xref: /openbmc/qemu/target/arm/tcg/translate-mve.c (revision 5b5968c4)
1 /*
2  *  ARM translation: M-profile MVE instructions
3  *
4  *  Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/exec-all.h"
24 #include "exec/gen-icount.h"
25 #include "translate.h"
26 #include "translate-a32.h"
27 
28 static inline int vidup_imm(DisasContext *s, int x)
29 {
30     return 1 << x;
31 }
32 
33 /* Include the generated decoder */
34 #include "decode-mve.c.inc"
35 
36 typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
37 typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
38 typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32);
39 typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
40 typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
41 typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
42 typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
43 typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
44 typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
45 typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
46 typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
47 typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
48 typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
49 typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
50 typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
51 typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
52 typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
53 
54 /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
55 static inline long mve_qreg_offset(unsigned reg)
56 {
57     return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
58 }
59 
60 static TCGv_ptr mve_qreg_ptr(unsigned reg)
61 {
62     TCGv_ptr ret = tcg_temp_new_ptr();
63     tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
64     return ret;
65 }
66 
67 static bool mve_no_predication(DisasContext *s)
68 {
69     /*
70      * Return true if we are executing the entire MVE instruction
71      * with no predication or partial-execution, and so we can safely
72      * use an inline TCG vector implementation.
73      */
74     return s->eci == 0 && s->mve_no_pred;
75 }
76 
77 static bool mve_check_qreg_bank(DisasContext *s, int qmask)
78 {
79     /*
80      * Check whether Qregs are in range. For v8.1M only Q0..Q7
81      * are supported, see VFPSmallRegisterBank().
82      */
83     return qmask < 8;
84 }
85 
86 bool mve_eci_check(DisasContext *s)
87 {
88     /*
89      * This is a beatwise insn: check that ECI is valid (not a
90      * reserved value) and note that we are handling it.
91      * Return true if OK, false if we generated an exception.
92      */
93     s->eci_handled = true;
94     switch (s->eci) {
95     case ECI_NONE:
96     case ECI_A0:
97     case ECI_A0A1:
98     case ECI_A0A1A2:
99     case ECI_A0A1A2B0:
100         return true;
101     default:
102         /* Reserved value: INVSTATE UsageFault */
103         gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized());
104         return false;
105     }
106 }
107 
108 void mve_update_eci(DisasContext *s)
109 {
110     /*
111      * The helper function will always update the CPUState field,
112      * so we only need to update the DisasContext field.
113      */
114     if (s->eci) {
115         s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
116     }
117 }
118 
119 void mve_update_and_store_eci(DisasContext *s)
120 {
121     /*
122      * For insns which don't call a helper function that will call
123      * mve_advance_vpt(), this version updates s->eci and also stores
124      * it out to the CPUState field.
125      */
126     if (s->eci) {
127         mve_update_eci(s);
128         store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
129     }
130 }
131 
132 static bool mve_skip_first_beat(DisasContext *s)
133 {
134     /* Return true if PSR.ECI says we must skip the first beat of this insn */
135     switch (s->eci) {
136     case ECI_NONE:
137         return false;
138     case ECI_A0:
139     case ECI_A0A1:
140     case ECI_A0A1A2:
141     case ECI_A0A1A2B0:
142         return true;
143     default:
144         g_assert_not_reached();
145     }
146 }
147 
148 static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
149                     unsigned msize)
150 {
151     TCGv_i32 addr;
152     uint32_t offset;
153     TCGv_ptr qreg;
154 
155     if (!dc_isar_feature(aa32_mve, s) ||
156         !mve_check_qreg_bank(s, a->qd) ||
157         !fn) {
158         return false;
159     }
160 
161     /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
162     if (a->rn == 15 || (a->rn == 13 && a->w)) {
163         return false;
164     }
165 
166     if (!mve_eci_check(s) || !vfp_access_check(s)) {
167         return true;
168     }
169 
170     offset = a->imm << msize;
171     if (!a->a) {
172         offset = -offset;
173     }
174     addr = load_reg(s, a->rn);
175     if (a->p) {
176         tcg_gen_addi_i32(addr, addr, offset);
177     }
178 
179     qreg = mve_qreg_ptr(a->qd);
180     fn(cpu_env, qreg, addr);
181     tcg_temp_free_ptr(qreg);
182 
183     /*
184      * Writeback always happens after the last beat of the insn,
185      * regardless of predication
186      */
187     if (a->w) {
188         if (!a->p) {
189             tcg_gen_addi_i32(addr, addr, offset);
190         }
191         store_reg(s, a->rn, addr);
192     } else {
193         tcg_temp_free_i32(addr);
194     }
195     mve_update_eci(s);
196     return true;
197 }
198 
199 static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
200 {
201     static MVEGenLdStFn * const ldstfns[4][2] = {
202         { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
203         { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
204         { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
205         { NULL, NULL }
206     };
207     return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
208 }
209 
210 #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE)           \
211     static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a)   \
212     {                                                           \
213         static MVEGenLdStFn * const ldstfns[2][2] = {           \
214             { gen_helper_mve_##ST, gen_helper_mve_##SLD },      \
215             { NULL, gen_helper_mve_##ULD },                     \
216         };                                                      \
217         return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE);       \
218     }
219 
220 DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
221 DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
222 DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
223 
224 static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn)
225 {
226     TCGv_i32 addr;
227     TCGv_ptr qd, qm;
228 
229     if (!dc_isar_feature(aa32_mve, s) ||
230         !mve_check_qreg_bank(s, a->qd | a->qm) ||
231         !fn || a->rn == 15) {
232         /* Rn case is UNPREDICTABLE */
233         return false;
234     }
235 
236     if (!mve_eci_check(s) || !vfp_access_check(s)) {
237         return true;
238     }
239 
240     addr = load_reg(s, a->rn);
241 
242     qd = mve_qreg_ptr(a->qd);
243     qm = mve_qreg_ptr(a->qm);
244     fn(cpu_env, qd, qm, addr);
245     tcg_temp_free_ptr(qd);
246     tcg_temp_free_ptr(qm);
247     tcg_temp_free_i32(addr);
248     mve_update_eci(s);
249     return true;
250 }
251 
252 /*
253  * The naming scheme here is "vldrb_sg_sh == in-memory byte loads
254  * signextended to halfword elements in register". _os_ indicates that
255  * the offsets in Qm should be scaled by the element size.
256  */
257 /* This macro is just to make the arrays more compact in these functions */
258 #define F(N) gen_helper_mve_##N
259 
260 /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */
261 static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a)
262 {
263     static MVEGenLdStSGFn * const fns[2][4][4] = { {
264             { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL },
265             { NULL, NULL,           F(vldrh_sg_sw), NULL },
266             { NULL, NULL,           NULL,           NULL },
267             { NULL, NULL,           NULL,           NULL }
268         }, {
269             { NULL, NULL,              NULL,              NULL },
270             { NULL, NULL,              F(vldrh_sg_os_sw), NULL },
271             { NULL, NULL,              NULL,              NULL },
272             { NULL, NULL,              NULL,              NULL }
273         }
274     };
275     if (a->qd == a->qm) {
276         return false; /* UNPREDICTABLE */
277     }
278     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
279 }
280 
281 static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a)
282 {
283     static MVEGenLdStSGFn * const fns[2][4][4] = { {
284             { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL },
285             { NULL,           F(vldrh_sg_uh), F(vldrh_sg_uw), NULL },
286             { NULL,           NULL,           F(vldrw_sg_uw), NULL },
287             { NULL,           NULL,           NULL,           F(vldrd_sg_ud) }
288         }, {
289             { NULL, NULL,              NULL,              NULL },
290             { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL },
291             { NULL, NULL,              F(vldrw_sg_os_uw), NULL },
292             { NULL, NULL,              NULL,              F(vldrd_sg_os_ud) }
293         }
294     };
295     if (a->qd == a->qm) {
296         return false; /* UNPREDICTABLE */
297     }
298     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
299 }
300 
301 static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a)
302 {
303     static MVEGenLdStSGFn * const fns[2][4][4] = { {
304             { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL },
305             { NULL,           F(vstrh_sg_uh), F(vstrh_sg_uw), NULL },
306             { NULL,           NULL,           F(vstrw_sg_uw), NULL },
307             { NULL,           NULL,           NULL,           F(vstrd_sg_ud) }
308         }, {
309             { NULL, NULL,              NULL,              NULL },
310             { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL },
311             { NULL, NULL,              F(vstrw_sg_os_uw), NULL },
312             { NULL, NULL,              NULL,              F(vstrd_sg_os_ud) }
313         }
314     };
315     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
316 }
317 
318 #undef F
319 
320 static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a,
321                            MVEGenLdStSGFn *fn, unsigned msize)
322 {
323     uint32_t offset;
324     TCGv_ptr qd, qm;
325 
326     if (!dc_isar_feature(aa32_mve, s) ||
327         !mve_check_qreg_bank(s, a->qd | a->qm) ||
328         !fn) {
329         return false;
330     }
331 
332     if (!mve_eci_check(s) || !vfp_access_check(s)) {
333         return true;
334     }
335 
336     offset = a->imm << msize;
337     if (!a->a) {
338         offset = -offset;
339     }
340 
341     qd = mve_qreg_ptr(a->qd);
342     qm = mve_qreg_ptr(a->qm);
343     fn(cpu_env, qd, qm, tcg_constant_i32(offset));
344     tcg_temp_free_ptr(qd);
345     tcg_temp_free_ptr(qm);
346     mve_update_eci(s);
347     return true;
348 }
349 
350 static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
351 {
352     static MVEGenLdStSGFn * const fns[] = {
353         gen_helper_mve_vldrw_sg_uw,
354         gen_helper_mve_vldrw_sg_wb_uw,
355     };
356     if (a->qd == a->qm) {
357         return false; /* UNPREDICTABLE */
358     }
359     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
360 }
361 
362 static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
363 {
364     static MVEGenLdStSGFn * const fns[] = {
365         gen_helper_mve_vldrd_sg_ud,
366         gen_helper_mve_vldrd_sg_wb_ud,
367     };
368     if (a->qd == a->qm) {
369         return false; /* UNPREDICTABLE */
370     }
371     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
372 }
373 
374 static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
375 {
376     static MVEGenLdStSGFn * const fns[] = {
377         gen_helper_mve_vstrw_sg_uw,
378         gen_helper_mve_vstrw_sg_wb_uw,
379     };
380     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
381 }
382 
383 static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
384 {
385     static MVEGenLdStSGFn * const fns[] = {
386         gen_helper_mve_vstrd_sg_ud,
387         gen_helper_mve_vstrd_sg_wb_ud,
388     };
389     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
390 }
391 
392 static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn,
393                         int addrinc)
394 {
395     TCGv_i32 rn;
396 
397     if (!dc_isar_feature(aa32_mve, s) ||
398         !mve_check_qreg_bank(s, a->qd) ||
399         !fn || (a->rn == 13 && a->w) || a->rn == 15) {
400         /* Variously UNPREDICTABLE or UNDEF or related-encoding */
401         return false;
402     }
403     if (!mve_eci_check(s) || !vfp_access_check(s)) {
404         return true;
405     }
406 
407     rn = load_reg(s, a->rn);
408     /*
409      * We pass the index of Qd, not a pointer, because the helper must
410      * access multiple Q registers starting at Qd and working up.
411      */
412     fn(cpu_env, tcg_constant_i32(a->qd), rn);
413 
414     if (a->w) {
415         tcg_gen_addi_i32(rn, rn, addrinc);
416         store_reg(s, a->rn, rn);
417     } else {
418         tcg_temp_free_i32(rn);
419     }
420     mve_update_and_store_eci(s);
421     return true;
422 }
423 
424 /* This macro is just to make the arrays more compact in these functions */
425 #define F(N) gen_helper_mve_##N
426 
427 static bool trans_VLD2(DisasContext *s, arg_vldst_il *a)
428 {
429     static MVEGenLdStIlFn * const fns[4][4] = {
430         { F(vld20b), F(vld20h), F(vld20w), NULL, },
431         { F(vld21b), F(vld21h), F(vld21w), NULL, },
432         { NULL, NULL, NULL, NULL },
433         { NULL, NULL, NULL, NULL },
434     };
435     if (a->qd > 6) {
436         return false;
437     }
438     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
439 }
440 
441 static bool trans_VLD4(DisasContext *s, arg_vldst_il *a)
442 {
443     static MVEGenLdStIlFn * const fns[4][4] = {
444         { F(vld40b), F(vld40h), F(vld40w), NULL, },
445         { F(vld41b), F(vld41h), F(vld41w), NULL, },
446         { F(vld42b), F(vld42h), F(vld42w), NULL, },
447         { F(vld43b), F(vld43h), F(vld43w), NULL, },
448     };
449     if (a->qd > 4) {
450         return false;
451     }
452     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
453 }
454 
455 static bool trans_VST2(DisasContext *s, arg_vldst_il *a)
456 {
457     static MVEGenLdStIlFn * const fns[4][4] = {
458         { F(vst20b), F(vst20h), F(vst20w), NULL, },
459         { F(vst21b), F(vst21h), F(vst21w), NULL, },
460         { NULL, NULL, NULL, NULL },
461         { NULL, NULL, NULL, NULL },
462     };
463     if (a->qd > 6) {
464         return false;
465     }
466     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
467 }
468 
469 static bool trans_VST4(DisasContext *s, arg_vldst_il *a)
470 {
471     static MVEGenLdStIlFn * const fns[4][4] = {
472         { F(vst40b), F(vst40h), F(vst40w), NULL, },
473         { F(vst41b), F(vst41h), F(vst41w), NULL, },
474         { F(vst42b), F(vst42h), F(vst42w), NULL, },
475         { F(vst43b), F(vst43h), F(vst43w), NULL, },
476     };
477     if (a->qd > 4) {
478         return false;
479     }
480     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
481 }
482 
483 #undef F
484 
485 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
486 {
487     TCGv_ptr qd;
488     TCGv_i32 rt;
489 
490     if (!dc_isar_feature(aa32_mve, s) ||
491         !mve_check_qreg_bank(s, a->qd)) {
492         return false;
493     }
494     if (a->rt == 13 || a->rt == 15) {
495         /* UNPREDICTABLE; we choose to UNDEF */
496         return false;
497     }
498     if (!mve_eci_check(s) || !vfp_access_check(s)) {
499         return true;
500     }
501 
502     rt = load_reg(s, a->rt);
503     if (mve_no_predication(s)) {
504         tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt);
505     } else {
506         qd = mve_qreg_ptr(a->qd);
507         tcg_gen_dup_i32(a->size, rt, rt);
508         gen_helper_mve_vdup(cpu_env, qd, rt);
509         tcg_temp_free_ptr(qd);
510     }
511     tcg_temp_free_i32(rt);
512     mve_update_eci(s);
513     return true;
514 }
515 
516 static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn,
517                        GVecGen2Fn vecfn)
518 {
519     TCGv_ptr qd, qm;
520 
521     if (!dc_isar_feature(aa32_mve, s) ||
522         !mve_check_qreg_bank(s, a->qd | a->qm) ||
523         !fn) {
524         return false;
525     }
526 
527     if (!mve_eci_check(s) || !vfp_access_check(s)) {
528         return true;
529     }
530 
531     if (vecfn && mve_no_predication(s)) {
532         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16);
533     } else {
534         qd = mve_qreg_ptr(a->qd);
535         qm = mve_qreg_ptr(a->qm);
536         fn(cpu_env, qd, qm);
537         tcg_temp_free_ptr(qd);
538         tcg_temp_free_ptr(qm);
539     }
540     mve_update_eci(s);
541     return true;
542 }
543 
544 static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
545 {
546     return do_1op_vec(s, a, fn, NULL);
547 }
548 
549 #define DO_1OP_VEC(INSN, FN, VECFN)                             \
550     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
551     {                                                           \
552         static MVEGenOneOpFn * const fns[] = {                  \
553             gen_helper_mve_##FN##b,                             \
554             gen_helper_mve_##FN##h,                             \
555             gen_helper_mve_##FN##w,                             \
556             NULL,                                               \
557         };                                                      \
558         return do_1op_vec(s, a, fns[a->size], VECFN);           \
559     }
560 
561 #define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL)
562 
563 DO_1OP(VCLZ, vclz)
564 DO_1OP(VCLS, vcls)
565 DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs)
566 DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg)
567 DO_1OP(VQABS, vqabs)
568 DO_1OP(VQNEG, vqneg)
569 DO_1OP(VMAXA, vmaxa)
570 DO_1OP(VMINA, vmina)
571 
572 /*
573  * For simple float/int conversions we use the fixed-point
574  * conversion helpers with a zero shift count
575  */
576 #define DO_VCVT(INSN, HFN, SFN)                                         \
577     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
578     {                                                                   \
579         gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0));         \
580     }                                                                   \
581     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
582     {                                                                   \
583         gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0));         \
584     }                                                                   \
585     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
586     {                                                                   \
587         static MVEGenOneOpFn * const fns[] = {                          \
588             NULL,                                                       \
589             gen_##INSN##h,                                              \
590             gen_##INSN##s,                                              \
591             NULL,                                                       \
592         };                                                              \
593         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
594             return false;                                               \
595         }                                                               \
596         return do_1op(s, a, fns[a->size]);                              \
597     }
598 
599 DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf)
600 DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf)
601 DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs)
602 DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu)
603 
604 static bool do_vcvt_rmode(DisasContext *s, arg_1op *a,
605                           enum arm_fprounding rmode, bool u)
606 {
607     /*
608      * Handle VCVT fp to int with specified rounding mode.
609      * This is a 1op fn but we must pass the rounding mode as
610      * an immediate to the helper.
611      */
612     TCGv_ptr qd, qm;
613     static MVEGenVCVTRmodeFn * const fns[4][2] = {
614         { NULL, NULL },
615         { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh },
616         { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us },
617         { NULL, NULL },
618     };
619     MVEGenVCVTRmodeFn *fn = fns[a->size][u];
620 
621     if (!dc_isar_feature(aa32_mve_fp, s) ||
622         !mve_check_qreg_bank(s, a->qd | a->qm) ||
623         !fn) {
624         return false;
625     }
626 
627     if (!mve_eci_check(s) || !vfp_access_check(s)) {
628         return true;
629     }
630 
631     qd = mve_qreg_ptr(a->qd);
632     qm = mve_qreg_ptr(a->qm);
633     fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode)));
634     tcg_temp_free_ptr(qd);
635     tcg_temp_free_ptr(qm);
636     mve_update_eci(s);
637     return true;
638 }
639 
640 #define DO_VCVT_RMODE(INSN, RMODE, U)                           \
641     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
642     {                                                           \
643         return do_vcvt_rmode(s, a, RMODE, U);                   \
644     }                                                           \
645 
646 DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false)
647 DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true)
648 DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false)
649 DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true)
650 DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false)
651 DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true)
652 DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false)
653 DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true)
654 
655 #define DO_VCVT_SH(INSN, FN)                                    \
656     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
657     {                                                           \
658         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
659             return false;                                       \
660         }                                                       \
661         return do_1op(s, a, gen_helper_mve_##FN);               \
662     }                                                           \
663 
664 DO_VCVT_SH(VCVTB_SH, vcvtb_sh)
665 DO_VCVT_SH(VCVTT_SH, vcvtt_sh)
666 DO_VCVT_SH(VCVTB_HS, vcvtb_hs)
667 DO_VCVT_SH(VCVTT_HS, vcvtt_hs)
668 
669 #define DO_VRINT(INSN, RMODE)                                           \
670     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
671     {                                                                   \
672         gen_helper_mve_vrint_rm_h(env, qd, qm,                          \
673                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
674     }                                                                   \
675     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
676     {                                                                   \
677         gen_helper_mve_vrint_rm_s(env, qd, qm,                          \
678                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
679     }                                                                   \
680     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
681     {                                                                   \
682         static MVEGenOneOpFn * const fns[] = {                          \
683             NULL,                                                       \
684             gen_##INSN##h,                                              \
685             gen_##INSN##s,                                              \
686             NULL,                                                       \
687         };                                                              \
688         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
689             return false;                                               \
690         }                                                               \
691         return do_1op(s, a, fns[a->size]);                              \
692     }
693 
694 DO_VRINT(VRINTN, FPROUNDING_TIEEVEN)
695 DO_VRINT(VRINTA, FPROUNDING_TIEAWAY)
696 DO_VRINT(VRINTZ, FPROUNDING_ZERO)
697 DO_VRINT(VRINTM, FPROUNDING_NEGINF)
698 DO_VRINT(VRINTP, FPROUNDING_POSINF)
699 
700 static bool trans_VRINTX(DisasContext *s, arg_1op *a)
701 {
702     static MVEGenOneOpFn * const fns[] = {
703         NULL,
704         gen_helper_mve_vrintx_h,
705         gen_helper_mve_vrintx_s,
706         NULL,
707     };
708     if (!dc_isar_feature(aa32_mve_fp, s)) {
709         return false;
710     }
711     return do_1op(s, a, fns[a->size]);
712 }
713 
714 /* Narrowing moves: only size 0 and 1 are valid */
715 #define DO_VMOVN(INSN, FN) \
716     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
717     {                                                           \
718         static MVEGenOneOpFn * const fns[] = {                  \
719             gen_helper_mve_##FN##b,                             \
720             gen_helper_mve_##FN##h,                             \
721             NULL,                                               \
722             NULL,                                               \
723         };                                                      \
724         return do_1op(s, a, fns[a->size]);                      \
725     }
726 
727 DO_VMOVN(VMOVNB, vmovnb)
728 DO_VMOVN(VMOVNT, vmovnt)
729 DO_VMOVN(VQMOVUNB, vqmovunb)
730 DO_VMOVN(VQMOVUNT, vqmovunt)
731 DO_VMOVN(VQMOVN_BS, vqmovnbs)
732 DO_VMOVN(VQMOVN_TS, vqmovnts)
733 DO_VMOVN(VQMOVN_BU, vqmovnbu)
734 DO_VMOVN(VQMOVN_TU, vqmovntu)
735 
736 static bool trans_VREV16(DisasContext *s, arg_1op *a)
737 {
738     static MVEGenOneOpFn * const fns[] = {
739         gen_helper_mve_vrev16b,
740         NULL,
741         NULL,
742         NULL,
743     };
744     return do_1op(s, a, fns[a->size]);
745 }
746 
747 static bool trans_VREV32(DisasContext *s, arg_1op *a)
748 {
749     static MVEGenOneOpFn * const fns[] = {
750         gen_helper_mve_vrev32b,
751         gen_helper_mve_vrev32h,
752         NULL,
753         NULL,
754     };
755     return do_1op(s, a, fns[a->size]);
756 }
757 
758 static bool trans_VREV64(DisasContext *s, arg_1op *a)
759 {
760     static MVEGenOneOpFn * const fns[] = {
761         gen_helper_mve_vrev64b,
762         gen_helper_mve_vrev64h,
763         gen_helper_mve_vrev64w,
764         NULL,
765     };
766     return do_1op(s, a, fns[a->size]);
767 }
768 
769 static bool trans_VMVN(DisasContext *s, arg_1op *a)
770 {
771     return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not);
772 }
773 
774 static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
775 {
776     static MVEGenOneOpFn * const fns[] = {
777         NULL,
778         gen_helper_mve_vfabsh,
779         gen_helper_mve_vfabss,
780         NULL,
781     };
782     if (!dc_isar_feature(aa32_mve_fp, s)) {
783         return false;
784     }
785     return do_1op(s, a, fns[a->size]);
786 }
787 
788 static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
789 {
790     static MVEGenOneOpFn * const fns[] = {
791         NULL,
792         gen_helper_mve_vfnegh,
793         gen_helper_mve_vfnegs,
794         NULL,
795     };
796     if (!dc_isar_feature(aa32_mve_fp, s)) {
797         return false;
798     }
799     return do_1op(s, a, fns[a->size]);
800 }
801 
802 static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn,
803                        GVecGen3Fn *vecfn)
804 {
805     TCGv_ptr qd, qn, qm;
806 
807     if (!dc_isar_feature(aa32_mve, s) ||
808         !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
809         !fn) {
810         return false;
811     }
812     if (!mve_eci_check(s) || !vfp_access_check(s)) {
813         return true;
814     }
815 
816     if (vecfn && mve_no_predication(s)) {
817         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn),
818               mve_qreg_offset(a->qm), 16, 16);
819     } else {
820         qd = mve_qreg_ptr(a->qd);
821         qn = mve_qreg_ptr(a->qn);
822         qm = mve_qreg_ptr(a->qm);
823         fn(cpu_env, qd, qn, qm);
824         tcg_temp_free_ptr(qd);
825         tcg_temp_free_ptr(qn);
826         tcg_temp_free_ptr(qm);
827     }
828     mve_update_eci(s);
829     return true;
830 }
831 
832 static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn)
833 {
834     return do_2op_vec(s, a, fn, NULL);
835 }
836 
837 #define DO_LOGIC(INSN, HELPER, VECFN)                           \
838     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
839     {                                                           \
840         return do_2op_vec(s, a, HELPER, VECFN);                 \
841     }
842 
843 DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and)
844 DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc)
845 DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or)
846 DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc)
847 DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor)
848 
849 static bool trans_VPSEL(DisasContext *s, arg_2op *a)
850 {
851     /* This insn updates predication bits */
852     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
853     return do_2op(s, a, gen_helper_mve_vpsel);
854 }
855 
856 #define DO_2OP_VEC(INSN, FN, VECFN)                             \
857     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
858     {                                                           \
859         static MVEGenTwoOpFn * const fns[] = {                  \
860             gen_helper_mve_##FN##b,                             \
861             gen_helper_mve_##FN##h,                             \
862             gen_helper_mve_##FN##w,                             \
863             NULL,                                               \
864         };                                                      \
865         return do_2op_vec(s, a, fns[a->size], VECFN);           \
866     }
867 
868 #define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL)
869 
870 DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add)
871 DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub)
872 DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul)
873 DO_2OP(VMULH_S, vmulhs)
874 DO_2OP(VMULH_U, vmulhu)
875 DO_2OP(VRMULH_S, vrmulhs)
876 DO_2OP(VRMULH_U, vrmulhu)
877 DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax)
878 DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax)
879 DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin)
880 DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin)
881 DO_2OP(VABD_S, vabds)
882 DO_2OP(VABD_U, vabdu)
883 DO_2OP(VHADD_S, vhadds)
884 DO_2OP(VHADD_U, vhaddu)
885 DO_2OP(VHSUB_S, vhsubs)
886 DO_2OP(VHSUB_U, vhsubu)
887 DO_2OP(VMULL_BS, vmullbs)
888 DO_2OP(VMULL_BU, vmullbu)
889 DO_2OP(VMULL_TS, vmullts)
890 DO_2OP(VMULL_TU, vmulltu)
891 DO_2OP(VQDMULH, vqdmulh)
892 DO_2OP(VQRDMULH, vqrdmulh)
893 DO_2OP(VQADD_S, vqadds)
894 DO_2OP(VQADD_U, vqaddu)
895 DO_2OP(VQSUB_S, vqsubs)
896 DO_2OP(VQSUB_U, vqsubu)
897 DO_2OP(VSHL_S, vshls)
898 DO_2OP(VSHL_U, vshlu)
899 DO_2OP(VRSHL_S, vrshls)
900 DO_2OP(VRSHL_U, vrshlu)
901 DO_2OP(VQSHL_S, vqshls)
902 DO_2OP(VQSHL_U, vqshlu)
903 DO_2OP(VQRSHL_S, vqrshls)
904 DO_2OP(VQRSHL_U, vqrshlu)
905 DO_2OP(VQDMLADH, vqdmladh)
906 DO_2OP(VQDMLADHX, vqdmladhx)
907 DO_2OP(VQRDMLADH, vqrdmladh)
908 DO_2OP(VQRDMLADHX, vqrdmladhx)
909 DO_2OP(VQDMLSDH, vqdmlsdh)
910 DO_2OP(VQDMLSDHX, vqdmlsdhx)
911 DO_2OP(VQRDMLSDH, vqrdmlsdh)
912 DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
913 DO_2OP(VRHADD_S, vrhadds)
914 DO_2OP(VRHADD_U, vrhaddu)
915 /*
916  * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
917  * so we can reuse the DO_2OP macro. (Our implementation calculates the
918  * "expected" results in this case.) Similarly for VHCADD.
919  */
920 DO_2OP(VCADD90, vcadd90)
921 DO_2OP(VCADD270, vcadd270)
922 DO_2OP(VHCADD90, vhcadd90)
923 DO_2OP(VHCADD270, vhcadd270)
924 
925 static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
926 {
927     static MVEGenTwoOpFn * const fns[] = {
928         NULL,
929         gen_helper_mve_vqdmullbh,
930         gen_helper_mve_vqdmullbw,
931         NULL,
932     };
933     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
934         /* UNPREDICTABLE; we choose to undef */
935         return false;
936     }
937     return do_2op(s, a, fns[a->size]);
938 }
939 
940 static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
941 {
942     static MVEGenTwoOpFn * const fns[] = {
943         NULL,
944         gen_helper_mve_vqdmullth,
945         gen_helper_mve_vqdmulltw,
946         NULL,
947     };
948     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
949         /* UNPREDICTABLE; we choose to undef */
950         return false;
951     }
952     return do_2op(s, a, fns[a->size]);
953 }
954 
955 static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
956 {
957     /*
958      * Note that a->size indicates the output size, ie VMULL.P8
959      * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
960      * is the 16x16->32 operation and a->size is MO_32.
961      */
962     static MVEGenTwoOpFn * const fns[] = {
963         NULL,
964         gen_helper_mve_vmullpbh,
965         gen_helper_mve_vmullpbw,
966         NULL,
967     };
968     return do_2op(s, a, fns[a->size]);
969 }
970 
971 static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
972 {
973     /* a->size is as for trans_VMULLP_B */
974     static MVEGenTwoOpFn * const fns[] = {
975         NULL,
976         gen_helper_mve_vmullpth,
977         gen_helper_mve_vmullptw,
978         NULL,
979     };
980     return do_2op(s, a, fns[a->size]);
981 }
982 
983 /*
984  * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
985  * of the 32-bit elements in each lane of the input vectors, where the
986  * carry-out of each add is the carry-in of the next.  The initial carry
987  * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
988  * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
989  * These insns are subject to beat-wise execution.  Partial execution
990  * of an I=1 (initial carry input fixed) insn which does not
991  * execute the first beat must start with the current FPSCR.NZCV
992  * value, not the fixed constant input.
993  */
994 static bool trans_VADC(DisasContext *s, arg_2op *a)
995 {
996     return do_2op(s, a, gen_helper_mve_vadc);
997 }
998 
999 static bool trans_VADCI(DisasContext *s, arg_2op *a)
1000 {
1001     if (mve_skip_first_beat(s)) {
1002         return trans_VADC(s, a);
1003     }
1004     return do_2op(s, a, gen_helper_mve_vadci);
1005 }
1006 
1007 static bool trans_VSBC(DisasContext *s, arg_2op *a)
1008 {
1009     return do_2op(s, a, gen_helper_mve_vsbc);
1010 }
1011 
1012 static bool trans_VSBCI(DisasContext *s, arg_2op *a)
1013 {
1014     if (mve_skip_first_beat(s)) {
1015         return trans_VSBC(s, a);
1016     }
1017     return do_2op(s, a, gen_helper_mve_vsbci);
1018 }
1019 
1020 #define DO_2OP_FP(INSN, FN)                                     \
1021     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
1022     {                                                           \
1023         static MVEGenTwoOpFn * const fns[] = {                  \
1024             NULL,                                               \
1025             gen_helper_mve_##FN##h,                             \
1026             gen_helper_mve_##FN##s,                             \
1027             NULL,                                               \
1028         };                                                      \
1029         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1030             return false;                                       \
1031         }                                                       \
1032         return do_2op(s, a, fns[a->size]);                      \
1033     }
1034 
1035 DO_2OP_FP(VADD_fp, vfadd)
1036 DO_2OP_FP(VSUB_fp, vfsub)
1037 DO_2OP_FP(VMUL_fp, vfmul)
1038 DO_2OP_FP(VABD_fp, vfabd)
1039 DO_2OP_FP(VMAXNM, vmaxnm)
1040 DO_2OP_FP(VMINNM, vminnm)
1041 DO_2OP_FP(VCADD90_fp, vfcadd90)
1042 DO_2OP_FP(VCADD270_fp, vfcadd270)
1043 DO_2OP_FP(VFMA, vfma)
1044 DO_2OP_FP(VFMS, vfms)
1045 DO_2OP_FP(VCMUL0, vcmul0)
1046 DO_2OP_FP(VCMUL90, vcmul90)
1047 DO_2OP_FP(VCMUL180, vcmul180)
1048 DO_2OP_FP(VCMUL270, vcmul270)
1049 DO_2OP_FP(VCMLA0, vcmla0)
1050 DO_2OP_FP(VCMLA90, vcmla90)
1051 DO_2OP_FP(VCMLA180, vcmla180)
1052 DO_2OP_FP(VCMLA270, vcmla270)
1053 DO_2OP_FP(VMAXNMA, vmaxnma)
1054 DO_2OP_FP(VMINNMA, vminnma)
1055 
1056 static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
1057                           MVEGenTwoOpScalarFn fn)
1058 {
1059     TCGv_ptr qd, qn;
1060     TCGv_i32 rm;
1061 
1062     if (!dc_isar_feature(aa32_mve, s) ||
1063         !mve_check_qreg_bank(s, a->qd | a->qn) ||
1064         !fn) {
1065         return false;
1066     }
1067     if (a->rm == 13 || a->rm == 15) {
1068         /* UNPREDICTABLE */
1069         return false;
1070     }
1071     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1072         return true;
1073     }
1074 
1075     qd = mve_qreg_ptr(a->qd);
1076     qn = mve_qreg_ptr(a->qn);
1077     rm = load_reg(s, a->rm);
1078     fn(cpu_env, qd, qn, rm);
1079     tcg_temp_free_i32(rm);
1080     tcg_temp_free_ptr(qd);
1081     tcg_temp_free_ptr(qn);
1082     mve_update_eci(s);
1083     return true;
1084 }
1085 
1086 #define DO_2OP_SCALAR(INSN, FN)                                 \
1087     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1088     {                                                           \
1089         static MVEGenTwoOpScalarFn * const fns[] = {            \
1090             gen_helper_mve_##FN##b,                             \
1091             gen_helper_mve_##FN##h,                             \
1092             gen_helper_mve_##FN##w,                             \
1093             NULL,                                               \
1094         };                                                      \
1095         return do_2op_scalar(s, a, fns[a->size]);               \
1096     }
1097 
1098 DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
1099 DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
1100 DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
1101 DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
1102 DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
1103 DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
1104 DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
1105 DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
1106 DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
1107 DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
1108 DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
1109 DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
1110 DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
1111 DO_2OP_SCALAR(VBRSR, vbrsr)
1112 DO_2OP_SCALAR(VMLA, vmla)
1113 DO_2OP_SCALAR(VMLAS, vmlas)
1114 DO_2OP_SCALAR(VQDMLAH, vqdmlah)
1115 DO_2OP_SCALAR(VQRDMLAH, vqrdmlah)
1116 DO_2OP_SCALAR(VQDMLASH, vqdmlash)
1117 DO_2OP_SCALAR(VQRDMLASH, vqrdmlash)
1118 
1119 static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
1120 {
1121     static MVEGenTwoOpScalarFn * const fns[] = {
1122         NULL,
1123         gen_helper_mve_vqdmullb_scalarh,
1124         gen_helper_mve_vqdmullb_scalarw,
1125         NULL,
1126     };
1127     if (a->qd == a->qn && a->size == MO_32) {
1128         /* UNPREDICTABLE; we choose to undef */
1129         return false;
1130     }
1131     return do_2op_scalar(s, a, fns[a->size]);
1132 }
1133 
1134 static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
1135 {
1136     static MVEGenTwoOpScalarFn * const fns[] = {
1137         NULL,
1138         gen_helper_mve_vqdmullt_scalarh,
1139         gen_helper_mve_vqdmullt_scalarw,
1140         NULL,
1141     };
1142     if (a->qd == a->qn && a->size == MO_32) {
1143         /* UNPREDICTABLE; we choose to undef */
1144         return false;
1145     }
1146     return do_2op_scalar(s, a, fns[a->size]);
1147 }
1148 
1149 
1150 #define DO_2OP_FP_SCALAR(INSN, FN)                              \
1151     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1152     {                                                           \
1153         static MVEGenTwoOpScalarFn * const fns[] = {            \
1154             NULL,                                               \
1155             gen_helper_mve_##FN##h,                             \
1156             gen_helper_mve_##FN##s,                             \
1157             NULL,                                               \
1158         };                                                      \
1159         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1160             return false;                                       \
1161         }                                                       \
1162         return do_2op_scalar(s, a, fns[a->size]);               \
1163     }
1164 
1165 DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar)
1166 DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar)
1167 DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar)
1168 DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar)
1169 DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar)
1170 
1171 static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
1172                              MVEGenLongDualAccOpFn *fn)
1173 {
1174     TCGv_ptr qn, qm;
1175     TCGv_i64 rda;
1176     TCGv_i32 rdalo, rdahi;
1177 
1178     if (!dc_isar_feature(aa32_mve, s) ||
1179         !mve_check_qreg_bank(s, a->qn | a->qm) ||
1180         !fn) {
1181         return false;
1182     }
1183     /*
1184      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1185      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1186      */
1187     if (a->rdahi == 13 || a->rdahi == 15) {
1188         return false;
1189     }
1190     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1191         return true;
1192     }
1193 
1194     qn = mve_qreg_ptr(a->qn);
1195     qm = mve_qreg_ptr(a->qm);
1196 
1197     /*
1198      * This insn is subject to beat-wise execution. Partial execution
1199      * of an A=0 (no-accumulate) insn which does not execute the first
1200      * beat must start with the current rda value, not 0.
1201      */
1202     if (a->a || mve_skip_first_beat(s)) {
1203         rda = tcg_temp_new_i64();
1204         rdalo = load_reg(s, a->rdalo);
1205         rdahi = load_reg(s, a->rdahi);
1206         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1207         tcg_temp_free_i32(rdalo);
1208         tcg_temp_free_i32(rdahi);
1209     } else {
1210         rda = tcg_const_i64(0);
1211     }
1212 
1213     fn(rda, cpu_env, qn, qm, rda);
1214     tcg_temp_free_ptr(qn);
1215     tcg_temp_free_ptr(qm);
1216 
1217     rdalo = tcg_temp_new_i32();
1218     rdahi = tcg_temp_new_i32();
1219     tcg_gen_extrl_i64_i32(rdalo, rda);
1220     tcg_gen_extrh_i64_i32(rdahi, rda);
1221     store_reg(s, a->rdalo, rdalo);
1222     store_reg(s, a->rdahi, rdahi);
1223     tcg_temp_free_i64(rda);
1224     mve_update_eci(s);
1225     return true;
1226 }
1227 
1228 static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
1229 {
1230     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1231         { NULL, NULL },
1232         { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
1233         { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
1234         { NULL, NULL },
1235     };
1236     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1237 }
1238 
1239 static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
1240 {
1241     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1242         { NULL, NULL },
1243         { gen_helper_mve_vmlaldavuh, NULL },
1244         { gen_helper_mve_vmlaldavuw, NULL },
1245         { NULL, NULL },
1246     };
1247     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1248 }
1249 
1250 static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
1251 {
1252     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1253         { NULL, NULL },
1254         { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
1255         { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
1256         { NULL, NULL },
1257     };
1258     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1259 }
1260 
1261 static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
1262 {
1263     static MVEGenLongDualAccOpFn * const fns[] = {
1264         gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
1265     };
1266     return do_long_dual_acc(s, a, fns[a->x]);
1267 }
1268 
1269 static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
1270 {
1271     static MVEGenLongDualAccOpFn * const fns[] = {
1272         gen_helper_mve_vrmlaldavhuw, NULL,
1273     };
1274     return do_long_dual_acc(s, a, fns[a->x]);
1275 }
1276 
1277 static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
1278 {
1279     static MVEGenLongDualAccOpFn * const fns[] = {
1280         gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
1281     };
1282     return do_long_dual_acc(s, a, fns[a->x]);
1283 }
1284 
1285 static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn)
1286 {
1287     TCGv_ptr qn, qm;
1288     TCGv_i32 rda;
1289 
1290     if (!dc_isar_feature(aa32_mve, s) ||
1291         !mve_check_qreg_bank(s, a->qn) ||
1292         !fn) {
1293         return false;
1294     }
1295     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1296         return true;
1297     }
1298 
1299     qn = mve_qreg_ptr(a->qn);
1300     qm = mve_qreg_ptr(a->qm);
1301 
1302     /*
1303      * This insn is subject to beat-wise execution. Partial execution
1304      * of an A=0 (no-accumulate) insn which does not execute the first
1305      * beat must start with the current rda value, not 0.
1306      */
1307     if (a->a || mve_skip_first_beat(s)) {
1308         rda = load_reg(s, a->rda);
1309     } else {
1310         rda = tcg_const_i32(0);
1311     }
1312 
1313     fn(rda, cpu_env, qn, qm, rda);
1314     store_reg(s, a->rda, rda);
1315     tcg_temp_free_ptr(qn);
1316     tcg_temp_free_ptr(qm);
1317 
1318     mve_update_eci(s);
1319     return true;
1320 }
1321 
1322 #define DO_DUAL_ACC(INSN, FN)                                           \
1323     static bool trans_##INSN(DisasContext *s, arg_vmladav *a)           \
1324     {                                                                   \
1325         static MVEGenDualAccOpFn * const fns[4][2] = {                  \
1326             { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb },        \
1327             { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh },        \
1328             { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw },        \
1329             { NULL, NULL },                                             \
1330         };                                                              \
1331         return do_dual_acc(s, a, fns[a->size][a->x]);                   \
1332     }
1333 
1334 DO_DUAL_ACC(VMLADAV_S, vmladavs)
1335 DO_DUAL_ACC(VMLSDAV, vmlsdav)
1336 
1337 static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a)
1338 {
1339     static MVEGenDualAccOpFn * const fns[4][2] = {
1340         { gen_helper_mve_vmladavub, NULL },
1341         { gen_helper_mve_vmladavuh, NULL },
1342         { gen_helper_mve_vmladavuw, NULL },
1343         { NULL, NULL },
1344     };
1345     return do_dual_acc(s, a, fns[a->size][a->x]);
1346 }
1347 
1348 static void gen_vpst(DisasContext *s, uint32_t mask)
1349 {
1350     /*
1351      * Set the VPR mask fields. We take advantage of MASK01 and MASK23
1352      * being adjacent fields in the register.
1353      *
1354      * Updating the masks is not predicated, but it is subject to beat-wise
1355      * execution, and the mask is updated on the odd-numbered beats.
1356      * So if PSR.ECI says we should skip beat 1, we mustn't update the
1357      * 01 mask field.
1358      */
1359     TCGv_i32 vpr = load_cpu_field(v7m.vpr);
1360     switch (s->eci) {
1361     case ECI_NONE:
1362     case ECI_A0:
1363         /* Update both 01 and 23 fields */
1364         tcg_gen_deposit_i32(vpr, vpr,
1365                             tcg_constant_i32(mask | (mask << 4)),
1366                             R_V7M_VPR_MASK01_SHIFT,
1367                             R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
1368         break;
1369     case ECI_A0A1:
1370     case ECI_A0A1A2:
1371     case ECI_A0A1A2B0:
1372         /* Update only the 23 mask field */
1373         tcg_gen_deposit_i32(vpr, vpr,
1374                             tcg_constant_i32(mask),
1375                             R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
1376         break;
1377     default:
1378         g_assert_not_reached();
1379     }
1380     store_cpu_field(vpr, v7m.vpr);
1381 }
1382 
1383 static bool trans_VPST(DisasContext *s, arg_VPST *a)
1384 {
1385     /* mask == 0 is a "related encoding" */
1386     if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
1387         return false;
1388     }
1389     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1390         return true;
1391     }
1392     gen_vpst(s, a->mask);
1393     mve_update_and_store_eci(s);
1394     return true;
1395 }
1396 
1397 static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a)
1398 {
1399     /*
1400      * Invert the predicate in VPR.P0. We have call out to
1401      * a helper because this insn itself is beatwise and can
1402      * be predicated.
1403      */
1404     if (!dc_isar_feature(aa32_mve, s)) {
1405         return false;
1406     }
1407     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1408         return true;
1409     }
1410 
1411     gen_helper_mve_vpnot(cpu_env);
1412     /* This insn updates predication bits */
1413     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1414     mve_update_eci(s);
1415     return true;
1416 }
1417 
1418 static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
1419 {
1420     /* VADDV: vector add across vector */
1421     static MVEGenVADDVFn * const fns[4][2] = {
1422         { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
1423         { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
1424         { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
1425         { NULL, NULL }
1426     };
1427     TCGv_ptr qm;
1428     TCGv_i32 rda;
1429 
1430     if (!dc_isar_feature(aa32_mve, s) ||
1431         a->size == 3) {
1432         return false;
1433     }
1434     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1435         return true;
1436     }
1437 
1438     /*
1439      * This insn is subject to beat-wise execution. Partial execution
1440      * of an A=0 (no-accumulate) insn which does not execute the first
1441      * beat must start with the current value of Rda, not zero.
1442      */
1443     if (a->a || mve_skip_first_beat(s)) {
1444         /* Accumulate input from Rda */
1445         rda = load_reg(s, a->rda);
1446     } else {
1447         /* Accumulate starting at zero */
1448         rda = tcg_const_i32(0);
1449     }
1450 
1451     qm = mve_qreg_ptr(a->qm);
1452     fns[a->size][a->u](rda, cpu_env, qm, rda);
1453     store_reg(s, a->rda, rda);
1454     tcg_temp_free_ptr(qm);
1455 
1456     mve_update_eci(s);
1457     return true;
1458 }
1459 
1460 static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
1461 {
1462     /*
1463      * Vector Add Long Across Vector: accumulate the 32-bit
1464      * elements of the vector into a 64-bit result stored in
1465      * a pair of general-purpose registers.
1466      * No need to check Qm's bank: it is only 3 bits in decode.
1467      */
1468     TCGv_ptr qm;
1469     TCGv_i64 rda;
1470     TCGv_i32 rdalo, rdahi;
1471 
1472     if (!dc_isar_feature(aa32_mve, s)) {
1473         return false;
1474     }
1475     /*
1476      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1477      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1478      */
1479     if (a->rdahi == 13 || a->rdahi == 15) {
1480         return false;
1481     }
1482     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1483         return true;
1484     }
1485 
1486     /*
1487      * This insn is subject to beat-wise execution. Partial execution
1488      * of an A=0 (no-accumulate) insn which does not execute the first
1489      * beat must start with the current value of RdaHi:RdaLo, not zero.
1490      */
1491     if (a->a || mve_skip_first_beat(s)) {
1492         /* Accumulate input from RdaHi:RdaLo */
1493         rda = tcg_temp_new_i64();
1494         rdalo = load_reg(s, a->rdalo);
1495         rdahi = load_reg(s, a->rdahi);
1496         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1497         tcg_temp_free_i32(rdalo);
1498         tcg_temp_free_i32(rdahi);
1499     } else {
1500         /* Accumulate starting at zero */
1501         rda = tcg_const_i64(0);
1502     }
1503 
1504     qm = mve_qreg_ptr(a->qm);
1505     if (a->u) {
1506         gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
1507     } else {
1508         gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
1509     }
1510     tcg_temp_free_ptr(qm);
1511 
1512     rdalo = tcg_temp_new_i32();
1513     rdahi = tcg_temp_new_i32();
1514     tcg_gen_extrl_i64_i32(rdalo, rda);
1515     tcg_gen_extrh_i64_i32(rdahi, rda);
1516     store_reg(s, a->rdalo, rdalo);
1517     store_reg(s, a->rdahi, rdahi);
1518     tcg_temp_free_i64(rda);
1519     mve_update_eci(s);
1520     return true;
1521 }
1522 
1523 static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn,
1524                     GVecGen2iFn *vecfn)
1525 {
1526     TCGv_ptr qd;
1527     uint64_t imm;
1528 
1529     if (!dc_isar_feature(aa32_mve, s) ||
1530         !mve_check_qreg_bank(s, a->qd) ||
1531         !fn) {
1532         return false;
1533     }
1534     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1535         return true;
1536     }
1537 
1538     imm = asimd_imm_const(a->imm, a->cmode, a->op);
1539 
1540     if (vecfn && mve_no_predication(s)) {
1541         vecfn(MO_64, mve_qreg_offset(a->qd), mve_qreg_offset(a->qd),
1542               imm, 16, 16);
1543     } else {
1544         qd = mve_qreg_ptr(a->qd);
1545         fn(cpu_env, qd, tcg_constant_i64(imm));
1546         tcg_temp_free_ptr(qd);
1547     }
1548     mve_update_eci(s);
1549     return true;
1550 }
1551 
1552 static void gen_gvec_vmovi(unsigned vece, uint32_t dofs, uint32_t aofs,
1553                            int64_t c, uint32_t oprsz, uint32_t maxsz)
1554 {
1555     tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, c);
1556 }
1557 
1558 static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
1559 {
1560     /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
1561     MVEGenOneOpImmFn *fn;
1562     GVecGen2iFn *vecfn;
1563 
1564     if ((a->cmode & 1) && a->cmode < 12) {
1565         if (a->op) {
1566             /*
1567              * For op=1, the immediate will be inverted by asimd_imm_const(),
1568              * so the VBIC becomes a logical AND operation.
1569              */
1570             fn = gen_helper_mve_vandi;
1571             vecfn = tcg_gen_gvec_andi;
1572         } else {
1573             fn = gen_helper_mve_vorri;
1574             vecfn = tcg_gen_gvec_ori;
1575         }
1576     } else {
1577         /* There is one unallocated cmode/op combination in this space */
1578         if (a->cmode == 15 && a->op == 1) {
1579             return false;
1580         }
1581         /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
1582         fn = gen_helper_mve_vmovi;
1583         vecfn = gen_gvec_vmovi;
1584     }
1585     return do_1imm(s, a, fn, vecfn);
1586 }
1587 
1588 static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1589                           bool negateshift, GVecGen2iFn vecfn)
1590 {
1591     TCGv_ptr qd, qm;
1592     int shift = a->shift;
1593 
1594     if (!dc_isar_feature(aa32_mve, s) ||
1595         !mve_check_qreg_bank(s, a->qd | a->qm) ||
1596         !fn) {
1597         return false;
1598     }
1599     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1600         return true;
1601     }
1602 
1603     /*
1604      * When we handle a right shift insn using a left-shift helper
1605      * which permits a negative shift count to indicate a right-shift,
1606      * we must negate the shift count.
1607      */
1608     if (negateshift) {
1609         shift = -shift;
1610     }
1611 
1612     if (vecfn && mve_no_predication(s)) {
1613         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm),
1614               shift, 16, 16);
1615     } else {
1616         qd = mve_qreg_ptr(a->qd);
1617         qm = mve_qreg_ptr(a->qm);
1618         fn(cpu_env, qd, qm, tcg_constant_i32(shift));
1619         tcg_temp_free_ptr(qd);
1620         tcg_temp_free_ptr(qm);
1621     }
1622     mve_update_eci(s);
1623     return true;
1624 }
1625 
1626 static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1627                       bool negateshift)
1628 {
1629     return do_2shift_vec(s, a, fn, negateshift, NULL);
1630 }
1631 
1632 #define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN)                     \
1633     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1634     {                                                                   \
1635         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1636             gen_helper_mve_##FN##b,                                     \
1637             gen_helper_mve_##FN##h,                                     \
1638             gen_helper_mve_##FN##w,                                     \
1639             NULL,                                                       \
1640         };                                                              \
1641         return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN);   \
1642     }
1643 
1644 #define DO_2SHIFT(INSN, FN, NEGATESHIFT)        \
1645     DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL)
1646 
1647 static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs,
1648                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1649 {
1650     /*
1651      * We get here with a negated shift count, and we must handle
1652      * shifts by the element size, which tcg_gen_gvec_sari() does not do.
1653      */
1654     shift = -shift;
1655     if (shift == (8 << vece)) {
1656         shift--;
1657     }
1658     tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz);
1659 }
1660 
1661 static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs,
1662                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1663 {
1664     /*
1665      * We get here with a negated shift count, and we must handle
1666      * shifts by the element size, which tcg_gen_gvec_shri() does not do.
1667      */
1668     shift = -shift;
1669     if (shift == (8 << vece)) {
1670         tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0);
1671     } else {
1672         tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz);
1673     }
1674 }
1675 
1676 DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli)
1677 DO_2SHIFT(VQSHLI_S, vqshli_s, false)
1678 DO_2SHIFT(VQSHLI_U, vqshli_u, false)
1679 DO_2SHIFT(VQSHLUI, vqshlui_s, false)
1680 /* These right shifts use a left-shift helper with negated shift count */
1681 DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s)
1682 DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u)
1683 DO_2SHIFT(VRSHRI_S, vrshli_s, true)
1684 DO_2SHIFT(VRSHRI_U, vrshli_u, true)
1685 
1686 DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri)
1687 DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli)
1688 
1689 #define DO_2SHIFT_FP(INSN, FN)                                  \
1690     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1691     {                                                           \
1692         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1693             return false;                                       \
1694         }                                                       \
1695         return do_2shift(s, a, gen_helper_mve_##FN, false);     \
1696     }
1697 
1698 DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh)
1699 DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh)
1700 DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs)
1701 DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu)
1702 DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf)
1703 DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf)
1704 DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs)
1705 DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu)
1706 
1707 static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
1708                              MVEGenTwoOpShiftFn *fn)
1709 {
1710     TCGv_ptr qda;
1711     TCGv_i32 rm;
1712 
1713     if (!dc_isar_feature(aa32_mve, s) ||
1714         !mve_check_qreg_bank(s, a->qda) ||
1715         a->rm == 13 || a->rm == 15 || !fn) {
1716         /* Rm cases are UNPREDICTABLE */
1717         return false;
1718     }
1719     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1720         return true;
1721     }
1722 
1723     qda = mve_qreg_ptr(a->qda);
1724     rm = load_reg(s, a->rm);
1725     fn(cpu_env, qda, qda, rm);
1726     tcg_temp_free_ptr(qda);
1727     tcg_temp_free_i32(rm);
1728     mve_update_eci(s);
1729     return true;
1730 }
1731 
1732 #define DO_2SHIFT_SCALAR(INSN, FN)                                      \
1733     static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a)        \
1734     {                                                                   \
1735         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1736             gen_helper_mve_##FN##b,                                     \
1737             gen_helper_mve_##FN##h,                                     \
1738             gen_helper_mve_##FN##w,                                     \
1739             NULL,                                                       \
1740         };                                                              \
1741         return do_2shift_scalar(s, a, fns[a->size]);                    \
1742     }
1743 
1744 DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s)
1745 DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u)
1746 DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s)
1747 DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u)
1748 DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s)
1749 DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u)
1750 DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s)
1751 DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u)
1752 
1753 #define DO_VSHLL(INSN, FN)                                              \
1754     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1755     {                                                                   \
1756         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1757             gen_helper_mve_##FN##b,                                     \
1758             gen_helper_mve_##FN##h,                                     \
1759         };                                                              \
1760         return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN);  \
1761     }
1762 
1763 /*
1764  * For the VSHLL vector helpers, the vece is the size of the input
1765  * (ie MO_8 or MO_16); the helpers want to work in the output size.
1766  * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.)
1767  */
1768 static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs,
1769                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1770 {
1771     unsigned ovece = vece + 1;
1772     unsigned ibits = vece == MO_8 ? 8 : 16;
1773     tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz);
1774     tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1775 }
1776 
1777 static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs,
1778                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1779 {
1780     unsigned ovece = vece + 1;
1781     tcg_gen_gvec_andi(ovece, dofs, aofs,
1782                       ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz);
1783     tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz);
1784 }
1785 
1786 static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs,
1787                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1788 {
1789     unsigned ovece = vece + 1;
1790     unsigned ibits = vece == MO_8 ? 8 : 16;
1791     if (shift == 0) {
1792         tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz);
1793     } else {
1794         tcg_gen_gvec_andi(ovece, dofs, aofs,
1795                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1796         tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1797     }
1798 }
1799 
1800 static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs,
1801                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1802 {
1803     unsigned ovece = vece + 1;
1804     unsigned ibits = vece == MO_8 ? 8 : 16;
1805     if (shift == 0) {
1806         tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz);
1807     } else {
1808         tcg_gen_gvec_andi(ovece, dofs, aofs,
1809                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1810         tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1811     }
1812 }
1813 
1814 DO_VSHLL(VSHLL_BS, vshllbs)
1815 DO_VSHLL(VSHLL_BU, vshllbu)
1816 DO_VSHLL(VSHLL_TS, vshllts)
1817 DO_VSHLL(VSHLL_TU, vshlltu)
1818 
1819 #define DO_2SHIFT_N(INSN, FN)                                   \
1820     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1821     {                                                           \
1822         static MVEGenTwoOpShiftFn * const fns[] = {             \
1823             gen_helper_mve_##FN##b,                             \
1824             gen_helper_mve_##FN##h,                             \
1825         };                                                      \
1826         return do_2shift(s, a, fns[a->size], false);            \
1827     }
1828 
1829 DO_2SHIFT_N(VSHRNB, vshrnb)
1830 DO_2SHIFT_N(VSHRNT, vshrnt)
1831 DO_2SHIFT_N(VRSHRNB, vrshrnb)
1832 DO_2SHIFT_N(VRSHRNT, vrshrnt)
1833 DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
1834 DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
1835 DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
1836 DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
1837 DO_2SHIFT_N(VQSHRUNB, vqshrunb)
1838 DO_2SHIFT_N(VQSHRUNT, vqshrunt)
1839 DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
1840 DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
1841 DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
1842 DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
1843 DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
1844 DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
1845 
1846 static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
1847 {
1848     /*
1849      * Whole Vector Left Shift with Carry. The carry is taken
1850      * from a general purpose register and written back there.
1851      * An imm of 0 means "shift by 32".
1852      */
1853     TCGv_ptr qd;
1854     TCGv_i32 rdm;
1855 
1856     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1857         return false;
1858     }
1859     if (a->rdm == 13 || a->rdm == 15) {
1860         /* CONSTRAINED UNPREDICTABLE: we UNDEF */
1861         return false;
1862     }
1863     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1864         return true;
1865     }
1866 
1867     qd = mve_qreg_ptr(a->qd);
1868     rdm = load_reg(s, a->rdm);
1869     gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
1870     store_reg(s, a->rdm, rdm);
1871     tcg_temp_free_ptr(qd);
1872     mve_update_eci(s);
1873     return true;
1874 }
1875 
1876 static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
1877 {
1878     TCGv_ptr qd;
1879     TCGv_i32 rn;
1880 
1881     /*
1882      * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
1883      * This fills the vector with elements of successively increasing
1884      * or decreasing values, starting from Rn.
1885      */
1886     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1887         return false;
1888     }
1889     if (a->size == MO_64) {
1890         /* size 0b11 is another encoding */
1891         return false;
1892     }
1893     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1894         return true;
1895     }
1896 
1897     qd = mve_qreg_ptr(a->qd);
1898     rn = load_reg(s, a->rn);
1899     fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm));
1900     store_reg(s, a->rn, rn);
1901     tcg_temp_free_ptr(qd);
1902     mve_update_eci(s);
1903     return true;
1904 }
1905 
1906 static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
1907 {
1908     TCGv_ptr qd;
1909     TCGv_i32 rn, rm;
1910 
1911     /*
1912      * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
1913      * This fills the vector with elements of successively increasing
1914      * or decreasing values, starting from Rn. Rm specifies a point where
1915      * the count wraps back around to 0. The updated offset is written back
1916      * to Rn.
1917      */
1918     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1919         return false;
1920     }
1921     if (!fn || a->rm == 13 || a->rm == 15) {
1922         /*
1923          * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
1924          * Rm == 13 is VIWDUP, VDWDUP.
1925          */
1926         return false;
1927     }
1928     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1929         return true;
1930     }
1931 
1932     qd = mve_qreg_ptr(a->qd);
1933     rn = load_reg(s, a->rn);
1934     rm = load_reg(s, a->rm);
1935     fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm));
1936     store_reg(s, a->rn, rn);
1937     tcg_temp_free_ptr(qd);
1938     tcg_temp_free_i32(rm);
1939     mve_update_eci(s);
1940     return true;
1941 }
1942 
1943 static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
1944 {
1945     static MVEGenVIDUPFn * const fns[] = {
1946         gen_helper_mve_vidupb,
1947         gen_helper_mve_viduph,
1948         gen_helper_mve_vidupw,
1949         NULL,
1950     };
1951     return do_vidup(s, a, fns[a->size]);
1952 }
1953 
1954 static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
1955 {
1956     static MVEGenVIDUPFn * const fns[] = {
1957         gen_helper_mve_vidupb,
1958         gen_helper_mve_viduph,
1959         gen_helper_mve_vidupw,
1960         NULL,
1961     };
1962     /* VDDUP is just like VIDUP but with a negative immediate */
1963     a->imm = -a->imm;
1964     return do_vidup(s, a, fns[a->size]);
1965 }
1966 
1967 static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
1968 {
1969     static MVEGenVIWDUPFn * const fns[] = {
1970         gen_helper_mve_viwdupb,
1971         gen_helper_mve_viwduph,
1972         gen_helper_mve_viwdupw,
1973         NULL,
1974     };
1975     return do_viwdup(s, a, fns[a->size]);
1976 }
1977 
1978 static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
1979 {
1980     static MVEGenVIWDUPFn * const fns[] = {
1981         gen_helper_mve_vdwdupb,
1982         gen_helper_mve_vdwduph,
1983         gen_helper_mve_vdwdupw,
1984         NULL,
1985     };
1986     return do_viwdup(s, a, fns[a->size]);
1987 }
1988 
1989 static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn)
1990 {
1991     TCGv_ptr qn, qm;
1992 
1993     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1994         !fn) {
1995         return false;
1996     }
1997     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1998         return true;
1999     }
2000 
2001     qn = mve_qreg_ptr(a->qn);
2002     qm = mve_qreg_ptr(a->qm);
2003     fn(cpu_env, qn, qm);
2004     tcg_temp_free_ptr(qn);
2005     tcg_temp_free_ptr(qm);
2006     if (a->mask) {
2007         /* VPT */
2008         gen_vpst(s, a->mask);
2009     }
2010     /* This insn updates predication bits */
2011     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2012     mve_update_eci(s);
2013     return true;
2014 }
2015 
2016 static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a,
2017                            MVEGenScalarCmpFn *fn)
2018 {
2019     TCGv_ptr qn;
2020     TCGv_i32 rm;
2021 
2022     if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) {
2023         return false;
2024     }
2025     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2026         return true;
2027     }
2028 
2029     qn = mve_qreg_ptr(a->qn);
2030     if (a->rm == 15) {
2031         /* Encoding Rm=0b1111 means "constant zero" */
2032         rm = tcg_constant_i32(0);
2033     } else {
2034         rm = load_reg(s, a->rm);
2035     }
2036     fn(cpu_env, qn, rm);
2037     tcg_temp_free_ptr(qn);
2038     tcg_temp_free_i32(rm);
2039     if (a->mask) {
2040         /* VPT */
2041         gen_vpst(s, a->mask);
2042     }
2043     /* This insn updates predication bits */
2044     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2045     mve_update_eci(s);
2046     return true;
2047 }
2048 
2049 #define DO_VCMP(INSN, FN)                                       \
2050     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2051     {                                                           \
2052         static MVEGenCmpFn * const fns[] = {                    \
2053             gen_helper_mve_##FN##b,                             \
2054             gen_helper_mve_##FN##h,                             \
2055             gen_helper_mve_##FN##w,                             \
2056             NULL,                                               \
2057         };                                                      \
2058         return do_vcmp(s, a, fns[a->size]);                     \
2059     }                                                           \
2060     static bool trans_##INSN##_scalar(DisasContext *s,          \
2061                                       arg_vcmp_scalar *a)       \
2062     {                                                           \
2063         static MVEGenScalarCmpFn * const fns[] = {              \
2064             gen_helper_mve_##FN##_scalarb,                      \
2065             gen_helper_mve_##FN##_scalarh,                      \
2066             gen_helper_mve_##FN##_scalarw,                      \
2067             NULL,                                               \
2068         };                                                      \
2069         return do_vcmp_scalar(s, a, fns[a->size]);              \
2070     }
2071 
2072 DO_VCMP(VCMPEQ, vcmpeq)
2073 DO_VCMP(VCMPNE, vcmpne)
2074 DO_VCMP(VCMPCS, vcmpcs)
2075 DO_VCMP(VCMPHI, vcmphi)
2076 DO_VCMP(VCMPGE, vcmpge)
2077 DO_VCMP(VCMPLT, vcmplt)
2078 DO_VCMP(VCMPGT, vcmpgt)
2079 DO_VCMP(VCMPLE, vcmple)
2080 
2081 #define DO_VCMP_FP(INSN, FN)                                    \
2082     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2083     {                                                           \
2084         static MVEGenCmpFn * const fns[] = {                    \
2085             NULL,                                               \
2086             gen_helper_mve_##FN##h,                             \
2087             gen_helper_mve_##FN##s,                             \
2088             NULL,                                               \
2089         };                                                      \
2090         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2091             return false;                                       \
2092         }                                                       \
2093         return do_vcmp(s, a, fns[a->size]);                     \
2094     }                                                           \
2095     static bool trans_##INSN##_scalar(DisasContext *s,          \
2096                                       arg_vcmp_scalar *a)       \
2097     {                                                           \
2098         static MVEGenScalarCmpFn * const fns[] = {              \
2099             NULL,                                               \
2100             gen_helper_mve_##FN##_scalarh,                      \
2101             gen_helper_mve_##FN##_scalars,                      \
2102             NULL,                                               \
2103         };                                                      \
2104         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2105             return false;                                       \
2106         }                                                       \
2107         return do_vcmp_scalar(s, a, fns[a->size]);              \
2108     }
2109 
2110 DO_VCMP_FP(VCMPEQ_fp, vfcmpeq)
2111 DO_VCMP_FP(VCMPNE_fp, vfcmpne)
2112 DO_VCMP_FP(VCMPGE_fp, vfcmpge)
2113 DO_VCMP_FP(VCMPLT_fp, vfcmplt)
2114 DO_VCMP_FP(VCMPGT_fp, vfcmpgt)
2115 DO_VCMP_FP(VCMPLE_fp, vfcmple)
2116 
2117 static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
2118 {
2119     /*
2120      * MIN/MAX operations across a vector: compute the min or
2121      * max of the initial value in a general purpose register
2122      * and all the elements in the vector, and store it back
2123      * into the general purpose register.
2124      */
2125     TCGv_ptr qm;
2126     TCGv_i32 rda;
2127 
2128     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
2129         !fn || a->rda == 13 || a->rda == 15) {
2130         /* Rda cases are UNPREDICTABLE */
2131         return false;
2132     }
2133     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2134         return true;
2135     }
2136 
2137     qm = mve_qreg_ptr(a->qm);
2138     rda = load_reg(s, a->rda);
2139     fn(rda, cpu_env, qm, rda);
2140     store_reg(s, a->rda, rda);
2141     tcg_temp_free_ptr(qm);
2142     mve_update_eci(s);
2143     return true;
2144 }
2145 
2146 #define DO_VMAXV(INSN, FN)                                      \
2147     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2148     {                                                           \
2149         static MVEGenVADDVFn * const fns[] = {                  \
2150             gen_helper_mve_##FN##b,                             \
2151             gen_helper_mve_##FN##h,                             \
2152             gen_helper_mve_##FN##w,                             \
2153             NULL,                                               \
2154         };                                                      \
2155         return do_vmaxv(s, a, fns[a->size]);                    \
2156     }
2157 
2158 DO_VMAXV(VMAXV_S, vmaxvs)
2159 DO_VMAXV(VMAXV_U, vmaxvu)
2160 DO_VMAXV(VMAXAV, vmaxav)
2161 DO_VMAXV(VMINV_S, vminvs)
2162 DO_VMAXV(VMINV_U, vminvu)
2163 DO_VMAXV(VMINAV, vminav)
2164 
2165 #define DO_VMAXV_FP(INSN, FN)                                   \
2166     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2167     {                                                           \
2168         static MVEGenVADDVFn * const fns[] = {                  \
2169             NULL,                                               \
2170             gen_helper_mve_##FN##h,                             \
2171             gen_helper_mve_##FN##s,                             \
2172             NULL,                                               \
2173         };                                                      \
2174         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2175             return false;                                       \
2176         }                                                       \
2177         return do_vmaxv(s, a, fns[a->size]);                    \
2178     }
2179 
2180 DO_VMAXV_FP(VMAXNMV, vmaxnmv)
2181 DO_VMAXV_FP(VMINNMV, vminnmv)
2182 DO_VMAXV_FP(VMAXNMAV, vmaxnmav)
2183 DO_VMAXV_FP(VMINNMAV, vminnmav)
2184 
2185 static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
2186 {
2187     /* Absolute difference accumulated across vector */
2188     TCGv_ptr qn, qm;
2189     TCGv_i32 rda;
2190 
2191     if (!dc_isar_feature(aa32_mve, s) ||
2192         !mve_check_qreg_bank(s, a->qm | a->qn) ||
2193         !fn || a->rda == 13 || a->rda == 15) {
2194         /* Rda cases are UNPREDICTABLE */
2195         return false;
2196     }
2197     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2198         return true;
2199     }
2200 
2201     qm = mve_qreg_ptr(a->qm);
2202     qn = mve_qreg_ptr(a->qn);
2203     rda = load_reg(s, a->rda);
2204     fn(rda, cpu_env, qn, qm, rda);
2205     store_reg(s, a->rda, rda);
2206     tcg_temp_free_ptr(qm);
2207     tcg_temp_free_ptr(qn);
2208     mve_update_eci(s);
2209     return true;
2210 }
2211 
2212 #define DO_VABAV(INSN, FN)                                      \
2213     static bool trans_##INSN(DisasContext *s, arg_vabav *a)     \
2214     {                                                           \
2215         static MVEGenVABAVFn * const fns[] = {                  \
2216             gen_helper_mve_##FN##b,                             \
2217             gen_helper_mve_##FN##h,                             \
2218             gen_helper_mve_##FN##w,                             \
2219             NULL,                                               \
2220         };                                                      \
2221         return do_vabav(s, a, fns[a->size]);                    \
2222     }
2223 
2224 DO_VABAV(VABAV_S, vabavs)
2225 DO_VABAV(VABAV_U, vabavu)
2226 
2227 static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2228 {
2229     /*
2230      * VMOV two 32-bit vector lanes to two general-purpose registers.
2231      * This insn is not predicated but it is subject to beat-wise
2232      * execution if it is not in an IT block. For us this means
2233      * only that if PSR.ECI says we should not be executing the beat
2234      * corresponding to the lane of the vector register being accessed
2235      * then we should skip perfoming the move, and that we need to do
2236      * the usual check for bad ECI state and advance of ECI state.
2237      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2238      */
2239     TCGv_i32 tmp;
2240     int vd;
2241 
2242     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2243         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 ||
2244         a->rt == a->rt2) {
2245         /* Rt/Rt2 cases are UNPREDICTABLE */
2246         return false;
2247     }
2248     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2249         return true;
2250     }
2251 
2252     /* Convert Qreg index to Dreg for read_neon_element32() etc */
2253     vd = a->qd * 2;
2254 
2255     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2256         tmp = tcg_temp_new_i32();
2257         read_neon_element32(tmp, vd, a->idx, MO_32);
2258         store_reg(s, a->rt, tmp);
2259     }
2260     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2261         tmp = tcg_temp_new_i32();
2262         read_neon_element32(tmp, vd + 1, a->idx, MO_32);
2263         store_reg(s, a->rt2, tmp);
2264     }
2265 
2266     mve_update_and_store_eci(s);
2267     return true;
2268 }
2269 
2270 static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2271 {
2272     /*
2273      * VMOV two general-purpose registers to two 32-bit vector lanes.
2274      * This insn is not predicated but it is subject to beat-wise
2275      * execution if it is not in an IT block. For us this means
2276      * only that if PSR.ECI says we should not be executing the beat
2277      * corresponding to the lane of the vector register being accessed
2278      * then we should skip perfoming the move, and that we need to do
2279      * the usual check for bad ECI state and advance of ECI state.
2280      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2281      */
2282     TCGv_i32 tmp;
2283     int vd;
2284 
2285     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2286         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) {
2287         /* Rt/Rt2 cases are UNPREDICTABLE */
2288         return false;
2289     }
2290     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2291         return true;
2292     }
2293 
2294     /* Convert Qreg idx to Dreg for read_neon_element32() etc */
2295     vd = a->qd * 2;
2296 
2297     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2298         tmp = load_reg(s, a->rt);
2299         write_neon_element32(tmp, vd, a->idx, MO_32);
2300         tcg_temp_free_i32(tmp);
2301     }
2302     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2303         tmp = load_reg(s, a->rt2);
2304         write_neon_element32(tmp, vd + 1, a->idx, MO_32);
2305         tcg_temp_free_i32(tmp);
2306     }
2307 
2308     mve_update_and_store_eci(s);
2309     return true;
2310 }
2311