1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 4-operand operation using an out-of-line helper. */ 728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, int ra, int data, gen_helper_gvec_4 *fn) 730 { 731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 732 vec_full_reg_offset(s, rn), 733 vec_full_reg_offset(s, rm), 734 vec_full_reg_offset(s, ra), 735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 736 } 737 738 /* 739 * Expand a 4-operand + fpstatus pointer + simd data value operation using 740 * an out-of-line helper. 741 */ 742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, bool is_fp16, int data, 744 gen_helper_gvec_4_ptr *fn) 745 { 746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 748 vec_full_reg_offset(s, rn), 749 vec_full_reg_offset(s, rm), 750 vec_full_reg_offset(s, ra), fpst, 751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 752 } 753 754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 755 * than the 32 bit equivalent. 756 */ 757 static inline void gen_set_NZ64(TCGv_i64 result) 758 { 759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 761 } 762 763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 764 static inline void gen_logic_CC(int sf, TCGv_i64 result) 765 { 766 if (sf) { 767 gen_set_NZ64(result); 768 } else { 769 tcg_gen_extrl_i64_i32(cpu_ZF, result); 770 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 771 } 772 tcg_gen_movi_i32(cpu_CF, 0); 773 tcg_gen_movi_i32(cpu_VF, 0); 774 } 775 776 /* dest = T0 + T1; compute C, N, V and Z flags */ 777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 778 { 779 TCGv_i64 result, flag, tmp; 780 result = tcg_temp_new_i64(); 781 flag = tcg_temp_new_i64(); 782 tmp = tcg_temp_new_i64(); 783 784 tcg_gen_movi_i64(tmp, 0); 785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 786 787 tcg_gen_extrl_i64_i32(cpu_CF, flag); 788 789 gen_set_NZ64(result); 790 791 tcg_gen_xor_i64(flag, result, t0); 792 tcg_gen_xor_i64(tmp, t0, t1); 793 tcg_gen_andc_i64(flag, flag, tmp); 794 tcg_gen_extrh_i64_i32(cpu_VF, flag); 795 796 tcg_gen_mov_i64(dest, result); 797 } 798 799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 TCGv_i32 t0_32 = tcg_temp_new_i32(); 802 TCGv_i32 t1_32 = tcg_temp_new_i32(); 803 TCGv_i32 tmp = tcg_temp_new_i32(); 804 805 tcg_gen_movi_i32(tmp, 0); 806 tcg_gen_extrl_i64_i32(t0_32, t0); 807 tcg_gen_extrl_i64_i32(t1_32, t1); 808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 809 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 811 tcg_gen_xor_i32(tmp, t0_32, t1_32); 812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 813 tcg_gen_extu_i32_i64(dest, cpu_NF); 814 } 815 816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 817 { 818 if (sf) { 819 gen_add64_CC(dest, t0, t1); 820 } else { 821 gen_add32_CC(dest, t0, t1); 822 } 823 } 824 825 /* dest = T0 - T1; compute C, N, V and Z flags */ 826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 827 { 828 /* 64 bit arithmetic */ 829 TCGv_i64 result, flag, tmp; 830 831 result = tcg_temp_new_i64(); 832 flag = tcg_temp_new_i64(); 833 tcg_gen_sub_i64(result, t0, t1); 834 835 gen_set_NZ64(result); 836 837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 838 tcg_gen_extrl_i64_i32(cpu_CF, flag); 839 840 tcg_gen_xor_i64(flag, result, t0); 841 tmp = tcg_temp_new_i64(); 842 tcg_gen_xor_i64(tmp, t0, t1); 843 tcg_gen_and_i64(flag, flag, tmp); 844 tcg_gen_extrh_i64_i32(cpu_VF, flag); 845 tcg_gen_mov_i64(dest, result); 846 } 847 848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 849 { 850 /* 32 bit arithmetic */ 851 TCGv_i32 t0_32 = tcg_temp_new_i32(); 852 TCGv_i32 t1_32 = tcg_temp_new_i32(); 853 TCGv_i32 tmp; 854 855 tcg_gen_extrl_i64_i32(t0_32, t0); 856 tcg_gen_extrl_i64_i32(t1_32, t1); 857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 858 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 861 tmp = tcg_temp_new_i32(); 862 tcg_gen_xor_i32(tmp, t0_32, t1_32); 863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 864 tcg_gen_extu_i32_i64(dest, cpu_NF); 865 } 866 867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 868 { 869 if (sf) { 870 gen_sub64_CC(dest, t0, t1); 871 } else { 872 gen_sub32_CC(dest, t0, t1); 873 } 874 } 875 876 /* dest = T0 + T1 + CF; do not compute flags. */ 877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 878 { 879 TCGv_i64 flag = tcg_temp_new_i64(); 880 tcg_gen_extu_i32_i64(flag, cpu_CF); 881 tcg_gen_add_i64(dest, t0, t1); 882 tcg_gen_add_i64(dest, dest, flag); 883 884 if (!sf) { 885 tcg_gen_ext32u_i64(dest, dest); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 if (sf) { 893 TCGv_i64 result = tcg_temp_new_i64(); 894 TCGv_i64 cf_64 = tcg_temp_new_i64(); 895 TCGv_i64 vf_64 = tcg_temp_new_i64(); 896 TCGv_i64 tmp = tcg_temp_new_i64(); 897 TCGv_i64 zero = tcg_constant_i64(0); 898 899 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 903 gen_set_NZ64(result); 904 905 tcg_gen_xor_i64(vf_64, result, t0); 906 tcg_gen_xor_i64(tmp, t0, t1); 907 tcg_gen_andc_i64(vf_64, vf_64, tmp); 908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 909 910 tcg_gen_mov_i64(dest, result); 911 } else { 912 TCGv_i32 t0_32 = tcg_temp_new_i32(); 913 TCGv_i32 t1_32 = tcg_temp_new_i32(); 914 TCGv_i32 tmp = tcg_temp_new_i32(); 915 TCGv_i32 zero = tcg_constant_i32(0); 916 917 tcg_gen_extrl_i64_i32(t0_32, t0); 918 tcg_gen_extrl_i64_i32(t1_32, t1); 919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 921 922 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 924 tcg_gen_xor_i32(tmp, t0_32, t1_32); 925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 926 tcg_gen_extu_i32_i64(dest, cpu_NF); 927 } 928 } 929 930 /* 931 * Load/Store generators 932 */ 933 934 /* 935 * Store from GPR register to memory. 936 */ 937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 938 TCGv_i64 tcg_addr, MemOp memop, int memidx, 939 bool iss_valid, 940 unsigned int iss_srt, 941 bool iss_sf, bool iss_ar) 942 { 943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 944 945 if (iss_valid) { 946 uint32_t syn; 947 948 syn = syn_data_abort_with_iss(0, 949 (memop & MO_SIZE), 950 false, 951 iss_srt, 952 iss_sf, 953 iss_ar, 954 0, 0, 0, 0, 0, false); 955 disas_set_insn_syndrome(s, syn); 956 } 957 } 958 959 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 960 TCGv_i64 tcg_addr, MemOp memop, 961 bool iss_valid, 962 unsigned int iss_srt, 963 bool iss_sf, bool iss_ar) 964 { 965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 966 iss_valid, iss_srt, iss_sf, iss_ar); 967 } 968 969 /* 970 * Load from memory to GPR register 971 */ 972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 973 MemOp memop, bool extend, int memidx, 974 bool iss_valid, unsigned int iss_srt, 975 bool iss_sf, bool iss_ar) 976 { 977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 978 979 if (extend && (memop & MO_SIGN)) { 980 g_assert((memop & MO_SIZE) <= MO_32); 981 tcg_gen_ext32u_i64(dest, dest); 982 } 983 984 if (iss_valid) { 985 uint32_t syn; 986 987 syn = syn_data_abort_with_iss(0, 988 (memop & MO_SIZE), 989 (memop & MO_SIGN) != 0, 990 iss_srt, 991 iss_sf, 992 iss_ar, 993 0, 0, 0, 0, 0, false); 994 disas_set_insn_syndrome(s, syn); 995 } 996 } 997 998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 999 MemOp memop, bool extend, 1000 bool iss_valid, unsigned int iss_srt, 1001 bool iss_sf, bool iss_ar) 1002 { 1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1004 iss_valid, iss_srt, iss_sf, iss_ar); 1005 } 1006 1007 /* 1008 * Store from FP register to memory 1009 */ 1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1011 { 1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1013 TCGv_i64 tmplo = tcg_temp_new_i64(); 1014 1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1016 1017 if ((mop & MO_SIZE) < MO_128) { 1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1019 } else { 1020 TCGv_i64 tmphi = tcg_temp_new_i64(); 1021 TCGv_i128 t16 = tcg_temp_new_i128(); 1022 1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1025 1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1027 } 1028 } 1029 1030 /* 1031 * Load from memory to FP register 1032 */ 1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1034 { 1035 /* This always zero-extends and writes to a full 128 bit wide vector */ 1036 TCGv_i64 tmplo = tcg_temp_new_i64(); 1037 TCGv_i64 tmphi = NULL; 1038 1039 if ((mop & MO_SIZE) < MO_128) { 1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1041 } else { 1042 TCGv_i128 t16 = tcg_temp_new_i128(); 1043 1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1045 1046 tmphi = tcg_temp_new_i64(); 1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1048 } 1049 1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1051 1052 if (tmphi) { 1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1054 } 1055 clear_vec_high(s, tmphi != NULL, destidx); 1056 } 1057 1058 /* 1059 * Vector load/store helpers. 1060 * 1061 * The principal difference between this and a FP load is that we don't 1062 * zero extend as we are filling a partial chunk of the vector register. 1063 * These functions don't support 128 bit loads/stores, which would be 1064 * normal load/store operations. 1065 * 1066 * The _i32 versions are useful when operating on 32 bit quantities 1067 * (eg for floating point single or using Neon helper functions). 1068 */ 1069 1070 /* Get value of an element within a vector register */ 1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1072 int element, MemOp memop) 1073 { 1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1075 switch ((unsigned)memop) { 1076 case MO_8: 1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1078 break; 1079 case MO_16: 1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1081 break; 1082 case MO_32: 1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1084 break; 1085 case MO_8|MO_SIGN: 1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1087 break; 1088 case MO_16|MO_SIGN: 1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1090 break; 1091 case MO_32|MO_SIGN: 1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1093 break; 1094 case MO_64: 1095 case MO_64|MO_SIGN: 1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 default: 1099 g_assert_not_reached(); 1100 } 1101 } 1102 1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1104 int element, MemOp memop) 1105 { 1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1107 switch (memop) { 1108 case MO_8: 1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1110 break; 1111 case MO_16: 1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1113 break; 1114 case MO_8|MO_SIGN: 1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1116 break; 1117 case MO_16|MO_SIGN: 1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1119 break; 1120 case MO_32: 1121 case MO_32|MO_SIGN: 1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 default: 1125 g_assert_not_reached(); 1126 } 1127 } 1128 1129 /* Set value of an element within a vector register */ 1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1131 int element, MemOp memop) 1132 { 1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1134 switch (memop) { 1135 case MO_8: 1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1137 break; 1138 case MO_16: 1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1140 break; 1141 case MO_32: 1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1143 break; 1144 case MO_64: 1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1146 break; 1147 default: 1148 g_assert_not_reached(); 1149 } 1150 } 1151 1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1153 int destidx, int element, MemOp memop) 1154 { 1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1156 switch (memop) { 1157 case MO_8: 1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1159 break; 1160 case MO_16: 1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1162 break; 1163 case MO_32: 1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1165 break; 1166 default: 1167 g_assert_not_reached(); 1168 } 1169 } 1170 1171 /* Store from vector register to memory */ 1172 static void do_vec_st(DisasContext *s, int srcidx, int element, 1173 TCGv_i64 tcg_addr, MemOp mop) 1174 { 1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1176 1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1179 } 1180 1181 /* Load from memory to vector register */ 1182 static void do_vec_ld(DisasContext *s, int destidx, int element, 1183 TCGv_i64 tcg_addr, MemOp mop) 1184 { 1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1186 1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1189 } 1190 1191 /* Check that FP/Neon access is enabled. If it is, return 1192 * true. If not, emit code to generate an appropriate exception, 1193 * and return false; the caller should not emit any code for 1194 * the instruction. Note that this check must happen after all 1195 * unallocated-encoding checks (otherwise the syndrome information 1196 * for the resulting exception will be incorrect). 1197 */ 1198 static bool fp_access_check_only(DisasContext *s) 1199 { 1200 if (s->fp_excp_el) { 1201 assert(!s->fp_access_checked); 1202 s->fp_access_checked = true; 1203 1204 gen_exception_insn_el(s, 0, EXCP_UDEF, 1205 syn_fp_access_trap(1, 0xe, false, 0), 1206 s->fp_excp_el); 1207 return false; 1208 } 1209 s->fp_access_checked = true; 1210 return true; 1211 } 1212 1213 static bool fp_access_check(DisasContext *s) 1214 { 1215 if (!fp_access_check_only(s)) { 1216 return false; 1217 } 1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1219 gen_exception_insn(s, 0, EXCP_UDEF, 1220 syn_smetrap(SME_ET_Streaming, false)); 1221 return false; 1222 } 1223 return true; 1224 } 1225 1226 /* 1227 * Check that SVE access is enabled. If it is, return true. 1228 * If not, emit code to generate an appropriate exception and return false. 1229 * This function corresponds to CheckSVEEnabled(). 1230 */ 1231 bool sve_access_check(DisasContext *s) 1232 { 1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1234 assert(dc_isar_feature(aa64_sme, s)); 1235 if (!sme_sm_enabled_check(s)) { 1236 goto fail_exit; 1237 } 1238 } else if (s->sve_excp_el) { 1239 gen_exception_insn_el(s, 0, EXCP_UDEF, 1240 syn_sve_access_trap(), s->sve_excp_el); 1241 goto fail_exit; 1242 } 1243 s->sve_access_checked = true; 1244 return fp_access_check(s); 1245 1246 fail_exit: 1247 /* Assert that we only raise one exception per instruction. */ 1248 assert(!s->sve_access_checked); 1249 s->sve_access_checked = true; 1250 return false; 1251 } 1252 1253 /* 1254 * Check that SME access is enabled, raise an exception if not. 1255 * Note that this function corresponds to CheckSMEAccess and is 1256 * only used directly for cpregs. 1257 */ 1258 static bool sme_access_check(DisasContext *s) 1259 { 1260 if (s->sme_excp_el) { 1261 gen_exception_insn_el(s, 0, EXCP_UDEF, 1262 syn_smetrap(SME_ET_AccessTrap, false), 1263 s->sme_excp_el); 1264 return false; 1265 } 1266 return true; 1267 } 1268 1269 /* This function corresponds to CheckSMEEnabled. */ 1270 bool sme_enabled_check(DisasContext *s) 1271 { 1272 /* 1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1274 * to be zero when fp_excp_el has priority. This is because we need 1275 * sme_excp_el by itself for cpregs access checks. 1276 */ 1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1278 s->fp_access_checked = true; 1279 return sme_access_check(s); 1280 } 1281 return fp_access_check_only(s); 1282 } 1283 1284 /* Common subroutine for CheckSMEAnd*Enabled. */ 1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1286 { 1287 if (!sme_enabled_check(s)) { 1288 return false; 1289 } 1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1291 gen_exception_insn(s, 0, EXCP_UDEF, 1292 syn_smetrap(SME_ET_NotStreaming, false)); 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_InactiveZA, false)); 1298 return false; 1299 } 1300 return true; 1301 } 1302 1303 /* 1304 * Expanders for AdvSIMD translation functions. 1305 */ 1306 1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1308 gen_helper_gvec_2 *fn) 1309 { 1310 if (!a->q && a->esz == MO_64) { 1311 return false; 1312 } 1313 if (fp_access_check(s)) { 1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1315 } 1316 return true; 1317 } 1318 1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1320 gen_helper_gvec_3 *fn) 1321 { 1322 if (!a->q && a->esz == MO_64) { 1323 return false; 1324 } 1325 if (fp_access_check(s)) { 1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1327 } 1328 return true; 1329 } 1330 1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1332 { 1333 if (!a->q && a->esz == MO_64) { 1334 return false; 1335 } 1336 if (fp_access_check(s)) { 1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1338 } 1339 return true; 1340 } 1341 1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1343 { 1344 if (a->esz == MO_64) { 1345 return false; 1346 } 1347 if (fp_access_check(s)) { 1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1349 } 1350 return true; 1351 } 1352 1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1354 { 1355 if (a->esz == MO_8) { 1356 return false; 1357 } 1358 return do_gvec_fn3_no64(s, a, fn); 1359 } 1360 1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1362 { 1363 if (!a->q && a->esz == MO_64) { 1364 return false; 1365 } 1366 if (fp_access_check(s)) { 1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1368 } 1369 return true; 1370 } 1371 1372 /* 1373 * This utility function is for doing register extension with an 1374 * optional shift. You will likely want to pass a temporary for the 1375 * destination register. See DecodeRegExtend() in the ARM ARM. 1376 */ 1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1378 int option, unsigned int shift) 1379 { 1380 int extsize = extract32(option, 0, 2); 1381 bool is_signed = extract32(option, 2, 1); 1382 1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1385 } 1386 1387 static inline void gen_check_sp_alignment(DisasContext *s) 1388 { 1389 /* The AArch64 architecture mandates that (if enabled via PSTATE 1390 * or SCTLR bits) there is a check that SP is 16-aligned on every 1391 * SP-relative load or store (with an exception generated if it is not). 1392 * In line with general QEMU practice regarding misaligned accesses, 1393 * we omit these checks for the sake of guest program performance. 1394 * This function is provided as a hook so we can more easily add these 1395 * checks in future (possibly as a "favour catching guest program bugs 1396 * over speed" user selectable option). 1397 */ 1398 } 1399 1400 /* 1401 * This provides a simple table based table lookup decoder. It is 1402 * intended to be used when the relevant bits for decode are too 1403 * awkwardly placed and switch/if based logic would be confusing and 1404 * deeply nested. Since it's a linear search through the table, tables 1405 * should be kept small. 1406 * 1407 * It returns the first handler where insn & mask == pattern, or 1408 * NULL if there is no match. 1409 * The table is terminated by an empty mask (i.e. 0) 1410 */ 1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1412 uint32_t insn) 1413 { 1414 const AArch64DecodeTable *tptr = table; 1415 1416 while (tptr->mask) { 1417 if ((insn & tptr->mask) == tptr->pattern) { 1418 return tptr->disas_fn; 1419 } 1420 tptr++; 1421 } 1422 return NULL; 1423 } 1424 1425 /* 1426 * The instruction disassembly implemented here matches 1427 * the instruction encoding classifications in chapter C4 1428 * of the ARM Architecture Reference Manual (DDI0487B_a); 1429 * classification names and decode diagrams here should generally 1430 * match up with those in the manual. 1431 */ 1432 1433 static bool trans_B(DisasContext *s, arg_i *a) 1434 { 1435 reset_btype(s); 1436 gen_goto_tb(s, 0, a->imm); 1437 return true; 1438 } 1439 1440 static bool trans_BL(DisasContext *s, arg_i *a) 1441 { 1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1443 reset_btype(s); 1444 gen_goto_tb(s, 0, a->imm); 1445 return true; 1446 } 1447 1448 1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1450 { 1451 DisasLabel match; 1452 TCGv_i64 tcg_cmp; 1453 1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1455 reset_btype(s); 1456 1457 match = gen_disas_label(s); 1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1459 tcg_cmp, 0, match.label); 1460 gen_goto_tb(s, 0, 4); 1461 set_disas_label(s, match); 1462 gen_goto_tb(s, 1, a->imm); 1463 return true; 1464 } 1465 1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1467 { 1468 DisasLabel match; 1469 TCGv_i64 tcg_cmp; 1470 1471 tcg_cmp = tcg_temp_new_i64(); 1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1473 1474 reset_btype(s); 1475 1476 match = gen_disas_label(s); 1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1478 tcg_cmp, 0, match.label); 1479 gen_goto_tb(s, 0, 4); 1480 set_disas_label(s, match); 1481 gen_goto_tb(s, 1, a->imm); 1482 return true; 1483 } 1484 1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1486 { 1487 /* BC.cond is only present with FEAT_HBC */ 1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1489 return false; 1490 } 1491 reset_btype(s); 1492 if (a->cond < 0x0e) { 1493 /* genuinely conditional branches */ 1494 DisasLabel match = gen_disas_label(s); 1495 arm_gen_test_cc(a->cond, match.label); 1496 gen_goto_tb(s, 0, 4); 1497 set_disas_label(s, match); 1498 gen_goto_tb(s, 1, a->imm); 1499 } else { 1500 /* 0xe and 0xf are both "always" conditions */ 1501 gen_goto_tb(s, 0, a->imm); 1502 } 1503 return true; 1504 } 1505 1506 static void set_btype_for_br(DisasContext *s, int rn) 1507 { 1508 if (dc_isar_feature(aa64_bti, s)) { 1509 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1511 } 1512 } 1513 1514 static void set_btype_for_blr(DisasContext *s) 1515 { 1516 if (dc_isar_feature(aa64_bti, s)) { 1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1518 set_btype(s, 2); 1519 } 1520 } 1521 1522 static bool trans_BR(DisasContext *s, arg_r *a) 1523 { 1524 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1525 set_btype_for_br(s, a->rn); 1526 s->base.is_jmp = DISAS_JUMP; 1527 return true; 1528 } 1529 1530 static bool trans_BLR(DisasContext *s, arg_r *a) 1531 { 1532 TCGv_i64 dst = cpu_reg(s, a->rn); 1533 TCGv_i64 lr = cpu_reg(s, 30); 1534 if (dst == lr) { 1535 TCGv_i64 tmp = tcg_temp_new_i64(); 1536 tcg_gen_mov_i64(tmp, dst); 1537 dst = tmp; 1538 } 1539 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1540 gen_a64_set_pc(s, dst); 1541 set_btype_for_blr(s); 1542 s->base.is_jmp = DISAS_JUMP; 1543 return true; 1544 } 1545 1546 static bool trans_RET(DisasContext *s, arg_r *a) 1547 { 1548 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1549 s->base.is_jmp = DISAS_JUMP; 1550 return true; 1551 } 1552 1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1554 TCGv_i64 modifier, bool use_key_a) 1555 { 1556 TCGv_i64 truedst; 1557 /* 1558 * Return the branch target for a BRAA/RETA/etc, which is either 1559 * just the destination dst, or that value with the pauth check 1560 * done and the code removed from the high bits. 1561 */ 1562 if (!s->pauth_active) { 1563 return dst; 1564 } 1565 1566 truedst = tcg_temp_new_i64(); 1567 if (use_key_a) { 1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1569 } else { 1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1571 } 1572 return truedst; 1573 } 1574 1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1576 { 1577 TCGv_i64 dst; 1578 1579 if (!dc_isar_feature(aa64_pauth, s)) { 1580 return false; 1581 } 1582 1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1584 gen_a64_set_pc(s, dst); 1585 set_btype_for_br(s, a->rn); 1586 s->base.is_jmp = DISAS_JUMP; 1587 return true; 1588 } 1589 1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1591 { 1592 TCGv_i64 dst, lr; 1593 1594 if (!dc_isar_feature(aa64_pauth, s)) { 1595 return false; 1596 } 1597 1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1599 lr = cpu_reg(s, 30); 1600 if (dst == lr) { 1601 TCGv_i64 tmp = tcg_temp_new_i64(); 1602 tcg_gen_mov_i64(tmp, dst); 1603 dst = tmp; 1604 } 1605 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1606 gen_a64_set_pc(s, dst); 1607 set_btype_for_blr(s); 1608 s->base.is_jmp = DISAS_JUMP; 1609 return true; 1610 } 1611 1612 static bool trans_RETA(DisasContext *s, arg_reta *a) 1613 { 1614 TCGv_i64 dst; 1615 1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1617 gen_a64_set_pc(s, dst); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_BRA(DisasContext *s, arg_bra *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (!dc_isar_feature(aa64_pauth, s)) { 1627 return false; 1628 } 1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1630 gen_a64_set_pc(s, dst); 1631 set_btype_for_br(s, a->rn); 1632 s->base.is_jmp = DISAS_JUMP; 1633 return true; 1634 } 1635 1636 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1637 { 1638 TCGv_i64 dst, lr; 1639 1640 if (!dc_isar_feature(aa64_pauth, s)) { 1641 return false; 1642 } 1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1644 lr = cpu_reg(s, 30); 1645 if (dst == lr) { 1646 TCGv_i64 tmp = tcg_temp_new_i64(); 1647 tcg_gen_mov_i64(tmp, dst); 1648 dst = tmp; 1649 } 1650 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1651 gen_a64_set_pc(s, dst); 1652 set_btype_for_blr(s); 1653 s->base.is_jmp = DISAS_JUMP; 1654 return true; 1655 } 1656 1657 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1658 { 1659 TCGv_i64 dst; 1660 1661 if (s->current_el == 0) { 1662 return false; 1663 } 1664 if (s->trap_eret) { 1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1666 return true; 1667 } 1668 dst = tcg_temp_new_i64(); 1669 tcg_gen_ld_i64(dst, tcg_env, 1670 offsetof(CPUARMState, elr_el[s->current_el])); 1671 1672 translator_io_start(&s->base); 1673 1674 gen_helper_exception_return(tcg_env, dst); 1675 /* Must exit loop to check un-masked IRQs */ 1676 s->base.is_jmp = DISAS_EXIT; 1677 return true; 1678 } 1679 1680 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1681 { 1682 TCGv_i64 dst; 1683 1684 if (!dc_isar_feature(aa64_pauth, s)) { 1685 return false; 1686 } 1687 if (s->current_el == 0) { 1688 return false; 1689 } 1690 /* The FGT trap takes precedence over an auth trap. */ 1691 if (s->trap_eret) { 1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1693 return true; 1694 } 1695 dst = tcg_temp_new_i64(); 1696 tcg_gen_ld_i64(dst, tcg_env, 1697 offsetof(CPUARMState, elr_el[s->current_el])); 1698 1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1700 1701 translator_io_start(&s->base); 1702 1703 gen_helper_exception_return(tcg_env, dst); 1704 /* Must exit loop to check un-masked IRQs */ 1705 s->base.is_jmp = DISAS_EXIT; 1706 return true; 1707 } 1708 1709 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1710 { 1711 return true; 1712 } 1713 1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1715 { 1716 /* 1717 * When running in MTTCG we don't generate jumps to the yield and 1718 * WFE helpers as it won't affect the scheduling of other vCPUs. 1719 * If we wanted to more completely model WFE/SEV so we don't busy 1720 * spin unnecessarily we would need to do something more involved. 1721 */ 1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1723 s->base.is_jmp = DISAS_YIELD; 1724 } 1725 return true; 1726 } 1727 1728 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1729 { 1730 s->base.is_jmp = DISAS_WFI; 1731 return true; 1732 } 1733 1734 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1735 { 1736 /* 1737 * When running in MTTCG we don't generate jumps to the yield and 1738 * WFE helpers as it won't affect the scheduling of other vCPUs. 1739 * If we wanted to more completely model WFE/SEV so we don't busy 1740 * spin unnecessarily we would need to do something more involved. 1741 */ 1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1743 s->base.is_jmp = DISAS_WFE; 1744 } 1745 return true; 1746 } 1747 1748 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1749 { 1750 if (s->pauth_active) { 1751 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1752 } 1753 return true; 1754 } 1755 1756 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1757 { 1758 if (s->pauth_active) { 1759 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1760 } 1761 return true; 1762 } 1763 1764 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1765 { 1766 if (s->pauth_active) { 1767 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1768 } 1769 return true; 1770 } 1771 1772 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1773 { 1774 if (s->pauth_active) { 1775 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1776 } 1777 return true; 1778 } 1779 1780 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1781 { 1782 if (s->pauth_active) { 1783 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1784 } 1785 return true; 1786 } 1787 1788 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1789 { 1790 /* Without RAS, we must implement this as NOP. */ 1791 if (dc_isar_feature(aa64_ras, s)) { 1792 /* 1793 * QEMU does not have a source of physical SErrors, 1794 * so we are only concerned with virtual SErrors. 1795 * The pseudocode in the ARM for this case is 1796 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1797 * AArch64.vESBOperation(); 1798 * Most of the condition can be evaluated at translation time. 1799 * Test for EL2 present, and defer test for SEL2 to runtime. 1800 */ 1801 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1802 gen_helper_vesb(tcg_env); 1803 } 1804 } 1805 return true; 1806 } 1807 1808 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1809 { 1810 if (s->pauth_active) { 1811 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1812 } 1813 return true; 1814 } 1815 1816 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1817 { 1818 if (s->pauth_active) { 1819 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1820 } 1821 return true; 1822 } 1823 1824 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1825 { 1826 if (s->pauth_active) { 1827 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1828 } 1829 return true; 1830 } 1831 1832 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1833 { 1834 if (s->pauth_active) { 1835 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1836 } 1837 return true; 1838 } 1839 1840 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1841 { 1842 if (s->pauth_active) { 1843 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1844 } 1845 return true; 1846 } 1847 1848 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1849 { 1850 if (s->pauth_active) { 1851 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1852 } 1853 return true; 1854 } 1855 1856 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1857 { 1858 if (s->pauth_active) { 1859 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1860 } 1861 return true; 1862 } 1863 1864 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1865 { 1866 if (s->pauth_active) { 1867 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1868 } 1869 return true; 1870 } 1871 1872 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1873 { 1874 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1875 return true; 1876 } 1877 1878 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1879 { 1880 /* We handle DSB and DMB the same way */ 1881 TCGBar bar; 1882 1883 switch (a->types) { 1884 case 1: /* MBReqTypes_Reads */ 1885 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1886 break; 1887 case 2: /* MBReqTypes_Writes */ 1888 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1889 break; 1890 default: /* MBReqTypes_All */ 1891 bar = TCG_BAR_SC | TCG_MO_ALL; 1892 break; 1893 } 1894 tcg_gen_mb(bar); 1895 return true; 1896 } 1897 1898 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1899 { 1900 /* 1901 * We need to break the TB after this insn to execute 1902 * self-modifying code correctly and also to take 1903 * any pending interrupts immediately. 1904 */ 1905 reset_btype(s); 1906 gen_goto_tb(s, 0, 4); 1907 return true; 1908 } 1909 1910 static bool trans_SB(DisasContext *s, arg_SB *a) 1911 { 1912 if (!dc_isar_feature(aa64_sb, s)) { 1913 return false; 1914 } 1915 /* 1916 * TODO: There is no speculation barrier opcode for TCG; 1917 * MB and end the TB instead. 1918 */ 1919 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1920 gen_goto_tb(s, 0, 4); 1921 return true; 1922 } 1923 1924 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1925 { 1926 if (!dc_isar_feature(aa64_condm_4, s)) { 1927 return false; 1928 } 1929 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1930 return true; 1931 } 1932 1933 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1934 { 1935 TCGv_i32 z; 1936 1937 if (!dc_isar_feature(aa64_condm_5, s)) { 1938 return false; 1939 } 1940 1941 z = tcg_temp_new_i32(); 1942 1943 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1944 1945 /* 1946 * (!C & !Z) << 31 1947 * (!(C | Z)) << 31 1948 * ~((C | Z) << 31) 1949 * ~-(C | Z) 1950 * (C | Z) - 1 1951 */ 1952 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1953 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1954 1955 /* !(Z & C) */ 1956 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1957 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1958 1959 /* (!C & Z) << 31 -> -(Z & ~C) */ 1960 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1961 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1962 1963 /* C | Z */ 1964 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1965 1966 return true; 1967 } 1968 1969 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1970 { 1971 if (!dc_isar_feature(aa64_condm_5, s)) { 1972 return false; 1973 } 1974 1975 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1976 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1977 1978 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1979 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1980 1981 tcg_gen_movi_i32(cpu_NF, 0); 1982 tcg_gen_movi_i32(cpu_VF, 0); 1983 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_UAO); 1994 } else { 1995 clear_pstate_bits(PSTATE_UAO); 1996 } 1997 gen_rebuild_hflags(s); 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2003 { 2004 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2005 return false; 2006 } 2007 if (a->imm & 1) { 2008 set_pstate_bits(PSTATE_PAN); 2009 } else { 2010 clear_pstate_bits(PSTATE_PAN); 2011 } 2012 gen_rebuild_hflags(s); 2013 s->base.is_jmp = DISAS_TOO_MANY; 2014 return true; 2015 } 2016 2017 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2018 { 2019 if (s->current_el == 0) { 2020 return false; 2021 } 2022 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2023 s->base.is_jmp = DISAS_TOO_MANY; 2024 return true; 2025 } 2026 2027 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2028 { 2029 if (!dc_isar_feature(aa64_ssbs, s)) { 2030 return false; 2031 } 2032 if (a->imm & 1) { 2033 set_pstate_bits(PSTATE_SSBS); 2034 } else { 2035 clear_pstate_bits(PSTATE_SSBS); 2036 } 2037 /* Don't need to rebuild hflags since SSBS is a nop */ 2038 s->base.is_jmp = DISAS_TOO_MANY; 2039 return true; 2040 } 2041 2042 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2043 { 2044 if (!dc_isar_feature(aa64_dit, s)) { 2045 return false; 2046 } 2047 if (a->imm & 1) { 2048 set_pstate_bits(PSTATE_DIT); 2049 } else { 2050 clear_pstate_bits(PSTATE_DIT); 2051 } 2052 /* There's no need to rebuild hflags because DIT is a nop */ 2053 s->base.is_jmp = DISAS_TOO_MANY; 2054 return true; 2055 } 2056 2057 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2058 { 2059 if (dc_isar_feature(aa64_mte, s)) { 2060 /* Full MTE is enabled -- set the TCO bit as directed. */ 2061 if (a->imm & 1) { 2062 set_pstate_bits(PSTATE_TCO); 2063 } else { 2064 clear_pstate_bits(PSTATE_TCO); 2065 } 2066 gen_rebuild_hflags(s); 2067 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2068 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2069 return true; 2070 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2071 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2072 return true; 2073 } else { 2074 /* Insn not present */ 2075 return false; 2076 } 2077 } 2078 2079 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2080 { 2081 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2082 s->base.is_jmp = DISAS_TOO_MANY; 2083 return true; 2084 } 2085 2086 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2087 { 2088 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2089 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2090 s->base.is_jmp = DISAS_UPDATE_EXIT; 2091 return true; 2092 } 2093 2094 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2095 { 2096 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2097 return false; 2098 } 2099 2100 if (a->imm == 0) { 2101 clear_pstate_bits(PSTATE_ALLINT); 2102 } else if (s->current_el > 1) { 2103 set_pstate_bits(PSTATE_ALLINT); 2104 } else { 2105 gen_helper_msr_set_allint_el1(tcg_env); 2106 } 2107 2108 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2109 s->base.is_jmp = DISAS_UPDATE_EXIT; 2110 return true; 2111 } 2112 2113 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2114 { 2115 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2116 return false; 2117 } 2118 if (sme_access_check(s)) { 2119 int old = s->pstate_sm | (s->pstate_za << 1); 2120 int new = a->imm * 3; 2121 2122 if ((old ^ new) & a->mask) { 2123 /* At least one bit changes. */ 2124 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2125 tcg_constant_i32(a->mask)); 2126 s->base.is_jmp = DISAS_TOO_MANY; 2127 } 2128 } 2129 return true; 2130 } 2131 2132 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2133 { 2134 TCGv_i32 tmp = tcg_temp_new_i32(); 2135 TCGv_i32 nzcv = tcg_temp_new_i32(); 2136 2137 /* build bit 31, N */ 2138 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2139 /* build bit 30, Z */ 2140 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2141 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2142 /* build bit 29, C */ 2143 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2144 /* build bit 28, V */ 2145 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2147 /* generate result */ 2148 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2149 } 2150 2151 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2152 { 2153 TCGv_i32 nzcv = tcg_temp_new_i32(); 2154 2155 /* take NZCV from R[t] */ 2156 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2157 2158 /* bit 31, N */ 2159 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2160 /* bit 30, Z */ 2161 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2162 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2163 /* bit 29, C */ 2164 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2165 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2166 /* bit 28, V */ 2167 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2168 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2169 } 2170 2171 static void gen_sysreg_undef(DisasContext *s, bool isread, 2172 uint8_t op0, uint8_t op1, uint8_t op2, 2173 uint8_t crn, uint8_t crm, uint8_t rt) 2174 { 2175 /* 2176 * Generate code to emit an UNDEF with correct syndrome 2177 * information for a failed system register access. 2178 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2179 * but if FEAT_IDST is implemented then read accesses to registers 2180 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2181 * syndrome. 2182 */ 2183 uint32_t syndrome; 2184 2185 if (isread && dc_isar_feature(aa64_ids, s) && 2186 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2187 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2188 } else { 2189 syndrome = syn_uncategorized(); 2190 } 2191 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2192 } 2193 2194 /* MRS - move from system register 2195 * MSR (register) - move to system register 2196 * SYS 2197 * SYSL 2198 * These are all essentially the same insn in 'read' and 'write' 2199 * versions, with varying op0 fields. 2200 */ 2201 static void handle_sys(DisasContext *s, bool isread, 2202 unsigned int op0, unsigned int op1, unsigned int op2, 2203 unsigned int crn, unsigned int crm, unsigned int rt) 2204 { 2205 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2206 crn, crm, op0, op1, op2); 2207 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2208 bool need_exit_tb = false; 2209 bool nv_trap_to_el2 = false; 2210 bool nv_redirect_reg = false; 2211 bool skip_fp_access_checks = false; 2212 bool nv2_mem_redirect = false; 2213 TCGv_ptr tcg_ri = NULL; 2214 TCGv_i64 tcg_rt; 2215 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2216 2217 if (crn == 11 || crn == 15) { 2218 /* 2219 * Check for TIDCP trap, which must take precedence over 2220 * the UNDEF for "no such register" etc. 2221 */ 2222 switch (s->current_el) { 2223 case 0: 2224 if (dc_isar_feature(aa64_tidcp1, s)) { 2225 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2226 } 2227 break; 2228 case 1: 2229 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2230 break; 2231 } 2232 } 2233 2234 if (!ri) { 2235 /* Unknown register; this might be a guest error or a QEMU 2236 * unimplemented feature. 2237 */ 2238 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2239 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2240 isread ? "read" : "write", op0, op1, crn, crm, op2); 2241 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2242 return; 2243 } 2244 2245 if (s->nv2 && ri->nv2_redirect_offset) { 2246 /* 2247 * Some registers always redirect to memory; some only do so if 2248 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2249 * pairs which share an offset; see the table in R_CSRPQ). 2250 */ 2251 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2252 nv2_mem_redirect = s->nv1; 2253 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2254 nv2_mem_redirect = !s->nv1; 2255 } else { 2256 nv2_mem_redirect = true; 2257 } 2258 } 2259 2260 /* Check access permissions */ 2261 if (!cp_access_ok(s->current_el, ri, isread)) { 2262 /* 2263 * FEAT_NV/NV2 handling does not do the usual FP access checks 2264 * for registers only accessible at EL2 (though it *does* do them 2265 * for registers accessible at EL1). 2266 */ 2267 skip_fp_access_checks = true; 2268 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2269 /* 2270 * This is one of the few EL2 registers which should redirect 2271 * to the equivalent EL1 register. We do that after running 2272 * the EL2 register's accessfn. 2273 */ 2274 nv_redirect_reg = true; 2275 assert(!nv2_mem_redirect); 2276 } else if (nv2_mem_redirect) { 2277 /* 2278 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2279 * UNDEF to EL1. 2280 */ 2281 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2282 /* 2283 * This register / instruction exists and is an EL2 register, so 2284 * we must trap to EL2 if accessed in nested virtualization EL1 2285 * instead of UNDEFing. We'll do that after the usual access checks. 2286 * (This makes a difference only for a couple of registers like 2287 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2288 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2289 * an accessfn which does nothing when called from EL1, because 2290 * the trap-to-EL3 controls which would apply to that register 2291 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2292 */ 2293 nv_trap_to_el2 = true; 2294 } else { 2295 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2296 return; 2297 } 2298 } 2299 2300 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2301 /* Emit code to perform further access permissions checks at 2302 * runtime; this may result in an exception. 2303 */ 2304 gen_a64_update_pc(s, 0); 2305 tcg_ri = tcg_temp_new_ptr(); 2306 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2307 tcg_constant_i32(key), 2308 tcg_constant_i32(syndrome), 2309 tcg_constant_i32(isread)); 2310 } else if (ri->type & ARM_CP_RAISES_EXC) { 2311 /* 2312 * The readfn or writefn might raise an exception; 2313 * synchronize the CPU state in case it does. 2314 */ 2315 gen_a64_update_pc(s, 0); 2316 } 2317 2318 if (!skip_fp_access_checks) { 2319 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2320 return; 2321 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2322 return; 2323 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2324 return; 2325 } 2326 } 2327 2328 if (nv_trap_to_el2) { 2329 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2330 return; 2331 } 2332 2333 if (nv_redirect_reg) { 2334 /* 2335 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2336 * Conveniently in all cases the encoding of the EL1 register is 2337 * identical to the EL2 register except that opc1 is 0. 2338 * Get the reginfo for the EL1 register to use for the actual access. 2339 * We don't use the EL1 register's access function, and 2340 * fine-grained-traps on EL1 also do not apply here. 2341 */ 2342 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2343 crn, crm, op0, 0, op2); 2344 ri = get_arm_cp_reginfo(s->cp_regs, key); 2345 assert(ri); 2346 assert(cp_access_ok(s->current_el, ri, isread)); 2347 /* 2348 * We might not have done an update_pc earlier, so check we don't 2349 * need it. We could support this in future if necessary. 2350 */ 2351 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2352 } 2353 2354 if (nv2_mem_redirect) { 2355 /* 2356 * This system register is being redirected into an EL2 memory access. 2357 * This means it is not an IO operation, doesn't change hflags, 2358 * and need not end the TB, because it has no side effects. 2359 * 2360 * The access is 64-bit single copy atomic, guaranteed aligned because 2361 * of the definition of VCNR_EL2. Its endianness depends on 2362 * SCTLR_EL2.EE, not on the data endianness of EL1. 2363 * It is done under either the EL2 translation regime or the EL2&0 2364 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2365 * PSTATE.PAN is 0. 2366 */ 2367 TCGv_i64 ptr = tcg_temp_new_i64(); 2368 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2369 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2370 int memidx = arm_to_core_mmu_idx(armmemidx); 2371 uint32_t syn; 2372 2373 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2374 2375 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2376 tcg_gen_addi_i64(ptr, ptr, 2377 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2378 tcg_rt = cpu_reg(s, rt); 2379 2380 syn = syn_data_abort_vncr(0, !isread, 0); 2381 disas_set_insn_syndrome(s, syn); 2382 if (isread) { 2383 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2384 } else { 2385 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2386 } 2387 return; 2388 } 2389 2390 /* Handle special cases first */ 2391 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2392 case 0: 2393 break; 2394 case ARM_CP_NOP: 2395 return; 2396 case ARM_CP_NZCV: 2397 tcg_rt = cpu_reg(s, rt); 2398 if (isread) { 2399 gen_get_nzcv(tcg_rt); 2400 } else { 2401 gen_set_nzcv(tcg_rt); 2402 } 2403 return; 2404 case ARM_CP_CURRENTEL: 2405 { 2406 /* 2407 * Reads as current EL value from pstate, which is 2408 * guaranteed to be constant by the tb flags. 2409 * For nested virt we should report EL2. 2410 */ 2411 int el = s->nv ? 2 : s->current_el; 2412 tcg_rt = cpu_reg(s, rt); 2413 tcg_gen_movi_i64(tcg_rt, el << 2); 2414 return; 2415 } 2416 case ARM_CP_DC_ZVA: 2417 /* Writes clear the aligned block of memory which rt points into. */ 2418 if (s->mte_active[0]) { 2419 int desc = 0; 2420 2421 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2422 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2423 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2424 2425 tcg_rt = tcg_temp_new_i64(); 2426 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2427 tcg_constant_i32(desc), cpu_reg(s, rt)); 2428 } else { 2429 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2430 } 2431 gen_helper_dc_zva(tcg_env, tcg_rt); 2432 return; 2433 case ARM_CP_DC_GVA: 2434 { 2435 TCGv_i64 clean_addr, tag; 2436 2437 /* 2438 * DC_GVA, like DC_ZVA, requires that we supply the original 2439 * pointer for an invalid page. Probe that address first. 2440 */ 2441 tcg_rt = cpu_reg(s, rt); 2442 clean_addr = clean_data_tbi(s, tcg_rt); 2443 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2444 2445 if (s->ata[0]) { 2446 /* Extract the tag from the register to match STZGM. */ 2447 tag = tcg_temp_new_i64(); 2448 tcg_gen_shri_i64(tag, tcg_rt, 56); 2449 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2450 } 2451 } 2452 return; 2453 case ARM_CP_DC_GZVA: 2454 { 2455 TCGv_i64 clean_addr, tag; 2456 2457 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2458 tcg_rt = cpu_reg(s, rt); 2459 clean_addr = clean_data_tbi(s, tcg_rt); 2460 gen_helper_dc_zva(tcg_env, clean_addr); 2461 2462 if (s->ata[0]) { 2463 /* Extract the tag from the register to match STZGM. */ 2464 tag = tcg_temp_new_i64(); 2465 tcg_gen_shri_i64(tag, tcg_rt, 56); 2466 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2467 } 2468 } 2469 return; 2470 default: 2471 g_assert_not_reached(); 2472 } 2473 2474 if (ri->type & ARM_CP_IO) { 2475 /* I/O operations must end the TB here (whether read or write) */ 2476 need_exit_tb = translator_io_start(&s->base); 2477 } 2478 2479 tcg_rt = cpu_reg(s, rt); 2480 2481 if (isread) { 2482 if (ri->type & ARM_CP_CONST) { 2483 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2484 } else if (ri->readfn) { 2485 if (!tcg_ri) { 2486 tcg_ri = gen_lookup_cp_reg(key); 2487 } 2488 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2489 } else { 2490 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2491 } 2492 } else { 2493 if (ri->type & ARM_CP_CONST) { 2494 /* If not forbidden by access permissions, treat as WI */ 2495 return; 2496 } else if (ri->writefn) { 2497 if (!tcg_ri) { 2498 tcg_ri = gen_lookup_cp_reg(key); 2499 } 2500 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2501 } else { 2502 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2503 } 2504 } 2505 2506 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2507 /* 2508 * A write to any coprocessor register that ends a TB 2509 * must rebuild the hflags for the next TB. 2510 */ 2511 gen_rebuild_hflags(s); 2512 /* 2513 * We default to ending the TB on a coprocessor register write, 2514 * but allow this to be suppressed by the register definition 2515 * (usually only necessary to work around guest bugs). 2516 */ 2517 need_exit_tb = true; 2518 } 2519 if (need_exit_tb) { 2520 s->base.is_jmp = DISAS_UPDATE_EXIT; 2521 } 2522 } 2523 2524 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2525 { 2526 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2527 return true; 2528 } 2529 2530 static bool trans_SVC(DisasContext *s, arg_i *a) 2531 { 2532 /* 2533 * For SVC, HVC and SMC we advance the single-step state 2534 * machine before taking the exception. This is architecturally 2535 * mandated, to ensure that single-stepping a system call 2536 * instruction works properly. 2537 */ 2538 uint32_t syndrome = syn_aa64_svc(a->imm); 2539 if (s->fgt_svc) { 2540 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2541 return true; 2542 } 2543 gen_ss_advance(s); 2544 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2545 return true; 2546 } 2547 2548 static bool trans_HVC(DisasContext *s, arg_i *a) 2549 { 2550 int target_el = s->current_el == 3 ? 3 : 2; 2551 2552 if (s->current_el == 0) { 2553 unallocated_encoding(s); 2554 return true; 2555 } 2556 /* 2557 * The pre HVC helper handles cases when HVC gets trapped 2558 * as an undefined insn by runtime configuration. 2559 */ 2560 gen_a64_update_pc(s, 0); 2561 gen_helper_pre_hvc(tcg_env); 2562 /* Architecture requires ss advance before we do the actual work */ 2563 gen_ss_advance(s); 2564 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2565 return true; 2566 } 2567 2568 static bool trans_SMC(DisasContext *s, arg_i *a) 2569 { 2570 if (s->current_el == 0) { 2571 unallocated_encoding(s); 2572 return true; 2573 } 2574 gen_a64_update_pc(s, 0); 2575 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2576 /* Architecture requires ss advance before we do the actual work */ 2577 gen_ss_advance(s); 2578 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2579 return true; 2580 } 2581 2582 static bool trans_BRK(DisasContext *s, arg_i *a) 2583 { 2584 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2585 return true; 2586 } 2587 2588 static bool trans_HLT(DisasContext *s, arg_i *a) 2589 { 2590 /* 2591 * HLT. This has two purposes. 2592 * Architecturally, it is an external halting debug instruction. 2593 * Since QEMU doesn't implement external debug, we treat this as 2594 * it is required for halting debug disabled: it will UNDEF. 2595 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2596 */ 2597 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2598 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2599 } else { 2600 unallocated_encoding(s); 2601 } 2602 return true; 2603 } 2604 2605 /* 2606 * Load/Store exclusive instructions are implemented by remembering 2607 * the value/address loaded, and seeing if these are the same 2608 * when the store is performed. This is not actually the architecturally 2609 * mandated semantics, but it works for typical guest code sequences 2610 * and avoids having to monitor regular stores. 2611 * 2612 * The store exclusive uses the atomic cmpxchg primitives to avoid 2613 * races in multi-threaded linux-user and when MTTCG softmmu is 2614 * enabled. 2615 */ 2616 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2617 int size, bool is_pair) 2618 { 2619 int idx = get_mem_index(s); 2620 TCGv_i64 dirty_addr, clean_addr; 2621 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2622 2623 s->is_ldex = true; 2624 dirty_addr = cpu_reg_sp(s, rn); 2625 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2626 2627 g_assert(size <= 3); 2628 if (is_pair) { 2629 g_assert(size >= 2); 2630 if (size == 2) { 2631 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2632 if (s->be_data == MO_LE) { 2633 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2634 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2635 } else { 2636 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2637 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2638 } 2639 } else { 2640 TCGv_i128 t16 = tcg_temp_new_i128(); 2641 2642 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2643 2644 if (s->be_data == MO_LE) { 2645 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2646 cpu_exclusive_high, t16); 2647 } else { 2648 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2649 cpu_exclusive_val, t16); 2650 } 2651 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2652 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2653 } 2654 } else { 2655 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2657 } 2658 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2659 } 2660 2661 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2662 int rn, int size, int is_pair) 2663 { 2664 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2665 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2666 * [addr] = {Rt}; 2667 * if (is_pair) { 2668 * [addr + datasize] = {Rt2}; 2669 * } 2670 * {Rd} = 0; 2671 * } else { 2672 * {Rd} = 1; 2673 * } 2674 * env->exclusive_addr = -1; 2675 */ 2676 TCGLabel *fail_label = gen_new_label(); 2677 TCGLabel *done_label = gen_new_label(); 2678 TCGv_i64 tmp, clean_addr; 2679 MemOp memop; 2680 2681 /* 2682 * FIXME: We are out of spec here. We have recorded only the address 2683 * from load_exclusive, not the entire range, and we assume that the 2684 * size of the access on both sides match. The architecture allows the 2685 * store to be smaller than the load, so long as the stored bytes are 2686 * within the range recorded by the load. 2687 */ 2688 2689 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2690 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2691 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2692 2693 /* 2694 * The write, and any associated faults, only happen if the virtual 2695 * and physical addresses pass the exclusive monitor check. These 2696 * faults are exceedingly unlikely, because normally the guest uses 2697 * the exact same address register for the load_exclusive, and we 2698 * would have recognized these faults there. 2699 * 2700 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2701 * unaligned 4-byte write within the range of an aligned 8-byte load. 2702 * With LSE2, the store would need to cross a 16-byte boundary when the 2703 * load did not, which would mean the store is outside the range 2704 * recorded for the monitor, which would have failed a corrected monitor 2705 * check above. For now, we assume no size change and retain the 2706 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2707 * 2708 * It is possible to trigger an MTE fault, by performing the load with 2709 * a virtual address with a valid tag and performing the store with the 2710 * same virtual address and a different invalid tag. 2711 */ 2712 memop = size + is_pair; 2713 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2714 memop |= MO_ALIGN; 2715 } 2716 memop = finalize_memop(s, memop); 2717 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2718 2719 tmp = tcg_temp_new_i64(); 2720 if (is_pair) { 2721 if (size == 2) { 2722 if (s->be_data == MO_LE) { 2723 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2724 } else { 2725 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2726 } 2727 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2728 cpu_exclusive_val, tmp, 2729 get_mem_index(s), memop); 2730 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2731 } else { 2732 TCGv_i128 t16 = tcg_temp_new_i128(); 2733 TCGv_i128 c16 = tcg_temp_new_i128(); 2734 TCGv_i64 a, b; 2735 2736 if (s->be_data == MO_LE) { 2737 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2738 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2739 cpu_exclusive_high); 2740 } else { 2741 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2742 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2743 cpu_exclusive_val); 2744 } 2745 2746 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2747 get_mem_index(s), memop); 2748 2749 a = tcg_temp_new_i64(); 2750 b = tcg_temp_new_i64(); 2751 if (s->be_data == MO_LE) { 2752 tcg_gen_extr_i128_i64(a, b, t16); 2753 } else { 2754 tcg_gen_extr_i128_i64(b, a, t16); 2755 } 2756 2757 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2758 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2759 tcg_gen_or_i64(tmp, a, b); 2760 2761 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2762 } 2763 } else { 2764 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2765 cpu_reg(s, rt), get_mem_index(s), memop); 2766 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2767 } 2768 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2769 tcg_gen_br(done_label); 2770 2771 gen_set_label(fail_label); 2772 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2773 gen_set_label(done_label); 2774 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2775 } 2776 2777 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2778 int rn, int size) 2779 { 2780 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2781 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2782 int memidx = get_mem_index(s); 2783 TCGv_i64 clean_addr; 2784 MemOp memop; 2785 2786 if (rn == 31) { 2787 gen_check_sp_alignment(s); 2788 } 2789 memop = check_atomic_align(s, rn, size); 2790 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2791 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2792 memidx, memop); 2793 } 2794 2795 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2796 int rn, int size) 2797 { 2798 TCGv_i64 s1 = cpu_reg(s, rs); 2799 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2800 TCGv_i64 t1 = cpu_reg(s, rt); 2801 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2802 TCGv_i64 clean_addr; 2803 int memidx = get_mem_index(s); 2804 MemOp memop; 2805 2806 if (rn == 31) { 2807 gen_check_sp_alignment(s); 2808 } 2809 2810 /* This is a single atomic access, despite the "pair". */ 2811 memop = check_atomic_align(s, rn, size + 1); 2812 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2813 2814 if (size == 2) { 2815 TCGv_i64 cmp = tcg_temp_new_i64(); 2816 TCGv_i64 val = tcg_temp_new_i64(); 2817 2818 if (s->be_data == MO_LE) { 2819 tcg_gen_concat32_i64(val, t1, t2); 2820 tcg_gen_concat32_i64(cmp, s1, s2); 2821 } else { 2822 tcg_gen_concat32_i64(val, t2, t1); 2823 tcg_gen_concat32_i64(cmp, s2, s1); 2824 } 2825 2826 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2827 2828 if (s->be_data == MO_LE) { 2829 tcg_gen_extr32_i64(s1, s2, cmp); 2830 } else { 2831 tcg_gen_extr32_i64(s2, s1, cmp); 2832 } 2833 } else { 2834 TCGv_i128 cmp = tcg_temp_new_i128(); 2835 TCGv_i128 val = tcg_temp_new_i128(); 2836 2837 if (s->be_data == MO_LE) { 2838 tcg_gen_concat_i64_i128(val, t1, t2); 2839 tcg_gen_concat_i64_i128(cmp, s1, s2); 2840 } else { 2841 tcg_gen_concat_i64_i128(val, t2, t1); 2842 tcg_gen_concat_i64_i128(cmp, s2, s1); 2843 } 2844 2845 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2846 2847 if (s->be_data == MO_LE) { 2848 tcg_gen_extr_i128_i64(s1, s2, cmp); 2849 } else { 2850 tcg_gen_extr_i128_i64(s2, s1, cmp); 2851 } 2852 } 2853 } 2854 2855 /* 2856 * Compute the ISS.SF bit for syndrome information if an exception 2857 * is taken on a load or store. This indicates whether the instruction 2858 * is accessing a 32-bit or 64-bit register. This logic is derived 2859 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2860 */ 2861 static bool ldst_iss_sf(int size, bool sign, bool ext) 2862 { 2863 2864 if (sign) { 2865 /* 2866 * Signed loads are 64 bit results if we are not going to 2867 * do a zero-extend from 32 to 64 after the load. 2868 * (For a store, sign and ext are always false.) 2869 */ 2870 return !ext; 2871 } else { 2872 /* Unsigned loads/stores work at the specified size */ 2873 return size == MO_64; 2874 } 2875 } 2876 2877 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2878 { 2879 if (a->rn == 31) { 2880 gen_check_sp_alignment(s); 2881 } 2882 if (a->lasr) { 2883 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2884 } 2885 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2886 return true; 2887 } 2888 2889 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2890 { 2891 if (a->rn == 31) { 2892 gen_check_sp_alignment(s); 2893 } 2894 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2895 if (a->lasr) { 2896 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2897 } 2898 return true; 2899 } 2900 2901 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2902 { 2903 TCGv_i64 clean_addr; 2904 MemOp memop; 2905 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2906 2907 /* 2908 * StoreLORelease is the same as Store-Release for QEMU, but 2909 * needs the feature-test. 2910 */ 2911 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2912 return false; 2913 } 2914 /* Generate ISS for non-exclusive accesses including LASR. */ 2915 if (a->rn == 31) { 2916 gen_check_sp_alignment(s); 2917 } 2918 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2919 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2920 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2921 true, a->rn != 31, memop); 2922 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2923 iss_sf, a->lasr); 2924 return true; 2925 } 2926 2927 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2928 { 2929 TCGv_i64 clean_addr; 2930 MemOp memop; 2931 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2932 2933 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2934 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2935 return false; 2936 } 2937 /* Generate ISS for non-exclusive accesses including LASR. */ 2938 if (a->rn == 31) { 2939 gen_check_sp_alignment(s); 2940 } 2941 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2942 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2943 false, a->rn != 31, memop); 2944 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2945 a->rt, iss_sf, a->lasr); 2946 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2947 return true; 2948 } 2949 2950 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2951 { 2952 if (a->rn == 31) { 2953 gen_check_sp_alignment(s); 2954 } 2955 if (a->lasr) { 2956 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2957 } 2958 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2959 return true; 2960 } 2961 2962 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2963 { 2964 if (a->rn == 31) { 2965 gen_check_sp_alignment(s); 2966 } 2967 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2968 if (a->lasr) { 2969 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2970 } 2971 return true; 2972 } 2973 2974 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2975 { 2976 if (!dc_isar_feature(aa64_atomics, s)) { 2977 return false; 2978 } 2979 if (((a->rt | a->rs) & 1) != 0) { 2980 return false; 2981 } 2982 2983 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2984 return true; 2985 } 2986 2987 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2988 { 2989 if (!dc_isar_feature(aa64_atomics, s)) { 2990 return false; 2991 } 2992 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2993 return true; 2994 } 2995 2996 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2997 { 2998 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2999 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3000 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3001 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3002 3003 gen_pc_plus_diff(s, clean_addr, a->imm); 3004 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3005 false, true, a->rt, iss_sf, false); 3006 return true; 3007 } 3008 3009 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3010 { 3011 /* Load register (literal), vector version */ 3012 TCGv_i64 clean_addr; 3013 MemOp memop; 3014 3015 if (!fp_access_check(s)) { 3016 return true; 3017 } 3018 memop = finalize_memop_asimd(s, a->sz); 3019 clean_addr = tcg_temp_new_i64(); 3020 gen_pc_plus_diff(s, clean_addr, a->imm); 3021 do_fp_ld(s, a->rt, clean_addr, memop); 3022 return true; 3023 } 3024 3025 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3026 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3027 uint64_t offset, bool is_store, MemOp mop) 3028 { 3029 if (a->rn == 31) { 3030 gen_check_sp_alignment(s); 3031 } 3032 3033 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3034 if (!a->p) { 3035 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3036 } 3037 3038 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3039 (a->w || a->rn != 31), 2 << a->sz, mop); 3040 } 3041 3042 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3043 TCGv_i64 dirty_addr, uint64_t offset) 3044 { 3045 if (a->w) { 3046 if (a->p) { 3047 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3048 } 3049 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3050 } 3051 } 3052 3053 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3054 { 3055 uint64_t offset = a->imm << a->sz; 3056 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3057 MemOp mop = finalize_memop(s, a->sz); 3058 3059 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3060 tcg_rt = cpu_reg(s, a->rt); 3061 tcg_rt2 = cpu_reg(s, a->rt2); 3062 /* 3063 * We built mop above for the single logical access -- rebuild it 3064 * now for the paired operation. 3065 * 3066 * With LSE2, non-sign-extending pairs are treated atomically if 3067 * aligned, and if unaligned one of the pair will be completely 3068 * within a 16-byte block and that element will be atomic. 3069 * Otherwise each element is separately atomic. 3070 * In all cases, issue one operation with the correct atomicity. 3071 */ 3072 mop = a->sz + 1; 3073 if (s->align_mem) { 3074 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3075 } 3076 mop = finalize_memop_pair(s, mop); 3077 if (a->sz == 2) { 3078 TCGv_i64 tmp = tcg_temp_new_i64(); 3079 3080 if (s->be_data == MO_LE) { 3081 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3082 } else { 3083 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3084 } 3085 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3086 } else { 3087 TCGv_i128 tmp = tcg_temp_new_i128(); 3088 3089 if (s->be_data == MO_LE) { 3090 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3091 } else { 3092 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3093 } 3094 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3095 } 3096 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3097 return true; 3098 } 3099 3100 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3101 { 3102 uint64_t offset = a->imm << a->sz; 3103 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3104 MemOp mop = finalize_memop(s, a->sz); 3105 3106 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3107 tcg_rt = cpu_reg(s, a->rt); 3108 tcg_rt2 = cpu_reg(s, a->rt2); 3109 3110 /* 3111 * We built mop above for the single logical access -- rebuild it 3112 * now for the paired operation. 3113 * 3114 * With LSE2, non-sign-extending pairs are treated atomically if 3115 * aligned, and if unaligned one of the pair will be completely 3116 * within a 16-byte block and that element will be atomic. 3117 * Otherwise each element is separately atomic. 3118 * In all cases, issue one operation with the correct atomicity. 3119 * 3120 * This treats sign-extending loads like zero-extending loads, 3121 * since that reuses the most code below. 3122 */ 3123 mop = a->sz + 1; 3124 if (s->align_mem) { 3125 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3126 } 3127 mop = finalize_memop_pair(s, mop); 3128 if (a->sz == 2) { 3129 int o2 = s->be_data == MO_LE ? 32 : 0; 3130 int o1 = o2 ^ 32; 3131 3132 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3133 if (a->sign) { 3134 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3135 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3136 } else { 3137 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3138 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3139 } 3140 } else { 3141 TCGv_i128 tmp = tcg_temp_new_i128(); 3142 3143 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3144 if (s->be_data == MO_LE) { 3145 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3146 } else { 3147 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3148 } 3149 } 3150 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3151 return true; 3152 } 3153 3154 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3155 { 3156 uint64_t offset = a->imm << a->sz; 3157 TCGv_i64 clean_addr, dirty_addr; 3158 MemOp mop; 3159 3160 if (!fp_access_check(s)) { 3161 return true; 3162 } 3163 3164 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3165 mop = finalize_memop_asimd(s, a->sz); 3166 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3167 do_fp_st(s, a->rt, clean_addr, mop); 3168 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3169 do_fp_st(s, a->rt2, clean_addr, mop); 3170 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3171 return true; 3172 } 3173 3174 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3175 { 3176 uint64_t offset = a->imm << a->sz; 3177 TCGv_i64 clean_addr, dirty_addr; 3178 MemOp mop; 3179 3180 if (!fp_access_check(s)) { 3181 return true; 3182 } 3183 3184 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3185 mop = finalize_memop_asimd(s, a->sz); 3186 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3187 do_fp_ld(s, a->rt, clean_addr, mop); 3188 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3189 do_fp_ld(s, a->rt2, clean_addr, mop); 3190 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3191 return true; 3192 } 3193 3194 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3195 { 3196 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3197 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3198 MemOp mop; 3199 TCGv_i128 tmp; 3200 3201 /* STGP only comes in one size. */ 3202 tcg_debug_assert(a->sz == MO_64); 3203 3204 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3205 return false; 3206 } 3207 3208 if (a->rn == 31) { 3209 gen_check_sp_alignment(s); 3210 } 3211 3212 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3213 if (!a->p) { 3214 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3215 } 3216 3217 clean_addr = clean_data_tbi(s, dirty_addr); 3218 tcg_rt = cpu_reg(s, a->rt); 3219 tcg_rt2 = cpu_reg(s, a->rt2); 3220 3221 /* 3222 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3223 * and one tag operation. We implement it as one single aligned 16-byte 3224 * memory operation for convenience. Note that the alignment ensures 3225 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3226 */ 3227 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3228 3229 tmp = tcg_temp_new_i128(); 3230 if (s->be_data == MO_LE) { 3231 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3232 } else { 3233 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3234 } 3235 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3236 3237 /* Perform the tag store, if tag access enabled. */ 3238 if (s->ata[0]) { 3239 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3240 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3241 } else { 3242 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3243 } 3244 } 3245 3246 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3247 return true; 3248 } 3249 3250 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3251 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3252 uint64_t offset, bool is_store, MemOp mop) 3253 { 3254 int memidx; 3255 3256 if (a->rn == 31) { 3257 gen_check_sp_alignment(s); 3258 } 3259 3260 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3261 if (!a->p) { 3262 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3263 } 3264 memidx = get_a64_user_mem_index(s, a->unpriv); 3265 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3266 a->w || a->rn != 31, 3267 mop, a->unpriv, memidx); 3268 } 3269 3270 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3271 TCGv_i64 dirty_addr, uint64_t offset) 3272 { 3273 if (a->w) { 3274 if (a->p) { 3275 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3276 } 3277 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3278 } 3279 } 3280 3281 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3282 { 3283 bool iss_sf, iss_valid = !a->w; 3284 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3285 int memidx = get_a64_user_mem_index(s, a->unpriv); 3286 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3287 3288 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3289 3290 tcg_rt = cpu_reg(s, a->rt); 3291 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3292 3293 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3294 iss_valid, a->rt, iss_sf, false); 3295 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3296 return true; 3297 } 3298 3299 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3300 { 3301 bool iss_sf, iss_valid = !a->w; 3302 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3303 int memidx = get_a64_user_mem_index(s, a->unpriv); 3304 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3305 3306 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3307 3308 tcg_rt = cpu_reg(s, a->rt); 3309 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3310 3311 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3312 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3313 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3314 return true; 3315 } 3316 3317 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3318 { 3319 TCGv_i64 clean_addr, dirty_addr; 3320 MemOp mop; 3321 3322 if (!fp_access_check(s)) { 3323 return true; 3324 } 3325 mop = finalize_memop_asimd(s, a->sz); 3326 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3327 do_fp_st(s, a->rt, clean_addr, mop); 3328 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3329 return true; 3330 } 3331 3332 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3333 { 3334 TCGv_i64 clean_addr, dirty_addr; 3335 MemOp mop; 3336 3337 if (!fp_access_check(s)) { 3338 return true; 3339 } 3340 mop = finalize_memop_asimd(s, a->sz); 3341 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3342 do_fp_ld(s, a->rt, clean_addr, mop); 3343 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3344 return true; 3345 } 3346 3347 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3348 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3349 bool is_store, MemOp memop) 3350 { 3351 TCGv_i64 tcg_rm; 3352 3353 if (a->rn == 31) { 3354 gen_check_sp_alignment(s); 3355 } 3356 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3357 3358 tcg_rm = read_cpu_reg(s, a->rm, 1); 3359 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3360 3361 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3362 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3363 } 3364 3365 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3366 { 3367 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3368 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3369 MemOp memop; 3370 3371 if (extract32(a->opt, 1, 1) == 0) { 3372 return false; 3373 } 3374 3375 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3376 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3377 tcg_rt = cpu_reg(s, a->rt); 3378 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3379 a->ext, true, a->rt, iss_sf, false); 3380 return true; 3381 } 3382 3383 static bool trans_STR(DisasContext *s, arg_ldst *a) 3384 { 3385 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3386 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3387 MemOp memop; 3388 3389 if (extract32(a->opt, 1, 1) == 0) { 3390 return false; 3391 } 3392 3393 memop = finalize_memop(s, a->sz); 3394 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3395 tcg_rt = cpu_reg(s, a->rt); 3396 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3397 return true; 3398 } 3399 3400 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3401 { 3402 TCGv_i64 clean_addr, dirty_addr; 3403 MemOp memop; 3404 3405 if (extract32(a->opt, 1, 1) == 0) { 3406 return false; 3407 } 3408 3409 if (!fp_access_check(s)) { 3410 return true; 3411 } 3412 3413 memop = finalize_memop_asimd(s, a->sz); 3414 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3415 do_fp_ld(s, a->rt, clean_addr, memop); 3416 return true; 3417 } 3418 3419 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3420 { 3421 TCGv_i64 clean_addr, dirty_addr; 3422 MemOp memop; 3423 3424 if (extract32(a->opt, 1, 1) == 0) { 3425 return false; 3426 } 3427 3428 if (!fp_access_check(s)) { 3429 return true; 3430 } 3431 3432 memop = finalize_memop_asimd(s, a->sz); 3433 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3434 do_fp_st(s, a->rt, clean_addr, memop); 3435 return true; 3436 } 3437 3438 3439 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3440 int sign, bool invert) 3441 { 3442 MemOp mop = a->sz | sign; 3443 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3444 3445 if (a->rn == 31) { 3446 gen_check_sp_alignment(s); 3447 } 3448 mop = check_atomic_align(s, a->rn, mop); 3449 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3450 a->rn != 31, mop); 3451 tcg_rs = read_cpu_reg(s, a->rs, true); 3452 tcg_rt = cpu_reg(s, a->rt); 3453 if (invert) { 3454 tcg_gen_not_i64(tcg_rs, tcg_rs); 3455 } 3456 /* 3457 * The tcg atomic primitives are all full barriers. Therefore we 3458 * can ignore the Acquire and Release bits of this instruction. 3459 */ 3460 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3461 3462 if (mop & MO_SIGN) { 3463 switch (a->sz) { 3464 case MO_8: 3465 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_16: 3468 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3469 break; 3470 case MO_32: 3471 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3472 break; 3473 case MO_64: 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 } 3479 return true; 3480 } 3481 3482 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3483 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3484 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3485 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3486 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3487 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3488 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3489 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3490 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3491 3492 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3493 { 3494 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3495 TCGv_i64 clean_addr; 3496 MemOp mop; 3497 3498 if (!dc_isar_feature(aa64_atomics, s) || 3499 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3500 return false; 3501 } 3502 if (a->rn == 31) { 3503 gen_check_sp_alignment(s); 3504 } 3505 mop = check_atomic_align(s, a->rn, a->sz); 3506 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3507 a->rn != 31, mop); 3508 /* 3509 * LDAPR* are a special case because they are a simple load, not a 3510 * fetch-and-do-something op. 3511 * The architectural consistency requirements here are weaker than 3512 * full load-acquire (we only need "load-acquire processor consistent"), 3513 * but we choose to implement them as full LDAQ. 3514 */ 3515 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3516 true, a->rt, iss_sf, true); 3517 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3518 return true; 3519 } 3520 3521 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3522 { 3523 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3524 MemOp memop; 3525 3526 /* Load with pointer authentication */ 3527 if (!dc_isar_feature(aa64_pauth, s)) { 3528 return false; 3529 } 3530 3531 if (a->rn == 31) { 3532 gen_check_sp_alignment(s); 3533 } 3534 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3535 3536 if (s->pauth_active) { 3537 if (!a->m) { 3538 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3539 tcg_constant_i64(0)); 3540 } else { 3541 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3542 tcg_constant_i64(0)); 3543 } 3544 } 3545 3546 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3547 3548 memop = finalize_memop(s, MO_64); 3549 3550 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3551 clean_addr = gen_mte_check1(s, dirty_addr, false, 3552 a->w || a->rn != 31, memop); 3553 3554 tcg_rt = cpu_reg(s, a->rt); 3555 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3556 /* extend */ false, /* iss_valid */ !a->w, 3557 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3558 3559 if (a->w) { 3560 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3561 } 3562 return true; 3563 } 3564 3565 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3566 { 3567 TCGv_i64 clean_addr, dirty_addr; 3568 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3569 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3570 3571 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3572 return false; 3573 } 3574 3575 if (a->rn == 31) { 3576 gen_check_sp_alignment(s); 3577 } 3578 3579 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3580 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3581 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3582 clean_addr = clean_data_tbi(s, dirty_addr); 3583 3584 /* 3585 * Load-AcquirePC semantics; we implement as the slightly more 3586 * restrictive Load-Acquire. 3587 */ 3588 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3589 a->rt, iss_sf, true); 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3591 return true; 3592 } 3593 3594 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3595 { 3596 TCGv_i64 clean_addr, dirty_addr; 3597 MemOp mop = a->sz; 3598 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3599 3600 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3601 return false; 3602 } 3603 3604 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3605 3606 if (a->rn == 31) { 3607 gen_check_sp_alignment(s); 3608 } 3609 3610 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3611 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3612 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3613 clean_addr = clean_data_tbi(s, dirty_addr); 3614 3615 /* Store-Release semantics */ 3616 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3617 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3618 return true; 3619 } 3620 3621 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3622 { 3623 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3624 MemOp endian, align, mop; 3625 3626 int total; /* total bytes */ 3627 int elements; /* elements per vector */ 3628 int r; 3629 int size = a->sz; 3630 3631 if (!a->p && a->rm != 0) { 3632 /* For non-postindexed accesses the Rm field must be 0 */ 3633 return false; 3634 } 3635 if (size == 3 && !a->q && a->selem != 1) { 3636 return false; 3637 } 3638 if (!fp_access_check(s)) { 3639 return true; 3640 } 3641 3642 if (a->rn == 31) { 3643 gen_check_sp_alignment(s); 3644 } 3645 3646 /* For our purposes, bytes are always little-endian. */ 3647 endian = s->be_data; 3648 if (size == 0) { 3649 endian = MO_LE; 3650 } 3651 3652 total = a->rpt * a->selem * (a->q ? 16 : 8); 3653 tcg_rn = cpu_reg_sp(s, a->rn); 3654 3655 /* 3656 * Issue the MTE check vs the logical repeat count, before we 3657 * promote consecutive little-endian elements below. 3658 */ 3659 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3660 finalize_memop_asimd(s, size)); 3661 3662 /* 3663 * Consecutive little-endian elements from a single register 3664 * can be promoted to a larger little-endian operation. 3665 */ 3666 align = MO_ALIGN; 3667 if (a->selem == 1 && endian == MO_LE) { 3668 align = pow2_align(size); 3669 size = 3; 3670 } 3671 if (!s->align_mem) { 3672 align = 0; 3673 } 3674 mop = endian | size | align; 3675 3676 elements = (a->q ? 16 : 8) >> size; 3677 tcg_ebytes = tcg_constant_i64(1 << size); 3678 for (r = 0; r < a->rpt; r++) { 3679 int e; 3680 for (e = 0; e < elements; e++) { 3681 int xs; 3682 for (xs = 0; xs < a->selem; xs++) { 3683 int tt = (a->rt + r + xs) % 32; 3684 do_vec_ld(s, tt, e, clean_addr, mop); 3685 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3686 } 3687 } 3688 } 3689 3690 /* 3691 * For non-quad operations, setting a slice of the low 64 bits of 3692 * the register clears the high 64 bits (in the ARM ARM pseudocode 3693 * this is implicit in the fact that 'rval' is a 64 bit wide 3694 * variable). For quad operations, we might still need to zero 3695 * the high bits of SVE. 3696 */ 3697 for (r = 0; r < a->rpt * a->selem; r++) { 3698 int tt = (a->rt + r) % 32; 3699 clear_vec_high(s, a->q, tt); 3700 } 3701 3702 if (a->p) { 3703 if (a->rm == 31) { 3704 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3705 } else { 3706 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3707 } 3708 } 3709 return true; 3710 } 3711 3712 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3713 { 3714 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3715 MemOp endian, align, mop; 3716 3717 int total; /* total bytes */ 3718 int elements; /* elements per vector */ 3719 int r; 3720 int size = a->sz; 3721 3722 if (!a->p && a->rm != 0) { 3723 /* For non-postindexed accesses the Rm field must be 0 */ 3724 return false; 3725 } 3726 if (size == 3 && !a->q && a->selem != 1) { 3727 return false; 3728 } 3729 if (!fp_access_check(s)) { 3730 return true; 3731 } 3732 3733 if (a->rn == 31) { 3734 gen_check_sp_alignment(s); 3735 } 3736 3737 /* For our purposes, bytes are always little-endian. */ 3738 endian = s->be_data; 3739 if (size == 0) { 3740 endian = MO_LE; 3741 } 3742 3743 total = a->rpt * a->selem * (a->q ? 16 : 8); 3744 tcg_rn = cpu_reg_sp(s, a->rn); 3745 3746 /* 3747 * Issue the MTE check vs the logical repeat count, before we 3748 * promote consecutive little-endian elements below. 3749 */ 3750 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3751 finalize_memop_asimd(s, size)); 3752 3753 /* 3754 * Consecutive little-endian elements from a single register 3755 * can be promoted to a larger little-endian operation. 3756 */ 3757 align = MO_ALIGN; 3758 if (a->selem == 1 && endian == MO_LE) { 3759 align = pow2_align(size); 3760 size = 3; 3761 } 3762 if (!s->align_mem) { 3763 align = 0; 3764 } 3765 mop = endian | size | align; 3766 3767 elements = (a->q ? 16 : 8) >> size; 3768 tcg_ebytes = tcg_constant_i64(1 << size); 3769 for (r = 0; r < a->rpt; r++) { 3770 int e; 3771 for (e = 0; e < elements; e++) { 3772 int xs; 3773 for (xs = 0; xs < a->selem; xs++) { 3774 int tt = (a->rt + r + xs) % 32; 3775 do_vec_st(s, tt, e, clean_addr, mop); 3776 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3777 } 3778 } 3779 } 3780 3781 if (a->p) { 3782 if (a->rm == 31) { 3783 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3784 } else { 3785 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3786 } 3787 } 3788 return true; 3789 } 3790 3791 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3792 { 3793 int xs, total, rt; 3794 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3795 MemOp mop; 3796 3797 if (!a->p && a->rm != 0) { 3798 return false; 3799 } 3800 if (!fp_access_check(s)) { 3801 return true; 3802 } 3803 3804 if (a->rn == 31) { 3805 gen_check_sp_alignment(s); 3806 } 3807 3808 total = a->selem << a->scale; 3809 tcg_rn = cpu_reg_sp(s, a->rn); 3810 3811 mop = finalize_memop_asimd(s, a->scale); 3812 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3813 total, mop); 3814 3815 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3816 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3817 do_vec_st(s, rt, a->index, clean_addr, mop); 3818 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3819 } 3820 3821 if (a->p) { 3822 if (a->rm == 31) { 3823 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3824 } else { 3825 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3826 } 3827 } 3828 return true; 3829 } 3830 3831 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3832 { 3833 int xs, total, rt; 3834 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3835 MemOp mop; 3836 3837 if (!a->p && a->rm != 0) { 3838 return false; 3839 } 3840 if (!fp_access_check(s)) { 3841 return true; 3842 } 3843 3844 if (a->rn == 31) { 3845 gen_check_sp_alignment(s); 3846 } 3847 3848 total = a->selem << a->scale; 3849 tcg_rn = cpu_reg_sp(s, a->rn); 3850 3851 mop = finalize_memop_asimd(s, a->scale); 3852 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3853 total, mop); 3854 3855 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3856 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3857 do_vec_ld(s, rt, a->index, clean_addr, mop); 3858 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3859 } 3860 3861 if (a->p) { 3862 if (a->rm == 31) { 3863 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3864 } else { 3865 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3866 } 3867 } 3868 return true; 3869 } 3870 3871 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3872 { 3873 int xs, total, rt; 3874 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3875 MemOp mop; 3876 3877 if (!a->p && a->rm != 0) { 3878 return false; 3879 } 3880 if (!fp_access_check(s)) { 3881 return true; 3882 } 3883 3884 if (a->rn == 31) { 3885 gen_check_sp_alignment(s); 3886 } 3887 3888 total = a->selem << a->scale; 3889 tcg_rn = cpu_reg_sp(s, a->rn); 3890 3891 mop = finalize_memop_asimd(s, a->scale); 3892 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3893 total, mop); 3894 3895 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3896 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3897 /* Load and replicate to all elements */ 3898 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3899 3900 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3901 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3902 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3903 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3904 } 3905 3906 if (a->p) { 3907 if (a->rm == 31) { 3908 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3909 } else { 3910 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3911 } 3912 } 3913 return true; 3914 } 3915 3916 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3917 { 3918 TCGv_i64 addr, clean_addr, tcg_rt; 3919 int size = 4 << s->dcz_blocksize; 3920 3921 if (!dc_isar_feature(aa64_mte, s)) { 3922 return false; 3923 } 3924 if (s->current_el == 0) { 3925 return false; 3926 } 3927 3928 if (a->rn == 31) { 3929 gen_check_sp_alignment(s); 3930 } 3931 3932 addr = read_cpu_reg_sp(s, a->rn, true); 3933 tcg_gen_addi_i64(addr, addr, a->imm); 3934 tcg_rt = cpu_reg(s, a->rt); 3935 3936 if (s->ata[0]) { 3937 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3938 } 3939 /* 3940 * The non-tags portion of STZGM is mostly like DC_ZVA, 3941 * except the alignment happens before the access. 3942 */ 3943 clean_addr = clean_data_tbi(s, addr); 3944 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3945 gen_helper_dc_zva(tcg_env, clean_addr); 3946 return true; 3947 } 3948 3949 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3950 { 3951 TCGv_i64 addr, clean_addr, tcg_rt; 3952 3953 if (!dc_isar_feature(aa64_mte, s)) { 3954 return false; 3955 } 3956 if (s->current_el == 0) { 3957 return false; 3958 } 3959 3960 if (a->rn == 31) { 3961 gen_check_sp_alignment(s); 3962 } 3963 3964 addr = read_cpu_reg_sp(s, a->rn, true); 3965 tcg_gen_addi_i64(addr, addr, a->imm); 3966 tcg_rt = cpu_reg(s, a->rt); 3967 3968 if (s->ata[0]) { 3969 gen_helper_stgm(tcg_env, addr, tcg_rt); 3970 } else { 3971 MMUAccessType acc = MMU_DATA_STORE; 3972 int size = 4 << s->gm_blocksize; 3973 3974 clean_addr = clean_data_tbi(s, addr); 3975 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3976 gen_probe_access(s, clean_addr, acc, size); 3977 } 3978 return true; 3979 } 3980 3981 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3982 { 3983 TCGv_i64 addr, clean_addr, tcg_rt; 3984 3985 if (!dc_isar_feature(aa64_mte, s)) { 3986 return false; 3987 } 3988 if (s->current_el == 0) { 3989 return false; 3990 } 3991 3992 if (a->rn == 31) { 3993 gen_check_sp_alignment(s); 3994 } 3995 3996 addr = read_cpu_reg_sp(s, a->rn, true); 3997 tcg_gen_addi_i64(addr, addr, a->imm); 3998 tcg_rt = cpu_reg(s, a->rt); 3999 4000 if (s->ata[0]) { 4001 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4002 } else { 4003 MMUAccessType acc = MMU_DATA_LOAD; 4004 int size = 4 << s->gm_blocksize; 4005 4006 clean_addr = clean_data_tbi(s, addr); 4007 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4008 gen_probe_access(s, clean_addr, acc, size); 4009 /* The result tags are zeros. */ 4010 tcg_gen_movi_i64(tcg_rt, 0); 4011 } 4012 return true; 4013 } 4014 4015 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4016 { 4017 TCGv_i64 addr, clean_addr, tcg_rt; 4018 4019 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4020 return false; 4021 } 4022 4023 if (a->rn == 31) { 4024 gen_check_sp_alignment(s); 4025 } 4026 4027 addr = read_cpu_reg_sp(s, a->rn, true); 4028 if (!a->p) { 4029 /* pre-index or signed offset */ 4030 tcg_gen_addi_i64(addr, addr, a->imm); 4031 } 4032 4033 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4034 tcg_rt = cpu_reg(s, a->rt); 4035 if (s->ata[0]) { 4036 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4037 } else { 4038 /* 4039 * Tag access disabled: we must check for aborts on the load 4040 * load from [rn+offset], and then insert a 0 tag into rt. 4041 */ 4042 clean_addr = clean_data_tbi(s, addr); 4043 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4044 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4045 } 4046 4047 if (a->w) { 4048 /* pre-index or post-index */ 4049 if (a->p) { 4050 /* post-index */ 4051 tcg_gen_addi_i64(addr, addr, a->imm); 4052 } 4053 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4054 } 4055 return true; 4056 } 4057 4058 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4059 { 4060 TCGv_i64 addr, tcg_rt; 4061 4062 if (a->rn == 31) { 4063 gen_check_sp_alignment(s); 4064 } 4065 4066 addr = read_cpu_reg_sp(s, a->rn, true); 4067 if (!a->p) { 4068 /* pre-index or signed offset */ 4069 tcg_gen_addi_i64(addr, addr, a->imm); 4070 } 4071 tcg_rt = cpu_reg_sp(s, a->rt); 4072 if (!s->ata[0]) { 4073 /* 4074 * For STG and ST2G, we need to check alignment and probe memory. 4075 * TODO: For STZG and STZ2G, we could rely on the stores below, 4076 * at least for system mode; user-only won't enforce alignment. 4077 */ 4078 if (is_pair) { 4079 gen_helper_st2g_stub(tcg_env, addr); 4080 } else { 4081 gen_helper_stg_stub(tcg_env, addr); 4082 } 4083 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4084 if (is_pair) { 4085 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4088 } 4089 } else { 4090 if (is_pair) { 4091 gen_helper_st2g(tcg_env, addr, tcg_rt); 4092 } else { 4093 gen_helper_stg(tcg_env, addr, tcg_rt); 4094 } 4095 } 4096 4097 if (is_zero) { 4098 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4099 TCGv_i64 zero64 = tcg_constant_i64(0); 4100 TCGv_i128 zero128 = tcg_temp_new_i128(); 4101 int mem_index = get_mem_index(s); 4102 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4103 4104 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4105 4106 /* This is 1 or 2 atomic 16-byte operations. */ 4107 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4108 if (is_pair) { 4109 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4110 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4111 } 4112 } 4113 4114 if (a->w) { 4115 /* pre-index or post-index */ 4116 if (a->p) { 4117 /* post-index */ 4118 tcg_gen_addi_i64(addr, addr, a->imm); 4119 } 4120 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4121 } 4122 return true; 4123 } 4124 4125 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4126 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4127 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4128 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4129 4130 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4131 4132 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4133 bool is_setg, SetFn fn) 4134 { 4135 int memidx; 4136 uint32_t syndrome, desc = 0; 4137 4138 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4139 return false; 4140 } 4141 4142 /* 4143 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4144 * us to pull this check before the CheckMOPSEnabled() test 4145 * (which we do in the helper function) 4146 */ 4147 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4148 a->rd == 31 || a->rn == 31) { 4149 return false; 4150 } 4151 4152 memidx = get_a64_user_mem_index(s, a->unpriv); 4153 4154 /* 4155 * We pass option_a == true, matching our implementation; 4156 * we pass wrong_option == false: helper function may set that bit. 4157 */ 4158 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4159 is_epilogue, false, true, a->rd, a->rs, a->rn); 4160 4161 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4162 /* We may need to do MTE tag checking, so assemble the descriptor */ 4163 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4164 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4165 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4166 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4167 } 4168 /* The helper function always needs the memidx even with MTE disabled */ 4169 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4170 4171 /* 4172 * The helper needs the register numbers, but since they're in 4173 * the syndrome anyway, we let it extract them from there rather 4174 * than passing in an extra three integer arguments. 4175 */ 4176 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4177 return true; 4178 } 4179 4180 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4181 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4182 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4183 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4184 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4185 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4186 4187 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4188 4189 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4190 { 4191 int rmemidx, wmemidx; 4192 uint32_t syndrome, rdesc = 0, wdesc = 0; 4193 bool wunpriv = extract32(a->options, 0, 1); 4194 bool runpriv = extract32(a->options, 1, 1); 4195 4196 /* 4197 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4198 * us to pull this check before the CheckMOPSEnabled() test 4199 * (which we do in the helper function) 4200 */ 4201 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4202 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4203 return false; 4204 } 4205 4206 rmemidx = get_a64_user_mem_index(s, runpriv); 4207 wmemidx = get_a64_user_mem_index(s, wunpriv); 4208 4209 /* 4210 * We pass option_a == true, matching our implementation; 4211 * we pass wrong_option == false: helper function may set that bit. 4212 */ 4213 syndrome = syn_mop(false, false, a->options, is_epilogue, 4214 false, true, a->rd, a->rs, a->rn); 4215 4216 /* If we need to do MTE tag checking, assemble the descriptors */ 4217 if (s->mte_active[runpriv]) { 4218 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4219 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4220 } 4221 if (s->mte_active[wunpriv]) { 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4223 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4224 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4225 } 4226 /* The helper function needs these parts of the descriptor regardless */ 4227 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4228 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4229 4230 /* 4231 * The helper needs the register numbers, but since they're in 4232 * the syndrome anyway, we let it extract them from there rather 4233 * than passing in an extra three integer arguments. 4234 */ 4235 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4236 tcg_constant_i32(rdesc)); 4237 return true; 4238 } 4239 4240 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4241 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4242 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4243 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4244 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4245 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4246 4247 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4248 4249 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4250 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4251 { 4252 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4253 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4254 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4255 4256 fn(tcg_rd, tcg_rn, tcg_imm); 4257 if (!a->sf) { 4258 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4259 } 4260 return true; 4261 } 4262 4263 /* 4264 * PC-rel. addressing 4265 */ 4266 4267 static bool trans_ADR(DisasContext *s, arg_ri *a) 4268 { 4269 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4270 return true; 4271 } 4272 4273 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4274 { 4275 int64_t offset = (int64_t)a->imm << 12; 4276 4277 /* The page offset is ok for CF_PCREL. */ 4278 offset -= s->pc_curr & 0xfff; 4279 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4280 return true; 4281 } 4282 4283 /* 4284 * Add/subtract (immediate) 4285 */ 4286 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4287 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4288 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4289 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4290 4291 /* 4292 * Add/subtract (immediate, with tags) 4293 */ 4294 4295 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4296 bool sub_op) 4297 { 4298 TCGv_i64 tcg_rn, tcg_rd; 4299 int imm; 4300 4301 imm = a->uimm6 << LOG2_TAG_GRANULE; 4302 if (sub_op) { 4303 imm = -imm; 4304 } 4305 4306 tcg_rn = cpu_reg_sp(s, a->rn); 4307 tcg_rd = cpu_reg_sp(s, a->rd); 4308 4309 if (s->ata[0]) { 4310 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4311 tcg_constant_i32(imm), 4312 tcg_constant_i32(a->uimm4)); 4313 } else { 4314 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4315 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4316 } 4317 return true; 4318 } 4319 4320 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4321 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4322 4323 /* The input should be a value in the bottom e bits (with higher 4324 * bits zero); returns that value replicated into every element 4325 * of size e in a 64 bit integer. 4326 */ 4327 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4328 { 4329 assert(e != 0); 4330 while (e < 64) { 4331 mask |= mask << e; 4332 e *= 2; 4333 } 4334 return mask; 4335 } 4336 4337 /* 4338 * Logical (immediate) 4339 */ 4340 4341 /* 4342 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4343 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4344 * value (ie should cause a guest UNDEF exception), and true if they are 4345 * valid, in which case the decoded bit pattern is written to result. 4346 */ 4347 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4348 unsigned int imms, unsigned int immr) 4349 { 4350 uint64_t mask; 4351 unsigned e, levels, s, r; 4352 int len; 4353 4354 assert(immn < 2 && imms < 64 && immr < 64); 4355 4356 /* The bit patterns we create here are 64 bit patterns which 4357 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4358 * 64 bits each. Each element contains the same value: a run 4359 * of between 1 and e-1 non-zero bits, rotated within the 4360 * element by between 0 and e-1 bits. 4361 * 4362 * The element size and run length are encoded into immn (1 bit) 4363 * and imms (6 bits) as follows: 4364 * 64 bit elements: immn = 1, imms = <length of run - 1> 4365 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4366 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4367 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4368 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4369 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4370 * Notice that immn = 0, imms = 11111x is the only combination 4371 * not covered by one of the above options; this is reserved. 4372 * Further, <length of run - 1> all-ones is a reserved pattern. 4373 * 4374 * In all cases the rotation is by immr % e (and immr is 6 bits). 4375 */ 4376 4377 /* First determine the element size */ 4378 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4379 if (len < 1) { 4380 /* This is the immn == 0, imms == 0x11111x case */ 4381 return false; 4382 } 4383 e = 1 << len; 4384 4385 levels = e - 1; 4386 s = imms & levels; 4387 r = immr & levels; 4388 4389 if (s == levels) { 4390 /* <length of run - 1> mustn't be all-ones. */ 4391 return false; 4392 } 4393 4394 /* Create the value of one element: s+1 set bits rotated 4395 * by r within the element (which is e bits wide)... 4396 */ 4397 mask = MAKE_64BIT_MASK(0, s + 1); 4398 if (r) { 4399 mask = (mask >> r) | (mask << (e - r)); 4400 mask &= MAKE_64BIT_MASK(0, e); 4401 } 4402 /* ...then replicate the element over the whole 64 bit value */ 4403 mask = bitfield_replicate(mask, e); 4404 *result = mask; 4405 return true; 4406 } 4407 4408 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4409 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4410 { 4411 TCGv_i64 tcg_rd, tcg_rn; 4412 uint64_t imm; 4413 4414 /* Some immediate field values are reserved. */ 4415 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4416 extract32(a->dbm, 0, 6), 4417 extract32(a->dbm, 6, 6))) { 4418 return false; 4419 } 4420 if (!a->sf) { 4421 imm &= 0xffffffffull; 4422 } 4423 4424 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4425 tcg_rn = cpu_reg(s, a->rn); 4426 4427 fn(tcg_rd, tcg_rn, imm); 4428 if (set_cc) { 4429 gen_logic_CC(a->sf, tcg_rd); 4430 } 4431 if (!a->sf) { 4432 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4433 } 4434 return true; 4435 } 4436 4437 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4438 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4439 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4440 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4441 4442 /* 4443 * Move wide (immediate) 4444 */ 4445 4446 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4447 { 4448 int pos = a->hw << 4; 4449 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4450 return true; 4451 } 4452 4453 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4454 { 4455 int pos = a->hw << 4; 4456 uint64_t imm = a->imm; 4457 4458 imm = ~(imm << pos); 4459 if (!a->sf) { 4460 imm = (uint32_t)imm; 4461 } 4462 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4463 return true; 4464 } 4465 4466 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4467 { 4468 int pos = a->hw << 4; 4469 TCGv_i64 tcg_rd, tcg_im; 4470 4471 tcg_rd = cpu_reg(s, a->rd); 4472 tcg_im = tcg_constant_i64(a->imm); 4473 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4474 if (!a->sf) { 4475 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4476 } 4477 return true; 4478 } 4479 4480 /* 4481 * Bitfield 4482 */ 4483 4484 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4485 { 4486 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4487 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4488 unsigned int bitsize = a->sf ? 64 : 32; 4489 unsigned int ri = a->immr; 4490 unsigned int si = a->imms; 4491 unsigned int pos, len; 4492 4493 if (si >= ri) { 4494 /* Wd<s-r:0> = Wn<s:r> */ 4495 len = (si - ri) + 1; 4496 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4497 if (!a->sf) { 4498 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4499 } 4500 } else { 4501 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4502 len = si + 1; 4503 pos = (bitsize - ri) & (bitsize - 1); 4504 4505 if (len < ri) { 4506 /* 4507 * Sign extend the destination field from len to fill the 4508 * balance of the word. Let the deposit below insert all 4509 * of those sign bits. 4510 */ 4511 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4512 len = ri; 4513 } 4514 4515 /* 4516 * We start with zero, and we haven't modified any bits outside 4517 * bitsize, therefore no final zero-extension is unneeded for !sf. 4518 */ 4519 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4520 } 4521 return true; 4522 } 4523 4524 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4525 { 4526 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4527 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4528 unsigned int bitsize = a->sf ? 64 : 32; 4529 unsigned int ri = a->immr; 4530 unsigned int si = a->imms; 4531 unsigned int pos, len; 4532 4533 tcg_rd = cpu_reg(s, a->rd); 4534 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4535 4536 if (si >= ri) { 4537 /* Wd<s-r:0> = Wn<s:r> */ 4538 len = (si - ri) + 1; 4539 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4540 } else { 4541 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4542 len = si + 1; 4543 pos = (bitsize - ri) & (bitsize - 1); 4544 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4545 } 4546 return true; 4547 } 4548 4549 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4550 { 4551 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4552 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4553 unsigned int bitsize = a->sf ? 64 : 32; 4554 unsigned int ri = a->immr; 4555 unsigned int si = a->imms; 4556 unsigned int pos, len; 4557 4558 tcg_rd = cpu_reg(s, a->rd); 4559 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4560 4561 if (si >= ri) { 4562 /* Wd<s-r:0> = Wn<s:r> */ 4563 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4564 len = (si - ri) + 1; 4565 pos = 0; 4566 } else { 4567 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4568 len = si + 1; 4569 pos = (bitsize - ri) & (bitsize - 1); 4570 } 4571 4572 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4573 if (!a->sf) { 4574 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4575 } 4576 return true; 4577 } 4578 4579 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4580 { 4581 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4582 4583 tcg_rd = cpu_reg(s, a->rd); 4584 4585 if (unlikely(a->imm == 0)) { 4586 /* 4587 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4588 * so an extract from bit 0 is a special case. 4589 */ 4590 if (a->sf) { 4591 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4592 } else { 4593 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4594 } 4595 } else { 4596 tcg_rm = cpu_reg(s, a->rm); 4597 tcg_rn = cpu_reg(s, a->rn); 4598 4599 if (a->sf) { 4600 /* Specialization to ROR happens in EXTRACT2. */ 4601 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4602 } else { 4603 TCGv_i32 t0 = tcg_temp_new_i32(); 4604 4605 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4606 if (a->rm == a->rn) { 4607 tcg_gen_rotri_i32(t0, t0, a->imm); 4608 } else { 4609 TCGv_i32 t1 = tcg_temp_new_i32(); 4610 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4611 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4612 } 4613 tcg_gen_extu_i32_i64(tcg_rd, t0); 4614 } 4615 } 4616 return true; 4617 } 4618 4619 /* 4620 * Cryptographic AES, SHA, SHA512 4621 */ 4622 4623 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4624 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4625 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4626 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4627 4628 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4629 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4630 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4631 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4632 4633 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4634 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4635 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4636 4637 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4638 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4639 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4640 4641 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4642 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4643 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4644 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4645 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4646 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4647 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4648 4649 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4650 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4651 4652 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4653 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4654 4655 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4656 { 4657 if (!dc_isar_feature(aa64_sm3, s)) { 4658 return false; 4659 } 4660 if (fp_access_check(s)) { 4661 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4662 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4663 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4664 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4665 unsigned vsz, dofs; 4666 4667 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4668 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4669 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4670 4671 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4672 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4673 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4674 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4675 4676 /* Clear the whole register first, then store bits [127:96]. */ 4677 vsz = vec_full_reg_size(s); 4678 dofs = vec_full_reg_offset(s, a->rd); 4679 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4680 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4681 } 4682 return true; 4683 } 4684 4685 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4686 { 4687 if (fp_access_check(s)) { 4688 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4689 } 4690 return true; 4691 } 4692 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4693 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4694 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4695 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4696 4697 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4698 { 4699 if (!dc_isar_feature(aa64_sha3, s)) { 4700 return false; 4701 } 4702 if (fp_access_check(s)) { 4703 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4704 vec_full_reg_offset(s, a->rn), 4705 vec_full_reg_offset(s, a->rm), a->imm, 16, 4706 vec_full_reg_size(s)); 4707 } 4708 return true; 4709 } 4710 4711 /* 4712 * Advanced SIMD copy 4713 */ 4714 4715 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4716 { 4717 unsigned esz = ctz32(imm); 4718 if (esz <= MO_64) { 4719 *pesz = esz; 4720 *pidx = imm >> (esz + 1); 4721 return true; 4722 } 4723 return false; 4724 } 4725 4726 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4727 { 4728 MemOp esz; 4729 unsigned idx; 4730 4731 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4732 return false; 4733 } 4734 if (fp_access_check(s)) { 4735 /* 4736 * This instruction just extracts the specified element and 4737 * zero-extends it into the bottom of the destination register. 4738 */ 4739 TCGv_i64 tmp = tcg_temp_new_i64(); 4740 read_vec_element(s, tmp, a->rn, idx, esz); 4741 write_fp_dreg(s, a->rd, tmp); 4742 } 4743 return true; 4744 } 4745 4746 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4747 { 4748 MemOp esz; 4749 unsigned idx; 4750 4751 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4752 return false; 4753 } 4754 if (esz == MO_64 && !a->q) { 4755 return false; 4756 } 4757 if (fp_access_check(s)) { 4758 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4759 vec_reg_offset(s, a->rn, idx, esz), 4760 a->q ? 16 : 8, vec_full_reg_size(s)); 4761 } 4762 return true; 4763 } 4764 4765 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4766 { 4767 MemOp esz; 4768 unsigned idx; 4769 4770 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4771 return false; 4772 } 4773 if (esz == MO_64 && !a->q) { 4774 return false; 4775 } 4776 if (fp_access_check(s)) { 4777 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4778 a->q ? 16 : 8, vec_full_reg_size(s), 4779 cpu_reg(s, a->rn)); 4780 } 4781 return true; 4782 } 4783 4784 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4785 { 4786 MemOp esz; 4787 unsigned idx; 4788 4789 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4790 return false; 4791 } 4792 if (is_signed) { 4793 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4794 return false; 4795 } 4796 } else { 4797 if (esz == MO_64 ? !a->q : a->q) { 4798 return false; 4799 } 4800 } 4801 if (fp_access_check(s)) { 4802 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4803 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4804 if (is_signed && !a->q) { 4805 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4806 } 4807 } 4808 return true; 4809 } 4810 4811 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4812 TRANS(UMOV, do_smov_umov, a, 0) 4813 4814 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4815 { 4816 MemOp esz; 4817 unsigned idx; 4818 4819 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4820 return false; 4821 } 4822 if (fp_access_check(s)) { 4823 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4824 clear_vec_high(s, true, a->rd); 4825 } 4826 return true; 4827 } 4828 4829 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4830 { 4831 MemOp esz; 4832 unsigned didx, sidx; 4833 4834 if (!decode_esz_idx(a->di, &esz, &didx)) { 4835 return false; 4836 } 4837 sidx = a->si >> esz; 4838 if (fp_access_check(s)) { 4839 TCGv_i64 tmp = tcg_temp_new_i64(); 4840 4841 read_vec_element(s, tmp, a->rn, sidx, esz); 4842 write_vec_element(s, tmp, a->rd, didx, esz); 4843 4844 /* INS is considered a 128-bit write for SVE. */ 4845 clear_vec_high(s, true, a->rd); 4846 } 4847 return true; 4848 } 4849 4850 /* 4851 * Advanced SIMD three same 4852 */ 4853 4854 typedef struct FPScalar { 4855 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4856 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4857 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4858 } FPScalar; 4859 4860 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4861 { 4862 switch (a->esz) { 4863 case MO_64: 4864 if (fp_access_check(s)) { 4865 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4866 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4867 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4868 write_fp_dreg(s, a->rd, t0); 4869 } 4870 break; 4871 case MO_32: 4872 if (fp_access_check(s)) { 4873 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4874 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4875 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4876 write_fp_sreg(s, a->rd, t0); 4877 } 4878 break; 4879 case MO_16: 4880 if (!dc_isar_feature(aa64_fp16, s)) { 4881 return false; 4882 } 4883 if (fp_access_check(s)) { 4884 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4885 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4886 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4887 write_fp_sreg(s, a->rd, t0); 4888 } 4889 break; 4890 default: 4891 return false; 4892 } 4893 return true; 4894 } 4895 4896 static const FPScalar f_scalar_fadd = { 4897 gen_helper_vfp_addh, 4898 gen_helper_vfp_adds, 4899 gen_helper_vfp_addd, 4900 }; 4901 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4902 4903 static const FPScalar f_scalar_fsub = { 4904 gen_helper_vfp_subh, 4905 gen_helper_vfp_subs, 4906 gen_helper_vfp_subd, 4907 }; 4908 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4909 4910 static const FPScalar f_scalar_fdiv = { 4911 gen_helper_vfp_divh, 4912 gen_helper_vfp_divs, 4913 gen_helper_vfp_divd, 4914 }; 4915 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4916 4917 static const FPScalar f_scalar_fmul = { 4918 gen_helper_vfp_mulh, 4919 gen_helper_vfp_muls, 4920 gen_helper_vfp_muld, 4921 }; 4922 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4923 4924 static const FPScalar f_scalar_fmax = { 4925 gen_helper_advsimd_maxh, 4926 gen_helper_vfp_maxs, 4927 gen_helper_vfp_maxd, 4928 }; 4929 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4930 4931 static const FPScalar f_scalar_fmin = { 4932 gen_helper_advsimd_minh, 4933 gen_helper_vfp_mins, 4934 gen_helper_vfp_mind, 4935 }; 4936 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4937 4938 static const FPScalar f_scalar_fmaxnm = { 4939 gen_helper_advsimd_maxnumh, 4940 gen_helper_vfp_maxnums, 4941 gen_helper_vfp_maxnumd, 4942 }; 4943 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4944 4945 static const FPScalar f_scalar_fminnm = { 4946 gen_helper_advsimd_minnumh, 4947 gen_helper_vfp_minnums, 4948 gen_helper_vfp_minnumd, 4949 }; 4950 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4951 4952 static const FPScalar f_scalar_fmulx = { 4953 gen_helper_advsimd_mulxh, 4954 gen_helper_vfp_mulxs, 4955 gen_helper_vfp_mulxd, 4956 }; 4957 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4958 4959 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_mulh(d, n, m, s); 4962 gen_vfp_negh(d, d); 4963 } 4964 4965 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muls(d, n, m, s); 4968 gen_vfp_negs(d, d); 4969 } 4970 4971 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4972 { 4973 gen_helper_vfp_muld(d, n, m, s); 4974 gen_vfp_negd(d, d); 4975 } 4976 4977 static const FPScalar f_scalar_fnmul = { 4978 gen_fnmul_h, 4979 gen_fnmul_s, 4980 gen_fnmul_d, 4981 }; 4982 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4983 4984 static const FPScalar f_scalar_fcmeq = { 4985 gen_helper_advsimd_ceq_f16, 4986 gen_helper_neon_ceq_f32, 4987 gen_helper_neon_ceq_f64, 4988 }; 4989 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4990 4991 static const FPScalar f_scalar_fcmge = { 4992 gen_helper_advsimd_cge_f16, 4993 gen_helper_neon_cge_f32, 4994 gen_helper_neon_cge_f64, 4995 }; 4996 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4997 4998 static const FPScalar f_scalar_fcmgt = { 4999 gen_helper_advsimd_cgt_f16, 5000 gen_helper_neon_cgt_f32, 5001 gen_helper_neon_cgt_f64, 5002 }; 5003 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5004 5005 static const FPScalar f_scalar_facge = { 5006 gen_helper_advsimd_acge_f16, 5007 gen_helper_neon_acge_f32, 5008 gen_helper_neon_acge_f64, 5009 }; 5010 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5011 5012 static const FPScalar f_scalar_facgt = { 5013 gen_helper_advsimd_acgt_f16, 5014 gen_helper_neon_acgt_f32, 5015 gen_helper_neon_acgt_f64, 5016 }; 5017 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5018 5019 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subh(d, n, m, s); 5022 gen_vfp_absh(d, d); 5023 } 5024 5025 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subs(d, n, m, s); 5028 gen_vfp_abss(d, d); 5029 } 5030 5031 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5032 { 5033 gen_helper_vfp_subd(d, n, m, s); 5034 gen_vfp_absd(d, d); 5035 } 5036 5037 static const FPScalar f_scalar_fabd = { 5038 gen_fabd_h, 5039 gen_fabd_s, 5040 gen_fabd_d, 5041 }; 5042 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5043 5044 static const FPScalar f_scalar_frecps = { 5045 gen_helper_recpsf_f16, 5046 gen_helper_recpsf_f32, 5047 gen_helper_recpsf_f64, 5048 }; 5049 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5050 5051 static const FPScalar f_scalar_frsqrts = { 5052 gen_helper_rsqrtsf_f16, 5053 gen_helper_rsqrtsf_f32, 5054 gen_helper_rsqrtsf_f64, 5055 }; 5056 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5057 5058 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5059 MemOp sgn_n, MemOp sgn_m, 5060 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5061 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5062 { 5063 TCGv_i64 t0, t1, t2, qc; 5064 MemOp esz = a->esz; 5065 5066 if (!fp_access_check(s)) { 5067 return true; 5068 } 5069 5070 t0 = tcg_temp_new_i64(); 5071 t1 = tcg_temp_new_i64(); 5072 t2 = tcg_temp_new_i64(); 5073 qc = tcg_temp_new_i64(); 5074 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5075 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5076 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5077 5078 if (esz == MO_64) { 5079 gen_d(t0, qc, t1, t2); 5080 } else { 5081 gen_bhs(t0, qc, t1, t2, esz); 5082 tcg_gen_ext_i64(t0, t0, esz); 5083 } 5084 5085 write_fp_dreg(s, a->rd, t0); 5086 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5087 return true; 5088 } 5089 5090 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5091 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5092 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5093 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5094 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5095 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5096 5097 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5098 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5099 { 5100 if (fp_access_check(s)) { 5101 TCGv_i64 t0 = tcg_temp_new_i64(); 5102 TCGv_i64 t1 = tcg_temp_new_i64(); 5103 5104 read_vec_element(s, t0, a->rn, 0, MO_64); 5105 read_vec_element(s, t1, a->rm, 0, MO_64); 5106 fn(t0, t0, t1); 5107 write_fp_dreg(s, a->rd, t0); 5108 } 5109 return true; 5110 } 5111 5112 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5113 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5114 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5115 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5116 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5117 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5118 5119 typedef struct ENVScalar2 { 5120 NeonGenTwoOpEnvFn *gen_bhs[3]; 5121 NeonGenTwo64OpEnvFn *gen_d; 5122 } ENVScalar2; 5123 5124 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5125 { 5126 if (!fp_access_check(s)) { 5127 return true; 5128 } 5129 if (a->esz == MO_64) { 5130 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5131 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5132 f->gen_d(t0, tcg_env, t0, t1); 5133 write_fp_dreg(s, a->rd, t0); 5134 } else { 5135 TCGv_i32 t0 = tcg_temp_new_i32(); 5136 TCGv_i32 t1 = tcg_temp_new_i32(); 5137 5138 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5139 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5140 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5141 write_fp_sreg(s, a->rd, t0); 5142 } 5143 return true; 5144 } 5145 5146 static const ENVScalar2 f_scalar_sqshl = { 5147 { gen_helper_neon_qshl_s8, 5148 gen_helper_neon_qshl_s16, 5149 gen_helper_neon_qshl_s32 }, 5150 gen_helper_neon_qshl_s64, 5151 }; 5152 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5153 5154 static const ENVScalar2 f_scalar_uqshl = { 5155 { gen_helper_neon_qshl_u8, 5156 gen_helper_neon_qshl_u16, 5157 gen_helper_neon_qshl_u32 }, 5158 gen_helper_neon_qshl_u64, 5159 }; 5160 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5161 5162 static const ENVScalar2 f_scalar_sqrshl = { 5163 { gen_helper_neon_qrshl_s8, 5164 gen_helper_neon_qrshl_s16, 5165 gen_helper_neon_qrshl_s32 }, 5166 gen_helper_neon_qrshl_s64, 5167 }; 5168 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5169 5170 static const ENVScalar2 f_scalar_uqrshl = { 5171 { gen_helper_neon_qrshl_u8, 5172 gen_helper_neon_qrshl_u16, 5173 gen_helper_neon_qrshl_u32 }, 5174 gen_helper_neon_qrshl_u64, 5175 }; 5176 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5177 5178 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5179 const ENVScalar2 *f) 5180 { 5181 if (a->esz == MO_16 || a->esz == MO_32) { 5182 return do_env_scalar2(s, a, f); 5183 } 5184 return false; 5185 } 5186 5187 static const ENVScalar2 f_scalar_sqdmulh = { 5188 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5189 }; 5190 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5191 5192 static const ENVScalar2 f_scalar_sqrdmulh = { 5193 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5194 }; 5195 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5196 5197 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5198 { 5199 if (fp_access_check(s)) { 5200 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5201 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5202 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5203 write_fp_dreg(s, a->rd, t0); 5204 } 5205 return true; 5206 } 5207 5208 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5209 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5210 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5211 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5212 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5213 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5214 5215 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5216 gen_helper_gvec_3_ptr * const fns[3]) 5217 { 5218 MemOp esz = a->esz; 5219 5220 switch (esz) { 5221 case MO_64: 5222 if (!a->q) { 5223 return false; 5224 } 5225 break; 5226 case MO_32: 5227 break; 5228 case MO_16: 5229 if (!dc_isar_feature(aa64_fp16, s)) { 5230 return false; 5231 } 5232 break; 5233 default: 5234 return false; 5235 } 5236 if (fp_access_check(s)) { 5237 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5238 esz == MO_16, 0, fns[esz - 1]); 5239 } 5240 return true; 5241 } 5242 5243 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5244 gen_helper_gvec_fadd_h, 5245 gen_helper_gvec_fadd_s, 5246 gen_helper_gvec_fadd_d, 5247 }; 5248 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5249 5250 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5251 gen_helper_gvec_fsub_h, 5252 gen_helper_gvec_fsub_s, 5253 gen_helper_gvec_fsub_d, 5254 }; 5255 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5256 5257 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5258 gen_helper_gvec_fdiv_h, 5259 gen_helper_gvec_fdiv_s, 5260 gen_helper_gvec_fdiv_d, 5261 }; 5262 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5263 5264 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5265 gen_helper_gvec_fmul_h, 5266 gen_helper_gvec_fmul_s, 5267 gen_helper_gvec_fmul_d, 5268 }; 5269 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5270 5271 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5272 gen_helper_gvec_fmax_h, 5273 gen_helper_gvec_fmax_s, 5274 gen_helper_gvec_fmax_d, 5275 }; 5276 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5277 5278 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5279 gen_helper_gvec_fmin_h, 5280 gen_helper_gvec_fmin_s, 5281 gen_helper_gvec_fmin_d, 5282 }; 5283 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5284 5285 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5286 gen_helper_gvec_fmaxnum_h, 5287 gen_helper_gvec_fmaxnum_s, 5288 gen_helper_gvec_fmaxnum_d, 5289 }; 5290 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5291 5292 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5293 gen_helper_gvec_fminnum_h, 5294 gen_helper_gvec_fminnum_s, 5295 gen_helper_gvec_fminnum_d, 5296 }; 5297 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5298 5299 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5300 gen_helper_gvec_fmulx_h, 5301 gen_helper_gvec_fmulx_s, 5302 gen_helper_gvec_fmulx_d, 5303 }; 5304 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5305 5306 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5307 gen_helper_gvec_vfma_h, 5308 gen_helper_gvec_vfma_s, 5309 gen_helper_gvec_vfma_d, 5310 }; 5311 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5312 5313 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5314 gen_helper_gvec_vfms_h, 5315 gen_helper_gvec_vfms_s, 5316 gen_helper_gvec_vfms_d, 5317 }; 5318 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5319 5320 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5321 gen_helper_gvec_fceq_h, 5322 gen_helper_gvec_fceq_s, 5323 gen_helper_gvec_fceq_d, 5324 }; 5325 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5326 5327 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5328 gen_helper_gvec_fcge_h, 5329 gen_helper_gvec_fcge_s, 5330 gen_helper_gvec_fcge_d, 5331 }; 5332 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5333 5334 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5335 gen_helper_gvec_fcgt_h, 5336 gen_helper_gvec_fcgt_s, 5337 gen_helper_gvec_fcgt_d, 5338 }; 5339 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5340 5341 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5342 gen_helper_gvec_facge_h, 5343 gen_helper_gvec_facge_s, 5344 gen_helper_gvec_facge_d, 5345 }; 5346 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5347 5348 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5349 gen_helper_gvec_facgt_h, 5350 gen_helper_gvec_facgt_s, 5351 gen_helper_gvec_facgt_d, 5352 }; 5353 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5354 5355 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5356 gen_helper_gvec_fabd_h, 5357 gen_helper_gvec_fabd_s, 5358 gen_helper_gvec_fabd_d, 5359 }; 5360 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5361 5362 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5363 gen_helper_gvec_recps_h, 5364 gen_helper_gvec_recps_s, 5365 gen_helper_gvec_recps_d, 5366 }; 5367 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5368 5369 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5370 gen_helper_gvec_rsqrts_h, 5371 gen_helper_gvec_rsqrts_s, 5372 gen_helper_gvec_rsqrts_d, 5373 }; 5374 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5375 5376 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5377 gen_helper_gvec_faddp_h, 5378 gen_helper_gvec_faddp_s, 5379 gen_helper_gvec_faddp_d, 5380 }; 5381 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5382 5383 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5384 gen_helper_gvec_fmaxp_h, 5385 gen_helper_gvec_fmaxp_s, 5386 gen_helper_gvec_fmaxp_d, 5387 }; 5388 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5389 5390 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5391 gen_helper_gvec_fminp_h, 5392 gen_helper_gvec_fminp_s, 5393 gen_helper_gvec_fminp_d, 5394 }; 5395 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5396 5397 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5398 gen_helper_gvec_fmaxnump_h, 5399 gen_helper_gvec_fmaxnump_s, 5400 gen_helper_gvec_fmaxnump_d, 5401 }; 5402 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5403 5404 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5405 gen_helper_gvec_fminnump_h, 5406 gen_helper_gvec_fminnump_s, 5407 gen_helper_gvec_fminnump_d, 5408 }; 5409 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5410 5411 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5412 { 5413 if (fp_access_check(s)) { 5414 int data = (is_2 << 1) | is_s; 5415 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5416 vec_full_reg_offset(s, a->rn), 5417 vec_full_reg_offset(s, a->rm), tcg_env, 5418 a->q ? 16 : 8, vec_full_reg_size(s), 5419 data, gen_helper_gvec_fmlal_a64); 5420 } 5421 return true; 5422 } 5423 5424 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5425 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5426 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5427 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5428 5429 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5430 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5431 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5432 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5433 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5434 5435 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5436 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5437 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5438 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5439 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5440 5441 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5442 { 5443 if (fp_access_check(s)) { 5444 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5445 } 5446 return true; 5447 } 5448 5449 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5450 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5451 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5452 5453 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 5454 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 5455 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 5456 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 5457 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 5458 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 5459 5460 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 5461 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 5462 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 5463 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 5464 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 5465 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 5466 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 5467 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 5468 5469 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 5470 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 5471 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 5472 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 5473 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 5474 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 5475 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 5476 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 5477 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 5478 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 5479 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 5480 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 5481 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 5482 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 5483 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 5484 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 5485 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 5486 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 5487 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 5488 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 5489 5490 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 5491 { 5492 if (a->esz == MO_64 && !a->q) { 5493 return false; 5494 } 5495 if (fp_access_check(s)) { 5496 tcg_gen_gvec_cmp(cond, a->esz, 5497 vec_full_reg_offset(s, a->rd), 5498 vec_full_reg_offset(s, a->rn), 5499 vec_full_reg_offset(s, a->rm), 5500 a->q ? 16 : 8, vec_full_reg_size(s)); 5501 } 5502 return true; 5503 } 5504 5505 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 5506 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 5507 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 5508 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 5509 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 5510 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 5511 5512 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 5513 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 5514 5515 /* 5516 * Advanced SIMD scalar/vector x indexed element 5517 */ 5518 5519 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5520 { 5521 switch (a->esz) { 5522 case MO_64: 5523 if (fp_access_check(s)) { 5524 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5525 TCGv_i64 t1 = tcg_temp_new_i64(); 5526 5527 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5528 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5529 write_fp_dreg(s, a->rd, t0); 5530 } 5531 break; 5532 case MO_32: 5533 if (fp_access_check(s)) { 5534 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5535 TCGv_i32 t1 = tcg_temp_new_i32(); 5536 5537 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5538 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5539 write_fp_sreg(s, a->rd, t0); 5540 } 5541 break; 5542 case MO_16: 5543 if (!dc_isar_feature(aa64_fp16, s)) { 5544 return false; 5545 } 5546 if (fp_access_check(s)) { 5547 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5548 TCGv_i32 t1 = tcg_temp_new_i32(); 5549 5550 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5551 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5552 write_fp_sreg(s, a->rd, t0); 5553 } 5554 break; 5555 default: 5556 g_assert_not_reached(); 5557 } 5558 return true; 5559 } 5560 5561 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5562 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5563 5564 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5565 { 5566 switch (a->esz) { 5567 case MO_64: 5568 if (fp_access_check(s)) { 5569 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5570 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5571 TCGv_i64 t2 = tcg_temp_new_i64(); 5572 5573 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5574 if (neg) { 5575 gen_vfp_negd(t1, t1); 5576 } 5577 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5578 write_fp_dreg(s, a->rd, t0); 5579 } 5580 break; 5581 case MO_32: 5582 if (fp_access_check(s)) { 5583 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5584 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5585 TCGv_i32 t2 = tcg_temp_new_i32(); 5586 5587 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5588 if (neg) { 5589 gen_vfp_negs(t1, t1); 5590 } 5591 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5592 write_fp_sreg(s, a->rd, t0); 5593 } 5594 break; 5595 case MO_16: 5596 if (!dc_isar_feature(aa64_fp16, s)) { 5597 return false; 5598 } 5599 if (fp_access_check(s)) { 5600 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5601 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5602 TCGv_i32 t2 = tcg_temp_new_i32(); 5603 5604 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5605 if (neg) { 5606 gen_vfp_negh(t1, t1); 5607 } 5608 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5609 fpstatus_ptr(FPST_FPCR_F16)); 5610 write_fp_sreg(s, a->rd, t0); 5611 } 5612 break; 5613 default: 5614 g_assert_not_reached(); 5615 } 5616 return true; 5617 } 5618 5619 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5620 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5621 5622 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 5623 const ENVScalar2 *f) 5624 { 5625 if (a->esz < MO_16 || a->esz > MO_32) { 5626 return false; 5627 } 5628 if (fp_access_check(s)) { 5629 TCGv_i32 t0 = tcg_temp_new_i32(); 5630 TCGv_i32 t1 = tcg_temp_new_i32(); 5631 5632 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5633 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 5634 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5635 write_fp_sreg(s, a->rd, t0); 5636 } 5637 return true; 5638 } 5639 5640 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 5641 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 5642 5643 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5644 gen_helper_gvec_3_ptr * const fns[3]) 5645 { 5646 MemOp esz = a->esz; 5647 5648 switch (esz) { 5649 case MO_64: 5650 if (!a->q) { 5651 return false; 5652 } 5653 break; 5654 case MO_32: 5655 break; 5656 case MO_16: 5657 if (!dc_isar_feature(aa64_fp16, s)) { 5658 return false; 5659 } 5660 break; 5661 default: 5662 g_assert_not_reached(); 5663 } 5664 if (fp_access_check(s)) { 5665 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5666 esz == MO_16, a->idx, fns[esz - 1]); 5667 } 5668 return true; 5669 } 5670 5671 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5672 gen_helper_gvec_fmul_idx_h, 5673 gen_helper_gvec_fmul_idx_s, 5674 gen_helper_gvec_fmul_idx_d, 5675 }; 5676 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5677 5678 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5679 gen_helper_gvec_fmulx_idx_h, 5680 gen_helper_gvec_fmulx_idx_s, 5681 gen_helper_gvec_fmulx_idx_d, 5682 }; 5683 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5684 5685 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5686 { 5687 static gen_helper_gvec_4_ptr * const fns[3] = { 5688 gen_helper_gvec_fmla_idx_h, 5689 gen_helper_gvec_fmla_idx_s, 5690 gen_helper_gvec_fmla_idx_d, 5691 }; 5692 MemOp esz = a->esz; 5693 5694 switch (esz) { 5695 case MO_64: 5696 if (!a->q) { 5697 return false; 5698 } 5699 break; 5700 case MO_32: 5701 break; 5702 case MO_16: 5703 if (!dc_isar_feature(aa64_fp16, s)) { 5704 return false; 5705 } 5706 break; 5707 default: 5708 g_assert_not_reached(); 5709 } 5710 if (fp_access_check(s)) { 5711 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5712 esz == MO_16, (a->idx << 1) | neg, 5713 fns[esz - 1]); 5714 } 5715 return true; 5716 } 5717 5718 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5719 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5720 5721 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 5722 { 5723 if (fp_access_check(s)) { 5724 int data = (a->idx << 2) | (is_2 << 1) | is_s; 5725 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5726 vec_full_reg_offset(s, a->rn), 5727 vec_full_reg_offset(s, a->rm), tcg_env, 5728 a->q ? 16 : 8, vec_full_reg_size(s), 5729 data, gen_helper_gvec_fmlal_idx_a64); 5730 } 5731 return true; 5732 } 5733 5734 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 5735 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 5736 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 5737 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 5738 5739 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5740 gen_helper_gvec_3 * const fns[2]) 5741 { 5742 assert(a->esz == MO_16 || a->esz == MO_32); 5743 if (fp_access_check(s)) { 5744 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 5745 } 5746 return true; 5747 } 5748 5749 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 5750 gen_helper_gvec_mul_idx_h, 5751 gen_helper_gvec_mul_idx_s, 5752 }; 5753 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 5754 5755 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 5756 { 5757 static gen_helper_gvec_4 * const fns[2][2] = { 5758 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 5759 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 5760 }; 5761 5762 assert(a->esz == MO_16 || a->esz == MO_32); 5763 if (fp_access_check(s)) { 5764 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 5765 a->idx, fns[a->esz - 1][sub]); 5766 } 5767 return true; 5768 } 5769 5770 TRANS(MLA_vi, do_mla_vector_idx, a, false) 5771 TRANS(MLS_vi, do_mla_vector_idx, a, true) 5772 5773 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 5774 gen_helper_gvec_4 * const fns[2]) 5775 { 5776 assert(a->esz == MO_16 || a->esz == MO_32); 5777 if (fp_access_check(s)) { 5778 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 5779 vec_full_reg_offset(s, a->rn), 5780 vec_full_reg_offset(s, a->rm), 5781 offsetof(CPUARMState, vfp.qc), 5782 a->q ? 16 : 8, vec_full_reg_size(s), 5783 a->idx, fns[a->esz - 1]); 5784 } 5785 return true; 5786 } 5787 5788 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 5789 gen_helper_neon_sqdmulh_idx_h, 5790 gen_helper_neon_sqdmulh_idx_s, 5791 }; 5792 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 5793 5794 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 5795 gen_helper_neon_sqrdmulh_idx_h, 5796 gen_helper_neon_sqrdmulh_idx_s, 5797 }; 5798 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 5799 5800 /* 5801 * Advanced SIMD scalar pairwise 5802 */ 5803 5804 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5805 { 5806 switch (a->esz) { 5807 case MO_64: 5808 if (fp_access_check(s)) { 5809 TCGv_i64 t0 = tcg_temp_new_i64(); 5810 TCGv_i64 t1 = tcg_temp_new_i64(); 5811 5812 read_vec_element(s, t0, a->rn, 0, MO_64); 5813 read_vec_element(s, t1, a->rn, 1, MO_64); 5814 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5815 write_fp_dreg(s, a->rd, t0); 5816 } 5817 break; 5818 case MO_32: 5819 if (fp_access_check(s)) { 5820 TCGv_i32 t0 = tcg_temp_new_i32(); 5821 TCGv_i32 t1 = tcg_temp_new_i32(); 5822 5823 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5824 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5825 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5826 write_fp_sreg(s, a->rd, t0); 5827 } 5828 break; 5829 case MO_16: 5830 if (!dc_isar_feature(aa64_fp16, s)) { 5831 return false; 5832 } 5833 if (fp_access_check(s)) { 5834 TCGv_i32 t0 = tcg_temp_new_i32(); 5835 TCGv_i32 t1 = tcg_temp_new_i32(); 5836 5837 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5838 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5839 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5840 write_fp_sreg(s, a->rd, t0); 5841 } 5842 break; 5843 default: 5844 g_assert_not_reached(); 5845 } 5846 return true; 5847 } 5848 5849 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5850 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5851 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5852 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5853 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5854 5855 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5856 { 5857 if (fp_access_check(s)) { 5858 TCGv_i64 t0 = tcg_temp_new_i64(); 5859 TCGv_i64 t1 = tcg_temp_new_i64(); 5860 5861 read_vec_element(s, t0, a->rn, 0, MO_64); 5862 read_vec_element(s, t1, a->rn, 1, MO_64); 5863 tcg_gen_add_i64(t0, t0, t1); 5864 write_fp_dreg(s, a->rd, t0); 5865 } 5866 return true; 5867 } 5868 5869 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5870 * Note that it is the caller's responsibility to ensure that the 5871 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5872 * mandated semantics for out of range shifts. 5873 */ 5874 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5875 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5876 { 5877 switch (shift_type) { 5878 case A64_SHIFT_TYPE_LSL: 5879 tcg_gen_shl_i64(dst, src, shift_amount); 5880 break; 5881 case A64_SHIFT_TYPE_LSR: 5882 tcg_gen_shr_i64(dst, src, shift_amount); 5883 break; 5884 case A64_SHIFT_TYPE_ASR: 5885 if (!sf) { 5886 tcg_gen_ext32s_i64(dst, src); 5887 } 5888 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5889 break; 5890 case A64_SHIFT_TYPE_ROR: 5891 if (sf) { 5892 tcg_gen_rotr_i64(dst, src, shift_amount); 5893 } else { 5894 TCGv_i32 t0, t1; 5895 t0 = tcg_temp_new_i32(); 5896 t1 = tcg_temp_new_i32(); 5897 tcg_gen_extrl_i64_i32(t0, src); 5898 tcg_gen_extrl_i64_i32(t1, shift_amount); 5899 tcg_gen_rotr_i32(t0, t0, t1); 5900 tcg_gen_extu_i32_i64(dst, t0); 5901 } 5902 break; 5903 default: 5904 assert(FALSE); /* all shift types should be handled */ 5905 break; 5906 } 5907 5908 if (!sf) { /* zero extend final result */ 5909 tcg_gen_ext32u_i64(dst, dst); 5910 } 5911 } 5912 5913 /* Shift a TCGv src by immediate, put result in dst. 5914 * The shift amount must be in range (this should always be true as the 5915 * relevant instructions will UNDEF on bad shift immediates). 5916 */ 5917 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5918 enum a64_shift_type shift_type, unsigned int shift_i) 5919 { 5920 assert(shift_i < (sf ? 64 : 32)); 5921 5922 if (shift_i == 0) { 5923 tcg_gen_mov_i64(dst, src); 5924 } else { 5925 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5926 } 5927 } 5928 5929 /* Logical (shifted register) 5930 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5931 * +----+-----+-----------+-------+---+------+--------+------+------+ 5932 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5933 * +----+-----+-----------+-------+---+------+--------+------+------+ 5934 */ 5935 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5936 { 5937 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5938 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5939 5940 sf = extract32(insn, 31, 1); 5941 opc = extract32(insn, 29, 2); 5942 shift_type = extract32(insn, 22, 2); 5943 invert = extract32(insn, 21, 1); 5944 rm = extract32(insn, 16, 5); 5945 shift_amount = extract32(insn, 10, 6); 5946 rn = extract32(insn, 5, 5); 5947 rd = extract32(insn, 0, 5); 5948 5949 if (!sf && (shift_amount & (1 << 5))) { 5950 unallocated_encoding(s); 5951 return; 5952 } 5953 5954 tcg_rd = cpu_reg(s, rd); 5955 5956 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5957 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5958 * register-register MOV and MVN, so it is worth special casing. 5959 */ 5960 tcg_rm = cpu_reg(s, rm); 5961 if (invert) { 5962 tcg_gen_not_i64(tcg_rd, tcg_rm); 5963 if (!sf) { 5964 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5965 } 5966 } else { 5967 if (sf) { 5968 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5969 } else { 5970 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5971 } 5972 } 5973 return; 5974 } 5975 5976 tcg_rm = read_cpu_reg(s, rm, sf); 5977 5978 if (shift_amount) { 5979 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5980 } 5981 5982 tcg_rn = cpu_reg(s, rn); 5983 5984 switch (opc | (invert << 2)) { 5985 case 0: /* AND */ 5986 case 3: /* ANDS */ 5987 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5988 break; 5989 case 1: /* ORR */ 5990 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5991 break; 5992 case 2: /* EOR */ 5993 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5994 break; 5995 case 4: /* BIC */ 5996 case 7: /* BICS */ 5997 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5998 break; 5999 case 5: /* ORN */ 6000 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 6001 break; 6002 case 6: /* EON */ 6003 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 6004 break; 6005 default: 6006 assert(FALSE); 6007 break; 6008 } 6009 6010 if (!sf) { 6011 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6012 } 6013 6014 if (opc == 3) { 6015 gen_logic_CC(sf, tcg_rd); 6016 } 6017 } 6018 6019 /* 6020 * Add/subtract (extended register) 6021 * 6022 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 6023 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6024 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 6025 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 6026 * 6027 * sf: 0 -> 32bit, 1 -> 64bit 6028 * op: 0 -> add , 1 -> sub 6029 * S: 1 -> set flags 6030 * opt: 00 6031 * option: extension type (see DecodeRegExtend) 6032 * imm3: optional shift to Rm 6033 * 6034 * Rd = Rn + LSL(extend(Rm), amount) 6035 */ 6036 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 6037 { 6038 int rd = extract32(insn, 0, 5); 6039 int rn = extract32(insn, 5, 5); 6040 int imm3 = extract32(insn, 10, 3); 6041 int option = extract32(insn, 13, 3); 6042 int rm = extract32(insn, 16, 5); 6043 int opt = extract32(insn, 22, 2); 6044 bool setflags = extract32(insn, 29, 1); 6045 bool sub_op = extract32(insn, 30, 1); 6046 bool sf = extract32(insn, 31, 1); 6047 6048 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 6049 TCGv_i64 tcg_rd; 6050 TCGv_i64 tcg_result; 6051 6052 if (imm3 > 4 || opt != 0) { 6053 unallocated_encoding(s); 6054 return; 6055 } 6056 6057 /* non-flag setting ops may use SP */ 6058 if (!setflags) { 6059 tcg_rd = cpu_reg_sp(s, rd); 6060 } else { 6061 tcg_rd = cpu_reg(s, rd); 6062 } 6063 tcg_rn = read_cpu_reg_sp(s, rn, sf); 6064 6065 tcg_rm = read_cpu_reg(s, rm, sf); 6066 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 6067 6068 tcg_result = tcg_temp_new_i64(); 6069 6070 if (!setflags) { 6071 if (sub_op) { 6072 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6073 } else { 6074 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6075 } 6076 } else { 6077 if (sub_op) { 6078 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6079 } else { 6080 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6081 } 6082 } 6083 6084 if (sf) { 6085 tcg_gen_mov_i64(tcg_rd, tcg_result); 6086 } else { 6087 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6088 } 6089 } 6090 6091 /* 6092 * Add/subtract (shifted register) 6093 * 6094 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 6095 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6096 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 6097 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 6098 * 6099 * sf: 0 -> 32bit, 1 -> 64bit 6100 * op: 0 -> add , 1 -> sub 6101 * S: 1 -> set flags 6102 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 6103 * imm6: Shift amount to apply to Rm before the add/sub 6104 */ 6105 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 6106 { 6107 int rd = extract32(insn, 0, 5); 6108 int rn = extract32(insn, 5, 5); 6109 int imm6 = extract32(insn, 10, 6); 6110 int rm = extract32(insn, 16, 5); 6111 int shift_type = extract32(insn, 22, 2); 6112 bool setflags = extract32(insn, 29, 1); 6113 bool sub_op = extract32(insn, 30, 1); 6114 bool sf = extract32(insn, 31, 1); 6115 6116 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6117 TCGv_i64 tcg_rn, tcg_rm; 6118 TCGv_i64 tcg_result; 6119 6120 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 6121 unallocated_encoding(s); 6122 return; 6123 } 6124 6125 tcg_rn = read_cpu_reg(s, rn, sf); 6126 tcg_rm = read_cpu_reg(s, rm, sf); 6127 6128 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 6129 6130 tcg_result = tcg_temp_new_i64(); 6131 6132 if (!setflags) { 6133 if (sub_op) { 6134 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 6135 } else { 6136 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 6137 } 6138 } else { 6139 if (sub_op) { 6140 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 6141 } else { 6142 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 6143 } 6144 } 6145 6146 if (sf) { 6147 tcg_gen_mov_i64(tcg_rd, tcg_result); 6148 } else { 6149 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 6150 } 6151 } 6152 6153 /* Data-processing (3 source) 6154 * 6155 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 6156 * +--+------+-----------+------+------+----+------+------+------+ 6157 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 6158 * +--+------+-----------+------+------+----+------+------+------+ 6159 */ 6160 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 6161 { 6162 int rd = extract32(insn, 0, 5); 6163 int rn = extract32(insn, 5, 5); 6164 int ra = extract32(insn, 10, 5); 6165 int rm = extract32(insn, 16, 5); 6166 int op_id = (extract32(insn, 29, 3) << 4) | 6167 (extract32(insn, 21, 3) << 1) | 6168 extract32(insn, 15, 1); 6169 bool sf = extract32(insn, 31, 1); 6170 bool is_sub = extract32(op_id, 0, 1); 6171 bool is_high = extract32(op_id, 2, 1); 6172 bool is_signed = false; 6173 TCGv_i64 tcg_op1; 6174 TCGv_i64 tcg_op2; 6175 TCGv_i64 tcg_tmp; 6176 6177 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 6178 switch (op_id) { 6179 case 0x42: /* SMADDL */ 6180 case 0x43: /* SMSUBL */ 6181 case 0x44: /* SMULH */ 6182 is_signed = true; 6183 break; 6184 case 0x0: /* MADD (32bit) */ 6185 case 0x1: /* MSUB (32bit) */ 6186 case 0x40: /* MADD (64bit) */ 6187 case 0x41: /* MSUB (64bit) */ 6188 case 0x4a: /* UMADDL */ 6189 case 0x4b: /* UMSUBL */ 6190 case 0x4c: /* UMULH */ 6191 break; 6192 default: 6193 unallocated_encoding(s); 6194 return; 6195 } 6196 6197 if (is_high) { 6198 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 6199 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6200 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6201 TCGv_i64 tcg_rm = cpu_reg(s, rm); 6202 6203 if (is_signed) { 6204 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6205 } else { 6206 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 6207 } 6208 return; 6209 } 6210 6211 tcg_op1 = tcg_temp_new_i64(); 6212 tcg_op2 = tcg_temp_new_i64(); 6213 tcg_tmp = tcg_temp_new_i64(); 6214 6215 if (op_id < 0x42) { 6216 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 6217 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 6218 } else { 6219 if (is_signed) { 6220 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 6221 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 6222 } else { 6223 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 6224 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 6225 } 6226 } 6227 6228 if (ra == 31 && !is_sub) { 6229 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 6230 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 6231 } else { 6232 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 6233 if (is_sub) { 6234 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6235 } else { 6236 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 6237 } 6238 } 6239 6240 if (!sf) { 6241 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 6242 } 6243 } 6244 6245 /* Add/subtract (with carry) 6246 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 6247 * +--+--+--+------------------------+------+-------------+------+-----+ 6248 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 6249 * +--+--+--+------------------------+------+-------------+------+-----+ 6250 */ 6251 6252 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 6253 { 6254 unsigned int sf, op, setflags, rm, rn, rd; 6255 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 6256 6257 sf = extract32(insn, 31, 1); 6258 op = extract32(insn, 30, 1); 6259 setflags = extract32(insn, 29, 1); 6260 rm = extract32(insn, 16, 5); 6261 rn = extract32(insn, 5, 5); 6262 rd = extract32(insn, 0, 5); 6263 6264 tcg_rd = cpu_reg(s, rd); 6265 tcg_rn = cpu_reg(s, rn); 6266 6267 if (op) { 6268 tcg_y = tcg_temp_new_i64(); 6269 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 6270 } else { 6271 tcg_y = cpu_reg(s, rm); 6272 } 6273 6274 if (setflags) { 6275 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 6276 } else { 6277 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 6278 } 6279 } 6280 6281 /* 6282 * Rotate right into flags 6283 * 31 30 29 21 15 10 5 4 0 6284 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6285 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 6286 * +--+--+--+-----------------+--------+-----------+------+--+------+ 6287 */ 6288 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 6289 { 6290 int mask = extract32(insn, 0, 4); 6291 int o2 = extract32(insn, 4, 1); 6292 int rn = extract32(insn, 5, 5); 6293 int imm6 = extract32(insn, 15, 6); 6294 int sf_op_s = extract32(insn, 29, 3); 6295 TCGv_i64 tcg_rn; 6296 TCGv_i32 nzcv; 6297 6298 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 6299 unallocated_encoding(s); 6300 return; 6301 } 6302 6303 tcg_rn = read_cpu_reg(s, rn, 1); 6304 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 6305 6306 nzcv = tcg_temp_new_i32(); 6307 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 6308 6309 if (mask & 8) { /* N */ 6310 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 6311 } 6312 if (mask & 4) { /* Z */ 6313 tcg_gen_not_i32(cpu_ZF, nzcv); 6314 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 6315 } 6316 if (mask & 2) { /* C */ 6317 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 6318 } 6319 if (mask & 1) { /* V */ 6320 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 6321 } 6322 } 6323 6324 /* 6325 * Evaluate into flags 6326 * 31 30 29 21 15 14 10 5 4 0 6327 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6328 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 6329 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6330 */ 6331 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 6332 { 6333 int o3_mask = extract32(insn, 0, 5); 6334 int rn = extract32(insn, 5, 5); 6335 int o2 = extract32(insn, 15, 6); 6336 int sz = extract32(insn, 14, 1); 6337 int sf_op_s = extract32(insn, 29, 3); 6338 TCGv_i32 tmp; 6339 int shift; 6340 6341 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 6342 !dc_isar_feature(aa64_condm_4, s)) { 6343 unallocated_encoding(s); 6344 return; 6345 } 6346 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 6347 6348 tmp = tcg_temp_new_i32(); 6349 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6350 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6351 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6352 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6353 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6354 } 6355 6356 /* Conditional compare (immediate / register) 6357 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6358 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6359 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6360 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6361 * [1] y [0] [0] 6362 */ 6363 static void disas_cc(DisasContext *s, uint32_t insn) 6364 { 6365 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6366 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6367 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6368 DisasCompare c; 6369 6370 if (!extract32(insn, 29, 1)) { 6371 unallocated_encoding(s); 6372 return; 6373 } 6374 if (insn & (1 << 10 | 1 << 4)) { 6375 unallocated_encoding(s); 6376 return; 6377 } 6378 sf = extract32(insn, 31, 1); 6379 op = extract32(insn, 30, 1); 6380 is_imm = extract32(insn, 11, 1); 6381 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6382 cond = extract32(insn, 12, 4); 6383 rn = extract32(insn, 5, 5); 6384 nzcv = extract32(insn, 0, 4); 6385 6386 /* Set T0 = !COND. */ 6387 tcg_t0 = tcg_temp_new_i32(); 6388 arm_test_cc(&c, cond); 6389 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6390 6391 /* Load the arguments for the new comparison. */ 6392 if (is_imm) { 6393 tcg_y = tcg_temp_new_i64(); 6394 tcg_gen_movi_i64(tcg_y, y); 6395 } else { 6396 tcg_y = cpu_reg(s, y); 6397 } 6398 tcg_rn = cpu_reg(s, rn); 6399 6400 /* Set the flags for the new comparison. */ 6401 tcg_tmp = tcg_temp_new_i64(); 6402 if (op) { 6403 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6404 } else { 6405 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6406 } 6407 6408 /* If COND was false, force the flags to #nzcv. Compute two masks 6409 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6410 * For tcg hosts that support ANDC, we can make do with just T1. 6411 * In either case, allow the tcg optimizer to delete any unused mask. 6412 */ 6413 tcg_t1 = tcg_temp_new_i32(); 6414 tcg_t2 = tcg_temp_new_i32(); 6415 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6416 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6417 6418 if (nzcv & 8) { /* N */ 6419 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6420 } else { 6421 if (TCG_TARGET_HAS_andc_i32) { 6422 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6423 } else { 6424 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6425 } 6426 } 6427 if (nzcv & 4) { /* Z */ 6428 if (TCG_TARGET_HAS_andc_i32) { 6429 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6430 } else { 6431 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6432 } 6433 } else { 6434 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6435 } 6436 if (nzcv & 2) { /* C */ 6437 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6438 } else { 6439 if (TCG_TARGET_HAS_andc_i32) { 6440 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6441 } else { 6442 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6443 } 6444 } 6445 if (nzcv & 1) { /* V */ 6446 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6447 } else { 6448 if (TCG_TARGET_HAS_andc_i32) { 6449 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6450 } else { 6451 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6452 } 6453 } 6454 } 6455 6456 /* Conditional select 6457 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6458 * +----+----+---+-----------------+------+------+-----+------+------+ 6459 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6460 * +----+----+---+-----------------+------+------+-----+------+------+ 6461 */ 6462 static void disas_cond_select(DisasContext *s, uint32_t insn) 6463 { 6464 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6465 TCGv_i64 tcg_rd, zero; 6466 DisasCompare64 c; 6467 6468 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6469 /* S == 1 or op2<1> == 1 */ 6470 unallocated_encoding(s); 6471 return; 6472 } 6473 sf = extract32(insn, 31, 1); 6474 else_inv = extract32(insn, 30, 1); 6475 rm = extract32(insn, 16, 5); 6476 cond = extract32(insn, 12, 4); 6477 else_inc = extract32(insn, 10, 1); 6478 rn = extract32(insn, 5, 5); 6479 rd = extract32(insn, 0, 5); 6480 6481 tcg_rd = cpu_reg(s, rd); 6482 6483 a64_test_cc(&c, cond); 6484 zero = tcg_constant_i64(0); 6485 6486 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6487 /* CSET & CSETM. */ 6488 if (else_inv) { 6489 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6490 tcg_rd, c.value, zero); 6491 } else { 6492 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6493 tcg_rd, c.value, zero); 6494 } 6495 } else { 6496 TCGv_i64 t_true = cpu_reg(s, rn); 6497 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6498 if (else_inv && else_inc) { 6499 tcg_gen_neg_i64(t_false, t_false); 6500 } else if (else_inv) { 6501 tcg_gen_not_i64(t_false, t_false); 6502 } else if (else_inc) { 6503 tcg_gen_addi_i64(t_false, t_false, 1); 6504 } 6505 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6506 } 6507 6508 if (!sf) { 6509 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6510 } 6511 } 6512 6513 static void handle_clz(DisasContext *s, unsigned int sf, 6514 unsigned int rn, unsigned int rd) 6515 { 6516 TCGv_i64 tcg_rd, tcg_rn; 6517 tcg_rd = cpu_reg(s, rd); 6518 tcg_rn = cpu_reg(s, rn); 6519 6520 if (sf) { 6521 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6522 } else { 6523 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6524 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6525 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6526 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6527 } 6528 } 6529 6530 static void handle_cls(DisasContext *s, unsigned int sf, 6531 unsigned int rn, unsigned int rd) 6532 { 6533 TCGv_i64 tcg_rd, tcg_rn; 6534 tcg_rd = cpu_reg(s, rd); 6535 tcg_rn = cpu_reg(s, rn); 6536 6537 if (sf) { 6538 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6539 } else { 6540 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6541 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6542 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6543 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6544 } 6545 } 6546 6547 static void handle_rbit(DisasContext *s, unsigned int sf, 6548 unsigned int rn, unsigned int rd) 6549 { 6550 TCGv_i64 tcg_rd, tcg_rn; 6551 tcg_rd = cpu_reg(s, rd); 6552 tcg_rn = cpu_reg(s, rn); 6553 6554 if (sf) { 6555 gen_helper_rbit64(tcg_rd, tcg_rn); 6556 } else { 6557 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6558 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6559 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6560 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6561 } 6562 } 6563 6564 /* REV with sf==1, opcode==3 ("REV64") */ 6565 static void handle_rev64(DisasContext *s, unsigned int sf, 6566 unsigned int rn, unsigned int rd) 6567 { 6568 if (!sf) { 6569 unallocated_encoding(s); 6570 return; 6571 } 6572 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6573 } 6574 6575 /* REV with sf==0, opcode==2 6576 * REV32 (sf==1, opcode==2) 6577 */ 6578 static void handle_rev32(DisasContext *s, unsigned int sf, 6579 unsigned int rn, unsigned int rd) 6580 { 6581 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6582 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6583 6584 if (sf) { 6585 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6586 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6587 } else { 6588 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6589 } 6590 } 6591 6592 /* REV16 (opcode==1) */ 6593 static void handle_rev16(DisasContext *s, unsigned int sf, 6594 unsigned int rn, unsigned int rd) 6595 { 6596 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6597 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6598 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6599 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6600 6601 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6602 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6603 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6604 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6605 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6606 } 6607 6608 /* Data-processing (1 source) 6609 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6610 * +----+---+---+-----------------+---------+--------+------+------+ 6611 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6612 * +----+---+---+-----------------+---------+--------+------+------+ 6613 */ 6614 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6615 { 6616 unsigned int sf, opcode, opcode2, rn, rd; 6617 TCGv_i64 tcg_rd; 6618 6619 if (extract32(insn, 29, 1)) { 6620 unallocated_encoding(s); 6621 return; 6622 } 6623 6624 sf = extract32(insn, 31, 1); 6625 opcode = extract32(insn, 10, 6); 6626 opcode2 = extract32(insn, 16, 5); 6627 rn = extract32(insn, 5, 5); 6628 rd = extract32(insn, 0, 5); 6629 6630 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6631 6632 switch (MAP(sf, opcode2, opcode)) { 6633 case MAP(0, 0x00, 0x00): /* RBIT */ 6634 case MAP(1, 0x00, 0x00): 6635 handle_rbit(s, sf, rn, rd); 6636 break; 6637 case MAP(0, 0x00, 0x01): /* REV16 */ 6638 case MAP(1, 0x00, 0x01): 6639 handle_rev16(s, sf, rn, rd); 6640 break; 6641 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6642 case MAP(1, 0x00, 0x02): 6643 handle_rev32(s, sf, rn, rd); 6644 break; 6645 case MAP(1, 0x00, 0x03): /* REV64 */ 6646 handle_rev64(s, sf, rn, rd); 6647 break; 6648 case MAP(0, 0x00, 0x04): /* CLZ */ 6649 case MAP(1, 0x00, 0x04): 6650 handle_clz(s, sf, rn, rd); 6651 break; 6652 case MAP(0, 0x00, 0x05): /* CLS */ 6653 case MAP(1, 0x00, 0x05): 6654 handle_cls(s, sf, rn, rd); 6655 break; 6656 case MAP(1, 0x01, 0x00): /* PACIA */ 6657 if (s->pauth_active) { 6658 tcg_rd = cpu_reg(s, rd); 6659 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6660 } else if (!dc_isar_feature(aa64_pauth, s)) { 6661 goto do_unallocated; 6662 } 6663 break; 6664 case MAP(1, 0x01, 0x01): /* PACIB */ 6665 if (s->pauth_active) { 6666 tcg_rd = cpu_reg(s, rd); 6667 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6668 } else if (!dc_isar_feature(aa64_pauth, s)) { 6669 goto do_unallocated; 6670 } 6671 break; 6672 case MAP(1, 0x01, 0x02): /* PACDA */ 6673 if (s->pauth_active) { 6674 tcg_rd = cpu_reg(s, rd); 6675 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6676 } else if (!dc_isar_feature(aa64_pauth, s)) { 6677 goto do_unallocated; 6678 } 6679 break; 6680 case MAP(1, 0x01, 0x03): /* PACDB */ 6681 if (s->pauth_active) { 6682 tcg_rd = cpu_reg(s, rd); 6683 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6684 } else if (!dc_isar_feature(aa64_pauth, s)) { 6685 goto do_unallocated; 6686 } 6687 break; 6688 case MAP(1, 0x01, 0x04): /* AUTIA */ 6689 if (s->pauth_active) { 6690 tcg_rd = cpu_reg(s, rd); 6691 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6692 } else if (!dc_isar_feature(aa64_pauth, s)) { 6693 goto do_unallocated; 6694 } 6695 break; 6696 case MAP(1, 0x01, 0x05): /* AUTIB */ 6697 if (s->pauth_active) { 6698 tcg_rd = cpu_reg(s, rd); 6699 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6700 } else if (!dc_isar_feature(aa64_pauth, s)) { 6701 goto do_unallocated; 6702 } 6703 break; 6704 case MAP(1, 0x01, 0x06): /* AUTDA */ 6705 if (s->pauth_active) { 6706 tcg_rd = cpu_reg(s, rd); 6707 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6708 } else if (!dc_isar_feature(aa64_pauth, s)) { 6709 goto do_unallocated; 6710 } 6711 break; 6712 case MAP(1, 0x01, 0x07): /* AUTDB */ 6713 if (s->pauth_active) { 6714 tcg_rd = cpu_reg(s, rd); 6715 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6716 } else if (!dc_isar_feature(aa64_pauth, s)) { 6717 goto do_unallocated; 6718 } 6719 break; 6720 case MAP(1, 0x01, 0x08): /* PACIZA */ 6721 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6722 goto do_unallocated; 6723 } else if (s->pauth_active) { 6724 tcg_rd = cpu_reg(s, rd); 6725 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6726 } 6727 break; 6728 case MAP(1, 0x01, 0x09): /* PACIZB */ 6729 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6730 goto do_unallocated; 6731 } else if (s->pauth_active) { 6732 tcg_rd = cpu_reg(s, rd); 6733 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6734 } 6735 break; 6736 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6737 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6738 goto do_unallocated; 6739 } else if (s->pauth_active) { 6740 tcg_rd = cpu_reg(s, rd); 6741 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6742 } 6743 break; 6744 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6745 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6746 goto do_unallocated; 6747 } else if (s->pauth_active) { 6748 tcg_rd = cpu_reg(s, rd); 6749 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6750 } 6751 break; 6752 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6753 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6754 goto do_unallocated; 6755 } else if (s->pauth_active) { 6756 tcg_rd = cpu_reg(s, rd); 6757 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6758 } 6759 break; 6760 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6761 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6762 goto do_unallocated; 6763 } else if (s->pauth_active) { 6764 tcg_rd = cpu_reg(s, rd); 6765 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6766 } 6767 break; 6768 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6769 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6770 goto do_unallocated; 6771 } else if (s->pauth_active) { 6772 tcg_rd = cpu_reg(s, rd); 6773 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6774 } 6775 break; 6776 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6777 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6778 goto do_unallocated; 6779 } else if (s->pauth_active) { 6780 tcg_rd = cpu_reg(s, rd); 6781 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6782 } 6783 break; 6784 case MAP(1, 0x01, 0x10): /* XPACI */ 6785 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6786 goto do_unallocated; 6787 } else if (s->pauth_active) { 6788 tcg_rd = cpu_reg(s, rd); 6789 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6790 } 6791 break; 6792 case MAP(1, 0x01, 0x11): /* XPACD */ 6793 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6794 goto do_unallocated; 6795 } else if (s->pauth_active) { 6796 tcg_rd = cpu_reg(s, rd); 6797 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6798 } 6799 break; 6800 default: 6801 do_unallocated: 6802 unallocated_encoding(s); 6803 break; 6804 } 6805 6806 #undef MAP 6807 } 6808 6809 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6810 unsigned int rm, unsigned int rn, unsigned int rd) 6811 { 6812 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6813 tcg_rd = cpu_reg(s, rd); 6814 6815 if (!sf && is_signed) { 6816 tcg_n = tcg_temp_new_i64(); 6817 tcg_m = tcg_temp_new_i64(); 6818 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6819 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6820 } else { 6821 tcg_n = read_cpu_reg(s, rn, sf); 6822 tcg_m = read_cpu_reg(s, rm, sf); 6823 } 6824 6825 if (is_signed) { 6826 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6827 } else { 6828 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6829 } 6830 6831 if (!sf) { /* zero extend final result */ 6832 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6833 } 6834 } 6835 6836 /* LSLV, LSRV, ASRV, RORV */ 6837 static void handle_shift_reg(DisasContext *s, 6838 enum a64_shift_type shift_type, unsigned int sf, 6839 unsigned int rm, unsigned int rn, unsigned int rd) 6840 { 6841 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6842 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6843 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6844 6845 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6846 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6847 } 6848 6849 /* CRC32[BHWX], CRC32C[BHWX] */ 6850 static void handle_crc32(DisasContext *s, 6851 unsigned int sf, unsigned int sz, bool crc32c, 6852 unsigned int rm, unsigned int rn, unsigned int rd) 6853 { 6854 TCGv_i64 tcg_acc, tcg_val; 6855 TCGv_i32 tcg_bytes; 6856 6857 if (!dc_isar_feature(aa64_crc32, s) 6858 || (sf == 1 && sz != 3) 6859 || (sf == 0 && sz == 3)) { 6860 unallocated_encoding(s); 6861 return; 6862 } 6863 6864 if (sz == 3) { 6865 tcg_val = cpu_reg(s, rm); 6866 } else { 6867 uint64_t mask; 6868 switch (sz) { 6869 case 0: 6870 mask = 0xFF; 6871 break; 6872 case 1: 6873 mask = 0xFFFF; 6874 break; 6875 case 2: 6876 mask = 0xFFFFFFFF; 6877 break; 6878 default: 6879 g_assert_not_reached(); 6880 } 6881 tcg_val = tcg_temp_new_i64(); 6882 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6883 } 6884 6885 tcg_acc = cpu_reg(s, rn); 6886 tcg_bytes = tcg_constant_i32(1 << sz); 6887 6888 if (crc32c) { 6889 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6890 } else { 6891 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6892 } 6893 } 6894 6895 /* Data-processing (2 source) 6896 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6897 * +----+---+---+-----------------+------+--------+------+------+ 6898 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6899 * +----+---+---+-----------------+------+--------+------+------+ 6900 */ 6901 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6902 { 6903 unsigned int sf, rm, opcode, rn, rd, setflag; 6904 sf = extract32(insn, 31, 1); 6905 setflag = extract32(insn, 29, 1); 6906 rm = extract32(insn, 16, 5); 6907 opcode = extract32(insn, 10, 6); 6908 rn = extract32(insn, 5, 5); 6909 rd = extract32(insn, 0, 5); 6910 6911 if (setflag && opcode != 0) { 6912 unallocated_encoding(s); 6913 return; 6914 } 6915 6916 switch (opcode) { 6917 case 0: /* SUBP(S) */ 6918 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6919 goto do_unallocated; 6920 } else { 6921 TCGv_i64 tcg_n, tcg_m, tcg_d; 6922 6923 tcg_n = read_cpu_reg_sp(s, rn, true); 6924 tcg_m = read_cpu_reg_sp(s, rm, true); 6925 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6926 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6927 tcg_d = cpu_reg(s, rd); 6928 6929 if (setflag) { 6930 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6931 } else { 6932 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6933 } 6934 } 6935 break; 6936 case 2: /* UDIV */ 6937 handle_div(s, false, sf, rm, rn, rd); 6938 break; 6939 case 3: /* SDIV */ 6940 handle_div(s, true, sf, rm, rn, rd); 6941 break; 6942 case 4: /* IRG */ 6943 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6944 goto do_unallocated; 6945 } 6946 if (s->ata[0]) { 6947 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6948 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6949 } else { 6950 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6951 cpu_reg_sp(s, rn)); 6952 } 6953 break; 6954 case 5: /* GMI */ 6955 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6956 goto do_unallocated; 6957 } else { 6958 TCGv_i64 t = tcg_temp_new_i64(); 6959 6960 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6961 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6962 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6963 } 6964 break; 6965 case 8: /* LSLV */ 6966 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6967 break; 6968 case 9: /* LSRV */ 6969 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6970 break; 6971 case 10: /* ASRV */ 6972 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6973 break; 6974 case 11: /* RORV */ 6975 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6976 break; 6977 case 12: /* PACGA */ 6978 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6979 goto do_unallocated; 6980 } 6981 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6982 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6983 break; 6984 case 16: 6985 case 17: 6986 case 18: 6987 case 19: 6988 case 20: 6989 case 21: 6990 case 22: 6991 case 23: /* CRC32 */ 6992 { 6993 int sz = extract32(opcode, 0, 2); 6994 bool crc32c = extract32(opcode, 2, 1); 6995 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6996 break; 6997 } 6998 default: 6999 do_unallocated: 7000 unallocated_encoding(s); 7001 break; 7002 } 7003 } 7004 7005 /* 7006 * Data processing - register 7007 * 31 30 29 28 25 21 20 16 10 0 7008 * +--+---+--+---+-------+-----+-------+-------+---------+ 7009 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 7010 * +--+---+--+---+-------+-----+-------+-------+---------+ 7011 */ 7012 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 7013 { 7014 int op0 = extract32(insn, 30, 1); 7015 int op1 = extract32(insn, 28, 1); 7016 int op2 = extract32(insn, 21, 4); 7017 int op3 = extract32(insn, 10, 6); 7018 7019 if (!op1) { 7020 if (op2 & 8) { 7021 if (op2 & 1) { 7022 /* Add/sub (extended register) */ 7023 disas_add_sub_ext_reg(s, insn); 7024 } else { 7025 /* Add/sub (shifted register) */ 7026 disas_add_sub_reg(s, insn); 7027 } 7028 } else { 7029 /* Logical (shifted register) */ 7030 disas_logic_reg(s, insn); 7031 } 7032 return; 7033 } 7034 7035 switch (op2) { 7036 case 0x0: 7037 switch (op3) { 7038 case 0x00: /* Add/subtract (with carry) */ 7039 disas_adc_sbc(s, insn); 7040 break; 7041 7042 case 0x01: /* Rotate right into flags */ 7043 case 0x21: 7044 disas_rotate_right_into_flags(s, insn); 7045 break; 7046 7047 case 0x02: /* Evaluate into flags */ 7048 case 0x12: 7049 case 0x22: 7050 case 0x32: 7051 disas_evaluate_into_flags(s, insn); 7052 break; 7053 7054 default: 7055 goto do_unallocated; 7056 } 7057 break; 7058 7059 case 0x2: /* Conditional compare */ 7060 disas_cc(s, insn); /* both imm and reg forms */ 7061 break; 7062 7063 case 0x4: /* Conditional select */ 7064 disas_cond_select(s, insn); 7065 break; 7066 7067 case 0x6: /* Data-processing */ 7068 if (op0) { /* (1 source) */ 7069 disas_data_proc_1src(s, insn); 7070 } else { /* (2 source) */ 7071 disas_data_proc_2src(s, insn); 7072 } 7073 break; 7074 case 0x8 ... 0xf: /* (3 source) */ 7075 disas_data_proc_3src(s, insn); 7076 break; 7077 7078 default: 7079 do_unallocated: 7080 unallocated_encoding(s); 7081 break; 7082 } 7083 } 7084 7085 static void handle_fp_compare(DisasContext *s, int size, 7086 unsigned int rn, unsigned int rm, 7087 bool cmp_with_zero, bool signal_all_nans) 7088 { 7089 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7090 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7091 7092 if (size == MO_64) { 7093 TCGv_i64 tcg_vn, tcg_vm; 7094 7095 tcg_vn = read_fp_dreg(s, rn); 7096 if (cmp_with_zero) { 7097 tcg_vm = tcg_constant_i64(0); 7098 } else { 7099 tcg_vm = read_fp_dreg(s, rm); 7100 } 7101 if (signal_all_nans) { 7102 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7103 } else { 7104 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7105 } 7106 } else { 7107 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7108 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7109 7110 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7111 if (cmp_with_zero) { 7112 tcg_gen_movi_i32(tcg_vm, 0); 7113 } else { 7114 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7115 } 7116 7117 switch (size) { 7118 case MO_32: 7119 if (signal_all_nans) { 7120 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7121 } else { 7122 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7123 } 7124 break; 7125 case MO_16: 7126 if (signal_all_nans) { 7127 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7128 } else { 7129 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7130 } 7131 break; 7132 default: 7133 g_assert_not_reached(); 7134 } 7135 } 7136 7137 gen_set_nzcv(tcg_flags); 7138 } 7139 7140 /* Floating point compare 7141 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 7142 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7143 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 7144 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 7145 */ 7146 static void disas_fp_compare(DisasContext *s, uint32_t insn) 7147 { 7148 unsigned int mos, type, rm, op, rn, opc, op2r; 7149 int size; 7150 7151 mos = extract32(insn, 29, 3); 7152 type = extract32(insn, 22, 2); 7153 rm = extract32(insn, 16, 5); 7154 op = extract32(insn, 14, 2); 7155 rn = extract32(insn, 5, 5); 7156 opc = extract32(insn, 3, 2); 7157 op2r = extract32(insn, 0, 3); 7158 7159 if (mos || op || op2r) { 7160 unallocated_encoding(s); 7161 return; 7162 } 7163 7164 switch (type) { 7165 case 0: 7166 size = MO_32; 7167 break; 7168 case 1: 7169 size = MO_64; 7170 break; 7171 case 3: 7172 size = MO_16; 7173 if (dc_isar_feature(aa64_fp16, s)) { 7174 break; 7175 } 7176 /* fallthru */ 7177 default: 7178 unallocated_encoding(s); 7179 return; 7180 } 7181 7182 if (!fp_access_check(s)) { 7183 return; 7184 } 7185 7186 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 7187 } 7188 7189 /* Floating point conditional compare 7190 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 7191 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7192 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 7193 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 7194 */ 7195 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 7196 { 7197 unsigned int mos, type, rm, cond, rn, op, nzcv; 7198 TCGLabel *label_continue = NULL; 7199 int size; 7200 7201 mos = extract32(insn, 29, 3); 7202 type = extract32(insn, 22, 2); 7203 rm = extract32(insn, 16, 5); 7204 cond = extract32(insn, 12, 4); 7205 rn = extract32(insn, 5, 5); 7206 op = extract32(insn, 4, 1); 7207 nzcv = extract32(insn, 0, 4); 7208 7209 if (mos) { 7210 unallocated_encoding(s); 7211 return; 7212 } 7213 7214 switch (type) { 7215 case 0: 7216 size = MO_32; 7217 break; 7218 case 1: 7219 size = MO_64; 7220 break; 7221 case 3: 7222 size = MO_16; 7223 if (dc_isar_feature(aa64_fp16, s)) { 7224 break; 7225 } 7226 /* fallthru */ 7227 default: 7228 unallocated_encoding(s); 7229 return; 7230 } 7231 7232 if (!fp_access_check(s)) { 7233 return; 7234 } 7235 7236 if (cond < 0x0e) { /* not always */ 7237 TCGLabel *label_match = gen_new_label(); 7238 label_continue = gen_new_label(); 7239 arm_gen_test_cc(cond, label_match); 7240 /* nomatch: */ 7241 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 7242 tcg_gen_br(label_continue); 7243 gen_set_label(label_match); 7244 } 7245 7246 handle_fp_compare(s, size, rn, rm, false, op); 7247 7248 if (cond < 0x0e) { 7249 gen_set_label(label_continue); 7250 } 7251 } 7252 7253 /* Floating point conditional select 7254 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 7255 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 7256 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 7257 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 7258 */ 7259 static void disas_fp_csel(DisasContext *s, uint32_t insn) 7260 { 7261 unsigned int mos, type, rm, cond, rn, rd; 7262 TCGv_i64 t_true, t_false; 7263 DisasCompare64 c; 7264 MemOp sz; 7265 7266 mos = extract32(insn, 29, 3); 7267 type = extract32(insn, 22, 2); 7268 rm = extract32(insn, 16, 5); 7269 cond = extract32(insn, 12, 4); 7270 rn = extract32(insn, 5, 5); 7271 rd = extract32(insn, 0, 5); 7272 7273 if (mos) { 7274 unallocated_encoding(s); 7275 return; 7276 } 7277 7278 switch (type) { 7279 case 0: 7280 sz = MO_32; 7281 break; 7282 case 1: 7283 sz = MO_64; 7284 break; 7285 case 3: 7286 sz = MO_16; 7287 if (dc_isar_feature(aa64_fp16, s)) { 7288 break; 7289 } 7290 /* fallthru */ 7291 default: 7292 unallocated_encoding(s); 7293 return; 7294 } 7295 7296 if (!fp_access_check(s)) { 7297 return; 7298 } 7299 7300 /* Zero extend sreg & hreg inputs to 64 bits now. */ 7301 t_true = tcg_temp_new_i64(); 7302 t_false = tcg_temp_new_i64(); 7303 read_vec_element(s, t_true, rn, 0, sz); 7304 read_vec_element(s, t_false, rm, 0, sz); 7305 7306 a64_test_cc(&c, cond); 7307 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 7308 t_true, t_false); 7309 7310 /* Note that sregs & hregs write back zeros to the high bits, 7311 and we've already done the zero-extension. */ 7312 write_fp_dreg(s, rd, t_true); 7313 } 7314 7315 /* Floating-point data-processing (1 source) - half precision */ 7316 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 7317 { 7318 TCGv_ptr fpst = NULL; 7319 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 7320 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7321 7322 switch (opcode) { 7323 case 0x0: /* FMOV */ 7324 tcg_gen_mov_i32(tcg_res, tcg_op); 7325 break; 7326 case 0x1: /* FABS */ 7327 gen_vfp_absh(tcg_res, tcg_op); 7328 break; 7329 case 0x2: /* FNEG */ 7330 gen_vfp_negh(tcg_res, tcg_op); 7331 break; 7332 case 0x3: /* FSQRT */ 7333 fpst = fpstatus_ptr(FPST_FPCR_F16); 7334 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 7335 break; 7336 case 0x8: /* FRINTN */ 7337 case 0x9: /* FRINTP */ 7338 case 0xa: /* FRINTM */ 7339 case 0xb: /* FRINTZ */ 7340 case 0xc: /* FRINTA */ 7341 { 7342 TCGv_i32 tcg_rmode; 7343 7344 fpst = fpstatus_ptr(FPST_FPCR_F16); 7345 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 7346 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7347 gen_restore_rmode(tcg_rmode, fpst); 7348 break; 7349 } 7350 case 0xe: /* FRINTX */ 7351 fpst = fpstatus_ptr(FPST_FPCR_F16); 7352 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7353 break; 7354 case 0xf: /* FRINTI */ 7355 fpst = fpstatus_ptr(FPST_FPCR_F16); 7356 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7357 break; 7358 default: 7359 g_assert_not_reached(); 7360 } 7361 7362 write_fp_sreg(s, rd, tcg_res); 7363 } 7364 7365 /* Floating-point data-processing (1 source) - single precision */ 7366 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7367 { 7368 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7369 TCGv_i32 tcg_op, tcg_res; 7370 TCGv_ptr fpst; 7371 int rmode = -1; 7372 7373 tcg_op = read_fp_sreg(s, rn); 7374 tcg_res = tcg_temp_new_i32(); 7375 7376 switch (opcode) { 7377 case 0x0: /* FMOV */ 7378 tcg_gen_mov_i32(tcg_res, tcg_op); 7379 goto done; 7380 case 0x1: /* FABS */ 7381 gen_vfp_abss(tcg_res, tcg_op); 7382 goto done; 7383 case 0x2: /* FNEG */ 7384 gen_vfp_negs(tcg_res, tcg_op); 7385 goto done; 7386 case 0x3: /* FSQRT */ 7387 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7388 goto done; 7389 case 0x6: /* BFCVT */ 7390 gen_fpst = gen_helper_bfcvt; 7391 break; 7392 case 0x8: /* FRINTN */ 7393 case 0x9: /* FRINTP */ 7394 case 0xa: /* FRINTM */ 7395 case 0xb: /* FRINTZ */ 7396 case 0xc: /* FRINTA */ 7397 rmode = opcode & 7; 7398 gen_fpst = gen_helper_rints; 7399 break; 7400 case 0xe: /* FRINTX */ 7401 gen_fpst = gen_helper_rints_exact; 7402 break; 7403 case 0xf: /* FRINTI */ 7404 gen_fpst = gen_helper_rints; 7405 break; 7406 case 0x10: /* FRINT32Z */ 7407 rmode = FPROUNDING_ZERO; 7408 gen_fpst = gen_helper_frint32_s; 7409 break; 7410 case 0x11: /* FRINT32X */ 7411 gen_fpst = gen_helper_frint32_s; 7412 break; 7413 case 0x12: /* FRINT64Z */ 7414 rmode = FPROUNDING_ZERO; 7415 gen_fpst = gen_helper_frint64_s; 7416 break; 7417 case 0x13: /* FRINT64X */ 7418 gen_fpst = gen_helper_frint64_s; 7419 break; 7420 default: 7421 g_assert_not_reached(); 7422 } 7423 7424 fpst = fpstatus_ptr(FPST_FPCR); 7425 if (rmode >= 0) { 7426 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7427 gen_fpst(tcg_res, tcg_op, fpst); 7428 gen_restore_rmode(tcg_rmode, fpst); 7429 } else { 7430 gen_fpst(tcg_res, tcg_op, fpst); 7431 } 7432 7433 done: 7434 write_fp_sreg(s, rd, tcg_res); 7435 } 7436 7437 /* Floating-point data-processing (1 source) - double precision */ 7438 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7439 { 7440 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7441 TCGv_i64 tcg_op, tcg_res; 7442 TCGv_ptr fpst; 7443 int rmode = -1; 7444 7445 switch (opcode) { 7446 case 0x0: /* FMOV */ 7447 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7448 return; 7449 } 7450 7451 tcg_op = read_fp_dreg(s, rn); 7452 tcg_res = tcg_temp_new_i64(); 7453 7454 switch (opcode) { 7455 case 0x1: /* FABS */ 7456 gen_vfp_absd(tcg_res, tcg_op); 7457 goto done; 7458 case 0x2: /* FNEG */ 7459 gen_vfp_negd(tcg_res, tcg_op); 7460 goto done; 7461 case 0x3: /* FSQRT */ 7462 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7463 goto done; 7464 case 0x8: /* FRINTN */ 7465 case 0x9: /* FRINTP */ 7466 case 0xa: /* FRINTM */ 7467 case 0xb: /* FRINTZ */ 7468 case 0xc: /* FRINTA */ 7469 rmode = opcode & 7; 7470 gen_fpst = gen_helper_rintd; 7471 break; 7472 case 0xe: /* FRINTX */ 7473 gen_fpst = gen_helper_rintd_exact; 7474 break; 7475 case 0xf: /* FRINTI */ 7476 gen_fpst = gen_helper_rintd; 7477 break; 7478 case 0x10: /* FRINT32Z */ 7479 rmode = FPROUNDING_ZERO; 7480 gen_fpst = gen_helper_frint32_d; 7481 break; 7482 case 0x11: /* FRINT32X */ 7483 gen_fpst = gen_helper_frint32_d; 7484 break; 7485 case 0x12: /* FRINT64Z */ 7486 rmode = FPROUNDING_ZERO; 7487 gen_fpst = gen_helper_frint64_d; 7488 break; 7489 case 0x13: /* FRINT64X */ 7490 gen_fpst = gen_helper_frint64_d; 7491 break; 7492 default: 7493 g_assert_not_reached(); 7494 } 7495 7496 fpst = fpstatus_ptr(FPST_FPCR); 7497 if (rmode >= 0) { 7498 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7499 gen_fpst(tcg_res, tcg_op, fpst); 7500 gen_restore_rmode(tcg_rmode, fpst); 7501 } else { 7502 gen_fpst(tcg_res, tcg_op, fpst); 7503 } 7504 7505 done: 7506 write_fp_dreg(s, rd, tcg_res); 7507 } 7508 7509 static void handle_fp_fcvt(DisasContext *s, int opcode, 7510 int rd, int rn, int dtype, int ntype) 7511 { 7512 switch (ntype) { 7513 case 0x0: 7514 { 7515 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7516 if (dtype == 1) { 7517 /* Single to double */ 7518 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7519 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7520 write_fp_dreg(s, rd, tcg_rd); 7521 } else { 7522 /* Single to half */ 7523 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7524 TCGv_i32 ahp = get_ahp_flag(); 7525 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7526 7527 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7528 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7529 write_fp_sreg(s, rd, tcg_rd); 7530 } 7531 break; 7532 } 7533 case 0x1: 7534 { 7535 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7536 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7537 if (dtype == 0) { 7538 /* Double to single */ 7539 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7540 } else { 7541 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7542 TCGv_i32 ahp = get_ahp_flag(); 7543 /* Double to half */ 7544 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7545 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7546 } 7547 write_fp_sreg(s, rd, tcg_rd); 7548 break; 7549 } 7550 case 0x3: 7551 { 7552 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7553 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7554 TCGv_i32 tcg_ahp = get_ahp_flag(); 7555 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7556 if (dtype == 0) { 7557 /* Half to single */ 7558 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7559 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7560 write_fp_sreg(s, rd, tcg_rd); 7561 } else { 7562 /* Half to double */ 7563 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7564 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7565 write_fp_dreg(s, rd, tcg_rd); 7566 } 7567 break; 7568 } 7569 default: 7570 g_assert_not_reached(); 7571 } 7572 } 7573 7574 /* Floating point data-processing (1 source) 7575 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7576 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7577 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7578 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7579 */ 7580 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7581 { 7582 int mos = extract32(insn, 29, 3); 7583 int type = extract32(insn, 22, 2); 7584 int opcode = extract32(insn, 15, 6); 7585 int rn = extract32(insn, 5, 5); 7586 int rd = extract32(insn, 0, 5); 7587 7588 if (mos) { 7589 goto do_unallocated; 7590 } 7591 7592 switch (opcode) { 7593 case 0x4: case 0x5: case 0x7: 7594 { 7595 /* FCVT between half, single and double precision */ 7596 int dtype = extract32(opcode, 0, 2); 7597 if (type == 2 || dtype == type) { 7598 goto do_unallocated; 7599 } 7600 if (!fp_access_check(s)) { 7601 return; 7602 } 7603 7604 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7605 break; 7606 } 7607 7608 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7609 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7610 goto do_unallocated; 7611 } 7612 /* fall through */ 7613 case 0x0 ... 0x3: 7614 case 0x8 ... 0xc: 7615 case 0xe ... 0xf: 7616 /* 32-to-32 and 64-to-64 ops */ 7617 switch (type) { 7618 case 0: 7619 if (!fp_access_check(s)) { 7620 return; 7621 } 7622 handle_fp_1src_single(s, opcode, rd, rn); 7623 break; 7624 case 1: 7625 if (!fp_access_check(s)) { 7626 return; 7627 } 7628 handle_fp_1src_double(s, opcode, rd, rn); 7629 break; 7630 case 3: 7631 if (!dc_isar_feature(aa64_fp16, s)) { 7632 goto do_unallocated; 7633 } 7634 7635 if (!fp_access_check(s)) { 7636 return; 7637 } 7638 handle_fp_1src_half(s, opcode, rd, rn); 7639 break; 7640 default: 7641 goto do_unallocated; 7642 } 7643 break; 7644 7645 case 0x6: 7646 switch (type) { 7647 case 1: /* BFCVT */ 7648 if (!dc_isar_feature(aa64_bf16, s)) { 7649 goto do_unallocated; 7650 } 7651 if (!fp_access_check(s)) { 7652 return; 7653 } 7654 handle_fp_1src_single(s, opcode, rd, rn); 7655 break; 7656 default: 7657 goto do_unallocated; 7658 } 7659 break; 7660 7661 default: 7662 do_unallocated: 7663 unallocated_encoding(s); 7664 break; 7665 } 7666 } 7667 7668 /* Floating-point data-processing (3 source) - single precision */ 7669 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7670 int rd, int rn, int rm, int ra) 7671 { 7672 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7673 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7674 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7675 7676 tcg_op1 = read_fp_sreg(s, rn); 7677 tcg_op2 = read_fp_sreg(s, rm); 7678 tcg_op3 = read_fp_sreg(s, ra); 7679 7680 /* These are fused multiply-add, and must be done as one 7681 * floating point operation with no rounding between the 7682 * multiplication and addition steps. 7683 * NB that doing the negations here as separate steps is 7684 * correct : an input NaN should come out with its sign bit 7685 * flipped if it is a negated-input. 7686 */ 7687 if (o1 == true) { 7688 gen_vfp_negs(tcg_op3, tcg_op3); 7689 } 7690 7691 if (o0 != o1) { 7692 gen_vfp_negs(tcg_op1, tcg_op1); 7693 } 7694 7695 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7696 7697 write_fp_sreg(s, rd, tcg_res); 7698 } 7699 7700 /* Floating-point data-processing (3 source) - double precision */ 7701 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7702 int rd, int rn, int rm, int ra) 7703 { 7704 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7705 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7706 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7707 7708 tcg_op1 = read_fp_dreg(s, rn); 7709 tcg_op2 = read_fp_dreg(s, rm); 7710 tcg_op3 = read_fp_dreg(s, ra); 7711 7712 /* These are fused multiply-add, and must be done as one 7713 * floating point operation with no rounding between the 7714 * multiplication and addition steps. 7715 * NB that doing the negations here as separate steps is 7716 * correct : an input NaN should come out with its sign bit 7717 * flipped if it is a negated-input. 7718 */ 7719 if (o1 == true) { 7720 gen_vfp_negd(tcg_op3, tcg_op3); 7721 } 7722 7723 if (o0 != o1) { 7724 gen_vfp_negd(tcg_op1, tcg_op1); 7725 } 7726 7727 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7728 7729 write_fp_dreg(s, rd, tcg_res); 7730 } 7731 7732 /* Floating-point data-processing (3 source) - half precision */ 7733 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7734 int rd, int rn, int rm, int ra) 7735 { 7736 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7737 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7738 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7739 7740 tcg_op1 = read_fp_hreg(s, rn); 7741 tcg_op2 = read_fp_hreg(s, rm); 7742 tcg_op3 = read_fp_hreg(s, ra); 7743 7744 /* These are fused multiply-add, and must be done as one 7745 * floating point operation with no rounding between the 7746 * multiplication and addition steps. 7747 * NB that doing the negations here as separate steps is 7748 * correct : an input NaN should come out with its sign bit 7749 * flipped if it is a negated-input. 7750 */ 7751 if (o1 == true) { 7752 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7753 } 7754 7755 if (o0 != o1) { 7756 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7757 } 7758 7759 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7760 7761 write_fp_sreg(s, rd, tcg_res); 7762 } 7763 7764 /* Floating point data-processing (3 source) 7765 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7766 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7767 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7768 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7769 */ 7770 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7771 { 7772 int mos = extract32(insn, 29, 3); 7773 int type = extract32(insn, 22, 2); 7774 int rd = extract32(insn, 0, 5); 7775 int rn = extract32(insn, 5, 5); 7776 int ra = extract32(insn, 10, 5); 7777 int rm = extract32(insn, 16, 5); 7778 bool o0 = extract32(insn, 15, 1); 7779 bool o1 = extract32(insn, 21, 1); 7780 7781 if (mos) { 7782 unallocated_encoding(s); 7783 return; 7784 } 7785 7786 switch (type) { 7787 case 0: 7788 if (!fp_access_check(s)) { 7789 return; 7790 } 7791 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7792 break; 7793 case 1: 7794 if (!fp_access_check(s)) { 7795 return; 7796 } 7797 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7798 break; 7799 case 3: 7800 if (!dc_isar_feature(aa64_fp16, s)) { 7801 unallocated_encoding(s); 7802 return; 7803 } 7804 if (!fp_access_check(s)) { 7805 return; 7806 } 7807 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7808 break; 7809 default: 7810 unallocated_encoding(s); 7811 } 7812 } 7813 7814 /* Floating point immediate 7815 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7816 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7817 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7818 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7819 */ 7820 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7821 { 7822 int rd = extract32(insn, 0, 5); 7823 int imm5 = extract32(insn, 5, 5); 7824 int imm8 = extract32(insn, 13, 8); 7825 int type = extract32(insn, 22, 2); 7826 int mos = extract32(insn, 29, 3); 7827 uint64_t imm; 7828 MemOp sz; 7829 7830 if (mos || imm5) { 7831 unallocated_encoding(s); 7832 return; 7833 } 7834 7835 switch (type) { 7836 case 0: 7837 sz = MO_32; 7838 break; 7839 case 1: 7840 sz = MO_64; 7841 break; 7842 case 3: 7843 sz = MO_16; 7844 if (dc_isar_feature(aa64_fp16, s)) { 7845 break; 7846 } 7847 /* fallthru */ 7848 default: 7849 unallocated_encoding(s); 7850 return; 7851 } 7852 7853 if (!fp_access_check(s)) { 7854 return; 7855 } 7856 7857 imm = vfp_expand_imm(sz, imm8); 7858 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7859 } 7860 7861 /* Handle floating point <=> fixed point conversions. Note that we can 7862 * also deal with fp <=> integer conversions as a special case (scale == 64) 7863 * OPTME: consider handling that special case specially or at least skipping 7864 * the call to scalbn in the helpers for zero shifts. 7865 */ 7866 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7867 bool itof, int rmode, int scale, int sf, int type) 7868 { 7869 bool is_signed = !(opcode & 1); 7870 TCGv_ptr tcg_fpstatus; 7871 TCGv_i32 tcg_shift, tcg_single; 7872 TCGv_i64 tcg_double; 7873 7874 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7875 7876 tcg_shift = tcg_constant_i32(64 - scale); 7877 7878 if (itof) { 7879 TCGv_i64 tcg_int = cpu_reg(s, rn); 7880 if (!sf) { 7881 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7882 7883 if (is_signed) { 7884 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7885 } else { 7886 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7887 } 7888 7889 tcg_int = tcg_extend; 7890 } 7891 7892 switch (type) { 7893 case 1: /* float64 */ 7894 tcg_double = tcg_temp_new_i64(); 7895 if (is_signed) { 7896 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7897 tcg_shift, tcg_fpstatus); 7898 } else { 7899 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7900 tcg_shift, tcg_fpstatus); 7901 } 7902 write_fp_dreg(s, rd, tcg_double); 7903 break; 7904 7905 case 0: /* float32 */ 7906 tcg_single = tcg_temp_new_i32(); 7907 if (is_signed) { 7908 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7909 tcg_shift, tcg_fpstatus); 7910 } else { 7911 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7912 tcg_shift, tcg_fpstatus); 7913 } 7914 write_fp_sreg(s, rd, tcg_single); 7915 break; 7916 7917 case 3: /* float16 */ 7918 tcg_single = tcg_temp_new_i32(); 7919 if (is_signed) { 7920 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7921 tcg_shift, tcg_fpstatus); 7922 } else { 7923 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7924 tcg_shift, tcg_fpstatus); 7925 } 7926 write_fp_sreg(s, rd, tcg_single); 7927 break; 7928 7929 default: 7930 g_assert_not_reached(); 7931 } 7932 } else { 7933 TCGv_i64 tcg_int = cpu_reg(s, rd); 7934 TCGv_i32 tcg_rmode; 7935 7936 if (extract32(opcode, 2, 1)) { 7937 /* There are too many rounding modes to all fit into rmode, 7938 * so FCVTA[US] is a special case. 7939 */ 7940 rmode = FPROUNDING_TIEAWAY; 7941 } 7942 7943 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7944 7945 switch (type) { 7946 case 1: /* float64 */ 7947 tcg_double = read_fp_dreg(s, rn); 7948 if (is_signed) { 7949 if (!sf) { 7950 gen_helper_vfp_tosld(tcg_int, tcg_double, 7951 tcg_shift, tcg_fpstatus); 7952 } else { 7953 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7954 tcg_shift, tcg_fpstatus); 7955 } 7956 } else { 7957 if (!sf) { 7958 gen_helper_vfp_tould(tcg_int, tcg_double, 7959 tcg_shift, tcg_fpstatus); 7960 } else { 7961 gen_helper_vfp_touqd(tcg_int, tcg_double, 7962 tcg_shift, tcg_fpstatus); 7963 } 7964 } 7965 if (!sf) { 7966 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7967 } 7968 break; 7969 7970 case 0: /* float32 */ 7971 tcg_single = read_fp_sreg(s, rn); 7972 if (sf) { 7973 if (is_signed) { 7974 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7975 tcg_shift, tcg_fpstatus); 7976 } else { 7977 gen_helper_vfp_touqs(tcg_int, tcg_single, 7978 tcg_shift, tcg_fpstatus); 7979 } 7980 } else { 7981 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7982 if (is_signed) { 7983 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7984 tcg_shift, tcg_fpstatus); 7985 } else { 7986 gen_helper_vfp_touls(tcg_dest, tcg_single, 7987 tcg_shift, tcg_fpstatus); 7988 } 7989 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7990 } 7991 break; 7992 7993 case 3: /* float16 */ 7994 tcg_single = read_fp_sreg(s, rn); 7995 if (sf) { 7996 if (is_signed) { 7997 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7998 tcg_shift, tcg_fpstatus); 7999 } else { 8000 gen_helper_vfp_touqh(tcg_int, tcg_single, 8001 tcg_shift, tcg_fpstatus); 8002 } 8003 } else { 8004 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 8005 if (is_signed) { 8006 gen_helper_vfp_toslh(tcg_dest, tcg_single, 8007 tcg_shift, tcg_fpstatus); 8008 } else { 8009 gen_helper_vfp_toulh(tcg_dest, tcg_single, 8010 tcg_shift, tcg_fpstatus); 8011 } 8012 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 8013 } 8014 break; 8015 8016 default: 8017 g_assert_not_reached(); 8018 } 8019 8020 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8021 } 8022 } 8023 8024 /* Floating point <-> fixed point conversions 8025 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8026 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8027 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 8028 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 8029 */ 8030 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 8031 { 8032 int rd = extract32(insn, 0, 5); 8033 int rn = extract32(insn, 5, 5); 8034 int scale = extract32(insn, 10, 6); 8035 int opcode = extract32(insn, 16, 3); 8036 int rmode = extract32(insn, 19, 2); 8037 int type = extract32(insn, 22, 2); 8038 bool sbit = extract32(insn, 29, 1); 8039 bool sf = extract32(insn, 31, 1); 8040 bool itof; 8041 8042 if (sbit || (!sf && scale < 32)) { 8043 unallocated_encoding(s); 8044 return; 8045 } 8046 8047 switch (type) { 8048 case 0: /* float32 */ 8049 case 1: /* float64 */ 8050 break; 8051 case 3: /* float16 */ 8052 if (dc_isar_feature(aa64_fp16, s)) { 8053 break; 8054 } 8055 /* fallthru */ 8056 default: 8057 unallocated_encoding(s); 8058 return; 8059 } 8060 8061 switch ((rmode << 3) | opcode) { 8062 case 0x2: /* SCVTF */ 8063 case 0x3: /* UCVTF */ 8064 itof = true; 8065 break; 8066 case 0x18: /* FCVTZS */ 8067 case 0x19: /* FCVTZU */ 8068 itof = false; 8069 break; 8070 default: 8071 unallocated_encoding(s); 8072 return; 8073 } 8074 8075 if (!fp_access_check(s)) { 8076 return; 8077 } 8078 8079 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 8080 } 8081 8082 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 8083 { 8084 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 8085 * without conversion. 8086 */ 8087 8088 if (itof) { 8089 TCGv_i64 tcg_rn = cpu_reg(s, rn); 8090 TCGv_i64 tmp; 8091 8092 switch (type) { 8093 case 0: 8094 /* 32 bit */ 8095 tmp = tcg_temp_new_i64(); 8096 tcg_gen_ext32u_i64(tmp, tcg_rn); 8097 write_fp_dreg(s, rd, tmp); 8098 break; 8099 case 1: 8100 /* 64 bit */ 8101 write_fp_dreg(s, rd, tcg_rn); 8102 break; 8103 case 2: 8104 /* 64 bit to top half. */ 8105 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 8106 clear_vec_high(s, true, rd); 8107 break; 8108 case 3: 8109 /* 16 bit */ 8110 tmp = tcg_temp_new_i64(); 8111 tcg_gen_ext16u_i64(tmp, tcg_rn); 8112 write_fp_dreg(s, rd, tmp); 8113 break; 8114 default: 8115 g_assert_not_reached(); 8116 } 8117 } else { 8118 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8119 8120 switch (type) { 8121 case 0: 8122 /* 32 bit */ 8123 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 8124 break; 8125 case 1: 8126 /* 64 bit */ 8127 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 8128 break; 8129 case 2: 8130 /* 64 bits from top half */ 8131 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 8132 break; 8133 case 3: 8134 /* 16 bit */ 8135 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 8136 break; 8137 default: 8138 g_assert_not_reached(); 8139 } 8140 } 8141 } 8142 8143 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 8144 { 8145 TCGv_i64 t = read_fp_dreg(s, rn); 8146 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 8147 8148 gen_helper_fjcvtzs(t, t, fpstatus); 8149 8150 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 8151 tcg_gen_extrh_i64_i32(cpu_ZF, t); 8152 tcg_gen_movi_i32(cpu_CF, 0); 8153 tcg_gen_movi_i32(cpu_NF, 0); 8154 tcg_gen_movi_i32(cpu_VF, 0); 8155 } 8156 8157 /* Floating point <-> integer conversions 8158 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 8159 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8160 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 8161 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 8162 */ 8163 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 8164 { 8165 int rd = extract32(insn, 0, 5); 8166 int rn = extract32(insn, 5, 5); 8167 int opcode = extract32(insn, 16, 3); 8168 int rmode = extract32(insn, 19, 2); 8169 int type = extract32(insn, 22, 2); 8170 bool sbit = extract32(insn, 29, 1); 8171 bool sf = extract32(insn, 31, 1); 8172 bool itof = false; 8173 8174 if (sbit) { 8175 goto do_unallocated; 8176 } 8177 8178 switch (opcode) { 8179 case 2: /* SCVTF */ 8180 case 3: /* UCVTF */ 8181 itof = true; 8182 /* fallthru */ 8183 case 4: /* FCVTAS */ 8184 case 5: /* FCVTAU */ 8185 if (rmode != 0) { 8186 goto do_unallocated; 8187 } 8188 /* fallthru */ 8189 case 0: /* FCVT[NPMZ]S */ 8190 case 1: /* FCVT[NPMZ]U */ 8191 switch (type) { 8192 case 0: /* float32 */ 8193 case 1: /* float64 */ 8194 break; 8195 case 3: /* float16 */ 8196 if (!dc_isar_feature(aa64_fp16, s)) { 8197 goto do_unallocated; 8198 } 8199 break; 8200 default: 8201 goto do_unallocated; 8202 } 8203 if (!fp_access_check(s)) { 8204 return; 8205 } 8206 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 8207 break; 8208 8209 default: 8210 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 8211 case 0b01100110: /* FMOV half <-> 32-bit int */ 8212 case 0b01100111: 8213 case 0b11100110: /* FMOV half <-> 64-bit int */ 8214 case 0b11100111: 8215 if (!dc_isar_feature(aa64_fp16, s)) { 8216 goto do_unallocated; 8217 } 8218 /* fallthru */ 8219 case 0b00000110: /* FMOV 32-bit */ 8220 case 0b00000111: 8221 case 0b10100110: /* FMOV 64-bit */ 8222 case 0b10100111: 8223 case 0b11001110: /* FMOV top half of 128-bit */ 8224 case 0b11001111: 8225 if (!fp_access_check(s)) { 8226 return; 8227 } 8228 itof = opcode & 1; 8229 handle_fmov(s, rd, rn, type, itof); 8230 break; 8231 8232 case 0b00111110: /* FJCVTZS */ 8233 if (!dc_isar_feature(aa64_jscvt, s)) { 8234 goto do_unallocated; 8235 } else if (fp_access_check(s)) { 8236 handle_fjcvtzs(s, rd, rn); 8237 } 8238 break; 8239 8240 default: 8241 do_unallocated: 8242 unallocated_encoding(s); 8243 return; 8244 } 8245 break; 8246 } 8247 } 8248 8249 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 8250 * 31 30 29 28 25 24 0 8251 * +---+---+---+---------+-----------------------------+ 8252 * | | 0 | | 1 1 1 1 | | 8253 * +---+---+---+---------+-----------------------------+ 8254 */ 8255 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 8256 { 8257 if (extract32(insn, 24, 1)) { 8258 /* Floating point data-processing (3 source) */ 8259 disas_fp_3src(s, insn); 8260 } else if (extract32(insn, 21, 1) == 0) { 8261 /* Floating point to fixed point conversions */ 8262 disas_fp_fixed_conv(s, insn); 8263 } else { 8264 switch (extract32(insn, 10, 2)) { 8265 case 1: 8266 /* Floating point conditional compare */ 8267 disas_fp_ccomp(s, insn); 8268 break; 8269 case 2: 8270 /* Floating point data-processing (2 source) */ 8271 unallocated_encoding(s); /* in decodetree */ 8272 break; 8273 case 3: 8274 /* Floating point conditional select */ 8275 disas_fp_csel(s, insn); 8276 break; 8277 case 0: 8278 switch (ctz32(extract32(insn, 12, 4))) { 8279 case 0: /* [15:12] == xxx1 */ 8280 /* Floating point immediate */ 8281 disas_fp_imm(s, insn); 8282 break; 8283 case 1: /* [15:12] == xx10 */ 8284 /* Floating point compare */ 8285 disas_fp_compare(s, insn); 8286 break; 8287 case 2: /* [15:12] == x100 */ 8288 /* Floating point data-processing (1 source) */ 8289 disas_fp_1src(s, insn); 8290 break; 8291 case 3: /* [15:12] == 1000 */ 8292 unallocated_encoding(s); 8293 break; 8294 default: /* [15:12] == 0000 */ 8295 /* Floating point <-> integer conversions */ 8296 disas_fp_int_conv(s, insn); 8297 break; 8298 } 8299 break; 8300 } 8301 } 8302 } 8303 8304 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8305 int pos) 8306 { 8307 /* Extract 64 bits from the middle of two concatenated 64 bit 8308 * vector register slices left:right. The extracted bits start 8309 * at 'pos' bits into the right (least significant) side. 8310 * We return the result in tcg_right, and guarantee not to 8311 * trash tcg_left. 8312 */ 8313 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8314 assert(pos > 0 && pos < 64); 8315 8316 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8317 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8318 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8319 } 8320 8321 /* EXT 8322 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8323 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8324 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8325 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8326 */ 8327 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8328 { 8329 int is_q = extract32(insn, 30, 1); 8330 int op2 = extract32(insn, 22, 2); 8331 int imm4 = extract32(insn, 11, 4); 8332 int rm = extract32(insn, 16, 5); 8333 int rn = extract32(insn, 5, 5); 8334 int rd = extract32(insn, 0, 5); 8335 int pos = imm4 << 3; 8336 TCGv_i64 tcg_resl, tcg_resh; 8337 8338 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8339 unallocated_encoding(s); 8340 return; 8341 } 8342 8343 if (!fp_access_check(s)) { 8344 return; 8345 } 8346 8347 tcg_resh = tcg_temp_new_i64(); 8348 tcg_resl = tcg_temp_new_i64(); 8349 8350 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8351 * either extracting 128 bits from a 128:128 concatenation, or 8352 * extracting 64 bits from a 64:64 concatenation. 8353 */ 8354 if (!is_q) { 8355 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8356 if (pos != 0) { 8357 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8358 do_ext64(s, tcg_resh, tcg_resl, pos); 8359 } 8360 } else { 8361 TCGv_i64 tcg_hh; 8362 typedef struct { 8363 int reg; 8364 int elt; 8365 } EltPosns; 8366 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8367 EltPosns *elt = eltposns; 8368 8369 if (pos >= 64) { 8370 elt++; 8371 pos -= 64; 8372 } 8373 8374 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8375 elt++; 8376 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8377 elt++; 8378 if (pos != 0) { 8379 do_ext64(s, tcg_resh, tcg_resl, pos); 8380 tcg_hh = tcg_temp_new_i64(); 8381 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8382 do_ext64(s, tcg_hh, tcg_resh, pos); 8383 } 8384 } 8385 8386 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8387 if (is_q) { 8388 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8389 } 8390 clear_vec_high(s, is_q, rd); 8391 } 8392 8393 /* TBL/TBX 8394 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8395 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8396 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8397 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8398 */ 8399 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8400 { 8401 int op2 = extract32(insn, 22, 2); 8402 int is_q = extract32(insn, 30, 1); 8403 int rm = extract32(insn, 16, 5); 8404 int rn = extract32(insn, 5, 5); 8405 int rd = extract32(insn, 0, 5); 8406 int is_tbx = extract32(insn, 12, 1); 8407 int len = (extract32(insn, 13, 2) + 1) * 16; 8408 8409 if (op2 != 0) { 8410 unallocated_encoding(s); 8411 return; 8412 } 8413 8414 if (!fp_access_check(s)) { 8415 return; 8416 } 8417 8418 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8419 vec_full_reg_offset(s, rm), tcg_env, 8420 is_q ? 16 : 8, vec_full_reg_size(s), 8421 (len << 6) | (is_tbx << 5) | rn, 8422 gen_helper_simd_tblx); 8423 } 8424 8425 /* ZIP/UZP/TRN 8426 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8427 * +---+---+-------------+------+---+------+---+------------------+------+ 8428 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8429 * +---+---+-------------+------+---+------+---+------------------+------+ 8430 */ 8431 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8432 { 8433 int rd = extract32(insn, 0, 5); 8434 int rn = extract32(insn, 5, 5); 8435 int rm = extract32(insn, 16, 5); 8436 int size = extract32(insn, 22, 2); 8437 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8438 * bit 2 indicates 1 vs 2 variant of the insn. 8439 */ 8440 int opcode = extract32(insn, 12, 2); 8441 bool part = extract32(insn, 14, 1); 8442 bool is_q = extract32(insn, 30, 1); 8443 int esize = 8 << size; 8444 int i; 8445 int datasize = is_q ? 128 : 64; 8446 int elements = datasize / esize; 8447 TCGv_i64 tcg_res[2], tcg_ele; 8448 8449 if (opcode == 0 || (size == 3 && !is_q)) { 8450 unallocated_encoding(s); 8451 return; 8452 } 8453 8454 if (!fp_access_check(s)) { 8455 return; 8456 } 8457 8458 tcg_res[0] = tcg_temp_new_i64(); 8459 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8460 tcg_ele = tcg_temp_new_i64(); 8461 8462 for (i = 0; i < elements; i++) { 8463 int o, w; 8464 8465 switch (opcode) { 8466 case 1: /* UZP1/2 */ 8467 { 8468 int midpoint = elements / 2; 8469 if (i < midpoint) { 8470 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8471 } else { 8472 read_vec_element(s, tcg_ele, rm, 8473 2 * (i - midpoint) + part, size); 8474 } 8475 break; 8476 } 8477 case 2: /* TRN1/2 */ 8478 if (i & 1) { 8479 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8480 } else { 8481 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8482 } 8483 break; 8484 case 3: /* ZIP1/2 */ 8485 { 8486 int base = part * elements / 2; 8487 if (i & 1) { 8488 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8489 } else { 8490 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8491 } 8492 break; 8493 } 8494 default: 8495 g_assert_not_reached(); 8496 } 8497 8498 w = (i * esize) / 64; 8499 o = (i * esize) % 64; 8500 if (o == 0) { 8501 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8502 } else { 8503 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8504 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8505 } 8506 } 8507 8508 for (i = 0; i <= is_q; ++i) { 8509 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8510 } 8511 clear_vec_high(s, is_q, rd); 8512 } 8513 8514 /* 8515 * do_reduction_op helper 8516 * 8517 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8518 * important for correct NaN propagation that we do these 8519 * operations in exactly the order specified by the pseudocode. 8520 * 8521 * This is a recursive function, TCG temps should be freed by the 8522 * calling function once it is done with the values. 8523 */ 8524 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8525 int esize, int size, int vmap, TCGv_ptr fpst) 8526 { 8527 if (esize == size) { 8528 int element; 8529 MemOp msize = esize == 16 ? MO_16 : MO_32; 8530 TCGv_i32 tcg_elem; 8531 8532 /* We should have one register left here */ 8533 assert(ctpop8(vmap) == 1); 8534 element = ctz32(vmap); 8535 assert(element < 8); 8536 8537 tcg_elem = tcg_temp_new_i32(); 8538 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8539 return tcg_elem; 8540 } else { 8541 int bits = size / 2; 8542 int shift = ctpop8(vmap) / 2; 8543 int vmap_lo = (vmap >> shift) & vmap; 8544 int vmap_hi = (vmap & ~vmap_lo); 8545 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8546 8547 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8548 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8549 tcg_res = tcg_temp_new_i32(); 8550 8551 switch (fpopcode) { 8552 case 0x0c: /* fmaxnmv half-precision */ 8553 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8554 break; 8555 case 0x0f: /* fmaxv half-precision */ 8556 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8557 break; 8558 case 0x1c: /* fminnmv half-precision */ 8559 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8560 break; 8561 case 0x1f: /* fminv half-precision */ 8562 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8563 break; 8564 case 0x2c: /* fmaxnmv */ 8565 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8566 break; 8567 case 0x2f: /* fmaxv */ 8568 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8569 break; 8570 case 0x3c: /* fminnmv */ 8571 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8572 break; 8573 case 0x3f: /* fminv */ 8574 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8575 break; 8576 default: 8577 g_assert_not_reached(); 8578 } 8579 return tcg_res; 8580 } 8581 } 8582 8583 /* AdvSIMD across lanes 8584 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8585 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8586 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8587 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8588 */ 8589 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8590 { 8591 int rd = extract32(insn, 0, 5); 8592 int rn = extract32(insn, 5, 5); 8593 int size = extract32(insn, 22, 2); 8594 int opcode = extract32(insn, 12, 5); 8595 bool is_q = extract32(insn, 30, 1); 8596 bool is_u = extract32(insn, 29, 1); 8597 bool is_fp = false; 8598 bool is_min = false; 8599 int esize; 8600 int elements; 8601 int i; 8602 TCGv_i64 tcg_res, tcg_elt; 8603 8604 switch (opcode) { 8605 case 0x1b: /* ADDV */ 8606 if (is_u) { 8607 unallocated_encoding(s); 8608 return; 8609 } 8610 /* fall through */ 8611 case 0x3: /* SADDLV, UADDLV */ 8612 case 0xa: /* SMAXV, UMAXV */ 8613 case 0x1a: /* SMINV, UMINV */ 8614 if (size == 3 || (size == 2 && !is_q)) { 8615 unallocated_encoding(s); 8616 return; 8617 } 8618 break; 8619 case 0xc: /* FMAXNMV, FMINNMV */ 8620 case 0xf: /* FMAXV, FMINV */ 8621 /* Bit 1 of size field encodes min vs max and the actual size 8622 * depends on the encoding of the U bit. If not set (and FP16 8623 * enabled) then we do half-precision float instead of single 8624 * precision. 8625 */ 8626 is_min = extract32(size, 1, 1); 8627 is_fp = true; 8628 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8629 size = 1; 8630 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8631 unallocated_encoding(s); 8632 return; 8633 } else { 8634 size = 2; 8635 } 8636 break; 8637 default: 8638 unallocated_encoding(s); 8639 return; 8640 } 8641 8642 if (!fp_access_check(s)) { 8643 return; 8644 } 8645 8646 esize = 8 << size; 8647 elements = (is_q ? 128 : 64) / esize; 8648 8649 tcg_res = tcg_temp_new_i64(); 8650 tcg_elt = tcg_temp_new_i64(); 8651 8652 /* These instructions operate across all lanes of a vector 8653 * to produce a single result. We can guarantee that a 64 8654 * bit intermediate is sufficient: 8655 * + for [US]ADDLV the maximum element size is 32 bits, and 8656 * the result type is 64 bits 8657 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8658 * same as the element size, which is 32 bits at most 8659 * For the integer operations we can choose to work at 64 8660 * or 32 bits and truncate at the end; for simplicity 8661 * we use 64 bits always. The floating point 8662 * ops do require 32 bit intermediates, though. 8663 */ 8664 if (!is_fp) { 8665 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8666 8667 for (i = 1; i < elements; i++) { 8668 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8669 8670 switch (opcode) { 8671 case 0x03: /* SADDLV / UADDLV */ 8672 case 0x1b: /* ADDV */ 8673 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8674 break; 8675 case 0x0a: /* SMAXV / UMAXV */ 8676 if (is_u) { 8677 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8678 } else { 8679 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8680 } 8681 break; 8682 case 0x1a: /* SMINV / UMINV */ 8683 if (is_u) { 8684 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8685 } else { 8686 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8687 } 8688 break; 8689 default: 8690 g_assert_not_reached(); 8691 } 8692 8693 } 8694 } else { 8695 /* Floating point vector reduction ops which work across 32 8696 * bit (single) or 16 bit (half-precision) intermediates. 8697 * Note that correct NaN propagation requires that we do these 8698 * operations in exactly the order specified by the pseudocode. 8699 */ 8700 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8701 int fpopcode = opcode | is_min << 4 | is_u << 5; 8702 int vmap = (1 << elements) - 1; 8703 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8704 (is_q ? 128 : 64), vmap, fpst); 8705 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8706 } 8707 8708 /* Now truncate the result to the width required for the final output */ 8709 if (opcode == 0x03) { 8710 /* SADDLV, UADDLV: result is 2*esize */ 8711 size++; 8712 } 8713 8714 switch (size) { 8715 case 0: 8716 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8717 break; 8718 case 1: 8719 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8720 break; 8721 case 2: 8722 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8723 break; 8724 case 3: 8725 break; 8726 default: 8727 g_assert_not_reached(); 8728 } 8729 8730 write_fp_dreg(s, rd, tcg_res); 8731 } 8732 8733 /* AdvSIMD modified immediate 8734 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8735 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8736 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8737 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8738 * 8739 * There are a number of operations that can be carried out here: 8740 * MOVI - move (shifted) imm into register 8741 * MVNI - move inverted (shifted) imm into register 8742 * ORR - bitwise OR of (shifted) imm with register 8743 * BIC - bitwise clear of (shifted) imm with register 8744 * With ARMv8.2 we also have: 8745 * FMOV half-precision 8746 */ 8747 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8748 { 8749 int rd = extract32(insn, 0, 5); 8750 int cmode = extract32(insn, 12, 4); 8751 int o2 = extract32(insn, 11, 1); 8752 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8753 bool is_neg = extract32(insn, 29, 1); 8754 bool is_q = extract32(insn, 30, 1); 8755 uint64_t imm = 0; 8756 8757 if (o2) { 8758 if (cmode != 0xf || is_neg) { 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 /* FMOV (vector, immediate) - half-precision */ 8763 if (!dc_isar_feature(aa64_fp16, s)) { 8764 unallocated_encoding(s); 8765 return; 8766 } 8767 imm = vfp_expand_imm(MO_16, abcdefgh); 8768 /* now duplicate across the lanes */ 8769 imm = dup_const(MO_16, imm); 8770 } else { 8771 if (cmode == 0xf && is_neg && !is_q) { 8772 unallocated_encoding(s); 8773 return; 8774 } 8775 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8776 } 8777 8778 if (!fp_access_check(s)) { 8779 return; 8780 } 8781 8782 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8783 /* MOVI or MVNI, with MVNI negation handled above. */ 8784 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8785 vec_full_reg_size(s), imm); 8786 } else { 8787 /* ORR or BIC, with BIC negation to AND handled above. */ 8788 if (is_neg) { 8789 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8790 } else { 8791 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8792 } 8793 } 8794 } 8795 8796 /* 8797 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8798 * 8799 * This code is handles the common shifting code and is used by both 8800 * the vector and scalar code. 8801 */ 8802 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8803 TCGv_i64 tcg_rnd, bool accumulate, 8804 bool is_u, int size, int shift) 8805 { 8806 bool extended_result = false; 8807 bool round = tcg_rnd != NULL; 8808 int ext_lshift = 0; 8809 TCGv_i64 tcg_src_hi; 8810 8811 if (round && size == 3) { 8812 extended_result = true; 8813 ext_lshift = 64 - shift; 8814 tcg_src_hi = tcg_temp_new_i64(); 8815 } else if (shift == 64) { 8816 if (!accumulate && is_u) { 8817 /* result is zero */ 8818 tcg_gen_movi_i64(tcg_res, 0); 8819 return; 8820 } 8821 } 8822 8823 /* Deal with the rounding step */ 8824 if (round) { 8825 if (extended_result) { 8826 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8827 if (!is_u) { 8828 /* take care of sign extending tcg_res */ 8829 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8830 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8831 tcg_src, tcg_src_hi, 8832 tcg_rnd, tcg_zero); 8833 } else { 8834 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8835 tcg_src, tcg_zero, 8836 tcg_rnd, tcg_zero); 8837 } 8838 } else { 8839 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8840 } 8841 } 8842 8843 /* Now do the shift right */ 8844 if (round && extended_result) { 8845 /* extended case, >64 bit precision required */ 8846 if (ext_lshift == 0) { 8847 /* special case, only high bits matter */ 8848 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8849 } else { 8850 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8851 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8852 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8853 } 8854 } else { 8855 if (is_u) { 8856 if (shift == 64) { 8857 /* essentially shifting in 64 zeros */ 8858 tcg_gen_movi_i64(tcg_src, 0); 8859 } else { 8860 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8861 } 8862 } else { 8863 if (shift == 64) { 8864 /* effectively extending the sign-bit */ 8865 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8866 } else { 8867 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8868 } 8869 } 8870 } 8871 8872 if (accumulate) { 8873 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8874 } else { 8875 tcg_gen_mov_i64(tcg_res, tcg_src); 8876 } 8877 } 8878 8879 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8880 static void handle_scalar_simd_shri(DisasContext *s, 8881 bool is_u, int immh, int immb, 8882 int opcode, int rn, int rd) 8883 { 8884 const int size = 3; 8885 int immhb = immh << 3 | immb; 8886 int shift = 2 * (8 << size) - immhb; 8887 bool accumulate = false; 8888 bool round = false; 8889 bool insert = false; 8890 TCGv_i64 tcg_rn; 8891 TCGv_i64 tcg_rd; 8892 TCGv_i64 tcg_round; 8893 8894 if (!extract32(immh, 3, 1)) { 8895 unallocated_encoding(s); 8896 return; 8897 } 8898 8899 if (!fp_access_check(s)) { 8900 return; 8901 } 8902 8903 switch (opcode) { 8904 case 0x02: /* SSRA / USRA (accumulate) */ 8905 accumulate = true; 8906 break; 8907 case 0x04: /* SRSHR / URSHR (rounding) */ 8908 round = true; 8909 break; 8910 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8911 accumulate = round = true; 8912 break; 8913 case 0x08: /* SRI */ 8914 insert = true; 8915 break; 8916 } 8917 8918 if (round) { 8919 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8920 } else { 8921 tcg_round = NULL; 8922 } 8923 8924 tcg_rn = read_fp_dreg(s, rn); 8925 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8926 8927 if (insert) { 8928 /* shift count same as element size is valid but does nothing; 8929 * special case to avoid potential shift by 64. 8930 */ 8931 int esize = 8 << size; 8932 if (shift != esize) { 8933 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8934 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8935 } 8936 } else { 8937 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8938 accumulate, is_u, size, shift); 8939 } 8940 8941 write_fp_dreg(s, rd, tcg_rd); 8942 } 8943 8944 /* SHL/SLI - Scalar shift left */ 8945 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8946 int immh, int immb, int opcode, 8947 int rn, int rd) 8948 { 8949 int size = 32 - clz32(immh) - 1; 8950 int immhb = immh << 3 | immb; 8951 int shift = immhb - (8 << size); 8952 TCGv_i64 tcg_rn; 8953 TCGv_i64 tcg_rd; 8954 8955 if (!extract32(immh, 3, 1)) { 8956 unallocated_encoding(s); 8957 return; 8958 } 8959 8960 if (!fp_access_check(s)) { 8961 return; 8962 } 8963 8964 tcg_rn = read_fp_dreg(s, rn); 8965 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8966 8967 if (insert) { 8968 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8969 } else { 8970 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8971 } 8972 8973 write_fp_dreg(s, rd, tcg_rd); 8974 } 8975 8976 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8977 * (signed/unsigned) narrowing */ 8978 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8979 bool is_u_shift, bool is_u_narrow, 8980 int immh, int immb, int opcode, 8981 int rn, int rd) 8982 { 8983 int immhb = immh << 3 | immb; 8984 int size = 32 - clz32(immh) - 1; 8985 int esize = 8 << size; 8986 int shift = (2 * esize) - immhb; 8987 int elements = is_scalar ? 1 : (64 / esize); 8988 bool round = extract32(opcode, 0, 1); 8989 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8990 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8991 TCGv_i32 tcg_rd_narrowed; 8992 TCGv_i64 tcg_final; 8993 8994 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8995 { gen_helper_neon_narrow_sat_s8, 8996 gen_helper_neon_unarrow_sat8 }, 8997 { gen_helper_neon_narrow_sat_s16, 8998 gen_helper_neon_unarrow_sat16 }, 8999 { gen_helper_neon_narrow_sat_s32, 9000 gen_helper_neon_unarrow_sat32 }, 9001 { NULL, NULL }, 9002 }; 9003 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 9004 gen_helper_neon_narrow_sat_u8, 9005 gen_helper_neon_narrow_sat_u16, 9006 gen_helper_neon_narrow_sat_u32, 9007 NULL 9008 }; 9009 NeonGenNarrowEnvFn *narrowfn; 9010 9011 int i; 9012 9013 assert(size < 4); 9014 9015 if (extract32(immh, 3, 1)) { 9016 unallocated_encoding(s); 9017 return; 9018 } 9019 9020 if (!fp_access_check(s)) { 9021 return; 9022 } 9023 9024 if (is_u_shift) { 9025 narrowfn = unsigned_narrow_fns[size]; 9026 } else { 9027 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 9028 } 9029 9030 tcg_rn = tcg_temp_new_i64(); 9031 tcg_rd = tcg_temp_new_i64(); 9032 tcg_rd_narrowed = tcg_temp_new_i32(); 9033 tcg_final = tcg_temp_new_i64(); 9034 9035 if (round) { 9036 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 9037 } else { 9038 tcg_round = NULL; 9039 } 9040 9041 for (i = 0; i < elements; i++) { 9042 read_vec_element(s, tcg_rn, rn, i, ldop); 9043 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 9044 false, is_u_shift, size+1, shift); 9045 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 9046 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 9047 if (i == 0) { 9048 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 9049 } else { 9050 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 9051 } 9052 } 9053 9054 if (!is_q) { 9055 write_vec_element(s, tcg_final, rd, 0, MO_64); 9056 } else { 9057 write_vec_element(s, tcg_final, rd, 1, MO_64); 9058 } 9059 clear_vec_high(s, is_q, rd); 9060 } 9061 9062 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 9063 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 9064 bool src_unsigned, bool dst_unsigned, 9065 int immh, int immb, int rn, int rd) 9066 { 9067 int immhb = immh << 3 | immb; 9068 int size = 32 - clz32(immh) - 1; 9069 int shift = immhb - (8 << size); 9070 int pass; 9071 9072 assert(immh != 0); 9073 assert(!(scalar && is_q)); 9074 9075 if (!scalar) { 9076 if (!is_q && extract32(immh, 3, 1)) { 9077 unallocated_encoding(s); 9078 return; 9079 } 9080 9081 /* Since we use the variable-shift helpers we must 9082 * replicate the shift count into each element of 9083 * the tcg_shift value. 9084 */ 9085 switch (size) { 9086 case 0: 9087 shift |= shift << 8; 9088 /* fall through */ 9089 case 1: 9090 shift |= shift << 16; 9091 break; 9092 case 2: 9093 case 3: 9094 break; 9095 default: 9096 g_assert_not_reached(); 9097 } 9098 } 9099 9100 if (!fp_access_check(s)) { 9101 return; 9102 } 9103 9104 if (size == 3) { 9105 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 9106 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 9107 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 9108 { NULL, gen_helper_neon_qshl_u64 }, 9109 }; 9110 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 9111 int maxpass = is_q ? 2 : 1; 9112 9113 for (pass = 0; pass < maxpass; pass++) { 9114 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9115 9116 read_vec_element(s, tcg_op, rn, pass, MO_64); 9117 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9118 write_vec_element(s, tcg_op, rd, pass, MO_64); 9119 } 9120 clear_vec_high(s, is_q, rd); 9121 } else { 9122 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 9123 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 9124 { 9125 { gen_helper_neon_qshl_s8, 9126 gen_helper_neon_qshl_s16, 9127 gen_helper_neon_qshl_s32 }, 9128 { gen_helper_neon_qshlu_s8, 9129 gen_helper_neon_qshlu_s16, 9130 gen_helper_neon_qshlu_s32 } 9131 }, { 9132 { NULL, NULL, NULL }, 9133 { gen_helper_neon_qshl_u8, 9134 gen_helper_neon_qshl_u16, 9135 gen_helper_neon_qshl_u32 } 9136 } 9137 }; 9138 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 9139 MemOp memop = scalar ? size : MO_32; 9140 int maxpass = scalar ? 1 : is_q ? 4 : 2; 9141 9142 for (pass = 0; pass < maxpass; pass++) { 9143 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9144 9145 read_vec_element_i32(s, tcg_op, rn, pass, memop); 9146 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 9147 if (scalar) { 9148 switch (size) { 9149 case 0: 9150 tcg_gen_ext8u_i32(tcg_op, tcg_op); 9151 break; 9152 case 1: 9153 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9154 break; 9155 case 2: 9156 break; 9157 default: 9158 g_assert_not_reached(); 9159 } 9160 write_fp_sreg(s, rd, tcg_op); 9161 } else { 9162 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 9163 } 9164 } 9165 9166 if (!scalar) { 9167 clear_vec_high(s, is_q, rd); 9168 } 9169 } 9170 } 9171 9172 /* Common vector code for handling integer to FP conversion */ 9173 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 9174 int elements, int is_signed, 9175 int fracbits, int size) 9176 { 9177 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9178 TCGv_i32 tcg_shift = NULL; 9179 9180 MemOp mop = size | (is_signed ? MO_SIGN : 0); 9181 int pass; 9182 9183 if (fracbits || size == MO_64) { 9184 tcg_shift = tcg_constant_i32(fracbits); 9185 } 9186 9187 if (size == MO_64) { 9188 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 9189 TCGv_i64 tcg_double = tcg_temp_new_i64(); 9190 9191 for (pass = 0; pass < elements; pass++) { 9192 read_vec_element(s, tcg_int64, rn, pass, mop); 9193 9194 if (is_signed) { 9195 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 9196 tcg_shift, tcg_fpst); 9197 } else { 9198 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 9199 tcg_shift, tcg_fpst); 9200 } 9201 if (elements == 1) { 9202 write_fp_dreg(s, rd, tcg_double); 9203 } else { 9204 write_vec_element(s, tcg_double, rd, pass, MO_64); 9205 } 9206 } 9207 } else { 9208 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 9209 TCGv_i32 tcg_float = tcg_temp_new_i32(); 9210 9211 for (pass = 0; pass < elements; pass++) { 9212 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 9213 9214 switch (size) { 9215 case MO_32: 9216 if (fracbits) { 9217 if (is_signed) { 9218 gen_helper_vfp_sltos(tcg_float, tcg_int32, 9219 tcg_shift, tcg_fpst); 9220 } else { 9221 gen_helper_vfp_ultos(tcg_float, tcg_int32, 9222 tcg_shift, tcg_fpst); 9223 } 9224 } else { 9225 if (is_signed) { 9226 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 9227 } else { 9228 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 9229 } 9230 } 9231 break; 9232 case MO_16: 9233 if (fracbits) { 9234 if (is_signed) { 9235 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 9236 tcg_shift, tcg_fpst); 9237 } else { 9238 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 9239 tcg_shift, tcg_fpst); 9240 } 9241 } else { 9242 if (is_signed) { 9243 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 9244 } else { 9245 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 9246 } 9247 } 9248 break; 9249 default: 9250 g_assert_not_reached(); 9251 } 9252 9253 if (elements == 1) { 9254 write_fp_sreg(s, rd, tcg_float); 9255 } else { 9256 write_vec_element_i32(s, tcg_float, rd, pass, size); 9257 } 9258 } 9259 } 9260 9261 clear_vec_high(s, elements << size == 16, rd); 9262 } 9263 9264 /* UCVTF/SCVTF - Integer to FP conversion */ 9265 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 9266 bool is_q, bool is_u, 9267 int immh, int immb, int opcode, 9268 int rn, int rd) 9269 { 9270 int size, elements, fracbits; 9271 int immhb = immh << 3 | immb; 9272 9273 if (immh & 8) { 9274 size = MO_64; 9275 if (!is_scalar && !is_q) { 9276 unallocated_encoding(s); 9277 return; 9278 } 9279 } else if (immh & 4) { 9280 size = MO_32; 9281 } else if (immh & 2) { 9282 size = MO_16; 9283 if (!dc_isar_feature(aa64_fp16, s)) { 9284 unallocated_encoding(s); 9285 return; 9286 } 9287 } else { 9288 /* immh == 0 would be a failure of the decode logic */ 9289 g_assert(immh == 1); 9290 unallocated_encoding(s); 9291 return; 9292 } 9293 9294 if (is_scalar) { 9295 elements = 1; 9296 } else { 9297 elements = (8 << is_q) >> size; 9298 } 9299 fracbits = (16 << size) - immhb; 9300 9301 if (!fp_access_check(s)) { 9302 return; 9303 } 9304 9305 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9306 } 9307 9308 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9309 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9310 bool is_q, bool is_u, 9311 int immh, int immb, int rn, int rd) 9312 { 9313 int immhb = immh << 3 | immb; 9314 int pass, size, fracbits; 9315 TCGv_ptr tcg_fpstatus; 9316 TCGv_i32 tcg_rmode, tcg_shift; 9317 9318 if (immh & 0x8) { 9319 size = MO_64; 9320 if (!is_scalar && !is_q) { 9321 unallocated_encoding(s); 9322 return; 9323 } 9324 } else if (immh & 0x4) { 9325 size = MO_32; 9326 } else if (immh & 0x2) { 9327 size = MO_16; 9328 if (!dc_isar_feature(aa64_fp16, s)) { 9329 unallocated_encoding(s); 9330 return; 9331 } 9332 } else { 9333 /* Should have split out AdvSIMD modified immediate earlier. */ 9334 assert(immh == 1); 9335 unallocated_encoding(s); 9336 return; 9337 } 9338 9339 if (!fp_access_check(s)) { 9340 return; 9341 } 9342 9343 assert(!(is_scalar && is_q)); 9344 9345 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9346 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9347 fracbits = (16 << size) - immhb; 9348 tcg_shift = tcg_constant_i32(fracbits); 9349 9350 if (size == MO_64) { 9351 int maxpass = is_scalar ? 1 : 2; 9352 9353 for (pass = 0; pass < maxpass; pass++) { 9354 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9355 9356 read_vec_element(s, tcg_op, rn, pass, MO_64); 9357 if (is_u) { 9358 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9359 } else { 9360 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9361 } 9362 write_vec_element(s, tcg_op, rd, pass, MO_64); 9363 } 9364 clear_vec_high(s, is_q, rd); 9365 } else { 9366 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9367 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9368 9369 switch (size) { 9370 case MO_16: 9371 if (is_u) { 9372 fn = gen_helper_vfp_touhh; 9373 } else { 9374 fn = gen_helper_vfp_toshh; 9375 } 9376 break; 9377 case MO_32: 9378 if (is_u) { 9379 fn = gen_helper_vfp_touls; 9380 } else { 9381 fn = gen_helper_vfp_tosls; 9382 } 9383 break; 9384 default: 9385 g_assert_not_reached(); 9386 } 9387 9388 for (pass = 0; pass < maxpass; pass++) { 9389 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9390 9391 read_vec_element_i32(s, tcg_op, rn, pass, size); 9392 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9393 if (is_scalar) { 9394 if (size == MO_16 && !is_u) { 9395 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9396 } 9397 write_fp_sreg(s, rd, tcg_op); 9398 } else { 9399 write_vec_element_i32(s, tcg_op, rd, pass, size); 9400 } 9401 } 9402 if (!is_scalar) { 9403 clear_vec_high(s, is_q, rd); 9404 } 9405 } 9406 9407 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9408 } 9409 9410 /* AdvSIMD scalar shift by immediate 9411 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9412 * +-----+---+-------------+------+------+--------+---+------+------+ 9413 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9414 * +-----+---+-------------+------+------+--------+---+------+------+ 9415 * 9416 * This is the scalar version so it works on a fixed sized registers 9417 */ 9418 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9419 { 9420 int rd = extract32(insn, 0, 5); 9421 int rn = extract32(insn, 5, 5); 9422 int opcode = extract32(insn, 11, 5); 9423 int immb = extract32(insn, 16, 3); 9424 int immh = extract32(insn, 19, 4); 9425 bool is_u = extract32(insn, 29, 1); 9426 9427 if (immh == 0) { 9428 unallocated_encoding(s); 9429 return; 9430 } 9431 9432 switch (opcode) { 9433 case 0x08: /* SRI */ 9434 if (!is_u) { 9435 unallocated_encoding(s); 9436 return; 9437 } 9438 /* fall through */ 9439 case 0x00: /* SSHR / USHR */ 9440 case 0x02: /* SSRA / USRA */ 9441 case 0x04: /* SRSHR / URSHR */ 9442 case 0x06: /* SRSRA / URSRA */ 9443 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9444 break; 9445 case 0x0a: /* SHL / SLI */ 9446 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9447 break; 9448 case 0x1c: /* SCVTF, UCVTF */ 9449 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9450 opcode, rn, rd); 9451 break; 9452 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9453 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9454 if (!is_u) { 9455 unallocated_encoding(s); 9456 return; 9457 } 9458 handle_vec_simd_sqshrn(s, true, false, false, true, 9459 immh, immb, opcode, rn, rd); 9460 break; 9461 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9462 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9463 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9464 immh, immb, opcode, rn, rd); 9465 break; 9466 case 0xc: /* SQSHLU */ 9467 if (!is_u) { 9468 unallocated_encoding(s); 9469 return; 9470 } 9471 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9472 break; 9473 case 0xe: /* SQSHL, UQSHL */ 9474 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9475 break; 9476 case 0x1f: /* FCVTZS, FCVTZU */ 9477 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9478 break; 9479 default: 9480 unallocated_encoding(s); 9481 break; 9482 } 9483 } 9484 9485 /* AdvSIMD scalar three different 9486 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9487 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9488 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9489 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9490 */ 9491 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9492 { 9493 bool is_u = extract32(insn, 29, 1); 9494 int size = extract32(insn, 22, 2); 9495 int opcode = extract32(insn, 12, 4); 9496 int rm = extract32(insn, 16, 5); 9497 int rn = extract32(insn, 5, 5); 9498 int rd = extract32(insn, 0, 5); 9499 9500 if (is_u) { 9501 unallocated_encoding(s); 9502 return; 9503 } 9504 9505 switch (opcode) { 9506 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9507 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9508 case 0xd: /* SQDMULL, SQDMULL2 */ 9509 if (size == 0 || size == 3) { 9510 unallocated_encoding(s); 9511 return; 9512 } 9513 break; 9514 default: 9515 unallocated_encoding(s); 9516 return; 9517 } 9518 9519 if (!fp_access_check(s)) { 9520 return; 9521 } 9522 9523 if (size == 2) { 9524 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9525 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9526 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9527 9528 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9529 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9530 9531 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9532 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9533 9534 switch (opcode) { 9535 case 0xd: /* SQDMULL, SQDMULL2 */ 9536 break; 9537 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9538 tcg_gen_neg_i64(tcg_res, tcg_res); 9539 /* fall through */ 9540 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9541 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9542 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9543 tcg_res, tcg_op1); 9544 break; 9545 default: 9546 g_assert_not_reached(); 9547 } 9548 9549 write_fp_dreg(s, rd, tcg_res); 9550 } else { 9551 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9552 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9553 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9554 9555 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9556 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9557 9558 switch (opcode) { 9559 case 0xd: /* SQDMULL, SQDMULL2 */ 9560 break; 9561 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9562 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9563 /* fall through */ 9564 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9565 { 9566 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9567 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9568 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9569 tcg_res, tcg_op3); 9570 break; 9571 } 9572 default: 9573 g_assert_not_reached(); 9574 } 9575 9576 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9577 write_fp_dreg(s, rd, tcg_res); 9578 } 9579 } 9580 9581 /* AdvSIMD scalar three same extra 9582 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9583 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9584 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9585 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9586 */ 9587 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9588 uint32_t insn) 9589 { 9590 int rd = extract32(insn, 0, 5); 9591 int rn = extract32(insn, 5, 5); 9592 int opcode = extract32(insn, 11, 4); 9593 int rm = extract32(insn, 16, 5); 9594 int size = extract32(insn, 22, 2); 9595 bool u = extract32(insn, 29, 1); 9596 TCGv_i32 ele1, ele2, ele3; 9597 TCGv_i64 res; 9598 bool feature; 9599 9600 switch (u * 16 + opcode) { 9601 case 0x10: /* SQRDMLAH (vector) */ 9602 case 0x11: /* SQRDMLSH (vector) */ 9603 if (size != 1 && size != 2) { 9604 unallocated_encoding(s); 9605 return; 9606 } 9607 feature = dc_isar_feature(aa64_rdm, s); 9608 break; 9609 default: 9610 unallocated_encoding(s); 9611 return; 9612 } 9613 if (!feature) { 9614 unallocated_encoding(s); 9615 return; 9616 } 9617 if (!fp_access_check(s)) { 9618 return; 9619 } 9620 9621 /* Do a single operation on the lowest element in the vector. 9622 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9623 * with no side effects for all these operations. 9624 * OPTME: special-purpose helpers would avoid doing some 9625 * unnecessary work in the helper for the 16 bit cases. 9626 */ 9627 ele1 = tcg_temp_new_i32(); 9628 ele2 = tcg_temp_new_i32(); 9629 ele3 = tcg_temp_new_i32(); 9630 9631 read_vec_element_i32(s, ele1, rn, 0, size); 9632 read_vec_element_i32(s, ele2, rm, 0, size); 9633 read_vec_element_i32(s, ele3, rd, 0, size); 9634 9635 switch (opcode) { 9636 case 0x0: /* SQRDMLAH */ 9637 if (size == 1) { 9638 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9639 } else { 9640 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9641 } 9642 break; 9643 case 0x1: /* SQRDMLSH */ 9644 if (size == 1) { 9645 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9646 } else { 9647 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9648 } 9649 break; 9650 default: 9651 g_assert_not_reached(); 9652 } 9653 9654 res = tcg_temp_new_i64(); 9655 tcg_gen_extu_i32_i64(res, ele3); 9656 write_fp_dreg(s, rd, res); 9657 } 9658 9659 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9660 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9661 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9662 { 9663 /* Handle 64->64 opcodes which are shared between the scalar and 9664 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9665 * is valid in either group and also the double-precision fp ops. 9666 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9667 * requires them. 9668 */ 9669 TCGCond cond; 9670 9671 switch (opcode) { 9672 case 0x4: /* CLS, CLZ */ 9673 if (u) { 9674 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9675 } else { 9676 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9677 } 9678 break; 9679 case 0x5: /* NOT */ 9680 /* This opcode is shared with CNT and RBIT but we have earlier 9681 * enforced that size == 3 if and only if this is the NOT insn. 9682 */ 9683 tcg_gen_not_i64(tcg_rd, tcg_rn); 9684 break; 9685 case 0x7: /* SQABS, SQNEG */ 9686 if (u) { 9687 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9688 } else { 9689 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9690 } 9691 break; 9692 case 0xa: /* CMLT */ 9693 cond = TCG_COND_LT; 9694 do_cmop: 9695 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9696 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9697 break; 9698 case 0x8: /* CMGT, CMGE */ 9699 cond = u ? TCG_COND_GE : TCG_COND_GT; 9700 goto do_cmop; 9701 case 0x9: /* CMEQ, CMLE */ 9702 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9703 goto do_cmop; 9704 case 0xb: /* ABS, NEG */ 9705 if (u) { 9706 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9707 } else { 9708 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9709 } 9710 break; 9711 case 0x2f: /* FABS */ 9712 gen_vfp_absd(tcg_rd, tcg_rn); 9713 break; 9714 case 0x6f: /* FNEG */ 9715 gen_vfp_negd(tcg_rd, tcg_rn); 9716 break; 9717 case 0x7f: /* FSQRT */ 9718 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9719 break; 9720 case 0x1a: /* FCVTNS */ 9721 case 0x1b: /* FCVTMS */ 9722 case 0x1c: /* FCVTAS */ 9723 case 0x3a: /* FCVTPS */ 9724 case 0x3b: /* FCVTZS */ 9725 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9726 break; 9727 case 0x5a: /* FCVTNU */ 9728 case 0x5b: /* FCVTMU */ 9729 case 0x5c: /* FCVTAU */ 9730 case 0x7a: /* FCVTPU */ 9731 case 0x7b: /* FCVTZU */ 9732 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9733 break; 9734 case 0x18: /* FRINTN */ 9735 case 0x19: /* FRINTM */ 9736 case 0x38: /* FRINTP */ 9737 case 0x39: /* FRINTZ */ 9738 case 0x58: /* FRINTA */ 9739 case 0x79: /* FRINTI */ 9740 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9741 break; 9742 case 0x59: /* FRINTX */ 9743 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9744 break; 9745 case 0x1e: /* FRINT32Z */ 9746 case 0x5e: /* FRINT32X */ 9747 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9748 break; 9749 case 0x1f: /* FRINT64Z */ 9750 case 0x5f: /* FRINT64X */ 9751 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9752 break; 9753 default: 9754 g_assert_not_reached(); 9755 } 9756 } 9757 9758 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9759 bool is_scalar, bool is_u, bool is_q, 9760 int size, int rn, int rd) 9761 { 9762 bool is_double = (size == MO_64); 9763 TCGv_ptr fpst; 9764 9765 if (!fp_access_check(s)) { 9766 return; 9767 } 9768 9769 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9770 9771 if (is_double) { 9772 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9773 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9774 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9775 NeonGenTwoDoubleOpFn *genfn; 9776 bool swap = false; 9777 int pass; 9778 9779 switch (opcode) { 9780 case 0x2e: /* FCMLT (zero) */ 9781 swap = true; 9782 /* fallthrough */ 9783 case 0x2c: /* FCMGT (zero) */ 9784 genfn = gen_helper_neon_cgt_f64; 9785 break; 9786 case 0x2d: /* FCMEQ (zero) */ 9787 genfn = gen_helper_neon_ceq_f64; 9788 break; 9789 case 0x6d: /* FCMLE (zero) */ 9790 swap = true; 9791 /* fall through */ 9792 case 0x6c: /* FCMGE (zero) */ 9793 genfn = gen_helper_neon_cge_f64; 9794 break; 9795 default: 9796 g_assert_not_reached(); 9797 } 9798 9799 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9800 read_vec_element(s, tcg_op, rn, pass, MO_64); 9801 if (swap) { 9802 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9803 } else { 9804 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9805 } 9806 write_vec_element(s, tcg_res, rd, pass, MO_64); 9807 } 9808 9809 clear_vec_high(s, !is_scalar, rd); 9810 } else { 9811 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9812 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9813 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9814 NeonGenTwoSingleOpFn *genfn; 9815 bool swap = false; 9816 int pass, maxpasses; 9817 9818 if (size == MO_16) { 9819 switch (opcode) { 9820 case 0x2e: /* FCMLT (zero) */ 9821 swap = true; 9822 /* fall through */ 9823 case 0x2c: /* FCMGT (zero) */ 9824 genfn = gen_helper_advsimd_cgt_f16; 9825 break; 9826 case 0x2d: /* FCMEQ (zero) */ 9827 genfn = gen_helper_advsimd_ceq_f16; 9828 break; 9829 case 0x6d: /* FCMLE (zero) */ 9830 swap = true; 9831 /* fall through */ 9832 case 0x6c: /* FCMGE (zero) */ 9833 genfn = gen_helper_advsimd_cge_f16; 9834 break; 9835 default: 9836 g_assert_not_reached(); 9837 } 9838 } else { 9839 switch (opcode) { 9840 case 0x2e: /* FCMLT (zero) */ 9841 swap = true; 9842 /* fall through */ 9843 case 0x2c: /* FCMGT (zero) */ 9844 genfn = gen_helper_neon_cgt_f32; 9845 break; 9846 case 0x2d: /* FCMEQ (zero) */ 9847 genfn = gen_helper_neon_ceq_f32; 9848 break; 9849 case 0x6d: /* FCMLE (zero) */ 9850 swap = true; 9851 /* fall through */ 9852 case 0x6c: /* FCMGE (zero) */ 9853 genfn = gen_helper_neon_cge_f32; 9854 break; 9855 default: 9856 g_assert_not_reached(); 9857 } 9858 } 9859 9860 if (is_scalar) { 9861 maxpasses = 1; 9862 } else { 9863 int vector_size = 8 << is_q; 9864 maxpasses = vector_size >> size; 9865 } 9866 9867 for (pass = 0; pass < maxpasses; pass++) { 9868 read_vec_element_i32(s, tcg_op, rn, pass, size); 9869 if (swap) { 9870 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9871 } else { 9872 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9873 } 9874 if (is_scalar) { 9875 write_fp_sreg(s, rd, tcg_res); 9876 } else { 9877 write_vec_element_i32(s, tcg_res, rd, pass, size); 9878 } 9879 } 9880 9881 if (!is_scalar) { 9882 clear_vec_high(s, is_q, rd); 9883 } 9884 } 9885 } 9886 9887 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9888 bool is_scalar, bool is_u, bool is_q, 9889 int size, int rn, int rd) 9890 { 9891 bool is_double = (size == 3); 9892 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9893 9894 if (is_double) { 9895 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9896 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9897 int pass; 9898 9899 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9900 read_vec_element(s, tcg_op, rn, pass, MO_64); 9901 switch (opcode) { 9902 case 0x3d: /* FRECPE */ 9903 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9904 break; 9905 case 0x3f: /* FRECPX */ 9906 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9907 break; 9908 case 0x7d: /* FRSQRTE */ 9909 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9910 break; 9911 default: 9912 g_assert_not_reached(); 9913 } 9914 write_vec_element(s, tcg_res, rd, pass, MO_64); 9915 } 9916 clear_vec_high(s, !is_scalar, rd); 9917 } else { 9918 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9919 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9920 int pass, maxpasses; 9921 9922 if (is_scalar) { 9923 maxpasses = 1; 9924 } else { 9925 maxpasses = is_q ? 4 : 2; 9926 } 9927 9928 for (pass = 0; pass < maxpasses; pass++) { 9929 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9930 9931 switch (opcode) { 9932 case 0x3c: /* URECPE */ 9933 gen_helper_recpe_u32(tcg_res, tcg_op); 9934 break; 9935 case 0x3d: /* FRECPE */ 9936 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9937 break; 9938 case 0x3f: /* FRECPX */ 9939 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9940 break; 9941 case 0x7d: /* FRSQRTE */ 9942 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9943 break; 9944 default: 9945 g_assert_not_reached(); 9946 } 9947 9948 if (is_scalar) { 9949 write_fp_sreg(s, rd, tcg_res); 9950 } else { 9951 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9952 } 9953 } 9954 if (!is_scalar) { 9955 clear_vec_high(s, is_q, rd); 9956 } 9957 } 9958 } 9959 9960 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9961 int opcode, bool u, bool is_q, 9962 int size, int rn, int rd) 9963 { 9964 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9965 * in the source becomes a size element in the destination). 9966 */ 9967 int pass; 9968 TCGv_i32 tcg_res[2]; 9969 int destelt = is_q ? 2 : 0; 9970 int passes = scalar ? 1 : 2; 9971 9972 if (scalar) { 9973 tcg_res[1] = tcg_constant_i32(0); 9974 } 9975 9976 for (pass = 0; pass < passes; pass++) { 9977 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9978 NeonGenNarrowFn *genfn = NULL; 9979 NeonGenNarrowEnvFn *genenvfn = NULL; 9980 9981 if (scalar) { 9982 read_vec_element(s, tcg_op, rn, pass, size + 1); 9983 } else { 9984 read_vec_element(s, tcg_op, rn, pass, MO_64); 9985 } 9986 tcg_res[pass] = tcg_temp_new_i32(); 9987 9988 switch (opcode) { 9989 case 0x12: /* XTN, SQXTUN */ 9990 { 9991 static NeonGenNarrowFn * const xtnfns[3] = { 9992 gen_helper_neon_narrow_u8, 9993 gen_helper_neon_narrow_u16, 9994 tcg_gen_extrl_i64_i32, 9995 }; 9996 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9997 gen_helper_neon_unarrow_sat8, 9998 gen_helper_neon_unarrow_sat16, 9999 gen_helper_neon_unarrow_sat32, 10000 }; 10001 if (u) { 10002 genenvfn = sqxtunfns[size]; 10003 } else { 10004 genfn = xtnfns[size]; 10005 } 10006 break; 10007 } 10008 case 0x14: /* SQXTN, UQXTN */ 10009 { 10010 static NeonGenNarrowEnvFn * const fns[3][2] = { 10011 { gen_helper_neon_narrow_sat_s8, 10012 gen_helper_neon_narrow_sat_u8 }, 10013 { gen_helper_neon_narrow_sat_s16, 10014 gen_helper_neon_narrow_sat_u16 }, 10015 { gen_helper_neon_narrow_sat_s32, 10016 gen_helper_neon_narrow_sat_u32 }, 10017 }; 10018 genenvfn = fns[size][u]; 10019 break; 10020 } 10021 case 0x16: /* FCVTN, FCVTN2 */ 10022 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10023 if (size == 2) { 10024 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10025 } else { 10026 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10027 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10028 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10029 TCGv_i32 ahp = get_ahp_flag(); 10030 10031 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10032 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10033 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10034 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10035 } 10036 break; 10037 case 0x36: /* BFCVTN, BFCVTN2 */ 10038 { 10039 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10040 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10041 } 10042 break; 10043 case 0x56: /* FCVTXN, FCVTXN2 */ 10044 /* 64 bit to 32 bit float conversion 10045 * with von Neumann rounding (round to odd) 10046 */ 10047 assert(size == 2); 10048 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10049 break; 10050 default: 10051 g_assert_not_reached(); 10052 } 10053 10054 if (genfn) { 10055 genfn(tcg_res[pass], tcg_op); 10056 } else if (genenvfn) { 10057 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10058 } 10059 } 10060 10061 for (pass = 0; pass < 2; pass++) { 10062 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10063 } 10064 clear_vec_high(s, is_q, rd); 10065 } 10066 10067 /* AdvSIMD scalar two reg misc 10068 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10069 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10070 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10071 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10072 */ 10073 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10074 { 10075 int rd = extract32(insn, 0, 5); 10076 int rn = extract32(insn, 5, 5); 10077 int opcode = extract32(insn, 12, 5); 10078 int size = extract32(insn, 22, 2); 10079 bool u = extract32(insn, 29, 1); 10080 bool is_fcvt = false; 10081 int rmode; 10082 TCGv_i32 tcg_rmode; 10083 TCGv_ptr tcg_fpstatus; 10084 10085 switch (opcode) { 10086 case 0x7: /* SQABS / SQNEG */ 10087 break; 10088 case 0xa: /* CMLT */ 10089 if (u) { 10090 unallocated_encoding(s); 10091 return; 10092 } 10093 /* fall through */ 10094 case 0x8: /* CMGT, CMGE */ 10095 case 0x9: /* CMEQ, CMLE */ 10096 case 0xb: /* ABS, NEG */ 10097 if (size != 3) { 10098 unallocated_encoding(s); 10099 return; 10100 } 10101 break; 10102 case 0x12: /* SQXTUN */ 10103 if (!u) { 10104 unallocated_encoding(s); 10105 return; 10106 } 10107 /* fall through */ 10108 case 0x14: /* SQXTN, UQXTN */ 10109 if (size == 3) { 10110 unallocated_encoding(s); 10111 return; 10112 } 10113 if (!fp_access_check(s)) { 10114 return; 10115 } 10116 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10117 return; 10118 case 0xc ... 0xf: 10119 case 0x16 ... 0x1d: 10120 case 0x1f: 10121 /* Floating point: U, size[1] and opcode indicate operation; 10122 * size[0] indicates single or double precision. 10123 */ 10124 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10125 size = extract32(size, 0, 1) ? 3 : 2; 10126 switch (opcode) { 10127 case 0x2c: /* FCMGT (zero) */ 10128 case 0x2d: /* FCMEQ (zero) */ 10129 case 0x2e: /* FCMLT (zero) */ 10130 case 0x6c: /* FCMGE (zero) */ 10131 case 0x6d: /* FCMLE (zero) */ 10132 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10133 return; 10134 case 0x1d: /* SCVTF */ 10135 case 0x5d: /* UCVTF */ 10136 { 10137 bool is_signed = (opcode == 0x1d); 10138 if (!fp_access_check(s)) { 10139 return; 10140 } 10141 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10142 return; 10143 } 10144 case 0x3d: /* FRECPE */ 10145 case 0x3f: /* FRECPX */ 10146 case 0x7d: /* FRSQRTE */ 10147 if (!fp_access_check(s)) { 10148 return; 10149 } 10150 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10151 return; 10152 case 0x1a: /* FCVTNS */ 10153 case 0x1b: /* FCVTMS */ 10154 case 0x3a: /* FCVTPS */ 10155 case 0x3b: /* FCVTZS */ 10156 case 0x5a: /* FCVTNU */ 10157 case 0x5b: /* FCVTMU */ 10158 case 0x7a: /* FCVTPU */ 10159 case 0x7b: /* FCVTZU */ 10160 is_fcvt = true; 10161 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10162 break; 10163 case 0x1c: /* FCVTAS */ 10164 case 0x5c: /* FCVTAU */ 10165 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10166 is_fcvt = true; 10167 rmode = FPROUNDING_TIEAWAY; 10168 break; 10169 case 0x56: /* FCVTXN, FCVTXN2 */ 10170 if (size == 2) { 10171 unallocated_encoding(s); 10172 return; 10173 } 10174 if (!fp_access_check(s)) { 10175 return; 10176 } 10177 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10178 return; 10179 default: 10180 unallocated_encoding(s); 10181 return; 10182 } 10183 break; 10184 default: 10185 case 0x3: /* USQADD / SUQADD */ 10186 unallocated_encoding(s); 10187 return; 10188 } 10189 10190 if (!fp_access_check(s)) { 10191 return; 10192 } 10193 10194 if (is_fcvt) { 10195 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10196 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10197 } else { 10198 tcg_fpstatus = NULL; 10199 tcg_rmode = NULL; 10200 } 10201 10202 if (size == 3) { 10203 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10204 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10205 10206 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10207 write_fp_dreg(s, rd, tcg_rd); 10208 } else { 10209 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10210 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10211 10212 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10213 10214 switch (opcode) { 10215 case 0x7: /* SQABS, SQNEG */ 10216 { 10217 NeonGenOneOpEnvFn *genfn; 10218 static NeonGenOneOpEnvFn * const fns[3][2] = { 10219 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10220 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10221 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10222 }; 10223 genfn = fns[size][u]; 10224 genfn(tcg_rd, tcg_env, tcg_rn); 10225 break; 10226 } 10227 case 0x1a: /* FCVTNS */ 10228 case 0x1b: /* FCVTMS */ 10229 case 0x1c: /* FCVTAS */ 10230 case 0x3a: /* FCVTPS */ 10231 case 0x3b: /* FCVTZS */ 10232 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10233 tcg_fpstatus); 10234 break; 10235 case 0x5a: /* FCVTNU */ 10236 case 0x5b: /* FCVTMU */ 10237 case 0x5c: /* FCVTAU */ 10238 case 0x7a: /* FCVTPU */ 10239 case 0x7b: /* FCVTZU */ 10240 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10241 tcg_fpstatus); 10242 break; 10243 default: 10244 g_assert_not_reached(); 10245 } 10246 10247 write_fp_sreg(s, rd, tcg_rd); 10248 } 10249 10250 if (is_fcvt) { 10251 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10252 } 10253 } 10254 10255 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10256 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10257 int immh, int immb, int opcode, int rn, int rd) 10258 { 10259 int size = 32 - clz32(immh) - 1; 10260 int immhb = immh << 3 | immb; 10261 int shift = 2 * (8 << size) - immhb; 10262 GVecGen2iFn *gvec_fn; 10263 10264 if (extract32(immh, 3, 1) && !is_q) { 10265 unallocated_encoding(s); 10266 return; 10267 } 10268 tcg_debug_assert(size <= 3); 10269 10270 if (!fp_access_check(s)) { 10271 return; 10272 } 10273 10274 switch (opcode) { 10275 case 0x02: /* SSRA / USRA (accumulate) */ 10276 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10277 break; 10278 10279 case 0x08: /* SRI */ 10280 gvec_fn = gen_gvec_sri; 10281 break; 10282 10283 case 0x00: /* SSHR / USHR */ 10284 if (is_u) { 10285 if (shift == 8 << size) { 10286 /* Shift count the same size as element size produces zero. */ 10287 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10288 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10289 return; 10290 } 10291 gvec_fn = tcg_gen_gvec_shri; 10292 } else { 10293 /* Shift count the same size as element size produces all sign. */ 10294 if (shift == 8 << size) { 10295 shift -= 1; 10296 } 10297 gvec_fn = tcg_gen_gvec_sari; 10298 } 10299 break; 10300 10301 case 0x04: /* SRSHR / URSHR (rounding) */ 10302 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10303 break; 10304 10305 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10306 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10307 break; 10308 10309 default: 10310 g_assert_not_reached(); 10311 } 10312 10313 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10314 } 10315 10316 /* SHL/SLI - Vector shift left */ 10317 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10318 int immh, int immb, int opcode, int rn, int rd) 10319 { 10320 int size = 32 - clz32(immh) - 1; 10321 int immhb = immh << 3 | immb; 10322 int shift = immhb - (8 << size); 10323 10324 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10325 assert(size >= 0 && size <= 3); 10326 10327 if (extract32(immh, 3, 1) && !is_q) { 10328 unallocated_encoding(s); 10329 return; 10330 } 10331 10332 if (!fp_access_check(s)) { 10333 return; 10334 } 10335 10336 if (insert) { 10337 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10338 } else { 10339 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10340 } 10341 } 10342 10343 /* USHLL/SHLL - Vector shift left with widening */ 10344 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10345 int immh, int immb, int opcode, int rn, int rd) 10346 { 10347 int size = 32 - clz32(immh) - 1; 10348 int immhb = immh << 3 | immb; 10349 int shift = immhb - (8 << size); 10350 int dsize = 64; 10351 int esize = 8 << size; 10352 int elements = dsize/esize; 10353 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10354 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10355 int i; 10356 10357 if (size >= 3) { 10358 unallocated_encoding(s); 10359 return; 10360 } 10361 10362 if (!fp_access_check(s)) { 10363 return; 10364 } 10365 10366 /* For the LL variants the store is larger than the load, 10367 * so if rd == rn we would overwrite parts of our input. 10368 * So load everything right now and use shifts in the main loop. 10369 */ 10370 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10371 10372 for (i = 0; i < elements; i++) { 10373 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10374 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10375 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10376 write_vec_element(s, tcg_rd, rd, i, size + 1); 10377 } 10378 } 10379 10380 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10381 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10382 int immh, int immb, int opcode, int rn, int rd) 10383 { 10384 int immhb = immh << 3 | immb; 10385 int size = 32 - clz32(immh) - 1; 10386 int dsize = 64; 10387 int esize = 8 << size; 10388 int elements = dsize/esize; 10389 int shift = (2 * esize) - immhb; 10390 bool round = extract32(opcode, 0, 1); 10391 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10392 TCGv_i64 tcg_round; 10393 int i; 10394 10395 if (extract32(immh, 3, 1)) { 10396 unallocated_encoding(s); 10397 return; 10398 } 10399 10400 if (!fp_access_check(s)) { 10401 return; 10402 } 10403 10404 tcg_rn = tcg_temp_new_i64(); 10405 tcg_rd = tcg_temp_new_i64(); 10406 tcg_final = tcg_temp_new_i64(); 10407 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10408 10409 if (round) { 10410 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10411 } else { 10412 tcg_round = NULL; 10413 } 10414 10415 for (i = 0; i < elements; i++) { 10416 read_vec_element(s, tcg_rn, rn, i, size+1); 10417 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10418 false, true, size+1, shift); 10419 10420 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10421 } 10422 10423 if (!is_q) { 10424 write_vec_element(s, tcg_final, rd, 0, MO_64); 10425 } else { 10426 write_vec_element(s, tcg_final, rd, 1, MO_64); 10427 } 10428 10429 clear_vec_high(s, is_q, rd); 10430 } 10431 10432 10433 /* AdvSIMD shift by immediate 10434 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10435 * +---+---+---+-------------+------+------+--------+---+------+------+ 10436 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10437 * +---+---+---+-------------+------+------+--------+---+------+------+ 10438 */ 10439 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10440 { 10441 int rd = extract32(insn, 0, 5); 10442 int rn = extract32(insn, 5, 5); 10443 int opcode = extract32(insn, 11, 5); 10444 int immb = extract32(insn, 16, 3); 10445 int immh = extract32(insn, 19, 4); 10446 bool is_u = extract32(insn, 29, 1); 10447 bool is_q = extract32(insn, 30, 1); 10448 10449 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10450 assert(immh != 0); 10451 10452 switch (opcode) { 10453 case 0x08: /* SRI */ 10454 if (!is_u) { 10455 unallocated_encoding(s); 10456 return; 10457 } 10458 /* fall through */ 10459 case 0x00: /* SSHR / USHR */ 10460 case 0x02: /* SSRA / USRA (accumulate) */ 10461 case 0x04: /* SRSHR / URSHR (rounding) */ 10462 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10463 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10464 break; 10465 case 0x0a: /* SHL / SLI */ 10466 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10467 break; 10468 case 0x10: /* SHRN */ 10469 case 0x11: /* RSHRN / SQRSHRUN */ 10470 if (is_u) { 10471 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10472 opcode, rn, rd); 10473 } else { 10474 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10475 } 10476 break; 10477 case 0x12: /* SQSHRN / UQSHRN */ 10478 case 0x13: /* SQRSHRN / UQRSHRN */ 10479 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10480 opcode, rn, rd); 10481 break; 10482 case 0x14: /* SSHLL / USHLL */ 10483 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10484 break; 10485 case 0x1c: /* SCVTF / UCVTF */ 10486 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10487 opcode, rn, rd); 10488 break; 10489 case 0xc: /* SQSHLU */ 10490 if (!is_u) { 10491 unallocated_encoding(s); 10492 return; 10493 } 10494 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10495 break; 10496 case 0xe: /* SQSHL, UQSHL */ 10497 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10498 break; 10499 case 0x1f: /* FCVTZS/ FCVTZU */ 10500 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10501 return; 10502 default: 10503 unallocated_encoding(s); 10504 return; 10505 } 10506 } 10507 10508 /* Generate code to do a "long" addition or subtraction, ie one done in 10509 * TCGv_i64 on vector lanes twice the width specified by size. 10510 */ 10511 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10512 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10513 { 10514 static NeonGenTwo64OpFn * const fns[3][2] = { 10515 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10516 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10517 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10518 }; 10519 NeonGenTwo64OpFn *genfn; 10520 assert(size < 3); 10521 10522 genfn = fns[size][is_sub]; 10523 genfn(tcg_res, tcg_op1, tcg_op2); 10524 } 10525 10526 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10527 int opcode, int rd, int rn, int rm) 10528 { 10529 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10530 TCGv_i64 tcg_res[2]; 10531 int pass, accop; 10532 10533 tcg_res[0] = tcg_temp_new_i64(); 10534 tcg_res[1] = tcg_temp_new_i64(); 10535 10536 /* Does this op do an adding accumulate, a subtracting accumulate, 10537 * or no accumulate at all? 10538 */ 10539 switch (opcode) { 10540 case 5: 10541 case 8: 10542 case 9: 10543 accop = 1; 10544 break; 10545 case 10: 10546 case 11: 10547 accop = -1; 10548 break; 10549 default: 10550 accop = 0; 10551 break; 10552 } 10553 10554 if (accop != 0) { 10555 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10556 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10557 } 10558 10559 /* size == 2 means two 32x32->64 operations; this is worth special 10560 * casing because we can generally handle it inline. 10561 */ 10562 if (size == 2) { 10563 for (pass = 0; pass < 2; pass++) { 10564 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10565 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10566 TCGv_i64 tcg_passres; 10567 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10568 10569 int elt = pass + is_q * 2; 10570 10571 read_vec_element(s, tcg_op1, rn, elt, memop); 10572 read_vec_element(s, tcg_op2, rm, elt, memop); 10573 10574 if (accop == 0) { 10575 tcg_passres = tcg_res[pass]; 10576 } else { 10577 tcg_passres = tcg_temp_new_i64(); 10578 } 10579 10580 switch (opcode) { 10581 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10582 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10583 break; 10584 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10585 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10586 break; 10587 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10588 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10589 { 10590 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10591 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10592 10593 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10594 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10595 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10596 tcg_passres, 10597 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10598 break; 10599 } 10600 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10601 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10602 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10603 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10604 break; 10605 case 9: /* SQDMLAL, SQDMLAL2 */ 10606 case 11: /* SQDMLSL, SQDMLSL2 */ 10607 case 13: /* SQDMULL, SQDMULL2 */ 10608 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10609 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10610 tcg_passres, tcg_passres); 10611 break; 10612 default: 10613 g_assert_not_reached(); 10614 } 10615 10616 if (opcode == 9 || opcode == 11) { 10617 /* saturating accumulate ops */ 10618 if (accop < 0) { 10619 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10620 } 10621 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10622 tcg_res[pass], tcg_passres); 10623 } else if (accop > 0) { 10624 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10625 } else if (accop < 0) { 10626 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10627 } 10628 } 10629 } else { 10630 /* size 0 or 1, generally helper functions */ 10631 for (pass = 0; pass < 2; pass++) { 10632 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10633 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10634 TCGv_i64 tcg_passres; 10635 int elt = pass + is_q * 2; 10636 10637 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10638 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10639 10640 if (accop == 0) { 10641 tcg_passres = tcg_res[pass]; 10642 } else { 10643 tcg_passres = tcg_temp_new_i64(); 10644 } 10645 10646 switch (opcode) { 10647 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10648 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10649 { 10650 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10651 static NeonGenWidenFn * const widenfns[2][2] = { 10652 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10653 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10654 }; 10655 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10656 10657 widenfn(tcg_op2_64, tcg_op2); 10658 widenfn(tcg_passres, tcg_op1); 10659 gen_neon_addl(size, (opcode == 2), tcg_passres, 10660 tcg_passres, tcg_op2_64); 10661 break; 10662 } 10663 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10664 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10665 if (size == 0) { 10666 if (is_u) { 10667 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10668 } else { 10669 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10670 } 10671 } else { 10672 if (is_u) { 10673 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10674 } else { 10675 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10676 } 10677 } 10678 break; 10679 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10680 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10681 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10682 if (size == 0) { 10683 if (is_u) { 10684 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10685 } else { 10686 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10687 } 10688 } else { 10689 if (is_u) { 10690 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10691 } else { 10692 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10693 } 10694 } 10695 break; 10696 case 9: /* SQDMLAL, SQDMLAL2 */ 10697 case 11: /* SQDMLSL, SQDMLSL2 */ 10698 case 13: /* SQDMULL, SQDMULL2 */ 10699 assert(size == 1); 10700 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10701 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10702 tcg_passres, tcg_passres); 10703 break; 10704 default: 10705 g_assert_not_reached(); 10706 } 10707 10708 if (accop != 0) { 10709 if (opcode == 9 || opcode == 11) { 10710 /* saturating accumulate ops */ 10711 if (accop < 0) { 10712 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10713 } 10714 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10715 tcg_res[pass], 10716 tcg_passres); 10717 } else { 10718 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10719 tcg_res[pass], tcg_passres); 10720 } 10721 } 10722 } 10723 } 10724 10725 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10726 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10727 } 10728 10729 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10730 int opcode, int rd, int rn, int rm) 10731 { 10732 TCGv_i64 tcg_res[2]; 10733 int part = is_q ? 2 : 0; 10734 int pass; 10735 10736 for (pass = 0; pass < 2; pass++) { 10737 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10738 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10739 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10740 static NeonGenWidenFn * const widenfns[3][2] = { 10741 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10742 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10743 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10744 }; 10745 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10746 10747 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10748 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10749 widenfn(tcg_op2_wide, tcg_op2); 10750 tcg_res[pass] = tcg_temp_new_i64(); 10751 gen_neon_addl(size, (opcode == 3), 10752 tcg_res[pass], tcg_op1, tcg_op2_wide); 10753 } 10754 10755 for (pass = 0; pass < 2; pass++) { 10756 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10757 } 10758 } 10759 10760 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10761 { 10762 tcg_gen_addi_i64(in, in, 1U << 31); 10763 tcg_gen_extrh_i64_i32(res, in); 10764 } 10765 10766 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10767 int opcode, int rd, int rn, int rm) 10768 { 10769 TCGv_i32 tcg_res[2]; 10770 int part = is_q ? 2 : 0; 10771 int pass; 10772 10773 for (pass = 0; pass < 2; pass++) { 10774 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10775 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10776 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10777 static NeonGenNarrowFn * const narrowfns[3][2] = { 10778 { gen_helper_neon_narrow_high_u8, 10779 gen_helper_neon_narrow_round_high_u8 }, 10780 { gen_helper_neon_narrow_high_u16, 10781 gen_helper_neon_narrow_round_high_u16 }, 10782 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10783 }; 10784 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10785 10786 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10787 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10788 10789 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10790 10791 tcg_res[pass] = tcg_temp_new_i32(); 10792 gennarrow(tcg_res[pass], tcg_wideres); 10793 } 10794 10795 for (pass = 0; pass < 2; pass++) { 10796 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10797 } 10798 clear_vec_high(s, is_q, rd); 10799 } 10800 10801 /* AdvSIMD three different 10802 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10803 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10804 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10805 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10806 */ 10807 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10808 { 10809 /* Instructions in this group fall into three basic classes 10810 * (in each case with the operation working on each element in 10811 * the input vectors): 10812 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10813 * 128 bit input) 10814 * (2) wide 64 x 128 -> 128 10815 * (3) narrowing 128 x 128 -> 64 10816 * Here we do initial decode, catch unallocated cases and 10817 * dispatch to separate functions for each class. 10818 */ 10819 int is_q = extract32(insn, 30, 1); 10820 int is_u = extract32(insn, 29, 1); 10821 int size = extract32(insn, 22, 2); 10822 int opcode = extract32(insn, 12, 4); 10823 int rm = extract32(insn, 16, 5); 10824 int rn = extract32(insn, 5, 5); 10825 int rd = extract32(insn, 0, 5); 10826 10827 switch (opcode) { 10828 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10829 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10830 /* 64 x 128 -> 128 */ 10831 if (size == 3) { 10832 unallocated_encoding(s); 10833 return; 10834 } 10835 if (!fp_access_check(s)) { 10836 return; 10837 } 10838 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10839 break; 10840 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10841 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10842 /* 128 x 128 -> 64 */ 10843 if (size == 3) { 10844 unallocated_encoding(s); 10845 return; 10846 } 10847 if (!fp_access_check(s)) { 10848 return; 10849 } 10850 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10851 break; 10852 case 14: /* PMULL, PMULL2 */ 10853 if (is_u) { 10854 unallocated_encoding(s); 10855 return; 10856 } 10857 switch (size) { 10858 case 0: /* PMULL.P8 */ 10859 if (!fp_access_check(s)) { 10860 return; 10861 } 10862 /* The Q field specifies lo/hi half input for this insn. */ 10863 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10864 gen_helper_neon_pmull_h); 10865 break; 10866 10867 case 3: /* PMULL.P64 */ 10868 if (!dc_isar_feature(aa64_pmull, s)) { 10869 unallocated_encoding(s); 10870 return; 10871 } 10872 if (!fp_access_check(s)) { 10873 return; 10874 } 10875 /* The Q field specifies lo/hi half input for this insn. */ 10876 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10877 gen_helper_gvec_pmull_q); 10878 break; 10879 10880 default: 10881 unallocated_encoding(s); 10882 break; 10883 } 10884 return; 10885 case 9: /* SQDMLAL, SQDMLAL2 */ 10886 case 11: /* SQDMLSL, SQDMLSL2 */ 10887 case 13: /* SQDMULL, SQDMULL2 */ 10888 if (is_u || size == 0) { 10889 unallocated_encoding(s); 10890 return; 10891 } 10892 /* fall through */ 10893 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10894 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10895 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10896 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10897 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10898 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10899 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10900 /* 64 x 64 -> 128 */ 10901 if (size == 3) { 10902 unallocated_encoding(s); 10903 return; 10904 } 10905 if (!fp_access_check(s)) { 10906 return; 10907 } 10908 10909 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10910 break; 10911 default: 10912 /* opcode 15 not allocated */ 10913 unallocated_encoding(s); 10914 break; 10915 } 10916 } 10917 10918 /* AdvSIMD three same extra 10919 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 10920 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 10921 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 10922 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 10923 */ 10924 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 10925 { 10926 int rd = extract32(insn, 0, 5); 10927 int rn = extract32(insn, 5, 5); 10928 int opcode = extract32(insn, 11, 4); 10929 int rm = extract32(insn, 16, 5); 10930 int size = extract32(insn, 22, 2); 10931 bool u = extract32(insn, 29, 1); 10932 bool is_q = extract32(insn, 30, 1); 10933 bool feature; 10934 int rot; 10935 10936 switch (u * 16 + opcode) { 10937 case 0x10: /* SQRDMLAH (vector) */ 10938 case 0x11: /* SQRDMLSH (vector) */ 10939 if (size != 1 && size != 2) { 10940 unallocated_encoding(s); 10941 return; 10942 } 10943 feature = dc_isar_feature(aa64_rdm, s); 10944 break; 10945 case 0x02: /* SDOT (vector) */ 10946 case 0x12: /* UDOT (vector) */ 10947 if (size != MO_32) { 10948 unallocated_encoding(s); 10949 return; 10950 } 10951 feature = dc_isar_feature(aa64_dp, s); 10952 break; 10953 case 0x03: /* USDOT */ 10954 if (size != MO_32) { 10955 unallocated_encoding(s); 10956 return; 10957 } 10958 feature = dc_isar_feature(aa64_i8mm, s); 10959 break; 10960 case 0x04: /* SMMLA */ 10961 case 0x14: /* UMMLA */ 10962 case 0x05: /* USMMLA */ 10963 if (!is_q || size != MO_32) { 10964 unallocated_encoding(s); 10965 return; 10966 } 10967 feature = dc_isar_feature(aa64_i8mm, s); 10968 break; 10969 case 0x18: /* FCMLA, #0 */ 10970 case 0x19: /* FCMLA, #90 */ 10971 case 0x1a: /* FCMLA, #180 */ 10972 case 0x1b: /* FCMLA, #270 */ 10973 case 0x1c: /* FCADD, #90 */ 10974 case 0x1e: /* FCADD, #270 */ 10975 if (size == 0 10976 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 10977 || (size == 3 && !is_q)) { 10978 unallocated_encoding(s); 10979 return; 10980 } 10981 feature = dc_isar_feature(aa64_fcma, s); 10982 break; 10983 case 0x1d: /* BFMMLA */ 10984 if (size != MO_16 || !is_q) { 10985 unallocated_encoding(s); 10986 return; 10987 } 10988 feature = dc_isar_feature(aa64_bf16, s); 10989 break; 10990 case 0x1f: 10991 switch (size) { 10992 case 1: /* BFDOT */ 10993 case 3: /* BFMLAL{B,T} */ 10994 feature = dc_isar_feature(aa64_bf16, s); 10995 break; 10996 default: 10997 unallocated_encoding(s); 10998 return; 10999 } 11000 break; 11001 default: 11002 unallocated_encoding(s); 11003 return; 11004 } 11005 if (!feature) { 11006 unallocated_encoding(s); 11007 return; 11008 } 11009 if (!fp_access_check(s)) { 11010 return; 11011 } 11012 11013 switch (opcode) { 11014 case 0x0: /* SQRDMLAH (vector) */ 11015 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11016 return; 11017 11018 case 0x1: /* SQRDMLSH (vector) */ 11019 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11020 return; 11021 11022 case 0x2: /* SDOT / UDOT */ 11023 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11024 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11025 return; 11026 11027 case 0x3: /* USDOT */ 11028 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11029 return; 11030 11031 case 0x04: /* SMMLA, UMMLA */ 11032 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11033 u ? gen_helper_gvec_ummla_b 11034 : gen_helper_gvec_smmla_b); 11035 return; 11036 case 0x05: /* USMMLA */ 11037 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11038 return; 11039 11040 case 0x8: /* FCMLA, #0 */ 11041 case 0x9: /* FCMLA, #90 */ 11042 case 0xa: /* FCMLA, #180 */ 11043 case 0xb: /* FCMLA, #270 */ 11044 rot = extract32(opcode, 0, 2); 11045 switch (size) { 11046 case 1: 11047 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11048 gen_helper_gvec_fcmlah); 11049 break; 11050 case 2: 11051 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11052 gen_helper_gvec_fcmlas); 11053 break; 11054 case 3: 11055 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11056 gen_helper_gvec_fcmlad); 11057 break; 11058 default: 11059 g_assert_not_reached(); 11060 } 11061 return; 11062 11063 case 0xc: /* FCADD, #90 */ 11064 case 0xe: /* FCADD, #270 */ 11065 rot = extract32(opcode, 1, 1); 11066 switch (size) { 11067 case 1: 11068 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11069 gen_helper_gvec_fcaddh); 11070 break; 11071 case 2: 11072 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11073 gen_helper_gvec_fcadds); 11074 break; 11075 case 3: 11076 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11077 gen_helper_gvec_fcaddd); 11078 break; 11079 default: 11080 g_assert_not_reached(); 11081 } 11082 return; 11083 11084 case 0xd: /* BFMMLA */ 11085 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11086 return; 11087 case 0xf: 11088 switch (size) { 11089 case 1: /* BFDOT */ 11090 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11091 break; 11092 case 3: /* BFMLAL{B,T} */ 11093 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11094 gen_helper_gvec_bfmlal); 11095 break; 11096 default: 11097 g_assert_not_reached(); 11098 } 11099 return; 11100 11101 default: 11102 g_assert_not_reached(); 11103 } 11104 } 11105 11106 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11107 int size, int rn, int rd) 11108 { 11109 /* Handle 2-reg-misc ops which are widening (so each size element 11110 * in the source becomes a 2*size element in the destination. 11111 * The only instruction like this is FCVTL. 11112 */ 11113 int pass; 11114 11115 if (size == 3) { 11116 /* 32 -> 64 bit fp conversion */ 11117 TCGv_i64 tcg_res[2]; 11118 int srcelt = is_q ? 2 : 0; 11119 11120 for (pass = 0; pass < 2; pass++) { 11121 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11122 tcg_res[pass] = tcg_temp_new_i64(); 11123 11124 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11125 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11126 } 11127 for (pass = 0; pass < 2; pass++) { 11128 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11129 } 11130 } else { 11131 /* 16 -> 32 bit fp conversion */ 11132 int srcelt = is_q ? 4 : 0; 11133 TCGv_i32 tcg_res[4]; 11134 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11135 TCGv_i32 ahp = get_ahp_flag(); 11136 11137 for (pass = 0; pass < 4; pass++) { 11138 tcg_res[pass] = tcg_temp_new_i32(); 11139 11140 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11141 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11142 fpst, ahp); 11143 } 11144 for (pass = 0; pass < 4; pass++) { 11145 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11146 } 11147 } 11148 } 11149 11150 static void handle_rev(DisasContext *s, int opcode, bool u, 11151 bool is_q, int size, int rn, int rd) 11152 { 11153 int op = (opcode << 1) | u; 11154 int opsz = op + size; 11155 int grp_size = 3 - opsz; 11156 int dsize = is_q ? 128 : 64; 11157 int i; 11158 11159 if (opsz >= 3) { 11160 unallocated_encoding(s); 11161 return; 11162 } 11163 11164 if (!fp_access_check(s)) { 11165 return; 11166 } 11167 11168 if (size == 0) { 11169 /* Special case bytes, use bswap op on each group of elements */ 11170 int groups = dsize / (8 << grp_size); 11171 11172 for (i = 0; i < groups; i++) { 11173 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11174 11175 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11176 switch (grp_size) { 11177 case MO_16: 11178 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11179 break; 11180 case MO_32: 11181 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11182 break; 11183 case MO_64: 11184 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11185 break; 11186 default: 11187 g_assert_not_reached(); 11188 } 11189 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11190 } 11191 clear_vec_high(s, is_q, rd); 11192 } else { 11193 int revmask = (1 << grp_size) - 1; 11194 int esize = 8 << size; 11195 int elements = dsize / esize; 11196 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11197 TCGv_i64 tcg_rd[2]; 11198 11199 for (i = 0; i < 2; i++) { 11200 tcg_rd[i] = tcg_temp_new_i64(); 11201 tcg_gen_movi_i64(tcg_rd[i], 0); 11202 } 11203 11204 for (i = 0; i < elements; i++) { 11205 int e_rev = (i & 0xf) ^ revmask; 11206 int w = (e_rev * esize) / 64; 11207 int o = (e_rev * esize) % 64; 11208 11209 read_vec_element(s, tcg_rn, rn, i, size); 11210 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11211 } 11212 11213 for (i = 0; i < 2; i++) { 11214 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11215 } 11216 clear_vec_high(s, true, rd); 11217 } 11218 } 11219 11220 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11221 bool is_q, int size, int rn, int rd) 11222 { 11223 /* Implement the pairwise operations from 2-misc: 11224 * SADDLP, UADDLP, SADALP, UADALP. 11225 * These all add pairs of elements in the input to produce a 11226 * double-width result element in the output (possibly accumulating). 11227 */ 11228 bool accum = (opcode == 0x6); 11229 int maxpass = is_q ? 2 : 1; 11230 int pass; 11231 TCGv_i64 tcg_res[2]; 11232 11233 if (size == 2) { 11234 /* 32 + 32 -> 64 op */ 11235 MemOp memop = size + (u ? 0 : MO_SIGN); 11236 11237 for (pass = 0; pass < maxpass; pass++) { 11238 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11239 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11240 11241 tcg_res[pass] = tcg_temp_new_i64(); 11242 11243 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11244 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11245 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11246 if (accum) { 11247 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11248 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11249 } 11250 } 11251 } else { 11252 for (pass = 0; pass < maxpass; pass++) { 11253 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11254 NeonGenOne64OpFn *genfn; 11255 static NeonGenOne64OpFn * const fns[2][2] = { 11256 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11257 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11258 }; 11259 11260 genfn = fns[size][u]; 11261 11262 tcg_res[pass] = tcg_temp_new_i64(); 11263 11264 read_vec_element(s, tcg_op, rn, pass, MO_64); 11265 genfn(tcg_res[pass], tcg_op); 11266 11267 if (accum) { 11268 read_vec_element(s, tcg_op, rd, pass, MO_64); 11269 if (size == 0) { 11270 gen_helper_neon_addl_u16(tcg_res[pass], 11271 tcg_res[pass], tcg_op); 11272 } else { 11273 gen_helper_neon_addl_u32(tcg_res[pass], 11274 tcg_res[pass], tcg_op); 11275 } 11276 } 11277 } 11278 } 11279 if (!is_q) { 11280 tcg_res[1] = tcg_constant_i64(0); 11281 } 11282 for (pass = 0; pass < 2; pass++) { 11283 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11284 } 11285 } 11286 11287 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11288 { 11289 /* Implement SHLL and SHLL2 */ 11290 int pass; 11291 int part = is_q ? 2 : 0; 11292 TCGv_i64 tcg_res[2]; 11293 11294 for (pass = 0; pass < 2; pass++) { 11295 static NeonGenWidenFn * const widenfns[3] = { 11296 gen_helper_neon_widen_u8, 11297 gen_helper_neon_widen_u16, 11298 tcg_gen_extu_i32_i64, 11299 }; 11300 NeonGenWidenFn *widenfn = widenfns[size]; 11301 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11302 11303 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11304 tcg_res[pass] = tcg_temp_new_i64(); 11305 widenfn(tcg_res[pass], tcg_op); 11306 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11307 } 11308 11309 for (pass = 0; pass < 2; pass++) { 11310 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11311 } 11312 } 11313 11314 /* AdvSIMD two reg misc 11315 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11316 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11317 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11318 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11319 */ 11320 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11321 { 11322 int size = extract32(insn, 22, 2); 11323 int opcode = extract32(insn, 12, 5); 11324 bool u = extract32(insn, 29, 1); 11325 bool is_q = extract32(insn, 30, 1); 11326 int rn = extract32(insn, 5, 5); 11327 int rd = extract32(insn, 0, 5); 11328 bool need_fpstatus = false; 11329 int rmode = -1; 11330 TCGv_i32 tcg_rmode; 11331 TCGv_ptr tcg_fpstatus; 11332 11333 switch (opcode) { 11334 case 0x0: /* REV64, REV32 */ 11335 case 0x1: /* REV16 */ 11336 handle_rev(s, opcode, u, is_q, size, rn, rd); 11337 return; 11338 case 0x5: /* CNT, NOT, RBIT */ 11339 if (u && size == 0) { 11340 /* NOT */ 11341 break; 11342 } else if (u && size == 1) { 11343 /* RBIT */ 11344 break; 11345 } else if (!u && size == 0) { 11346 /* CNT */ 11347 break; 11348 } 11349 unallocated_encoding(s); 11350 return; 11351 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11352 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11353 if (size == 3) { 11354 unallocated_encoding(s); 11355 return; 11356 } 11357 if (!fp_access_check(s)) { 11358 return; 11359 } 11360 11361 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11362 return; 11363 case 0x4: /* CLS, CLZ */ 11364 if (size == 3) { 11365 unallocated_encoding(s); 11366 return; 11367 } 11368 break; 11369 case 0x2: /* SADDLP, UADDLP */ 11370 case 0x6: /* SADALP, UADALP */ 11371 if (size == 3) { 11372 unallocated_encoding(s); 11373 return; 11374 } 11375 if (!fp_access_check(s)) { 11376 return; 11377 } 11378 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11379 return; 11380 case 0x13: /* SHLL, SHLL2 */ 11381 if (u == 0 || size == 3) { 11382 unallocated_encoding(s); 11383 return; 11384 } 11385 if (!fp_access_check(s)) { 11386 return; 11387 } 11388 handle_shll(s, is_q, size, rn, rd); 11389 return; 11390 case 0xa: /* CMLT */ 11391 if (u == 1) { 11392 unallocated_encoding(s); 11393 return; 11394 } 11395 /* fall through */ 11396 case 0x8: /* CMGT, CMGE */ 11397 case 0x9: /* CMEQ, CMLE */ 11398 case 0xb: /* ABS, NEG */ 11399 if (size == 3 && !is_q) { 11400 unallocated_encoding(s); 11401 return; 11402 } 11403 break; 11404 case 0x7: /* SQABS, SQNEG */ 11405 if (size == 3 && !is_q) { 11406 unallocated_encoding(s); 11407 return; 11408 } 11409 break; 11410 case 0xc ... 0xf: 11411 case 0x16 ... 0x1f: 11412 { 11413 /* Floating point: U, size[1] and opcode indicate operation; 11414 * size[0] indicates single or double precision. 11415 */ 11416 int is_double = extract32(size, 0, 1); 11417 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11418 size = is_double ? 3 : 2; 11419 switch (opcode) { 11420 case 0x2f: /* FABS */ 11421 case 0x6f: /* FNEG */ 11422 if (size == 3 && !is_q) { 11423 unallocated_encoding(s); 11424 return; 11425 } 11426 break; 11427 case 0x1d: /* SCVTF */ 11428 case 0x5d: /* UCVTF */ 11429 { 11430 bool is_signed = (opcode == 0x1d) ? true : false; 11431 int elements = is_double ? 2 : is_q ? 4 : 2; 11432 if (is_double && !is_q) { 11433 unallocated_encoding(s); 11434 return; 11435 } 11436 if (!fp_access_check(s)) { 11437 return; 11438 } 11439 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11440 return; 11441 } 11442 case 0x2c: /* FCMGT (zero) */ 11443 case 0x2d: /* FCMEQ (zero) */ 11444 case 0x2e: /* FCMLT (zero) */ 11445 case 0x6c: /* FCMGE (zero) */ 11446 case 0x6d: /* FCMLE (zero) */ 11447 if (size == 3 && !is_q) { 11448 unallocated_encoding(s); 11449 return; 11450 } 11451 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11452 return; 11453 case 0x7f: /* FSQRT */ 11454 if (size == 3 && !is_q) { 11455 unallocated_encoding(s); 11456 return; 11457 } 11458 break; 11459 case 0x1a: /* FCVTNS */ 11460 case 0x1b: /* FCVTMS */ 11461 case 0x3a: /* FCVTPS */ 11462 case 0x3b: /* FCVTZS */ 11463 case 0x5a: /* FCVTNU */ 11464 case 0x5b: /* FCVTMU */ 11465 case 0x7a: /* FCVTPU */ 11466 case 0x7b: /* FCVTZU */ 11467 need_fpstatus = true; 11468 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11469 if (size == 3 && !is_q) { 11470 unallocated_encoding(s); 11471 return; 11472 } 11473 break; 11474 case 0x5c: /* FCVTAU */ 11475 case 0x1c: /* FCVTAS */ 11476 need_fpstatus = true; 11477 rmode = FPROUNDING_TIEAWAY; 11478 if (size == 3 && !is_q) { 11479 unallocated_encoding(s); 11480 return; 11481 } 11482 break; 11483 case 0x3c: /* URECPE */ 11484 if (size == 3) { 11485 unallocated_encoding(s); 11486 return; 11487 } 11488 /* fall through */ 11489 case 0x3d: /* FRECPE */ 11490 case 0x7d: /* FRSQRTE */ 11491 if (size == 3 && !is_q) { 11492 unallocated_encoding(s); 11493 return; 11494 } 11495 if (!fp_access_check(s)) { 11496 return; 11497 } 11498 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11499 return; 11500 case 0x56: /* FCVTXN, FCVTXN2 */ 11501 if (size == 2) { 11502 unallocated_encoding(s); 11503 return; 11504 } 11505 /* fall through */ 11506 case 0x16: /* FCVTN, FCVTN2 */ 11507 /* handle_2misc_narrow does a 2*size -> size operation, but these 11508 * instructions encode the source size rather than dest size. 11509 */ 11510 if (!fp_access_check(s)) { 11511 return; 11512 } 11513 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11514 return; 11515 case 0x36: /* BFCVTN, BFCVTN2 */ 11516 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11517 unallocated_encoding(s); 11518 return; 11519 } 11520 if (!fp_access_check(s)) { 11521 return; 11522 } 11523 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11524 return; 11525 case 0x17: /* FCVTL, FCVTL2 */ 11526 if (!fp_access_check(s)) { 11527 return; 11528 } 11529 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11530 return; 11531 case 0x18: /* FRINTN */ 11532 case 0x19: /* FRINTM */ 11533 case 0x38: /* FRINTP */ 11534 case 0x39: /* FRINTZ */ 11535 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11536 /* fall through */ 11537 case 0x59: /* FRINTX */ 11538 case 0x79: /* FRINTI */ 11539 need_fpstatus = true; 11540 if (size == 3 && !is_q) { 11541 unallocated_encoding(s); 11542 return; 11543 } 11544 break; 11545 case 0x58: /* FRINTA */ 11546 rmode = FPROUNDING_TIEAWAY; 11547 need_fpstatus = true; 11548 if (size == 3 && !is_q) { 11549 unallocated_encoding(s); 11550 return; 11551 } 11552 break; 11553 case 0x7c: /* URSQRTE */ 11554 if (size == 3) { 11555 unallocated_encoding(s); 11556 return; 11557 } 11558 break; 11559 case 0x1e: /* FRINT32Z */ 11560 case 0x1f: /* FRINT64Z */ 11561 rmode = FPROUNDING_ZERO; 11562 /* fall through */ 11563 case 0x5e: /* FRINT32X */ 11564 case 0x5f: /* FRINT64X */ 11565 need_fpstatus = true; 11566 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11567 unallocated_encoding(s); 11568 return; 11569 } 11570 break; 11571 default: 11572 unallocated_encoding(s); 11573 return; 11574 } 11575 break; 11576 } 11577 default: 11578 case 0x3: /* SUQADD, USQADD */ 11579 unallocated_encoding(s); 11580 return; 11581 } 11582 11583 if (!fp_access_check(s)) { 11584 return; 11585 } 11586 11587 if (need_fpstatus || rmode >= 0) { 11588 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11589 } else { 11590 tcg_fpstatus = NULL; 11591 } 11592 if (rmode >= 0) { 11593 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11594 } else { 11595 tcg_rmode = NULL; 11596 } 11597 11598 switch (opcode) { 11599 case 0x5: 11600 if (u && size == 0) { /* NOT */ 11601 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11602 return; 11603 } 11604 break; 11605 case 0x8: /* CMGT, CMGE */ 11606 if (u) { 11607 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11608 } else { 11609 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11610 } 11611 return; 11612 case 0x9: /* CMEQ, CMLE */ 11613 if (u) { 11614 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11615 } else { 11616 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11617 } 11618 return; 11619 case 0xa: /* CMLT */ 11620 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11621 return; 11622 case 0xb: 11623 if (u) { /* ABS, NEG */ 11624 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11625 } else { 11626 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11627 } 11628 return; 11629 } 11630 11631 if (size == 3) { 11632 /* All 64-bit element operations can be shared with scalar 2misc */ 11633 int pass; 11634 11635 /* Coverity claims (size == 3 && !is_q) has been eliminated 11636 * from all paths leading to here. 11637 */ 11638 tcg_debug_assert(is_q); 11639 for (pass = 0; pass < 2; pass++) { 11640 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11641 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11642 11643 read_vec_element(s, tcg_op, rn, pass, MO_64); 11644 11645 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11646 tcg_rmode, tcg_fpstatus); 11647 11648 write_vec_element(s, tcg_res, rd, pass, MO_64); 11649 } 11650 } else { 11651 int pass; 11652 11653 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11654 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11655 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11656 11657 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11658 11659 if (size == 2) { 11660 /* Special cases for 32 bit elements */ 11661 switch (opcode) { 11662 case 0x4: /* CLS */ 11663 if (u) { 11664 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11665 } else { 11666 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11667 } 11668 break; 11669 case 0x7: /* SQABS, SQNEG */ 11670 if (u) { 11671 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11672 } else { 11673 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11674 } 11675 break; 11676 case 0x2f: /* FABS */ 11677 gen_vfp_abss(tcg_res, tcg_op); 11678 break; 11679 case 0x6f: /* FNEG */ 11680 gen_vfp_negs(tcg_res, tcg_op); 11681 break; 11682 case 0x7f: /* FSQRT */ 11683 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11684 break; 11685 case 0x1a: /* FCVTNS */ 11686 case 0x1b: /* FCVTMS */ 11687 case 0x1c: /* FCVTAS */ 11688 case 0x3a: /* FCVTPS */ 11689 case 0x3b: /* FCVTZS */ 11690 gen_helper_vfp_tosls(tcg_res, tcg_op, 11691 tcg_constant_i32(0), tcg_fpstatus); 11692 break; 11693 case 0x5a: /* FCVTNU */ 11694 case 0x5b: /* FCVTMU */ 11695 case 0x5c: /* FCVTAU */ 11696 case 0x7a: /* FCVTPU */ 11697 case 0x7b: /* FCVTZU */ 11698 gen_helper_vfp_touls(tcg_res, tcg_op, 11699 tcg_constant_i32(0), tcg_fpstatus); 11700 break; 11701 case 0x18: /* FRINTN */ 11702 case 0x19: /* FRINTM */ 11703 case 0x38: /* FRINTP */ 11704 case 0x39: /* FRINTZ */ 11705 case 0x58: /* FRINTA */ 11706 case 0x79: /* FRINTI */ 11707 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11708 break; 11709 case 0x59: /* FRINTX */ 11710 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 11711 break; 11712 case 0x7c: /* URSQRTE */ 11713 gen_helper_rsqrte_u32(tcg_res, tcg_op); 11714 break; 11715 case 0x1e: /* FRINT32Z */ 11716 case 0x5e: /* FRINT32X */ 11717 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 11718 break; 11719 case 0x1f: /* FRINT64Z */ 11720 case 0x5f: /* FRINT64X */ 11721 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 11722 break; 11723 default: 11724 g_assert_not_reached(); 11725 } 11726 } else { 11727 /* Use helpers for 8 and 16 bit elements */ 11728 switch (opcode) { 11729 case 0x5: /* CNT, RBIT */ 11730 /* For these two insns size is part of the opcode specifier 11731 * (handled earlier); they always operate on byte elements. 11732 */ 11733 if (u) { 11734 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 11735 } else { 11736 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 11737 } 11738 break; 11739 case 0x7: /* SQABS, SQNEG */ 11740 { 11741 NeonGenOneOpEnvFn *genfn; 11742 static NeonGenOneOpEnvFn * const fns[2][2] = { 11743 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 11744 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 11745 }; 11746 genfn = fns[size][u]; 11747 genfn(tcg_res, tcg_env, tcg_op); 11748 break; 11749 } 11750 case 0x4: /* CLS, CLZ */ 11751 if (u) { 11752 if (size == 0) { 11753 gen_helper_neon_clz_u8(tcg_res, tcg_op); 11754 } else { 11755 gen_helper_neon_clz_u16(tcg_res, tcg_op); 11756 } 11757 } else { 11758 if (size == 0) { 11759 gen_helper_neon_cls_s8(tcg_res, tcg_op); 11760 } else { 11761 gen_helper_neon_cls_s16(tcg_res, tcg_op); 11762 } 11763 } 11764 break; 11765 default: 11766 g_assert_not_reached(); 11767 } 11768 } 11769 11770 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11771 } 11772 } 11773 clear_vec_high(s, is_q, rd); 11774 11775 if (tcg_rmode) { 11776 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 11777 } 11778 } 11779 11780 /* AdvSIMD [scalar] two register miscellaneous (FP16) 11781 * 11782 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 11783 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11784 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 11785 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 11786 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 11787 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 11788 * 11789 * This actually covers two groups where scalar access is governed by 11790 * bit 28. A bunch of the instructions (float to integral) only exist 11791 * in the vector form and are un-allocated for the scalar decode. Also 11792 * in the scalar decode Q is always 1. 11793 */ 11794 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 11795 { 11796 int fpop, opcode, a, u; 11797 int rn, rd; 11798 bool is_q; 11799 bool is_scalar; 11800 bool only_in_vector = false; 11801 11802 int pass; 11803 TCGv_i32 tcg_rmode = NULL; 11804 TCGv_ptr tcg_fpstatus = NULL; 11805 bool need_fpst = true; 11806 int rmode = -1; 11807 11808 if (!dc_isar_feature(aa64_fp16, s)) { 11809 unallocated_encoding(s); 11810 return; 11811 } 11812 11813 rd = extract32(insn, 0, 5); 11814 rn = extract32(insn, 5, 5); 11815 11816 a = extract32(insn, 23, 1); 11817 u = extract32(insn, 29, 1); 11818 is_scalar = extract32(insn, 28, 1); 11819 is_q = extract32(insn, 30, 1); 11820 11821 opcode = extract32(insn, 12, 5); 11822 fpop = deposit32(opcode, 5, 1, a); 11823 fpop = deposit32(fpop, 6, 1, u); 11824 11825 switch (fpop) { 11826 case 0x1d: /* SCVTF */ 11827 case 0x5d: /* UCVTF */ 11828 { 11829 int elements; 11830 11831 if (is_scalar) { 11832 elements = 1; 11833 } else { 11834 elements = (is_q ? 8 : 4); 11835 } 11836 11837 if (!fp_access_check(s)) { 11838 return; 11839 } 11840 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 11841 return; 11842 } 11843 break; 11844 case 0x2c: /* FCMGT (zero) */ 11845 case 0x2d: /* FCMEQ (zero) */ 11846 case 0x2e: /* FCMLT (zero) */ 11847 case 0x6c: /* FCMGE (zero) */ 11848 case 0x6d: /* FCMLE (zero) */ 11849 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 11850 return; 11851 case 0x3d: /* FRECPE */ 11852 case 0x3f: /* FRECPX */ 11853 break; 11854 case 0x18: /* FRINTN */ 11855 only_in_vector = true; 11856 rmode = FPROUNDING_TIEEVEN; 11857 break; 11858 case 0x19: /* FRINTM */ 11859 only_in_vector = true; 11860 rmode = FPROUNDING_NEGINF; 11861 break; 11862 case 0x38: /* FRINTP */ 11863 only_in_vector = true; 11864 rmode = FPROUNDING_POSINF; 11865 break; 11866 case 0x39: /* FRINTZ */ 11867 only_in_vector = true; 11868 rmode = FPROUNDING_ZERO; 11869 break; 11870 case 0x58: /* FRINTA */ 11871 only_in_vector = true; 11872 rmode = FPROUNDING_TIEAWAY; 11873 break; 11874 case 0x59: /* FRINTX */ 11875 case 0x79: /* FRINTI */ 11876 only_in_vector = true; 11877 /* current rounding mode */ 11878 break; 11879 case 0x1a: /* FCVTNS */ 11880 rmode = FPROUNDING_TIEEVEN; 11881 break; 11882 case 0x1b: /* FCVTMS */ 11883 rmode = FPROUNDING_NEGINF; 11884 break; 11885 case 0x1c: /* FCVTAS */ 11886 rmode = FPROUNDING_TIEAWAY; 11887 break; 11888 case 0x3a: /* FCVTPS */ 11889 rmode = FPROUNDING_POSINF; 11890 break; 11891 case 0x3b: /* FCVTZS */ 11892 rmode = FPROUNDING_ZERO; 11893 break; 11894 case 0x5a: /* FCVTNU */ 11895 rmode = FPROUNDING_TIEEVEN; 11896 break; 11897 case 0x5b: /* FCVTMU */ 11898 rmode = FPROUNDING_NEGINF; 11899 break; 11900 case 0x5c: /* FCVTAU */ 11901 rmode = FPROUNDING_TIEAWAY; 11902 break; 11903 case 0x7a: /* FCVTPU */ 11904 rmode = FPROUNDING_POSINF; 11905 break; 11906 case 0x7b: /* FCVTZU */ 11907 rmode = FPROUNDING_ZERO; 11908 break; 11909 case 0x2f: /* FABS */ 11910 case 0x6f: /* FNEG */ 11911 need_fpst = false; 11912 break; 11913 case 0x7d: /* FRSQRTE */ 11914 case 0x7f: /* FSQRT (vector) */ 11915 break; 11916 default: 11917 unallocated_encoding(s); 11918 return; 11919 } 11920 11921 11922 /* Check additional constraints for the scalar encoding */ 11923 if (is_scalar) { 11924 if (!is_q) { 11925 unallocated_encoding(s); 11926 return; 11927 } 11928 /* FRINTxx is only in the vector form */ 11929 if (only_in_vector) { 11930 unallocated_encoding(s); 11931 return; 11932 } 11933 } 11934 11935 if (!fp_access_check(s)) { 11936 return; 11937 } 11938 11939 if (rmode >= 0 || need_fpst) { 11940 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 11941 } 11942 11943 if (rmode >= 0) { 11944 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11945 } 11946 11947 if (is_scalar) { 11948 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 11949 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11950 11951 switch (fpop) { 11952 case 0x1a: /* FCVTNS */ 11953 case 0x1b: /* FCVTMS */ 11954 case 0x1c: /* FCVTAS */ 11955 case 0x3a: /* FCVTPS */ 11956 case 0x3b: /* FCVTZS */ 11957 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11958 break; 11959 case 0x3d: /* FRECPE */ 11960 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 11961 break; 11962 case 0x3f: /* FRECPX */ 11963 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 11964 break; 11965 case 0x5a: /* FCVTNU */ 11966 case 0x5b: /* FCVTMU */ 11967 case 0x5c: /* FCVTAU */ 11968 case 0x7a: /* FCVTPU */ 11969 case 0x7b: /* FCVTZU */ 11970 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 11971 break; 11972 case 0x6f: /* FNEG */ 11973 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 11974 break; 11975 case 0x7d: /* FRSQRTE */ 11976 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 11977 break; 11978 default: 11979 g_assert_not_reached(); 11980 } 11981 11982 /* limit any sign extension going on */ 11983 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 11984 write_fp_sreg(s, rd, tcg_res); 11985 } else { 11986 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 11987 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11988 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11989 11990 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 11991 11992 switch (fpop) { 11993 case 0x1a: /* FCVTNS */ 11994 case 0x1b: /* FCVTMS */ 11995 case 0x1c: /* FCVTAS */ 11996 case 0x3a: /* FCVTPS */ 11997 case 0x3b: /* FCVTZS */ 11998 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 11999 break; 12000 case 0x3d: /* FRECPE */ 12001 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12002 break; 12003 case 0x5a: /* FCVTNU */ 12004 case 0x5b: /* FCVTMU */ 12005 case 0x5c: /* FCVTAU */ 12006 case 0x7a: /* FCVTPU */ 12007 case 0x7b: /* FCVTZU */ 12008 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12009 break; 12010 case 0x18: /* FRINTN */ 12011 case 0x19: /* FRINTM */ 12012 case 0x38: /* FRINTP */ 12013 case 0x39: /* FRINTZ */ 12014 case 0x58: /* FRINTA */ 12015 case 0x79: /* FRINTI */ 12016 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12017 break; 12018 case 0x59: /* FRINTX */ 12019 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12020 break; 12021 case 0x2f: /* FABS */ 12022 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12023 break; 12024 case 0x6f: /* FNEG */ 12025 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12026 break; 12027 case 0x7d: /* FRSQRTE */ 12028 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12029 break; 12030 case 0x7f: /* FSQRT */ 12031 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12032 break; 12033 default: 12034 g_assert_not_reached(); 12035 } 12036 12037 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12038 } 12039 12040 clear_vec_high(s, is_q, rd); 12041 } 12042 12043 if (tcg_rmode) { 12044 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12045 } 12046 } 12047 12048 /* AdvSIMD scalar x indexed element 12049 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12050 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12051 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12052 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12053 * AdvSIMD vector x indexed element 12054 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12055 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12056 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12057 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12058 */ 12059 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12060 { 12061 /* This encoding has two kinds of instruction: 12062 * normal, where we perform elt x idxelt => elt for each 12063 * element in the vector 12064 * long, where we perform elt x idxelt and generate a result of 12065 * double the width of the input element 12066 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12067 */ 12068 bool is_scalar = extract32(insn, 28, 1); 12069 bool is_q = extract32(insn, 30, 1); 12070 bool u = extract32(insn, 29, 1); 12071 int size = extract32(insn, 22, 2); 12072 int l = extract32(insn, 21, 1); 12073 int m = extract32(insn, 20, 1); 12074 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12075 int rm = extract32(insn, 16, 4); 12076 int opcode = extract32(insn, 12, 4); 12077 int h = extract32(insn, 11, 1); 12078 int rn = extract32(insn, 5, 5); 12079 int rd = extract32(insn, 0, 5); 12080 bool is_long = false; 12081 int is_fp = 0; 12082 bool is_fp16 = false; 12083 int index; 12084 TCGv_ptr fpst; 12085 12086 switch (16 * u + opcode) { 12087 case 0x02: /* SMLAL, SMLAL2 */ 12088 case 0x12: /* UMLAL, UMLAL2 */ 12089 case 0x06: /* SMLSL, SMLSL2 */ 12090 case 0x16: /* UMLSL, UMLSL2 */ 12091 case 0x0a: /* SMULL, SMULL2 */ 12092 case 0x1a: /* UMULL, UMULL2 */ 12093 if (is_scalar) { 12094 unallocated_encoding(s); 12095 return; 12096 } 12097 is_long = true; 12098 break; 12099 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12100 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12101 case 0x0b: /* SQDMULL, SQDMULL2 */ 12102 is_long = true; 12103 break; 12104 case 0x1d: /* SQRDMLAH */ 12105 case 0x1f: /* SQRDMLSH */ 12106 if (!dc_isar_feature(aa64_rdm, s)) { 12107 unallocated_encoding(s); 12108 return; 12109 } 12110 break; 12111 case 0x0e: /* SDOT */ 12112 case 0x1e: /* UDOT */ 12113 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 break; 12118 case 0x0f: 12119 switch (size) { 12120 case 0: /* SUDOT */ 12121 case 2: /* USDOT */ 12122 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12123 unallocated_encoding(s); 12124 return; 12125 } 12126 size = MO_32; 12127 break; 12128 case 1: /* BFDOT */ 12129 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 size = MO_32; 12134 break; 12135 case 3: /* BFMLAL{B,T} */ 12136 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12137 unallocated_encoding(s); 12138 return; 12139 } 12140 /* can't set is_fp without other incorrect size checks */ 12141 size = MO_16; 12142 break; 12143 default: 12144 unallocated_encoding(s); 12145 return; 12146 } 12147 break; 12148 case 0x11: /* FCMLA #0 */ 12149 case 0x13: /* FCMLA #90 */ 12150 case 0x15: /* FCMLA #180 */ 12151 case 0x17: /* FCMLA #270 */ 12152 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12153 unallocated_encoding(s); 12154 return; 12155 } 12156 is_fp = 2; 12157 break; 12158 default: 12159 case 0x00: /* FMLAL */ 12160 case 0x01: /* FMLA */ 12161 case 0x04: /* FMLSL */ 12162 case 0x05: /* FMLS */ 12163 case 0x08: /* MUL */ 12164 case 0x09: /* FMUL */ 12165 case 0x0c: /* SQDMULH */ 12166 case 0x0d: /* SQRDMULH */ 12167 case 0x10: /* MLA */ 12168 case 0x14: /* MLS */ 12169 case 0x18: /* FMLAL2 */ 12170 case 0x19: /* FMULX */ 12171 case 0x1c: /* FMLSL2 */ 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 12176 switch (is_fp) { 12177 case 1: /* normal fp */ 12178 unallocated_encoding(s); /* in decodetree */ 12179 return; 12180 12181 case 2: /* complex fp */ 12182 /* Each indexable element is a complex pair. */ 12183 size += 1; 12184 switch (size) { 12185 case MO_32: 12186 if (h && !is_q) { 12187 unallocated_encoding(s); 12188 return; 12189 } 12190 is_fp16 = true; 12191 break; 12192 case MO_64: 12193 break; 12194 default: 12195 unallocated_encoding(s); 12196 return; 12197 } 12198 break; 12199 12200 default: /* integer */ 12201 switch (size) { 12202 case MO_8: 12203 case MO_64: 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 break; 12208 } 12209 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 12214 /* Given MemOp size, adjust register and indexing. */ 12215 switch (size) { 12216 case MO_16: 12217 index = h << 2 | l << 1 | m; 12218 break; 12219 case MO_32: 12220 index = h << 1 | l; 12221 rm |= m << 4; 12222 break; 12223 case MO_64: 12224 if (l || !is_q) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 index = h; 12229 rm |= m << 4; 12230 break; 12231 default: 12232 g_assert_not_reached(); 12233 } 12234 12235 if (!fp_access_check(s)) { 12236 return; 12237 } 12238 12239 if (is_fp) { 12240 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12241 } else { 12242 fpst = NULL; 12243 } 12244 12245 switch (16 * u + opcode) { 12246 case 0x0e: /* SDOT */ 12247 case 0x1e: /* UDOT */ 12248 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12249 u ? gen_helper_gvec_udot_idx_b 12250 : gen_helper_gvec_sdot_idx_b); 12251 return; 12252 case 0x0f: 12253 switch (extract32(insn, 22, 2)) { 12254 case 0: /* SUDOT */ 12255 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12256 gen_helper_gvec_sudot_idx_b); 12257 return; 12258 case 1: /* BFDOT */ 12259 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12260 gen_helper_gvec_bfdot_idx); 12261 return; 12262 case 2: /* USDOT */ 12263 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12264 gen_helper_gvec_usdot_idx_b); 12265 return; 12266 case 3: /* BFMLAL{B,T} */ 12267 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12268 gen_helper_gvec_bfmlal_idx); 12269 return; 12270 } 12271 g_assert_not_reached(); 12272 case 0x11: /* FCMLA #0 */ 12273 case 0x13: /* FCMLA #90 */ 12274 case 0x15: /* FCMLA #180 */ 12275 case 0x17: /* FCMLA #270 */ 12276 { 12277 int rot = extract32(insn, 13, 2); 12278 int data = (index << 2) | rot; 12279 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12280 vec_full_reg_offset(s, rn), 12281 vec_full_reg_offset(s, rm), 12282 vec_full_reg_offset(s, rd), fpst, 12283 is_q ? 16 : 8, vec_full_reg_size(s), data, 12284 size == MO_64 12285 ? gen_helper_gvec_fcmlas_idx 12286 : gen_helper_gvec_fcmlah_idx); 12287 } 12288 return; 12289 } 12290 12291 if (size == 3) { 12292 g_assert_not_reached(); 12293 } else if (!is_long) { 12294 /* 32 bit floating point, or 16 or 32 bit integer. 12295 * For the 16 bit scalar case we use the usual Neon helpers and 12296 * rely on the fact that 0 op 0 == 0 with no side effects. 12297 */ 12298 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12299 int pass, maxpasses; 12300 12301 if (is_scalar) { 12302 maxpasses = 1; 12303 } else { 12304 maxpasses = is_q ? 4 : 2; 12305 } 12306 12307 read_vec_element_i32(s, tcg_idx, rm, index, size); 12308 12309 if (size == 1 && !is_scalar) { 12310 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12311 * the index into both halves of the 32 bit tcg_idx and then use 12312 * the usual Neon helpers. 12313 */ 12314 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12315 } 12316 12317 for (pass = 0; pass < maxpasses; pass++) { 12318 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12319 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12320 12321 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12322 12323 switch (16 * u + opcode) { 12324 case 0x10: /* MLA */ 12325 case 0x14: /* MLS */ 12326 { 12327 static NeonGenTwoOpFn * const fns[2][2] = { 12328 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12329 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12330 }; 12331 NeonGenTwoOpFn *genfn; 12332 bool is_sub = opcode == 0x4; 12333 12334 if (size == 1) { 12335 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12336 } else { 12337 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12338 } 12339 if (opcode == 0x8) { 12340 break; 12341 } 12342 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12343 genfn = fns[size - 1][is_sub]; 12344 genfn(tcg_res, tcg_op, tcg_res); 12345 break; 12346 } 12347 case 0x0c: /* SQDMULH */ 12348 if (size == 1) { 12349 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12350 tcg_op, tcg_idx); 12351 } else { 12352 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12353 tcg_op, tcg_idx); 12354 } 12355 break; 12356 case 0x0d: /* SQRDMULH */ 12357 if (size == 1) { 12358 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12359 tcg_op, tcg_idx); 12360 } else { 12361 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12362 tcg_op, tcg_idx); 12363 } 12364 break; 12365 case 0x1d: /* SQRDMLAH */ 12366 read_vec_element_i32(s, tcg_res, rd, pass, 12367 is_scalar ? size : MO_32); 12368 if (size == 1) { 12369 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12370 tcg_op, tcg_idx, tcg_res); 12371 } else { 12372 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12373 tcg_op, tcg_idx, tcg_res); 12374 } 12375 break; 12376 case 0x1f: /* SQRDMLSH */ 12377 read_vec_element_i32(s, tcg_res, rd, pass, 12378 is_scalar ? size : MO_32); 12379 if (size == 1) { 12380 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12381 tcg_op, tcg_idx, tcg_res); 12382 } else { 12383 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12384 tcg_op, tcg_idx, tcg_res); 12385 } 12386 break; 12387 default: 12388 case 0x01: /* FMLA */ 12389 case 0x05: /* FMLS */ 12390 case 0x09: /* FMUL */ 12391 case 0x19: /* FMULX */ 12392 g_assert_not_reached(); 12393 } 12394 12395 if (is_scalar) { 12396 write_fp_sreg(s, rd, tcg_res); 12397 } else { 12398 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12399 } 12400 } 12401 12402 clear_vec_high(s, is_q, rd); 12403 } else { 12404 /* long ops: 16x16->32 or 32x32->64 */ 12405 TCGv_i64 tcg_res[2]; 12406 int pass; 12407 bool satop = extract32(opcode, 0, 1); 12408 MemOp memop = MO_32; 12409 12410 if (satop || !u) { 12411 memop |= MO_SIGN; 12412 } 12413 12414 if (size == 2) { 12415 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12416 12417 read_vec_element(s, tcg_idx, rm, index, memop); 12418 12419 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12420 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12421 TCGv_i64 tcg_passres; 12422 int passelt; 12423 12424 if (is_scalar) { 12425 passelt = 0; 12426 } else { 12427 passelt = pass + (is_q * 2); 12428 } 12429 12430 read_vec_element(s, tcg_op, rn, passelt, memop); 12431 12432 tcg_res[pass] = tcg_temp_new_i64(); 12433 12434 if (opcode == 0xa || opcode == 0xb) { 12435 /* Non-accumulating ops */ 12436 tcg_passres = tcg_res[pass]; 12437 } else { 12438 tcg_passres = tcg_temp_new_i64(); 12439 } 12440 12441 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12442 12443 if (satop) { 12444 /* saturating, doubling */ 12445 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12446 tcg_passres, tcg_passres); 12447 } 12448 12449 if (opcode == 0xa || opcode == 0xb) { 12450 continue; 12451 } 12452 12453 /* Accumulating op: handle accumulate step */ 12454 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12455 12456 switch (opcode) { 12457 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12458 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12459 break; 12460 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12461 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12462 break; 12463 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12464 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12465 /* fall through */ 12466 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12467 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12468 tcg_res[pass], 12469 tcg_passres); 12470 break; 12471 default: 12472 g_assert_not_reached(); 12473 } 12474 } 12475 12476 clear_vec_high(s, !is_scalar, rd); 12477 } else { 12478 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12479 12480 assert(size == 1); 12481 read_vec_element_i32(s, tcg_idx, rm, index, size); 12482 12483 if (!is_scalar) { 12484 /* The simplest way to handle the 16x16 indexed ops is to 12485 * duplicate the index into both halves of the 32 bit tcg_idx 12486 * and then use the usual Neon helpers. 12487 */ 12488 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12489 } 12490 12491 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12492 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12493 TCGv_i64 tcg_passres; 12494 12495 if (is_scalar) { 12496 read_vec_element_i32(s, tcg_op, rn, pass, size); 12497 } else { 12498 read_vec_element_i32(s, tcg_op, rn, 12499 pass + (is_q * 2), MO_32); 12500 } 12501 12502 tcg_res[pass] = tcg_temp_new_i64(); 12503 12504 if (opcode == 0xa || opcode == 0xb) { 12505 /* Non-accumulating ops */ 12506 tcg_passres = tcg_res[pass]; 12507 } else { 12508 tcg_passres = tcg_temp_new_i64(); 12509 } 12510 12511 if (memop & MO_SIGN) { 12512 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12513 } else { 12514 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12515 } 12516 if (satop) { 12517 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12518 tcg_passres, tcg_passres); 12519 } 12520 12521 if (opcode == 0xa || opcode == 0xb) { 12522 continue; 12523 } 12524 12525 /* Accumulating op: handle accumulate step */ 12526 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12527 12528 switch (opcode) { 12529 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12530 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12531 tcg_passres); 12532 break; 12533 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12534 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12535 tcg_passres); 12536 break; 12537 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12538 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12539 /* fall through */ 12540 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12541 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12542 tcg_res[pass], 12543 tcg_passres); 12544 break; 12545 default: 12546 g_assert_not_reached(); 12547 } 12548 } 12549 12550 if (is_scalar) { 12551 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12552 } 12553 } 12554 12555 if (is_scalar) { 12556 tcg_res[1] = tcg_constant_i64(0); 12557 } 12558 12559 for (pass = 0; pass < 2; pass++) { 12560 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12561 } 12562 } 12563 } 12564 12565 /* C3.6 Data processing - SIMD, inc Crypto 12566 * 12567 * As the decode gets a little complex we are using a table based 12568 * approach for this part of the decode. 12569 */ 12570 static const AArch64DecodeTable data_proc_simd[] = { 12571 /* pattern , mask , fn */ 12572 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 12573 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 12574 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 12575 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 12576 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 12577 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 12578 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 12579 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 12580 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 12581 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 12582 { 0x2e000000, 0xbf208400, disas_simd_ext }, 12583 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 12584 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 12585 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 12586 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 12587 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 12588 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 12589 { 0x00000000, 0x00000000, NULL } 12590 }; 12591 12592 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 12593 { 12594 /* Note that this is called with all non-FP cases from 12595 * table C3-6 so it must UNDEF for entries not specifically 12596 * allocated to instructions in that table. 12597 */ 12598 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 12599 if (fn) { 12600 fn(s, insn); 12601 } else { 12602 unallocated_encoding(s); 12603 } 12604 } 12605 12606 /* C3.6 Data processing - SIMD and floating point */ 12607 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 12608 { 12609 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 12610 disas_data_proc_fp(s, insn); 12611 } else { 12612 /* SIMD, including crypto */ 12613 disas_data_proc_simd(s, insn); 12614 } 12615 } 12616 12617 static bool trans_OK(DisasContext *s, arg_OK *a) 12618 { 12619 return true; 12620 } 12621 12622 static bool trans_FAIL(DisasContext *s, arg_OK *a) 12623 { 12624 s->is_nonstreaming = true; 12625 return true; 12626 } 12627 12628 /** 12629 * is_guarded_page: 12630 * @env: The cpu environment 12631 * @s: The DisasContext 12632 * 12633 * Return true if the page is guarded. 12634 */ 12635 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 12636 { 12637 uint64_t addr = s->base.pc_first; 12638 #ifdef CONFIG_USER_ONLY 12639 return page_get_flags(addr) & PAGE_BTI; 12640 #else 12641 CPUTLBEntryFull *full; 12642 void *host; 12643 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 12644 int flags; 12645 12646 /* 12647 * We test this immediately after reading an insn, which means 12648 * that the TLB entry must be present and valid, and thus this 12649 * access will never raise an exception. 12650 */ 12651 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 12652 false, &host, &full, 0); 12653 assert(!(flags & TLB_INVALID_MASK)); 12654 12655 return full->extra.arm.guarded; 12656 #endif 12657 } 12658 12659 /** 12660 * btype_destination_ok: 12661 * @insn: The instruction at the branch destination 12662 * @bt: SCTLR_ELx.BT 12663 * @btype: PSTATE.BTYPE, and is non-zero 12664 * 12665 * On a guarded page, there are a limited number of insns 12666 * that may be present at the branch target: 12667 * - branch target identifiers, 12668 * - paciasp, pacibsp, 12669 * - BRK insn 12670 * - HLT insn 12671 * Anything else causes a Branch Target Exception. 12672 * 12673 * Return true if the branch is compatible, false to raise BTITRAP. 12674 */ 12675 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 12676 { 12677 if ((insn & 0xfffff01fu) == 0xd503201fu) { 12678 /* HINT space */ 12679 switch (extract32(insn, 5, 7)) { 12680 case 0b011001: /* PACIASP */ 12681 case 0b011011: /* PACIBSP */ 12682 /* 12683 * If SCTLR_ELx.BT, then PACI*SP are not compatible 12684 * with btype == 3. Otherwise all btype are ok. 12685 */ 12686 return !bt || btype != 3; 12687 case 0b100000: /* BTI */ 12688 /* Not compatible with any btype. */ 12689 return false; 12690 case 0b100010: /* BTI c */ 12691 /* Not compatible with btype == 3 */ 12692 return btype != 3; 12693 case 0b100100: /* BTI j */ 12694 /* Not compatible with btype == 2 */ 12695 return btype != 2; 12696 case 0b100110: /* BTI jc */ 12697 /* Compatible with any btype. */ 12698 return true; 12699 } 12700 } else { 12701 switch (insn & 0xffe0001fu) { 12702 case 0xd4200000u: /* BRK */ 12703 case 0xd4400000u: /* HLT */ 12704 /* Give priority to the breakpoint exception. */ 12705 return true; 12706 } 12707 } 12708 return false; 12709 } 12710 12711 /* C3.1 A64 instruction index by encoding */ 12712 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 12713 { 12714 switch (extract32(insn, 25, 4)) { 12715 case 0x5: 12716 case 0xd: /* Data processing - register */ 12717 disas_data_proc_reg(s, insn); 12718 break; 12719 case 0x7: 12720 case 0xf: /* Data processing - SIMD and floating point */ 12721 disas_data_proc_simd_fp(s, insn); 12722 break; 12723 default: 12724 unallocated_encoding(s); 12725 break; 12726 } 12727 } 12728 12729 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 12730 CPUState *cpu) 12731 { 12732 DisasContext *dc = container_of(dcbase, DisasContext, base); 12733 CPUARMState *env = cpu_env(cpu); 12734 ARMCPU *arm_cpu = env_archcpu(env); 12735 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 12736 int bound, core_mmu_idx; 12737 12738 dc->isar = &arm_cpu->isar; 12739 dc->condjmp = 0; 12740 dc->pc_save = dc->base.pc_first; 12741 dc->aarch64 = true; 12742 dc->thumb = false; 12743 dc->sctlr_b = 0; 12744 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 12745 dc->condexec_mask = 0; 12746 dc->condexec_cond = 0; 12747 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 12748 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 12749 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 12750 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 12751 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 12752 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 12753 #if !defined(CONFIG_USER_ONLY) 12754 dc->user = (dc->current_el == 0); 12755 #endif 12756 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 12757 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 12758 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 12759 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 12760 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 12761 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 12762 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 12763 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 12764 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 12765 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 12766 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 12767 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 12768 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 12769 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 12770 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 12771 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 12772 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 12773 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 12774 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 12775 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 12776 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 12777 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 12778 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 12779 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 12780 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 12781 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 12782 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 12783 dc->vec_len = 0; 12784 dc->vec_stride = 0; 12785 dc->cp_regs = arm_cpu->cp_regs; 12786 dc->features = env->features; 12787 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 12788 dc->gm_blocksize = arm_cpu->gm_blocksize; 12789 12790 #ifdef CONFIG_USER_ONLY 12791 /* In sve_probe_page, we assume TBI is enabled. */ 12792 tcg_debug_assert(dc->tbid & 1); 12793 #endif 12794 12795 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 12796 12797 /* Single step state. The code-generation logic here is: 12798 * SS_ACTIVE == 0: 12799 * generate code with no special handling for single-stepping (except 12800 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 12801 * this happens anyway because those changes are all system register or 12802 * PSTATE writes). 12803 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 12804 * emit code for one insn 12805 * emit code to clear PSTATE.SS 12806 * emit code to generate software step exception for completed step 12807 * end TB (as usual for having generated an exception) 12808 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 12809 * emit code to generate a software step exception 12810 * end the TB 12811 */ 12812 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 12813 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 12814 dc->is_ldex = false; 12815 12816 /* Bound the number of insns to execute to those left on the page. */ 12817 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 12818 12819 /* If architectural single step active, limit to 1. */ 12820 if (dc->ss_active) { 12821 bound = 1; 12822 } 12823 dc->base.max_insns = MIN(dc->base.max_insns, bound); 12824 } 12825 12826 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 12827 { 12828 } 12829 12830 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 12831 { 12832 DisasContext *dc = container_of(dcbase, DisasContext, base); 12833 target_ulong pc_arg = dc->base.pc_next; 12834 12835 if (tb_cflags(dcbase->tb) & CF_PCREL) { 12836 pc_arg &= ~TARGET_PAGE_MASK; 12837 } 12838 tcg_gen_insn_start(pc_arg, 0, 0); 12839 dc->insn_start_updated = false; 12840 } 12841 12842 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 12843 { 12844 DisasContext *s = container_of(dcbase, DisasContext, base); 12845 CPUARMState *env = cpu_env(cpu); 12846 uint64_t pc = s->base.pc_next; 12847 uint32_t insn; 12848 12849 /* Singlestep exceptions have the highest priority. */ 12850 if (s->ss_active && !s->pstate_ss) { 12851 /* Singlestep state is Active-pending. 12852 * If we're in this state at the start of a TB then either 12853 * a) we just took an exception to an EL which is being debugged 12854 * and this is the first insn in the exception handler 12855 * b) debug exceptions were masked and we just unmasked them 12856 * without changing EL (eg by clearing PSTATE.D) 12857 * In either case we're going to take a swstep exception in the 12858 * "did not step an insn" case, and so the syndrome ISV and EX 12859 * bits should be zero. 12860 */ 12861 assert(s->base.num_insns == 1); 12862 gen_swstep_exception(s, 0, 0); 12863 s->base.is_jmp = DISAS_NORETURN; 12864 s->base.pc_next = pc + 4; 12865 return; 12866 } 12867 12868 if (pc & 3) { 12869 /* 12870 * PC alignment fault. This has priority over the instruction abort 12871 * that we would receive from a translation fault via arm_ldl_code. 12872 * This should only be possible after an indirect branch, at the 12873 * start of the TB. 12874 */ 12875 assert(s->base.num_insns == 1); 12876 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 12877 s->base.is_jmp = DISAS_NORETURN; 12878 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 12879 return; 12880 } 12881 12882 s->pc_curr = pc; 12883 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 12884 s->insn = insn; 12885 s->base.pc_next = pc + 4; 12886 12887 s->fp_access_checked = false; 12888 s->sve_access_checked = false; 12889 12890 if (s->pstate_il) { 12891 /* 12892 * Illegal execution state. This has priority over BTI 12893 * exceptions, but comes after instruction abort exceptions. 12894 */ 12895 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 12896 return; 12897 } 12898 12899 if (dc_isar_feature(aa64_bti, s)) { 12900 if (s->base.num_insns == 1) { 12901 /* 12902 * At the first insn of the TB, compute s->guarded_page. 12903 * We delayed computing this until successfully reading 12904 * the first insn of the TB, above. This (mostly) ensures 12905 * that the softmmu tlb entry has been populated, and the 12906 * page table GP bit is available. 12907 * 12908 * Note that we need to compute this even if btype == 0, 12909 * because this value is used for BR instructions later 12910 * where ENV is not available. 12911 */ 12912 s->guarded_page = is_guarded_page(env, s); 12913 12914 /* First insn can have btype set to non-zero. */ 12915 tcg_debug_assert(s->btype >= 0); 12916 12917 /* 12918 * Note that the Branch Target Exception has fairly high 12919 * priority -- below debugging exceptions but above most 12920 * everything else. This allows us to handle this now 12921 * instead of waiting until the insn is otherwise decoded. 12922 */ 12923 if (s->btype != 0 12924 && s->guarded_page 12925 && !btype_destination_ok(insn, s->bt, s->btype)) { 12926 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 12927 return; 12928 } 12929 } else { 12930 /* Not the first insn: btype must be 0. */ 12931 tcg_debug_assert(s->btype == 0); 12932 } 12933 } 12934 12935 s->is_nonstreaming = false; 12936 if (s->sme_trap_nonstreaming) { 12937 disas_sme_fa64(s, insn); 12938 } 12939 12940 if (!disas_a64(s, insn) && 12941 !disas_sme(s, insn) && 12942 !disas_sve(s, insn)) { 12943 disas_a64_legacy(s, insn); 12944 } 12945 12946 /* 12947 * After execution of most insns, btype is reset to 0. 12948 * Note that we set btype == -1 when the insn sets btype. 12949 */ 12950 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 12951 reset_btype(s); 12952 } 12953 } 12954 12955 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 12956 { 12957 DisasContext *dc = container_of(dcbase, DisasContext, base); 12958 12959 if (unlikely(dc->ss_active)) { 12960 /* Note that this means single stepping WFI doesn't halt the CPU. 12961 * For conditional branch insns this is harmless unreachable code as 12962 * gen_goto_tb() has already handled emitting the debug exception 12963 * (and thus a tb-jump is not possible when singlestepping). 12964 */ 12965 switch (dc->base.is_jmp) { 12966 default: 12967 gen_a64_update_pc(dc, 4); 12968 /* fall through */ 12969 case DISAS_EXIT: 12970 case DISAS_JUMP: 12971 gen_step_complete_exception(dc); 12972 break; 12973 case DISAS_NORETURN: 12974 break; 12975 } 12976 } else { 12977 switch (dc->base.is_jmp) { 12978 case DISAS_NEXT: 12979 case DISAS_TOO_MANY: 12980 gen_goto_tb(dc, 1, 4); 12981 break; 12982 default: 12983 case DISAS_UPDATE_EXIT: 12984 gen_a64_update_pc(dc, 4); 12985 /* fall through */ 12986 case DISAS_EXIT: 12987 tcg_gen_exit_tb(NULL, 0); 12988 break; 12989 case DISAS_UPDATE_NOCHAIN: 12990 gen_a64_update_pc(dc, 4); 12991 /* fall through */ 12992 case DISAS_JUMP: 12993 tcg_gen_lookup_and_goto_ptr(); 12994 break; 12995 case DISAS_NORETURN: 12996 case DISAS_SWI: 12997 break; 12998 case DISAS_WFE: 12999 gen_a64_update_pc(dc, 4); 13000 gen_helper_wfe(tcg_env); 13001 break; 13002 case DISAS_YIELD: 13003 gen_a64_update_pc(dc, 4); 13004 gen_helper_yield(tcg_env); 13005 break; 13006 case DISAS_WFI: 13007 /* 13008 * This is a special case because we don't want to just halt 13009 * the CPU if trying to debug across a WFI. 13010 */ 13011 gen_a64_update_pc(dc, 4); 13012 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13013 /* 13014 * The helper doesn't necessarily throw an exception, but we 13015 * must go back to the main loop to check for interrupts anyway. 13016 */ 13017 tcg_gen_exit_tb(NULL, 0); 13018 break; 13019 } 13020 } 13021 } 13022 13023 const TranslatorOps aarch64_translator_ops = { 13024 .init_disas_context = aarch64_tr_init_disas_context, 13025 .tb_start = aarch64_tr_tb_start, 13026 .insn_start = aarch64_tr_insn_start, 13027 .translate_insn = aarch64_tr_translate_insn, 13028 .tb_stop = aarch64_tr_tb_stop, 13029 }; 13030