp_free_i32(tmpl); 5011 tcg_temp_free_i32(tmph); 5012 tcg_gen_add_i64(val, val, tmp); 5013 tcg_temp_free_i64(tmp); 5014 } 5015 5016 /* Set N and Z flags from hi|lo. */ 5017 static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi) 5018 { 5019 tcg_gen_mov_i32(cpu_NF, hi); 5020 tcg_gen_or_i32(cpu_ZF, lo, hi); 5021 } 5022 5023 /* Load/Store exclusive instructions are implemented by remembering 5024 the value/address loaded, and seeing if these are the same 5025 when the store is performed. This should be sufficient to implement 5026 the architecturally mandated semantics, and avoids having to monitor 5027 regular stores. The compare vs the remembered value is done during 5028 the cmpxchg operation, but we must compare the addresses manually. */ 5029 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 5030 TCGv_i32 addr, int size) 5031 { 5032 TCGv_i32 tmp = tcg_temp_new_i32(); 5033 MemOp opc = size | MO_ALIGN | s->be_data; 5034 5035 s->is_ldex = true; 5036 5037 if (size == 3) { 5038 TCGv_i32 tmp2 = tcg_temp_new_i32(); 5039 TCGv_i64 t64 = tcg_temp_new_i64(); 5040 5041 /* 5042 * For AArch32, architecturally the 32-bit word at the lowest 5043 * address is always Rt and the one at addr+4 is Rt2, even if 5044 * the CPU is big-endian. That means we don't want to do a 5045 * gen_aa32_ld_i64(), which checks SCTLR_B as if for an 5046 * architecturally 64-bit access, but instead do a 64-bit access 5047 * using MO_BE if appropriate and then split the two halves. 5048 */ 5049 TCGv taddr = gen_aa32_addr(s, addr, opc); 5050 5051 tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc); 5052 tcg_temp_free(taddr); 5053 tcg_gen_mov_i64(cpu_exclusive_val, t64); 5054 if (s->be_data == MO_BE) { 5055 tcg_gen_extr_i64_i32(tmp2, tmp, t64); 5056 } else { 5057 tcg_gen_extr_i64_i32(tmp, tmp2, t64); 5058 } 5059 tcg_temp_free_i64(t64); 5060 5061 store_reg(s, rt2, tmp2); 5062 } else { 5063 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc); 5064 tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp); 5065 } 5066 5067 store_reg(s, rt, tmp); 5068 tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr); 5069 } 5070 5071 static void gen_clrex(DisasContext *s) 5072 { 5073 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 5074 } 5075 5076 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 5077 TCGv_i32 addr, int size) 5078 { 5079 TCGv_i32 t0, t1, t2; 5080 TCGv_i64 extaddr; 5081 TCGv taddr; 5082 TCGLabel *done_label; 5083 TCGLabel *fail_label; 5084 MemOp opc = size | MO_ALIGN | s->be_data; 5085 5086 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { 5087 [addr] = {Rt}; 5088 {Rd} = 0; 5089 } else { 5090 {Rd} = 1; 5091 } */ 5092 fail_label = gen_new_label(); 5093 done_label = gen_new_label(); 5094 extaddr = tcg_temp_new_i64(); 5095 tcg_gen_extu_i32_i64(extaddr, addr); 5096 tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label); 5097 tcg_temp_free_i64(extaddr); 5098 5099 taddr = gen_aa32_addr(s, addr, opc); 5100 t0 = tcg_temp_new_i32(); 5101 t1 = load_reg(s, rt); 5102 if (size == 3) { 5103 TCGv_i64 o64 = tcg_temp_new_i64(); 5104 TCGv_i64 n64 = tcg_temp_new_i64(); 5105 5106 t2 = load_reg(s, rt2); 5107 5108 /* 5109 * For AArch32, architecturally the 32-bit word at the lowest 5110 * address is always Rt and the one at addr+4 is Rt2, even if 5111 * the CPU is big-endian. Since we're going to treat this as a 5112 * single 64-bit BE store, we need to put the two halves in the 5113 * opposite order for BE to LE, so that they end up in the right 5114 * places. We don't want gen_aa32_st_i64, because that checks 5115 * SCTLR_B as if for an architectural 64-bit access. 5116 */ 5117 if (s->be_data == MO_BE) { 5118 tcg_gen_concat_i32_i64(n64, t2, t1); 5119 } else { 5120 tcg_gen_concat_i32_i64(n64, t1, t2); 5121 } 5122 tcg_temp_free_i32(t2); 5123 5124 tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64, 5125 get_mem_index(s), opc); 5126 tcg_temp_free_i64(n64); 5127 5128 tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val); 5129 tcg_gen_extrl_i64_i32(t0, o64); 5130 5131 tcg_temp_free_i64(o64); 5132 } else { 5133 t2 = tcg_temp_new_i32(); 5134 tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val); 5135 tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc); 5136 tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2); 5137 tcg_temp_free_i32(t2); 5138 } 5139 tcg_temp_free_i32(t1); 5140 tcg_temp_free(taddr); 5141 tcg_gen_mov_i32(cpu_R[rd], t0); 5142 tcg_temp_free_i32(t0); 5143 tcg_gen_br(done_label); 5144 5145 gen_set_label(fail_label); 5146 tcg_gen_movi_i32(cpu_R[rd], 1); 5147 gen_set_label(done_label); 5148 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 5149 } 5150 5151 /* gen_srs: 5152 * @env: CPUARMState 5153 * @s: DisasContext 5154 * @mode: mode field from insn (which stack to store to) 5155 * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn 5156 * @writeback: true if writeback bit set 5157 * 5158 * Generate code for the SRS (Store Return State) insn. 5159 */ 5160 static void gen_srs(DisasContext *s, 5161 uint32_t mode, uint32_t amode, bool writeback) 5162 { 5163 int32_t offset; 5164 TCGv_i32 addr, tmp; 5165 bool undef = false; 5166 5167 /* SRS is: 5168 * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1 5169 * and specified mode is monitor mode 5170 * - UNDEFINED in Hyp mode 5171 * - UNPREDICTABLE in User or System mode 5172 * - UNPREDICTABLE if the specified mode is: 5173 * -- not implemented 5174 * -- not a valid mode number 5175 * -- a mode that's at a higher exception level 5176 * -- Monitor, if we are Non-secure 5177 * For the UNPREDICTABLE cases we choose to UNDEF. 5178 */ 5179 if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) { 5180 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_uncategorized(), 3); 5181 return; 5182 } 5183 5184 if (s->current_el == 0 || s->current_el == 2) { 5185 undef = true; 5186 } 5187 5188 switch (mode) { 5189 case ARM_CPU_MODE_USR: 5190 case ARM_CPU_MODE_FIQ: 5191 case ARM_CPU_MODE_IRQ: 5192 case ARM_CPU_MODE_SVC: 5193 case ARM_CPU_MODE_ABT: 5194 case ARM_CPU_MODE_UND: 5195 case ARM_CPU_MODE_SYS: 5196 break; 5197 case ARM_CPU_MODE_HYP: 5198 if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) { 5199 undef = true; 5200 } 5201 break; 5202 case ARM_CPU_MODE_MON: 5203 /* No need to check specifically for "are we non-secure" because 5204 * we've already made EL0 UNDEF and handled the trap for S-EL1; 5205 * so if this isn't EL3 then we must be non-secure. 5206 */ 5207 if (s->current_el != 3) { 5208 undef = true; 5209 } 5210 break; 5211 default: 5212 undef = true; 5213 } 5214 5215 if (undef) { 5216 unallocated_encoding(s); 5217 return; 5218 } 5219 5220 addr = tcg_temp_new_i32(); 5221 /* get_r13_banked() will raise an exception if called from System mode */ 5222 gen_set_condexec(s); 5223 gen_update_pc(s, 0); 5224 gen_helper_get_r13_banked(addr, cpu_env, tcg_constant_i32(mode)); 5225 switch (amode) { 5226 case 0: /* DA */ 5227 offset = -4; 5228 break; 5229 case 1: /* IA */ 5230 offset = 0; 5231 break; 5232 case 2: /* DB */ 5233 offset = -8; 5234 break; 5235 case 3: /* IB */ 5236 offset = 4; 5237 break; 5238 default: 5239 g_assert_not_reached(); 5240 } 5241 tcg_gen_addi_i32(addr, addr, offset); 5242 tmp = load_reg(s, 14); 5243 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); 5244 tcg_temp_free_i32(tmp); 5245 tmp = load_cpu_field(spsr); 5246 tcg_gen_addi_i32(addr, addr, 4); 5247 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); 5248 tcg_temp_free_i32(tmp); 5249 if (writeback) { 5250 switch (amode) { 5251 case 0: 5252 offset = -8; 5253 break; 5254 case 1: 5255 offset = 4; 5256 break; 5257 case 2: 5258 offset = -4; 5259 break; 5260 case 3: 5261 offset = 0; 5262 break; 5263 default: 5264 g_assert_not_reached(); 5265 } 5266 tcg_gen_addi_i32(addr, addr, offset); 5267 gen_helper_set_r13_banked(cpu_env, tcg_constant_i32(mode), addr); 5268 } 5269 tcg_temp_free_i32(addr); 5270 s->base.is_jmp = DISAS_UPDATE_EXIT; 5271 } 5272 5273 /* Skip this instruction if the ARM condition is false */ 5274 static void arm_skip_unless(DisasContext *s, uint32_t cond) 5275 { 5276 arm_gen_condlabel(s); 5277 arm_gen_test_cc(cond ^ 1, s->condlabel.label); 5278 } 5279 5280 5281 /* 5282 * Constant expanders used by T16/T32 decode 5283 */ 5284 5285 /* Return only the rotation part of T32ExpandImm. */ 5286 static int t32_expandimm_rot(DisasContext *s, int x) 5287 { 5288 return x & 0xc00 ? extract32(x, 7, 5) : 0; 5289 } 5290 5291 /* Return the unrotated immediate from T32ExpandImm. */ 5292 static int t32_expandimm_imm(DisasContext *s, int x) 5293 { 5294 int imm = extract32(x, 0, 8); 5295 5296 switch (extract32(x, 8, 4)) { 5297 case 0: /* XY */ 5298 /* Nothing to do. */ 5299 break; 5300 case 1: /* 00XY00XY */ 5301 imm *= 0x00010001; 5302 break; 5303 case 2: /* XY00XY00 */ 5304 imm *= 0x01000100; 5305 break; 5306 case 3: /* XYXYXYXY */ 5307 imm *= 0x01010101; 5308 break; 5309 default: 5310 /* Rotated constant. */ 5311 imm |= 0x80; 5312 break; 5313 } 5314 return imm; 5315 } 5316 5317 static int t32_branch24(DisasContext *s, int x) 5318 { 5319 /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */ 5320 x ^= !(x < 0) * (3 << 21); 5321 /* Append the final zero. */ 5322 return x << 1; 5323 } 5324 5325 static int t16_setflags(DisasContext *s) 5326 { 5327 return s->condexec_mask == 0; 5328 } 5329 5330 static int t16_push_list(DisasContext *s, int x) 5331 { 5332 return (x & 0xff) | (x & 0x100) << (14 - 8); 5333 } 5334 5335 static int t16_pop_list(DisasContext *s, int x) 5336 { 5337 return (x & 0xff) | (x & 0x100) << (15 - 8); 5338 } 5339 5340 /* 5341 * Include the generated decoders. 5342 */ 5343 5344 #include "decode-a32.c.inc" 5345 #include "decode-a32-uncond.c.inc" 5346 #include "decode-t32.c.inc" 5347 #include "decode-t16.c.inc" 5348 5349 static bool valid_cp(DisasContext *s, int cp) 5350 { 5351 /* 5352 * Return true if this coprocessor field indicates something 5353 * that's really a possible coprocessor. 5354 * For v7 and earlier, coprocessors 8..15 were reserved for Arm use, 5355 * and of those only cp14 and cp15 were used for registers. 5356 * cp10 and cp11 were used for VFP and Neon, whose decode is 5357 * dealt with elsewhere. With the advent of fp16, cp9 is also 5358 * now part of VFP. 5359 * For v8A and later, the encoding has been tightened so that 5360 * only cp14 and cp15 are valid, and other values aren't considered 5361 * to be in the coprocessor-instruction space at all. v8M still 5362 * permits coprocessors 0..7. 5363 * For XScale, we must not decode the XScale cp0, cp1 space as 5364 * a standard coprocessor insn, because we want to fall through to 5365 * the legacy disas_xscale_insn() decoder after decodetree is done. 5366 */ 5367 if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cp == 0 || cp == 1)) { 5368 return false; 5369 } 5370 5371 if (arm_dc_feature(s, ARM_FEATURE_V8) && 5372 !arm_dc_feature(s, ARM_FEATURE_M)) { 5373 return cp >= 14; 5374 } 5375 return cp < 8 || cp >= 14; 5376 } 5377 5378 static bool trans_MCR(DisasContext *s, arg_MCR *a) 5379 { 5380 if (!valid_cp(s, a->cp)) { 5381 return false; 5382 } 5383 do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, 5384 false, a->rt, 0); 5385 return true; 5386 } 5387 5388 static bool trans_MRC(DisasContext *s, arg_MRC *a) 5389 { 5390 if (!valid_cp(s, a->cp)) { 5391 return false; 5392 } 5393 do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, 5394 true, a->rt, 0); 5395 return true; 5396 } 5397 5398 static bool trans_MCRR(DisasContext *s, arg_MCRR *a) 5399 { 5400 if (!valid_cp(s, a->cp)) { 5401 return false; 5402 } 5403 do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, 5404 false, a->rt, a->rt2); 5405 return true; 5406 } 5407 5408 static bool trans_MRRC(DisasContext *s, arg_MRRC *a) 5409 { 5410 if (!valid_cp(s, a->cp)) { 5411 return false; 5412 } 5413 do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, 5414 true, a->rt, a->rt2); 5415 return true; 5416 } 5417 5418 /* Helpers to swap operands for reverse-subtract. */ 5419 static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) 5420 { 5421 tcg_gen_sub_i32(dst, b, a); 5422 } 5423 5424 static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) 5425 { 5426 gen_sub_CC(dst, b, a); 5427 } 5428 5429 static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) 5430 { 5431 gen_sub_carry(dest, b, a); 5432 } 5433 5434 static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) 5435 { 5436 gen_sbc_CC(dest, b, a); 5437 } 5438 5439 /* 5440 * Helpers for the data processing routines. 5441 * 5442 * After the computation store the results back. 5443 * This may be suppressed altogether (STREG_NONE), require a runtime 5444 * check against the stack limits (STREG_SP_CHECK), or generate an 5445 * exception return. Oh, or store into a register. 5446 * 5447 * Always return true, indicating success for a trans_* function. 5448 */ 5449 typedef enum { 5450 STREG_NONE, 5451 STREG_NORMAL, 5452 STREG_SP_CHECK, 5453 STREG_EXC_RET, 5454 } StoreRegKind; 5455 5456 static bool store_reg_kind(DisasContext *s, int rd, 5457 TCGv_i32 val, StoreRegKind kind) 5458 { 5459 switch (kind) { 5460 case STREG_NONE: 5461 tcg_temp_free_i32(val); 5462 return true; 5463 case STREG_NORMAL: 5464 /* See ALUWritePC: Interworking only from a32 mode. */ 5465 if (s->thumb) { 5466 store_reg(s, rd, val); 5467 } else { 5468 store_reg_bx(s, rd, val); 5469 } 5470 return true; 5471 case STREG_SP_CHECK: 5472 store_sp_checked(s, val); 5473 return true; 5474 case STREG_EXC_RET: 5475 gen_exception_return(s, val); 5476 return true; 5477 } 5478 g_assert_not_reached(); 5479 } 5480 5481 /* 5482 * Data Processing (register) 5483 * 5484 * Operate, with set flags, one register source, 5485 * one immediate shifted register source, and a destination. 5486 */ 5487 static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a, 5488 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5489 int logic_cc, StoreRegKind kind) 5490 { 5491 TCGv_i32 tmp1, tmp2; 5492 5493 tmp2 = load_reg(s, a->rm); 5494 gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc); 5495 tmp1 = load_reg(s, a->rn); 5496 5497 gen(tmp1, tmp1, tmp2); 5498 tcg_temp_free_i32(tmp2); 5499 5500 if (logic_cc) { 5501 gen_logic_CC(tmp1); 5502 } 5503 return store_reg_kind(s, a->rd, tmp1, kind); 5504 } 5505 5506 static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a, 5507 void (*gen)(TCGv_i32, TCGv_i32), 5508 int logic_cc, StoreRegKind kind) 5509 { 5510 TCGv_i32 tmp; 5511 5512 tmp = load_reg(s, a->rm); 5513 gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc); 5514 5515 gen(tmp, tmp); 5516 if (logic_cc) { 5517 gen_logic_CC(tmp); 5518 } 5519 return store_reg_kind(s, a->rd, tmp, kind); 5520 } 5521 5522 /* 5523 * Data-processing (register-shifted register) 5524 * 5525 * Operate, with set flags, one register source, 5526 * one register shifted register source, and a destination. 5527 */ 5528 static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a, 5529 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5530 int logic_cc, StoreRegKind kind) 5531 { 5532 TCGv_i32 tmp1, tmp2; 5533 5534 tmp1 = load_reg(s, a->rs); 5535 tmp2 = load_reg(s, a->rm); 5536 gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); 5537 tmp1 = load_reg(s, a->rn); 5538 5539 gen(tmp1, tmp1, tmp2); 5540 tcg_temp_free_i32(tmp2); 5541 5542 if (logic_cc) { 5543 gen_logic_CC(tmp1); 5544 } 5545 return store_reg_kind(s, a->rd, tmp1, kind); 5546 } 5547 5548 static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a, 5549 void (*gen)(TCGv_i32, TCGv_i32), 5550 int logic_cc, StoreRegKind kind) 5551 { 5552 TCGv_i32 tmp1, tmp2; 5553 5554 tmp1 = load_reg(s, a->rs); 5555 tmp2 = load_reg(s, a->rm); 5556 gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); 5557 5558 gen(tmp2, tmp2); 5559 if (logic_cc) { 5560 gen_logic_CC(tmp2); 5561 } 5562 return store_reg_kind(s, a->rd, tmp2, kind); 5563 } 5564 5565 /* 5566 * Data-processing (immediate) 5567 * 5568 * Operate, with set flags, one register source, 5569 * one rotated immediate, and a destination. 5570 * 5571 * Note that logic_cc && a->rot setting CF based on the msb of the 5572 * immediate is the reason why we must pass in the unrotated form 5573 * of the immediate. 5574 */ 5575 static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a, 5576 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), 5577 int logic_cc, StoreRegKind kind) 5578 { 5579 TCGv_i32 tmp1; 5580 uint32_t imm; 5581 5582 imm = ror32(a->imm, a->rot); 5583 if (logic_cc && a->rot) { 5584 tcg_gen_movi_i32(cpu_CF, imm >> 31); 5585 } 5586 tmp1 = load_reg(s, a->rn); 5587 5588 gen(tmp1, tmp1, tcg_constant_i32(imm)); 5589 5590 if (logic_cc) { 5591 gen_logic_CC(tmp1); 5592 } 5593 return store_reg_kind(s, a->rd, tmp1, kind); 5594 } 5595 5596 static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a, 5597 void (*gen)(TCGv_i32, TCGv_i32), 5598 int logic_cc, StoreRegKind kind) 5599 { 5600 TCGv_i32 tmp; 5601 uint32_t imm; 5602 5603 imm = ror32(a->imm, a->rot); 5604 if (logic_cc && a->rot) { 5605 tcg_gen_movi_i32(cpu_CF, imm >> 31); 5606 } 5607 5608 tmp = tcg_temp_new_i32(); 5609 gen(tmp, tcg_constant_i32(imm)); 5610 5611 if (logic_cc) { 5612 gen_logic_CC(tmp); 5613 } 5614 return store_reg_kind(s, a->rd, tmp, kind); 5615 } 5616 5617 #define DO_ANY3(NAME, OP, L, K) \ 5618 static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \ 5619 { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \ 5620 static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \ 5621 { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \ 5622 static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \ 5623 { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); } 5624 5625 #define DO_ANY2(NAME, OP, L, K) \ 5626 static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \ 5627 { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \ 5628 static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \ 5629 { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \ 5630 static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \ 5631 { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); } 5632 5633 #define DO_CMP2(NAME, OP, L) \ 5634 static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \ 5635 { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \ 5636 static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \ 5637 { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \ 5638 static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \ 5639 { return op_s_rri_rot(s, a, OP, L, STREG_NONE); } 5640 5641 DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL) 5642 DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL) 5643 DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL) 5644 DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL) 5645 5646 DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL) 5647 DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL) 5648 DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL) 5649 DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL) 5650 5651 DO_CMP2(TST, tcg_gen_and_i32, true) 5652 DO_CMP2(TEQ, tcg_gen_xor_i32, true) 5653 DO_CMP2(CMN, gen_add_CC, false) 5654 DO_CMP2(CMP, gen_sub_CC, false) 5655 5656 DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false, 5657 a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL) 5658 5659 /* 5660 * Note for the computation of StoreRegKind we return out of the 5661 * middle of the functions that are expanded by DO_ANY3, and that 5662 * we modify a->s via that parameter before it is used by OP. 5663 */ 5664 DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false, 5665 ({ 5666 StoreRegKind ret = STREG_NORMAL; 5667 if (a->rd == 15 && a->s) { 5668 /* 5669 * See ALUExceptionReturn: 5670 * In User mode, UNPREDICTABLE; we choose UNDEF. 5671 * In Hyp mode, UNDEFINED. 5672 */ 5673 if (IS_USER(s) || s->current_el == 2) { 5674 unallocated_encoding(s); 5675 return true; 5676 } 5677 /* There is no writeback of nzcv to PSTATE. */ 5678 a->s = 0; 5679 ret = STREG_EXC_RET; 5680 } else if (a->rd == 13 && a->rn == 13) { 5681 ret = STREG_SP_CHECK; 5682 } 5683 ret; 5684 })) 5685 5686 DO_ANY2(MOV, tcg_gen_mov_i32, a->s, 5687 ({ 5688 StoreRegKind ret = STREG_NORMAL; 5689 if (a->rd == 15 && a->s) { 5690 /* 5691 * See ALUExceptionReturn: 5692 * In User mode, UNPREDICTABLE; we choose UNDEF. 5693 * In Hyp mode, UNDEFINED. 5694 */ 5695 if (IS_USER(s) || s->current_el == 2) { 5696 unallocated_encoding(s); 5697 return true; 5698 } 5699 /* There is no writeback of nzcv to PSTATE. */ 5700 a->s = 0; 5701 ret = STREG_EXC_RET; 5702 } else if (a->rd == 13) { 5703 ret = STREG_SP_CHECK; 5704 } 5705 ret; 5706 })) 5707 5708 DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL) 5709 5710 /* 5711 * ORN is only available with T32, so there is no register-shifted-register 5712 * form of the insn. Using the DO_ANY3 macro would create an unused function. 5713 */ 5714 static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a) 5715 { 5716 return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); 5717 } 5718 5719 static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a) 5720 { 5721 return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); 5722 } 5723 5724 #undef DO_ANY3 5725 #undef DO_ANY2 5726 #undef DO_CMP2 5727 5728 static bool trans_ADR(DisasContext *s, arg_ri *a) 5729 { 5730 store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm)); 5731 return true; 5732 } 5733 5734 static bool trans_MOVW(DisasContext *s, arg_MOVW *a) 5735 { 5736 if (!ENABLE_ARCH_6T2) { 5737 return false; 5738 } 5739 5740 store_reg(s, a->rd, tcg_constant_i32(a->imm)); 5741 return true; 5742 } 5743 5744 static bool trans_MOVT(DisasContext *s, arg_MOVW *a) 5745 { 5746 TCGv_i32 tmp; 5747 5748 if (!ENABLE_ARCH_6T2) { 5749 return false; 5750 } 5751 5752 tmp = load_reg(s, a->rd); 5753 tcg_gen_ext16u_i32(tmp, tmp); 5754 tcg_gen_ori_i32(tmp, tmp, a->imm << 16); 5755 store_reg(s, a->rd, tmp); 5756 return true; 5757 } 5758 5759 /* 5760 * v8.1M MVE wide-shifts 5761 */ 5762 static bool do_mve_shl_ri(DisasContext *s, arg_mve_shl_ri *a, 5763 WideShiftImmFn *fn) 5764 { 5765 TCGv_i64 rda; 5766 TCGv_i32 rdalo, rdahi; 5767 5768 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5769 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5770 return false; 5771 } 5772 if (a->rdahi == 15) { 5773 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ 5774 return false; 5775 } 5776 if (!dc_isar_feature(aa32_mve, s) || 5777 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5778 a->rdahi == 13) { 5779 /* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */ 5780 unallocated_encoding(s); 5781 return true; 5782 } 5783 5784 if (a->shim == 0) { 5785 a->shim = 32; 5786 } 5787 5788 rda = tcg_temp_new_i64(); 5789 rdalo = load_reg(s, a->rdalo); 5790 rdahi = load_reg(s, a->rdahi); 5791 tcg_gen_concat_i32_i64(rda, rdalo, rdahi); 5792 5793 fn(rda, rda, a->shim); 5794 5795 tcg_gen_extrl_i64_i32(rdalo, rda); 5796 tcg_gen_extrh_i64_i32(rdahi, rda); 5797 store_reg(s, a->rdalo, rdalo); 5798 store_reg(s, a->rdahi, rdahi); 5799 tcg_temp_free_i64(rda); 5800 5801 return true; 5802 } 5803 5804 static bool trans_ASRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5805 { 5806 return do_mve_shl_ri(s, a, tcg_gen_sari_i64); 5807 } 5808 5809 static bool trans_LSLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5810 { 5811 return do_mve_shl_ri(s, a, tcg_gen_shli_i64); 5812 } 5813 5814 static bool trans_LSRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5815 { 5816 return do_mve_shl_ri(s, a, tcg_gen_shri_i64); 5817 } 5818 5819 static void gen_mve_sqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) 5820 { 5821 gen_helper_mve_sqshll(r, cpu_env, n, tcg_constant_i32(shift)); 5822 } 5823 5824 static bool trans_SQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5825 { 5826 return do_mve_shl_ri(s, a, gen_mve_sqshll); 5827 } 5828 5829 static void gen_mve_uqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) 5830 { 5831 gen_helper_mve_uqshll(r, cpu_env, n, tcg_constant_i32(shift)); 5832 } 5833 5834 static bool trans_UQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) 5835 { 5836 return do_mve_shl_ri(s, a, gen_mve_uqshll); 5837 } 5838 5839 static bool trans_SRSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5840 { 5841 return do_mve_shl_ri(s, a, gen_srshr64_i64); 5842 } 5843 5844 static bool trans_URSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) 5845 { 5846 return do_mve_shl_ri(s, a, gen_urshr64_i64); 5847 } 5848 5849 static bool do_mve_shl_rr(DisasContext *s, arg_mve_shl_rr *a, WideShiftFn *fn) 5850 { 5851 TCGv_i64 rda; 5852 TCGv_i32 rdalo, rdahi; 5853 5854 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5855 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5856 return false; 5857 } 5858 if (a->rdahi == 15) { 5859 /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ 5860 return false; 5861 } 5862 if (!dc_isar_feature(aa32_mve, s) || 5863 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5864 a->rdahi == 13 || a->rm == 13 || a->rm == 15 || 5865 a->rm == a->rdahi || a->rm == a->rdalo) { 5866 /* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */ 5867 unallocated_encoding(s); 5868 return true; 5869 } 5870 5871 rda = tcg_temp_new_i64(); 5872 rdalo = load_reg(s, a->rdalo); 5873 rdahi = load_reg(s, a->rdahi); 5874 tcg_gen_concat_i32_i64(rda, rdalo, rdahi); 5875 5876 /* The helper takes care of the sign-extension of the low 8 bits of Rm */ 5877 fn(rda, cpu_env, rda, cpu_R[a->rm]); 5878 5879 tcg_gen_extrl_i64_i32(rdalo, rda); 5880 tcg_gen_extrh_i64_i32(rdahi, rda); 5881 store_reg(s, a->rdalo, rdalo); 5882 store_reg(s, a->rdahi, rdahi); 5883 tcg_temp_free_i64(rda); 5884 5885 return true; 5886 } 5887 5888 static bool trans_LSLL_rr(DisasContext *s, arg_mve_shl_rr *a) 5889 { 5890 return do_mve_shl_rr(s, a, gen_helper_mve_ushll); 5891 } 5892 5893 static bool trans_ASRL_rr(DisasContext *s, arg_mve_shl_rr *a) 5894 { 5895 return do_mve_shl_rr(s, a, gen_helper_mve_sshrl); 5896 } 5897 5898 static bool trans_UQRSHLL64_rr(DisasContext *s, arg_mve_shl_rr *a) 5899 { 5900 return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll); 5901 } 5902 5903 static bool trans_SQRSHRL64_rr(DisasContext *s, arg_mve_shl_rr *a) 5904 { 5905 return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl); 5906 } 5907 5908 static bool trans_UQRSHLL48_rr(DisasContext *s, arg_mve_shl_rr *a) 5909 { 5910 return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll48); 5911 } 5912 5913 static bool trans_SQRSHRL48_rr(DisasContext *s, arg_mve_shl_rr *a) 5914 { 5915 return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl48); 5916 } 5917 5918 static bool do_mve_sh_ri(DisasContext *s, arg_mve_sh_ri *a, ShiftImmFn *fn) 5919 { 5920 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5921 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5922 return false; 5923 } 5924 if (!dc_isar_feature(aa32_mve, s) || 5925 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5926 a->rda == 13 || a->rda == 15) { 5927 /* These rda cases are UNPREDICTABLE; we choose to UNDEF */ 5928 unallocated_encoding(s); 5929 return true; 5930 } 5931 5932 if (a->shim == 0) { 5933 a->shim = 32; 5934 } 5935 fn(cpu_R[a->rda], cpu_R[a->rda], a->shim); 5936 5937 return true; 5938 } 5939 5940 static bool trans_URSHR_ri(DisasContext *s, arg_mve_sh_ri *a) 5941 { 5942 return do_mve_sh_ri(s, a, gen_urshr32_i32); 5943 } 5944 5945 static bool trans_SRSHR_ri(DisasContext *s, arg_mve_sh_ri *a) 5946 { 5947 return do_mve_sh_ri(s, a, gen_srshr32_i32); 5948 } 5949 5950 static void gen_mve_sqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) 5951 { 5952 gen_helper_mve_sqshl(r, cpu_env, n, tcg_constant_i32(shift)); 5953 } 5954 5955 static bool trans_SQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) 5956 { 5957 return do_mve_sh_ri(s, a, gen_mve_sqshl); 5958 } 5959 5960 static void gen_mve_uqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) 5961 { 5962 gen_helper_mve_uqshl(r, cpu_env, n, tcg_constant_i32(shift)); 5963 } 5964 5965 static bool trans_UQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) 5966 { 5967 return do_mve_sh_ri(s, a, gen_mve_uqshl); 5968 } 5969 5970 static bool do_mve_sh_rr(DisasContext *s, arg_mve_sh_rr *a, ShiftFn *fn) 5971 { 5972 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 5973 /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ 5974 return false; 5975 } 5976 if (!dc_isar_feature(aa32_mve, s) || 5977 !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || 5978 a->rda == 13 || a->rda == 15 || a->rm == 13 || a->rm == 15 || 5979 a->rm == a->rda) { 5980 /* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */ 5981 unallocated_encoding(s); 5982 return true; 5983 } 5984 5985 /* The helper takes care of the sign-extension of the low 8 bits of Rm */ 5986 fn(cpu_R[a->rda], cpu_env, cpu_R[a->rda], cpu_R[a->rm]); 5987 return true; 5988 } 5989 5990 static bool trans_SQRSHR_rr(DisasContext *s, arg_mve_sh_rr *a) 5991 { 5992 return do_mve_sh_rr(s, a, gen_helper_mve_sqrshr); 5993 } 5994 5995 static bool trans_UQRSHL_rr(DisasContext *s, arg_mve_sh_rr *a) 5996 { 5997 return do_mve_sh_rr(s, a, gen_helper_mve_uqrshl); 5998 } 5999 6000 /* 6001 * Multiply and multiply accumulate 6002 */ 6003 6004 static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add) 6005 { 6006 TCGv_i32 t1, t2; 6007 6008 t1 = load_reg(s, a->rn); 6009 t2 = load_reg(s, a->rm); 6010 tcg_gen_mul_i32(t1, t1, t2); 6011 tcg_temp_free_i32(t2); 6012 if (add) { 6013 t2 = load_reg(s, a->ra); 6014 tcg_gen_add_i32(t1, t1, t2); 6015 tcg_temp_free_i32(t2); 6016 } 6017 if (a->s) { 6018 gen_logic_CC(t1); 6019 } 6020 store_reg(s, a->rd, t1); 6021 return true; 6022 } 6023 6024 static bool trans_MUL(DisasContext *s, arg_MUL *a) 6025 { 6026 return op_mla(s, a, false); 6027 } 6028 6029 static bool trans_MLA(DisasContext *s, arg_MLA *a) 6030 { 6031 return op_mla(s, a, true); 6032 } 6033 6034 static bool trans_MLS(DisasContext *s, arg_MLS *a) 6035 { 6036 TCGv_i32 t1, t2; 6037 6038 if (!ENABLE_ARCH_6T2) { 6039 return false; 6040 } 6041 t1 = load_reg(s, a->rn); 6042 t2 = load_reg(s, a->rm); 6043 tcg_gen_mul_i32(t1, t1, t2); 6044 tcg_temp_free_i32(t2); 6045 t2 = load_reg(s, a->ra); 6046 tcg_gen_sub_i32(t1, t2, t1); 6047 tcg_temp_free_i32(t2); 6048 store_reg(s, a->rd, t1); 6049 return true; 6050 } 6051 6052 static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add) 6053 { 6054 TCGv_i32 t0, t1, t2, t3; 6055 6056 t0 = load_reg(s, a->rm); 6057 t1 = load_reg(s, a->rn); 6058 if (uns) { 6059 tcg_gen_mulu2_i32(t0, t1, t0, t1); 6060 } else { 6061 tcg_gen_muls2_i32(t0, t1, t0, t1); 6062 } 6063 if (add) { 6064 t2 = load_reg(s, a->ra); 6065 t3 = load_reg(s, a->rd); 6066 tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3); 6067 tcg_temp_free_i32(t2); 6068 tcg_temp_free_i32(t3); 6069 } 6070 if (a->s) { 6071 gen_logicq_cc(t0, t1); 6072 } 6073 store_reg(s, a->ra, t0); 6074 store_reg(s, a->rd, t1); 6075 return true; 6076 } 6077 6078 static bool trans_UMULL(DisasContext *s, arg_UMULL *a) 6079 { 6080 return op_mlal(s, a, true, false); 6081 } 6082 6083 static bool trans_SMULL(DisasContext *s, arg_SMULL *a) 6084 { 6085 return op_mlal(s, a, false, false); 6086 } 6087 6088 static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a) 6089 { 6090 return op_mlal(s, a, true, true); 6091 } 6092 6093 static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a) 6094 { 6095 return op_mlal(s, a, false, true); 6096 } 6097 6098 static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a) 6099 { 6100 TCGv_i32 t0, t1, t2, zero; 6101 6102 if (s->thumb 6103 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 6104 : !ENABLE_ARCH_6) { 6105 return false; 6106 } 6107 6108 t0 = load_reg(s, a->rm); 6109 t1 = load_reg(s, a->rn); 6110 tcg_gen_mulu2_i32(t0, t1, t0, t1); 6111 zero = tcg_constant_i32(0); 6112 t2 = load_reg(s, a->ra); 6113 tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); 6114 tcg_temp_free_i32(t2); 6115 t2 = load_reg(s, a->rd); 6116 tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); 6117 tcg_temp_free_i32(t2); 6118 store_reg(s, a->ra, t0); 6119 store_reg(s, a->rd, t1); 6120 return true; 6121 } 6122 6123 /* 6124 * Saturating addition and subtraction 6125 */ 6126 6127 static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub) 6128 { 6129 TCGv_i32 t0, t1; 6130 6131 if (s->thumb 6132 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 6133 : !ENABLE_ARCH_5TE) { 6134 return false; 6135 } 6136 6137 t0 = load_reg(s, a->rm); 6138 t1 = load_reg(s, a->rn); 6139 if (doub) { 6140 gen_helper_add_saturate(t1, cpu_env, t1, t1); 6141 } 6142 if (add) { 6143 gen_helper_add_saturate(t0, cpu_env, t0, t1); 6144 } else { 6145 gen_helper_sub_saturate(t0, cpu_env, t0, t1); 6146 } 6147 tcg_temp_free_i32(t1); 6148 store_reg(s, a->rd, t0); 6149 return true; 6150 } 6151 6152 #define DO_QADDSUB(NAME, ADD, DOUB) \ 6153 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 6154 { \ 6155 return op_qaddsub(s, a, ADD, DOUB); \ 6156 } 6157 6158 DO_QADDSUB(QADD, true, false) 6159 DO_QADDSUB(QSUB, false, false) 6160 DO_QADDSUB(QDADD, true, true) 6161 DO_QADDSUB(QDSUB, false, true) 6162 6163 #undef DO_QADDSUB 6164 6165 /* 6166 * Halfword multiply and multiply accumulate 6167 */ 6168 6169 static bool op_smlaxxx(DisasContext *s, arg_rrrr *a, 6170 int add_long, bool nt, bool mt) 6171 { 6172 TCGv_i32 t0, t1, tl, th; 6173 6174 if (s->thumb 6175 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 6176 : !ENABLE_ARCH_5TE) { 6177 return false; 6178 } 6179 6180 t0 = load_reg(s, a->rn); 6181 t1 = load_reg(s, a->rm); 6182 gen_mulxy(t0, t1, nt, mt); 6183 tcg_temp_free_i32(t1); 6184 6185 switch (add_long) { 6186 case 0: 6187 store_reg(s, a->rd, t0); 6188 break; 6189 case 1: 6190 t1 = load_reg(s, a->ra); 6191 gen_helper_add_setq(t0, cpu_env, t0, t1); 6192 tcg_temp_free_i32(t1); 6193 store_reg(s, a->rd, t0); 6194 break; 6195 case 2: 6196 tl = load_reg(s, a->ra); 6197 th = load_reg(s, a->rd); 6198 /* Sign-extend the 32-bit product to 64 bits. */ 6199 t1 = tcg_temp_new_i32(); 6200 tcg_gen_sari_i32(t1, t0, 31); 6201 tcg_gen_add2_i32(tl, th, tl, th, t0, t1); 6202 tcg_temp_free_i32(t0); 6203 tcg_temp_free_i32(t1); 6204 store_reg(s, a->ra, tl); 6205 store_reg(s, a->rd, th); 6206 break; 6207 default: 6208 g_assert_not_reached(); 6209 } 6210 return true; 6211 } 6212 6213 #define DO_SMLAX(NAME, add, nt, mt) \ 6214 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ 6215 { \ 6216 return op_smlaxxx(s, a, add, nt, mt); \ 6217 } 6218 6219 DO_SMLAX(SMULBB, 0, 0, 0) 6220 DO_SMLAX(SMULBT, 0, 0, 1) 6221 DO_SMLAX(SMULTB, 0, 1, 0) 6222 DO_SMLAX(SMULTT, 0, 1, 1) 6223 6224 DO_SMLAX(SMLABB, 1, 0, 0) 6225 DO_SMLAX(SMLABT, 1, 0, 1) 6226 DO_SMLAX(SMLATB, 1, 1, 0) 6227 DO_SMLAX(SMLATT, 1, 1, 1) 6228 6229 DO_SMLAX(SMLALBB, 2, 0, 0) 6230 DO_SMLAX(SMLALBT, 2, 0, 1) 6231 DO_SMLAX(SMLALTB, 2, 1, 0) 6232 DO_SMLAX(SMLALTT, 2, 1, 1) 6233 6234 #undef DO_SMLAX 6235 6236 static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt) 6237 { 6238 TCGv_i32 t0, t1; 6239 6240 if (!ENABLE_ARCH_5TE) { 6241 return false; 6242 } 6243 6244 t0 = load_reg(s, a->rn); 6245 t1 = load_reg(s, a->rm); 6246 /* 6247 * Since the nominal result is product<47:16>, shift the 16-bit 6248 * input up by 16 bits, so that the result is at product<63:32>. 6249 */ 6250 if (mt) { 6251 tcg_gen_andi_i32(t1, t1, 0xffff0000); 6252 } else { 6253 tcg_gen_shli_i32(t1, t1, 16); 6254 } 6255 tcg_gen_muls2_i32(t0, t1, t0, t1); 6256 tcg_temp_free_i32(t0); 6257 if (add) { 6258 t0 = load_reg(s, a->ra); 6259 gen_helper_add_setq(t1, cpu_env, t1, t0); 6260 tcg_temp_free_i32(t0); 6261 } 6262 store_reg(s, a->rd, t1); 6263 return true; 6264 } 6265 6266 #define DO_SMLAWX(NAME, add, mt) \ 6267 static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ 6268 { \ 6269 return op_smlawx(s, a, add, mt); \ 6270 } 6271 6272 DO_SMLAWX(SMULWB, 0, 0) 6273 DO_SMLAWX(SMULWT, 0, 1) 6274 DO_SMLAWX(SMLAWB, 1, 0) 6275 DO_SMLAWX(SMLAWT, 1, 1) 6276 6277 #undef DO_SMLAWX 6278 6279 /* 6280 * MSR (immediate) and hints 6281 */ 6282 6283 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 6284 { 6285 /* 6286 * When running single-threaded TCG code, use the helper to ensure that 6287 * the next round-robin scheduled vCPU gets a crack. When running in 6288 * MTTCG we don't generate jumps to the helper as it won't affect the 6289 * scheduling of other vCPUs. 6290 */ 6291 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 6292 gen_update_pc(s, curr_insn_len(s)); 6293 s->base.is_jmp = DISAS_YIELD; 6294 } 6295 return true; 6296 } 6297 6298 static bool trans_WFE(DisasContext *s, arg_WFE *a) 6299 { 6300 /* 6301 * When running single-threaded TCG code, use the helper to ensure that 6302 * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we 6303 * just skip this instruction. Currently the SEV/SEVL instructions, 6304 * which are *one* of many ways to wake the CPU from WFE, are not 6305 * implemented so we can't sleep like WFI does. 6306 */ 6307 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 6308 gen_update_pc(s, curr_insn_len(s)); 6309 s->base.is_jmp = DISAS_WFE; 6310 } 6311 return true; 6312 } 6313 6314 static bool trans_WFI(DisasContext *s, arg_WFI *a) 6315 { 6316 /* For WFI, halt the vCPU until an IRQ. */ 6317 gen_update_pc(s, curr_insn_len(s)); 6318 s->base.is_jmp = DISAS_WFI; 6319 return true; 6320 } 6321 6322 static bool trans_ESB(DisasContext *s, arg_ESB *a) 6323 { 6324 /* 6325 * For M-profile, minimal-RAS ESB can be a NOP. 6326 * Without RAS, we must implement this as NOP. 6327 */ 6328 if (!arm_dc_feature(s, ARM_FEATURE_M) && dc_isar_feature(aa32_ras, s)) { 6329 /* 6330 * QEMU does not have a source of physical SErrors, 6331 * so we are only concerned with virtual SErrors. 6332 * The pseudocode in the ARM for this case is 6333 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 6334 * AArch32.vESBOperation(); 6335 * Most of the condition can be evaluated at translation time. 6336 * Test for EL2 present, and defer test for SEL2 to runtime. 6337 */ 6338 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 6339 gen_helper_vesb(cpu_env); 6340 } 6341 } 6342 return true; 6343 } 6344 6345 static bool trans_NOP(DisasContext *s, arg_NOP *a) 6346 { 6347 return true; 6348 } 6349 6350 static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a) 6351 { 6352 uint32_t val = ror32(a->imm, a->rot * 2); 6353 uint32_t mask = msr_mask(s, a->mask, a->r); 6354 6355 if (gen_set_psr_im(s, mask, a->r, val)) { 6356 unallocated_encoding(s); 6357 } 6358 return true; 6359 } 6360 6361 /* 6362 * Cyclic Redundancy Check 6363 */ 6364 6365 static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz) 6366 { 6367 TCGv_i32 t1, t2, t3; 6368 6369 if (!dc_isar_feature(aa32_crc32, s)) { 6370 return false; 6371 } 6372 6373 t1 = load_reg(s, a->rn); 6374 t2 = load_reg(s, a->rm); 6375 switch (sz) { 6376 case MO_8: 6377 gen_uxtb(t2); 6378 break; 6379 case MO_16: 6380 gen_uxth(t2); 6381 break; 6382 case MO_32: 6383 break; 6384 default: 6385 g_assert_not_reached(); 6386 } 6387 t3 = tcg_constant_i32(1 << sz); 6388 if (c) { 6389 gen_helper_crc32c(t1, t1, t2, t3); 6390 } else { 6391 gen_helper_crc32(t1, t1, t2, t3); 6392 } 6393 tcg_temp_free_i32(t2); 6394 store_reg(s, a->rd, t1); 6395 return true; 6396 } 6397 6398 #define DO_CRC32(NAME, c, sz) \ 6399 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 6400 { return op_crc32(s, a, c, sz); } 6401 6402 DO_CRC32(CRC32B, false, MO_8) 6403 DO_CRC32(CRC32H, false, MO_16) 6404 DO_CRC32(CRC32W, false, MO_32) 6405 DO_CRC32(CRC32CB, true, MO_8) 6406 DO_CRC32(CRC32CH, true, MO_16) 6407 DO_CRC32(CRC32CW, true, MO_32) 6408 6409 #undef DO_CRC32 6410 6411 /* 6412 * Miscellaneous instructions 6413 */ 6414 6415 static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a) 6416 { 6417 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6418 return false; 6419 } 6420 gen_mrs_banked(s, a->r, a->sysm, a->rd); 6421 return true; 6422 } 6423 6424 static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a) 6425 { 6426 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6427 return false; 6428 } 6429 gen_msr_banked(s, a->r, a->sysm, a->rn); 6430 return true; 6431 } 6432 6433 static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a) 6434 { 6435 TCGv_i32 tmp; 6436 6437 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6438 return false; 6439 } 6440 if (a->r) { 6441 if (IS_USER(s)) { 6442 unallocated_encoding(s); 6443 return true; 6444 } 6445 tmp = load_cpu_field(spsr); 6446 } else { 6447 tmp = tcg_temp_new_i32(); 6448 gen_helper_cpsr_read(tmp, cpu_env); 6449 } 6450 store_reg(s, a->rd, tmp); 6451 return true; 6452 } 6453 6454 static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a) 6455 { 6456 TCGv_i32 tmp; 6457 uint32_t mask = msr_mask(s, a->mask, a->r); 6458 6459 if (arm_dc_feature(s, ARM_FEATURE_M)) { 6460 return false; 6461 } 6462 tmp = load_reg(s, a->rn); 6463 if (gen_set_psr(s, mask, a->r, tmp)) { 6464 unallocated_encoding(s); 6465 } 6466 return true; 6467 } 6468 6469 static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a) 6470 { 6471 TCGv_i32 tmp; 6472 6473 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 6474 return false; 6475 } 6476 tmp = tcg_temp_new_i32(); 6477 gen_helper_v7m_mrs(tmp, cpu_env, tcg_constant_i32(a->sysm)); 6478 store_reg(s, a->rd, tmp); 6479 return true; 6480 } 6481 6482 static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a) 6483 { 6484 TCGv_i32 addr, reg; 6485 6486 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 6487 return false; 6488 } 6489 addr = tcg_constant_i32((a->mask << 10) | a->sysm); 6490 reg = load_reg(s, a->rn); 6491 gen_helper_v7m_msr(cpu_env, addr, reg); 6492 tcg_temp_free_i32(reg); 6493 /* If we wrote to CONTROL, the EL might have changed */ 6494 gen_rebuild_hflags(s, true); 6495 gen_lookup_tb(s); 6496 return true; 6497 } 6498 6499 static bool trans_BX(DisasContext *s, arg_BX *a) 6500 { 6501 if (!ENABLE_ARCH_4T) { 6502 return false; 6503 } 6504 gen_bx_excret(s, load_reg(s, a->rm)); 6505 return true; 6506 } 6507 6508 static bool trans_BXJ(DisasContext *s, arg_BXJ *a) 6509 { 6510 if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) { 6511 return false; 6512 } 6513 /* 6514 * v7A allows BXJ to be trapped via HSTR.TJDBX. We don't waste a 6515 * TBFLAGS bit on a basically-never-happens case, so call a helper 6516 * function to check for the trap and raise the exception if needed 6517 * (passing it the register number for the syndrome value). 6518 * v8A doesn't have this HSTR bit. 6519 */ 6520 if (!arm_dc_feature(s, ARM_FEATURE_V8) && 6521 arm_dc_feature(s, ARM_FEATURE_EL2) && 6522 s->current_el < 2 && s->ns) { 6523 gen_helper_check_bxj_trap(cpu_env, tcg_constant_i32(a->rm)); 6524 } 6525 /* Trivial implementation equivalent to bx. */ 6526 gen_bx(s, load_reg(s, a->rm)); 6527 return true; 6528 } 6529 6530 static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a) 6531 { 6532 TCGv_i32 tmp; 6533 6534 if (!ENABLE_ARCH_5) { 6535 return false; 6536 } 6537 tmp = load_reg(s, a->rm); 6538 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 6539 gen_bx(s, tmp); 6540 return true; 6541 } 6542 6543 /* 6544 * BXNS/BLXNS: only exist for v8M with the security extensions, 6545 * and always UNDEF if NonSecure. We don't implement these in 6546 * the user-only mode either (in theory you can use them from 6547 * Secure User mode but they are too tied in to system emulation). 6548 */ 6549 static bool trans_BXNS(DisasContext *s, arg_BXNS *a) 6550 { 6551 if (!s->v8m_secure || IS_USER_ONLY) { 6552 unallocated_encoding(s); 6553 } else { 6554 gen_bxns(s, a->rm); 6555 } 6556 return true; 6557 } 6558 6559 static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a) 6560 { 6561 if (!s->v8m_secure || IS_USER_ONLY) { 6562 unallocated_encoding(s); 6563 } else { 6564 gen_blxns(s, a->rm); 6565 } 6566 return true; 6567 } 6568 6569 static bool trans_CLZ(DisasContext *s, arg_CLZ *a) 6570 { 6571 TCGv_i32 tmp; 6572 6573 if (!ENABLE_ARCH_5) { 6574 return false; 6575 } 6576 tmp = load_reg(s, a->rm); 6577 tcg_gen_clzi_i32(tmp, tmp, 32); 6578 store_reg(s, a->rd, tmp); 6579 return true; 6580 } 6581 6582 static bool trans_ERET(DisasContext *s, arg_ERET *a) 6583 { 6584 TCGv_i32 tmp; 6585 6586 if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) { 6587 return false; 6588 } 6589 if (IS_USER(s)) { 6590 unallocated_encoding(s); 6591 return true; 6592 } 6593 if (s->current_el == 2) { 6594 /* ERET from Hyp uses ELR_Hyp, not LR */ 6595 tmp = load_cpu_field(elr_el[2]); 6596 } else { 6597 tmp = load_reg(s, 14); 6598 } 6599 gen_exception_return(s, tmp); 6600 return true; 6601 } 6602 6603 static bool trans_HLT(DisasContext *s, arg_HLT *a) 6604 { 6605 gen_hlt(s, a->imm); 6606 return true; 6607 } 6608 6609 static bool trans_BKPT(DisasContext *s, arg_BKPT *a) 6610 { 6611 if (!ENABLE_ARCH_5) { 6612 return false; 6613 } 6614 /* BKPT is OK with ECI set and leaves it untouched */ 6615 s->eci_handled = true; 6616 if (arm_dc_feature(s, ARM_FEATURE_M) && 6617 semihosting_enabled(s->current_el == 0) && 6618 (a->imm == 0xab)) { 6619 gen_exception_internal_insn(s, EXCP_SEMIHOST); 6620 } else { 6621 gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false)); 6622 } 6623 return true; 6624 } 6625 6626 static bool trans_HVC(DisasContext *s, arg_HVC *a) 6627 { 6628 if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) { 6629 return false; 6630 } 6631 if (IS_USER(s)) { 6632 unallocated_encoding(s); 6633 } else { 6634 gen_hvc(s, a->imm); 6635 } 6636 return true; 6637 } 6638 6639 static bool trans_SMC(DisasContext *s, arg_SMC *a) 6640 { 6641 if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) { 6642 return false; 6643 } 6644 if (IS_USER(s)) { 6645 unallocated_encoding(s); 6646 } else { 6647 gen_smc(s); 6648 } 6649 return true; 6650 } 6651 6652 static bool trans_SG(DisasContext *s, arg_SG *a) 6653 { 6654 if (!arm_dc_feature(s, ARM_FEATURE_M) || 6655 !arm_dc_feature(s, ARM_FEATURE_V8)) { 6656 return false; 6657 } 6658 /* 6659 * SG (v8M only) 6660 * The bulk of the behaviour for this instruction is implemented 6661 * in v7m_handle_execute_nsc(), which deals with the insn when 6662 * it is executed by a CPU in non-secure state from memory 6663 * which is Secure & NonSecure-Callable. 6664 * Here we only need to handle the remaining cases: 6665 * * in NS memory (including the "security extension not 6666 * implemented" case) : NOP 6667 * * in S memory but CPU already secure (clear IT bits) 6668 * We know that the attribute for the memory this insn is 6669 * in must match the current CPU state, because otherwise 6670 * get_phys_addr_pmsav8 would have generated an exception. 6671 */ 6672 if (s->v8m_secure) { 6673 /* Like the IT insn, we don't need to generate any code */ 6674 s->condexec_cond = 0; 6675 s->condexec_mask = 0; 6676 } 6677 return true; 6678 } 6679 6680 static bool trans_TT(DisasContext *s, arg_TT *a) 6681 { 6682 TCGv_i32 addr, tmp; 6683 6684 if (!arm_dc_feature(s, ARM_FEATURE_M) || 6685 !arm_dc_feature(s, ARM_FEATURE_V8)) { 6686 return false; 6687 } 6688 if (a->rd == 13 || a->rd == 15 || a->rn == 15) { 6689 /* We UNDEF for these UNPREDICTABLE cases */ 6690 unallocated_encoding(s); 6691 return true; 6692 } 6693 if (a->A && !s->v8m_secure) { 6694 /* This case is UNDEFINED. */ 6695 unallocated_encoding(s); 6696 return true; 6697 } 6698 6699 addr = load_reg(s, a->rn); 6700 tmp = tcg_temp_new_i32(); 6701 gen_helper_v7m_tt(tmp, cpu_env, addr, tcg_constant_i32((a->A << 1) | a->T)); 6702 tcg_temp_free_i32(addr); 6703 store_reg(s, a->rd, tmp); 6704 return true; 6705 } 6706 6707 /* 6708 * Load/store register index 6709 */ 6710 6711 static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w) 6712 { 6713 ISSInfo ret; 6714 6715 /* ISS not valid if writeback */ 6716 if (p && !w) { 6717 ret = rd; 6718 if (curr_insn_len(s) == 2) { 6719 ret |= ISSIs16Bit; 6720 } 6721 } else { 6722 ret = ISSInvalid; 6723 } 6724 return ret; 6725 } 6726 6727 static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a) 6728 { 6729 TCGv_i32 addr = load_reg(s, a->rn); 6730 6731 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 6732 gen_helper_v8m_stackcheck(cpu_env, addr); 6733 } 6734 6735 if (a->p) { 6736 TCGv_i32 ofs = load_reg(s, a->rm); 6737 gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); 6738 if (a->u) { 6739 tcg_gen_add_i32(addr, addr, ofs); 6740 } else { 6741 tcg_gen_sub_i32(addr, addr, ofs); 6742 } 6743 tcg_temp_free_i32(ofs); 6744 } 6745 return addr; 6746 } 6747 6748 static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a, 6749 TCGv_i32 addr, int address_offset) 6750 { 6751 if (!a->p) { 6752 TCGv_i32 ofs = load_reg(s, a->rm); 6753 gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); 6754 if (a->u) { 6755 tcg_gen_add_i32(addr, addr, ofs); 6756 } else { 6757 tcg_gen_sub_i32(addr, addr, ofs); 6758 } 6759 tcg_temp_free_i32(ofs); 6760 } else if (!a->w) { 6761 tcg_temp_free_i32(addr); 6762 return; 6763 } 6764 tcg_gen_addi_i32(addr, addr, address_offset); 6765 store_reg(s, a->rn, addr); 6766 } 6767 6768 static bool op_load_rr(DisasContext *s, arg_ldst_rr *a, 6769 MemOp mop, int mem_idx) 6770 { 6771 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); 6772 TCGv_i32 addr, tmp; 6773 6774 addr = op_addr_rr_pre(s, a); 6775 6776 tmp = tcg_temp_new_i32(); 6777 gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); 6778 disas_set_da_iss(s, mop, issinfo); 6779 6780 /* 6781 * Perform base writeback before the loaded value to 6782 * ensure correct behavior with overlapping index registers. 6783 */ 6784 op_addr_rr_post(s, a, addr, 0); 6785 store_reg_from_load(s, a->rt, tmp); 6786 return true; 6787 } 6788 6789 static bool op_store_rr(DisasContext *s, arg_ldst_rr *a, 6790 MemOp mop, int mem_idx) 6791 { 6792 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; 6793 TCGv_i32 addr, tmp; 6794 6795 /* 6796 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it 6797 * is either UNPREDICTABLE or has defined behaviour 6798 */ 6799 if (s->thumb && a->rn == 15) { 6800 return false; 6801 } 6802 6803 addr = op_addr_rr_pre(s, a); 6804 6805 tmp = load_reg(s, a->rt); 6806 gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); 6807 disas_set_da_iss(s, mop, issinfo); 6808 tcg_temp_free_i32(tmp); 6809 6810 op_addr_rr_post(s, a, addr, 0); 6811 return true; 6812 } 6813 6814 static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a) 6815 { 6816 int mem_idx = get_mem_index(s); 6817 TCGv_i32 addr, tmp; 6818 6819 if (!ENABLE_ARCH_5TE) { 6820 return false; 6821 } 6822 if (a->rt & 1) { 6823 unallocated_encoding(s); 6824 return true; 6825 } 6826 addr = op_addr_rr_pre(s, a); 6827 6828 tmp = tcg_temp_new_i32(); 6829 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6830 store_reg(s, a->rt, tmp); 6831 6832 tcg_gen_addi_i32(addr, addr, 4); 6833 6834 tmp = tcg_temp_new_i32(); 6835 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6836 store_reg(s, a->rt + 1, tmp); 6837 6838 /* LDRD w/ base writeback is undefined if the registers overlap. */ 6839 op_addr_rr_post(s, a, addr, -4); 6840 return true; 6841 } 6842 6843 static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a) 6844 { 6845 int mem_idx = get_mem_index(s); 6846 TCGv_i32 addr, tmp; 6847 6848 if (!ENABLE_ARCH_5TE) { 6849 return false; 6850 } 6851 if (a->rt & 1) { 6852 unallocated_encoding(s); 6853 return true; 6854 } 6855 addr = op_addr_rr_pre(s, a); 6856 6857 tmp = load_reg(s, a->rt); 6858 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6859 tcg_temp_free_i32(tmp); 6860 6861 tcg_gen_addi_i32(addr, addr, 4); 6862 6863 tmp = load_reg(s, a->rt + 1); 6864 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6865 tcg_temp_free_i32(tmp); 6866 6867 op_addr_rr_post(s, a, addr, -4); 6868 return true; 6869 } 6870 6871 /* 6872 * Load/store immediate index 6873 */ 6874 6875 static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a) 6876 { 6877 int ofs = a->imm; 6878 6879 if (!a->u) { 6880 ofs = -ofs; 6881 } 6882 6883 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 6884 /* 6885 * Stackcheck. Here we know 'addr' is the current SP; 6886 * U is set if we're moving SP up, else down. It is 6887 * UNKNOWN whether the limit check triggers when SP starts 6888 * below the limit and ends up above it; we chose to do so. 6889 */ 6890 if (!a->u) { 6891 TCGv_i32 newsp = tcg_temp_new_i32(); 6892 tcg_gen_addi_i32(newsp, cpu_R[13], ofs); 6893 gen_helper_v8m_stackcheck(cpu_env, newsp); 6894 tcg_temp_free_i32(newsp); 6895 } else { 6896 gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]); 6897 } 6898 } 6899 6900 return add_reg_for_lit(s, a->rn, a->p ? ofs : 0); 6901 } 6902 6903 static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a, 6904 TCGv_i32 addr, int address_offset) 6905 { 6906 if (!a->p) { 6907 if (a->u) { 6908 address_offset += a->imm; 6909 } else { 6910 address_offset -= a->imm; 6911 } 6912 } else if (!a->w) { 6913 tcg_temp_free_i32(addr); 6914 return; 6915 } 6916 tcg_gen_addi_i32(addr, addr, address_offset); 6917 store_reg(s, a->rn, addr); 6918 } 6919 6920 static bool op_load_ri(DisasContext *s, arg_ldst_ri *a, 6921 MemOp mop, int mem_idx) 6922 { 6923 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); 6924 TCGv_i32 addr, tmp; 6925 6926 addr = op_addr_ri_pre(s, a); 6927 6928 tmp = tcg_temp_new_i32(); 6929 gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); 6930 disas_set_da_iss(s, mop, issinfo); 6931 6932 /* 6933 * Perform base writeback before the loaded value to 6934 * ensure correct behavior with overlapping index registers. 6935 */ 6936 op_addr_ri_post(s, a, addr, 0); 6937 store_reg_from_load(s, a->rt, tmp); 6938 return true; 6939 } 6940 6941 static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, 6942 MemOp mop, int mem_idx) 6943 { 6944 ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; 6945 TCGv_i32 addr, tmp; 6946 6947 /* 6948 * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it 6949 * is either UNPREDICTABLE or has defined behaviour 6950 */ 6951 if (s->thumb && a->rn == 15) { 6952 return false; 6953 } 6954 6955 addr = op_addr_ri_pre(s, a); 6956 6957 tmp = load_reg(s, a->rt); 6958 gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); 6959 disas_set_da_iss(s, mop, issinfo); 6960 tcg_temp_free_i32(tmp); 6961 6962 op_addr_ri_post(s, a, addr, 0); 6963 return true; 6964 } 6965 6966 static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) 6967 { 6968 int mem_idx = get_mem_index(s); 6969 TCGv_i32 addr, tmp; 6970 6971 addr = op_addr_ri_pre(s, a); 6972 6973 tmp = tcg_temp_new_i32(); 6974 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6975 store_reg(s, a->rt, tmp); 6976 6977 tcg_gen_addi_i32(addr, addr, 4); 6978 6979 tmp = tcg_temp_new_i32(); 6980 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 6981 store_reg(s, rt2, tmp); 6982 6983 /* LDRD w/ base writeback is undefined if the registers overlap. */ 6984 op_addr_ri_post(s, a, addr, -4); 6985 return true; 6986 } 6987 6988 static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a) 6989 { 6990 if (!ENABLE_ARCH_5TE || (a->rt & 1)) { 6991 return false; 6992 } 6993 return op_ldrd_ri(s, a, a->rt + 1); 6994 } 6995 6996 static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) 6997 { 6998 arg_ldst_ri b = { 6999 .u = a->u, .w = a->w, .p = a->p, 7000 .rn = a->rn, .rt = a->rt, .imm = a->imm 7001 }; 7002 return op_ldrd_ri(s, &b, a->rt2); 7003 } 7004 7005 static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) 7006 { 7007 int mem_idx = get_mem_index(s); 7008 TCGv_i32 addr, tmp; 7009 7010 addr = op_addr_ri_pre(s, a); 7011 7012 tmp = load_reg(s, a->rt); 7013 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 7014 tcg_temp_free_i32(tmp); 7015 7016 tcg_gen_addi_i32(addr, addr, 4); 7017 7018 tmp = load_reg(s, rt2); 7019 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 7020 tcg_temp_free_i32(tmp); 7021 7022 op_addr_ri_post(s, a, addr, -4); 7023 return true; 7024 } 7025 7026 static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a) 7027 { 7028 if (!ENABLE_ARCH_5TE || (a->rt & 1)) { 7029 return false; 7030 } 7031 return op_strd_ri(s, a, a->rt + 1); 7032 } 7033 7034 static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) 7035 { 7036 arg_ldst_ri b = { 7037 .u = a->u, .w = a->w, .p = a->p, 7038 .rn = a->rn, .rt = a->rt, .imm = a->imm 7039 }; 7040 return op_strd_ri(s, &b, a->rt2); 7041 } 7042 7043 #define DO_LDST(NAME, WHICH, MEMOP) \ 7044 static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \ 7045 { \ 7046 return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \ 7047 } \ 7048 static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \ 7049 { \ 7050 return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \ 7051 } \ 7052 static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \ 7053 { \ 7054 return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \ 7055 } \ 7056 static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \ 7057 { \ 7058 return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \ 7059 } 7060 7061 DO_LDST(LDR, load, MO_UL) 7062 DO_LDST(LDRB, load, MO_UB) 7063 DO_LDST(LDRH, load, MO_UW) 7064 DO_LDST(LDRSB, load, MO_SB) 7065 DO_LDST(LDRSH, load, MO_SW) 7066 7067 DO_LDST(STR, store, MO_UL) 7068 DO_LDST(STRB, store, MO_UB) 7069 DO_LDST(STRH, store, MO_UW) 7070 7071 #undef DO_LDST 7072 7073 /* 7074 * Synchronization primitives 7075 */ 7076 7077 static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc) 7078 { 7079 TCGv_i32 addr, tmp; 7080 TCGv taddr; 7081 7082 opc |= s->be_data; 7083 addr = load_reg(s, a->rn); 7084 taddr = gen_aa32_addr(s, addr, opc); 7085 tcg_temp_free_i32(addr); 7086 7087 tmp = load_reg(s, a->rt2); 7088 tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc); 7089 tcg_temp_free(taddr); 7090 7091 store_reg(s, a->rt, tmp); 7092 return true; 7093 } 7094 7095 static bool trans_SWP(DisasContext *s, arg_SWP *a) 7096 { 7097 return op_swp(s, a, MO_UL | MO_ALIGN); 7098 } 7099 7100 static bool trans_SWPB(DisasContext *s, arg_SWP *a) 7101 { 7102 return op_swp(s, a, MO_UB); 7103 } 7104 7105 /* 7106 * Load/Store Exclusive and Load-Acquire/Store-Release 7107 */ 7108 7109 static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel) 7110 { 7111 TCGv_i32 addr; 7112 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ 7113 bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); 7114 7115 /* We UNDEF for these UNPREDICTABLE cases. */ 7116 if (a->rd == 15 || a->rn == 15 || a->rt == 15 7117 || a->rd == a->rn || a->rd == a->rt 7118 || (!v8a && s->thumb && (a->rd == 13 || a->rt == 13)) 7119 || (mop == MO_64 7120 && (a->rt2 == 15 7121 || a->rd == a->rt2 7122 || (!v8a && s->thumb && a->rt2 == 13)))) { 7123 unallocated_encoding(s); 7124 return true; 7125 } 7126 7127 if (rel) { 7128 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 7129 } 7130 7131 addr = tcg_temp_new_i32(); 7132 load_reg_var(s, addr, a->rn); 7133 tcg_gen_addi_i32(addr, addr, a->imm); 7134 7135 gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop); 7136 tcg_temp_free_i32(addr); 7137 return true; 7138 } 7139 7140 static bool trans_STREX(DisasContext *s, arg_STREX *a) 7141 { 7142 if (!ENABLE_ARCH_6) { 7143 return false; 7144 } 7145 return op_strex(s, a, MO_32, false); 7146 } 7147 7148 static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a) 7149 { 7150 if (!ENABLE_ARCH_6K) { 7151 return false; 7152 } 7153 /* We UNDEF for these UNPREDICTABLE cases. */ 7154 if (a->rt & 1) { 7155 unallocated_encoding(s); 7156 return true; 7157 } 7158 a->rt2 = a->rt + 1; 7159 return op_strex(s, a, MO_64, false); 7160 } 7161 7162 static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a) 7163 { 7164 return op_strex(s, a, MO_64, false); 7165 } 7166 7167 static bool trans_STREXB(DisasContext *s, arg_STREX *a) 7168 { 7169 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7170 return false; 7171 } 7172 return op_strex(s, a, MO_8, false); 7173 } 7174 7175 static bool trans_STREXH(DisasContext *s, arg_STREX *a) 7176 { 7177 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7178 return false; 7179 } 7180 return op_strex(s, a, MO_16, false); 7181 } 7182 7183 static bool trans_STLEX(DisasContext *s, arg_STREX *a) 7184 { 7185 if (!ENABLE_ARCH_8) { 7186 return false; 7187 } 7188 return op_strex(s, a, MO_32, true); 7189 } 7190 7191 static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a) 7192 { 7193 if (!ENABLE_ARCH_8) { 7194 return false; 7195 } 7196 /* We UNDEF for these UNPREDICTABLE cases. */ 7197 if (a->rt & 1) { 7198 unallocated_encoding(s); 7199 return true; 7200 } 7201 a->rt2 = a->rt + 1; 7202 return op_strex(s, a, MO_64, true); 7203 } 7204 7205 static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a) 7206 { 7207 if (!ENABLE_ARCH_8) { 7208 return false; 7209 } 7210 return op_strex(s, a, MO_64, true); 7211 } 7212 7213 static bool trans_STLEXB(DisasContext *s, arg_STREX *a) 7214 { 7215 if (!ENABLE_ARCH_8) { 7216 return false; 7217 } 7218 return op_strex(s, a, MO_8, true); 7219 } 7220 7221 static bool trans_STLEXH(DisasContext *s, arg_STREX *a) 7222 { 7223 if (!ENABLE_ARCH_8) { 7224 return false; 7225 } 7226 return op_strex(s, a, MO_16, true); 7227 } 7228 7229 static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop) 7230 { 7231 TCGv_i32 addr, tmp; 7232 7233 if (!ENABLE_ARCH_8) { 7234 return false; 7235 } 7236 /* We UNDEF for these UNPREDICTABLE cases. */ 7237 if (a->rn == 15 || a->rt == 15) { 7238 unallocated_encoding(s); 7239 return true; 7240 } 7241 7242 addr = load_reg(s, a->rn); 7243 tmp = load_reg(s, a->rt); 7244 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 7245 gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); 7246 disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite); 7247 7248 tcg_temp_free_i32(tmp); 7249 tcg_temp_free_i32(addr); 7250 return true; 7251 } 7252 7253 static bool trans_STL(DisasContext *s, arg_STL *a) 7254 { 7255 return op_stl(s, a, MO_UL); 7256 } 7257 7258 static bool trans_STLB(DisasContext *s, arg_STL *a) 7259 { 7260 return op_stl(s, a, MO_UB); 7261 } 7262 7263 static bool trans_STLH(DisasContext *s, arg_STL *a) 7264 { 7265 return op_stl(s, a, MO_UW); 7266 } 7267 7268 static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq) 7269 { 7270 TCGv_i32 addr; 7271 /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ 7272 bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); 7273 7274 /* We UNDEF for these UNPREDICTABLE cases. */ 7275 if (a->rn == 15 || a->rt == 15 7276 || (!v8a && s->thumb && a->rt == 13) 7277 || (mop == MO_64 7278 && (a->rt2 == 15 || a->rt == a->rt2 7279 || (!v8a && s->thumb && a->rt2 == 13)))) { 7280 unallocated_encoding(s); 7281 return true; 7282 } 7283 7284 addr = tcg_temp_new_i32(); 7285 load_reg_var(s, addr, a->rn); 7286 tcg_gen_addi_i32(addr, addr, a->imm); 7287 7288 gen_load_exclusive(s, a->rt, a->rt2, addr, mop); 7289 tcg_temp_free_i32(addr); 7290 7291 if (acq) { 7292 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 7293 } 7294 return true; 7295 } 7296 7297 static bool trans_LDREX(DisasContext *s, arg_LDREX *a) 7298 { 7299 if (!ENABLE_ARCH_6) { 7300 return false; 7301 } 7302 return op_ldrex(s, a, MO_32, false); 7303 } 7304 7305 static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a) 7306 { 7307 if (!ENABLE_ARCH_6K) { 7308 return false; 7309 } 7310 /* We UNDEF for these UNPREDICTABLE cases. */ 7311 if (a->rt & 1) { 7312 unallocated_encoding(s); 7313 return true; 7314 } 7315 a->rt2 = a->rt + 1; 7316 return op_ldrex(s, a, MO_64, false); 7317 } 7318 7319 static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a) 7320 { 7321 return op_ldrex(s, a, MO_64, false); 7322 } 7323 7324 static bool trans_LDREXB(DisasContext *s, arg_LDREX *a) 7325 { 7326 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7327 return false; 7328 } 7329 return op_ldrex(s, a, MO_8, false); 7330 } 7331 7332 static bool trans_LDREXH(DisasContext *s, arg_LDREX *a) 7333 { 7334 if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { 7335 return false; 7336 } 7337 return op_ldrex(s, a, MO_16, false); 7338 } 7339 7340 static bool trans_LDAEX(DisasContext *s, arg_LDREX *a) 7341 { 7342 if (!ENABLE_ARCH_8) { 7343 return false; 7344 } 7345 return op_ldrex(s, a, MO_32, true); 7346 } 7347 7348 static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a) 7349 { 7350 if (!ENABLE_ARCH_8) { 7351 return false; 7352 } 7353 /* We UNDEF for these UNPREDICTABLE cases. */ 7354 if (a->rt & 1) { 7355 unallocated_encoding(s); 7356 return true; 7357 } 7358 a->rt2 = a->rt + 1; 7359 return op_ldrex(s, a, MO_64, true); 7360 } 7361 7362 static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a) 7363 { 7364 if (!ENABLE_ARCH_8) { 7365 return false; 7366 } 7367 return op_ldrex(s, a, MO_64, true); 7368 } 7369 7370 static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a) 7371 { 7372 if (!ENABLE_ARCH_8) { 7373 return false; 7374 } 7375 return op_ldrex(s, a, MO_8, true); 7376 } 7377 7378 static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a) 7379 { 7380 if (!ENABLE_ARCH_8) { 7381 return false; 7382 } 7383 return op_ldrex(s, a, MO_16, true); 7384 } 7385 7386 static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop) 7387 { 7388 TCGv_i32 addr, tmp; 7389 7390 if (!ENABLE_ARCH_8) { 7391 return false; 7392 } 7393 /* We UNDEF for these UNPREDICTABLE cases. */ 7394 if (a->rn == 15 || a->rt == 15) { 7395 unallocated_encoding(s); 7396 return true; 7397 } 7398 7399 addr = load_reg(s, a->rn); 7400 tmp = tcg_temp_new_i32(); 7401 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); 7402 disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel); 7403 tcg_temp_free_i32(addr); 7404 7405 store_reg(s, a->rt, tmp); 7406 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 7407 return true; 7408 } 7409 7410 static bool trans_LDA(DisasContext *s, arg_LDA *a) 7411 { 7412 return op_lda(s, a, MO_UL); 7413 } 7414 7415 static bool trans_LDAB(DisasContext *s, arg_LDA *a) 7416 { 7417 return op_lda(s, a, MO_UB); 7418 } 7419 7420 static bool trans_LDAH(DisasContext *s, arg_LDA *a) 7421 { 7422 return op_lda(s, a, MO_UW); 7423 } 7424 7425 /* 7426 * Media instructions 7427 */ 7428 7429 static bool trans_USADA8(DisasContext *s, arg_USADA8 *a) 7430 { 7431 TCGv_i32 t1, t2; 7432 7433 if (!ENABLE_ARCH_6) { 7434 return false; 7435 } 7436 7437 t1 = load_reg(s, a->rn); 7438 t2 = load_reg(s, a->rm); 7439 gen_helper_usad8(t1, t1, t2); 7440 tcg_temp_free_i32(t2); 7441 if (a->ra != 15) { 7442 t2 = load_reg(s, a->ra); 7443 tcg_gen_add_i32(t1, t1, t2); 7444 tcg_temp_free_i32(t2); 7445 } 7446 store_reg(s, a->rd, t1); 7447 return true; 7448 } 7449 7450 static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u) 7451 { 7452 TCGv_i32 tmp; 7453 int width = a->widthm1 + 1; 7454 int shift = a->lsb; 7455 7456 if (!ENABLE_ARCH_6T2) { 7457 return false; 7458 } 7459 if (shift + width > 32) { 7460 /* UNPREDICTABLE; we choose to UNDEF */ 7461 unallocated_encoding(s); 7462 return true; 7463 } 7464 7465 tmp = load_reg(s, a->rn); 7466 if (u) { 7467 tcg_gen_extract_i32(tmp, tmp, shift, width); 7468 } else { 7469 tcg_gen_sextract_i32(tmp, tmp, shift, width); 7470 } 7471 store_reg(s, a->rd, tmp); 7472 return true; 7473 } 7474 7475 static bool trans_SBFX(DisasContext *s, arg_SBFX *a) 7476 { 7477 return op_bfx(s, a, false); 7478 } 7479 7480 static bool trans_UBFX(DisasContext *s, arg_UBFX *a) 7481 { 7482 return op_bfx(s, a, true); 7483 } 7484 7485 static bool trans_BFCI(DisasContext *s, arg_BFCI *a) 7486 { 7487 TCGv_i32 tmp; 7488 int msb = a->msb, lsb = a->lsb; 7489 int width; 7490 7491 if (!ENABLE_ARCH_6T2) { 7492 return false; 7493 } 7494 if (msb < lsb) { 7495 /* UNPREDICTABLE; we choose to UNDEF */ 7496 unallocated_encoding(s); 7497 return true; 7498 } 7499 7500 width = msb + 1 - lsb; 7501 if (a->rn == 15) { 7502 /* BFC */ 7503 tmp = tcg_const_i32(0); 7504 } else { 7505 /* BFI */ 7506 tmp = load_reg(s, a->rn); 7507 } 7508 if (width != 32) { 7509 TCGv_i32 tmp2 = load_reg(s, a->rd); 7510 tcg_gen_deposit_i32(tmp, tmp2, tmp, lsb, width); 7511 tcg_temp_free_i32(tmp2); 7512 } 7513 store_reg(s, a->rd, tmp); 7514 return true; 7515 } 7516 7517 static bool trans_UDF(DisasContext *s, arg_UDF *a) 7518 { 7519 unallocated_encoding(s); 7520 return true; 7521 } 7522 7523 /* 7524 * Parallel addition and subtraction 7525 */ 7526 7527 static bool op_par_addsub(DisasContext *s, arg_rrr *a, 7528 void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32)) 7529 { 7530 TCGv_i32 t0, t1; 7531 7532 if (s->thumb 7533 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7534 : !ENABLE_ARCH_6) { 7535 return false; 7536 } 7537 7538 t0 = load_reg(s, a->rn); 7539 t1 = load_reg(s, a->rm); 7540 7541 gen(t0, t0, t1); 7542 7543 tcg_temp_free_i32(t1); 7544 store_reg(s, a->rd, t0); 7545 return true; 7546 } 7547 7548 static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a, 7549 void (*gen)(TCGv_i32, TCGv_i32, 7550 TCGv_i32, TCGv_ptr)) 7551 { 7552 TCGv_i32 t0, t1; 7553 TCGv_ptr ge; 7554 7555 if (s->thumb 7556 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7557 : !ENABLE_ARCH_6) { 7558 return false; 7559 } 7560 7561 t0 = load_reg(s, a->rn); 7562 t1 = load_reg(s, a->rm); 7563 7564 ge = tcg_temp_new_ptr(); 7565 tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE)); 7566 gen(t0, t0, t1, ge); 7567 7568 tcg_temp_free_ptr(ge); 7569 tcg_temp_free_i32(t1); 7570 store_reg(s, a->rd, t0); 7571 return true; 7572 } 7573 7574 #define DO_PAR_ADDSUB(NAME, helper) \ 7575 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 7576 { \ 7577 return op_par_addsub(s, a, helper); \ 7578 } 7579 7580 #define DO_PAR_ADDSUB_GE(NAME, helper) \ 7581 static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ 7582 { \ 7583 return op_par_addsub_ge(s, a, helper); \ 7584 } 7585 7586 DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16) 7587 DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx) 7588 DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx) 7589 DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16) 7590 DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8) 7591 DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8) 7592 7593 DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16) 7594 DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx) 7595 DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx) 7596 DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16) 7597 DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8) 7598 DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8) 7599 7600 DO_PAR_ADDSUB(QADD16, gen_helper_qadd16) 7601 DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx) 7602 DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx) 7603 DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16) 7604 DO_PAR_ADDSUB(QADD8, gen_helper_qadd8) 7605 DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8) 7606 7607 DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16) 7608 DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx) 7609 DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx) 7610 DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16) 7611 DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8) 7612 DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8) 7613 7614 DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16) 7615 DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx) 7616 DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx) 7617 DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16) 7618 DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8) 7619 DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8) 7620 7621 DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16) 7622 DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx) 7623 DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx) 7624 DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16) 7625 DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8) 7626 DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8) 7627 7628 #undef DO_PAR_ADDSUB 7629 #undef DO_PAR_ADDSUB_GE 7630 7631 /* 7632 * Packing, unpacking, saturation, and reversal 7633 */ 7634 7635 static bool trans_PKH(DisasContext *s, arg_PKH *a) 7636 { 7637 TCGv_i32 tn, tm; 7638 int shift = a->imm; 7639 7640 if (s->thumb 7641 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7642 : !ENABLE_ARCH_6) { 7643 return false; 7644 } 7645 7646 tn = load_reg(s, a->rn); 7647 tm = load_reg(s, a->rm); 7648 if (a->tb) { 7649 /* PKHTB */ 7650 if (shift == 0) { 7651 shift = 31; 7652 } 7653 tcg_gen_sari_i32(tm, tm, shift); 7654 tcg_gen_deposit_i32(tn, tn, tm, 0, 16); 7655 } else { 7656 /* PKHBT */ 7657 tcg_gen_shli_i32(tm, tm, shift); 7658 tcg_gen_deposit_i32(tn, tm, tn, 0, 16); 7659 } 7660 tcg_temp_free_i32(tm); 7661 store_reg(s, a->rd, tn); 7662 return true; 7663 } 7664 7665 static bool op_sat(DisasContext *s, arg_sat *a, 7666 void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) 7667 { 7668 TCGv_i32 tmp; 7669 int shift = a->imm; 7670 7671 if (!ENABLE_ARCH_6) { 7672 return false; 7673 } 7674 7675 tmp = load_reg(s, a->rn); 7676 if (a->sh) { 7677 tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31); 7678 } else { 7679 tcg_gen_shli_i32(tmp, tmp, shift); 7680 } 7681 7682 gen(tmp, cpu_env, tmp, tcg_constant_i32(a->satimm)); 7683 7684 store_reg(s, a->rd, tmp); 7685 return true; 7686 } 7687 7688 static bool trans_SSAT(DisasContext *s, arg_sat *a) 7689 { 7690 return op_sat(s, a, gen_helper_ssat); 7691 } 7692 7693 static bool trans_USAT(DisasContext *s, arg_sat *a) 7694 { 7695 return op_sat(s, a, gen_helper_usat); 7696 } 7697 7698 static bool trans_SSAT16(DisasContext *s, arg_sat *a) 7699 { 7700 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7701 return false; 7702 } 7703 return op_sat(s, a, gen_helper_ssat16); 7704 } 7705 7706 static bool trans_USAT16(DisasContext *s, arg_sat *a) 7707 { 7708 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7709 return false; 7710 } 7711 return op_sat(s, a, gen_helper_usat16); 7712 } 7713 7714 static bool op_xta(DisasContext *s, arg_rrr_rot *a, 7715 void (*gen_extract)(TCGv_i32, TCGv_i32), 7716 void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32)) 7717 { 7718 TCGv_i32 tmp; 7719 7720 if (!ENABLE_ARCH_6) { 7721 return false; 7722 } 7723 7724 tmp = load_reg(s, a->rm); 7725 /* 7726 * TODO: In many cases we could do a shift instead of a rotate. 7727 * Combined with a simple extend, that becomes an extract. 7728 */ 7729 tcg_gen_rotri_i32(tmp, tmp, a->rot * 8); 7730 gen_extract(tmp, tmp); 7731 7732 if (a->rn != 15) { 7733 TCGv_i32 tmp2 = load_reg(s, a->rn); 7734 gen_add(tmp, tmp, tmp2); 7735 tcg_temp_free_i32(tmp2); 7736 } 7737 store_reg(s, a->rd, tmp); 7738 return true; 7739 } 7740 7741 static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a) 7742 { 7743 return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32); 7744 } 7745 7746 static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a) 7747 { 7748 return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32); 7749 } 7750 7751 static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a) 7752 { 7753 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7754 return false; 7755 } 7756 return op_xta(s, a, gen_helper_sxtb16, gen_add16); 7757 } 7758 7759 static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a) 7760 { 7761 return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32); 7762 } 7763 7764 static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a) 7765 { 7766 return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32); 7767 } 7768 7769 static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a) 7770 { 7771 if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { 7772 return false; 7773 } 7774 return op_xta(s, a, gen_helper_uxtb16, gen_add16); 7775 } 7776 7777 static bool trans_SEL(DisasContext *s, arg_rrr *a) 7778 { 7779 TCGv_i32 t1, t2, t3; 7780 7781 if (s->thumb 7782 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 7783 : !ENABLE_ARCH_6) { 7784 return false; 7785 } 7786 7787 t1 = load_reg(s, a->rn); 7788 t2 = load_reg(s, a->rm); 7789 t3 = tcg_temp_new_i32(); 7790 tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE)); 7791 gen_helper_sel_flags(t1, t3, t1, t2); 7792 tcg_temp_free_i32(t3); 7793 tcg_temp_free_i32(t2); 7794 store_reg(s, a->rd, t1); 7795 return true; 7796 } 7797 7798 static bool op_rr(DisasContext *s, arg_rr *a, 7799 void (*gen)(TCGv_i32, TCGv_i32)) 7800 { 7801 TCGv_i32 tmp; 7802 7803 tmp = load_reg(s, a->rm); 7804 gen(tmp, tmp); 7805 store_reg(s, a->rd, tmp); 7806 return true; 7807 } 7808 7809 static bool trans_REV(DisasContext *s, arg_rr *a) 7810 { 7811 if (!ENABLE_ARCH_6) { 7812 return false; 7813 } 7814 return op_rr(s, a, tcg_gen_bswap32_i32); 7815 } 7816 7817 static bool trans_REV16(DisasContext *s, arg_rr *a) 7818 { 7819 if (!ENABLE_ARCH_6) { 7820 return false; 7821 } 7822 return op_rr(s, a, gen_rev16); 7823 } 7824 7825 static bool trans_REVSH(DisasContext *s, arg_rr *a) 7826 { 7827 if (!ENABLE_ARCH_6) { 7828 return false; 7829 } 7830 return op_rr(s, a, gen_revsh); 7831 } 7832 7833 static bool trans_RBIT(DisasContext *s, arg_rr *a) 7834 { 7835 if (!ENABLE_ARCH_6T2) { 7836 return false; 7837 } 7838 return op_rr(s, a, gen_helper_rbit); 7839 } 7840 7841 /* 7842 * Signed multiply, signed and unsigned divide 7843 */ 7844 7845 static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) 7846 { 7847 TCGv_i32 t1, t2; 7848 7849 if (!ENABLE_ARCH_6) { 7850 return false; 7851 } 7852 7853 t1 = load_reg(s, a->rn); 7854 t2 = load_reg(s, a->rm); 7855 if (m_swap) { 7856 gen_swap_half(t2, t2); 7857 } 7858 gen_smul_dual(t1, t2); 7859 7860 if (sub) { 7861 /* 7862 * This subtraction cannot overflow, so we can do a simple 7863 * 32-bit subtraction and then a possible 32-bit saturating 7864 * addition of Ra. 7865 */ 7866 tcg_gen_sub_i32(t1, t1, t2); 7867 tcg_temp_free_i32(t2); 7868 7869 if (a->ra != 15) { 7870 t2 = load_reg(s, a->ra); 7871 gen_helper_add_setq(t1, cpu_env, t1, t2); 7872 tcg_temp_free_i32(t2); 7873 } 7874 } else if (a->ra == 15) { 7875 /* Single saturation-checking addition */ 7876 gen_helper_add_setq(t1, cpu_env, t1, t2); 7877 tcg_temp_free_i32(t2); 7878 } else { 7879 /* 7880 * We need to add the products and Ra together and then 7881 * determine whether the final result overflowed. Doing 7882 * this as two separate add-and-check-overflow steps incorrectly 7883 * sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1. 7884 * Do all the arithmetic at 64-bits and then check for overflow. 7885 */ 7886 TCGv_i64 p64, q64; 7887 TCGv_i32 t3, qf, one; 7888 7889 p64 = tcg_temp_new_i64(); 7890 q64 = tcg_temp_new_i64(); 7891 tcg_gen_ext_i32_i64(p64, t1); 7892 tcg_gen_ext_i32_i64(q64, t2); 7893 tcg_gen_add_i64(p64, p64, q64); 7894 load_reg_var(s, t2, a->ra); 7895 tcg_gen_ext_i32_i64(q64, t2); 7896 tcg_gen_add_i64(p64, p64, q64); 7897 tcg_temp_free_i64(q64); 7898 7899 tcg_gen_extr_i64_i32(t1, t2, p64); 7900 tcg_temp_free_i64(p64); 7901 /* 7902 * t1 is the low half of the result which goes into Rd. 7903 * We have overflow and must set Q if the high half (t2) 7904 * is different from the sign-extension of t1. 7905 */ 7906 t3 = tcg_temp_new_i32(); 7907 tcg_gen_sari_i32(t3, t1, 31); 7908 qf = load_cpu_field(QF); 7909 one = tcg_constant_i32(1); 7910 tcg_gen_movcond_i32(TCG_COND_NE, qf, t2, t3, one, qf); 7911 store_cpu_field(qf, QF); 7912 tcg_temp_free_i32(t3); 7913 tcg_temp_free_i32(t2); 7914 } 7915 store_reg(s, a->rd, t1); 7916 return true; 7917 } 7918 7919 static bool trans_SMLAD(DisasContext *s, arg_rrrr *a) 7920 { 7921 return op_smlad(s, a, false, false); 7922 } 7923 7924 static bool trans_SMLADX(DisasContext *s, arg_rrrr *a) 7925 { 7926 return op_smlad(s, a, true, false); 7927 } 7928 7929 static bool trans_SMLSD(DisasContext *s, arg_rrrr *a) 7930 { 7931 return op_smlad(s, a, false, true); 7932 } 7933 7934 static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a) 7935 { 7936 return op_smlad(s, a, true, true); 7937 } 7938 7939 static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) 7940 { 7941 TCGv_i32 t1, t2; 7942 TCGv_i64 l1, l2; 7943 7944 if (!ENABLE_ARCH_6) { 7945 return false; 7946 } 7947 7948 t1 = load_reg(s, a->rn); 7949 t2 = load_reg(s, a->rm); 7950 if (m_swap) { 7951 gen_swap_half(t2, t2); 7952 } 7953 gen_smul_dual(t1, t2); 7954 7955 l1 = tcg_temp_new_i64(); 7956 l2 = tcg_temp_new_i64(); 7957 tcg_gen_ext_i32_i64(l1, t1); 7958 tcg_gen_ext_i32_i64(l2, t2); 7959 tcg_temp_free_i32(t1); 7960 tcg_temp_free_i32(t2); 7961 7962 if (sub) { 7963 tcg_gen_sub_i64(l1, l1, l2); 7964 } else { 7965 tcg_gen_add_i64(l1, l1, l2); 7966 } 7967 tcg_temp_free_i64(l2); 7968 7969 gen_addq(s, l1, a->ra, a->rd); 7970 gen_storeq_reg(s, a->ra, a->rd, l1); 7971 tcg_temp_free_i64(l1); 7972 return true; 7973 } 7974 7975 static bool trans_SMLALD(DisasContext *s, arg_rrrr *a) 7976 { 7977 return op_smlald(s, a, false, false); 7978 } 7979 7980 static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a) 7981 { 7982 return op_smlald(s, a, true, false); 7983 } 7984 7985 static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a) 7986 { 7987 return op_smlald(s, a, false, true); 7988 } 7989 7990 static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a) 7991 { 7992 return op_smlald(s, a, true, true); 7993 } 7994 7995 static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub) 7996 { 7997 TCGv_i32 t1, t2; 7998 7999 if (s->thumb 8000 ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) 8001 : !ENABLE_ARCH_6) { 8002 return false; 8003 } 8004 8005 t1 = load_reg(s, a->rn); 8006 t2 = load_reg(s, a->rm); 8007 tcg_gen_muls2_i32(t2, t1, t1, t2); 8008 8009 if (a->ra != 15) { 8010 TCGv_i32 t3 = load_reg(s, a->ra); 8011 if (sub) { 8012 /* 8013 * For SMMLS, we need a 64-bit subtract. Borrow caused by 8014 * a non-zero multiplicand lowpart, and the correct result 8015 * lowpart for rounding. 8016 */ 8017 tcg_gen_sub2_i32(t2, t1, tcg_constant_i32(0), t3, t2, t1); 8018 } else { 8019 tcg_gen_add_i32(t1, t1, t3); 8020 } 8021 tcg_temp_free_i32(t3); 8022 } 8023 if (round) { 8024 /* 8025 * Adding 0x80000000 to the 64-bit quantity means that we have 8026 * carry in to the high word when the low word has the msb set. 8027 */ 8028 tcg_gen_shri_i32(t2, t2, 31); 8029 tcg_gen_add_i32(t1, t1, t2); 8030 } 8031 tcg_temp_free_i32(t2); 8032 store_reg(s, a->rd, t1); 8033 return true; 8034 } 8035 8036 static bool trans_SMMLA(DisasContext *s, arg_rrrr *a) 8037 { 8038 return op_smmla(s, a, false, false); 8039 } 8040 8041 static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a) 8042 { 8043 return op_smmla(s, a, true, false); 8044 } 8045 8046 static bool trans_SMMLS(DisasContext *s, arg_rrrr *a) 8047 { 8048 return op_smmla(s, a, false, true); 8049 } 8050 8051 static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a) 8052 { 8053 return op_smmla(s, a, true, true); 8054 } 8055 8056 static bool op_div(DisasContext *s, arg_rrr *a, bool u) 8057 { 8058 TCGv_i32 t1, t2; 8059 8060 if (s->thumb 8061 ? !dc_isar_feature(aa32_thumb_div, s) 8062 : !dc_isar_feature(aa32_arm_div, s)) { 8063 return false; 8064 } 8065 8066 t1 = load_reg(s, a->rn); 8067 t2 = load_reg(s, a->rm); 8068 if (u) { 8069 gen_helper_udiv(t1, cpu_env, t1, t2); 8070 } else { 8071 gen_helper_sdiv(t1, cpu_env, t1, t2); 8072 } 8073 tcg_temp_free_i32(t2); 8074 store_reg(s, a->rd, t1); 8075 return true; 8076 } 8077 8078 static bool trans_SDIV(DisasContext *s, arg_rrr *a) 8079 { 8080 return op_div(s, a, false); 8081 } 8082 8083 static bool trans_UDIV(DisasContext *s, arg_rrr *a) 8084 { 8085 return op_div(s, a, true); 8086 } 8087 8088 /* 8089 * Block data transfer 8090 */ 8091 8092 static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n) 8093 { 8094 TCGv_i32 addr = load_reg(s, a->rn); 8095 8096 if (a->b) { 8097 if (a->i) { 8098 /* pre increment */ 8099 tcg_gen_addi_i32(addr, addr, 4); 8100 } else { 8101 /* pre decrement */ 8102 tcg_gen_addi_i32(addr, addr, -(n * 4)); 8103 } 8104 } else if (!a->i && n != 1) { 8105 /* post decrement */ 8106 tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); 8107 } 8108 8109 if (s->v8m_stackcheck && a->rn == 13 && a->w) { 8110 /* 8111 * If the writeback is incrementing SP rather than 8112 * decrementing it, and the initial SP is below the 8113 * stack limit but the final written-back SP would 8114 * be above, then we must not perform any memory 8115 * accesses, but it is IMPDEF whether we generate 8116 * an exception. We choose to do so in this case. 8117 * At this point 'addr' is the lowest address, so 8118 * either the original SP (if incrementing) or our 8119 * final SP (if decrementing), so that's what we check. 8120 */ 8121 gen_helper_v8m_stackcheck(cpu_env, addr); 8122 } 8123 8124 return addr; 8125 } 8126 8127 static void op_addr_block_post(DisasContext *s, arg_ldst_block *a, 8128 TCGv_i32 addr, int n) 8129 { 8130 if (a->w) { 8131 /* write back */ 8132 if (!a->b) { 8133 if (a->i) { 8134 /* post increment */ 8135 tcg_gen_addi_i32(addr, addr, 4); 8136 } else { 8137 /* post decrement */ 8138 tcg_gen_addi_i32(addr, addr, -(n * 4)); 8139 } 8140 } else if (!a->i && n != 1) { 8141 /* pre decrement */ 8142 tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); 8143 } 8144 store_reg(s, a->rn, addr); 8145 } else { 8146 tcg_temp_free_i32(addr); 8147 } 8148 } 8149 8150 static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n) 8151 { 8152 int i, j, n, list, mem_idx; 8153 bool user = a->u; 8154 TCGv_i32 addr, tmp; 8155 8156 if (user) { 8157 /* STM (user) */ 8158 if (IS_USER(s)) { 8159 /* Only usable in supervisor mode. */ 8160 unallocated_encoding(s); 8161 return true; 8162 } 8163 } 8164 8165 list = a->list; 8166 n = ctpop16(list); 8167 if (n < min_n || a->rn == 15) { 8168 unallocated_encoding(s); 8169 return true; 8170 } 8171 8172 s->eci_handled = true; 8173 8174 addr = op_addr_block_pre(s, a, n); 8175 mem_idx = get_mem_index(s); 8176 8177 for (i = j = 0; i < 16; i++) { 8178 if (!(list & (1 << i))) { 8179 continue; 8180 } 8181 8182 if (user && i != 15) { 8183 tmp = tcg_temp_new_i32(); 8184 gen_helper_get_user_reg(tmp, cpu_env, tcg_constant_i32(i)); 8185 } else { 8186 tmp = load_reg(s, i); 8187 } 8188 gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 8189 tcg_temp_free_i32(tmp); 8190 8191 /* No need to add after the last transfer. */ 8192 if (++j != n) { 8193 tcg_gen_addi_i32(addr, addr, 4); 8194 } 8195 } 8196 8197 op_addr_block_post(s, a, addr, n); 8198 clear_eci_state(s); 8199 return true; 8200 } 8201 8202 static bool trans_STM(DisasContext *s, arg_ldst_block *a) 8203 { 8204 /* BitCount(list) < 1 is UNPREDICTABLE */ 8205 return op_stm(s, a, 1); 8206 } 8207 8208 static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a) 8209 { 8210 /* Writeback register in register list is UNPREDICTABLE for T32. */ 8211 if (a->w && (a->list & (1 << a->rn))) { 8212 unallocated_encoding(s); 8213 return true; 8214 } 8215 /* BitCount(list) < 2 is UNPREDICTABLE */ 8216 return op_stm(s, a, 2); 8217 } 8218 8219 static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n) 8220 { 8221 int i, j, n, list, mem_idx; 8222 bool loaded_base; 8223 bool user = a->u; 8224 bool exc_return = false; 8225 TCGv_i32 addr, tmp, loaded_var; 8226 8227 if (user) { 8228 /* LDM (user), LDM (exception return) */ 8229 if (IS_USER(s)) { 8230 /* Only usable in supervisor mode. */ 8231 unallocated_encoding(s); 8232 return true; 8233 } 8234 if (extract32(a->list, 15, 1)) { 8235 exc_return = true; 8236 user = false; 8237 } else { 8238 /* LDM (user) does not allow writeback. */ 8239 if (a->w) { 8240 unallocated_encoding(s); 8241 return true; 8242 } 8243 } 8244 } 8245 8246 list = a->list; 8247 n = ctpop16(list); 8248 if (n < min_n || a->rn == 15) { 8249 unallocated_encoding(s); 8250 return true; 8251 } 8252 8253 s->eci_handled = true; 8254 8255 addr = op_addr_block_pre(s, a, n); 8256 mem_idx = get_mem_index(s); 8257 loaded_base = false; 8258 loaded_var = NULL; 8259 8260 for (i = j = 0; i < 16; i++) { 8261 if (!(list & (1 << i))) { 8262 continue; 8263 } 8264 8265 tmp = tcg_temp_new_i32(); 8266 gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); 8267 if (user) { 8268 gen_helper_set_user_reg(cpu_env, tcg_constant_i32(i), tmp); 8269 tcg_temp_free_i32(tmp); 8270 } else if (i == a->rn) { 8271 loaded_var = tmp; 8272 loaded_base = true; 8273 } else if (i == 15 && exc_return) { 8274 store_pc_exc_ret(s, tmp); 8275 } else { 8276 store_reg_from_load(s, i, tmp); 8277 } 8278 8279 /* No need to add after the last transfer. */ 8280 if (++j != n) { 8281 tcg_gen_addi_i32(addr, addr, 4); 8282 } 8283 } 8284 8285 op_addr_block_post(s, a, addr, n); 8286 8287 if (loaded_base) { 8288 /* Note that we reject base == pc above. */ 8289 store_reg(s, a->rn, loaded_var); 8290 } 8291 8292 if (exc_return) { 8293 /* Restore CPSR from SPSR. */ 8294 tmp = load_cpu_field(spsr); 8295 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 8296 gen_io_start(); 8297 } 8298 gen_helper_cpsr_write_eret(cpu_env, tmp); 8299 tcg_temp_free_i32(tmp); 8300 /* Must exit loop to check un-masked IRQs */ 8301 s->base.is_jmp = DISAS_EXIT; 8302 } 8303 clear_eci_state(s); 8304 return true; 8305 } 8306 8307 static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a) 8308 { 8309 /* 8310 * Writeback register in register list is UNPREDICTABLE 8311 * for ArchVersion() >= 7. Prior to v7, A32 would write 8312 * an UNKNOWN value to the base register. 8313 */ 8314 if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) { 8315 unallocated_encoding(s); 8316 return true; 8317 } 8318 /* BitCount(list) < 1 is UNPREDICTABLE */ 8319 return do_ldm(s, a, 1); 8320 } 8321 8322 static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a) 8323 { 8324 /* Writeback register in register list is UNPREDICTABLE for T32. */ 8325 if (a->w && (a->list & (1 << a->rn))) { 8326 unallocated_encoding(s); 8327 return true; 8328 } 8329 /* BitCount(list) < 2 is UNPREDICTABLE */ 8330 return do_ldm(s, a, 2); 8331 } 8332 8333 static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a) 8334 { 8335 /* Writeback is conditional on the base register not being loaded. */ 8336 a->w = !(a->list & (1 << a->rn)); 8337 /* BitCount(list) < 1 is UNPREDICTABLE */ 8338 return do_ldm(s, a, 1); 8339 } 8340 8341 static bool trans_CLRM(DisasContext *s, arg_CLRM *a) 8342 { 8343 int i; 8344 TCGv_i32 zero; 8345 8346 if (!dc_isar_feature(aa32_m_sec_state, s)) { 8347 return false; 8348 } 8349 8350 if (extract32(a->list, 13, 1)) { 8351 return false; 8352 } 8353 8354 if (!a->list) { 8355 /* UNPREDICTABLE; we choose to UNDEF */ 8356 return false; 8357 } 8358 8359 s->eci_handled = true; 8360 8361 zero = tcg_constant_i32(0); 8362 for (i = 0; i < 15; i++) { 8363 if (extract32(a->list, i, 1)) { 8364 /* Clear R[i] */ 8365 tcg_gen_mov_i32(cpu_R[i], zero); 8366 } 8367 } 8368 if (extract32(a->list, 15, 1)) { 8369 /* 8370 * Clear APSR (by calling the MSR helper with the same argument 8371 * as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0) 8372 */ 8373 gen_helper_v7m_msr(cpu_env, tcg_constant_i32(0xc00), zero); 8374 } 8375 clear_eci_state(s); 8376 return true; 8377 } 8378 8379 /* 8380 * Branch, branch with link 8381 */ 8382 8383 static bool trans_B(DisasContext *s, arg_i *a) 8384 { 8385 gen_jmp(s, jmp_diff(s, a->imm)); 8386 return true; 8387 } 8388 8389 static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a) 8390 { 8391 /* This has cond from encoding, required to be outside IT block. */ 8392 if (a->cond >= 0xe) { 8393 return false; 8394 } 8395 if (s->condexec_mask) { 8396 unallocated_encoding(s); 8397 return true; 8398 } 8399 arm_skip_unless(s, a->cond); 8400 gen_jmp(s, jmp_diff(s, a->imm)); 8401 return true; 8402 } 8403 8404 static bool trans_BL(DisasContext *s, arg_i *a) 8405 { 8406 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 8407 gen_jmp(s, jmp_diff(s, a->imm)); 8408 return true; 8409 } 8410 8411 static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a) 8412 { 8413 /* 8414 * BLX <imm> would be useless on M-profile; the encoding space 8415 * is used for other insns from v8.1M onward, and UNDEFs before that. 8416 */ 8417 if (arm_dc_feature(s, ARM_FEATURE_M)) { 8418 return false; 8419 } 8420 8421 /* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */ 8422 if (s->thumb && (a->imm & 2)) { 8423 return false; 8424 } 8425 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); 8426 store_cpu_field_constant(!s->thumb, thumb); 8427 /* This jump is computed from an aligned PC: subtract off the low bits. */ 8428 gen_jmp(s, jmp_diff(s, a->imm - (s->pc_curr & 3))); 8429 return true; 8430 } 8431 8432 static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a) 8433 { 8434 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8435 gen_pc_plus_diff(s, cpu_R[14], jmp_diff(s, a->imm << 12)); 8436 return true; 8437 } 8438 8439 static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a) 8440 { 8441 TCGv_i32 tmp = tcg_temp_new_i32(); 8442 8443 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8444 tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1); 8445 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); 8446 gen_bx(s, tmp); 8447 return true; 8448 } 8449 8450 static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a) 8451 { 8452 TCGv_i32 tmp; 8453 8454 assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); 8455 if (!ENABLE_ARCH_5) { 8456 return false; 8457 } 8458 tmp = tcg_temp_new_i32(); 8459 tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1); 8460 tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); 8461 gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); 8462 gen_bx(s, tmp); 8463 return true; 8464 } 8465 8466 static bool trans_BF(DisasContext *s, arg_BF *a) 8467 { 8468 /* 8469 * M-profile branch future insns. The architecture permits an 8470 * implementation to implement these as NOPs (equivalent to 8471 * discarding the LO_BRANCH_INFO cache immediately), and we 8472 * take that IMPDEF option because for QEMU a "real" implementation 8473 * would be complicated and wouldn't execute any faster. 8474 */ 8475 if (!dc_isar_feature(aa32_lob, s)) { 8476 return false; 8477 } 8478 if (a->boff == 0) { 8479 /* SEE "Related encodings" (loop insns) */ 8480 return false; 8481 } 8482 /* Handle as NOP */ 8483 return true; 8484 } 8485 8486 static bool trans_DLS(DisasContext *s, arg_DLS *a) 8487 { 8488 /* M-profile low-overhead loop start */ 8489 TCGv_i32 tmp; 8490 8491 if (!dc_isar_feature(aa32_lob, s)) { 8492 return false; 8493 } 8494 if (a->rn == 13 || a->rn == 15) { 8495 /* 8496 * For DLSTP rn == 15 is a related encoding (LCTP); the 8497 * other cases caught by this condition are all 8498 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF 8499 */ 8500 return false; 8501 } 8502 8503 if (a->size != 4) { 8504 /* DLSTP */ 8505 if (!dc_isar_feature(aa32_mve, s)) { 8506 return false; 8507 } 8508 if (!vfp_access_check(s)) { 8509 return true; 8510 } 8511 } 8512 8513 /* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */ 8514 tmp = load_reg(s, a->rn); 8515 store_reg(s, 14, tmp); 8516 if (a->size != 4) { 8517 /* DLSTP: set FPSCR.LTPSIZE */ 8518 store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); 8519 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 8520 } 8521 return true; 8522 } 8523 8524 static bool trans_WLS(DisasContext *s, arg_WLS *a) 8525 { 8526 /* M-profile low-overhead while-loop start */ 8527 TCGv_i32 tmp; 8528 DisasLabel nextlabel; 8529 8530 if (!dc_isar_feature(aa32_lob, s)) { 8531 return false; 8532 } 8533 if (a->rn == 13 || a->rn == 15) { 8534 /* 8535 * For WLSTP rn == 15 is a related encoding (LE); the 8536 * other cases caught by this condition are all 8537 * CONSTRAINED UNPREDICTABLE: we choose to UNDEF 8538 */ 8539 return false; 8540 } 8541 if (s->condexec_mask) { 8542 /* 8543 * WLS in an IT block is CONSTRAINED UNPREDICTABLE; 8544 * we choose to UNDEF, because otherwise our use of 8545 * gen_goto_tb(1) would clash with the use of TB exit 1 8546 * in the dc->condjmp condition-failed codepath in 8547 * arm_tr_tb_stop() and we'd get an assertion. 8548 */ 8549 return false; 8550 } 8551 if (a->size != 4) { 8552 /* WLSTP */ 8553 if (!dc_isar_feature(aa32_mve, s)) { 8554 return false; 8555 } 8556 /* 8557 * We need to check that the FPU is enabled here, but mustn't 8558 * call vfp_access_check() to do that because we don't want to 8559 * do the lazy state preservation in the "loop count is zero" case. 8560 * Do the check-and-raise-exception by hand. 8561 */ 8562 if (s->fp_excp_el) { 8563 gen_exception_insn_el(s, 0, EXCP_NOCP, 8564 syn_uncategorized(), s->fp_excp_el); 8565 return true; 8566 } 8567 } 8568 8569 nextlabel = gen_disas_label(s); 8570 tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_R[a->rn], 0, nextlabel.label); 8571 tmp = load_reg(s, a->rn); 8572 store_reg(s, 14, tmp); 8573 if (a->size != 4) { 8574 /* 8575 * WLSTP: set FPSCR.LTPSIZE. This requires that we do the 8576 * lazy state preservation, new FP context creation, etc, 8577 * that vfp_access_check() does. We know that the actual 8578 * access check will succeed (ie it won't generate code that 8579 * throws an exception) because we did that check by hand earlier. 8580 */ 8581 bool ok = vfp_access_check(s); 8582 assert(ok); 8583 store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); 8584 /* 8585 * LTPSIZE updated, but MVE_NO_PRED will always be the same thing (0) 8586 * when we take this upcoming exit from this TB, so gen_jmp_tb() is OK. 8587 */ 8588 } 8589 gen_jmp_tb(s, curr_insn_len(s), 1); 8590 8591 set_disas_label(s, nextlabel); 8592 gen_jmp(s, jmp_diff(s, a->imm)); 8593 return true; 8594 } 8595 8596 static bool trans_LE(DisasContext *s, arg_LE *a) 8597 { 8598 /* 8599 * M-profile low-overhead loop end. The architecture permits an 8600 * implementation to discard the LO_BRANCH_INFO cache at any time, 8601 * and we take the IMPDEF option to never set it in the first place 8602 * (equivalent to always discarding it immediately), because for QEMU 8603 * a "real" implementation would be complicated and wouldn't execute 8604 * any faster. 8605 */ 8606 TCGv_i32 tmp; 8607 DisasLabel loopend; 8608 bool fpu_active; 8609 8610 if (!dc_isar_feature(aa32_lob, s)) { 8611 return false; 8612 } 8613 if (a->f && a->tp) { 8614 return false; 8615 } 8616 if (s->condexec_mask) { 8617 /* 8618 * LE in an IT block is CONSTRAINED UNPREDICTABLE; 8619 * we choose to UNDEF, because otherwise our use of 8620 * gen_goto_tb(1) would clash with the use of TB exit 1 8621 * in the dc->condjmp condition-failed codepath in 8622 * arm_tr_tb_stop() and we'd get an assertion. 8623 */ 8624 return false; 8625 } 8626 if (a->tp) { 8627 /* LETP */ 8628 if (!dc_isar_feature(aa32_mve, s)) { 8629 return false; 8630 } 8631 if (!vfp_access_check(s)) { 8632 s->eci_handled = true; 8633 return true; 8634 } 8635 } 8636 8637 /* LE/LETP is OK with ECI set and leaves it untouched */ 8638 s->eci_handled = true; 8639 8640 /* 8641 * With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE 8642 * UsageFault exception for the LE insn in that case. Note that we 8643 * are not directly checking FPSCR.LTPSIZE but instead check the 8644 * pseudocode LTPSIZE() function, which returns 4 if the FPU is 8645 * not currently active (ie ActiveFPState() returns false). We 8646 * can identify not-active purely from our TB state flags, as the 8647 * FPU is active only if: 8648 * the FPU is enabled 8649 * AND lazy state preservation is not active 8650 * AND we do not need a new fp context (this is the ASPEN/FPCA check) 8651 * 8652 * Usually we don't need to care about this distinction between 8653 * LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check() 8654 * will either take an exception or clear the conditions that make 8655 * the FPU not active. But LE is an unusual case of a non-FP insn 8656 * that looks at LTPSIZE. 8657 */ 8658 fpu_active = !s->fp_excp_el && !s->v7m_lspact && !s->v7m_new_fp_ctxt_needed; 8659 8660 if (!a->tp && dc_isar_feature(aa32_mve, s) && fpu_active) { 8661 /* Need to do a runtime check for LTPSIZE != 4 */ 8662 DisasLabel skipexc = gen_disas_label(s); 8663 tmp = load_cpu_field(v7m.ltpsize); 8664 tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 4, skipexc.label); 8665 tcg_temp_free_i32(tmp); 8666 gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); 8667 set_disas_label(s, skipexc); 8668 } 8669 8670 if (a->f) { 8671 /* Loop-forever: just jump back to the loop start */ 8672 gen_jmp(s, jmp_diff(s, -a->imm)); 8673 return true; 8674 } 8675 8676 /* 8677 * Not loop-forever. If LR <= loop-decrement-value this is the last loop. 8678 * For LE, we know at this point that LTPSIZE must be 4 and the 8679 * loop decrement value is 1. For LETP we need to calculate the decrement 8680 * value from LTPSIZE. 8681 */ 8682 loopend = gen_disas_label(s); 8683 if (!a->tp) { 8684 tcg_gen_brcondi_i32(TCG_COND_LEU, cpu_R[14], 1, loopend.label); 8685 tcg_gen_addi_i32(cpu_R[14], cpu_R[14], -1); 8686 } else { 8687 /* 8688 * Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local 8689 * so that decr stays live after the brcondi. 8690 */ 8691 TCGv_i32 decr = tcg_temp_new_i32(); 8692 TCGv_i32 ltpsize = load_cpu_field(v7m.ltpsize); 8693 tcg_gen_sub_i32(decr, tcg_constant_i32(4), ltpsize); 8694 tcg_gen_shl_i32(decr, tcg_constant_i32(1), decr); 8695 tcg_temp_free_i32(ltpsize); 8696 8697 tcg_gen_brcond_i32(TCG_COND_LEU, cpu_R[14], decr, loopend.label); 8698 8699 tcg_gen_sub_i32(cpu_R[14], cpu_R[14], decr); 8700 tcg_temp_free_i32(decr); 8701 } 8702 /* Jump back to the loop start */ 8703 gen_jmp(s, jmp_diff(s, -a->imm)); 8704 8705 set_disas_label(s, loopend); 8706 if (a->tp) { 8707 /* Exits from tail-pred loops must reset LTPSIZE to 4 */ 8708 store_cpu_field(tcg_constant_i32(4), v7m.ltpsize); 8709 } 8710 /* End TB, continuing to following insn */ 8711 gen_jmp_tb(s, curr_insn_len(s), 1); 8712 return true; 8713 } 8714 8715 static bool trans_LCTP(DisasContext *s, arg_LCTP *a) 8716 { 8717 /* 8718 * M-profile Loop Clear with Tail Predication. Since our implementation 8719 * doesn't cache branch information, all we need to do is reset 8720 * FPSCR.LTPSIZE to 4. 8721 */ 8722 8723 if (!dc_isar_feature(aa32_lob, s) || 8724 !dc_isar_feature(aa32_mve, s)) { 8725 return false; 8726 } 8727 8728 if (!vfp_access_check(s)) { 8729 return true; 8730 } 8731 8732 store_cpu_field_constant(4, v7m.ltpsize); 8733 return true; 8734 } 8735 8736 static bool trans_VCTP(DisasContext *s, arg_VCTP *a) 8737 { 8738 /* 8739 * M-profile Create Vector Tail Predicate. This insn is itself 8740 * predicated and is subject to beatwise execution. 8741 */ 8742 TCGv_i32 rn_shifted, masklen; 8743 8744 if (!dc_isar_feature(aa32_mve, s) || a->rn == 13 || a->rn == 15) { 8745 return false; 8746 } 8747 8748 if (!mve_eci_check(s) || !vfp_access_check(s)) { 8749 return true; 8750 } 8751 8752 /* 8753 * We pre-calculate the mask length here to avoid having 8754 * to have multiple helpers specialized for size. 8755 * We pass the helper "rn <= (1 << (4 - size)) ? (rn << size) : 16". 8756 */ 8757 rn_shifted = tcg_temp_new_i32(); 8758 masklen = load_reg(s, a->rn); 8759 tcg_gen_shli_i32(rn_shifted, masklen, a->size); 8760 tcg_gen_movcond_i32(TCG_COND_LEU, masklen, 8761 masklen, tcg_constant_i32(1 << (4 - a->size)), 8762 rn_shifted, tcg_constant_i32(16)); 8763 gen_helper_mve_vctp(cpu_env, masklen); 8764 tcg_temp_free_i32(masklen); 8765 tcg_temp_free_i32(rn_shifted); 8766 /* This insn updates predication bits */ 8767 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 8768 mve_update_eci(s); 8769 return true; 8770 } 8771 8772 static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half) 8773 { 8774 TCGv_i32 addr, tmp; 8775 8776 tmp = load_reg(s, a->rm); 8777 if (half) { 8778 tcg_gen_add_i32(tmp, tmp, tmp); 8779 } 8780 addr = load_reg(s, a->rn); 8781 tcg_gen_add_i32(addr, addr, tmp); 8782 8783 gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), half ? MO_UW : MO_UB); 8784 8785 tcg_gen_add_i32(tmp, tmp, tmp); 8786 gen_pc_plus_diff(s, addr, jmp_diff(s, 0)); 8787 tcg_gen_add_i32(tmp, tmp, addr); 8788 tcg_temp_free_i32(addr); 8789 store_reg(s, 15, tmp); 8790 return true; 8791 } 8792 8793 static bool trans_TBB(DisasContext *s, arg_tbranch *a) 8794 { 8795 return op_tbranch(s, a, false); 8796 } 8797 8798 static bool trans_TBH(DisasContext *s, arg_tbranch *a) 8799 { 8800 return op_tbranch(s, a, true); 8801 } 8802 8803 static bool trans_CBZ(DisasContext *s, arg_CBZ *a) 8804 { 8805 TCGv_i32 tmp = load_reg(s, a->rn); 8806 8807 arm_gen_condlabel(s); 8808 tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE, 8809 tmp, 0, s->condlabel.label); 8810 tcg_temp_free_i32(tmp); 8811 gen_jmp(s, jmp_diff(s, a->imm)); 8812 return true; 8813 } 8814 8815 /* 8816 * Supervisor call - both T32 & A32 come here so we need to check 8817 * which mode we are in when checking for semihosting. 8818 */ 8819 8820 static bool trans_SVC(DisasContext *s, arg_SVC *a) 8821 { 8822 const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456; 8823 8824 if (!arm_dc_feature(s, ARM_FEATURE_M) && 8825 semihosting_enabled(s->current_el == 0) && 8826 (a->imm == semihost_imm)) { 8827 gen_exception_internal_insn(s, EXCP_SEMIHOST); 8828 } else { 8829 if (s->fgt_svc) { 8830 uint32_t syndrome = syn_aa32_svc(a->imm, s->thumb); 8831 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 8832 } else { 8833 gen_update_pc(s, curr_insn_len(s)); 8834 s->svc_imm = a->imm; 8835 s->base.is_jmp = DISAS_SWI; 8836 } 8837 } 8838 return true; 8839 } 8840 8841 /* 8842 * Unconditional system instructions 8843 */ 8844 8845 static bool trans_RFE(DisasContext *s, arg_RFE *a) 8846 { 8847 static const int8_t pre_offset[4] = { 8848 /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4 8849 }; 8850 static const int8_t post_offset[4] = { 8851 /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0 8852 }; 8853 TCGv_i32 addr, t1, t2; 8854 8855 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8856 return false; 8857 } 8858 if (IS_USER(s)) { 8859 unallocated_encoding(s); 8860 return true; 8861 } 8862 8863 addr = load_reg(s, a->rn); 8864 tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]); 8865 8866 /* Load PC into tmp and CPSR into tmp2. */ 8867 t1 = tcg_temp_new_i32(); 8868 gen_aa32_ld_i32(s, t1, addr, get_mem_index(s), MO_UL | MO_ALIGN); 8869 tcg_gen_addi_i32(addr, addr, 4); 8870 t2 = tcg_temp_new_i32(); 8871 gen_aa32_ld_i32(s, t2, addr, get_mem_index(s), MO_UL | MO_ALIGN); 8872 8873 if (a->w) { 8874 /* Base writeback. */ 8875 tcg_gen_addi_i32(addr, addr, post_offset[a->pu]); 8876 store_reg(s, a->rn, addr); 8877 } else { 8878 tcg_temp_free_i32(addr); 8879 } 8880 gen_rfe(s, t1, t2); 8881 return true; 8882 } 8883 8884 static bool trans_SRS(DisasContext *s, arg_SRS *a) 8885 { 8886 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8887 return false; 8888 } 8889 gen_srs(s, a->mode, a->pu, a->w); 8890 return true; 8891 } 8892 8893 static bool trans_CPS(DisasContext *s, arg_CPS *a) 8894 { 8895 uint32_t mask, val; 8896 8897 if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { 8898 return false; 8899 } 8900 if (IS_USER(s)) { 8901 /* Implemented as NOP in user mode. */ 8902 return true; 8903 } 8904 /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */ 8905 8906 mask = val = 0; 8907 if (a->imod & 2) { 8908 if (a->A) { 8909 mask |= CPSR_A; 8910 } 8911 if (a->I) { 8912 mask |= CPSR_I; 8913 } 8914 if (a->F) { 8915 mask |= CPSR_F; 8916 } 8917 if (a->imod & 1) { 8918 val |= mask; 8919 } 8920 } 8921 if (a->M) { 8922 mask |= CPSR_M; 8923 val |= a->mode; 8924 } 8925 if (mask) { 8926 gen_set_psr_im(s, mask, 0, val); 8927 } 8928 return true; 8929 } 8930 8931 static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a) 8932 { 8933 TCGv_i32 tmp, addr; 8934 8935 if (!arm_dc_feature(s, ARM_FEATURE_M)) { 8936 return false; 8937 } 8938 if (IS_USER(s)) { 8939 /* Implemented as NOP in user mode. */ 8940 return true; 8941 } 8942 8943 tmp = tcg_constant_i32(a->im); 8944 /* FAULTMASK */ 8945 if (a->F) { 8946 addr = tcg_constant_i32(19); 8947 gen_helper_v7m_msr(cpu_env, addr, tmp); 8948 } 8949 /* PRIMASK */ 8950 if (a->I) { 8951 addr = tcg_constant_i32(16); 8952 gen_helper_v7m_msr(cpu_env, addr, tmp); 8953 } 8954 gen_rebuild_hflags(s, false); 8955 gen_lookup_tb(s); 8956 return true; 8957 } 8958 8959 /* 8960 * Clear-Exclusive, Barriers 8961 */ 8962 8963 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 8964 { 8965 if (s->thumb 8966 ? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M) 8967 : !ENABLE_ARCH_6K) { 8968 return false; 8969 } 8970 gen_clrex(s); 8971 return true; 8972 } 8973 8974 static bool trans_DSB(DisasContext *s, arg_DSB *a) 8975 { 8976 if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { 8977 return false; 8978 } 8979 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 8980 return true; 8981 } 8982 8983 static bool trans_DMB(DisasContext *s, arg_DMB *a) 8984 { 8985 return trans_DSB(s, NULL); 8986 } 8987 8988 static bool trans_ISB(DisasContext *s, arg_ISB *a) 8989 { 8990 if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { 8991 return false; 8992 } 8993 /* 8994 * We need to break the TB after this insn to execute 8995 * self-modifying code correctly and also to take 8996 * any pending interrupts immediately. 8997 */ 8998 s->base.is_jmp = DISAS_TOO_MANY; 8999 return true; 9000 } 9001 9002 static bool trans_SB(DisasContext *s, arg_SB *a) 9003 { 9004 if (!dc_isar_feature(aa32_sb, s)) { 9005 return false; 9006 } 9007 /* 9008 * TODO: There is no speculation barrier opcode 9009 * for TCG; MB and end the TB instead. 9010 */ 9011 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 9012 s->base.is_jmp = DISAS_TOO_MANY; 9013 return true; 9014 } 9015 9016 static bool trans_SETEND(DisasContext *s, arg_SETEND *a) 9017 { 9018 if (!ENABLE_ARCH_6) { 9019 return false; 9020 } 9021 if (a->E != (s->be_data == MO_BE)) { 9022 gen_helper_setend(cpu_env); 9023 s->base.is_jmp = DISAS_UPDATE_EXIT; 9024 } 9025 return true; 9026 } 9027 9028 /* 9029 * Preload instructions 9030 * All are nops, contingent on the appropriate arch level. 9031 */ 9032 9033 static bool trans_PLD(DisasContext *s, arg_PLD *a) 9034 { 9035 return ENABLE_ARCH_5TE; 9036 } 9037 9038 static bool trans_PLDW(DisasContext *s, arg_PLD *a) 9039 { 9040 return arm_dc_feature(s, ARM_FEATURE_V7MP); 9041 } 9042 9043 static bool trans_PLI(DisasContext *s, arg_PLD *a) 9044 { 9045 return ENABLE_ARCH_7; 9046 } 9047 9048 /* 9049 * If-then 9050 */ 9051 9052 static bool trans_IT(DisasContext *s, arg_IT *a) 9053 { 9054 int cond_mask = a->cond_mask; 9055 9056 /* 9057 * No actual code generated for this insn, just setup state. 9058 * 9059 * Combinations of firstcond and mask which set up an 0b1111 9060 * condition are UNPREDICTABLE; we take the CONSTRAINED 9061 * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110, 9062 * i.e. both meaning "execute always". 9063 */ 9064 s->condexec_cond = (cond_mask >> 4) & 0xe; 9065 s->condexec_mask = cond_mask & 0x1f; 9066 return true; 9067 } 9068 9069 /* v8.1M CSEL/CSINC/CSNEG/CSINV */ 9070 static bool trans_CSEL(DisasContext *s, arg_CSEL *a) 9071 { 9072 TCGv_i32 rn, rm, zero; 9073 DisasCompare c; 9074 9075 if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { 9076 return false; 9077 } 9078 9079 if (a->rm == 13) { 9080 /* SEE "Related encodings" (MVE shifts) */ 9081 return false; 9082 } 9083 9084 if (a->rd == 13 || a->rd == 15 || a->rn == 13 || a->fcond >= 14) { 9085 /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ 9086 return false; 9087 } 9088 9089 /* In this insn input reg fields of 0b1111 mean "zero", not "PC" */ 9090 zero = tcg_constant_i32(0); 9091 if (a->rn == 15) { 9092 rn = zero; 9093 } else { 9094 rn = load_reg(s, a->rn); 9095 } 9096 if (a->rm == 15) { 9097 rm = zero; 9098 } else { 9099 rm = load_reg(s, a->rm); 9100 } 9101 9102 switch (a->op) { 9103 case 0: /* CSEL */ 9104 break; 9105 case 1: /* CSINC */ 9106 tcg_gen_addi_i32(rm, rm, 1); 9107 break; 9108 case 2: /* CSINV */ 9109 tcg_gen_not_i32(rm, rm); 9110 break; 9111 case 3: /* CSNEG */ 9112 tcg_gen_neg_i32(rm, rm); 9113 break; 9114 default: 9115 g_assert_not_reached(); 9116 } 9117 9118 arm_test_cc(&c, a->fcond); 9119 tcg_gen_movcond_i32(c.cond, rn, c.value, zero, rn, rm); 9120 9121 store_reg(s, a->rd, rn); 9122 tcg_temp_free_i32(rm); 9123 9124 return true; 9125 } 9126 9127 /* 9128 * Legacy decoder. 9129 */ 9130 9131 static void disas_arm_insn(DisasContext *s, unsigned int insn) 9132 { 9133 unsigned int cond = insn >> 28; 9134 9135 /* M variants do not implement ARM mode; this must raise the INVSTATE 9136 * UsageFault exception. 9137 */ 9138 if (arm_dc_feature(s, ARM_FEATURE_M)) { 9139 gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); 9140 return; 9141 } 9142 9143 if (s->pstate_il) { 9144 /* 9145 * Illegal execution state. This has priority over BTI 9146 * exceptions, but comes after instruction abort exceptions. 9147 */ 9148 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 9149 return; 9150 } 9151 9152 if (cond == 0xf) { 9153 /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we 9154 * choose to UNDEF. In ARMv5 and above the space is used 9155 * for miscellaneous unconditional instructions. 9156 */ 9157 if (!arm_dc_feature(s, ARM_FEATURE_V5)) { 9158 unallocated_encoding(s); 9159 return; 9160 } 9161 9162 /* Unconditional instructions. */ 9163 /* TODO: Perhaps merge these into one decodetree output file. */ 9164 if (disas_a32_uncond(s, insn) || 9165 disas_vfp_uncond(s, insn) || 9166 disas_neon_dp(s, insn) || 9167 disas_neon_ls(s, insn) || 9168 disas_neon_shared(s, insn)) { 9169 return; 9170 } 9171 /* fall back to legacy decoder */ 9172 9173 if ((insn & 0x0e000f00) == 0x0c000100) { 9174 if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { 9175 /* iWMMXt register transfer. */ 9176 if (extract32(s->c15_cpar, 1, 1)) { 9177 if (!disas_iwmmxt_insn(s, insn)) { 9178 return; 9179 } 9180 } 9181 } 9182 } 9183 goto illegal_op; 9184 } 9185 if (cond != 0xe) { 9186 /* if not always execute, we generate a conditional jump to 9187 next instruction */ 9188 arm_skip_unless(s, cond); 9189 } 9190 9191 /* TODO: Perhaps merge these into one decodetree output file. */ 9192 if (disas_a32(s, insn) || 9193 disas_vfp(s, insn)) { 9194 return; 9195 } 9196 /* fall back to legacy decoder */ 9197 /* TODO: convert xscale/iwmmxt decoder to decodetree ?? */ 9198 if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { 9199 if (((insn & 0x0c000e00) == 0x0c000000) 9200 && ((insn & 0x03000000) != 0x03000000)) { 9201 /* Coprocessor insn, coprocessor 0 or 1 */ 9202 disas_xscale_insn(s, insn); 9203 return; 9204 } 9205 } 9206 9207 illegal_op: 9208 unallocated_encoding(s); 9209 } 9210 9211 static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn) 9212 { 9213 /* 9214 * Return true if this is a 16 bit instruction. We must be precise 9215 * about this (matching the decode). 9216 */ 9217 if ((insn >> 11) < 0x1d) { 9218 /* Definitely a 16-bit instruction */ 9219 return true; 9220 } 9221 9222 /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the 9223 * first half of a 32-bit Thumb insn. Thumb-1 cores might 9224 * end up actually treating this as two 16-bit insns, though, 9225 * if it's half of a bl/blx pair that might span a page boundary. 9226 */ 9227 if (arm_dc_feature(s, ARM_FEATURE_THUMB2) || 9228 arm_dc_feature(s, ARM_FEATURE_M)) { 9229 /* Thumb2 cores (including all M profile ones) always treat 9230 * 32-bit insns as 32-bit. 9231 */ 9232 return false; 9233 } 9234 9235 if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) { 9236 /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix 9237 * is not on the next page; we merge this into a 32-bit 9238 * insn. 9239 */ 9240 return false; 9241 } 9242 /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF); 9243 * 0b1111_1xxx_xxxx_xxxx : BL suffix; 9244 * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page 9245 * -- handle as single 16 bit insn 9246 */ 9247 return true; 9248 } 9249 9250 /* Translate a 32-bit thumb instruction. */ 9251 static void disas_thumb2_insn(DisasContext *s, uint32_t insn) 9252 { 9253 /* 9254 * ARMv6-M supports a limited subset of Thumb2 instructions. 9255 * Other Thumb1 architectures allow only 32-bit 9256 * combined BL/BLX prefix and suffix. 9257 */ 9258 if (arm_dc_feature(s, ARM_FEATURE_M) && 9259 !arm_dc_feature(s, ARM_FEATURE_V7)) { 9260 int i; 9261 bool found = false; 9262 static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */, 9263 0xf3b08040 /* dsb */, 9264 0xf3b08050 /* dmb */, 9265 0xf3b08060 /* isb */, 9266 0xf3e08000 /* mrs */, 9267 0xf000d000 /* bl */}; 9268 static const uint32_t armv6m_mask[] = {0xffe0d000, 9269 0xfff0d0f0, 9270 0xfff0d0f0, 9271 0xfff0d0f0, 9272 0xffe0d000, 9273 0xf800d000}; 9274 9275 for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) { 9276 if ((insn & armv6m_mask[i]) == armv6m_insn[i]) { 9277 found = true; 9278 break; 9279 } 9280 } 9281 if (!found) { 9282 goto illegal_op; 9283 } 9284 } else if ((insn & 0xf800e800) != 0xf000e800) { 9285 if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) { 9286 unallocated_encoding(s); 9287 return; 9288 } 9289 } 9290 9291 if (arm_dc_feature(s, ARM_FEATURE_M)) { 9292 /* 9293 * NOCP takes precedence over any UNDEF for (almost) the 9294 * entire wide range of coprocessor-space encodings, so check 9295 * for it first before proceeding to actually decode eg VFP 9296 * insns. This decode also handles the few insns which are 9297 * in copro space but do not have NOCP checks (eg VLLDM, VLSTM). 9298 */ 9299 if (disas_m_nocp(s, insn)) { 9300 return; 9301 } 9302 } 9303 9304 if ((insn & 0xef000000) == 0xef000000) { 9305 /* 9306 * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq 9307 * transform into 9308 * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq 9309 */ 9310 uint32_t a32_insn = (insn & 0xe2ffffff) | 9311 ((insn & (1 << 28)) >> 4) | (1 << 28); 9312 9313 if (disas_neon_dp(s, a32_insn)) { 9314 return; 9315 } 9316 } 9317 9318 if ((insn & 0xff100000) == 0xf9000000) { 9319 /* 9320 * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq 9321 * transform into 9322 * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq 9323 */ 9324 uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000; 9325 9326 if (disas_neon_ls(s, a32_insn)) { 9327 return; 9328 } 9329 } 9330 9331 /* 9332 * TODO: Perhaps merge these into one decodetree output file. 9333 * Note disas_vfp is written for a32 with cond field in the 9334 * top nibble. The t32 encoding requires 0xe in the top nibble. 9335 */ 9336 if (disas_t32(s, insn) || 9337 disas_vfp_uncond(s, insn) || 9338 disas_neon_shared(s, insn) || 9339 disas_mve(s, insn) || 9340 ((insn >> 28) == 0xe && disas_vfp(s, insn))) { 9341 return; 9342 } 9343 9344 illegal_op: 9345 unallocated_encoding(s); 9346 } 9347 9348 static void disas_thumb_insn(DisasContext *s, uint32_t insn) 9349 { 9350 if (!disas_t16(s, insn)) { 9351 unallocated_encoding(s); 9352 } 9353 } 9354 9355 static bool insn_crosses_page(CPUARMState *env, DisasContext *s) 9356 { 9357 /* Return true if the insn at dc->base.pc_next might cross a page boundary. 9358 * (False positives are OK, false negatives are not.) 9359 * We know this is a Thumb insn, and our caller ensures we are 9360 * only called if dc->base.pc_next is less than 4 bytes from the page 9361 * boundary, so we cross the page if the first 16 bits indicate 9362 * that this is a 32 bit insn. 9363 */ 9364 uint16_t insn = arm_lduw_code(env, &s->base, s->base.pc_next, s->sctlr_b); 9365 9366 return !thumb_insn_is_16bit(s, s->base.pc_next, insn); 9367 } 9368 9369 static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 9370 { 9371 DisasContext *dc = container_of(dcbase, DisasContext, base); 9372 CPUARMState *env = cs->env_ptr; 9373 ARMCPU *cpu = env_archcpu(env); 9374 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 9375 uint32_t condexec, core_mmu_idx; 9376 9377 dc->isar = &cpu->isar; 9378 dc->condjmp = 0; 9379 dc->pc_save = dc->base.pc_first; 9380 dc->aarch64 = false; 9381 dc->thumb = EX_TBFLAG_AM32(tb_flags, THUMB); 9382 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 9383 condexec = EX_TBFLAG_AM32(tb_flags, CONDEXEC); 9384 /* 9385 * the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this 9386 * is always the IT bits. On M-profile, some of the reserved encodings 9387 * of IT are used instead to indicate either ICI or ECI, which 9388 * indicate partial progress of a restartable insn that was interrupted 9389 * partway through by an exception: 9390 * * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits 9391 * * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits 9392 * In all cases CONDEXEC == 0 means "not in IT block or restartable 9393 * insn, behave normally". 9394 */ 9395 dc->eci = dc->condexec_mask = dc->condexec_cond = 0; 9396 dc->eci_handled = false; 9397 if (condexec & 0xf) { 9398 dc->condexec_mask = (condexec & 0xf) << 1; 9399 dc->condexec_cond = condexec >> 4; 9400 } else { 9401 if (arm_feature(env, ARM_FEATURE_M)) { 9402 dc->eci = condexec >> 4; 9403 } 9404 } 9405 9406 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 9407 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx); 9408 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 9409 #if !defined(CONFIG_USER_ONLY) 9410 dc->user = (dc->current_el == 0); 9411 #endif 9412 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 9413 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 9414 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 9415 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 9416 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 9417 9418 if (arm_feature(env, ARM_FEATURE_M)) { 9419 dc->vfp_enabled = 1; 9420 dc->be_data = MO_TE; 9421 dc->v7m_handler_mode = EX_TBFLAG_M32(tb_flags, HANDLER); 9422 dc->v8m_secure = EX_TBFLAG_M32(tb_flags, SECURE); 9423 dc->v8m_stackcheck = EX_TBFLAG_M32(tb_flags, STACKCHECK); 9424 dc->v8m_fpccr_s_wrong = EX_TBFLAG_M32(tb_flags, FPCCR_S_WRONG); 9425 dc->v7m_new_fp_ctxt_needed = 9426 EX_TBFLAG_M32(tb_flags, NEW_FP_CTXT_NEEDED); 9427 dc->v7m_lspact = EX_TBFLAG_M32(tb_flags, LSPACT); 9428 dc->mve_no_pred = EX_TBFLAG_M32(tb_flags, MVE_NO_PRED); 9429 } else { 9430 dc->sctlr_b = EX_TBFLAG_A32(tb_flags, SCTLR__B); 9431 dc->hstr_active = EX_TBFLAG_A32(tb_flags, HSTR_ACTIVE); 9432 dc->ns = EX_TBFLAG_A32(tb_flags, NS); 9433 dc->vfp_enabled = EX_TBFLAG_A32(tb_flags, VFPEN); 9434 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9435 dc->c15_cpar = EX_TBFLAG_A32(tb_flags, XSCALE_CPAR); 9436 } else { 9437 dc->vec_len = EX_TBFLAG_A32(tb_flags, VECLEN); 9438 dc->vec_stride = EX_TBFLAG_A32(tb_flags, VECSTRIDE); 9439 } 9440 dc->sme_trap_nonstreaming = 9441 EX_TBFLAG_A32(tb_flags, SME_TRAP_NONSTREAMING); 9442 } 9443 dc->cp_regs = cpu->cp_regs; 9444 dc->features = env->features; 9445 9446 /* Single step state. The code-generation logic here is: 9447 * SS_ACTIVE == 0: 9448 * generate code with no special handling for single-stepping (except 9449 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 9450 * this happens anyway because those changes are all system register or 9451 * PSTATE writes). 9452 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 9453 * emit code for one insn 9454 * emit code to clear PSTATE.SS 9455 * emit code to generate software step exception for completed step 9456 * end TB (as usual for having generated an exception) 9457 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 9458 * emit code to generate a software step exception 9459 * end the TB 9460 */ 9461 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 9462 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 9463 dc->is_ldex = false; 9464 9465 dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK; 9466 9467 /* If architectural single step active, limit to 1. */ 9468 if (dc->ss_active) { 9469 dc->base.max_insns = 1; 9470 } 9471 9472 /* ARM is a fixed-length ISA. Bound the number of insns to execute 9473 to those left on the page. */ 9474 if (!dc->thumb) { 9475 int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 9476 dc->base.max_insns = MIN(dc->base.max_insns, bound); 9477 } 9478 9479 cpu_V0 = tcg_temp_new_i64(); 9480 cpu_V1 = tcg_temp_new_i64(); 9481 cpu_M0 = tcg_temp_new_i64(); 9482 } 9483 9484 static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu) 9485 { 9486 DisasContext *dc = container_of(dcbase, DisasContext, base); 9487 9488 /* A note on handling of the condexec (IT) bits: 9489 * 9490 * We want to avoid the overhead of having to write the updated condexec 9491 * bits back to the CPUARMState for every instruction in an IT block. So: 9492 * (1) if the condexec bits are not already zero then we write 9493 * zero back into the CPUARMState now. This avoids complications trying 9494 * to do it at the end of the block. (For example if we don't do this 9495 * it's hard to identify whether we can safely skip writing condexec 9496 * at the end of the TB, which we definitely want to do for the case 9497 * where a TB doesn't do anything with the IT state at all.) 9498 * (2) if we are going to leave the TB then we call gen_set_condexec() 9499 * which will write the correct value into CPUARMState if zero is wrong. 9500 * This is done both for leaving the TB at the end, and for leaving 9501 * it because of an exception we know will happen, which is done in 9502 * gen_exception_insn(). The latter is necessary because we need to 9503 * leave the TB with the PC/IT state just prior to execution of the 9504 * instruction which caused the exception. 9505 * (3) if we leave the TB unexpectedly (eg a data abort on a load) 9506 * then the CPUARMState will be wrong and we need to reset it. 9507 * This is handled in the same way as restoration of the 9508 * PC in these situations; we save the value of the condexec bits 9509 * for each PC via tcg_gen_insn_start(), and restore_state_to_opc() 9510 * then uses this to restore them after an exception. 9511 * 9512 * Note that there are no instructions which can read the condexec 9513 * bits, and none which can write non-static values to them, so 9514 * we don't need to care about whether CPUARMState is correct in the 9515 * middle of a TB. 9516 */ 9517 9518 /* Reset the conditional execution bits immediately. This avoids 9519 complications trying to do it at the end of the block. */ 9520 if (dc->condexec_mask || dc->condexec_cond) { 9521 store_cpu_field_constant(0, condexec_bits); 9522 } 9523 } 9524 9525 static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 9526 { 9527 DisasContext *dc = container_of(dcbase, DisasContext, base); 9528 /* 9529 * The ECI/ICI bits share PSR bits with the IT bits, so we 9530 * need to reconstitute the bits from the split-out DisasContext 9531 * fields here. 9532 */ 9533 uint32_t condexec_bits; 9534 target_ulong pc_arg = dc->base.pc_next; 9535 9536 if (tb_cflags(dcbase->tb) & CF_PCREL) { 9537 pc_arg &= ~TARGET_PAGE_MASK; 9538 } 9539 if (dc->eci) { 9540 condexec_bits = dc->eci << 4; 9541 } else { 9542 condexec_bits = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1); 9543 } 9544 tcg_gen_insn_start(pc_arg, condexec_bits, 0); 9545 dc->insn_start = tcg_last_op(); 9546 } 9547 9548 static bool arm_check_kernelpage(DisasContext *dc) 9549 { 9550 #ifdef CONFIG_USER_ONLY 9551 /* Intercept jump to the magic kernel page. */ 9552 if (dc->base.pc_next >= 0xffff0000) { 9553 /* We always get here via a jump, so know we are not in a 9554 conditional execution block. */ 9555 gen_exception_internal(EXCP_KERNEL_TRAP); 9556 dc->base.is_jmp = DISAS_NORETURN; 9557 return true; 9558 } 9559 #endif 9560 return false; 9561 } 9562 9563 static bool arm_check_ss_active(DisasContext *dc) 9564 { 9565 if (dc->ss_active && !dc->pstate_ss) { 9566 /* Singlestep state is Active-pending. 9567 * If we're in this state at the start of a TB then either 9568 * a) we just took an exception to an EL which is being debugged 9569 * and this is the first insn in the exception handler 9570 * b) debug exceptions were masked and we just unmasked them 9571 * without changing EL (eg by clearing PSTATE.D) 9572 * In either case we're going to take a swstep exception in the 9573 * "did not step an insn" case, and so the syndrome ISV and EX 9574 * bits should be zero. 9575 */ 9576 assert(dc->base.num_insns == 1); 9577 gen_swstep_exception(dc, 0, 0); 9578 dc->base.is_jmp = DISAS_NORETURN; 9579 return true; 9580 } 9581 9582 return false; 9583 } 9584 9585 static void arm_post_translate_insn(DisasContext *dc) 9586 { 9587 if (dc->condjmp && dc->base.is_jmp == DISAS_NEXT) { 9588 if (dc->pc_save != dc->condlabel.pc_save) { 9589 gen_update_pc(dc, dc->condlabel.pc_save - dc->pc_save); 9590 } 9591 gen_set_label(dc->condlabel.label); 9592 dc->condjmp = 0; 9593 } 9594 } 9595 9596 static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 9597 { 9598 DisasContext *dc = container_of(dcbase, DisasContext, base); 9599 CPUARMState *env = cpu->env_ptr; 9600 uint32_t pc = dc->base.pc_next; 9601 unsigned int insn; 9602 9603 /* Singlestep exceptions have the highest priority. */ 9604 if (arm_check_ss_active(dc)) { 9605 dc->base.pc_next = pc + 4; 9606 return; 9607 } 9608 9609 if (pc & 3) { 9610 /* 9611 * PC alignment fault. This has priority over the instruction abort 9612 * that we would receive from a translation fault via arm_ldl_code 9613 * (or the execution of the kernelpage entrypoint). This should only 9614 * be possible after an indirect branch, at the start of the TB. 9615 */ 9616 assert(dc->base.num_insns == 1); 9617 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 9618 dc->base.is_jmp = DISAS_NORETURN; 9619 dc->base.pc_next = QEMU_ALIGN_UP(pc, 4); 9620 return; 9621 } 9622 9623 if (arm_check_kernelpage(dc)) { 9624 dc->base.pc_next = pc + 4; 9625 return; 9626 } 9627 9628 dc->pc_curr = pc; 9629 insn = arm_ldl_code(env, &dc->base, pc, dc->sctlr_b); 9630 dc->insn = insn; 9631 dc->base.pc_next = pc + 4; 9632 disas_arm_insn(dc, insn); 9633 9634 arm_post_translate_insn(dc); 9635 9636 /* ARM is a fixed-length ISA. We performed the cross-page check 9637 in init_disas_context by adjusting max_insns. */ 9638 } 9639 9640 static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn) 9641 { 9642 /* Return true if this Thumb insn is always unconditional, 9643 * even inside an IT block. This is true of only a very few 9644 * instructions: BKPT, HLT, and SG. 9645 * 9646 * A larger class of instructions are UNPREDICTABLE if used 9647 * inside an IT block; we do not need to detect those here, because 9648 * what we do by default (perform the cc check and update the IT 9649 * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE 9650 * choice for those situations. 9651 * 9652 * insn is either a 16-bit or a 32-bit instruction; the two are 9653 * distinguishable because for the 16-bit case the top 16 bits 9654 * are zeroes, and that isn't a valid 32-bit encoding. 9655 */ 9656 if ((insn & 0xffffff00) == 0xbe00) { 9657 /* BKPT */ 9658 return true; 9659 } 9660 9661 if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) && 9662 !arm_dc_feature(s, ARM_FEATURE_M)) { 9663 /* HLT: v8A only. This is unconditional even when it is going to 9664 * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3. 9665 * For v7 cores this was a plain old undefined encoding and so 9666 * honours its cc check. (We might be using the encoding as 9667 * a semihosting trap, but we don't change the cc check behaviour 9668 * on that account, because a debugger connected to a real v7A 9669 * core and emulating semihosting traps by catching the UNDEF 9670 * exception would also only see cases where the cc check passed. 9671 * No guest code should be trying to do a HLT semihosting trap 9672 * in an IT block anyway. 9673 */ 9674 return true; 9675 } 9676 9677 if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) && 9678 arm_dc_feature(s, ARM_FEATURE_M)) { 9679 /* SG: v8M only */ 9680 return true; 9681 } 9682 9683 return false; 9684 } 9685 9686 static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 9687 { 9688 DisasContext *dc = container_of(dcbase, DisasContext, base); 9689 CPUARMState *env = cpu->env_ptr; 9690 uint32_t pc = dc->base.pc_next; 9691 uint32_t insn; 9692 bool is_16bit; 9693 /* TCG op to rewind to if this turns out to be an invalid ECI state */ 9694 TCGOp *insn_eci_rewind = NULL; 9695 target_ulong insn_eci_pc_save = -1; 9696 9697 /* Misaligned thumb PC is architecturally impossible. */ 9698 assert((dc->base.pc_next & 1) == 0); 9699 9700 if (arm_check_ss_active(dc) || arm_check_kernelpage(dc)) { 9701 dc->base.pc_next = pc + 2; 9702 return; 9703 } 9704 9705 dc->pc_curr = pc; 9706 insn = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); 9707 is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn); 9708 pc += 2; 9709 if (!is_16bit) { 9710 uint32_t insn2 = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); 9711 insn = insn << 16 | insn2; 9712 pc += 2; 9713 } 9714 dc->base.pc_next = pc; 9715 dc->insn = insn; 9716 9717 if (dc->pstate_il) { 9718 /* 9719 * Illegal execution state. This has priority over BTI 9720 * exceptions, but comes after instruction abort exceptions. 9721 */ 9722 gen_exception_insn(dc, 0, EXCP_UDEF, syn_illegalstate()); 9723 return; 9724 } 9725 9726 if (dc->eci) { 9727 /* 9728 * For M-profile continuable instructions, ECI/ICI handling 9729 * falls into these cases: 9730 * - interrupt-continuable instructions 9731 * These are the various load/store multiple insns (both 9732 * integer and fp). The ICI bits indicate the register 9733 * where the load/store can resume. We make the IMPDEF 9734 * choice to always do "instruction restart", ie ignore 9735 * the ICI value and always execute the ldm/stm from the 9736 * start. So all we need to do is zero PSR.ICI if the 9737 * insn executes. 9738 * - MVE instructions subject to beat-wise execution 9739 * Here the ECI bits indicate which beats have already been 9740 * executed, and we must honour this. Each insn of this 9741 * type will handle it correctly. We will update PSR.ECI 9742 * in the helper function for the insn (some ECI values 9743 * mean that the following insn also has been partially 9744 * executed). 9745 * - Special cases which don't advance ECI 9746 * The insns LE, LETP and BKPT leave the ECI/ICI state 9747 * bits untouched. 9748 * - all other insns (the common case) 9749 * Non-zero ECI/ICI means an INVSTATE UsageFault. 9750 * We place a rewind-marker here. Insns in the previous 9751 * three categories will set a flag in the DisasContext. 9752 * If the flag isn't set after we call disas_thumb_insn() 9753 * or disas_thumb2_insn() then we know we have a "some other 9754 * insn" case. We will rewind to the marker (ie throwing away 9755 * all the generated code) and instead emit "take exception". 9756 */ 9757 insn_eci_rewind = tcg_last_op(); 9758 insn_eci_pc_save = dc->pc_save; 9759 } 9760 9761 if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) { 9762 uint32_t cond = dc->condexec_cond; 9763 9764 /* 9765 * Conditionally skip the insn. Note that both 0xe and 0xf mean 9766 * "always"; 0xf is not "never". 9767 */ 9768 if (cond < 0x0e) { 9769 arm_skip_unless(dc, cond); 9770 } 9771 } 9772 9773 if (is_16bit) { 9774 disas_thumb_insn(dc, insn); 9775 } else { 9776 disas_thumb2_insn(dc, insn); 9777 } 9778 9779 /* Advance the Thumb condexec condition. */ 9780 if (dc->condexec_mask) { 9781 dc->condexec_cond = ((dc->condexec_cond & 0xe) | 9782 ((dc->condexec_mask >> 4) & 1)); 9783 dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; 9784 if (dc->condexec_mask == 0) { 9785 dc->condexec_cond = 0; 9786 } 9787 } 9788 9789 if (dc->eci && !dc->eci_handled) { 9790 /* 9791 * Insn wasn't valid for ECI/ICI at all: undo what we 9792 * just generated and instead emit an exception 9793 */ 9794 tcg_remove_ops_after(insn_eci_rewind); 9795 dc->pc_save = insn_eci_pc_save; 9796 dc->condjmp = 0; 9797 gen_exception_insn(dc, 0, EXCP_INVSTATE, syn_uncategorized()); 9798 } 9799 9800 arm_post_translate_insn(dc); 9801 9802 /* Thumb is a variable-length ISA. Stop translation when the next insn 9803 * will touch a new page. This ensures that prefetch aborts occur at 9804 * the right place. 9805 * 9806 * We want to stop the TB if the next insn starts in a new page, 9807 * or if it spans between this page and the next. This means that 9808 * if we're looking at the last halfword in the page we need to 9809 * see if it's a 16-bit Thumb insn (which will fit in this TB) 9810 * or a 32-bit Thumb insn (which won't). 9811 * This is to avoid generating a silly TB with a single 16-bit insn 9812 * in it at the end of this page (which would execute correctly 9813 * but isn't very efficient). 9814 */ 9815 if (dc->base.is_jmp == DISAS_NEXT 9816 && (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE 9817 || (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3 9818 && insn_crosses_page(env, dc)))) { 9819 dc->base.is_jmp = DISAS_TOO_MANY; 9820 } 9821 } 9822 9823 static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 9824 { 9825 DisasContext *dc = container_of(dcbase, DisasContext, base); 9826 9827 /* At this stage dc->condjmp will only be set when the skipped 9828 instruction was a conditional branch or trap, and the PC has 9829 already been written. */ 9830 gen_set_condexec(dc); 9831 if (dc->base.is_jmp == DISAS_BX_EXCRET) { 9832 /* Exception return branches need some special case code at the 9833 * end of the TB, which is complex enough that it has to 9834 * handle the single-step vs not and the condition-failed 9835 * insn codepath itself. 9836 */ 9837 gen_bx_excret_final_code(dc); 9838 } else if (unlikely(dc->ss_active)) { 9839 /* Unconditional and "condition passed" instruction codepath. */ 9840 switch (dc->base.is_jmp) { 9841 case DISAS_SWI: 9842 gen_ss_advance(dc); 9843 gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); 9844 break; 9845 case DISAS_HVC: 9846 gen_ss_advance(dc); 9847 gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); 9848 break; 9849 case DISAS_SMC: 9850 gen_ss_advance(dc); 9851 gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); 9852 break; 9853 case DISAS_NEXT: 9854 case DISAS_TOO_MANY: 9855 case DISAS_UPDATE_EXIT: 9856 case DISAS_UPDATE_NOCHAIN: 9857 gen_update_pc(dc, curr_insn_len(dc)); 9858 /* fall through */ 9859 default: 9860 /* FIXME: Single stepping a WFI insn will not halt the CPU. */ 9861 gen_singlestep_exception(dc); 9862 break; 9863 case DISAS_NORETURN: 9864 break; 9865 } 9866 } else { 9867 /* While branches must always occur at the end of an IT block, 9868 there are a few other things that can cause us to terminate 9869 the TB in the middle of an IT block: 9870 - Exception generating instructions (bkpt, swi, undefined). 9871 - Page boundaries. 9872 - Hardware watchpoints. 9873 Hardware breakpoints have already been handled and skip this code. 9874 */ 9875 switch (dc->base.is_jmp) { 9876 case DISAS_NEXT: 9877 case DISAS_TOO_MANY: 9878 gen_goto_tb(dc, 1, curr_insn_len(dc)); 9879 break; 9880 case DISAS_UPDATE_NOCHAIN: 9881 gen_update_pc(dc, curr_insn_len(dc)); 9882 /* fall through */ 9883 case DISAS_JUMP: 9884 gen_goto_ptr(); 9885 break; 9886 case DISAS_UPDATE_EXIT: 9887 gen_update_pc(dc, curr_insn_len(dc)); 9888 /* fall through */ 9889 default: 9890 /* indicate that the hash table must be used to find the next TB */ 9891 tcg_gen_exit_tb(NULL, 0); 9892 break; 9893 case DISAS_NORETURN: 9894 /* nothing more to generate */ 9895 break; 9896 case DISAS_WFI: 9897 gen_helper_wfi(cpu_env, tcg_constant_i32(curr_insn_len(dc))); 9898 /* 9899 * The helper doesn't necessarily throw an exception, but we 9900 * must go back to the main loop to check for interrupts anyway. 9901 */ 9902 tcg_gen_exit_tb(NULL, 0); 9903 break; 9904 case DISAS_WFE: 9905 gen_helper_wfe(cpu_env); 9906 break; 9907 case DISAS_YIELD: 9908 gen_helper_yield(cpu_env); 9909 break; 9910 case DISAS_SWI: 9911 gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); 9912 break; 9913 case DISAS_HVC: 9914 gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); 9915 break; 9916 case DISAS_SMC: 9917 gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); 9918 break; 9919 } 9920 } 9921 9922 if (dc->condjmp) { 9923 /* "Condition failed" instruction codepath for the branch/trap insn */ 9924 set_disas_label(dc, dc->condlabel); 9925 gen_set_condexec(dc); 9926 if (unlikely(dc->ss_active)) { 9927 gen_update_pc(dc, curr_insn_len(dc)); 9928 gen_singlestep_exception(dc); 9929 } else { 9930 gen_goto_tb(dc, 1, curr_insn_len(dc)); 9931 } 9932 } 9933 } 9934 9935 static void arm_tr_disas_log(const DisasContextBase *dcbase, 9936 CPUState *cpu, FILE *logfile) 9937 { 9938 DisasContext *dc = container_of(dcbase, DisasContext, base); 9939 9940 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 9941 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 9942 } 9943 9944 static const TranslatorOps arm_translator_ops = { 9945 .init_disas_context = arm_tr_init_disas_context, 9946 .tb_start = arm_tr_tb_start, 9947 .insn_start = arm_tr_insn_start, 9948 .translate_insn = arm_tr_translate_insn, 9949 .tb_stop = arm_tr_tb_stop, 9950 .disas_log = arm_tr_disas_log, 9951 }; 9952 9953 static const TranslatorOps thumb_translator_ops = { 9954 .init_disas_context = arm_tr_init_disas_context, 9955 .tb_start = arm_tr_tb_start, 9956 .insn_start = arm_tr_insn_start, 9957 .translate_insn = thumb_tr_translate_insn, 9958 .tb_stop = arm_tr_tb_stop, 9959 .disas_log = arm_tr_disas_log, 9960 }; 9961 9962 /* generate intermediate code for basic block 'tb'. */ 9963 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns, 9964 target_ulong pc, void *host_pc) 9965 { 9966 DisasContext dc = { }; 9967 const TranslatorOps *ops = &arm_translator_ops; 9968 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(tb); 9969 9970 if (EX_TBFLAG_AM32(tb_flags, THUMB)) { 9971 ops = &thumb_translator_ops; 9972 } 9973 #ifdef TARGET_AARCH64 9974 if (EX_TBFLAG_ANY(tb_flags, AARCH64_STATE)) { 9975 ops = &aarch64_translator_ops; 9976 } 9977 #endif 9978 9979 translator_loop(cpu, tb, max_insns, pc, host_pc, ops, &dc.base); 9980 } 9981