1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->trap_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->trap_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2040 { 2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2042 return false; 2043 } 2044 if (sme_access_check(s)) { 2045 int old = s->pstate_sm | (s->pstate_za << 1); 2046 int new = a->imm * 3; 2047 2048 if ((old ^ new) & a->mask) { 2049 /* At least one bit changes. */ 2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2051 tcg_constant_i32(a->mask)); 2052 s->base.is_jmp = DISAS_TOO_MANY; 2053 } 2054 } 2055 return true; 2056 } 2057 2058 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2059 { 2060 TCGv_i32 tmp = tcg_temp_new_i32(); 2061 TCGv_i32 nzcv = tcg_temp_new_i32(); 2062 2063 /* build bit 31, N */ 2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2065 /* build bit 30, Z */ 2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2068 /* build bit 29, C */ 2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2070 /* build bit 28, V */ 2071 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2073 /* generate result */ 2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2075 } 2076 2077 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* take NZCV from R[t] */ 2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2083 2084 /* bit 31, N */ 2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2086 /* bit 30, Z */ 2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2089 /* bit 29, C */ 2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2092 /* bit 28, V */ 2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2095 } 2096 2097 static void gen_sysreg_undef(DisasContext *s, bool isread, 2098 uint8_t op0, uint8_t op1, uint8_t op2, 2099 uint8_t crn, uint8_t crm, uint8_t rt) 2100 { 2101 /* 2102 * Generate code to emit an UNDEF with correct syndrome 2103 * information for a failed system register access. 2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2105 * but if FEAT_IDST is implemented then read accesses to registers 2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2107 * syndrome. 2108 */ 2109 uint32_t syndrome; 2110 2111 if (isread && dc_isar_feature(aa64_ids, s) && 2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2114 } else { 2115 syndrome = syn_uncategorized(); 2116 } 2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2118 } 2119 2120 /* MRS - move from system register 2121 * MSR (register) - move to system register 2122 * SYS 2123 * SYSL 2124 * These are all essentially the same insn in 'read' and 'write' 2125 * versions, with varying op0 fields. 2126 */ 2127 static void handle_sys(DisasContext *s, bool isread, 2128 unsigned int op0, unsigned int op1, unsigned int op2, 2129 unsigned int crn, unsigned int crm, unsigned int rt) 2130 { 2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2132 crn, crm, op0, op1, op2); 2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2134 bool need_exit_tb = false; 2135 bool nv_trap_to_el2 = false; 2136 bool nv_redirect_reg = false; 2137 bool skip_fp_access_checks = false; 2138 bool nv2_mem_redirect = false; 2139 TCGv_ptr tcg_ri = NULL; 2140 TCGv_i64 tcg_rt; 2141 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2142 2143 if (crn == 11 || crn == 15) { 2144 /* 2145 * Check for TIDCP trap, which must take precedence over 2146 * the UNDEF for "no such register" etc. 2147 */ 2148 switch (s->current_el) { 2149 case 0: 2150 if (dc_isar_feature(aa64_tidcp1, s)) { 2151 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2152 } 2153 break; 2154 case 1: 2155 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2156 break; 2157 } 2158 } 2159 2160 if (!ri) { 2161 /* Unknown register; this might be a guest error or a QEMU 2162 * unimplemented feature. 2163 */ 2164 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2165 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2166 isread ? "read" : "write", op0, op1, crn, crm, op2); 2167 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2168 return; 2169 } 2170 2171 if (s->nv2 && ri->nv2_redirect_offset) { 2172 /* 2173 * Some registers always redirect to memory; some only do so if 2174 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2175 * pairs which share an offset; see the table in R_CSRPQ). 2176 */ 2177 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2178 nv2_mem_redirect = s->nv1; 2179 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2180 nv2_mem_redirect = !s->nv1; 2181 } else { 2182 nv2_mem_redirect = true; 2183 } 2184 } 2185 2186 /* Check access permissions */ 2187 if (!cp_access_ok(s->current_el, ri, isread)) { 2188 /* 2189 * FEAT_NV/NV2 handling does not do the usual FP access checks 2190 * for registers only accessible at EL2 (though it *does* do them 2191 * for registers accessible at EL1). 2192 */ 2193 skip_fp_access_checks = true; 2194 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2195 /* 2196 * This is one of the few EL2 registers which should redirect 2197 * to the equivalent EL1 register. We do that after running 2198 * the EL2 register's accessfn. 2199 */ 2200 nv_redirect_reg = true; 2201 assert(!nv2_mem_redirect); 2202 } else if (nv2_mem_redirect) { 2203 /* 2204 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2205 * UNDEF to EL1. 2206 */ 2207 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2208 /* 2209 * This register / instruction exists and is an EL2 register, so 2210 * we must trap to EL2 if accessed in nested virtualization EL1 2211 * instead of UNDEFing. We'll do that after the usual access checks. 2212 * (This makes a difference only for a couple of registers like 2213 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2214 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2215 * an accessfn which does nothing when called from EL1, because 2216 * the trap-to-EL3 controls which would apply to that register 2217 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2218 */ 2219 nv_trap_to_el2 = true; 2220 } else { 2221 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2222 return; 2223 } 2224 } 2225 2226 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2227 /* Emit code to perform further access permissions checks at 2228 * runtime; this may result in an exception. 2229 */ 2230 gen_a64_update_pc(s, 0); 2231 tcg_ri = tcg_temp_new_ptr(); 2232 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2233 tcg_constant_i32(key), 2234 tcg_constant_i32(syndrome), 2235 tcg_constant_i32(isread)); 2236 } else if (ri->type & ARM_CP_RAISES_EXC) { 2237 /* 2238 * The readfn or writefn might raise an exception; 2239 * synchronize the CPU state in case it does. 2240 */ 2241 gen_a64_update_pc(s, 0); 2242 } 2243 2244 if (!skip_fp_access_checks) { 2245 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2246 return; 2247 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2248 return; 2249 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2250 return; 2251 } 2252 } 2253 2254 if (nv_trap_to_el2) { 2255 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2256 return; 2257 } 2258 2259 if (nv_redirect_reg) { 2260 /* 2261 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2262 * Conveniently in all cases the encoding of the EL1 register is 2263 * identical to the EL2 register except that opc1 is 0. 2264 * Get the reginfo for the EL1 register to use for the actual access. 2265 * We don't use the EL1 register's access function, and 2266 * fine-grained-traps on EL1 also do not apply here. 2267 */ 2268 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2269 crn, crm, op0, 0, op2); 2270 ri = get_arm_cp_reginfo(s->cp_regs, key); 2271 assert(ri); 2272 assert(cp_access_ok(s->current_el, ri, isread)); 2273 /* 2274 * We might not have done an update_pc earlier, so check we don't 2275 * need it. We could support this in future if necessary. 2276 */ 2277 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2278 } 2279 2280 if (nv2_mem_redirect) { 2281 /* 2282 * This system register is being redirected into an EL2 memory access. 2283 * This means it is not an IO operation, doesn't change hflags, 2284 * and need not end the TB, because it has no side effects. 2285 * 2286 * The access is 64-bit single copy atomic, guaranteed aligned because 2287 * of the definition of VCNR_EL2. Its endianness depends on 2288 * SCTLR_EL2.EE, not on the data endianness of EL1. 2289 * It is done under either the EL2 translation regime or the EL2&0 2290 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2291 * PSTATE.PAN is 0. 2292 */ 2293 TCGv_i64 ptr = tcg_temp_new_i64(); 2294 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2295 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2296 int memidx = arm_to_core_mmu_idx(armmemidx); 2297 uint32_t syn; 2298 2299 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2300 2301 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2302 tcg_gen_addi_i64(ptr, ptr, 2303 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2304 tcg_rt = cpu_reg(s, rt); 2305 2306 syn = syn_data_abort_vncr(0, !isread, 0); 2307 disas_set_insn_syndrome(s, syn); 2308 if (isread) { 2309 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2310 } else { 2311 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2312 } 2313 return; 2314 } 2315 2316 /* Handle special cases first */ 2317 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2318 case 0: 2319 break; 2320 case ARM_CP_NOP: 2321 return; 2322 case ARM_CP_NZCV: 2323 tcg_rt = cpu_reg(s, rt); 2324 if (isread) { 2325 gen_get_nzcv(tcg_rt); 2326 } else { 2327 gen_set_nzcv(tcg_rt); 2328 } 2329 return; 2330 case ARM_CP_CURRENTEL: 2331 { 2332 /* 2333 * Reads as current EL value from pstate, which is 2334 * guaranteed to be constant by the tb flags. 2335 * For nested virt we should report EL2. 2336 */ 2337 int el = s->nv ? 2 : s->current_el; 2338 tcg_rt = cpu_reg(s, rt); 2339 tcg_gen_movi_i64(tcg_rt, el << 2); 2340 return; 2341 } 2342 case ARM_CP_DC_ZVA: 2343 /* Writes clear the aligned block of memory which rt points into. */ 2344 if (s->mte_active[0]) { 2345 int desc = 0; 2346 2347 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2348 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2349 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2350 2351 tcg_rt = tcg_temp_new_i64(); 2352 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2353 tcg_constant_i32(desc), cpu_reg(s, rt)); 2354 } else { 2355 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2356 } 2357 gen_helper_dc_zva(tcg_env, tcg_rt); 2358 return; 2359 case ARM_CP_DC_GVA: 2360 { 2361 TCGv_i64 clean_addr, tag; 2362 2363 /* 2364 * DC_GVA, like DC_ZVA, requires that we supply the original 2365 * pointer for an invalid page. Probe that address first. 2366 */ 2367 tcg_rt = cpu_reg(s, rt); 2368 clean_addr = clean_data_tbi(s, tcg_rt); 2369 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2370 2371 if (s->ata[0]) { 2372 /* Extract the tag from the register to match STZGM. */ 2373 tag = tcg_temp_new_i64(); 2374 tcg_gen_shri_i64(tag, tcg_rt, 56); 2375 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2376 } 2377 } 2378 return; 2379 case ARM_CP_DC_GZVA: 2380 { 2381 TCGv_i64 clean_addr, tag; 2382 2383 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2384 tcg_rt = cpu_reg(s, rt); 2385 clean_addr = clean_data_tbi(s, tcg_rt); 2386 gen_helper_dc_zva(tcg_env, clean_addr); 2387 2388 if (s->ata[0]) { 2389 /* Extract the tag from the register to match STZGM. */ 2390 tag = tcg_temp_new_i64(); 2391 tcg_gen_shri_i64(tag, tcg_rt, 56); 2392 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2393 } 2394 } 2395 return; 2396 default: 2397 g_assert_not_reached(); 2398 } 2399 2400 if (ri->type & ARM_CP_IO) { 2401 /* I/O operations must end the TB here (whether read or write) */ 2402 need_exit_tb = translator_io_start(&s->base); 2403 } 2404 2405 tcg_rt = cpu_reg(s, rt); 2406 2407 if (isread) { 2408 if (ri->type & ARM_CP_CONST) { 2409 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2410 } else if (ri->readfn) { 2411 if (!tcg_ri) { 2412 tcg_ri = gen_lookup_cp_reg(key); 2413 } 2414 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2415 } else { 2416 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2417 } 2418 } else { 2419 if (ri->type & ARM_CP_CONST) { 2420 /* If not forbidden by access permissions, treat as WI */ 2421 return; 2422 } else if (ri->writefn) { 2423 if (!tcg_ri) { 2424 tcg_ri = gen_lookup_cp_reg(key); 2425 } 2426 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2427 } else { 2428 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2429 } 2430 } 2431 2432 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2433 /* 2434 * A write to any coprocessor register that ends a TB 2435 * must rebuild the hflags for the next TB. 2436 */ 2437 gen_rebuild_hflags(s); 2438 /* 2439 * We default to ending the TB on a coprocessor register write, 2440 * but allow this to be suppressed by the register definition 2441 * (usually only necessary to work around guest bugs). 2442 */ 2443 need_exit_tb = true; 2444 } 2445 if (need_exit_tb) { 2446 s->base.is_jmp = DISAS_UPDATE_EXIT; 2447 } 2448 } 2449 2450 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2451 { 2452 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2453 return true; 2454 } 2455 2456 static bool trans_SVC(DisasContext *s, arg_i *a) 2457 { 2458 /* 2459 * For SVC, HVC and SMC we advance the single-step state 2460 * machine before taking the exception. This is architecturally 2461 * mandated, to ensure that single-stepping a system call 2462 * instruction works properly. 2463 */ 2464 uint32_t syndrome = syn_aa64_svc(a->imm); 2465 if (s->fgt_svc) { 2466 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2467 return true; 2468 } 2469 gen_ss_advance(s); 2470 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2471 return true; 2472 } 2473 2474 static bool trans_HVC(DisasContext *s, arg_i *a) 2475 { 2476 int target_el = s->current_el == 3 ? 3 : 2; 2477 2478 if (s->current_el == 0) { 2479 unallocated_encoding(s); 2480 return true; 2481 } 2482 /* 2483 * The pre HVC helper handles cases when HVC gets trapped 2484 * as an undefined insn by runtime configuration. 2485 */ 2486 gen_a64_update_pc(s, 0); 2487 gen_helper_pre_hvc(tcg_env); 2488 /* Architecture requires ss advance before we do the actual work */ 2489 gen_ss_advance(s); 2490 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2491 return true; 2492 } 2493 2494 static bool trans_SMC(DisasContext *s, arg_i *a) 2495 { 2496 if (s->current_el == 0) { 2497 unallocated_encoding(s); 2498 return true; 2499 } 2500 gen_a64_update_pc(s, 0); 2501 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2502 /* Architecture requires ss advance before we do the actual work */ 2503 gen_ss_advance(s); 2504 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2505 return true; 2506 } 2507 2508 static bool trans_BRK(DisasContext *s, arg_i *a) 2509 { 2510 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2511 return true; 2512 } 2513 2514 static bool trans_HLT(DisasContext *s, arg_i *a) 2515 { 2516 /* 2517 * HLT. This has two purposes. 2518 * Architecturally, it is an external halting debug instruction. 2519 * Since QEMU doesn't implement external debug, we treat this as 2520 * it is required for halting debug disabled: it will UNDEF. 2521 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2522 */ 2523 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2524 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2525 } else { 2526 unallocated_encoding(s); 2527 } 2528 return true; 2529 } 2530 2531 /* 2532 * Load/Store exclusive instructions are implemented by remembering 2533 * the value/address loaded, and seeing if these are the same 2534 * when the store is performed. This is not actually the architecturally 2535 * mandated semantics, but it works for typical guest code sequences 2536 * and avoids having to monitor regular stores. 2537 * 2538 * The store exclusive uses the atomic cmpxchg primitives to avoid 2539 * races in multi-threaded linux-user and when MTTCG softmmu is 2540 * enabled. 2541 */ 2542 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2543 int size, bool is_pair) 2544 { 2545 int idx = get_mem_index(s); 2546 TCGv_i64 dirty_addr, clean_addr; 2547 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2548 2549 s->is_ldex = true; 2550 dirty_addr = cpu_reg_sp(s, rn); 2551 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2552 2553 g_assert(size <= 3); 2554 if (is_pair) { 2555 g_assert(size >= 2); 2556 if (size == 2) { 2557 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2558 if (s->be_data == MO_LE) { 2559 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2560 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2561 } else { 2562 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2563 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2564 } 2565 } else { 2566 TCGv_i128 t16 = tcg_temp_new_i128(); 2567 2568 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2569 2570 if (s->be_data == MO_LE) { 2571 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2572 cpu_exclusive_high, t16); 2573 } else { 2574 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2575 cpu_exclusive_val, t16); 2576 } 2577 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2578 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2579 } 2580 } else { 2581 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2582 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2583 } 2584 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2585 } 2586 2587 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2588 int rn, int size, int is_pair) 2589 { 2590 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2591 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2592 * [addr] = {Rt}; 2593 * if (is_pair) { 2594 * [addr + datasize] = {Rt2}; 2595 * } 2596 * {Rd} = 0; 2597 * } else { 2598 * {Rd} = 1; 2599 * } 2600 * env->exclusive_addr = -1; 2601 */ 2602 TCGLabel *fail_label = gen_new_label(); 2603 TCGLabel *done_label = gen_new_label(); 2604 TCGv_i64 tmp, clean_addr; 2605 MemOp memop; 2606 2607 /* 2608 * FIXME: We are out of spec here. We have recorded only the address 2609 * from load_exclusive, not the entire range, and we assume that the 2610 * size of the access on both sides match. The architecture allows the 2611 * store to be smaller than the load, so long as the stored bytes are 2612 * within the range recorded by the load. 2613 */ 2614 2615 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2616 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2617 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2618 2619 /* 2620 * The write, and any associated faults, only happen if the virtual 2621 * and physical addresses pass the exclusive monitor check. These 2622 * faults are exceedingly unlikely, because normally the guest uses 2623 * the exact same address register for the load_exclusive, and we 2624 * would have recognized these faults there. 2625 * 2626 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2627 * unaligned 4-byte write within the range of an aligned 8-byte load. 2628 * With LSE2, the store would need to cross a 16-byte boundary when the 2629 * load did not, which would mean the store is outside the range 2630 * recorded for the monitor, which would have failed a corrected monitor 2631 * check above. For now, we assume no size change and retain the 2632 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2633 * 2634 * It is possible to trigger an MTE fault, by performing the load with 2635 * a virtual address with a valid tag and performing the store with the 2636 * same virtual address and a different invalid tag. 2637 */ 2638 memop = size + is_pair; 2639 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2640 memop |= MO_ALIGN; 2641 } 2642 memop = finalize_memop(s, memop); 2643 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2644 2645 tmp = tcg_temp_new_i64(); 2646 if (is_pair) { 2647 if (size == 2) { 2648 if (s->be_data == MO_LE) { 2649 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2650 } else { 2651 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2652 } 2653 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2654 cpu_exclusive_val, tmp, 2655 get_mem_index(s), memop); 2656 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2657 } else { 2658 TCGv_i128 t16 = tcg_temp_new_i128(); 2659 TCGv_i128 c16 = tcg_temp_new_i128(); 2660 TCGv_i64 a, b; 2661 2662 if (s->be_data == MO_LE) { 2663 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2664 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2665 cpu_exclusive_high); 2666 } else { 2667 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2668 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2669 cpu_exclusive_val); 2670 } 2671 2672 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2673 get_mem_index(s), memop); 2674 2675 a = tcg_temp_new_i64(); 2676 b = tcg_temp_new_i64(); 2677 if (s->be_data == MO_LE) { 2678 tcg_gen_extr_i128_i64(a, b, t16); 2679 } else { 2680 tcg_gen_extr_i128_i64(b, a, t16); 2681 } 2682 2683 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2684 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2685 tcg_gen_or_i64(tmp, a, b); 2686 2687 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2688 } 2689 } else { 2690 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2691 cpu_reg(s, rt), get_mem_index(s), memop); 2692 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2693 } 2694 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2695 tcg_gen_br(done_label); 2696 2697 gen_set_label(fail_label); 2698 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2699 gen_set_label(done_label); 2700 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2701 } 2702 2703 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2704 int rn, int size) 2705 { 2706 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2707 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2708 int memidx = get_mem_index(s); 2709 TCGv_i64 clean_addr; 2710 MemOp memop; 2711 2712 if (rn == 31) { 2713 gen_check_sp_alignment(s); 2714 } 2715 memop = check_atomic_align(s, rn, size); 2716 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2717 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2718 memidx, memop); 2719 } 2720 2721 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2722 int rn, int size) 2723 { 2724 TCGv_i64 s1 = cpu_reg(s, rs); 2725 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2726 TCGv_i64 t1 = cpu_reg(s, rt); 2727 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2728 TCGv_i64 clean_addr; 2729 int memidx = get_mem_index(s); 2730 MemOp memop; 2731 2732 if (rn == 31) { 2733 gen_check_sp_alignment(s); 2734 } 2735 2736 /* This is a single atomic access, despite the "pair". */ 2737 memop = check_atomic_align(s, rn, size + 1); 2738 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2739 2740 if (size == 2) { 2741 TCGv_i64 cmp = tcg_temp_new_i64(); 2742 TCGv_i64 val = tcg_temp_new_i64(); 2743 2744 if (s->be_data == MO_LE) { 2745 tcg_gen_concat32_i64(val, t1, t2); 2746 tcg_gen_concat32_i64(cmp, s1, s2); 2747 } else { 2748 tcg_gen_concat32_i64(val, t2, t1); 2749 tcg_gen_concat32_i64(cmp, s2, s1); 2750 } 2751 2752 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2753 2754 if (s->be_data == MO_LE) { 2755 tcg_gen_extr32_i64(s1, s2, cmp); 2756 } else { 2757 tcg_gen_extr32_i64(s2, s1, cmp); 2758 } 2759 } else { 2760 TCGv_i128 cmp = tcg_temp_new_i128(); 2761 TCGv_i128 val = tcg_temp_new_i128(); 2762 2763 if (s->be_data == MO_LE) { 2764 tcg_gen_concat_i64_i128(val, t1, t2); 2765 tcg_gen_concat_i64_i128(cmp, s1, s2); 2766 } else { 2767 tcg_gen_concat_i64_i128(val, t2, t1); 2768 tcg_gen_concat_i64_i128(cmp, s2, s1); 2769 } 2770 2771 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2772 2773 if (s->be_data == MO_LE) { 2774 tcg_gen_extr_i128_i64(s1, s2, cmp); 2775 } else { 2776 tcg_gen_extr_i128_i64(s2, s1, cmp); 2777 } 2778 } 2779 } 2780 2781 /* 2782 * Compute the ISS.SF bit for syndrome information if an exception 2783 * is taken on a load or store. This indicates whether the instruction 2784 * is accessing a 32-bit or 64-bit register. This logic is derived 2785 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2786 */ 2787 static bool ldst_iss_sf(int size, bool sign, bool ext) 2788 { 2789 2790 if (sign) { 2791 /* 2792 * Signed loads are 64 bit results if we are not going to 2793 * do a zero-extend from 32 to 64 after the load. 2794 * (For a store, sign and ext are always false.) 2795 */ 2796 return !ext; 2797 } else { 2798 /* Unsigned loads/stores work at the specified size */ 2799 return size == MO_64; 2800 } 2801 } 2802 2803 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2804 { 2805 if (a->rn == 31) { 2806 gen_check_sp_alignment(s); 2807 } 2808 if (a->lasr) { 2809 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2810 } 2811 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2812 return true; 2813 } 2814 2815 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2816 { 2817 if (a->rn == 31) { 2818 gen_check_sp_alignment(s); 2819 } 2820 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2821 if (a->lasr) { 2822 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2823 } 2824 return true; 2825 } 2826 2827 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2828 { 2829 TCGv_i64 clean_addr; 2830 MemOp memop; 2831 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2832 2833 /* 2834 * StoreLORelease is the same as Store-Release for QEMU, but 2835 * needs the feature-test. 2836 */ 2837 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2838 return false; 2839 } 2840 /* Generate ISS for non-exclusive accesses including LASR. */ 2841 if (a->rn == 31) { 2842 gen_check_sp_alignment(s); 2843 } 2844 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2845 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2846 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2847 true, a->rn != 31, memop); 2848 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2849 iss_sf, a->lasr); 2850 return true; 2851 } 2852 2853 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2854 { 2855 TCGv_i64 clean_addr; 2856 MemOp memop; 2857 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2858 2859 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2860 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2861 return false; 2862 } 2863 /* Generate ISS for non-exclusive accesses including LASR. */ 2864 if (a->rn == 31) { 2865 gen_check_sp_alignment(s); 2866 } 2867 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2868 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2869 false, a->rn != 31, memop); 2870 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2871 a->rt, iss_sf, a->lasr); 2872 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2873 return true; 2874 } 2875 2876 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2877 { 2878 if (a->rn == 31) { 2879 gen_check_sp_alignment(s); 2880 } 2881 if (a->lasr) { 2882 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2883 } 2884 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2885 return true; 2886 } 2887 2888 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2889 { 2890 if (a->rn == 31) { 2891 gen_check_sp_alignment(s); 2892 } 2893 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2894 if (a->lasr) { 2895 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2896 } 2897 return true; 2898 } 2899 2900 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2901 { 2902 if (!dc_isar_feature(aa64_atomics, s)) { 2903 return false; 2904 } 2905 if (((a->rt | a->rs) & 1) != 0) { 2906 return false; 2907 } 2908 2909 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2910 return true; 2911 } 2912 2913 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2914 { 2915 if (!dc_isar_feature(aa64_atomics, s)) { 2916 return false; 2917 } 2918 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2919 return true; 2920 } 2921 2922 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2923 { 2924 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2925 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2926 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2927 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2928 2929 gen_pc_plus_diff(s, clean_addr, a->imm); 2930 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2931 false, true, a->rt, iss_sf, false); 2932 return true; 2933 } 2934 2935 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2936 { 2937 /* Load register (literal), vector version */ 2938 TCGv_i64 clean_addr; 2939 MemOp memop; 2940 2941 if (!fp_access_check(s)) { 2942 return true; 2943 } 2944 memop = finalize_memop_asimd(s, a->sz); 2945 clean_addr = tcg_temp_new_i64(); 2946 gen_pc_plus_diff(s, clean_addr, a->imm); 2947 do_fp_ld(s, a->rt, clean_addr, memop); 2948 return true; 2949 } 2950 2951 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2952 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2953 uint64_t offset, bool is_store, MemOp mop) 2954 { 2955 if (a->rn == 31) { 2956 gen_check_sp_alignment(s); 2957 } 2958 2959 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2960 if (!a->p) { 2961 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2962 } 2963 2964 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2965 (a->w || a->rn != 31), 2 << a->sz, mop); 2966 } 2967 2968 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2969 TCGv_i64 dirty_addr, uint64_t offset) 2970 { 2971 if (a->w) { 2972 if (a->p) { 2973 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2974 } 2975 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2976 } 2977 } 2978 2979 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2980 { 2981 uint64_t offset = a->imm << a->sz; 2982 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2983 MemOp mop = finalize_memop(s, a->sz); 2984 2985 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2986 tcg_rt = cpu_reg(s, a->rt); 2987 tcg_rt2 = cpu_reg(s, a->rt2); 2988 /* 2989 * We built mop above for the single logical access -- rebuild it 2990 * now for the paired operation. 2991 * 2992 * With LSE2, non-sign-extending pairs are treated atomically if 2993 * aligned, and if unaligned one of the pair will be completely 2994 * within a 16-byte block and that element will be atomic. 2995 * Otherwise each element is separately atomic. 2996 * In all cases, issue one operation with the correct atomicity. 2997 */ 2998 mop = a->sz + 1; 2999 if (s->align_mem) { 3000 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3001 } 3002 mop = finalize_memop_pair(s, mop); 3003 if (a->sz == 2) { 3004 TCGv_i64 tmp = tcg_temp_new_i64(); 3005 3006 if (s->be_data == MO_LE) { 3007 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3008 } else { 3009 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3010 } 3011 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3012 } else { 3013 TCGv_i128 tmp = tcg_temp_new_i128(); 3014 3015 if (s->be_data == MO_LE) { 3016 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3017 } else { 3018 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3019 } 3020 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3021 } 3022 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3023 return true; 3024 } 3025 3026 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3027 { 3028 uint64_t offset = a->imm << a->sz; 3029 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3030 MemOp mop = finalize_memop(s, a->sz); 3031 3032 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3033 tcg_rt = cpu_reg(s, a->rt); 3034 tcg_rt2 = cpu_reg(s, a->rt2); 3035 3036 /* 3037 * We built mop above for the single logical access -- rebuild it 3038 * now for the paired operation. 3039 * 3040 * With LSE2, non-sign-extending pairs are treated atomically if 3041 * aligned, and if unaligned one of the pair will be completely 3042 * within a 16-byte block and that element will be atomic. 3043 * Otherwise each element is separately atomic. 3044 * In all cases, issue one operation with the correct atomicity. 3045 * 3046 * This treats sign-extending loads like zero-extending loads, 3047 * since that reuses the most code below. 3048 */ 3049 mop = a->sz + 1; 3050 if (s->align_mem) { 3051 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3052 } 3053 mop = finalize_memop_pair(s, mop); 3054 if (a->sz == 2) { 3055 int o2 = s->be_data == MO_LE ? 32 : 0; 3056 int o1 = o2 ^ 32; 3057 3058 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3059 if (a->sign) { 3060 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3061 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3062 } else { 3063 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3064 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3065 } 3066 } else { 3067 TCGv_i128 tmp = tcg_temp_new_i128(); 3068 3069 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3070 if (s->be_data == MO_LE) { 3071 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3072 } else { 3073 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3074 } 3075 } 3076 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3077 return true; 3078 } 3079 3080 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3081 { 3082 uint64_t offset = a->imm << a->sz; 3083 TCGv_i64 clean_addr, dirty_addr; 3084 MemOp mop; 3085 3086 if (!fp_access_check(s)) { 3087 return true; 3088 } 3089 3090 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3091 mop = finalize_memop_asimd(s, a->sz); 3092 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3093 do_fp_st(s, a->rt, clean_addr, mop); 3094 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3095 do_fp_st(s, a->rt2, clean_addr, mop); 3096 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3097 return true; 3098 } 3099 3100 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3101 { 3102 uint64_t offset = a->imm << a->sz; 3103 TCGv_i64 clean_addr, dirty_addr; 3104 MemOp mop; 3105 3106 if (!fp_access_check(s)) { 3107 return true; 3108 } 3109 3110 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3111 mop = finalize_memop_asimd(s, a->sz); 3112 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3113 do_fp_ld(s, a->rt, clean_addr, mop); 3114 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3115 do_fp_ld(s, a->rt2, clean_addr, mop); 3116 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3117 return true; 3118 } 3119 3120 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3121 { 3122 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3123 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3124 MemOp mop; 3125 TCGv_i128 tmp; 3126 3127 /* STGP only comes in one size. */ 3128 tcg_debug_assert(a->sz == MO_64); 3129 3130 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3131 return false; 3132 } 3133 3134 if (a->rn == 31) { 3135 gen_check_sp_alignment(s); 3136 } 3137 3138 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3139 if (!a->p) { 3140 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3141 } 3142 3143 clean_addr = clean_data_tbi(s, dirty_addr); 3144 tcg_rt = cpu_reg(s, a->rt); 3145 tcg_rt2 = cpu_reg(s, a->rt2); 3146 3147 /* 3148 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3149 * and one tag operation. We implement it as one single aligned 16-byte 3150 * memory operation for convenience. Note that the alignment ensures 3151 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3152 */ 3153 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3154 3155 tmp = tcg_temp_new_i128(); 3156 if (s->be_data == MO_LE) { 3157 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3158 } else { 3159 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3160 } 3161 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3162 3163 /* Perform the tag store, if tag access enabled. */ 3164 if (s->ata[0]) { 3165 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3166 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3167 } else { 3168 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3169 } 3170 } 3171 3172 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3173 return true; 3174 } 3175 3176 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3177 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3178 uint64_t offset, bool is_store, MemOp mop) 3179 { 3180 int memidx; 3181 3182 if (a->rn == 31) { 3183 gen_check_sp_alignment(s); 3184 } 3185 3186 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3187 if (!a->p) { 3188 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3189 } 3190 memidx = get_a64_user_mem_index(s, a->unpriv); 3191 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3192 a->w || a->rn != 31, 3193 mop, a->unpriv, memidx); 3194 } 3195 3196 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3197 TCGv_i64 dirty_addr, uint64_t offset) 3198 { 3199 if (a->w) { 3200 if (a->p) { 3201 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3202 } 3203 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3204 } 3205 } 3206 3207 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3208 { 3209 bool iss_sf, iss_valid = !a->w; 3210 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3211 int memidx = get_a64_user_mem_index(s, a->unpriv); 3212 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3213 3214 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3215 3216 tcg_rt = cpu_reg(s, a->rt); 3217 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3218 3219 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3220 iss_valid, a->rt, iss_sf, false); 3221 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3222 return true; 3223 } 3224 3225 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3226 { 3227 bool iss_sf, iss_valid = !a->w; 3228 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3229 int memidx = get_a64_user_mem_index(s, a->unpriv); 3230 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3231 3232 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3233 3234 tcg_rt = cpu_reg(s, a->rt); 3235 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3236 3237 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3238 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3239 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3240 return true; 3241 } 3242 3243 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3244 { 3245 TCGv_i64 clean_addr, dirty_addr; 3246 MemOp mop; 3247 3248 if (!fp_access_check(s)) { 3249 return true; 3250 } 3251 mop = finalize_memop_asimd(s, a->sz); 3252 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3253 do_fp_st(s, a->rt, clean_addr, mop); 3254 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3255 return true; 3256 } 3257 3258 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3259 { 3260 TCGv_i64 clean_addr, dirty_addr; 3261 MemOp mop; 3262 3263 if (!fp_access_check(s)) { 3264 return true; 3265 } 3266 mop = finalize_memop_asimd(s, a->sz); 3267 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3268 do_fp_ld(s, a->rt, clean_addr, mop); 3269 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3270 return true; 3271 } 3272 3273 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3274 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3275 bool is_store, MemOp memop) 3276 { 3277 TCGv_i64 tcg_rm; 3278 3279 if (a->rn == 31) { 3280 gen_check_sp_alignment(s); 3281 } 3282 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3283 3284 tcg_rm = read_cpu_reg(s, a->rm, 1); 3285 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3286 3287 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3288 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3289 } 3290 3291 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3292 { 3293 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3294 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3295 MemOp memop; 3296 3297 if (extract32(a->opt, 1, 1) == 0) { 3298 return false; 3299 } 3300 3301 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3302 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3303 tcg_rt = cpu_reg(s, a->rt); 3304 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3305 a->ext, true, a->rt, iss_sf, false); 3306 return true; 3307 } 3308 3309 static bool trans_STR(DisasContext *s, arg_ldst *a) 3310 { 3311 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3312 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3313 MemOp memop; 3314 3315 if (extract32(a->opt, 1, 1) == 0) { 3316 return false; 3317 } 3318 3319 memop = finalize_memop(s, a->sz); 3320 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3321 tcg_rt = cpu_reg(s, a->rt); 3322 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp memop; 3330 3331 if (extract32(a->opt, 1, 1) == 0) { 3332 return false; 3333 } 3334 3335 if (!fp_access_check(s)) { 3336 return true; 3337 } 3338 3339 memop = finalize_memop_asimd(s, a->sz); 3340 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3341 do_fp_ld(s, a->rt, clean_addr, memop); 3342 return true; 3343 } 3344 3345 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3346 { 3347 TCGv_i64 clean_addr, dirty_addr; 3348 MemOp memop; 3349 3350 if (extract32(a->opt, 1, 1) == 0) { 3351 return false; 3352 } 3353 3354 if (!fp_access_check(s)) { 3355 return true; 3356 } 3357 3358 memop = finalize_memop_asimd(s, a->sz); 3359 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3360 do_fp_st(s, a->rt, clean_addr, memop); 3361 return true; 3362 } 3363 3364 3365 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3366 int sign, bool invert) 3367 { 3368 MemOp mop = a->sz | sign; 3369 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3370 3371 if (a->rn == 31) { 3372 gen_check_sp_alignment(s); 3373 } 3374 mop = check_atomic_align(s, a->rn, mop); 3375 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3376 a->rn != 31, mop); 3377 tcg_rs = read_cpu_reg(s, a->rs, true); 3378 tcg_rt = cpu_reg(s, a->rt); 3379 if (invert) { 3380 tcg_gen_not_i64(tcg_rs, tcg_rs); 3381 } 3382 /* 3383 * The tcg atomic primitives are all full barriers. Therefore we 3384 * can ignore the Acquire and Release bits of this instruction. 3385 */ 3386 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3387 3388 if (mop & MO_SIGN) { 3389 switch (a->sz) { 3390 case MO_8: 3391 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3392 break; 3393 case MO_16: 3394 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3395 break; 3396 case MO_32: 3397 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3398 break; 3399 case MO_64: 3400 break; 3401 default: 3402 g_assert_not_reached(); 3403 } 3404 } 3405 return true; 3406 } 3407 3408 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3409 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3410 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3411 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3412 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3413 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3414 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3415 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3416 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3417 3418 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3419 { 3420 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3421 TCGv_i64 clean_addr; 3422 MemOp mop; 3423 3424 if (!dc_isar_feature(aa64_atomics, s) || 3425 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3426 return false; 3427 } 3428 if (a->rn == 31) { 3429 gen_check_sp_alignment(s); 3430 } 3431 mop = check_atomic_align(s, a->rn, a->sz); 3432 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3433 a->rn != 31, mop); 3434 /* 3435 * LDAPR* are a special case because they are a simple load, not a 3436 * fetch-and-do-something op. 3437 * The architectural consistency requirements here are weaker than 3438 * full load-acquire (we only need "load-acquire processor consistent"), 3439 * but we choose to implement them as full LDAQ. 3440 */ 3441 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3442 true, a->rt, iss_sf, true); 3443 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3444 return true; 3445 } 3446 3447 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3448 { 3449 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3450 MemOp memop; 3451 3452 /* Load with pointer authentication */ 3453 if (!dc_isar_feature(aa64_pauth, s)) { 3454 return false; 3455 } 3456 3457 if (a->rn == 31) { 3458 gen_check_sp_alignment(s); 3459 } 3460 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3461 3462 if (s->pauth_active) { 3463 if (!a->m) { 3464 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3465 tcg_constant_i64(0)); 3466 } else { 3467 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3468 tcg_constant_i64(0)); 3469 } 3470 } 3471 3472 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3473 3474 memop = finalize_memop(s, MO_64); 3475 3476 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3477 clean_addr = gen_mte_check1(s, dirty_addr, false, 3478 a->w || a->rn != 31, memop); 3479 3480 tcg_rt = cpu_reg(s, a->rt); 3481 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3482 /* extend */ false, /* iss_valid */ !a->w, 3483 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3484 3485 if (a->w) { 3486 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3487 } 3488 return true; 3489 } 3490 3491 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3492 { 3493 TCGv_i64 clean_addr, dirty_addr; 3494 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3495 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3496 3497 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3498 return false; 3499 } 3500 3501 if (a->rn == 31) { 3502 gen_check_sp_alignment(s); 3503 } 3504 3505 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3506 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3507 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3508 clean_addr = clean_data_tbi(s, dirty_addr); 3509 3510 /* 3511 * Load-AcquirePC semantics; we implement as the slightly more 3512 * restrictive Load-Acquire. 3513 */ 3514 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3515 a->rt, iss_sf, true); 3516 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3517 return true; 3518 } 3519 3520 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3521 { 3522 TCGv_i64 clean_addr, dirty_addr; 3523 MemOp mop = a->sz; 3524 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3525 3526 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3527 return false; 3528 } 3529 3530 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3531 3532 if (a->rn == 31) { 3533 gen_check_sp_alignment(s); 3534 } 3535 3536 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3537 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3538 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3539 clean_addr = clean_data_tbi(s, dirty_addr); 3540 3541 /* Store-Release semantics */ 3542 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3543 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3544 return true; 3545 } 3546 3547 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3548 { 3549 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3550 MemOp endian, align, mop; 3551 3552 int total; /* total bytes */ 3553 int elements; /* elements per vector */ 3554 int r; 3555 int size = a->sz; 3556 3557 if (!a->p && a->rm != 0) { 3558 /* For non-postindexed accesses the Rm field must be 0 */ 3559 return false; 3560 } 3561 if (size == 3 && !a->q && a->selem != 1) { 3562 return false; 3563 } 3564 if (!fp_access_check(s)) { 3565 return true; 3566 } 3567 3568 if (a->rn == 31) { 3569 gen_check_sp_alignment(s); 3570 } 3571 3572 /* For our purposes, bytes are always little-endian. */ 3573 endian = s->be_data; 3574 if (size == 0) { 3575 endian = MO_LE; 3576 } 3577 3578 total = a->rpt * a->selem * (a->q ? 16 : 8); 3579 tcg_rn = cpu_reg_sp(s, a->rn); 3580 3581 /* 3582 * Issue the MTE check vs the logical repeat count, before we 3583 * promote consecutive little-endian elements below. 3584 */ 3585 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3586 finalize_memop_asimd(s, size)); 3587 3588 /* 3589 * Consecutive little-endian elements from a single register 3590 * can be promoted to a larger little-endian operation. 3591 */ 3592 align = MO_ALIGN; 3593 if (a->selem == 1 && endian == MO_LE) { 3594 align = pow2_align(size); 3595 size = 3; 3596 } 3597 if (!s->align_mem) { 3598 align = 0; 3599 } 3600 mop = endian | size | align; 3601 3602 elements = (a->q ? 16 : 8) >> size; 3603 tcg_ebytes = tcg_constant_i64(1 << size); 3604 for (r = 0; r < a->rpt; r++) { 3605 int e; 3606 for (e = 0; e < elements; e++) { 3607 int xs; 3608 for (xs = 0; xs < a->selem; xs++) { 3609 int tt = (a->rt + r + xs) % 32; 3610 do_vec_ld(s, tt, e, clean_addr, mop); 3611 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3612 } 3613 } 3614 } 3615 3616 /* 3617 * For non-quad operations, setting a slice of the low 64 bits of 3618 * the register clears the high 64 bits (in the ARM ARM pseudocode 3619 * this is implicit in the fact that 'rval' is a 64 bit wide 3620 * variable). For quad operations, we might still need to zero 3621 * the high bits of SVE. 3622 */ 3623 for (r = 0; r < a->rpt * a->selem; r++) { 3624 int tt = (a->rt + r) % 32; 3625 clear_vec_high(s, a->q, tt); 3626 } 3627 3628 if (a->p) { 3629 if (a->rm == 31) { 3630 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3631 } else { 3632 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3633 } 3634 } 3635 return true; 3636 } 3637 3638 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3639 { 3640 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3641 MemOp endian, align, mop; 3642 3643 int total; /* total bytes */ 3644 int elements; /* elements per vector */ 3645 int r; 3646 int size = a->sz; 3647 3648 if (!a->p && a->rm != 0) { 3649 /* For non-postindexed accesses the Rm field must be 0 */ 3650 return false; 3651 } 3652 if (size == 3 && !a->q && a->selem != 1) { 3653 return false; 3654 } 3655 if (!fp_access_check(s)) { 3656 return true; 3657 } 3658 3659 if (a->rn == 31) { 3660 gen_check_sp_alignment(s); 3661 } 3662 3663 /* For our purposes, bytes are always little-endian. */ 3664 endian = s->be_data; 3665 if (size == 0) { 3666 endian = MO_LE; 3667 } 3668 3669 total = a->rpt * a->selem * (a->q ? 16 : 8); 3670 tcg_rn = cpu_reg_sp(s, a->rn); 3671 3672 /* 3673 * Issue the MTE check vs the logical repeat count, before we 3674 * promote consecutive little-endian elements below. 3675 */ 3676 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3677 finalize_memop_asimd(s, size)); 3678 3679 /* 3680 * Consecutive little-endian elements from a single register 3681 * can be promoted to a larger little-endian operation. 3682 */ 3683 align = MO_ALIGN; 3684 if (a->selem == 1 && endian == MO_LE) { 3685 align = pow2_align(size); 3686 size = 3; 3687 } 3688 if (!s->align_mem) { 3689 align = 0; 3690 } 3691 mop = endian | size | align; 3692 3693 elements = (a->q ? 16 : 8) >> size; 3694 tcg_ebytes = tcg_constant_i64(1 << size); 3695 for (r = 0; r < a->rpt; r++) { 3696 int e; 3697 for (e = 0; e < elements; e++) { 3698 int xs; 3699 for (xs = 0; xs < a->selem; xs++) { 3700 int tt = (a->rt + r + xs) % 32; 3701 do_vec_st(s, tt, e, clean_addr, mop); 3702 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3703 } 3704 } 3705 } 3706 3707 if (a->p) { 3708 if (a->rm == 31) { 3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3710 } else { 3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3712 } 3713 } 3714 return true; 3715 } 3716 3717 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3718 { 3719 int xs, total, rt; 3720 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3721 MemOp mop; 3722 3723 if (!a->p && a->rm != 0) { 3724 return false; 3725 } 3726 if (!fp_access_check(s)) { 3727 return true; 3728 } 3729 3730 if (a->rn == 31) { 3731 gen_check_sp_alignment(s); 3732 } 3733 3734 total = a->selem << a->scale; 3735 tcg_rn = cpu_reg_sp(s, a->rn); 3736 3737 mop = finalize_memop_asimd(s, a->scale); 3738 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3739 total, mop); 3740 3741 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3742 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3743 do_vec_st(s, rt, a->index, clean_addr, mop); 3744 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3745 } 3746 3747 if (a->p) { 3748 if (a->rm == 31) { 3749 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3750 } else { 3751 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3752 } 3753 } 3754 return true; 3755 } 3756 3757 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3758 { 3759 int xs, total, rt; 3760 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3761 MemOp mop; 3762 3763 if (!a->p && a->rm != 0) { 3764 return false; 3765 } 3766 if (!fp_access_check(s)) { 3767 return true; 3768 } 3769 3770 if (a->rn == 31) { 3771 gen_check_sp_alignment(s); 3772 } 3773 3774 total = a->selem << a->scale; 3775 tcg_rn = cpu_reg_sp(s, a->rn); 3776 3777 mop = finalize_memop_asimd(s, a->scale); 3778 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3779 total, mop); 3780 3781 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3782 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3783 do_vec_ld(s, rt, a->index, clean_addr, mop); 3784 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3785 } 3786 3787 if (a->p) { 3788 if (a->rm == 31) { 3789 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3790 } else { 3791 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3792 } 3793 } 3794 return true; 3795 } 3796 3797 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3798 { 3799 int xs, total, rt; 3800 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3801 MemOp mop; 3802 3803 if (!a->p && a->rm != 0) { 3804 return false; 3805 } 3806 if (!fp_access_check(s)) { 3807 return true; 3808 } 3809 3810 if (a->rn == 31) { 3811 gen_check_sp_alignment(s); 3812 } 3813 3814 total = a->selem << a->scale; 3815 tcg_rn = cpu_reg_sp(s, a->rn); 3816 3817 mop = finalize_memop_asimd(s, a->scale); 3818 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3819 total, mop); 3820 3821 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3822 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3823 /* Load and replicate to all elements */ 3824 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3825 3826 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3827 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3828 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3829 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3830 } 3831 3832 if (a->p) { 3833 if (a->rm == 31) { 3834 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3835 } else { 3836 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3837 } 3838 } 3839 return true; 3840 } 3841 3842 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3843 { 3844 TCGv_i64 addr, clean_addr, tcg_rt; 3845 int size = 4 << s->dcz_blocksize; 3846 3847 if (!dc_isar_feature(aa64_mte, s)) { 3848 return false; 3849 } 3850 if (s->current_el == 0) { 3851 return false; 3852 } 3853 3854 if (a->rn == 31) { 3855 gen_check_sp_alignment(s); 3856 } 3857 3858 addr = read_cpu_reg_sp(s, a->rn, true); 3859 tcg_gen_addi_i64(addr, addr, a->imm); 3860 tcg_rt = cpu_reg(s, a->rt); 3861 3862 if (s->ata[0]) { 3863 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3864 } 3865 /* 3866 * The non-tags portion of STZGM is mostly like DC_ZVA, 3867 * except the alignment happens before the access. 3868 */ 3869 clean_addr = clean_data_tbi(s, addr); 3870 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3871 gen_helper_dc_zva(tcg_env, clean_addr); 3872 return true; 3873 } 3874 3875 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3876 { 3877 TCGv_i64 addr, clean_addr, tcg_rt; 3878 3879 if (!dc_isar_feature(aa64_mte, s)) { 3880 return false; 3881 } 3882 if (s->current_el == 0) { 3883 return false; 3884 } 3885 3886 if (a->rn == 31) { 3887 gen_check_sp_alignment(s); 3888 } 3889 3890 addr = read_cpu_reg_sp(s, a->rn, true); 3891 tcg_gen_addi_i64(addr, addr, a->imm); 3892 tcg_rt = cpu_reg(s, a->rt); 3893 3894 if (s->ata[0]) { 3895 gen_helper_stgm(tcg_env, addr, tcg_rt); 3896 } else { 3897 MMUAccessType acc = MMU_DATA_STORE; 3898 int size = 4 << s->gm_blocksize; 3899 3900 clean_addr = clean_data_tbi(s, addr); 3901 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3902 gen_probe_access(s, clean_addr, acc, size); 3903 } 3904 return true; 3905 } 3906 3907 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3908 { 3909 TCGv_i64 addr, clean_addr, tcg_rt; 3910 3911 if (!dc_isar_feature(aa64_mte, s)) { 3912 return false; 3913 } 3914 if (s->current_el == 0) { 3915 return false; 3916 } 3917 3918 if (a->rn == 31) { 3919 gen_check_sp_alignment(s); 3920 } 3921 3922 addr = read_cpu_reg_sp(s, a->rn, true); 3923 tcg_gen_addi_i64(addr, addr, a->imm); 3924 tcg_rt = cpu_reg(s, a->rt); 3925 3926 if (s->ata[0]) { 3927 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3928 } else { 3929 MMUAccessType acc = MMU_DATA_LOAD; 3930 int size = 4 << s->gm_blocksize; 3931 3932 clean_addr = clean_data_tbi(s, addr); 3933 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3934 gen_probe_access(s, clean_addr, acc, size); 3935 /* The result tags are zeros. */ 3936 tcg_gen_movi_i64(tcg_rt, 0); 3937 } 3938 return true; 3939 } 3940 3941 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3942 { 3943 TCGv_i64 addr, clean_addr, tcg_rt; 3944 3945 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3946 return false; 3947 } 3948 3949 if (a->rn == 31) { 3950 gen_check_sp_alignment(s); 3951 } 3952 3953 addr = read_cpu_reg_sp(s, a->rn, true); 3954 if (!a->p) { 3955 /* pre-index or signed offset */ 3956 tcg_gen_addi_i64(addr, addr, a->imm); 3957 } 3958 3959 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 if (s->ata[0]) { 3962 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3963 } else { 3964 /* 3965 * Tag access disabled: we must check for aborts on the load 3966 * load from [rn+offset], and then insert a 0 tag into rt. 3967 */ 3968 clean_addr = clean_data_tbi(s, addr); 3969 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3970 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3971 } 3972 3973 if (a->w) { 3974 /* pre-index or post-index */ 3975 if (a->p) { 3976 /* post-index */ 3977 tcg_gen_addi_i64(addr, addr, a->imm); 3978 } 3979 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3980 } 3981 return true; 3982 } 3983 3984 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3985 { 3986 TCGv_i64 addr, tcg_rt; 3987 3988 if (a->rn == 31) { 3989 gen_check_sp_alignment(s); 3990 } 3991 3992 addr = read_cpu_reg_sp(s, a->rn, true); 3993 if (!a->p) { 3994 /* pre-index or signed offset */ 3995 tcg_gen_addi_i64(addr, addr, a->imm); 3996 } 3997 tcg_rt = cpu_reg_sp(s, a->rt); 3998 if (!s->ata[0]) { 3999 /* 4000 * For STG and ST2G, we need to check alignment and probe memory. 4001 * TODO: For STZG and STZ2G, we could rely on the stores below, 4002 * at least for system mode; user-only won't enforce alignment. 4003 */ 4004 if (is_pair) { 4005 gen_helper_st2g_stub(tcg_env, addr); 4006 } else { 4007 gen_helper_stg_stub(tcg_env, addr); 4008 } 4009 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4010 if (is_pair) { 4011 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4012 } else { 4013 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4014 } 4015 } else { 4016 if (is_pair) { 4017 gen_helper_st2g(tcg_env, addr, tcg_rt); 4018 } else { 4019 gen_helper_stg(tcg_env, addr, tcg_rt); 4020 } 4021 } 4022 4023 if (is_zero) { 4024 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4025 TCGv_i64 zero64 = tcg_constant_i64(0); 4026 TCGv_i128 zero128 = tcg_temp_new_i128(); 4027 int mem_index = get_mem_index(s); 4028 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4029 4030 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4031 4032 /* This is 1 or 2 atomic 16-byte operations. */ 4033 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4034 if (is_pair) { 4035 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4036 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4037 } 4038 } 4039 4040 if (a->w) { 4041 /* pre-index or post-index */ 4042 if (a->p) { 4043 /* post-index */ 4044 tcg_gen_addi_i64(addr, addr, a->imm); 4045 } 4046 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4047 } 4048 return true; 4049 } 4050 4051 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4052 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4053 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4054 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4055 4056 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4057 4058 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4059 bool is_setg, SetFn fn) 4060 { 4061 int memidx; 4062 uint32_t syndrome, desc = 0; 4063 4064 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4065 return false; 4066 } 4067 4068 /* 4069 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4070 * us to pull this check before the CheckMOPSEnabled() test 4071 * (which we do in the helper function) 4072 */ 4073 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4074 a->rd == 31 || a->rn == 31) { 4075 return false; 4076 } 4077 4078 memidx = get_a64_user_mem_index(s, a->unpriv); 4079 4080 /* 4081 * We pass option_a == true, matching our implementation; 4082 * we pass wrong_option == false: helper function may set that bit. 4083 */ 4084 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4085 is_epilogue, false, true, a->rd, a->rs, a->rn); 4086 4087 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4088 /* We may need to do MTE tag checking, so assemble the descriptor */ 4089 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4090 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4091 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4092 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4093 } 4094 /* The helper function always needs the memidx even with MTE disabled */ 4095 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4096 4097 /* 4098 * The helper needs the register numbers, but since they're in 4099 * the syndrome anyway, we let it extract them from there rather 4100 * than passing in an extra three integer arguments. 4101 */ 4102 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4103 return true; 4104 } 4105 4106 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4107 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4108 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4109 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4110 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4111 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4112 4113 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4114 4115 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4116 { 4117 int rmemidx, wmemidx; 4118 uint32_t syndrome, rdesc = 0, wdesc = 0; 4119 bool wunpriv = extract32(a->options, 0, 1); 4120 bool runpriv = extract32(a->options, 1, 1); 4121 4122 /* 4123 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4124 * us to pull this check before the CheckMOPSEnabled() test 4125 * (which we do in the helper function) 4126 */ 4127 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4128 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4129 return false; 4130 } 4131 4132 rmemidx = get_a64_user_mem_index(s, runpriv); 4133 wmemidx = get_a64_user_mem_index(s, wunpriv); 4134 4135 /* 4136 * We pass option_a == true, matching our implementation; 4137 * we pass wrong_option == false: helper function may set that bit. 4138 */ 4139 syndrome = syn_mop(false, false, a->options, is_epilogue, 4140 false, true, a->rd, a->rs, a->rn); 4141 4142 /* If we need to do MTE tag checking, assemble the descriptors */ 4143 if (s->mte_active[runpriv]) { 4144 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4145 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4146 } 4147 if (s->mte_active[wunpriv]) { 4148 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4149 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4150 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4151 } 4152 /* The helper function needs these parts of the descriptor regardless */ 4153 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4154 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4155 4156 /* 4157 * The helper needs the register numbers, but since they're in 4158 * the syndrome anyway, we let it extract them from there rather 4159 * than passing in an extra three integer arguments. 4160 */ 4161 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4162 tcg_constant_i32(rdesc)); 4163 return true; 4164 } 4165 4166 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4167 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4168 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4169 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4170 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4171 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4172 4173 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4174 4175 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4176 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4177 { 4178 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4179 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4180 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4181 4182 fn(tcg_rd, tcg_rn, tcg_imm); 4183 if (!a->sf) { 4184 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4185 } 4186 return true; 4187 } 4188 4189 /* 4190 * PC-rel. addressing 4191 */ 4192 4193 static bool trans_ADR(DisasContext *s, arg_ri *a) 4194 { 4195 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4196 return true; 4197 } 4198 4199 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4200 { 4201 int64_t offset = (int64_t)a->imm << 12; 4202 4203 /* The page offset is ok for CF_PCREL. */ 4204 offset -= s->pc_curr & 0xfff; 4205 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4206 return true; 4207 } 4208 4209 /* 4210 * Add/subtract (immediate) 4211 */ 4212 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4213 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4214 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4215 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4216 4217 /* 4218 * Add/subtract (immediate, with tags) 4219 */ 4220 4221 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4222 bool sub_op) 4223 { 4224 TCGv_i64 tcg_rn, tcg_rd; 4225 int imm; 4226 4227 imm = a->uimm6 << LOG2_TAG_GRANULE; 4228 if (sub_op) { 4229 imm = -imm; 4230 } 4231 4232 tcg_rn = cpu_reg_sp(s, a->rn); 4233 tcg_rd = cpu_reg_sp(s, a->rd); 4234 4235 if (s->ata[0]) { 4236 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4237 tcg_constant_i32(imm), 4238 tcg_constant_i32(a->uimm4)); 4239 } else { 4240 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4241 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4242 } 4243 return true; 4244 } 4245 4246 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4247 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4248 4249 /* The input should be a value in the bottom e bits (with higher 4250 * bits zero); returns that value replicated into every element 4251 * of size e in a 64 bit integer. 4252 */ 4253 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4254 { 4255 assert(e != 0); 4256 while (e < 64) { 4257 mask |= mask << e; 4258 e *= 2; 4259 } 4260 return mask; 4261 } 4262 4263 /* 4264 * Logical (immediate) 4265 */ 4266 4267 /* 4268 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4269 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4270 * value (ie should cause a guest UNDEF exception), and true if they are 4271 * valid, in which case the decoded bit pattern is written to result. 4272 */ 4273 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4274 unsigned int imms, unsigned int immr) 4275 { 4276 uint64_t mask; 4277 unsigned e, levels, s, r; 4278 int len; 4279 4280 assert(immn < 2 && imms < 64 && immr < 64); 4281 4282 /* The bit patterns we create here are 64 bit patterns which 4283 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4284 * 64 bits each. Each element contains the same value: a run 4285 * of between 1 and e-1 non-zero bits, rotated within the 4286 * element by between 0 and e-1 bits. 4287 * 4288 * The element size and run length are encoded into immn (1 bit) 4289 * and imms (6 bits) as follows: 4290 * 64 bit elements: immn = 1, imms = <length of run - 1> 4291 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4292 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4293 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4294 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4295 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4296 * Notice that immn = 0, imms = 11111x is the only combination 4297 * not covered by one of the above options; this is reserved. 4298 * Further, <length of run - 1> all-ones is a reserved pattern. 4299 * 4300 * In all cases the rotation is by immr % e (and immr is 6 bits). 4301 */ 4302 4303 /* First determine the element size */ 4304 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4305 if (len < 1) { 4306 /* This is the immn == 0, imms == 0x11111x case */ 4307 return false; 4308 } 4309 e = 1 << len; 4310 4311 levels = e - 1; 4312 s = imms & levels; 4313 r = immr & levels; 4314 4315 if (s == levels) { 4316 /* <length of run - 1> mustn't be all-ones. */ 4317 return false; 4318 } 4319 4320 /* Create the value of one element: s+1 set bits rotated 4321 * by r within the element (which is e bits wide)... 4322 */ 4323 mask = MAKE_64BIT_MASK(0, s + 1); 4324 if (r) { 4325 mask = (mask >> r) | (mask << (e - r)); 4326 mask &= MAKE_64BIT_MASK(0, e); 4327 } 4328 /* ...then replicate the element over the whole 64 bit value */ 4329 mask = bitfield_replicate(mask, e); 4330 *result = mask; 4331 return true; 4332 } 4333 4334 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4335 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4336 { 4337 TCGv_i64 tcg_rd, tcg_rn; 4338 uint64_t imm; 4339 4340 /* Some immediate field values are reserved. */ 4341 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4342 extract32(a->dbm, 0, 6), 4343 extract32(a->dbm, 6, 6))) { 4344 return false; 4345 } 4346 if (!a->sf) { 4347 imm &= 0xffffffffull; 4348 } 4349 4350 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4351 tcg_rn = cpu_reg(s, a->rn); 4352 4353 fn(tcg_rd, tcg_rn, imm); 4354 if (set_cc) { 4355 gen_logic_CC(a->sf, tcg_rd); 4356 } 4357 if (!a->sf) { 4358 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4359 } 4360 return true; 4361 } 4362 4363 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4364 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4365 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4366 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4367 4368 /* 4369 * Move wide (immediate) 4370 */ 4371 4372 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4373 { 4374 int pos = a->hw << 4; 4375 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4376 return true; 4377 } 4378 4379 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4380 { 4381 int pos = a->hw << 4; 4382 uint64_t imm = a->imm; 4383 4384 imm = ~(imm << pos); 4385 if (!a->sf) { 4386 imm = (uint32_t)imm; 4387 } 4388 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4389 return true; 4390 } 4391 4392 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4393 { 4394 int pos = a->hw << 4; 4395 TCGv_i64 tcg_rd, tcg_im; 4396 4397 tcg_rd = cpu_reg(s, a->rd); 4398 tcg_im = tcg_constant_i64(a->imm); 4399 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4400 if (!a->sf) { 4401 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4402 } 4403 return true; 4404 } 4405 4406 /* 4407 * Bitfield 4408 */ 4409 4410 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4411 { 4412 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4413 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4414 unsigned int bitsize = a->sf ? 64 : 32; 4415 unsigned int ri = a->immr; 4416 unsigned int si = a->imms; 4417 unsigned int pos, len; 4418 4419 if (si >= ri) { 4420 /* Wd<s-r:0> = Wn<s:r> */ 4421 len = (si - ri) + 1; 4422 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4423 if (!a->sf) { 4424 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4425 } 4426 } else { 4427 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4428 len = si + 1; 4429 pos = (bitsize - ri) & (bitsize - 1); 4430 4431 if (len < ri) { 4432 /* 4433 * Sign extend the destination field from len to fill the 4434 * balance of the word. Let the deposit below insert all 4435 * of those sign bits. 4436 */ 4437 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4438 len = ri; 4439 } 4440 4441 /* 4442 * We start with zero, and we haven't modified any bits outside 4443 * bitsize, therefore no final zero-extension is unneeded for !sf. 4444 */ 4445 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4446 } 4447 return true; 4448 } 4449 4450 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4451 { 4452 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4453 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4454 unsigned int bitsize = a->sf ? 64 : 32; 4455 unsigned int ri = a->immr; 4456 unsigned int si = a->imms; 4457 unsigned int pos, len; 4458 4459 tcg_rd = cpu_reg(s, a->rd); 4460 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4461 4462 if (si >= ri) { 4463 /* Wd<s-r:0> = Wn<s:r> */ 4464 len = (si - ri) + 1; 4465 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4466 } else { 4467 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4468 len = si + 1; 4469 pos = (bitsize - ri) & (bitsize - 1); 4470 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4471 } 4472 return true; 4473 } 4474 4475 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4476 { 4477 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4478 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4479 unsigned int bitsize = a->sf ? 64 : 32; 4480 unsigned int ri = a->immr; 4481 unsigned int si = a->imms; 4482 unsigned int pos, len; 4483 4484 tcg_rd = cpu_reg(s, a->rd); 4485 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4490 len = (si - ri) + 1; 4491 pos = 0; 4492 } else { 4493 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4494 len = si + 1; 4495 pos = (bitsize - ri) & (bitsize - 1); 4496 } 4497 4498 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4499 if (!a->sf) { 4500 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4501 } 4502 return true; 4503 } 4504 4505 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4506 { 4507 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4508 4509 tcg_rd = cpu_reg(s, a->rd); 4510 4511 if (unlikely(a->imm == 0)) { 4512 /* 4513 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4514 * so an extract from bit 0 is a special case. 4515 */ 4516 if (a->sf) { 4517 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4518 } else { 4519 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4520 } 4521 } else { 4522 tcg_rm = cpu_reg(s, a->rm); 4523 tcg_rn = cpu_reg(s, a->rn); 4524 4525 if (a->sf) { 4526 /* Specialization to ROR happens in EXTRACT2. */ 4527 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4528 } else { 4529 TCGv_i32 t0 = tcg_temp_new_i32(); 4530 4531 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4532 if (a->rm == a->rn) { 4533 tcg_gen_rotri_i32(t0, t0, a->imm); 4534 } else { 4535 TCGv_i32 t1 = tcg_temp_new_i32(); 4536 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4537 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4538 } 4539 tcg_gen_extu_i32_i64(tcg_rd, t0); 4540 } 4541 } 4542 return true; 4543 } 4544 4545 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4546 * Note that it is the caller's responsibility to ensure that the 4547 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4548 * mandated semantics for out of range shifts. 4549 */ 4550 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4551 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4552 { 4553 switch (shift_type) { 4554 case A64_SHIFT_TYPE_LSL: 4555 tcg_gen_shl_i64(dst, src, shift_amount); 4556 break; 4557 case A64_SHIFT_TYPE_LSR: 4558 tcg_gen_shr_i64(dst, src, shift_amount); 4559 break; 4560 case A64_SHIFT_TYPE_ASR: 4561 if (!sf) { 4562 tcg_gen_ext32s_i64(dst, src); 4563 } 4564 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4565 break; 4566 case A64_SHIFT_TYPE_ROR: 4567 if (sf) { 4568 tcg_gen_rotr_i64(dst, src, shift_amount); 4569 } else { 4570 TCGv_i32 t0, t1; 4571 t0 = tcg_temp_new_i32(); 4572 t1 = tcg_temp_new_i32(); 4573 tcg_gen_extrl_i64_i32(t0, src); 4574 tcg_gen_extrl_i64_i32(t1, shift_amount); 4575 tcg_gen_rotr_i32(t0, t0, t1); 4576 tcg_gen_extu_i32_i64(dst, t0); 4577 } 4578 break; 4579 default: 4580 assert(FALSE); /* all shift types should be handled */ 4581 break; 4582 } 4583 4584 if (!sf) { /* zero extend final result */ 4585 tcg_gen_ext32u_i64(dst, dst); 4586 } 4587 } 4588 4589 /* Shift a TCGv src by immediate, put result in dst. 4590 * The shift amount must be in range (this should always be true as the 4591 * relevant instructions will UNDEF on bad shift immediates). 4592 */ 4593 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4594 enum a64_shift_type shift_type, unsigned int shift_i) 4595 { 4596 assert(shift_i < (sf ? 64 : 32)); 4597 4598 if (shift_i == 0) { 4599 tcg_gen_mov_i64(dst, src); 4600 } else { 4601 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4602 } 4603 } 4604 4605 /* Logical (shifted register) 4606 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4607 * +----+-----+-----------+-------+---+------+--------+------+------+ 4608 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4609 * +----+-----+-----------+-------+---+------+--------+------+------+ 4610 */ 4611 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4612 { 4613 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4614 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4615 4616 sf = extract32(insn, 31, 1); 4617 opc = extract32(insn, 29, 2); 4618 shift_type = extract32(insn, 22, 2); 4619 invert = extract32(insn, 21, 1); 4620 rm = extract32(insn, 16, 5); 4621 shift_amount = extract32(insn, 10, 6); 4622 rn = extract32(insn, 5, 5); 4623 rd = extract32(insn, 0, 5); 4624 4625 if (!sf && (shift_amount & (1 << 5))) { 4626 unallocated_encoding(s); 4627 return; 4628 } 4629 4630 tcg_rd = cpu_reg(s, rd); 4631 4632 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4633 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4634 * register-register MOV and MVN, so it is worth special casing. 4635 */ 4636 tcg_rm = cpu_reg(s, rm); 4637 if (invert) { 4638 tcg_gen_not_i64(tcg_rd, tcg_rm); 4639 if (!sf) { 4640 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4641 } 4642 } else { 4643 if (sf) { 4644 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4645 } else { 4646 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4647 } 4648 } 4649 return; 4650 } 4651 4652 tcg_rm = read_cpu_reg(s, rm, sf); 4653 4654 if (shift_amount) { 4655 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4656 } 4657 4658 tcg_rn = cpu_reg(s, rn); 4659 4660 switch (opc | (invert << 2)) { 4661 case 0: /* AND */ 4662 case 3: /* ANDS */ 4663 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4664 break; 4665 case 1: /* ORR */ 4666 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4667 break; 4668 case 2: /* EOR */ 4669 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4670 break; 4671 case 4: /* BIC */ 4672 case 7: /* BICS */ 4673 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4674 break; 4675 case 5: /* ORN */ 4676 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4677 break; 4678 case 6: /* EON */ 4679 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4680 break; 4681 default: 4682 assert(FALSE); 4683 break; 4684 } 4685 4686 if (!sf) { 4687 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4688 } 4689 4690 if (opc == 3) { 4691 gen_logic_CC(sf, tcg_rd); 4692 } 4693 } 4694 4695 /* 4696 * Add/subtract (extended register) 4697 * 4698 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4699 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4700 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4701 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4702 * 4703 * sf: 0 -> 32bit, 1 -> 64bit 4704 * op: 0 -> add , 1 -> sub 4705 * S: 1 -> set flags 4706 * opt: 00 4707 * option: extension type (see DecodeRegExtend) 4708 * imm3: optional shift to Rm 4709 * 4710 * Rd = Rn + LSL(extend(Rm), amount) 4711 */ 4712 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4713 { 4714 int rd = extract32(insn, 0, 5); 4715 int rn = extract32(insn, 5, 5); 4716 int imm3 = extract32(insn, 10, 3); 4717 int option = extract32(insn, 13, 3); 4718 int rm = extract32(insn, 16, 5); 4719 int opt = extract32(insn, 22, 2); 4720 bool setflags = extract32(insn, 29, 1); 4721 bool sub_op = extract32(insn, 30, 1); 4722 bool sf = extract32(insn, 31, 1); 4723 4724 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4725 TCGv_i64 tcg_rd; 4726 TCGv_i64 tcg_result; 4727 4728 if (imm3 > 4 || opt != 0) { 4729 unallocated_encoding(s); 4730 return; 4731 } 4732 4733 /* non-flag setting ops may use SP */ 4734 if (!setflags) { 4735 tcg_rd = cpu_reg_sp(s, rd); 4736 } else { 4737 tcg_rd = cpu_reg(s, rd); 4738 } 4739 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4740 4741 tcg_rm = read_cpu_reg(s, rm, sf); 4742 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4743 4744 tcg_result = tcg_temp_new_i64(); 4745 4746 if (!setflags) { 4747 if (sub_op) { 4748 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4749 } else { 4750 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4751 } 4752 } else { 4753 if (sub_op) { 4754 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4755 } else { 4756 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4757 } 4758 } 4759 4760 if (sf) { 4761 tcg_gen_mov_i64(tcg_rd, tcg_result); 4762 } else { 4763 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4764 } 4765 } 4766 4767 /* 4768 * Add/subtract (shifted register) 4769 * 4770 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4771 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4772 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4773 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4774 * 4775 * sf: 0 -> 32bit, 1 -> 64bit 4776 * op: 0 -> add , 1 -> sub 4777 * S: 1 -> set flags 4778 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4779 * imm6: Shift amount to apply to Rm before the add/sub 4780 */ 4781 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4782 { 4783 int rd = extract32(insn, 0, 5); 4784 int rn = extract32(insn, 5, 5); 4785 int imm6 = extract32(insn, 10, 6); 4786 int rm = extract32(insn, 16, 5); 4787 int shift_type = extract32(insn, 22, 2); 4788 bool setflags = extract32(insn, 29, 1); 4789 bool sub_op = extract32(insn, 30, 1); 4790 bool sf = extract32(insn, 31, 1); 4791 4792 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4793 TCGv_i64 tcg_rn, tcg_rm; 4794 TCGv_i64 tcg_result; 4795 4796 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4797 unallocated_encoding(s); 4798 return; 4799 } 4800 4801 tcg_rn = read_cpu_reg(s, rn, sf); 4802 tcg_rm = read_cpu_reg(s, rm, sf); 4803 4804 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4805 4806 tcg_result = tcg_temp_new_i64(); 4807 4808 if (!setflags) { 4809 if (sub_op) { 4810 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4811 } else { 4812 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4813 } 4814 } else { 4815 if (sub_op) { 4816 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4817 } else { 4818 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4819 } 4820 } 4821 4822 if (sf) { 4823 tcg_gen_mov_i64(tcg_rd, tcg_result); 4824 } else { 4825 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4826 } 4827 } 4828 4829 /* Data-processing (3 source) 4830 * 4831 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4832 * +--+------+-----------+------+------+----+------+------+------+ 4833 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4834 * +--+------+-----------+------+------+----+------+------+------+ 4835 */ 4836 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4837 { 4838 int rd = extract32(insn, 0, 5); 4839 int rn = extract32(insn, 5, 5); 4840 int ra = extract32(insn, 10, 5); 4841 int rm = extract32(insn, 16, 5); 4842 int op_id = (extract32(insn, 29, 3) << 4) | 4843 (extract32(insn, 21, 3) << 1) | 4844 extract32(insn, 15, 1); 4845 bool sf = extract32(insn, 31, 1); 4846 bool is_sub = extract32(op_id, 0, 1); 4847 bool is_high = extract32(op_id, 2, 1); 4848 bool is_signed = false; 4849 TCGv_i64 tcg_op1; 4850 TCGv_i64 tcg_op2; 4851 TCGv_i64 tcg_tmp; 4852 4853 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4854 switch (op_id) { 4855 case 0x42: /* SMADDL */ 4856 case 0x43: /* SMSUBL */ 4857 case 0x44: /* SMULH */ 4858 is_signed = true; 4859 break; 4860 case 0x0: /* MADD (32bit) */ 4861 case 0x1: /* MSUB (32bit) */ 4862 case 0x40: /* MADD (64bit) */ 4863 case 0x41: /* MSUB (64bit) */ 4864 case 0x4a: /* UMADDL */ 4865 case 0x4b: /* UMSUBL */ 4866 case 0x4c: /* UMULH */ 4867 break; 4868 default: 4869 unallocated_encoding(s); 4870 return; 4871 } 4872 4873 if (is_high) { 4874 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4875 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4876 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4877 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4878 4879 if (is_signed) { 4880 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4881 } else { 4882 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4883 } 4884 return; 4885 } 4886 4887 tcg_op1 = tcg_temp_new_i64(); 4888 tcg_op2 = tcg_temp_new_i64(); 4889 tcg_tmp = tcg_temp_new_i64(); 4890 4891 if (op_id < 0x42) { 4892 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4893 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4894 } else { 4895 if (is_signed) { 4896 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4897 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4898 } else { 4899 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4900 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4901 } 4902 } 4903 4904 if (ra == 31 && !is_sub) { 4905 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4906 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4907 } else { 4908 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4909 if (is_sub) { 4910 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4911 } else { 4912 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4913 } 4914 } 4915 4916 if (!sf) { 4917 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4918 } 4919 } 4920 4921 /* Add/subtract (with carry) 4922 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4923 * +--+--+--+------------------------+------+-------------+------+-----+ 4924 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4925 * +--+--+--+------------------------+------+-------------+------+-----+ 4926 */ 4927 4928 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4929 { 4930 unsigned int sf, op, setflags, rm, rn, rd; 4931 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4932 4933 sf = extract32(insn, 31, 1); 4934 op = extract32(insn, 30, 1); 4935 setflags = extract32(insn, 29, 1); 4936 rm = extract32(insn, 16, 5); 4937 rn = extract32(insn, 5, 5); 4938 rd = extract32(insn, 0, 5); 4939 4940 tcg_rd = cpu_reg(s, rd); 4941 tcg_rn = cpu_reg(s, rn); 4942 4943 if (op) { 4944 tcg_y = tcg_temp_new_i64(); 4945 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4946 } else { 4947 tcg_y = cpu_reg(s, rm); 4948 } 4949 4950 if (setflags) { 4951 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4952 } else { 4953 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4954 } 4955 } 4956 4957 /* 4958 * Rotate right into flags 4959 * 31 30 29 21 15 10 5 4 0 4960 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4961 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4962 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4963 */ 4964 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4965 { 4966 int mask = extract32(insn, 0, 4); 4967 int o2 = extract32(insn, 4, 1); 4968 int rn = extract32(insn, 5, 5); 4969 int imm6 = extract32(insn, 15, 6); 4970 int sf_op_s = extract32(insn, 29, 3); 4971 TCGv_i64 tcg_rn; 4972 TCGv_i32 nzcv; 4973 4974 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4975 unallocated_encoding(s); 4976 return; 4977 } 4978 4979 tcg_rn = read_cpu_reg(s, rn, 1); 4980 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4981 4982 nzcv = tcg_temp_new_i32(); 4983 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4984 4985 if (mask & 8) { /* N */ 4986 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4987 } 4988 if (mask & 4) { /* Z */ 4989 tcg_gen_not_i32(cpu_ZF, nzcv); 4990 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4991 } 4992 if (mask & 2) { /* C */ 4993 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4994 } 4995 if (mask & 1) { /* V */ 4996 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4997 } 4998 } 4999 5000 /* 5001 * Evaluate into flags 5002 * 31 30 29 21 15 14 10 5 4 0 5003 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5004 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5005 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5006 */ 5007 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5008 { 5009 int o3_mask = extract32(insn, 0, 5); 5010 int rn = extract32(insn, 5, 5); 5011 int o2 = extract32(insn, 15, 6); 5012 int sz = extract32(insn, 14, 1); 5013 int sf_op_s = extract32(insn, 29, 3); 5014 TCGv_i32 tmp; 5015 int shift; 5016 5017 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5018 !dc_isar_feature(aa64_condm_4, s)) { 5019 unallocated_encoding(s); 5020 return; 5021 } 5022 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5023 5024 tmp = tcg_temp_new_i32(); 5025 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5026 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5027 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5028 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5029 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5030 } 5031 5032 /* Conditional compare (immediate / register) 5033 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5034 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5035 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5036 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5037 * [1] y [0] [0] 5038 */ 5039 static void disas_cc(DisasContext *s, uint32_t insn) 5040 { 5041 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5042 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5043 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5044 DisasCompare c; 5045 5046 if (!extract32(insn, 29, 1)) { 5047 unallocated_encoding(s); 5048 return; 5049 } 5050 if (insn & (1 << 10 | 1 << 4)) { 5051 unallocated_encoding(s); 5052 return; 5053 } 5054 sf = extract32(insn, 31, 1); 5055 op = extract32(insn, 30, 1); 5056 is_imm = extract32(insn, 11, 1); 5057 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5058 cond = extract32(insn, 12, 4); 5059 rn = extract32(insn, 5, 5); 5060 nzcv = extract32(insn, 0, 4); 5061 5062 /* Set T0 = !COND. */ 5063 tcg_t0 = tcg_temp_new_i32(); 5064 arm_test_cc(&c, cond); 5065 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5066 5067 /* Load the arguments for the new comparison. */ 5068 if (is_imm) { 5069 tcg_y = tcg_temp_new_i64(); 5070 tcg_gen_movi_i64(tcg_y, y); 5071 } else { 5072 tcg_y = cpu_reg(s, y); 5073 } 5074 tcg_rn = cpu_reg(s, rn); 5075 5076 /* Set the flags for the new comparison. */ 5077 tcg_tmp = tcg_temp_new_i64(); 5078 if (op) { 5079 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5080 } else { 5081 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5082 } 5083 5084 /* If COND was false, force the flags to #nzcv. Compute two masks 5085 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5086 * For tcg hosts that support ANDC, we can make do with just T1. 5087 * In either case, allow the tcg optimizer to delete any unused mask. 5088 */ 5089 tcg_t1 = tcg_temp_new_i32(); 5090 tcg_t2 = tcg_temp_new_i32(); 5091 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5092 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5093 5094 if (nzcv & 8) { /* N */ 5095 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5096 } else { 5097 if (TCG_TARGET_HAS_andc_i32) { 5098 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5099 } else { 5100 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5101 } 5102 } 5103 if (nzcv & 4) { /* Z */ 5104 if (TCG_TARGET_HAS_andc_i32) { 5105 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5106 } else { 5107 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5108 } 5109 } else { 5110 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5111 } 5112 if (nzcv & 2) { /* C */ 5113 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5114 } else { 5115 if (TCG_TARGET_HAS_andc_i32) { 5116 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5117 } else { 5118 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5119 } 5120 } 5121 if (nzcv & 1) { /* V */ 5122 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5123 } else { 5124 if (TCG_TARGET_HAS_andc_i32) { 5125 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5126 } else { 5127 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5128 } 5129 } 5130 } 5131 5132 /* Conditional select 5133 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5134 * +----+----+---+-----------------+------+------+-----+------+------+ 5135 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5136 * +----+----+---+-----------------+------+------+-----+------+------+ 5137 */ 5138 static void disas_cond_select(DisasContext *s, uint32_t insn) 5139 { 5140 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5141 TCGv_i64 tcg_rd, zero; 5142 DisasCompare64 c; 5143 5144 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5145 /* S == 1 or op2<1> == 1 */ 5146 unallocated_encoding(s); 5147 return; 5148 } 5149 sf = extract32(insn, 31, 1); 5150 else_inv = extract32(insn, 30, 1); 5151 rm = extract32(insn, 16, 5); 5152 cond = extract32(insn, 12, 4); 5153 else_inc = extract32(insn, 10, 1); 5154 rn = extract32(insn, 5, 5); 5155 rd = extract32(insn, 0, 5); 5156 5157 tcg_rd = cpu_reg(s, rd); 5158 5159 a64_test_cc(&c, cond); 5160 zero = tcg_constant_i64(0); 5161 5162 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5163 /* CSET & CSETM. */ 5164 if (else_inv) { 5165 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5166 tcg_rd, c.value, zero); 5167 } else { 5168 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5169 tcg_rd, c.value, zero); 5170 } 5171 } else { 5172 TCGv_i64 t_true = cpu_reg(s, rn); 5173 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5174 if (else_inv && else_inc) { 5175 tcg_gen_neg_i64(t_false, t_false); 5176 } else if (else_inv) { 5177 tcg_gen_not_i64(t_false, t_false); 5178 } else if (else_inc) { 5179 tcg_gen_addi_i64(t_false, t_false, 1); 5180 } 5181 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5182 } 5183 5184 if (!sf) { 5185 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5186 } 5187 } 5188 5189 static void handle_clz(DisasContext *s, unsigned int sf, 5190 unsigned int rn, unsigned int rd) 5191 { 5192 TCGv_i64 tcg_rd, tcg_rn; 5193 tcg_rd = cpu_reg(s, rd); 5194 tcg_rn = cpu_reg(s, rn); 5195 5196 if (sf) { 5197 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5198 } else { 5199 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5200 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5201 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5202 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5203 } 5204 } 5205 5206 static void handle_cls(DisasContext *s, unsigned int sf, 5207 unsigned int rn, unsigned int rd) 5208 { 5209 TCGv_i64 tcg_rd, tcg_rn; 5210 tcg_rd = cpu_reg(s, rd); 5211 tcg_rn = cpu_reg(s, rn); 5212 5213 if (sf) { 5214 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5215 } else { 5216 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5217 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5218 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5219 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5220 } 5221 } 5222 5223 static void handle_rbit(DisasContext *s, unsigned int sf, 5224 unsigned int rn, unsigned int rd) 5225 { 5226 TCGv_i64 tcg_rd, tcg_rn; 5227 tcg_rd = cpu_reg(s, rd); 5228 tcg_rn = cpu_reg(s, rn); 5229 5230 if (sf) { 5231 gen_helper_rbit64(tcg_rd, tcg_rn); 5232 } else { 5233 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5234 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5235 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5236 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5237 } 5238 } 5239 5240 /* REV with sf==1, opcode==3 ("REV64") */ 5241 static void handle_rev64(DisasContext *s, unsigned int sf, 5242 unsigned int rn, unsigned int rd) 5243 { 5244 if (!sf) { 5245 unallocated_encoding(s); 5246 return; 5247 } 5248 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5249 } 5250 5251 /* REV with sf==0, opcode==2 5252 * REV32 (sf==1, opcode==2) 5253 */ 5254 static void handle_rev32(DisasContext *s, unsigned int sf, 5255 unsigned int rn, unsigned int rd) 5256 { 5257 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5258 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5259 5260 if (sf) { 5261 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5262 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5263 } else { 5264 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5265 } 5266 } 5267 5268 /* REV16 (opcode==1) */ 5269 static void handle_rev16(DisasContext *s, unsigned int sf, 5270 unsigned int rn, unsigned int rd) 5271 { 5272 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5273 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5274 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5275 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5276 5277 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5278 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5279 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5280 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5281 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5282 } 5283 5284 /* Data-processing (1 source) 5285 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5286 * +----+---+---+-----------------+---------+--------+------+------+ 5287 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5288 * +----+---+---+-----------------+---------+--------+------+------+ 5289 */ 5290 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5291 { 5292 unsigned int sf, opcode, opcode2, rn, rd; 5293 TCGv_i64 tcg_rd; 5294 5295 if (extract32(insn, 29, 1)) { 5296 unallocated_encoding(s); 5297 return; 5298 } 5299 5300 sf = extract32(insn, 31, 1); 5301 opcode = extract32(insn, 10, 6); 5302 opcode2 = extract32(insn, 16, 5); 5303 rn = extract32(insn, 5, 5); 5304 rd = extract32(insn, 0, 5); 5305 5306 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5307 5308 switch (MAP(sf, opcode2, opcode)) { 5309 case MAP(0, 0x00, 0x00): /* RBIT */ 5310 case MAP(1, 0x00, 0x00): 5311 handle_rbit(s, sf, rn, rd); 5312 break; 5313 case MAP(0, 0x00, 0x01): /* REV16 */ 5314 case MAP(1, 0x00, 0x01): 5315 handle_rev16(s, sf, rn, rd); 5316 break; 5317 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5318 case MAP(1, 0x00, 0x02): 5319 handle_rev32(s, sf, rn, rd); 5320 break; 5321 case MAP(1, 0x00, 0x03): /* REV64 */ 5322 handle_rev64(s, sf, rn, rd); 5323 break; 5324 case MAP(0, 0x00, 0x04): /* CLZ */ 5325 case MAP(1, 0x00, 0x04): 5326 handle_clz(s, sf, rn, rd); 5327 break; 5328 case MAP(0, 0x00, 0x05): /* CLS */ 5329 case MAP(1, 0x00, 0x05): 5330 handle_cls(s, sf, rn, rd); 5331 break; 5332 case MAP(1, 0x01, 0x00): /* PACIA */ 5333 if (s->pauth_active) { 5334 tcg_rd = cpu_reg(s, rd); 5335 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5336 } else if (!dc_isar_feature(aa64_pauth, s)) { 5337 goto do_unallocated; 5338 } 5339 break; 5340 case MAP(1, 0x01, 0x01): /* PACIB */ 5341 if (s->pauth_active) { 5342 tcg_rd = cpu_reg(s, rd); 5343 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5344 } else if (!dc_isar_feature(aa64_pauth, s)) { 5345 goto do_unallocated; 5346 } 5347 break; 5348 case MAP(1, 0x01, 0x02): /* PACDA */ 5349 if (s->pauth_active) { 5350 tcg_rd = cpu_reg(s, rd); 5351 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5352 } else if (!dc_isar_feature(aa64_pauth, s)) { 5353 goto do_unallocated; 5354 } 5355 break; 5356 case MAP(1, 0x01, 0x03): /* PACDB */ 5357 if (s->pauth_active) { 5358 tcg_rd = cpu_reg(s, rd); 5359 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5360 } else if (!dc_isar_feature(aa64_pauth, s)) { 5361 goto do_unallocated; 5362 } 5363 break; 5364 case MAP(1, 0x01, 0x04): /* AUTIA */ 5365 if (s->pauth_active) { 5366 tcg_rd = cpu_reg(s, rd); 5367 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5368 } else if (!dc_isar_feature(aa64_pauth, s)) { 5369 goto do_unallocated; 5370 } 5371 break; 5372 case MAP(1, 0x01, 0x05): /* AUTIB */ 5373 if (s->pauth_active) { 5374 tcg_rd = cpu_reg(s, rd); 5375 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5376 } else if (!dc_isar_feature(aa64_pauth, s)) { 5377 goto do_unallocated; 5378 } 5379 break; 5380 case MAP(1, 0x01, 0x06): /* AUTDA */ 5381 if (s->pauth_active) { 5382 tcg_rd = cpu_reg(s, rd); 5383 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5384 } else if (!dc_isar_feature(aa64_pauth, s)) { 5385 goto do_unallocated; 5386 } 5387 break; 5388 case MAP(1, 0x01, 0x07): /* AUTDB */ 5389 if (s->pauth_active) { 5390 tcg_rd = cpu_reg(s, rd); 5391 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5392 } else if (!dc_isar_feature(aa64_pauth, s)) { 5393 goto do_unallocated; 5394 } 5395 break; 5396 case MAP(1, 0x01, 0x08): /* PACIZA */ 5397 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5398 goto do_unallocated; 5399 } else if (s->pauth_active) { 5400 tcg_rd = cpu_reg(s, rd); 5401 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5402 } 5403 break; 5404 case MAP(1, 0x01, 0x09): /* PACIZB */ 5405 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5406 goto do_unallocated; 5407 } else if (s->pauth_active) { 5408 tcg_rd = cpu_reg(s, rd); 5409 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5410 } 5411 break; 5412 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5413 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5414 goto do_unallocated; 5415 } else if (s->pauth_active) { 5416 tcg_rd = cpu_reg(s, rd); 5417 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5418 } 5419 break; 5420 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5421 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5422 goto do_unallocated; 5423 } else if (s->pauth_active) { 5424 tcg_rd = cpu_reg(s, rd); 5425 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5426 } 5427 break; 5428 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5429 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5430 goto do_unallocated; 5431 } else if (s->pauth_active) { 5432 tcg_rd = cpu_reg(s, rd); 5433 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5434 } 5435 break; 5436 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5437 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5438 goto do_unallocated; 5439 } else if (s->pauth_active) { 5440 tcg_rd = cpu_reg(s, rd); 5441 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5442 } 5443 break; 5444 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5445 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5446 goto do_unallocated; 5447 } else if (s->pauth_active) { 5448 tcg_rd = cpu_reg(s, rd); 5449 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5450 } 5451 break; 5452 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5453 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5454 goto do_unallocated; 5455 } else if (s->pauth_active) { 5456 tcg_rd = cpu_reg(s, rd); 5457 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5458 } 5459 break; 5460 case MAP(1, 0x01, 0x10): /* XPACI */ 5461 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5462 goto do_unallocated; 5463 } else if (s->pauth_active) { 5464 tcg_rd = cpu_reg(s, rd); 5465 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5466 } 5467 break; 5468 case MAP(1, 0x01, 0x11): /* XPACD */ 5469 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5470 goto do_unallocated; 5471 } else if (s->pauth_active) { 5472 tcg_rd = cpu_reg(s, rd); 5473 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5474 } 5475 break; 5476 default: 5477 do_unallocated: 5478 unallocated_encoding(s); 5479 break; 5480 } 5481 5482 #undef MAP 5483 } 5484 5485 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5486 unsigned int rm, unsigned int rn, unsigned int rd) 5487 { 5488 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5489 tcg_rd = cpu_reg(s, rd); 5490 5491 if (!sf && is_signed) { 5492 tcg_n = tcg_temp_new_i64(); 5493 tcg_m = tcg_temp_new_i64(); 5494 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5495 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5496 } else { 5497 tcg_n = read_cpu_reg(s, rn, sf); 5498 tcg_m = read_cpu_reg(s, rm, sf); 5499 } 5500 5501 if (is_signed) { 5502 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5503 } else { 5504 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5505 } 5506 5507 if (!sf) { /* zero extend final result */ 5508 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5509 } 5510 } 5511 5512 /* LSLV, LSRV, ASRV, RORV */ 5513 static void handle_shift_reg(DisasContext *s, 5514 enum a64_shift_type shift_type, unsigned int sf, 5515 unsigned int rm, unsigned int rn, unsigned int rd) 5516 { 5517 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5518 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5519 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5520 5521 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5522 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5523 } 5524 5525 /* CRC32[BHWX], CRC32C[BHWX] */ 5526 static void handle_crc32(DisasContext *s, 5527 unsigned int sf, unsigned int sz, bool crc32c, 5528 unsigned int rm, unsigned int rn, unsigned int rd) 5529 { 5530 TCGv_i64 tcg_acc, tcg_val; 5531 TCGv_i32 tcg_bytes; 5532 5533 if (!dc_isar_feature(aa64_crc32, s) 5534 || (sf == 1 && sz != 3) 5535 || (sf == 0 && sz == 3)) { 5536 unallocated_encoding(s); 5537 return; 5538 } 5539 5540 if (sz == 3) { 5541 tcg_val = cpu_reg(s, rm); 5542 } else { 5543 uint64_t mask; 5544 switch (sz) { 5545 case 0: 5546 mask = 0xFF; 5547 break; 5548 case 1: 5549 mask = 0xFFFF; 5550 break; 5551 case 2: 5552 mask = 0xFFFFFFFF; 5553 break; 5554 default: 5555 g_assert_not_reached(); 5556 } 5557 tcg_val = tcg_temp_new_i64(); 5558 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5559 } 5560 5561 tcg_acc = cpu_reg(s, rn); 5562 tcg_bytes = tcg_constant_i32(1 << sz); 5563 5564 if (crc32c) { 5565 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5566 } else { 5567 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5568 } 5569 } 5570 5571 /* Data-processing (2 source) 5572 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5573 * +----+---+---+-----------------+------+--------+------+------+ 5574 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5575 * +----+---+---+-----------------+------+--------+------+------+ 5576 */ 5577 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5578 { 5579 unsigned int sf, rm, opcode, rn, rd, setflag; 5580 sf = extract32(insn, 31, 1); 5581 setflag = extract32(insn, 29, 1); 5582 rm = extract32(insn, 16, 5); 5583 opcode = extract32(insn, 10, 6); 5584 rn = extract32(insn, 5, 5); 5585 rd = extract32(insn, 0, 5); 5586 5587 if (setflag && opcode != 0) { 5588 unallocated_encoding(s); 5589 return; 5590 } 5591 5592 switch (opcode) { 5593 case 0: /* SUBP(S) */ 5594 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5595 goto do_unallocated; 5596 } else { 5597 TCGv_i64 tcg_n, tcg_m, tcg_d; 5598 5599 tcg_n = read_cpu_reg_sp(s, rn, true); 5600 tcg_m = read_cpu_reg_sp(s, rm, true); 5601 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5602 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5603 tcg_d = cpu_reg(s, rd); 5604 5605 if (setflag) { 5606 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5607 } else { 5608 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5609 } 5610 } 5611 break; 5612 case 2: /* UDIV */ 5613 handle_div(s, false, sf, rm, rn, rd); 5614 break; 5615 case 3: /* SDIV */ 5616 handle_div(s, true, sf, rm, rn, rd); 5617 break; 5618 case 4: /* IRG */ 5619 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5620 goto do_unallocated; 5621 } 5622 if (s->ata[0]) { 5623 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5624 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5625 } else { 5626 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5627 cpu_reg_sp(s, rn)); 5628 } 5629 break; 5630 case 5: /* GMI */ 5631 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5632 goto do_unallocated; 5633 } else { 5634 TCGv_i64 t = tcg_temp_new_i64(); 5635 5636 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5637 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5638 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5639 } 5640 break; 5641 case 8: /* LSLV */ 5642 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5643 break; 5644 case 9: /* LSRV */ 5645 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5646 break; 5647 case 10: /* ASRV */ 5648 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5649 break; 5650 case 11: /* RORV */ 5651 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5652 break; 5653 case 12: /* PACGA */ 5654 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5655 goto do_unallocated; 5656 } 5657 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5658 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5659 break; 5660 case 16: 5661 case 17: 5662 case 18: 5663 case 19: 5664 case 20: 5665 case 21: 5666 case 22: 5667 case 23: /* CRC32 */ 5668 { 5669 int sz = extract32(opcode, 0, 2); 5670 bool crc32c = extract32(opcode, 2, 1); 5671 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5672 break; 5673 } 5674 default: 5675 do_unallocated: 5676 unallocated_encoding(s); 5677 break; 5678 } 5679 } 5680 5681 /* 5682 * Data processing - register 5683 * 31 30 29 28 25 21 20 16 10 0 5684 * +--+---+--+---+-------+-----+-------+-------+---------+ 5685 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5686 * +--+---+--+---+-------+-----+-------+-------+---------+ 5687 */ 5688 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5689 { 5690 int op0 = extract32(insn, 30, 1); 5691 int op1 = extract32(insn, 28, 1); 5692 int op2 = extract32(insn, 21, 4); 5693 int op3 = extract32(insn, 10, 6); 5694 5695 if (!op1) { 5696 if (op2 & 8) { 5697 if (op2 & 1) { 5698 /* Add/sub (extended register) */ 5699 disas_add_sub_ext_reg(s, insn); 5700 } else { 5701 /* Add/sub (shifted register) */ 5702 disas_add_sub_reg(s, insn); 5703 } 5704 } else { 5705 /* Logical (shifted register) */ 5706 disas_logic_reg(s, insn); 5707 } 5708 return; 5709 } 5710 5711 switch (op2) { 5712 case 0x0: 5713 switch (op3) { 5714 case 0x00: /* Add/subtract (with carry) */ 5715 disas_adc_sbc(s, insn); 5716 break; 5717 5718 case 0x01: /* Rotate right into flags */ 5719 case 0x21: 5720 disas_rotate_right_into_flags(s, insn); 5721 break; 5722 5723 case 0x02: /* Evaluate into flags */ 5724 case 0x12: 5725 case 0x22: 5726 case 0x32: 5727 disas_evaluate_into_flags(s, insn); 5728 break; 5729 5730 default: 5731 goto do_unallocated; 5732 } 5733 break; 5734 5735 case 0x2: /* Conditional compare */ 5736 disas_cc(s, insn); /* both imm and reg forms */ 5737 break; 5738 5739 case 0x4: /* Conditional select */ 5740 disas_cond_select(s, insn); 5741 break; 5742 5743 case 0x6: /* Data-processing */ 5744 if (op0) { /* (1 source) */ 5745 disas_data_proc_1src(s, insn); 5746 } else { /* (2 source) */ 5747 disas_data_proc_2src(s, insn); 5748 } 5749 break; 5750 case 0x8 ... 0xf: /* (3 source) */ 5751 disas_data_proc_3src(s, insn); 5752 break; 5753 5754 default: 5755 do_unallocated: 5756 unallocated_encoding(s); 5757 break; 5758 } 5759 } 5760 5761 static void handle_fp_compare(DisasContext *s, int size, 5762 unsigned int rn, unsigned int rm, 5763 bool cmp_with_zero, bool signal_all_nans) 5764 { 5765 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5766 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5767 5768 if (size == MO_64) { 5769 TCGv_i64 tcg_vn, tcg_vm; 5770 5771 tcg_vn = read_fp_dreg(s, rn); 5772 if (cmp_with_zero) { 5773 tcg_vm = tcg_constant_i64(0); 5774 } else { 5775 tcg_vm = read_fp_dreg(s, rm); 5776 } 5777 if (signal_all_nans) { 5778 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5779 } else { 5780 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5781 } 5782 } else { 5783 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5784 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5785 5786 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5787 if (cmp_with_zero) { 5788 tcg_gen_movi_i32(tcg_vm, 0); 5789 } else { 5790 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5791 } 5792 5793 switch (size) { 5794 case MO_32: 5795 if (signal_all_nans) { 5796 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5797 } else { 5798 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5799 } 5800 break; 5801 case MO_16: 5802 if (signal_all_nans) { 5803 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5804 } else { 5805 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5806 } 5807 break; 5808 default: 5809 g_assert_not_reached(); 5810 } 5811 } 5812 5813 gen_set_nzcv(tcg_flags); 5814 } 5815 5816 /* Floating point compare 5817 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5818 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5819 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5820 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5821 */ 5822 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5823 { 5824 unsigned int mos, type, rm, op, rn, opc, op2r; 5825 int size; 5826 5827 mos = extract32(insn, 29, 3); 5828 type = extract32(insn, 22, 2); 5829 rm = extract32(insn, 16, 5); 5830 op = extract32(insn, 14, 2); 5831 rn = extract32(insn, 5, 5); 5832 opc = extract32(insn, 3, 2); 5833 op2r = extract32(insn, 0, 3); 5834 5835 if (mos || op || op2r) { 5836 unallocated_encoding(s); 5837 return; 5838 } 5839 5840 switch (type) { 5841 case 0: 5842 size = MO_32; 5843 break; 5844 case 1: 5845 size = MO_64; 5846 break; 5847 case 3: 5848 size = MO_16; 5849 if (dc_isar_feature(aa64_fp16, s)) { 5850 break; 5851 } 5852 /* fallthru */ 5853 default: 5854 unallocated_encoding(s); 5855 return; 5856 } 5857 5858 if (!fp_access_check(s)) { 5859 return; 5860 } 5861 5862 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5863 } 5864 5865 /* Floating point conditional compare 5866 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5867 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5868 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5869 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5870 */ 5871 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5872 { 5873 unsigned int mos, type, rm, cond, rn, op, nzcv; 5874 TCGLabel *label_continue = NULL; 5875 int size; 5876 5877 mos = extract32(insn, 29, 3); 5878 type = extract32(insn, 22, 2); 5879 rm = extract32(insn, 16, 5); 5880 cond = extract32(insn, 12, 4); 5881 rn = extract32(insn, 5, 5); 5882 op = extract32(insn, 4, 1); 5883 nzcv = extract32(insn, 0, 4); 5884 5885 if (mos) { 5886 unallocated_encoding(s); 5887 return; 5888 } 5889 5890 switch (type) { 5891 case 0: 5892 size = MO_32; 5893 break; 5894 case 1: 5895 size = MO_64; 5896 break; 5897 case 3: 5898 size = MO_16; 5899 if (dc_isar_feature(aa64_fp16, s)) { 5900 break; 5901 } 5902 /* fallthru */ 5903 default: 5904 unallocated_encoding(s); 5905 return; 5906 } 5907 5908 if (!fp_access_check(s)) { 5909 return; 5910 } 5911 5912 if (cond < 0x0e) { /* not always */ 5913 TCGLabel *label_match = gen_new_label(); 5914 label_continue = gen_new_label(); 5915 arm_gen_test_cc(cond, label_match); 5916 /* nomatch: */ 5917 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5918 tcg_gen_br(label_continue); 5919 gen_set_label(label_match); 5920 } 5921 5922 handle_fp_compare(s, size, rn, rm, false, op); 5923 5924 if (cond < 0x0e) { 5925 gen_set_label(label_continue); 5926 } 5927 } 5928 5929 /* Floating point conditional select 5930 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5931 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5932 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5933 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5934 */ 5935 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5936 { 5937 unsigned int mos, type, rm, cond, rn, rd; 5938 TCGv_i64 t_true, t_false; 5939 DisasCompare64 c; 5940 MemOp sz; 5941 5942 mos = extract32(insn, 29, 3); 5943 type = extract32(insn, 22, 2); 5944 rm = extract32(insn, 16, 5); 5945 cond = extract32(insn, 12, 4); 5946 rn = extract32(insn, 5, 5); 5947 rd = extract32(insn, 0, 5); 5948 5949 if (mos) { 5950 unallocated_encoding(s); 5951 return; 5952 } 5953 5954 switch (type) { 5955 case 0: 5956 sz = MO_32; 5957 break; 5958 case 1: 5959 sz = MO_64; 5960 break; 5961 case 3: 5962 sz = MO_16; 5963 if (dc_isar_feature(aa64_fp16, s)) { 5964 break; 5965 } 5966 /* fallthru */ 5967 default: 5968 unallocated_encoding(s); 5969 return; 5970 } 5971 5972 if (!fp_access_check(s)) { 5973 return; 5974 } 5975 5976 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5977 t_true = tcg_temp_new_i64(); 5978 t_false = tcg_temp_new_i64(); 5979 read_vec_element(s, t_true, rn, 0, sz); 5980 read_vec_element(s, t_false, rm, 0, sz); 5981 5982 a64_test_cc(&c, cond); 5983 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5984 t_true, t_false); 5985 5986 /* Note that sregs & hregs write back zeros to the high bits, 5987 and we've already done the zero-extension. */ 5988 write_fp_dreg(s, rd, t_true); 5989 } 5990 5991 /* Floating-point data-processing (1 source) - half precision */ 5992 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5993 { 5994 TCGv_ptr fpst = NULL; 5995 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5996 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5997 5998 switch (opcode) { 5999 case 0x0: /* FMOV */ 6000 tcg_gen_mov_i32(tcg_res, tcg_op); 6001 break; 6002 case 0x1: /* FABS */ 6003 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6004 break; 6005 case 0x2: /* FNEG */ 6006 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6007 break; 6008 case 0x3: /* FSQRT */ 6009 fpst = fpstatus_ptr(FPST_FPCR_F16); 6010 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6011 break; 6012 case 0x8: /* FRINTN */ 6013 case 0x9: /* FRINTP */ 6014 case 0xa: /* FRINTM */ 6015 case 0xb: /* FRINTZ */ 6016 case 0xc: /* FRINTA */ 6017 { 6018 TCGv_i32 tcg_rmode; 6019 6020 fpst = fpstatus_ptr(FPST_FPCR_F16); 6021 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6022 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6023 gen_restore_rmode(tcg_rmode, fpst); 6024 break; 6025 } 6026 case 0xe: /* FRINTX */ 6027 fpst = fpstatus_ptr(FPST_FPCR_F16); 6028 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6029 break; 6030 case 0xf: /* FRINTI */ 6031 fpst = fpstatus_ptr(FPST_FPCR_F16); 6032 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6033 break; 6034 default: 6035 g_assert_not_reached(); 6036 } 6037 6038 write_fp_sreg(s, rd, tcg_res); 6039 } 6040 6041 /* Floating-point data-processing (1 source) - single precision */ 6042 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6043 { 6044 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6045 TCGv_i32 tcg_op, tcg_res; 6046 TCGv_ptr fpst; 6047 int rmode = -1; 6048 6049 tcg_op = read_fp_sreg(s, rn); 6050 tcg_res = tcg_temp_new_i32(); 6051 6052 switch (opcode) { 6053 case 0x0: /* FMOV */ 6054 tcg_gen_mov_i32(tcg_res, tcg_op); 6055 goto done; 6056 case 0x1: /* FABS */ 6057 gen_helper_vfp_abss(tcg_res, tcg_op); 6058 goto done; 6059 case 0x2: /* FNEG */ 6060 gen_helper_vfp_negs(tcg_res, tcg_op); 6061 goto done; 6062 case 0x3: /* FSQRT */ 6063 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6064 goto done; 6065 case 0x6: /* BFCVT */ 6066 gen_fpst = gen_helper_bfcvt; 6067 break; 6068 case 0x8: /* FRINTN */ 6069 case 0x9: /* FRINTP */ 6070 case 0xa: /* FRINTM */ 6071 case 0xb: /* FRINTZ */ 6072 case 0xc: /* FRINTA */ 6073 rmode = opcode & 7; 6074 gen_fpst = gen_helper_rints; 6075 break; 6076 case 0xe: /* FRINTX */ 6077 gen_fpst = gen_helper_rints_exact; 6078 break; 6079 case 0xf: /* FRINTI */ 6080 gen_fpst = gen_helper_rints; 6081 break; 6082 case 0x10: /* FRINT32Z */ 6083 rmode = FPROUNDING_ZERO; 6084 gen_fpst = gen_helper_frint32_s; 6085 break; 6086 case 0x11: /* FRINT32X */ 6087 gen_fpst = gen_helper_frint32_s; 6088 break; 6089 case 0x12: /* FRINT64Z */ 6090 rmode = FPROUNDING_ZERO; 6091 gen_fpst = gen_helper_frint64_s; 6092 break; 6093 case 0x13: /* FRINT64X */ 6094 gen_fpst = gen_helper_frint64_s; 6095 break; 6096 default: 6097 g_assert_not_reached(); 6098 } 6099 6100 fpst = fpstatus_ptr(FPST_FPCR); 6101 if (rmode >= 0) { 6102 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6103 gen_fpst(tcg_res, tcg_op, fpst); 6104 gen_restore_rmode(tcg_rmode, fpst); 6105 } else { 6106 gen_fpst(tcg_res, tcg_op, fpst); 6107 } 6108 6109 done: 6110 write_fp_sreg(s, rd, tcg_res); 6111 } 6112 6113 /* Floating-point data-processing (1 source) - double precision */ 6114 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6115 { 6116 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6117 TCGv_i64 tcg_op, tcg_res; 6118 TCGv_ptr fpst; 6119 int rmode = -1; 6120 6121 switch (opcode) { 6122 case 0x0: /* FMOV */ 6123 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6124 return; 6125 } 6126 6127 tcg_op = read_fp_dreg(s, rn); 6128 tcg_res = tcg_temp_new_i64(); 6129 6130 switch (opcode) { 6131 case 0x1: /* FABS */ 6132 gen_helper_vfp_absd(tcg_res, tcg_op); 6133 goto done; 6134 case 0x2: /* FNEG */ 6135 gen_helper_vfp_negd(tcg_res, tcg_op); 6136 goto done; 6137 case 0x3: /* FSQRT */ 6138 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6139 goto done; 6140 case 0x8: /* FRINTN */ 6141 case 0x9: /* FRINTP */ 6142 case 0xa: /* FRINTM */ 6143 case 0xb: /* FRINTZ */ 6144 case 0xc: /* FRINTA */ 6145 rmode = opcode & 7; 6146 gen_fpst = gen_helper_rintd; 6147 break; 6148 case 0xe: /* FRINTX */ 6149 gen_fpst = gen_helper_rintd_exact; 6150 break; 6151 case 0xf: /* FRINTI */ 6152 gen_fpst = gen_helper_rintd; 6153 break; 6154 case 0x10: /* FRINT32Z */ 6155 rmode = FPROUNDING_ZERO; 6156 gen_fpst = gen_helper_frint32_d; 6157 break; 6158 case 0x11: /* FRINT32X */ 6159 gen_fpst = gen_helper_frint32_d; 6160 break; 6161 case 0x12: /* FRINT64Z */ 6162 rmode = FPROUNDING_ZERO; 6163 gen_fpst = gen_helper_frint64_d; 6164 break; 6165 case 0x13: /* FRINT64X */ 6166 gen_fpst = gen_helper_frint64_d; 6167 break; 6168 default: 6169 g_assert_not_reached(); 6170 } 6171 6172 fpst = fpstatus_ptr(FPST_FPCR); 6173 if (rmode >= 0) { 6174 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6175 gen_fpst(tcg_res, tcg_op, fpst); 6176 gen_restore_rmode(tcg_rmode, fpst); 6177 } else { 6178 gen_fpst(tcg_res, tcg_op, fpst); 6179 } 6180 6181 done: 6182 write_fp_dreg(s, rd, tcg_res); 6183 } 6184 6185 static void handle_fp_fcvt(DisasContext *s, int opcode, 6186 int rd, int rn, int dtype, int ntype) 6187 { 6188 switch (ntype) { 6189 case 0x0: 6190 { 6191 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6192 if (dtype == 1) { 6193 /* Single to double */ 6194 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6195 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6196 write_fp_dreg(s, rd, tcg_rd); 6197 } else { 6198 /* Single to half */ 6199 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6200 TCGv_i32 ahp = get_ahp_flag(); 6201 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6202 6203 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6204 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6205 write_fp_sreg(s, rd, tcg_rd); 6206 } 6207 break; 6208 } 6209 case 0x1: 6210 { 6211 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6212 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6213 if (dtype == 0) { 6214 /* Double to single */ 6215 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6216 } else { 6217 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6218 TCGv_i32 ahp = get_ahp_flag(); 6219 /* Double to half */ 6220 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6221 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6222 } 6223 write_fp_sreg(s, rd, tcg_rd); 6224 break; 6225 } 6226 case 0x3: 6227 { 6228 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6229 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6230 TCGv_i32 tcg_ahp = get_ahp_flag(); 6231 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6232 if (dtype == 0) { 6233 /* Half to single */ 6234 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6235 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6236 write_fp_sreg(s, rd, tcg_rd); 6237 } else { 6238 /* Half to double */ 6239 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6240 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6241 write_fp_dreg(s, rd, tcg_rd); 6242 } 6243 break; 6244 } 6245 default: 6246 g_assert_not_reached(); 6247 } 6248 } 6249 6250 /* Floating point data-processing (1 source) 6251 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6252 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6253 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6254 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6255 */ 6256 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6257 { 6258 int mos = extract32(insn, 29, 3); 6259 int type = extract32(insn, 22, 2); 6260 int opcode = extract32(insn, 15, 6); 6261 int rn = extract32(insn, 5, 5); 6262 int rd = extract32(insn, 0, 5); 6263 6264 if (mos) { 6265 goto do_unallocated; 6266 } 6267 6268 switch (opcode) { 6269 case 0x4: case 0x5: case 0x7: 6270 { 6271 /* FCVT between half, single and double precision */ 6272 int dtype = extract32(opcode, 0, 2); 6273 if (type == 2 || dtype == type) { 6274 goto do_unallocated; 6275 } 6276 if (!fp_access_check(s)) { 6277 return; 6278 } 6279 6280 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6281 break; 6282 } 6283 6284 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6285 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6286 goto do_unallocated; 6287 } 6288 /* fall through */ 6289 case 0x0 ... 0x3: 6290 case 0x8 ... 0xc: 6291 case 0xe ... 0xf: 6292 /* 32-to-32 and 64-to-64 ops */ 6293 switch (type) { 6294 case 0: 6295 if (!fp_access_check(s)) { 6296 return; 6297 } 6298 handle_fp_1src_single(s, opcode, rd, rn); 6299 break; 6300 case 1: 6301 if (!fp_access_check(s)) { 6302 return; 6303 } 6304 handle_fp_1src_double(s, opcode, rd, rn); 6305 break; 6306 case 3: 6307 if (!dc_isar_feature(aa64_fp16, s)) { 6308 goto do_unallocated; 6309 } 6310 6311 if (!fp_access_check(s)) { 6312 return; 6313 } 6314 handle_fp_1src_half(s, opcode, rd, rn); 6315 break; 6316 default: 6317 goto do_unallocated; 6318 } 6319 break; 6320 6321 case 0x6: 6322 switch (type) { 6323 case 1: /* BFCVT */ 6324 if (!dc_isar_feature(aa64_bf16, s)) { 6325 goto do_unallocated; 6326 } 6327 if (!fp_access_check(s)) { 6328 return; 6329 } 6330 handle_fp_1src_single(s, opcode, rd, rn); 6331 break; 6332 default: 6333 goto do_unallocated; 6334 } 6335 break; 6336 6337 default: 6338 do_unallocated: 6339 unallocated_encoding(s); 6340 break; 6341 } 6342 } 6343 6344 /* Floating-point data-processing (2 source) - single precision */ 6345 static void handle_fp_2src_single(DisasContext *s, int opcode, 6346 int rd, int rn, int rm) 6347 { 6348 TCGv_i32 tcg_op1; 6349 TCGv_i32 tcg_op2; 6350 TCGv_i32 tcg_res; 6351 TCGv_ptr fpst; 6352 6353 tcg_res = tcg_temp_new_i32(); 6354 fpst = fpstatus_ptr(FPST_FPCR); 6355 tcg_op1 = read_fp_sreg(s, rn); 6356 tcg_op2 = read_fp_sreg(s, rm); 6357 6358 switch (opcode) { 6359 case 0x0: /* FMUL */ 6360 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6361 break; 6362 case 0x1: /* FDIV */ 6363 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6364 break; 6365 case 0x2: /* FADD */ 6366 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6367 break; 6368 case 0x3: /* FSUB */ 6369 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6370 break; 6371 case 0x4: /* FMAX */ 6372 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6373 break; 6374 case 0x5: /* FMIN */ 6375 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6376 break; 6377 case 0x6: /* FMAXNM */ 6378 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6379 break; 6380 case 0x7: /* FMINNM */ 6381 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6382 break; 6383 case 0x8: /* FNMUL */ 6384 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6385 gen_helper_vfp_negs(tcg_res, tcg_res); 6386 break; 6387 } 6388 6389 write_fp_sreg(s, rd, tcg_res); 6390 } 6391 6392 /* Floating-point data-processing (2 source) - double precision */ 6393 static void handle_fp_2src_double(DisasContext *s, int opcode, 6394 int rd, int rn, int rm) 6395 { 6396 TCGv_i64 tcg_op1; 6397 TCGv_i64 tcg_op2; 6398 TCGv_i64 tcg_res; 6399 TCGv_ptr fpst; 6400 6401 tcg_res = tcg_temp_new_i64(); 6402 fpst = fpstatus_ptr(FPST_FPCR); 6403 tcg_op1 = read_fp_dreg(s, rn); 6404 tcg_op2 = read_fp_dreg(s, rm); 6405 6406 switch (opcode) { 6407 case 0x0: /* FMUL */ 6408 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6409 break; 6410 case 0x1: /* FDIV */ 6411 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6412 break; 6413 case 0x2: /* FADD */ 6414 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6415 break; 6416 case 0x3: /* FSUB */ 6417 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6418 break; 6419 case 0x4: /* FMAX */ 6420 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6421 break; 6422 case 0x5: /* FMIN */ 6423 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6424 break; 6425 case 0x6: /* FMAXNM */ 6426 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6427 break; 6428 case 0x7: /* FMINNM */ 6429 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6430 break; 6431 case 0x8: /* FNMUL */ 6432 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6433 gen_helper_vfp_negd(tcg_res, tcg_res); 6434 break; 6435 } 6436 6437 write_fp_dreg(s, rd, tcg_res); 6438 } 6439 6440 /* Floating-point data-processing (2 source) - half precision */ 6441 static void handle_fp_2src_half(DisasContext *s, int opcode, 6442 int rd, int rn, int rm) 6443 { 6444 TCGv_i32 tcg_op1; 6445 TCGv_i32 tcg_op2; 6446 TCGv_i32 tcg_res; 6447 TCGv_ptr fpst; 6448 6449 tcg_res = tcg_temp_new_i32(); 6450 fpst = fpstatus_ptr(FPST_FPCR_F16); 6451 tcg_op1 = read_fp_hreg(s, rn); 6452 tcg_op2 = read_fp_hreg(s, rm); 6453 6454 switch (opcode) { 6455 case 0x0: /* FMUL */ 6456 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6457 break; 6458 case 0x1: /* FDIV */ 6459 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6460 break; 6461 case 0x2: /* FADD */ 6462 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6463 break; 6464 case 0x3: /* FSUB */ 6465 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6466 break; 6467 case 0x4: /* FMAX */ 6468 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6469 break; 6470 case 0x5: /* FMIN */ 6471 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6472 break; 6473 case 0x6: /* FMAXNM */ 6474 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6475 break; 6476 case 0x7: /* FMINNM */ 6477 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6478 break; 6479 case 0x8: /* FNMUL */ 6480 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6481 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6482 break; 6483 default: 6484 g_assert_not_reached(); 6485 } 6486 6487 write_fp_sreg(s, rd, tcg_res); 6488 } 6489 6490 /* Floating point data-processing (2 source) 6491 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6492 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6493 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6494 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6495 */ 6496 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6497 { 6498 int mos = extract32(insn, 29, 3); 6499 int type = extract32(insn, 22, 2); 6500 int rd = extract32(insn, 0, 5); 6501 int rn = extract32(insn, 5, 5); 6502 int rm = extract32(insn, 16, 5); 6503 int opcode = extract32(insn, 12, 4); 6504 6505 if (opcode > 8 || mos) { 6506 unallocated_encoding(s); 6507 return; 6508 } 6509 6510 switch (type) { 6511 case 0: 6512 if (!fp_access_check(s)) { 6513 return; 6514 } 6515 handle_fp_2src_single(s, opcode, rd, rn, rm); 6516 break; 6517 case 1: 6518 if (!fp_access_check(s)) { 6519 return; 6520 } 6521 handle_fp_2src_double(s, opcode, rd, rn, rm); 6522 break; 6523 case 3: 6524 if (!dc_isar_feature(aa64_fp16, s)) { 6525 unallocated_encoding(s); 6526 return; 6527 } 6528 if (!fp_access_check(s)) { 6529 return; 6530 } 6531 handle_fp_2src_half(s, opcode, rd, rn, rm); 6532 break; 6533 default: 6534 unallocated_encoding(s); 6535 } 6536 } 6537 6538 /* Floating-point data-processing (3 source) - single precision */ 6539 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6540 int rd, int rn, int rm, int ra) 6541 { 6542 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6543 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6544 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6545 6546 tcg_op1 = read_fp_sreg(s, rn); 6547 tcg_op2 = read_fp_sreg(s, rm); 6548 tcg_op3 = read_fp_sreg(s, ra); 6549 6550 /* These are fused multiply-add, and must be done as one 6551 * floating point operation with no rounding between the 6552 * multiplication and addition steps. 6553 * NB that doing the negations here as separate steps is 6554 * correct : an input NaN should come out with its sign bit 6555 * flipped if it is a negated-input. 6556 */ 6557 if (o1 == true) { 6558 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6559 } 6560 6561 if (o0 != o1) { 6562 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6563 } 6564 6565 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6566 6567 write_fp_sreg(s, rd, tcg_res); 6568 } 6569 6570 /* Floating-point data-processing (3 source) - double precision */ 6571 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6572 int rd, int rn, int rm, int ra) 6573 { 6574 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6575 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6576 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6577 6578 tcg_op1 = read_fp_dreg(s, rn); 6579 tcg_op2 = read_fp_dreg(s, rm); 6580 tcg_op3 = read_fp_dreg(s, ra); 6581 6582 /* These are fused multiply-add, and must be done as one 6583 * floating point operation with no rounding between the 6584 * multiplication and addition steps. 6585 * NB that doing the negations here as separate steps is 6586 * correct : an input NaN should come out with its sign bit 6587 * flipped if it is a negated-input. 6588 */ 6589 if (o1 == true) { 6590 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6591 } 6592 6593 if (o0 != o1) { 6594 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6595 } 6596 6597 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6598 6599 write_fp_dreg(s, rd, tcg_res); 6600 } 6601 6602 /* Floating-point data-processing (3 source) - half precision */ 6603 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6604 int rd, int rn, int rm, int ra) 6605 { 6606 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6607 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6608 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6609 6610 tcg_op1 = read_fp_hreg(s, rn); 6611 tcg_op2 = read_fp_hreg(s, rm); 6612 tcg_op3 = read_fp_hreg(s, ra); 6613 6614 /* These are fused multiply-add, and must be done as one 6615 * floating point operation with no rounding between the 6616 * multiplication and addition steps. 6617 * NB that doing the negations here as separate steps is 6618 * correct : an input NaN should come out with its sign bit 6619 * flipped if it is a negated-input. 6620 */ 6621 if (o1 == true) { 6622 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6623 } 6624 6625 if (o0 != o1) { 6626 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6627 } 6628 6629 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6630 6631 write_fp_sreg(s, rd, tcg_res); 6632 } 6633 6634 /* Floating point data-processing (3 source) 6635 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6636 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6637 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6638 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6639 */ 6640 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6641 { 6642 int mos = extract32(insn, 29, 3); 6643 int type = extract32(insn, 22, 2); 6644 int rd = extract32(insn, 0, 5); 6645 int rn = extract32(insn, 5, 5); 6646 int ra = extract32(insn, 10, 5); 6647 int rm = extract32(insn, 16, 5); 6648 bool o0 = extract32(insn, 15, 1); 6649 bool o1 = extract32(insn, 21, 1); 6650 6651 if (mos) { 6652 unallocated_encoding(s); 6653 return; 6654 } 6655 6656 switch (type) { 6657 case 0: 6658 if (!fp_access_check(s)) { 6659 return; 6660 } 6661 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6662 break; 6663 case 1: 6664 if (!fp_access_check(s)) { 6665 return; 6666 } 6667 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6668 break; 6669 case 3: 6670 if (!dc_isar_feature(aa64_fp16, s)) { 6671 unallocated_encoding(s); 6672 return; 6673 } 6674 if (!fp_access_check(s)) { 6675 return; 6676 } 6677 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6678 break; 6679 default: 6680 unallocated_encoding(s); 6681 } 6682 } 6683 6684 /* Floating point immediate 6685 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6686 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6687 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6688 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6689 */ 6690 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6691 { 6692 int rd = extract32(insn, 0, 5); 6693 int imm5 = extract32(insn, 5, 5); 6694 int imm8 = extract32(insn, 13, 8); 6695 int type = extract32(insn, 22, 2); 6696 int mos = extract32(insn, 29, 3); 6697 uint64_t imm; 6698 MemOp sz; 6699 6700 if (mos || imm5) { 6701 unallocated_encoding(s); 6702 return; 6703 } 6704 6705 switch (type) { 6706 case 0: 6707 sz = MO_32; 6708 break; 6709 case 1: 6710 sz = MO_64; 6711 break; 6712 case 3: 6713 sz = MO_16; 6714 if (dc_isar_feature(aa64_fp16, s)) { 6715 break; 6716 } 6717 /* fallthru */ 6718 default: 6719 unallocated_encoding(s); 6720 return; 6721 } 6722 6723 if (!fp_access_check(s)) { 6724 return; 6725 } 6726 6727 imm = vfp_expand_imm(sz, imm8); 6728 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6729 } 6730 6731 /* Handle floating point <=> fixed point conversions. Note that we can 6732 * also deal with fp <=> integer conversions as a special case (scale == 64) 6733 * OPTME: consider handling that special case specially or at least skipping 6734 * the call to scalbn in the helpers for zero shifts. 6735 */ 6736 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6737 bool itof, int rmode, int scale, int sf, int type) 6738 { 6739 bool is_signed = !(opcode & 1); 6740 TCGv_ptr tcg_fpstatus; 6741 TCGv_i32 tcg_shift, tcg_single; 6742 TCGv_i64 tcg_double; 6743 6744 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6745 6746 tcg_shift = tcg_constant_i32(64 - scale); 6747 6748 if (itof) { 6749 TCGv_i64 tcg_int = cpu_reg(s, rn); 6750 if (!sf) { 6751 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6752 6753 if (is_signed) { 6754 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6755 } else { 6756 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6757 } 6758 6759 tcg_int = tcg_extend; 6760 } 6761 6762 switch (type) { 6763 case 1: /* float64 */ 6764 tcg_double = tcg_temp_new_i64(); 6765 if (is_signed) { 6766 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6767 tcg_shift, tcg_fpstatus); 6768 } else { 6769 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6770 tcg_shift, tcg_fpstatus); 6771 } 6772 write_fp_dreg(s, rd, tcg_double); 6773 break; 6774 6775 case 0: /* float32 */ 6776 tcg_single = tcg_temp_new_i32(); 6777 if (is_signed) { 6778 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6779 tcg_shift, tcg_fpstatus); 6780 } else { 6781 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6782 tcg_shift, tcg_fpstatus); 6783 } 6784 write_fp_sreg(s, rd, tcg_single); 6785 break; 6786 6787 case 3: /* float16 */ 6788 tcg_single = tcg_temp_new_i32(); 6789 if (is_signed) { 6790 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6791 tcg_shift, tcg_fpstatus); 6792 } else { 6793 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6794 tcg_shift, tcg_fpstatus); 6795 } 6796 write_fp_sreg(s, rd, tcg_single); 6797 break; 6798 6799 default: 6800 g_assert_not_reached(); 6801 } 6802 } else { 6803 TCGv_i64 tcg_int = cpu_reg(s, rd); 6804 TCGv_i32 tcg_rmode; 6805 6806 if (extract32(opcode, 2, 1)) { 6807 /* There are too many rounding modes to all fit into rmode, 6808 * so FCVTA[US] is a special case. 6809 */ 6810 rmode = FPROUNDING_TIEAWAY; 6811 } 6812 6813 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6814 6815 switch (type) { 6816 case 1: /* float64 */ 6817 tcg_double = read_fp_dreg(s, rn); 6818 if (is_signed) { 6819 if (!sf) { 6820 gen_helper_vfp_tosld(tcg_int, tcg_double, 6821 tcg_shift, tcg_fpstatus); 6822 } else { 6823 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6824 tcg_shift, tcg_fpstatus); 6825 } 6826 } else { 6827 if (!sf) { 6828 gen_helper_vfp_tould(tcg_int, tcg_double, 6829 tcg_shift, tcg_fpstatus); 6830 } else { 6831 gen_helper_vfp_touqd(tcg_int, tcg_double, 6832 tcg_shift, tcg_fpstatus); 6833 } 6834 } 6835 if (!sf) { 6836 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6837 } 6838 break; 6839 6840 case 0: /* float32 */ 6841 tcg_single = read_fp_sreg(s, rn); 6842 if (sf) { 6843 if (is_signed) { 6844 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6845 tcg_shift, tcg_fpstatus); 6846 } else { 6847 gen_helper_vfp_touqs(tcg_int, tcg_single, 6848 tcg_shift, tcg_fpstatus); 6849 } 6850 } else { 6851 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6852 if (is_signed) { 6853 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6854 tcg_shift, tcg_fpstatus); 6855 } else { 6856 gen_helper_vfp_touls(tcg_dest, tcg_single, 6857 tcg_shift, tcg_fpstatus); 6858 } 6859 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6860 } 6861 break; 6862 6863 case 3: /* float16 */ 6864 tcg_single = read_fp_sreg(s, rn); 6865 if (sf) { 6866 if (is_signed) { 6867 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6868 tcg_shift, tcg_fpstatus); 6869 } else { 6870 gen_helper_vfp_touqh(tcg_int, tcg_single, 6871 tcg_shift, tcg_fpstatus); 6872 } 6873 } else { 6874 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6875 if (is_signed) { 6876 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6877 tcg_shift, tcg_fpstatus); 6878 } else { 6879 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6880 tcg_shift, tcg_fpstatus); 6881 } 6882 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6883 } 6884 break; 6885 6886 default: 6887 g_assert_not_reached(); 6888 } 6889 6890 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6891 } 6892 } 6893 6894 /* Floating point <-> fixed point conversions 6895 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6896 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6897 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6898 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6899 */ 6900 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6901 { 6902 int rd = extract32(insn, 0, 5); 6903 int rn = extract32(insn, 5, 5); 6904 int scale = extract32(insn, 10, 6); 6905 int opcode = extract32(insn, 16, 3); 6906 int rmode = extract32(insn, 19, 2); 6907 int type = extract32(insn, 22, 2); 6908 bool sbit = extract32(insn, 29, 1); 6909 bool sf = extract32(insn, 31, 1); 6910 bool itof; 6911 6912 if (sbit || (!sf && scale < 32)) { 6913 unallocated_encoding(s); 6914 return; 6915 } 6916 6917 switch (type) { 6918 case 0: /* float32 */ 6919 case 1: /* float64 */ 6920 break; 6921 case 3: /* float16 */ 6922 if (dc_isar_feature(aa64_fp16, s)) { 6923 break; 6924 } 6925 /* fallthru */ 6926 default: 6927 unallocated_encoding(s); 6928 return; 6929 } 6930 6931 switch ((rmode << 3) | opcode) { 6932 case 0x2: /* SCVTF */ 6933 case 0x3: /* UCVTF */ 6934 itof = true; 6935 break; 6936 case 0x18: /* FCVTZS */ 6937 case 0x19: /* FCVTZU */ 6938 itof = false; 6939 break; 6940 default: 6941 unallocated_encoding(s); 6942 return; 6943 } 6944 6945 if (!fp_access_check(s)) { 6946 return; 6947 } 6948 6949 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6950 } 6951 6952 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6953 { 6954 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6955 * without conversion. 6956 */ 6957 6958 if (itof) { 6959 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6960 TCGv_i64 tmp; 6961 6962 switch (type) { 6963 case 0: 6964 /* 32 bit */ 6965 tmp = tcg_temp_new_i64(); 6966 tcg_gen_ext32u_i64(tmp, tcg_rn); 6967 write_fp_dreg(s, rd, tmp); 6968 break; 6969 case 1: 6970 /* 64 bit */ 6971 write_fp_dreg(s, rd, tcg_rn); 6972 break; 6973 case 2: 6974 /* 64 bit to top half. */ 6975 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6976 clear_vec_high(s, true, rd); 6977 break; 6978 case 3: 6979 /* 16 bit */ 6980 tmp = tcg_temp_new_i64(); 6981 tcg_gen_ext16u_i64(tmp, tcg_rn); 6982 write_fp_dreg(s, rd, tmp); 6983 break; 6984 default: 6985 g_assert_not_reached(); 6986 } 6987 } else { 6988 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6989 6990 switch (type) { 6991 case 0: 6992 /* 32 bit */ 6993 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6994 break; 6995 case 1: 6996 /* 64 bit */ 6997 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6998 break; 6999 case 2: 7000 /* 64 bits from top half */ 7001 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7002 break; 7003 case 3: 7004 /* 16 bit */ 7005 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7006 break; 7007 default: 7008 g_assert_not_reached(); 7009 } 7010 } 7011 } 7012 7013 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7014 { 7015 TCGv_i64 t = read_fp_dreg(s, rn); 7016 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7017 7018 gen_helper_fjcvtzs(t, t, fpstatus); 7019 7020 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7021 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7022 tcg_gen_movi_i32(cpu_CF, 0); 7023 tcg_gen_movi_i32(cpu_NF, 0); 7024 tcg_gen_movi_i32(cpu_VF, 0); 7025 } 7026 7027 /* Floating point <-> integer conversions 7028 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7029 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7030 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7031 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7032 */ 7033 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7034 { 7035 int rd = extract32(insn, 0, 5); 7036 int rn = extract32(insn, 5, 5); 7037 int opcode = extract32(insn, 16, 3); 7038 int rmode = extract32(insn, 19, 2); 7039 int type = extract32(insn, 22, 2); 7040 bool sbit = extract32(insn, 29, 1); 7041 bool sf = extract32(insn, 31, 1); 7042 bool itof = false; 7043 7044 if (sbit) { 7045 goto do_unallocated; 7046 } 7047 7048 switch (opcode) { 7049 case 2: /* SCVTF */ 7050 case 3: /* UCVTF */ 7051 itof = true; 7052 /* fallthru */ 7053 case 4: /* FCVTAS */ 7054 case 5: /* FCVTAU */ 7055 if (rmode != 0) { 7056 goto do_unallocated; 7057 } 7058 /* fallthru */ 7059 case 0: /* FCVT[NPMZ]S */ 7060 case 1: /* FCVT[NPMZ]U */ 7061 switch (type) { 7062 case 0: /* float32 */ 7063 case 1: /* float64 */ 7064 break; 7065 case 3: /* float16 */ 7066 if (!dc_isar_feature(aa64_fp16, s)) { 7067 goto do_unallocated; 7068 } 7069 break; 7070 default: 7071 goto do_unallocated; 7072 } 7073 if (!fp_access_check(s)) { 7074 return; 7075 } 7076 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7077 break; 7078 7079 default: 7080 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7081 case 0b01100110: /* FMOV half <-> 32-bit int */ 7082 case 0b01100111: 7083 case 0b11100110: /* FMOV half <-> 64-bit int */ 7084 case 0b11100111: 7085 if (!dc_isar_feature(aa64_fp16, s)) { 7086 goto do_unallocated; 7087 } 7088 /* fallthru */ 7089 case 0b00000110: /* FMOV 32-bit */ 7090 case 0b00000111: 7091 case 0b10100110: /* FMOV 64-bit */ 7092 case 0b10100111: 7093 case 0b11001110: /* FMOV top half of 128-bit */ 7094 case 0b11001111: 7095 if (!fp_access_check(s)) { 7096 return; 7097 } 7098 itof = opcode & 1; 7099 handle_fmov(s, rd, rn, type, itof); 7100 break; 7101 7102 case 0b00111110: /* FJCVTZS */ 7103 if (!dc_isar_feature(aa64_jscvt, s)) { 7104 goto do_unallocated; 7105 } else if (fp_access_check(s)) { 7106 handle_fjcvtzs(s, rd, rn); 7107 } 7108 break; 7109 7110 default: 7111 do_unallocated: 7112 unallocated_encoding(s); 7113 return; 7114 } 7115 break; 7116 } 7117 } 7118 7119 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7120 * 31 30 29 28 25 24 0 7121 * +---+---+---+---------+-----------------------------+ 7122 * | | 0 | | 1 1 1 1 | | 7123 * +---+---+---+---------+-----------------------------+ 7124 */ 7125 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7126 { 7127 if (extract32(insn, 24, 1)) { 7128 /* Floating point data-processing (3 source) */ 7129 disas_fp_3src(s, insn); 7130 } else if (extract32(insn, 21, 1) == 0) { 7131 /* Floating point to fixed point conversions */ 7132 disas_fp_fixed_conv(s, insn); 7133 } else { 7134 switch (extract32(insn, 10, 2)) { 7135 case 1: 7136 /* Floating point conditional compare */ 7137 disas_fp_ccomp(s, insn); 7138 break; 7139 case 2: 7140 /* Floating point data-processing (2 source) */ 7141 disas_fp_2src(s, insn); 7142 break; 7143 case 3: 7144 /* Floating point conditional select */ 7145 disas_fp_csel(s, insn); 7146 break; 7147 case 0: 7148 switch (ctz32(extract32(insn, 12, 4))) { 7149 case 0: /* [15:12] == xxx1 */ 7150 /* Floating point immediate */ 7151 disas_fp_imm(s, insn); 7152 break; 7153 case 1: /* [15:12] == xx10 */ 7154 /* Floating point compare */ 7155 disas_fp_compare(s, insn); 7156 break; 7157 case 2: /* [15:12] == x100 */ 7158 /* Floating point data-processing (1 source) */ 7159 disas_fp_1src(s, insn); 7160 break; 7161 case 3: /* [15:12] == 1000 */ 7162 unallocated_encoding(s); 7163 break; 7164 default: /* [15:12] == 0000 */ 7165 /* Floating point <-> integer conversions */ 7166 disas_fp_int_conv(s, insn); 7167 break; 7168 } 7169 break; 7170 } 7171 } 7172 } 7173 7174 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7175 int pos) 7176 { 7177 /* Extract 64 bits from the middle of two concatenated 64 bit 7178 * vector register slices left:right. The extracted bits start 7179 * at 'pos' bits into the right (least significant) side. 7180 * We return the result in tcg_right, and guarantee not to 7181 * trash tcg_left. 7182 */ 7183 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7184 assert(pos > 0 && pos < 64); 7185 7186 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7187 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7188 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7189 } 7190 7191 /* EXT 7192 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7193 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7194 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7195 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7196 */ 7197 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7198 { 7199 int is_q = extract32(insn, 30, 1); 7200 int op2 = extract32(insn, 22, 2); 7201 int imm4 = extract32(insn, 11, 4); 7202 int rm = extract32(insn, 16, 5); 7203 int rn = extract32(insn, 5, 5); 7204 int rd = extract32(insn, 0, 5); 7205 int pos = imm4 << 3; 7206 TCGv_i64 tcg_resl, tcg_resh; 7207 7208 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7209 unallocated_encoding(s); 7210 return; 7211 } 7212 7213 if (!fp_access_check(s)) { 7214 return; 7215 } 7216 7217 tcg_resh = tcg_temp_new_i64(); 7218 tcg_resl = tcg_temp_new_i64(); 7219 7220 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7221 * either extracting 128 bits from a 128:128 concatenation, or 7222 * extracting 64 bits from a 64:64 concatenation. 7223 */ 7224 if (!is_q) { 7225 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7226 if (pos != 0) { 7227 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7228 do_ext64(s, tcg_resh, tcg_resl, pos); 7229 } 7230 } else { 7231 TCGv_i64 tcg_hh; 7232 typedef struct { 7233 int reg; 7234 int elt; 7235 } EltPosns; 7236 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7237 EltPosns *elt = eltposns; 7238 7239 if (pos >= 64) { 7240 elt++; 7241 pos -= 64; 7242 } 7243 7244 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7245 elt++; 7246 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7247 elt++; 7248 if (pos != 0) { 7249 do_ext64(s, tcg_resh, tcg_resl, pos); 7250 tcg_hh = tcg_temp_new_i64(); 7251 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7252 do_ext64(s, tcg_hh, tcg_resh, pos); 7253 } 7254 } 7255 7256 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7257 if (is_q) { 7258 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7259 } 7260 clear_vec_high(s, is_q, rd); 7261 } 7262 7263 /* TBL/TBX 7264 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7265 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7266 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7267 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7268 */ 7269 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7270 { 7271 int op2 = extract32(insn, 22, 2); 7272 int is_q = extract32(insn, 30, 1); 7273 int rm = extract32(insn, 16, 5); 7274 int rn = extract32(insn, 5, 5); 7275 int rd = extract32(insn, 0, 5); 7276 int is_tbx = extract32(insn, 12, 1); 7277 int len = (extract32(insn, 13, 2) + 1) * 16; 7278 7279 if (op2 != 0) { 7280 unallocated_encoding(s); 7281 return; 7282 } 7283 7284 if (!fp_access_check(s)) { 7285 return; 7286 } 7287 7288 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7289 vec_full_reg_offset(s, rm), tcg_env, 7290 is_q ? 16 : 8, vec_full_reg_size(s), 7291 (len << 6) | (is_tbx << 5) | rn, 7292 gen_helper_simd_tblx); 7293 } 7294 7295 /* ZIP/UZP/TRN 7296 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7297 * +---+---+-------------+------+---+------+---+------------------+------+ 7298 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7299 * +---+---+-------------+------+---+------+---+------------------+------+ 7300 */ 7301 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7302 { 7303 int rd = extract32(insn, 0, 5); 7304 int rn = extract32(insn, 5, 5); 7305 int rm = extract32(insn, 16, 5); 7306 int size = extract32(insn, 22, 2); 7307 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7308 * bit 2 indicates 1 vs 2 variant of the insn. 7309 */ 7310 int opcode = extract32(insn, 12, 2); 7311 bool part = extract32(insn, 14, 1); 7312 bool is_q = extract32(insn, 30, 1); 7313 int esize = 8 << size; 7314 int i; 7315 int datasize = is_q ? 128 : 64; 7316 int elements = datasize / esize; 7317 TCGv_i64 tcg_res[2], tcg_ele; 7318 7319 if (opcode == 0 || (size == 3 && !is_q)) { 7320 unallocated_encoding(s); 7321 return; 7322 } 7323 7324 if (!fp_access_check(s)) { 7325 return; 7326 } 7327 7328 tcg_res[0] = tcg_temp_new_i64(); 7329 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7330 tcg_ele = tcg_temp_new_i64(); 7331 7332 for (i = 0; i < elements; i++) { 7333 int o, w; 7334 7335 switch (opcode) { 7336 case 1: /* UZP1/2 */ 7337 { 7338 int midpoint = elements / 2; 7339 if (i < midpoint) { 7340 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7341 } else { 7342 read_vec_element(s, tcg_ele, rm, 7343 2 * (i - midpoint) + part, size); 7344 } 7345 break; 7346 } 7347 case 2: /* TRN1/2 */ 7348 if (i & 1) { 7349 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7350 } else { 7351 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7352 } 7353 break; 7354 case 3: /* ZIP1/2 */ 7355 { 7356 int base = part * elements / 2; 7357 if (i & 1) { 7358 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7359 } else { 7360 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7361 } 7362 break; 7363 } 7364 default: 7365 g_assert_not_reached(); 7366 } 7367 7368 w = (i * esize) / 64; 7369 o = (i * esize) % 64; 7370 if (o == 0) { 7371 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7372 } else { 7373 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7374 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7375 } 7376 } 7377 7378 for (i = 0; i <= is_q; ++i) { 7379 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7380 } 7381 clear_vec_high(s, is_q, rd); 7382 } 7383 7384 /* 7385 * do_reduction_op helper 7386 * 7387 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7388 * important for correct NaN propagation that we do these 7389 * operations in exactly the order specified by the pseudocode. 7390 * 7391 * This is a recursive function, TCG temps should be freed by the 7392 * calling function once it is done with the values. 7393 */ 7394 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7395 int esize, int size, int vmap, TCGv_ptr fpst) 7396 { 7397 if (esize == size) { 7398 int element; 7399 MemOp msize = esize == 16 ? MO_16 : MO_32; 7400 TCGv_i32 tcg_elem; 7401 7402 /* We should have one register left here */ 7403 assert(ctpop8(vmap) == 1); 7404 element = ctz32(vmap); 7405 assert(element < 8); 7406 7407 tcg_elem = tcg_temp_new_i32(); 7408 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7409 return tcg_elem; 7410 } else { 7411 int bits = size / 2; 7412 int shift = ctpop8(vmap) / 2; 7413 int vmap_lo = (vmap >> shift) & vmap; 7414 int vmap_hi = (vmap & ~vmap_lo); 7415 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7416 7417 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7418 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7419 tcg_res = tcg_temp_new_i32(); 7420 7421 switch (fpopcode) { 7422 case 0x0c: /* fmaxnmv half-precision */ 7423 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7424 break; 7425 case 0x0f: /* fmaxv half-precision */ 7426 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7427 break; 7428 case 0x1c: /* fminnmv half-precision */ 7429 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7430 break; 7431 case 0x1f: /* fminv half-precision */ 7432 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7433 break; 7434 case 0x2c: /* fmaxnmv */ 7435 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7436 break; 7437 case 0x2f: /* fmaxv */ 7438 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7439 break; 7440 case 0x3c: /* fminnmv */ 7441 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7442 break; 7443 case 0x3f: /* fminv */ 7444 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7445 break; 7446 default: 7447 g_assert_not_reached(); 7448 } 7449 return tcg_res; 7450 } 7451 } 7452 7453 /* AdvSIMD across lanes 7454 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7455 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7456 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7457 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7458 */ 7459 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7460 { 7461 int rd = extract32(insn, 0, 5); 7462 int rn = extract32(insn, 5, 5); 7463 int size = extract32(insn, 22, 2); 7464 int opcode = extract32(insn, 12, 5); 7465 bool is_q = extract32(insn, 30, 1); 7466 bool is_u = extract32(insn, 29, 1); 7467 bool is_fp = false; 7468 bool is_min = false; 7469 int esize; 7470 int elements; 7471 int i; 7472 TCGv_i64 tcg_res, tcg_elt; 7473 7474 switch (opcode) { 7475 case 0x1b: /* ADDV */ 7476 if (is_u) { 7477 unallocated_encoding(s); 7478 return; 7479 } 7480 /* fall through */ 7481 case 0x3: /* SADDLV, UADDLV */ 7482 case 0xa: /* SMAXV, UMAXV */ 7483 case 0x1a: /* SMINV, UMINV */ 7484 if (size == 3 || (size == 2 && !is_q)) { 7485 unallocated_encoding(s); 7486 return; 7487 } 7488 break; 7489 case 0xc: /* FMAXNMV, FMINNMV */ 7490 case 0xf: /* FMAXV, FMINV */ 7491 /* Bit 1 of size field encodes min vs max and the actual size 7492 * depends on the encoding of the U bit. If not set (and FP16 7493 * enabled) then we do half-precision float instead of single 7494 * precision. 7495 */ 7496 is_min = extract32(size, 1, 1); 7497 is_fp = true; 7498 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7499 size = 1; 7500 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7501 unallocated_encoding(s); 7502 return; 7503 } else { 7504 size = 2; 7505 } 7506 break; 7507 default: 7508 unallocated_encoding(s); 7509 return; 7510 } 7511 7512 if (!fp_access_check(s)) { 7513 return; 7514 } 7515 7516 esize = 8 << size; 7517 elements = (is_q ? 128 : 64) / esize; 7518 7519 tcg_res = tcg_temp_new_i64(); 7520 tcg_elt = tcg_temp_new_i64(); 7521 7522 /* These instructions operate across all lanes of a vector 7523 * to produce a single result. We can guarantee that a 64 7524 * bit intermediate is sufficient: 7525 * + for [US]ADDLV the maximum element size is 32 bits, and 7526 * the result type is 64 bits 7527 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7528 * same as the element size, which is 32 bits at most 7529 * For the integer operations we can choose to work at 64 7530 * or 32 bits and truncate at the end; for simplicity 7531 * we use 64 bits always. The floating point 7532 * ops do require 32 bit intermediates, though. 7533 */ 7534 if (!is_fp) { 7535 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7536 7537 for (i = 1; i < elements; i++) { 7538 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7539 7540 switch (opcode) { 7541 case 0x03: /* SADDLV / UADDLV */ 7542 case 0x1b: /* ADDV */ 7543 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7544 break; 7545 case 0x0a: /* SMAXV / UMAXV */ 7546 if (is_u) { 7547 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7548 } else { 7549 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7550 } 7551 break; 7552 case 0x1a: /* SMINV / UMINV */ 7553 if (is_u) { 7554 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7555 } else { 7556 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7557 } 7558 break; 7559 default: 7560 g_assert_not_reached(); 7561 } 7562 7563 } 7564 } else { 7565 /* Floating point vector reduction ops which work across 32 7566 * bit (single) or 16 bit (half-precision) intermediates. 7567 * Note that correct NaN propagation requires that we do these 7568 * operations in exactly the order specified by the pseudocode. 7569 */ 7570 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7571 int fpopcode = opcode | is_min << 4 | is_u << 5; 7572 int vmap = (1 << elements) - 1; 7573 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7574 (is_q ? 128 : 64), vmap, fpst); 7575 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7576 } 7577 7578 /* Now truncate the result to the width required for the final output */ 7579 if (opcode == 0x03) { 7580 /* SADDLV, UADDLV: result is 2*esize */ 7581 size++; 7582 } 7583 7584 switch (size) { 7585 case 0: 7586 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7587 break; 7588 case 1: 7589 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7590 break; 7591 case 2: 7592 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7593 break; 7594 case 3: 7595 break; 7596 default: 7597 g_assert_not_reached(); 7598 } 7599 7600 write_fp_dreg(s, rd, tcg_res); 7601 } 7602 7603 /* DUP (Element, Vector) 7604 * 7605 * 31 30 29 21 20 16 15 10 9 5 4 0 7606 * +---+---+-------------------+--------+-------------+------+------+ 7607 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7608 * +---+---+-------------------+--------+-------------+------+------+ 7609 * 7610 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7611 */ 7612 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7613 int imm5) 7614 { 7615 int size = ctz32(imm5); 7616 int index; 7617 7618 if (size > 3 || (size == 3 && !is_q)) { 7619 unallocated_encoding(s); 7620 return; 7621 } 7622 7623 if (!fp_access_check(s)) { 7624 return; 7625 } 7626 7627 index = imm5 >> (size + 1); 7628 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7629 vec_reg_offset(s, rn, index, size), 7630 is_q ? 16 : 8, vec_full_reg_size(s)); 7631 } 7632 7633 /* DUP (element, scalar) 7634 * 31 21 20 16 15 10 9 5 4 0 7635 * +-----------------------+--------+-------------+------+------+ 7636 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7637 * +-----------------------+--------+-------------+------+------+ 7638 */ 7639 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7640 int imm5) 7641 { 7642 int size = ctz32(imm5); 7643 int index; 7644 TCGv_i64 tmp; 7645 7646 if (size > 3) { 7647 unallocated_encoding(s); 7648 return; 7649 } 7650 7651 if (!fp_access_check(s)) { 7652 return; 7653 } 7654 7655 index = imm5 >> (size + 1); 7656 7657 /* This instruction just extracts the specified element and 7658 * zero-extends it into the bottom of the destination register. 7659 */ 7660 tmp = tcg_temp_new_i64(); 7661 read_vec_element(s, tmp, rn, index, size); 7662 write_fp_dreg(s, rd, tmp); 7663 } 7664 7665 /* DUP (General) 7666 * 7667 * 31 30 29 21 20 16 15 10 9 5 4 0 7668 * +---+---+-------------------+--------+-------------+------+------+ 7669 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7670 * +---+---+-------------------+--------+-------------+------+------+ 7671 * 7672 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7673 */ 7674 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7675 int imm5) 7676 { 7677 int size = ctz32(imm5); 7678 uint32_t dofs, oprsz, maxsz; 7679 7680 if (size > 3 || ((size == 3) && !is_q)) { 7681 unallocated_encoding(s); 7682 return; 7683 } 7684 7685 if (!fp_access_check(s)) { 7686 return; 7687 } 7688 7689 dofs = vec_full_reg_offset(s, rd); 7690 oprsz = is_q ? 16 : 8; 7691 maxsz = vec_full_reg_size(s); 7692 7693 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7694 } 7695 7696 /* INS (Element) 7697 * 7698 * 31 21 20 16 15 14 11 10 9 5 4 0 7699 * +-----------------------+--------+------------+---+------+------+ 7700 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7701 * +-----------------------+--------+------------+---+------+------+ 7702 * 7703 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7704 * index: encoded in imm5<4:size+1> 7705 */ 7706 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7707 int imm4, int imm5) 7708 { 7709 int size = ctz32(imm5); 7710 int src_index, dst_index; 7711 TCGv_i64 tmp; 7712 7713 if (size > 3) { 7714 unallocated_encoding(s); 7715 return; 7716 } 7717 7718 if (!fp_access_check(s)) { 7719 return; 7720 } 7721 7722 dst_index = extract32(imm5, 1+size, 5); 7723 src_index = extract32(imm4, size, 4); 7724 7725 tmp = tcg_temp_new_i64(); 7726 7727 read_vec_element(s, tmp, rn, src_index, size); 7728 write_vec_element(s, tmp, rd, dst_index, size); 7729 7730 /* INS is considered a 128-bit write for SVE. */ 7731 clear_vec_high(s, true, rd); 7732 } 7733 7734 7735 /* INS (General) 7736 * 7737 * 31 21 20 16 15 10 9 5 4 0 7738 * +-----------------------+--------+-------------+------+------+ 7739 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7740 * +-----------------------+--------+-------------+------+------+ 7741 * 7742 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7743 * index: encoded in imm5<4:size+1> 7744 */ 7745 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7746 { 7747 int size = ctz32(imm5); 7748 int idx; 7749 7750 if (size > 3) { 7751 unallocated_encoding(s); 7752 return; 7753 } 7754 7755 if (!fp_access_check(s)) { 7756 return; 7757 } 7758 7759 idx = extract32(imm5, 1 + size, 4 - size); 7760 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7761 7762 /* INS is considered a 128-bit write for SVE. */ 7763 clear_vec_high(s, true, rd); 7764 } 7765 7766 /* 7767 * UMOV (General) 7768 * SMOV (General) 7769 * 7770 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7771 * +---+---+-------------------+--------+-------------+------+------+ 7772 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7773 * +---+---+-------------------+--------+-------------+------+------+ 7774 * 7775 * U: unsigned when set 7776 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7777 */ 7778 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7779 int rn, int rd, int imm5) 7780 { 7781 int size = ctz32(imm5); 7782 int element; 7783 TCGv_i64 tcg_rd; 7784 7785 /* Check for UnallocatedEncodings */ 7786 if (is_signed) { 7787 if (size > 2 || (size == 2 && !is_q)) { 7788 unallocated_encoding(s); 7789 return; 7790 } 7791 } else { 7792 if (size > 3 7793 || (size < 3 && is_q) 7794 || (size == 3 && !is_q)) { 7795 unallocated_encoding(s); 7796 return; 7797 } 7798 } 7799 7800 if (!fp_access_check(s)) { 7801 return; 7802 } 7803 7804 element = extract32(imm5, 1+size, 4); 7805 7806 tcg_rd = cpu_reg(s, rd); 7807 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7808 if (is_signed && !is_q) { 7809 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7810 } 7811 } 7812 7813 /* AdvSIMD copy 7814 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7815 * +---+---+----+-----------------+------+---+------+---+------+------+ 7816 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7817 * +---+---+----+-----------------+------+---+------+---+------+------+ 7818 */ 7819 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7820 { 7821 int rd = extract32(insn, 0, 5); 7822 int rn = extract32(insn, 5, 5); 7823 int imm4 = extract32(insn, 11, 4); 7824 int op = extract32(insn, 29, 1); 7825 int is_q = extract32(insn, 30, 1); 7826 int imm5 = extract32(insn, 16, 5); 7827 7828 if (op) { 7829 if (is_q) { 7830 /* INS (element) */ 7831 handle_simd_inse(s, rd, rn, imm4, imm5); 7832 } else { 7833 unallocated_encoding(s); 7834 } 7835 } else { 7836 switch (imm4) { 7837 case 0: 7838 /* DUP (element - vector) */ 7839 handle_simd_dupe(s, is_q, rd, rn, imm5); 7840 break; 7841 case 1: 7842 /* DUP (general) */ 7843 handle_simd_dupg(s, is_q, rd, rn, imm5); 7844 break; 7845 case 3: 7846 if (is_q) { 7847 /* INS (general) */ 7848 handle_simd_insg(s, rd, rn, imm5); 7849 } else { 7850 unallocated_encoding(s); 7851 } 7852 break; 7853 case 5: 7854 case 7: 7855 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7856 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7857 break; 7858 default: 7859 unallocated_encoding(s); 7860 break; 7861 } 7862 } 7863 } 7864 7865 /* AdvSIMD modified immediate 7866 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7867 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7868 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7869 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7870 * 7871 * There are a number of operations that can be carried out here: 7872 * MOVI - move (shifted) imm into register 7873 * MVNI - move inverted (shifted) imm into register 7874 * ORR - bitwise OR of (shifted) imm with register 7875 * BIC - bitwise clear of (shifted) imm with register 7876 * With ARMv8.2 we also have: 7877 * FMOV half-precision 7878 */ 7879 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7880 { 7881 int rd = extract32(insn, 0, 5); 7882 int cmode = extract32(insn, 12, 4); 7883 int o2 = extract32(insn, 11, 1); 7884 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7885 bool is_neg = extract32(insn, 29, 1); 7886 bool is_q = extract32(insn, 30, 1); 7887 uint64_t imm = 0; 7888 7889 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7890 /* Check for FMOV (vector, immediate) - half-precision */ 7891 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7892 unallocated_encoding(s); 7893 return; 7894 } 7895 } 7896 7897 if (!fp_access_check(s)) { 7898 return; 7899 } 7900 7901 if (cmode == 15 && o2 && !is_neg) { 7902 /* FMOV (vector, immediate) - half-precision */ 7903 imm = vfp_expand_imm(MO_16, abcdefgh); 7904 /* now duplicate across the lanes */ 7905 imm = dup_const(MO_16, imm); 7906 } else { 7907 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7908 } 7909 7910 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7911 /* MOVI or MVNI, with MVNI negation handled above. */ 7912 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7913 vec_full_reg_size(s), imm); 7914 } else { 7915 /* ORR or BIC, with BIC negation to AND handled above. */ 7916 if (is_neg) { 7917 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7918 } else { 7919 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7920 } 7921 } 7922 } 7923 7924 /* AdvSIMD scalar copy 7925 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7926 * +-----+----+-----------------+------+---+------+---+------+------+ 7927 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7928 * +-----+----+-----------------+------+---+------+---+------+------+ 7929 */ 7930 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7931 { 7932 int rd = extract32(insn, 0, 5); 7933 int rn = extract32(insn, 5, 5); 7934 int imm4 = extract32(insn, 11, 4); 7935 int imm5 = extract32(insn, 16, 5); 7936 int op = extract32(insn, 29, 1); 7937 7938 if (op != 0 || imm4 != 0) { 7939 unallocated_encoding(s); 7940 return; 7941 } 7942 7943 /* DUP (element, scalar) */ 7944 handle_simd_dupes(s, rd, rn, imm5); 7945 } 7946 7947 /* AdvSIMD scalar pairwise 7948 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7949 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7950 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7951 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7952 */ 7953 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7954 { 7955 int u = extract32(insn, 29, 1); 7956 int size = extract32(insn, 22, 2); 7957 int opcode = extract32(insn, 12, 5); 7958 int rn = extract32(insn, 5, 5); 7959 int rd = extract32(insn, 0, 5); 7960 TCGv_ptr fpst; 7961 7962 /* For some ops (the FP ones), size[1] is part of the encoding. 7963 * For ADDP strictly it is not but size[1] is always 1 for valid 7964 * encodings. 7965 */ 7966 opcode |= (extract32(size, 1, 1) << 5); 7967 7968 switch (opcode) { 7969 case 0x3b: /* ADDP */ 7970 if (u || size != 3) { 7971 unallocated_encoding(s); 7972 return; 7973 } 7974 if (!fp_access_check(s)) { 7975 return; 7976 } 7977 7978 fpst = NULL; 7979 break; 7980 case 0xc: /* FMAXNMP */ 7981 case 0xd: /* FADDP */ 7982 case 0xf: /* FMAXP */ 7983 case 0x2c: /* FMINNMP */ 7984 case 0x2f: /* FMINP */ 7985 /* FP op, size[0] is 32 or 64 bit*/ 7986 if (!u) { 7987 if (!dc_isar_feature(aa64_fp16, s)) { 7988 unallocated_encoding(s); 7989 return; 7990 } else { 7991 size = MO_16; 7992 } 7993 } else { 7994 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7995 } 7996 7997 if (!fp_access_check(s)) { 7998 return; 7999 } 8000 8001 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8002 break; 8003 default: 8004 unallocated_encoding(s); 8005 return; 8006 } 8007 8008 if (size == MO_64) { 8009 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8010 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8011 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8012 8013 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8014 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8015 8016 switch (opcode) { 8017 case 0x3b: /* ADDP */ 8018 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8019 break; 8020 case 0xc: /* FMAXNMP */ 8021 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8022 break; 8023 case 0xd: /* FADDP */ 8024 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8025 break; 8026 case 0xf: /* FMAXP */ 8027 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8028 break; 8029 case 0x2c: /* FMINNMP */ 8030 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8031 break; 8032 case 0x2f: /* FMINP */ 8033 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8034 break; 8035 default: 8036 g_assert_not_reached(); 8037 } 8038 8039 write_fp_dreg(s, rd, tcg_res); 8040 } else { 8041 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8042 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8043 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8044 8045 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8046 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8047 8048 if (size == MO_16) { 8049 switch (opcode) { 8050 case 0xc: /* FMAXNMP */ 8051 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8052 break; 8053 case 0xd: /* FADDP */ 8054 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8055 break; 8056 case 0xf: /* FMAXP */ 8057 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8058 break; 8059 case 0x2c: /* FMINNMP */ 8060 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8061 break; 8062 case 0x2f: /* FMINP */ 8063 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8064 break; 8065 default: 8066 g_assert_not_reached(); 8067 } 8068 } else { 8069 switch (opcode) { 8070 case 0xc: /* FMAXNMP */ 8071 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8072 break; 8073 case 0xd: /* FADDP */ 8074 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8075 break; 8076 case 0xf: /* FMAXP */ 8077 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8078 break; 8079 case 0x2c: /* FMINNMP */ 8080 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8081 break; 8082 case 0x2f: /* FMINP */ 8083 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8084 break; 8085 default: 8086 g_assert_not_reached(); 8087 } 8088 } 8089 8090 write_fp_sreg(s, rd, tcg_res); 8091 } 8092 } 8093 8094 /* 8095 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8096 * 8097 * This code is handles the common shifting code and is used by both 8098 * the vector and scalar code. 8099 */ 8100 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8101 TCGv_i64 tcg_rnd, bool accumulate, 8102 bool is_u, int size, int shift) 8103 { 8104 bool extended_result = false; 8105 bool round = tcg_rnd != NULL; 8106 int ext_lshift = 0; 8107 TCGv_i64 tcg_src_hi; 8108 8109 if (round && size == 3) { 8110 extended_result = true; 8111 ext_lshift = 64 - shift; 8112 tcg_src_hi = tcg_temp_new_i64(); 8113 } else if (shift == 64) { 8114 if (!accumulate && is_u) { 8115 /* result is zero */ 8116 tcg_gen_movi_i64(tcg_res, 0); 8117 return; 8118 } 8119 } 8120 8121 /* Deal with the rounding step */ 8122 if (round) { 8123 if (extended_result) { 8124 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8125 if (!is_u) { 8126 /* take care of sign extending tcg_res */ 8127 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8128 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8129 tcg_src, tcg_src_hi, 8130 tcg_rnd, tcg_zero); 8131 } else { 8132 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8133 tcg_src, tcg_zero, 8134 tcg_rnd, tcg_zero); 8135 } 8136 } else { 8137 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8138 } 8139 } 8140 8141 /* Now do the shift right */ 8142 if (round && extended_result) { 8143 /* extended case, >64 bit precision required */ 8144 if (ext_lshift == 0) { 8145 /* special case, only high bits matter */ 8146 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8147 } else { 8148 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8149 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8150 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8151 } 8152 } else { 8153 if (is_u) { 8154 if (shift == 64) { 8155 /* essentially shifting in 64 zeros */ 8156 tcg_gen_movi_i64(tcg_src, 0); 8157 } else { 8158 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8159 } 8160 } else { 8161 if (shift == 64) { 8162 /* effectively extending the sign-bit */ 8163 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8164 } else { 8165 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8166 } 8167 } 8168 } 8169 8170 if (accumulate) { 8171 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8172 } else { 8173 tcg_gen_mov_i64(tcg_res, tcg_src); 8174 } 8175 } 8176 8177 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8178 static void handle_scalar_simd_shri(DisasContext *s, 8179 bool is_u, int immh, int immb, 8180 int opcode, int rn, int rd) 8181 { 8182 const int size = 3; 8183 int immhb = immh << 3 | immb; 8184 int shift = 2 * (8 << size) - immhb; 8185 bool accumulate = false; 8186 bool round = false; 8187 bool insert = false; 8188 TCGv_i64 tcg_rn; 8189 TCGv_i64 tcg_rd; 8190 TCGv_i64 tcg_round; 8191 8192 if (!extract32(immh, 3, 1)) { 8193 unallocated_encoding(s); 8194 return; 8195 } 8196 8197 if (!fp_access_check(s)) { 8198 return; 8199 } 8200 8201 switch (opcode) { 8202 case 0x02: /* SSRA / USRA (accumulate) */ 8203 accumulate = true; 8204 break; 8205 case 0x04: /* SRSHR / URSHR (rounding) */ 8206 round = true; 8207 break; 8208 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8209 accumulate = round = true; 8210 break; 8211 case 0x08: /* SRI */ 8212 insert = true; 8213 break; 8214 } 8215 8216 if (round) { 8217 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8218 } else { 8219 tcg_round = NULL; 8220 } 8221 8222 tcg_rn = read_fp_dreg(s, rn); 8223 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8224 8225 if (insert) { 8226 /* shift count same as element size is valid but does nothing; 8227 * special case to avoid potential shift by 64. 8228 */ 8229 int esize = 8 << size; 8230 if (shift != esize) { 8231 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8232 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8233 } 8234 } else { 8235 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8236 accumulate, is_u, size, shift); 8237 } 8238 8239 write_fp_dreg(s, rd, tcg_rd); 8240 } 8241 8242 /* SHL/SLI - Scalar shift left */ 8243 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8244 int immh, int immb, int opcode, 8245 int rn, int rd) 8246 { 8247 int size = 32 - clz32(immh) - 1; 8248 int immhb = immh << 3 | immb; 8249 int shift = immhb - (8 << size); 8250 TCGv_i64 tcg_rn; 8251 TCGv_i64 tcg_rd; 8252 8253 if (!extract32(immh, 3, 1)) { 8254 unallocated_encoding(s); 8255 return; 8256 } 8257 8258 if (!fp_access_check(s)) { 8259 return; 8260 } 8261 8262 tcg_rn = read_fp_dreg(s, rn); 8263 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8264 8265 if (insert) { 8266 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8267 } else { 8268 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8269 } 8270 8271 write_fp_dreg(s, rd, tcg_rd); 8272 } 8273 8274 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8275 * (signed/unsigned) narrowing */ 8276 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8277 bool is_u_shift, bool is_u_narrow, 8278 int immh, int immb, int opcode, 8279 int rn, int rd) 8280 { 8281 int immhb = immh << 3 | immb; 8282 int size = 32 - clz32(immh) - 1; 8283 int esize = 8 << size; 8284 int shift = (2 * esize) - immhb; 8285 int elements = is_scalar ? 1 : (64 / esize); 8286 bool round = extract32(opcode, 0, 1); 8287 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8288 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8289 TCGv_i32 tcg_rd_narrowed; 8290 TCGv_i64 tcg_final; 8291 8292 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8293 { gen_helper_neon_narrow_sat_s8, 8294 gen_helper_neon_unarrow_sat8 }, 8295 { gen_helper_neon_narrow_sat_s16, 8296 gen_helper_neon_unarrow_sat16 }, 8297 { gen_helper_neon_narrow_sat_s32, 8298 gen_helper_neon_unarrow_sat32 }, 8299 { NULL, NULL }, 8300 }; 8301 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8302 gen_helper_neon_narrow_sat_u8, 8303 gen_helper_neon_narrow_sat_u16, 8304 gen_helper_neon_narrow_sat_u32, 8305 NULL 8306 }; 8307 NeonGenNarrowEnvFn *narrowfn; 8308 8309 int i; 8310 8311 assert(size < 4); 8312 8313 if (extract32(immh, 3, 1)) { 8314 unallocated_encoding(s); 8315 return; 8316 } 8317 8318 if (!fp_access_check(s)) { 8319 return; 8320 } 8321 8322 if (is_u_shift) { 8323 narrowfn = unsigned_narrow_fns[size]; 8324 } else { 8325 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8326 } 8327 8328 tcg_rn = tcg_temp_new_i64(); 8329 tcg_rd = tcg_temp_new_i64(); 8330 tcg_rd_narrowed = tcg_temp_new_i32(); 8331 tcg_final = tcg_temp_new_i64(); 8332 8333 if (round) { 8334 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8335 } else { 8336 tcg_round = NULL; 8337 } 8338 8339 for (i = 0; i < elements; i++) { 8340 read_vec_element(s, tcg_rn, rn, i, ldop); 8341 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8342 false, is_u_shift, size+1, shift); 8343 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8344 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8345 if (i == 0) { 8346 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8347 } else { 8348 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8349 } 8350 } 8351 8352 if (!is_q) { 8353 write_vec_element(s, tcg_final, rd, 0, MO_64); 8354 } else { 8355 write_vec_element(s, tcg_final, rd, 1, MO_64); 8356 } 8357 clear_vec_high(s, is_q, rd); 8358 } 8359 8360 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8361 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8362 bool src_unsigned, bool dst_unsigned, 8363 int immh, int immb, int rn, int rd) 8364 { 8365 int immhb = immh << 3 | immb; 8366 int size = 32 - clz32(immh) - 1; 8367 int shift = immhb - (8 << size); 8368 int pass; 8369 8370 assert(immh != 0); 8371 assert(!(scalar && is_q)); 8372 8373 if (!scalar) { 8374 if (!is_q && extract32(immh, 3, 1)) { 8375 unallocated_encoding(s); 8376 return; 8377 } 8378 8379 /* Since we use the variable-shift helpers we must 8380 * replicate the shift count into each element of 8381 * the tcg_shift value. 8382 */ 8383 switch (size) { 8384 case 0: 8385 shift |= shift << 8; 8386 /* fall through */ 8387 case 1: 8388 shift |= shift << 16; 8389 break; 8390 case 2: 8391 case 3: 8392 break; 8393 default: 8394 g_assert_not_reached(); 8395 } 8396 } 8397 8398 if (!fp_access_check(s)) { 8399 return; 8400 } 8401 8402 if (size == 3) { 8403 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8404 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8405 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8406 { NULL, gen_helper_neon_qshl_u64 }, 8407 }; 8408 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8409 int maxpass = is_q ? 2 : 1; 8410 8411 for (pass = 0; pass < maxpass; pass++) { 8412 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8413 8414 read_vec_element(s, tcg_op, rn, pass, MO_64); 8415 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8416 write_vec_element(s, tcg_op, rd, pass, MO_64); 8417 } 8418 clear_vec_high(s, is_q, rd); 8419 } else { 8420 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8421 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8422 { 8423 { gen_helper_neon_qshl_s8, 8424 gen_helper_neon_qshl_s16, 8425 gen_helper_neon_qshl_s32 }, 8426 { gen_helper_neon_qshlu_s8, 8427 gen_helper_neon_qshlu_s16, 8428 gen_helper_neon_qshlu_s32 } 8429 }, { 8430 { NULL, NULL, NULL }, 8431 { gen_helper_neon_qshl_u8, 8432 gen_helper_neon_qshl_u16, 8433 gen_helper_neon_qshl_u32 } 8434 } 8435 }; 8436 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8437 MemOp memop = scalar ? size : MO_32; 8438 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8439 8440 for (pass = 0; pass < maxpass; pass++) { 8441 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8442 8443 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8444 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8445 if (scalar) { 8446 switch (size) { 8447 case 0: 8448 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8449 break; 8450 case 1: 8451 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8452 break; 8453 case 2: 8454 break; 8455 default: 8456 g_assert_not_reached(); 8457 } 8458 write_fp_sreg(s, rd, tcg_op); 8459 } else { 8460 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8461 } 8462 } 8463 8464 if (!scalar) { 8465 clear_vec_high(s, is_q, rd); 8466 } 8467 } 8468 } 8469 8470 /* Common vector code for handling integer to FP conversion */ 8471 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8472 int elements, int is_signed, 8473 int fracbits, int size) 8474 { 8475 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8476 TCGv_i32 tcg_shift = NULL; 8477 8478 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8479 int pass; 8480 8481 if (fracbits || size == MO_64) { 8482 tcg_shift = tcg_constant_i32(fracbits); 8483 } 8484 8485 if (size == MO_64) { 8486 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8487 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8488 8489 for (pass = 0; pass < elements; pass++) { 8490 read_vec_element(s, tcg_int64, rn, pass, mop); 8491 8492 if (is_signed) { 8493 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8494 tcg_shift, tcg_fpst); 8495 } else { 8496 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8497 tcg_shift, tcg_fpst); 8498 } 8499 if (elements == 1) { 8500 write_fp_dreg(s, rd, tcg_double); 8501 } else { 8502 write_vec_element(s, tcg_double, rd, pass, MO_64); 8503 } 8504 } 8505 } else { 8506 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8507 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8508 8509 for (pass = 0; pass < elements; pass++) { 8510 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8511 8512 switch (size) { 8513 case MO_32: 8514 if (fracbits) { 8515 if (is_signed) { 8516 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8517 tcg_shift, tcg_fpst); 8518 } else { 8519 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8520 tcg_shift, tcg_fpst); 8521 } 8522 } else { 8523 if (is_signed) { 8524 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8525 } else { 8526 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8527 } 8528 } 8529 break; 8530 case MO_16: 8531 if (fracbits) { 8532 if (is_signed) { 8533 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8534 tcg_shift, tcg_fpst); 8535 } else { 8536 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8537 tcg_shift, tcg_fpst); 8538 } 8539 } else { 8540 if (is_signed) { 8541 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8542 } else { 8543 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8544 } 8545 } 8546 break; 8547 default: 8548 g_assert_not_reached(); 8549 } 8550 8551 if (elements == 1) { 8552 write_fp_sreg(s, rd, tcg_float); 8553 } else { 8554 write_vec_element_i32(s, tcg_float, rd, pass, size); 8555 } 8556 } 8557 } 8558 8559 clear_vec_high(s, elements << size == 16, rd); 8560 } 8561 8562 /* UCVTF/SCVTF - Integer to FP conversion */ 8563 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8564 bool is_q, bool is_u, 8565 int immh, int immb, int opcode, 8566 int rn, int rd) 8567 { 8568 int size, elements, fracbits; 8569 int immhb = immh << 3 | immb; 8570 8571 if (immh & 8) { 8572 size = MO_64; 8573 if (!is_scalar && !is_q) { 8574 unallocated_encoding(s); 8575 return; 8576 } 8577 } else if (immh & 4) { 8578 size = MO_32; 8579 } else if (immh & 2) { 8580 size = MO_16; 8581 if (!dc_isar_feature(aa64_fp16, s)) { 8582 unallocated_encoding(s); 8583 return; 8584 } 8585 } else { 8586 /* immh == 0 would be a failure of the decode logic */ 8587 g_assert(immh == 1); 8588 unallocated_encoding(s); 8589 return; 8590 } 8591 8592 if (is_scalar) { 8593 elements = 1; 8594 } else { 8595 elements = (8 << is_q) >> size; 8596 } 8597 fracbits = (16 << size) - immhb; 8598 8599 if (!fp_access_check(s)) { 8600 return; 8601 } 8602 8603 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8604 } 8605 8606 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8607 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8608 bool is_q, bool is_u, 8609 int immh, int immb, int rn, int rd) 8610 { 8611 int immhb = immh << 3 | immb; 8612 int pass, size, fracbits; 8613 TCGv_ptr tcg_fpstatus; 8614 TCGv_i32 tcg_rmode, tcg_shift; 8615 8616 if (immh & 0x8) { 8617 size = MO_64; 8618 if (!is_scalar && !is_q) { 8619 unallocated_encoding(s); 8620 return; 8621 } 8622 } else if (immh & 0x4) { 8623 size = MO_32; 8624 } else if (immh & 0x2) { 8625 size = MO_16; 8626 if (!dc_isar_feature(aa64_fp16, s)) { 8627 unallocated_encoding(s); 8628 return; 8629 } 8630 } else { 8631 /* Should have split out AdvSIMD modified immediate earlier. */ 8632 assert(immh == 1); 8633 unallocated_encoding(s); 8634 return; 8635 } 8636 8637 if (!fp_access_check(s)) { 8638 return; 8639 } 8640 8641 assert(!(is_scalar && is_q)); 8642 8643 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8644 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8645 fracbits = (16 << size) - immhb; 8646 tcg_shift = tcg_constant_i32(fracbits); 8647 8648 if (size == MO_64) { 8649 int maxpass = is_scalar ? 1 : 2; 8650 8651 for (pass = 0; pass < maxpass; pass++) { 8652 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8653 8654 read_vec_element(s, tcg_op, rn, pass, MO_64); 8655 if (is_u) { 8656 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8657 } else { 8658 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8659 } 8660 write_vec_element(s, tcg_op, rd, pass, MO_64); 8661 } 8662 clear_vec_high(s, is_q, rd); 8663 } else { 8664 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8665 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8666 8667 switch (size) { 8668 case MO_16: 8669 if (is_u) { 8670 fn = gen_helper_vfp_touhh; 8671 } else { 8672 fn = gen_helper_vfp_toshh; 8673 } 8674 break; 8675 case MO_32: 8676 if (is_u) { 8677 fn = gen_helper_vfp_touls; 8678 } else { 8679 fn = gen_helper_vfp_tosls; 8680 } 8681 break; 8682 default: 8683 g_assert_not_reached(); 8684 } 8685 8686 for (pass = 0; pass < maxpass; pass++) { 8687 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8688 8689 read_vec_element_i32(s, tcg_op, rn, pass, size); 8690 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8691 if (is_scalar) { 8692 write_fp_sreg(s, rd, tcg_op); 8693 } else { 8694 write_vec_element_i32(s, tcg_op, rd, pass, size); 8695 } 8696 } 8697 if (!is_scalar) { 8698 clear_vec_high(s, is_q, rd); 8699 } 8700 } 8701 8702 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8703 } 8704 8705 /* AdvSIMD scalar shift by immediate 8706 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8707 * +-----+---+-------------+------+------+--------+---+------+------+ 8708 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8709 * +-----+---+-------------+------+------+--------+---+------+------+ 8710 * 8711 * This is the scalar version so it works on a fixed sized registers 8712 */ 8713 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8714 { 8715 int rd = extract32(insn, 0, 5); 8716 int rn = extract32(insn, 5, 5); 8717 int opcode = extract32(insn, 11, 5); 8718 int immb = extract32(insn, 16, 3); 8719 int immh = extract32(insn, 19, 4); 8720 bool is_u = extract32(insn, 29, 1); 8721 8722 if (immh == 0) { 8723 unallocated_encoding(s); 8724 return; 8725 } 8726 8727 switch (opcode) { 8728 case 0x08: /* SRI */ 8729 if (!is_u) { 8730 unallocated_encoding(s); 8731 return; 8732 } 8733 /* fall through */ 8734 case 0x00: /* SSHR / USHR */ 8735 case 0x02: /* SSRA / USRA */ 8736 case 0x04: /* SRSHR / URSHR */ 8737 case 0x06: /* SRSRA / URSRA */ 8738 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8739 break; 8740 case 0x0a: /* SHL / SLI */ 8741 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8742 break; 8743 case 0x1c: /* SCVTF, UCVTF */ 8744 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8745 opcode, rn, rd); 8746 break; 8747 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8748 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8749 if (!is_u) { 8750 unallocated_encoding(s); 8751 return; 8752 } 8753 handle_vec_simd_sqshrn(s, true, false, false, true, 8754 immh, immb, opcode, rn, rd); 8755 break; 8756 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8757 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8758 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8759 immh, immb, opcode, rn, rd); 8760 break; 8761 case 0xc: /* SQSHLU */ 8762 if (!is_u) { 8763 unallocated_encoding(s); 8764 return; 8765 } 8766 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8767 break; 8768 case 0xe: /* SQSHL, UQSHL */ 8769 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8770 break; 8771 case 0x1f: /* FCVTZS, FCVTZU */ 8772 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8773 break; 8774 default: 8775 unallocated_encoding(s); 8776 break; 8777 } 8778 } 8779 8780 /* AdvSIMD scalar three different 8781 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8782 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8783 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8784 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8785 */ 8786 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8787 { 8788 bool is_u = extract32(insn, 29, 1); 8789 int size = extract32(insn, 22, 2); 8790 int opcode = extract32(insn, 12, 4); 8791 int rm = extract32(insn, 16, 5); 8792 int rn = extract32(insn, 5, 5); 8793 int rd = extract32(insn, 0, 5); 8794 8795 if (is_u) { 8796 unallocated_encoding(s); 8797 return; 8798 } 8799 8800 switch (opcode) { 8801 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8802 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8803 case 0xd: /* SQDMULL, SQDMULL2 */ 8804 if (size == 0 || size == 3) { 8805 unallocated_encoding(s); 8806 return; 8807 } 8808 break; 8809 default: 8810 unallocated_encoding(s); 8811 return; 8812 } 8813 8814 if (!fp_access_check(s)) { 8815 return; 8816 } 8817 8818 if (size == 2) { 8819 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8820 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8821 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8822 8823 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8824 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8825 8826 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8827 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8828 8829 switch (opcode) { 8830 case 0xd: /* SQDMULL, SQDMULL2 */ 8831 break; 8832 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8833 tcg_gen_neg_i64(tcg_res, tcg_res); 8834 /* fall through */ 8835 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8836 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8837 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8838 tcg_res, tcg_op1); 8839 break; 8840 default: 8841 g_assert_not_reached(); 8842 } 8843 8844 write_fp_dreg(s, rd, tcg_res); 8845 } else { 8846 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8847 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8848 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8849 8850 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8851 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8852 8853 switch (opcode) { 8854 case 0xd: /* SQDMULL, SQDMULL2 */ 8855 break; 8856 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8857 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8858 /* fall through */ 8859 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8860 { 8861 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8862 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8863 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8864 tcg_res, tcg_op3); 8865 break; 8866 } 8867 default: 8868 g_assert_not_reached(); 8869 } 8870 8871 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8872 write_fp_dreg(s, rd, tcg_res); 8873 } 8874 } 8875 8876 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8877 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8878 { 8879 /* Handle 64x64->64 opcodes which are shared between the scalar 8880 * and vector 3-same groups. We cover every opcode where size == 3 8881 * is valid in either the three-reg-same (integer, not pairwise) 8882 * or scalar-three-reg-same groups. 8883 */ 8884 TCGCond cond; 8885 8886 switch (opcode) { 8887 case 0x1: /* SQADD */ 8888 if (u) { 8889 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8890 } else { 8891 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8892 } 8893 break; 8894 case 0x5: /* SQSUB */ 8895 if (u) { 8896 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8897 } else { 8898 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8899 } 8900 break; 8901 case 0x6: /* CMGT, CMHI */ 8902 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8903 do_cmop: 8904 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8905 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8906 break; 8907 case 0x7: /* CMGE, CMHS */ 8908 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8909 goto do_cmop; 8910 case 0x11: /* CMTST, CMEQ */ 8911 if (u) { 8912 cond = TCG_COND_EQ; 8913 goto do_cmop; 8914 } 8915 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8916 break; 8917 case 0x8: /* SSHL, USHL */ 8918 if (u) { 8919 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8920 } else { 8921 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8922 } 8923 break; 8924 case 0x9: /* SQSHL, UQSHL */ 8925 if (u) { 8926 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8927 } else { 8928 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8929 } 8930 break; 8931 case 0xa: /* SRSHL, URSHL */ 8932 if (u) { 8933 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8934 } else { 8935 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8936 } 8937 break; 8938 case 0xb: /* SQRSHL, UQRSHL */ 8939 if (u) { 8940 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8941 } else { 8942 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8943 } 8944 break; 8945 case 0x10: /* ADD, SUB */ 8946 if (u) { 8947 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8948 } else { 8949 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8950 } 8951 break; 8952 default: 8953 g_assert_not_reached(); 8954 } 8955 } 8956 8957 /* Handle the 3-same-operands float operations; shared by the scalar 8958 * and vector encodings. The caller must filter out any encodings 8959 * not allocated for the encoding it is dealing with. 8960 */ 8961 static void handle_3same_float(DisasContext *s, int size, int elements, 8962 int fpopcode, int rd, int rn, int rm) 8963 { 8964 int pass; 8965 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8966 8967 for (pass = 0; pass < elements; pass++) { 8968 if (size) { 8969 /* Double */ 8970 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8971 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8972 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8973 8974 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8975 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8976 8977 switch (fpopcode) { 8978 case 0x39: /* FMLS */ 8979 /* As usual for ARM, separate negation for fused multiply-add */ 8980 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8981 /* fall through */ 8982 case 0x19: /* FMLA */ 8983 read_vec_element(s, tcg_res, rd, pass, MO_64); 8984 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8985 tcg_res, fpst); 8986 break; 8987 case 0x18: /* FMAXNM */ 8988 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8989 break; 8990 case 0x1a: /* FADD */ 8991 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8992 break; 8993 case 0x1b: /* FMULX */ 8994 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8995 break; 8996 case 0x1c: /* FCMEQ */ 8997 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8998 break; 8999 case 0x1e: /* FMAX */ 9000 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9001 break; 9002 case 0x1f: /* FRECPS */ 9003 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9004 break; 9005 case 0x38: /* FMINNM */ 9006 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9007 break; 9008 case 0x3a: /* FSUB */ 9009 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9010 break; 9011 case 0x3e: /* FMIN */ 9012 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9013 break; 9014 case 0x3f: /* FRSQRTS */ 9015 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9016 break; 9017 case 0x5b: /* FMUL */ 9018 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9019 break; 9020 case 0x5c: /* FCMGE */ 9021 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9022 break; 9023 case 0x5d: /* FACGE */ 9024 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9025 break; 9026 case 0x5f: /* FDIV */ 9027 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9028 break; 9029 case 0x7a: /* FABD */ 9030 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9031 gen_helper_vfp_absd(tcg_res, tcg_res); 9032 break; 9033 case 0x7c: /* FCMGT */ 9034 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9035 break; 9036 case 0x7d: /* FACGT */ 9037 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9038 break; 9039 default: 9040 g_assert_not_reached(); 9041 } 9042 9043 write_vec_element(s, tcg_res, rd, pass, MO_64); 9044 } else { 9045 /* Single */ 9046 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9047 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9048 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9049 9050 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9051 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9052 9053 switch (fpopcode) { 9054 case 0x39: /* FMLS */ 9055 /* As usual for ARM, separate negation for fused multiply-add */ 9056 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9057 /* fall through */ 9058 case 0x19: /* FMLA */ 9059 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9060 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9061 tcg_res, fpst); 9062 break; 9063 case 0x1a: /* FADD */ 9064 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9065 break; 9066 case 0x1b: /* FMULX */ 9067 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9068 break; 9069 case 0x1c: /* FCMEQ */ 9070 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9071 break; 9072 case 0x1e: /* FMAX */ 9073 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9074 break; 9075 case 0x1f: /* FRECPS */ 9076 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9077 break; 9078 case 0x18: /* FMAXNM */ 9079 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9080 break; 9081 case 0x38: /* FMINNM */ 9082 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9083 break; 9084 case 0x3a: /* FSUB */ 9085 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x3e: /* FMIN */ 9088 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x3f: /* FRSQRTS */ 9091 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x5b: /* FMUL */ 9094 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x5c: /* FCMGE */ 9097 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x5d: /* FACGE */ 9100 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x5f: /* FDIV */ 9103 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x7a: /* FABD */ 9106 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9107 gen_helper_vfp_abss(tcg_res, tcg_res); 9108 break; 9109 case 0x7c: /* FCMGT */ 9110 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9111 break; 9112 case 0x7d: /* FACGT */ 9113 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9114 break; 9115 default: 9116 g_assert_not_reached(); 9117 } 9118 9119 if (elements == 1) { 9120 /* scalar single so clear high part */ 9121 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9122 9123 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9124 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9125 } else { 9126 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9127 } 9128 } 9129 } 9130 9131 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9132 } 9133 9134 /* AdvSIMD scalar three same 9135 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9136 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9137 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9138 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9139 */ 9140 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9141 { 9142 int rd = extract32(insn, 0, 5); 9143 int rn = extract32(insn, 5, 5); 9144 int opcode = extract32(insn, 11, 5); 9145 int rm = extract32(insn, 16, 5); 9146 int size = extract32(insn, 22, 2); 9147 bool u = extract32(insn, 29, 1); 9148 TCGv_i64 tcg_rd; 9149 9150 if (opcode >= 0x18) { 9151 /* Floating point: U, size[1] and opcode indicate operation */ 9152 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9153 switch (fpopcode) { 9154 case 0x1b: /* FMULX */ 9155 case 0x1f: /* FRECPS */ 9156 case 0x3f: /* FRSQRTS */ 9157 case 0x5d: /* FACGE */ 9158 case 0x7d: /* FACGT */ 9159 case 0x1c: /* FCMEQ */ 9160 case 0x5c: /* FCMGE */ 9161 case 0x7c: /* FCMGT */ 9162 case 0x7a: /* FABD */ 9163 break; 9164 default: 9165 unallocated_encoding(s); 9166 return; 9167 } 9168 9169 if (!fp_access_check(s)) { 9170 return; 9171 } 9172 9173 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9174 return; 9175 } 9176 9177 switch (opcode) { 9178 case 0x1: /* SQADD, UQADD */ 9179 case 0x5: /* SQSUB, UQSUB */ 9180 case 0x9: /* SQSHL, UQSHL */ 9181 case 0xb: /* SQRSHL, UQRSHL */ 9182 break; 9183 case 0x8: /* SSHL, USHL */ 9184 case 0xa: /* SRSHL, URSHL */ 9185 case 0x6: /* CMGT, CMHI */ 9186 case 0x7: /* CMGE, CMHS */ 9187 case 0x11: /* CMTST, CMEQ */ 9188 case 0x10: /* ADD, SUB (vector) */ 9189 if (size != 3) { 9190 unallocated_encoding(s); 9191 return; 9192 } 9193 break; 9194 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9195 if (size != 1 && size != 2) { 9196 unallocated_encoding(s); 9197 return; 9198 } 9199 break; 9200 default: 9201 unallocated_encoding(s); 9202 return; 9203 } 9204 9205 if (!fp_access_check(s)) { 9206 return; 9207 } 9208 9209 tcg_rd = tcg_temp_new_i64(); 9210 9211 if (size == 3) { 9212 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9213 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9214 9215 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9216 } else { 9217 /* Do a single operation on the lowest element in the vector. 9218 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9219 * no side effects for all these operations. 9220 * OPTME: special-purpose helpers would avoid doing some 9221 * unnecessary work in the helper for the 8 and 16 bit cases. 9222 */ 9223 NeonGenTwoOpEnvFn *genenvfn; 9224 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9225 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9226 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9227 9228 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9229 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9230 9231 switch (opcode) { 9232 case 0x1: /* SQADD, UQADD */ 9233 { 9234 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9235 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9236 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9237 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9238 }; 9239 genenvfn = fns[size][u]; 9240 break; 9241 } 9242 case 0x5: /* SQSUB, UQSUB */ 9243 { 9244 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9245 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9246 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9247 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9248 }; 9249 genenvfn = fns[size][u]; 9250 break; 9251 } 9252 case 0x9: /* SQSHL, UQSHL */ 9253 { 9254 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9255 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9256 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9257 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9258 }; 9259 genenvfn = fns[size][u]; 9260 break; 9261 } 9262 case 0xb: /* SQRSHL, UQRSHL */ 9263 { 9264 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9265 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9266 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9267 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9268 }; 9269 genenvfn = fns[size][u]; 9270 break; 9271 } 9272 case 0x16: /* SQDMULH, SQRDMULH */ 9273 { 9274 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9275 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9276 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9277 }; 9278 assert(size == 1 || size == 2); 9279 genenvfn = fns[size - 1][u]; 9280 break; 9281 } 9282 default: 9283 g_assert_not_reached(); 9284 } 9285 9286 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9287 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9288 } 9289 9290 write_fp_dreg(s, rd, tcg_rd); 9291 } 9292 9293 /* AdvSIMD scalar three same FP16 9294 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9295 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9296 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9297 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9298 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9299 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9300 */ 9301 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9302 uint32_t insn) 9303 { 9304 int rd = extract32(insn, 0, 5); 9305 int rn = extract32(insn, 5, 5); 9306 int opcode = extract32(insn, 11, 3); 9307 int rm = extract32(insn, 16, 5); 9308 bool u = extract32(insn, 29, 1); 9309 bool a = extract32(insn, 23, 1); 9310 int fpopcode = opcode | (a << 3) | (u << 4); 9311 TCGv_ptr fpst; 9312 TCGv_i32 tcg_op1; 9313 TCGv_i32 tcg_op2; 9314 TCGv_i32 tcg_res; 9315 9316 switch (fpopcode) { 9317 case 0x03: /* FMULX */ 9318 case 0x04: /* FCMEQ (reg) */ 9319 case 0x07: /* FRECPS */ 9320 case 0x0f: /* FRSQRTS */ 9321 case 0x14: /* FCMGE (reg) */ 9322 case 0x15: /* FACGE */ 9323 case 0x1a: /* FABD */ 9324 case 0x1c: /* FCMGT (reg) */ 9325 case 0x1d: /* FACGT */ 9326 break; 9327 default: 9328 unallocated_encoding(s); 9329 return; 9330 } 9331 9332 if (!dc_isar_feature(aa64_fp16, s)) { 9333 unallocated_encoding(s); 9334 } 9335 9336 if (!fp_access_check(s)) { 9337 return; 9338 } 9339 9340 fpst = fpstatus_ptr(FPST_FPCR_F16); 9341 9342 tcg_op1 = read_fp_hreg(s, rn); 9343 tcg_op2 = read_fp_hreg(s, rm); 9344 tcg_res = tcg_temp_new_i32(); 9345 9346 switch (fpopcode) { 9347 case 0x03: /* FMULX */ 9348 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9349 break; 9350 case 0x04: /* FCMEQ (reg) */ 9351 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9352 break; 9353 case 0x07: /* FRECPS */ 9354 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9355 break; 9356 case 0x0f: /* FRSQRTS */ 9357 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9358 break; 9359 case 0x14: /* FCMGE (reg) */ 9360 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9361 break; 9362 case 0x15: /* FACGE */ 9363 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9364 break; 9365 case 0x1a: /* FABD */ 9366 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9367 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9368 break; 9369 case 0x1c: /* FCMGT (reg) */ 9370 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9371 break; 9372 case 0x1d: /* FACGT */ 9373 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9374 break; 9375 default: 9376 g_assert_not_reached(); 9377 } 9378 9379 write_fp_sreg(s, rd, tcg_res); 9380 } 9381 9382 /* AdvSIMD scalar three same extra 9383 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9384 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9385 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9386 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9387 */ 9388 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9389 uint32_t insn) 9390 { 9391 int rd = extract32(insn, 0, 5); 9392 int rn = extract32(insn, 5, 5); 9393 int opcode = extract32(insn, 11, 4); 9394 int rm = extract32(insn, 16, 5); 9395 int size = extract32(insn, 22, 2); 9396 bool u = extract32(insn, 29, 1); 9397 TCGv_i32 ele1, ele2, ele3; 9398 TCGv_i64 res; 9399 bool feature; 9400 9401 switch (u * 16 + opcode) { 9402 case 0x10: /* SQRDMLAH (vector) */ 9403 case 0x11: /* SQRDMLSH (vector) */ 9404 if (size != 1 && size != 2) { 9405 unallocated_encoding(s); 9406 return; 9407 } 9408 feature = dc_isar_feature(aa64_rdm, s); 9409 break; 9410 default: 9411 unallocated_encoding(s); 9412 return; 9413 } 9414 if (!feature) { 9415 unallocated_encoding(s); 9416 return; 9417 } 9418 if (!fp_access_check(s)) { 9419 return; 9420 } 9421 9422 /* Do a single operation on the lowest element in the vector. 9423 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9424 * with no side effects for all these operations. 9425 * OPTME: special-purpose helpers would avoid doing some 9426 * unnecessary work in the helper for the 16 bit cases. 9427 */ 9428 ele1 = tcg_temp_new_i32(); 9429 ele2 = tcg_temp_new_i32(); 9430 ele3 = tcg_temp_new_i32(); 9431 9432 read_vec_element_i32(s, ele1, rn, 0, size); 9433 read_vec_element_i32(s, ele2, rm, 0, size); 9434 read_vec_element_i32(s, ele3, rd, 0, size); 9435 9436 switch (opcode) { 9437 case 0x0: /* SQRDMLAH */ 9438 if (size == 1) { 9439 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9440 } else { 9441 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9442 } 9443 break; 9444 case 0x1: /* SQRDMLSH */ 9445 if (size == 1) { 9446 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9447 } else { 9448 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9449 } 9450 break; 9451 default: 9452 g_assert_not_reached(); 9453 } 9454 9455 res = tcg_temp_new_i64(); 9456 tcg_gen_extu_i32_i64(res, ele3); 9457 write_fp_dreg(s, rd, res); 9458 } 9459 9460 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9461 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9462 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9463 { 9464 /* Handle 64->64 opcodes which are shared between the scalar and 9465 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9466 * is valid in either group and also the double-precision fp ops. 9467 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9468 * requires them. 9469 */ 9470 TCGCond cond; 9471 9472 switch (opcode) { 9473 case 0x4: /* CLS, CLZ */ 9474 if (u) { 9475 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9476 } else { 9477 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9478 } 9479 break; 9480 case 0x5: /* NOT */ 9481 /* This opcode is shared with CNT and RBIT but we have earlier 9482 * enforced that size == 3 if and only if this is the NOT insn. 9483 */ 9484 tcg_gen_not_i64(tcg_rd, tcg_rn); 9485 break; 9486 case 0x7: /* SQABS, SQNEG */ 9487 if (u) { 9488 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9489 } else { 9490 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9491 } 9492 break; 9493 case 0xa: /* CMLT */ 9494 cond = TCG_COND_LT; 9495 do_cmop: 9496 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9497 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9498 break; 9499 case 0x8: /* CMGT, CMGE */ 9500 cond = u ? TCG_COND_GE : TCG_COND_GT; 9501 goto do_cmop; 9502 case 0x9: /* CMEQ, CMLE */ 9503 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9504 goto do_cmop; 9505 case 0xb: /* ABS, NEG */ 9506 if (u) { 9507 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9508 } else { 9509 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9510 } 9511 break; 9512 case 0x2f: /* FABS */ 9513 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9514 break; 9515 case 0x6f: /* FNEG */ 9516 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9517 break; 9518 case 0x7f: /* FSQRT */ 9519 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9520 break; 9521 case 0x1a: /* FCVTNS */ 9522 case 0x1b: /* FCVTMS */ 9523 case 0x1c: /* FCVTAS */ 9524 case 0x3a: /* FCVTPS */ 9525 case 0x3b: /* FCVTZS */ 9526 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9527 break; 9528 case 0x5a: /* FCVTNU */ 9529 case 0x5b: /* FCVTMU */ 9530 case 0x5c: /* FCVTAU */ 9531 case 0x7a: /* FCVTPU */ 9532 case 0x7b: /* FCVTZU */ 9533 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9534 break; 9535 case 0x18: /* FRINTN */ 9536 case 0x19: /* FRINTM */ 9537 case 0x38: /* FRINTP */ 9538 case 0x39: /* FRINTZ */ 9539 case 0x58: /* FRINTA */ 9540 case 0x79: /* FRINTI */ 9541 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9542 break; 9543 case 0x59: /* FRINTX */ 9544 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9545 break; 9546 case 0x1e: /* FRINT32Z */ 9547 case 0x5e: /* FRINT32X */ 9548 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9549 break; 9550 case 0x1f: /* FRINT64Z */ 9551 case 0x5f: /* FRINT64X */ 9552 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9553 break; 9554 default: 9555 g_assert_not_reached(); 9556 } 9557 } 9558 9559 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9560 bool is_scalar, bool is_u, bool is_q, 9561 int size, int rn, int rd) 9562 { 9563 bool is_double = (size == MO_64); 9564 TCGv_ptr fpst; 9565 9566 if (!fp_access_check(s)) { 9567 return; 9568 } 9569 9570 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9571 9572 if (is_double) { 9573 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9574 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9575 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9576 NeonGenTwoDoubleOpFn *genfn; 9577 bool swap = false; 9578 int pass; 9579 9580 switch (opcode) { 9581 case 0x2e: /* FCMLT (zero) */ 9582 swap = true; 9583 /* fallthrough */ 9584 case 0x2c: /* FCMGT (zero) */ 9585 genfn = gen_helper_neon_cgt_f64; 9586 break; 9587 case 0x2d: /* FCMEQ (zero) */ 9588 genfn = gen_helper_neon_ceq_f64; 9589 break; 9590 case 0x6d: /* FCMLE (zero) */ 9591 swap = true; 9592 /* fall through */ 9593 case 0x6c: /* FCMGE (zero) */ 9594 genfn = gen_helper_neon_cge_f64; 9595 break; 9596 default: 9597 g_assert_not_reached(); 9598 } 9599 9600 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9601 read_vec_element(s, tcg_op, rn, pass, MO_64); 9602 if (swap) { 9603 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9604 } else { 9605 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9606 } 9607 write_vec_element(s, tcg_res, rd, pass, MO_64); 9608 } 9609 9610 clear_vec_high(s, !is_scalar, rd); 9611 } else { 9612 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9613 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9614 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9615 NeonGenTwoSingleOpFn *genfn; 9616 bool swap = false; 9617 int pass, maxpasses; 9618 9619 if (size == MO_16) { 9620 switch (opcode) { 9621 case 0x2e: /* FCMLT (zero) */ 9622 swap = true; 9623 /* fall through */ 9624 case 0x2c: /* FCMGT (zero) */ 9625 genfn = gen_helper_advsimd_cgt_f16; 9626 break; 9627 case 0x2d: /* FCMEQ (zero) */ 9628 genfn = gen_helper_advsimd_ceq_f16; 9629 break; 9630 case 0x6d: /* FCMLE (zero) */ 9631 swap = true; 9632 /* fall through */ 9633 case 0x6c: /* FCMGE (zero) */ 9634 genfn = gen_helper_advsimd_cge_f16; 9635 break; 9636 default: 9637 g_assert_not_reached(); 9638 } 9639 } else { 9640 switch (opcode) { 9641 case 0x2e: /* FCMLT (zero) */ 9642 swap = true; 9643 /* fall through */ 9644 case 0x2c: /* FCMGT (zero) */ 9645 genfn = gen_helper_neon_cgt_f32; 9646 break; 9647 case 0x2d: /* FCMEQ (zero) */ 9648 genfn = gen_helper_neon_ceq_f32; 9649 break; 9650 case 0x6d: /* FCMLE (zero) */ 9651 swap = true; 9652 /* fall through */ 9653 case 0x6c: /* FCMGE (zero) */ 9654 genfn = gen_helper_neon_cge_f32; 9655 break; 9656 default: 9657 g_assert_not_reached(); 9658 } 9659 } 9660 9661 if (is_scalar) { 9662 maxpasses = 1; 9663 } else { 9664 int vector_size = 8 << is_q; 9665 maxpasses = vector_size >> size; 9666 } 9667 9668 for (pass = 0; pass < maxpasses; pass++) { 9669 read_vec_element_i32(s, tcg_op, rn, pass, size); 9670 if (swap) { 9671 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9672 } else { 9673 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9674 } 9675 if (is_scalar) { 9676 write_fp_sreg(s, rd, tcg_res); 9677 } else { 9678 write_vec_element_i32(s, tcg_res, rd, pass, size); 9679 } 9680 } 9681 9682 if (!is_scalar) { 9683 clear_vec_high(s, is_q, rd); 9684 } 9685 } 9686 } 9687 9688 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9689 bool is_scalar, bool is_u, bool is_q, 9690 int size, int rn, int rd) 9691 { 9692 bool is_double = (size == 3); 9693 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9694 9695 if (is_double) { 9696 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9697 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9698 int pass; 9699 9700 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9701 read_vec_element(s, tcg_op, rn, pass, MO_64); 9702 switch (opcode) { 9703 case 0x3d: /* FRECPE */ 9704 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9705 break; 9706 case 0x3f: /* FRECPX */ 9707 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9708 break; 9709 case 0x7d: /* FRSQRTE */ 9710 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9711 break; 9712 default: 9713 g_assert_not_reached(); 9714 } 9715 write_vec_element(s, tcg_res, rd, pass, MO_64); 9716 } 9717 clear_vec_high(s, !is_scalar, rd); 9718 } else { 9719 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9720 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9721 int pass, maxpasses; 9722 9723 if (is_scalar) { 9724 maxpasses = 1; 9725 } else { 9726 maxpasses = is_q ? 4 : 2; 9727 } 9728 9729 for (pass = 0; pass < maxpasses; pass++) { 9730 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9731 9732 switch (opcode) { 9733 case 0x3c: /* URECPE */ 9734 gen_helper_recpe_u32(tcg_res, tcg_op); 9735 break; 9736 case 0x3d: /* FRECPE */ 9737 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9738 break; 9739 case 0x3f: /* FRECPX */ 9740 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9741 break; 9742 case 0x7d: /* FRSQRTE */ 9743 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9744 break; 9745 default: 9746 g_assert_not_reached(); 9747 } 9748 9749 if (is_scalar) { 9750 write_fp_sreg(s, rd, tcg_res); 9751 } else { 9752 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9753 } 9754 } 9755 if (!is_scalar) { 9756 clear_vec_high(s, is_q, rd); 9757 } 9758 } 9759 } 9760 9761 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9762 int opcode, bool u, bool is_q, 9763 int size, int rn, int rd) 9764 { 9765 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9766 * in the source becomes a size element in the destination). 9767 */ 9768 int pass; 9769 TCGv_i32 tcg_res[2]; 9770 int destelt = is_q ? 2 : 0; 9771 int passes = scalar ? 1 : 2; 9772 9773 if (scalar) { 9774 tcg_res[1] = tcg_constant_i32(0); 9775 } 9776 9777 for (pass = 0; pass < passes; pass++) { 9778 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9779 NeonGenNarrowFn *genfn = NULL; 9780 NeonGenNarrowEnvFn *genenvfn = NULL; 9781 9782 if (scalar) { 9783 read_vec_element(s, tcg_op, rn, pass, size + 1); 9784 } else { 9785 read_vec_element(s, tcg_op, rn, pass, MO_64); 9786 } 9787 tcg_res[pass] = tcg_temp_new_i32(); 9788 9789 switch (opcode) { 9790 case 0x12: /* XTN, SQXTUN */ 9791 { 9792 static NeonGenNarrowFn * const xtnfns[3] = { 9793 gen_helper_neon_narrow_u8, 9794 gen_helper_neon_narrow_u16, 9795 tcg_gen_extrl_i64_i32, 9796 }; 9797 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9798 gen_helper_neon_unarrow_sat8, 9799 gen_helper_neon_unarrow_sat16, 9800 gen_helper_neon_unarrow_sat32, 9801 }; 9802 if (u) { 9803 genenvfn = sqxtunfns[size]; 9804 } else { 9805 genfn = xtnfns[size]; 9806 } 9807 break; 9808 } 9809 case 0x14: /* SQXTN, UQXTN */ 9810 { 9811 static NeonGenNarrowEnvFn * const fns[3][2] = { 9812 { gen_helper_neon_narrow_sat_s8, 9813 gen_helper_neon_narrow_sat_u8 }, 9814 { gen_helper_neon_narrow_sat_s16, 9815 gen_helper_neon_narrow_sat_u16 }, 9816 { gen_helper_neon_narrow_sat_s32, 9817 gen_helper_neon_narrow_sat_u32 }, 9818 }; 9819 genenvfn = fns[size][u]; 9820 break; 9821 } 9822 case 0x16: /* FCVTN, FCVTN2 */ 9823 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9824 if (size == 2) { 9825 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9826 } else { 9827 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9828 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9829 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9830 TCGv_i32 ahp = get_ahp_flag(); 9831 9832 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9833 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9834 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9835 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9836 } 9837 break; 9838 case 0x36: /* BFCVTN, BFCVTN2 */ 9839 { 9840 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9841 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9842 } 9843 break; 9844 case 0x56: /* FCVTXN, FCVTXN2 */ 9845 /* 64 bit to 32 bit float conversion 9846 * with von Neumann rounding (round to odd) 9847 */ 9848 assert(size == 2); 9849 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 9855 if (genfn) { 9856 genfn(tcg_res[pass], tcg_op); 9857 } else if (genenvfn) { 9858 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9859 } 9860 } 9861 9862 for (pass = 0; pass < 2; pass++) { 9863 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9864 } 9865 clear_vec_high(s, is_q, rd); 9866 } 9867 9868 /* Remaining saturating accumulating ops */ 9869 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9870 bool is_q, int size, int rn, int rd) 9871 { 9872 bool is_double = (size == 3); 9873 9874 if (is_double) { 9875 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9876 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9877 int pass; 9878 9879 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9880 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9881 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9882 9883 if (is_u) { /* USQADD */ 9884 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9885 } else { /* SUQADD */ 9886 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9887 } 9888 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9889 } 9890 clear_vec_high(s, !is_scalar, rd); 9891 } else { 9892 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9893 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9894 int pass, maxpasses; 9895 9896 if (is_scalar) { 9897 maxpasses = 1; 9898 } else { 9899 maxpasses = is_q ? 4 : 2; 9900 } 9901 9902 for (pass = 0; pass < maxpasses; pass++) { 9903 if (is_scalar) { 9904 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9905 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9906 } else { 9907 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9908 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9909 } 9910 9911 if (is_u) { /* USQADD */ 9912 switch (size) { 9913 case 0: 9914 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9915 break; 9916 case 1: 9917 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9918 break; 9919 case 2: 9920 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9921 break; 9922 default: 9923 g_assert_not_reached(); 9924 } 9925 } else { /* SUQADD */ 9926 switch (size) { 9927 case 0: 9928 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9929 break; 9930 case 1: 9931 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9932 break; 9933 case 2: 9934 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9935 break; 9936 default: 9937 g_assert_not_reached(); 9938 } 9939 } 9940 9941 if (is_scalar) { 9942 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9943 } 9944 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9945 } 9946 clear_vec_high(s, is_q, rd); 9947 } 9948 } 9949 9950 /* AdvSIMD scalar two reg misc 9951 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9952 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9953 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9954 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9955 */ 9956 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9957 { 9958 int rd = extract32(insn, 0, 5); 9959 int rn = extract32(insn, 5, 5); 9960 int opcode = extract32(insn, 12, 5); 9961 int size = extract32(insn, 22, 2); 9962 bool u = extract32(insn, 29, 1); 9963 bool is_fcvt = false; 9964 int rmode; 9965 TCGv_i32 tcg_rmode; 9966 TCGv_ptr tcg_fpstatus; 9967 9968 switch (opcode) { 9969 case 0x3: /* USQADD / SUQADD*/ 9970 if (!fp_access_check(s)) { 9971 return; 9972 } 9973 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9974 return; 9975 case 0x7: /* SQABS / SQNEG */ 9976 break; 9977 case 0xa: /* CMLT */ 9978 if (u) { 9979 unallocated_encoding(s); 9980 return; 9981 } 9982 /* fall through */ 9983 case 0x8: /* CMGT, CMGE */ 9984 case 0x9: /* CMEQ, CMLE */ 9985 case 0xb: /* ABS, NEG */ 9986 if (size != 3) { 9987 unallocated_encoding(s); 9988 return; 9989 } 9990 break; 9991 case 0x12: /* SQXTUN */ 9992 if (!u) { 9993 unallocated_encoding(s); 9994 return; 9995 } 9996 /* fall through */ 9997 case 0x14: /* SQXTN, UQXTN */ 9998 if (size == 3) { 9999 unallocated_encoding(s); 10000 return; 10001 } 10002 if (!fp_access_check(s)) { 10003 return; 10004 } 10005 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10006 return; 10007 case 0xc ... 0xf: 10008 case 0x16 ... 0x1d: 10009 case 0x1f: 10010 /* Floating point: U, size[1] and opcode indicate operation; 10011 * size[0] indicates single or double precision. 10012 */ 10013 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10014 size = extract32(size, 0, 1) ? 3 : 2; 10015 switch (opcode) { 10016 case 0x2c: /* FCMGT (zero) */ 10017 case 0x2d: /* FCMEQ (zero) */ 10018 case 0x2e: /* FCMLT (zero) */ 10019 case 0x6c: /* FCMGE (zero) */ 10020 case 0x6d: /* FCMLE (zero) */ 10021 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10022 return; 10023 case 0x1d: /* SCVTF */ 10024 case 0x5d: /* UCVTF */ 10025 { 10026 bool is_signed = (opcode == 0x1d); 10027 if (!fp_access_check(s)) { 10028 return; 10029 } 10030 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10031 return; 10032 } 10033 case 0x3d: /* FRECPE */ 10034 case 0x3f: /* FRECPX */ 10035 case 0x7d: /* FRSQRTE */ 10036 if (!fp_access_check(s)) { 10037 return; 10038 } 10039 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10040 return; 10041 case 0x1a: /* FCVTNS */ 10042 case 0x1b: /* FCVTMS */ 10043 case 0x3a: /* FCVTPS */ 10044 case 0x3b: /* FCVTZS */ 10045 case 0x5a: /* FCVTNU */ 10046 case 0x5b: /* FCVTMU */ 10047 case 0x7a: /* FCVTPU */ 10048 case 0x7b: /* FCVTZU */ 10049 is_fcvt = true; 10050 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10051 break; 10052 case 0x1c: /* FCVTAS */ 10053 case 0x5c: /* FCVTAU */ 10054 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10055 is_fcvt = true; 10056 rmode = FPROUNDING_TIEAWAY; 10057 break; 10058 case 0x56: /* FCVTXN, FCVTXN2 */ 10059 if (size == 2) { 10060 unallocated_encoding(s); 10061 return; 10062 } 10063 if (!fp_access_check(s)) { 10064 return; 10065 } 10066 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10067 return; 10068 default: 10069 unallocated_encoding(s); 10070 return; 10071 } 10072 break; 10073 default: 10074 unallocated_encoding(s); 10075 return; 10076 } 10077 10078 if (!fp_access_check(s)) { 10079 return; 10080 } 10081 10082 if (is_fcvt) { 10083 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10084 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10085 } else { 10086 tcg_fpstatus = NULL; 10087 tcg_rmode = NULL; 10088 } 10089 10090 if (size == 3) { 10091 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10092 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10093 10094 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10095 write_fp_dreg(s, rd, tcg_rd); 10096 } else { 10097 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10098 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10099 10100 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10101 10102 switch (opcode) { 10103 case 0x7: /* SQABS, SQNEG */ 10104 { 10105 NeonGenOneOpEnvFn *genfn; 10106 static NeonGenOneOpEnvFn * const fns[3][2] = { 10107 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10108 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10109 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10110 }; 10111 genfn = fns[size][u]; 10112 genfn(tcg_rd, tcg_env, tcg_rn); 10113 break; 10114 } 10115 case 0x1a: /* FCVTNS */ 10116 case 0x1b: /* FCVTMS */ 10117 case 0x1c: /* FCVTAS */ 10118 case 0x3a: /* FCVTPS */ 10119 case 0x3b: /* FCVTZS */ 10120 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10121 tcg_fpstatus); 10122 break; 10123 case 0x5a: /* FCVTNU */ 10124 case 0x5b: /* FCVTMU */ 10125 case 0x5c: /* FCVTAU */ 10126 case 0x7a: /* FCVTPU */ 10127 case 0x7b: /* FCVTZU */ 10128 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10129 tcg_fpstatus); 10130 break; 10131 default: 10132 g_assert_not_reached(); 10133 } 10134 10135 write_fp_sreg(s, rd, tcg_rd); 10136 } 10137 10138 if (is_fcvt) { 10139 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10140 } 10141 } 10142 10143 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10144 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10145 int immh, int immb, int opcode, int rn, int rd) 10146 { 10147 int size = 32 - clz32(immh) - 1; 10148 int immhb = immh << 3 | immb; 10149 int shift = 2 * (8 << size) - immhb; 10150 GVecGen2iFn *gvec_fn; 10151 10152 if (extract32(immh, 3, 1) && !is_q) { 10153 unallocated_encoding(s); 10154 return; 10155 } 10156 tcg_debug_assert(size <= 3); 10157 10158 if (!fp_access_check(s)) { 10159 return; 10160 } 10161 10162 switch (opcode) { 10163 case 0x02: /* SSRA / USRA (accumulate) */ 10164 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10165 break; 10166 10167 case 0x08: /* SRI */ 10168 gvec_fn = gen_gvec_sri; 10169 break; 10170 10171 case 0x00: /* SSHR / USHR */ 10172 if (is_u) { 10173 if (shift == 8 << size) { 10174 /* Shift count the same size as element size produces zero. */ 10175 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10176 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10177 return; 10178 } 10179 gvec_fn = tcg_gen_gvec_shri; 10180 } else { 10181 /* Shift count the same size as element size produces all sign. */ 10182 if (shift == 8 << size) { 10183 shift -= 1; 10184 } 10185 gvec_fn = tcg_gen_gvec_sari; 10186 } 10187 break; 10188 10189 case 0x04: /* SRSHR / URSHR (rounding) */ 10190 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10191 break; 10192 10193 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10194 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10195 break; 10196 10197 default: 10198 g_assert_not_reached(); 10199 } 10200 10201 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10202 } 10203 10204 /* SHL/SLI - Vector shift left */ 10205 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10206 int immh, int immb, int opcode, int rn, int rd) 10207 { 10208 int size = 32 - clz32(immh) - 1; 10209 int immhb = immh << 3 | immb; 10210 int shift = immhb - (8 << size); 10211 10212 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10213 assert(size >= 0 && size <= 3); 10214 10215 if (extract32(immh, 3, 1) && !is_q) { 10216 unallocated_encoding(s); 10217 return; 10218 } 10219 10220 if (!fp_access_check(s)) { 10221 return; 10222 } 10223 10224 if (insert) { 10225 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10226 } else { 10227 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10228 } 10229 } 10230 10231 /* USHLL/SHLL - Vector shift left with widening */ 10232 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10233 int immh, int immb, int opcode, int rn, int rd) 10234 { 10235 int size = 32 - clz32(immh) - 1; 10236 int immhb = immh << 3 | immb; 10237 int shift = immhb - (8 << size); 10238 int dsize = 64; 10239 int esize = 8 << size; 10240 int elements = dsize/esize; 10241 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10242 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10243 int i; 10244 10245 if (size >= 3) { 10246 unallocated_encoding(s); 10247 return; 10248 } 10249 10250 if (!fp_access_check(s)) { 10251 return; 10252 } 10253 10254 /* For the LL variants the store is larger than the load, 10255 * so if rd == rn we would overwrite parts of our input. 10256 * So load everything right now and use shifts in the main loop. 10257 */ 10258 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10259 10260 for (i = 0; i < elements; i++) { 10261 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10262 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10263 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10264 write_vec_element(s, tcg_rd, rd, i, size + 1); 10265 } 10266 } 10267 10268 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10269 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10270 int immh, int immb, int opcode, int rn, int rd) 10271 { 10272 int immhb = immh << 3 | immb; 10273 int size = 32 - clz32(immh) - 1; 10274 int dsize = 64; 10275 int esize = 8 << size; 10276 int elements = dsize/esize; 10277 int shift = (2 * esize) - immhb; 10278 bool round = extract32(opcode, 0, 1); 10279 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10280 TCGv_i64 tcg_round; 10281 int i; 10282 10283 if (extract32(immh, 3, 1)) { 10284 unallocated_encoding(s); 10285 return; 10286 } 10287 10288 if (!fp_access_check(s)) { 10289 return; 10290 } 10291 10292 tcg_rn = tcg_temp_new_i64(); 10293 tcg_rd = tcg_temp_new_i64(); 10294 tcg_final = tcg_temp_new_i64(); 10295 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10296 10297 if (round) { 10298 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10299 } else { 10300 tcg_round = NULL; 10301 } 10302 10303 for (i = 0; i < elements; i++) { 10304 read_vec_element(s, tcg_rn, rn, i, size+1); 10305 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10306 false, true, size+1, shift); 10307 10308 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10309 } 10310 10311 if (!is_q) { 10312 write_vec_element(s, tcg_final, rd, 0, MO_64); 10313 } else { 10314 write_vec_element(s, tcg_final, rd, 1, MO_64); 10315 } 10316 10317 clear_vec_high(s, is_q, rd); 10318 } 10319 10320 10321 /* AdvSIMD shift by immediate 10322 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10323 * +---+---+---+-------------+------+------+--------+---+------+------+ 10324 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10325 * +---+---+---+-------------+------+------+--------+---+------+------+ 10326 */ 10327 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10328 { 10329 int rd = extract32(insn, 0, 5); 10330 int rn = extract32(insn, 5, 5); 10331 int opcode = extract32(insn, 11, 5); 10332 int immb = extract32(insn, 16, 3); 10333 int immh = extract32(insn, 19, 4); 10334 bool is_u = extract32(insn, 29, 1); 10335 bool is_q = extract32(insn, 30, 1); 10336 10337 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10338 assert(immh != 0); 10339 10340 switch (opcode) { 10341 case 0x08: /* SRI */ 10342 if (!is_u) { 10343 unallocated_encoding(s); 10344 return; 10345 } 10346 /* fall through */ 10347 case 0x00: /* SSHR / USHR */ 10348 case 0x02: /* SSRA / USRA (accumulate) */ 10349 case 0x04: /* SRSHR / URSHR (rounding) */ 10350 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10351 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10352 break; 10353 case 0x0a: /* SHL / SLI */ 10354 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10355 break; 10356 case 0x10: /* SHRN */ 10357 case 0x11: /* RSHRN / SQRSHRUN */ 10358 if (is_u) { 10359 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10360 opcode, rn, rd); 10361 } else { 10362 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10363 } 10364 break; 10365 case 0x12: /* SQSHRN / UQSHRN */ 10366 case 0x13: /* SQRSHRN / UQRSHRN */ 10367 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10368 opcode, rn, rd); 10369 break; 10370 case 0x14: /* SSHLL / USHLL */ 10371 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10372 break; 10373 case 0x1c: /* SCVTF / UCVTF */ 10374 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10375 opcode, rn, rd); 10376 break; 10377 case 0xc: /* SQSHLU */ 10378 if (!is_u) { 10379 unallocated_encoding(s); 10380 return; 10381 } 10382 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10383 break; 10384 case 0xe: /* SQSHL, UQSHL */ 10385 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10386 break; 10387 case 0x1f: /* FCVTZS/ FCVTZU */ 10388 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10389 return; 10390 default: 10391 unallocated_encoding(s); 10392 return; 10393 } 10394 } 10395 10396 /* Generate code to do a "long" addition or subtraction, ie one done in 10397 * TCGv_i64 on vector lanes twice the width specified by size. 10398 */ 10399 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10400 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10401 { 10402 static NeonGenTwo64OpFn * const fns[3][2] = { 10403 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10404 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10405 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10406 }; 10407 NeonGenTwo64OpFn *genfn; 10408 assert(size < 3); 10409 10410 genfn = fns[size][is_sub]; 10411 genfn(tcg_res, tcg_op1, tcg_op2); 10412 } 10413 10414 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10415 int opcode, int rd, int rn, int rm) 10416 { 10417 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10418 TCGv_i64 tcg_res[2]; 10419 int pass, accop; 10420 10421 tcg_res[0] = tcg_temp_new_i64(); 10422 tcg_res[1] = tcg_temp_new_i64(); 10423 10424 /* Does this op do an adding accumulate, a subtracting accumulate, 10425 * or no accumulate at all? 10426 */ 10427 switch (opcode) { 10428 case 5: 10429 case 8: 10430 case 9: 10431 accop = 1; 10432 break; 10433 case 10: 10434 case 11: 10435 accop = -1; 10436 break; 10437 default: 10438 accop = 0; 10439 break; 10440 } 10441 10442 if (accop != 0) { 10443 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10444 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10445 } 10446 10447 /* size == 2 means two 32x32->64 operations; this is worth special 10448 * casing because we can generally handle it inline. 10449 */ 10450 if (size == 2) { 10451 for (pass = 0; pass < 2; pass++) { 10452 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10453 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10454 TCGv_i64 tcg_passres; 10455 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10456 10457 int elt = pass + is_q * 2; 10458 10459 read_vec_element(s, tcg_op1, rn, elt, memop); 10460 read_vec_element(s, tcg_op2, rm, elt, memop); 10461 10462 if (accop == 0) { 10463 tcg_passres = tcg_res[pass]; 10464 } else { 10465 tcg_passres = tcg_temp_new_i64(); 10466 } 10467 10468 switch (opcode) { 10469 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10470 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10471 break; 10472 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10473 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10474 break; 10475 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10476 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10477 { 10478 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10479 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10480 10481 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10482 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10483 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10484 tcg_passres, 10485 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10486 break; 10487 } 10488 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10489 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10490 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10491 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10492 break; 10493 case 9: /* SQDMLAL, SQDMLAL2 */ 10494 case 11: /* SQDMLSL, SQDMLSL2 */ 10495 case 13: /* SQDMULL, SQDMULL2 */ 10496 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10497 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10498 tcg_passres, tcg_passres); 10499 break; 10500 default: 10501 g_assert_not_reached(); 10502 } 10503 10504 if (opcode == 9 || opcode == 11) { 10505 /* saturating accumulate ops */ 10506 if (accop < 0) { 10507 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10508 } 10509 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10510 tcg_res[pass], tcg_passres); 10511 } else if (accop > 0) { 10512 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10513 } else if (accop < 0) { 10514 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10515 } 10516 } 10517 } else { 10518 /* size 0 or 1, generally helper functions */ 10519 for (pass = 0; pass < 2; pass++) { 10520 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10521 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10522 TCGv_i64 tcg_passres; 10523 int elt = pass + is_q * 2; 10524 10525 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10526 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10527 10528 if (accop == 0) { 10529 tcg_passres = tcg_res[pass]; 10530 } else { 10531 tcg_passres = tcg_temp_new_i64(); 10532 } 10533 10534 switch (opcode) { 10535 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10536 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10537 { 10538 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10539 static NeonGenWidenFn * const widenfns[2][2] = { 10540 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10541 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10542 }; 10543 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10544 10545 widenfn(tcg_op2_64, tcg_op2); 10546 widenfn(tcg_passres, tcg_op1); 10547 gen_neon_addl(size, (opcode == 2), tcg_passres, 10548 tcg_passres, tcg_op2_64); 10549 break; 10550 } 10551 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10552 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10553 if (size == 0) { 10554 if (is_u) { 10555 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10556 } else { 10557 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10558 } 10559 } else { 10560 if (is_u) { 10561 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10562 } else { 10563 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10564 } 10565 } 10566 break; 10567 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10568 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10569 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10570 if (size == 0) { 10571 if (is_u) { 10572 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10573 } else { 10574 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10575 } 10576 } else { 10577 if (is_u) { 10578 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10579 } else { 10580 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10581 } 10582 } 10583 break; 10584 case 9: /* SQDMLAL, SQDMLAL2 */ 10585 case 11: /* SQDMLSL, SQDMLSL2 */ 10586 case 13: /* SQDMULL, SQDMULL2 */ 10587 assert(size == 1); 10588 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10589 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10590 tcg_passres, tcg_passres); 10591 break; 10592 default: 10593 g_assert_not_reached(); 10594 } 10595 10596 if (accop != 0) { 10597 if (opcode == 9 || opcode == 11) { 10598 /* saturating accumulate ops */ 10599 if (accop < 0) { 10600 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10601 } 10602 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10603 tcg_res[pass], 10604 tcg_passres); 10605 } else { 10606 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10607 tcg_res[pass], tcg_passres); 10608 } 10609 } 10610 } 10611 } 10612 10613 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10614 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10615 } 10616 10617 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10618 int opcode, int rd, int rn, int rm) 10619 { 10620 TCGv_i64 tcg_res[2]; 10621 int part = is_q ? 2 : 0; 10622 int pass; 10623 10624 for (pass = 0; pass < 2; pass++) { 10625 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10626 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10627 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10628 static NeonGenWidenFn * const widenfns[3][2] = { 10629 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10630 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10631 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10632 }; 10633 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10634 10635 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10636 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10637 widenfn(tcg_op2_wide, tcg_op2); 10638 tcg_res[pass] = tcg_temp_new_i64(); 10639 gen_neon_addl(size, (opcode == 3), 10640 tcg_res[pass], tcg_op1, tcg_op2_wide); 10641 } 10642 10643 for (pass = 0; pass < 2; pass++) { 10644 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10645 } 10646 } 10647 10648 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10649 { 10650 tcg_gen_addi_i64(in, in, 1U << 31); 10651 tcg_gen_extrh_i64_i32(res, in); 10652 } 10653 10654 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10655 int opcode, int rd, int rn, int rm) 10656 { 10657 TCGv_i32 tcg_res[2]; 10658 int part = is_q ? 2 : 0; 10659 int pass; 10660 10661 for (pass = 0; pass < 2; pass++) { 10662 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10663 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10664 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10665 static NeonGenNarrowFn * const narrowfns[3][2] = { 10666 { gen_helper_neon_narrow_high_u8, 10667 gen_helper_neon_narrow_round_high_u8 }, 10668 { gen_helper_neon_narrow_high_u16, 10669 gen_helper_neon_narrow_round_high_u16 }, 10670 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10671 }; 10672 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10673 10674 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10675 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10676 10677 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10678 10679 tcg_res[pass] = tcg_temp_new_i32(); 10680 gennarrow(tcg_res[pass], tcg_wideres); 10681 } 10682 10683 for (pass = 0; pass < 2; pass++) { 10684 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10685 } 10686 clear_vec_high(s, is_q, rd); 10687 } 10688 10689 /* AdvSIMD three different 10690 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10691 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10692 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10693 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10694 */ 10695 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10696 { 10697 /* Instructions in this group fall into three basic classes 10698 * (in each case with the operation working on each element in 10699 * the input vectors): 10700 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10701 * 128 bit input) 10702 * (2) wide 64 x 128 -> 128 10703 * (3) narrowing 128 x 128 -> 64 10704 * Here we do initial decode, catch unallocated cases and 10705 * dispatch to separate functions for each class. 10706 */ 10707 int is_q = extract32(insn, 30, 1); 10708 int is_u = extract32(insn, 29, 1); 10709 int size = extract32(insn, 22, 2); 10710 int opcode = extract32(insn, 12, 4); 10711 int rm = extract32(insn, 16, 5); 10712 int rn = extract32(insn, 5, 5); 10713 int rd = extract32(insn, 0, 5); 10714 10715 switch (opcode) { 10716 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10717 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10718 /* 64 x 128 -> 128 */ 10719 if (size == 3) { 10720 unallocated_encoding(s); 10721 return; 10722 } 10723 if (!fp_access_check(s)) { 10724 return; 10725 } 10726 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10727 break; 10728 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10729 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10730 /* 128 x 128 -> 64 */ 10731 if (size == 3) { 10732 unallocated_encoding(s); 10733 return; 10734 } 10735 if (!fp_access_check(s)) { 10736 return; 10737 } 10738 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10739 break; 10740 case 14: /* PMULL, PMULL2 */ 10741 if (is_u) { 10742 unallocated_encoding(s); 10743 return; 10744 } 10745 switch (size) { 10746 case 0: /* PMULL.P8 */ 10747 if (!fp_access_check(s)) { 10748 return; 10749 } 10750 /* The Q field specifies lo/hi half input for this insn. */ 10751 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10752 gen_helper_neon_pmull_h); 10753 break; 10754 10755 case 3: /* PMULL.P64 */ 10756 if (!dc_isar_feature(aa64_pmull, s)) { 10757 unallocated_encoding(s); 10758 return; 10759 } 10760 if (!fp_access_check(s)) { 10761 return; 10762 } 10763 /* The Q field specifies lo/hi half input for this insn. */ 10764 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10765 gen_helper_gvec_pmull_q); 10766 break; 10767 10768 default: 10769 unallocated_encoding(s); 10770 break; 10771 } 10772 return; 10773 case 9: /* SQDMLAL, SQDMLAL2 */ 10774 case 11: /* SQDMLSL, SQDMLSL2 */ 10775 case 13: /* SQDMULL, SQDMULL2 */ 10776 if (is_u || size == 0) { 10777 unallocated_encoding(s); 10778 return; 10779 } 10780 /* fall through */ 10781 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10782 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10783 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10784 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10785 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10786 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10787 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10788 /* 64 x 64 -> 128 */ 10789 if (size == 3) { 10790 unallocated_encoding(s); 10791 return; 10792 } 10793 if (!fp_access_check(s)) { 10794 return; 10795 } 10796 10797 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10798 break; 10799 default: 10800 /* opcode 15 not allocated */ 10801 unallocated_encoding(s); 10802 break; 10803 } 10804 } 10805 10806 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10807 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10808 { 10809 int rd = extract32(insn, 0, 5); 10810 int rn = extract32(insn, 5, 5); 10811 int rm = extract32(insn, 16, 5); 10812 int size = extract32(insn, 22, 2); 10813 bool is_u = extract32(insn, 29, 1); 10814 bool is_q = extract32(insn, 30, 1); 10815 10816 if (!fp_access_check(s)) { 10817 return; 10818 } 10819 10820 switch (size + 4 * is_u) { 10821 case 0: /* AND */ 10822 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10823 return; 10824 case 1: /* BIC */ 10825 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10826 return; 10827 case 2: /* ORR */ 10828 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10829 return; 10830 case 3: /* ORN */ 10831 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10832 return; 10833 case 4: /* EOR */ 10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10835 return; 10836 10837 case 5: /* BSL bitwise select */ 10838 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10839 return; 10840 case 6: /* BIT, bitwise insert if true */ 10841 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10842 return; 10843 case 7: /* BIF, bitwise insert if false */ 10844 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10845 return; 10846 10847 default: 10848 g_assert_not_reached(); 10849 } 10850 } 10851 10852 /* Pairwise op subgroup of C3.6.16. 10853 * 10854 * This is called directly or via the handle_3same_float for float pairwise 10855 * operations where the opcode and size are calculated differently. 10856 */ 10857 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10858 int size, int rn, int rm, int rd) 10859 { 10860 TCGv_ptr fpst; 10861 int pass; 10862 10863 /* Floating point operations need fpst */ 10864 if (opcode >= 0x58) { 10865 fpst = fpstatus_ptr(FPST_FPCR); 10866 } else { 10867 fpst = NULL; 10868 } 10869 10870 if (!fp_access_check(s)) { 10871 return; 10872 } 10873 10874 /* These operations work on the concatenated rm:rn, with each pair of 10875 * adjacent elements being operated on to produce an element in the result. 10876 */ 10877 if (size == 3) { 10878 TCGv_i64 tcg_res[2]; 10879 10880 for (pass = 0; pass < 2; pass++) { 10881 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10882 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10883 int passreg = (pass == 0) ? rn : rm; 10884 10885 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10886 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10887 tcg_res[pass] = tcg_temp_new_i64(); 10888 10889 switch (opcode) { 10890 case 0x17: /* ADDP */ 10891 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10892 break; 10893 case 0x58: /* FMAXNMP */ 10894 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10895 break; 10896 case 0x5a: /* FADDP */ 10897 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10898 break; 10899 case 0x5e: /* FMAXP */ 10900 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10901 break; 10902 case 0x78: /* FMINNMP */ 10903 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10904 break; 10905 case 0x7e: /* FMINP */ 10906 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10907 break; 10908 default: 10909 g_assert_not_reached(); 10910 } 10911 } 10912 10913 for (pass = 0; pass < 2; pass++) { 10914 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10915 } 10916 } else { 10917 int maxpass = is_q ? 4 : 2; 10918 TCGv_i32 tcg_res[4]; 10919 10920 for (pass = 0; pass < maxpass; pass++) { 10921 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10922 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10923 NeonGenTwoOpFn *genfn = NULL; 10924 int passreg = pass < (maxpass / 2) ? rn : rm; 10925 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10926 10927 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10928 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10929 tcg_res[pass] = tcg_temp_new_i32(); 10930 10931 switch (opcode) { 10932 case 0x17: /* ADDP */ 10933 { 10934 static NeonGenTwoOpFn * const fns[3] = { 10935 gen_helper_neon_padd_u8, 10936 gen_helper_neon_padd_u16, 10937 tcg_gen_add_i32, 10938 }; 10939 genfn = fns[size]; 10940 break; 10941 } 10942 case 0x14: /* SMAXP, UMAXP */ 10943 { 10944 static NeonGenTwoOpFn * const fns[3][2] = { 10945 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10946 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10947 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10948 }; 10949 genfn = fns[size][u]; 10950 break; 10951 } 10952 case 0x15: /* SMINP, UMINP */ 10953 { 10954 static NeonGenTwoOpFn * const fns[3][2] = { 10955 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10956 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10957 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10958 }; 10959 genfn = fns[size][u]; 10960 break; 10961 } 10962 /* The FP operations are all on single floats (32 bit) */ 10963 case 0x58: /* FMAXNMP */ 10964 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10965 break; 10966 case 0x5a: /* FADDP */ 10967 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10968 break; 10969 case 0x5e: /* FMAXP */ 10970 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10971 break; 10972 case 0x78: /* FMINNMP */ 10973 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10974 break; 10975 case 0x7e: /* FMINP */ 10976 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10977 break; 10978 default: 10979 g_assert_not_reached(); 10980 } 10981 10982 /* FP ops called directly, otherwise call now */ 10983 if (genfn) { 10984 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10985 } 10986 } 10987 10988 for (pass = 0; pass < maxpass; pass++) { 10989 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10990 } 10991 clear_vec_high(s, is_q, rd); 10992 } 10993 } 10994 10995 /* Floating point op subgroup of C3.6.16. */ 10996 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10997 { 10998 /* For floating point ops, the U, size[1] and opcode bits 10999 * together indicate the operation. size[0] indicates single 11000 * or double. 11001 */ 11002 int fpopcode = extract32(insn, 11, 5) 11003 | (extract32(insn, 23, 1) << 5) 11004 | (extract32(insn, 29, 1) << 6); 11005 int is_q = extract32(insn, 30, 1); 11006 int size = extract32(insn, 22, 1); 11007 int rm = extract32(insn, 16, 5); 11008 int rn = extract32(insn, 5, 5); 11009 int rd = extract32(insn, 0, 5); 11010 11011 int datasize = is_q ? 128 : 64; 11012 int esize = 32 << size; 11013 int elements = datasize / esize; 11014 11015 if (size == 1 && !is_q) { 11016 unallocated_encoding(s); 11017 return; 11018 } 11019 11020 switch (fpopcode) { 11021 case 0x58: /* FMAXNMP */ 11022 case 0x5a: /* FADDP */ 11023 case 0x5e: /* FMAXP */ 11024 case 0x78: /* FMINNMP */ 11025 case 0x7e: /* FMINP */ 11026 if (size && !is_q) { 11027 unallocated_encoding(s); 11028 return; 11029 } 11030 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11031 rn, rm, rd); 11032 return; 11033 case 0x1b: /* FMULX */ 11034 case 0x1f: /* FRECPS */ 11035 case 0x3f: /* FRSQRTS */ 11036 case 0x5d: /* FACGE */ 11037 case 0x7d: /* FACGT */ 11038 case 0x19: /* FMLA */ 11039 case 0x39: /* FMLS */ 11040 case 0x18: /* FMAXNM */ 11041 case 0x1a: /* FADD */ 11042 case 0x1c: /* FCMEQ */ 11043 case 0x1e: /* FMAX */ 11044 case 0x38: /* FMINNM */ 11045 case 0x3a: /* FSUB */ 11046 case 0x3e: /* FMIN */ 11047 case 0x5b: /* FMUL */ 11048 case 0x5c: /* FCMGE */ 11049 case 0x5f: /* FDIV */ 11050 case 0x7a: /* FABD */ 11051 case 0x7c: /* FCMGT */ 11052 if (!fp_access_check(s)) { 11053 return; 11054 } 11055 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11056 return; 11057 11058 case 0x1d: /* FMLAL */ 11059 case 0x3d: /* FMLSL */ 11060 case 0x59: /* FMLAL2 */ 11061 case 0x79: /* FMLSL2 */ 11062 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11063 unallocated_encoding(s); 11064 return; 11065 } 11066 if (fp_access_check(s)) { 11067 int is_s = extract32(insn, 23, 1); 11068 int is_2 = extract32(insn, 29, 1); 11069 int data = (is_2 << 1) | is_s; 11070 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11071 vec_full_reg_offset(s, rn), 11072 vec_full_reg_offset(s, rm), tcg_env, 11073 is_q ? 16 : 8, vec_full_reg_size(s), 11074 data, gen_helper_gvec_fmlal_a64); 11075 } 11076 return; 11077 11078 default: 11079 unallocated_encoding(s); 11080 return; 11081 } 11082 } 11083 11084 /* Integer op subgroup of C3.6.16. */ 11085 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11086 { 11087 int is_q = extract32(insn, 30, 1); 11088 int u = extract32(insn, 29, 1); 11089 int size = extract32(insn, 22, 2); 11090 int opcode = extract32(insn, 11, 5); 11091 int rm = extract32(insn, 16, 5); 11092 int rn = extract32(insn, 5, 5); 11093 int rd = extract32(insn, 0, 5); 11094 int pass; 11095 TCGCond cond; 11096 11097 switch (opcode) { 11098 case 0x13: /* MUL, PMUL */ 11099 if (u && size != 0) { 11100 unallocated_encoding(s); 11101 return; 11102 } 11103 /* fall through */ 11104 case 0x0: /* SHADD, UHADD */ 11105 case 0x2: /* SRHADD, URHADD */ 11106 case 0x4: /* SHSUB, UHSUB */ 11107 case 0xc: /* SMAX, UMAX */ 11108 case 0xd: /* SMIN, UMIN */ 11109 case 0xe: /* SABD, UABD */ 11110 case 0xf: /* SABA, UABA */ 11111 case 0x12: /* MLA, MLS */ 11112 if (size == 3) { 11113 unallocated_encoding(s); 11114 return; 11115 } 11116 break; 11117 case 0x16: /* SQDMULH, SQRDMULH */ 11118 if (size == 0 || size == 3) { 11119 unallocated_encoding(s); 11120 return; 11121 } 11122 break; 11123 default: 11124 if (size == 3 && !is_q) { 11125 unallocated_encoding(s); 11126 return; 11127 } 11128 break; 11129 } 11130 11131 if (!fp_access_check(s)) { 11132 return; 11133 } 11134 11135 switch (opcode) { 11136 case 0x01: /* SQADD, UQADD */ 11137 if (u) { 11138 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11139 } else { 11140 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11141 } 11142 return; 11143 case 0x05: /* SQSUB, UQSUB */ 11144 if (u) { 11145 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11146 } else { 11147 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11148 } 11149 return; 11150 case 0x08: /* SSHL, USHL */ 11151 if (u) { 11152 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11153 } else { 11154 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11155 } 11156 return; 11157 case 0x0c: /* SMAX, UMAX */ 11158 if (u) { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11160 } else { 11161 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11162 } 11163 return; 11164 case 0x0d: /* SMIN, UMIN */ 11165 if (u) { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11167 } else { 11168 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11169 } 11170 return; 11171 case 0xe: /* SABD, UABD */ 11172 if (u) { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11174 } else { 11175 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11176 } 11177 return; 11178 case 0xf: /* SABA, UABA */ 11179 if (u) { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11181 } else { 11182 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11183 } 11184 return; 11185 case 0x10: /* ADD, SUB */ 11186 if (u) { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11188 } else { 11189 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11190 } 11191 return; 11192 case 0x13: /* MUL, PMUL */ 11193 if (!u) { /* MUL */ 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11195 } else { /* PMUL */ 11196 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11197 } 11198 return; 11199 case 0x12: /* MLA, MLS */ 11200 if (u) { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11202 } else { 11203 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11204 } 11205 return; 11206 case 0x16: /* SQDMULH, SQRDMULH */ 11207 { 11208 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11209 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11210 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11211 }; 11212 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11213 } 11214 return; 11215 case 0x11: 11216 if (!u) { /* CMTST */ 11217 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11218 return; 11219 } 11220 /* else CMEQ */ 11221 cond = TCG_COND_EQ; 11222 goto do_gvec_cmp; 11223 case 0x06: /* CMGT, CMHI */ 11224 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11225 goto do_gvec_cmp; 11226 case 0x07: /* CMGE, CMHS */ 11227 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11228 do_gvec_cmp: 11229 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11230 vec_full_reg_offset(s, rn), 11231 vec_full_reg_offset(s, rm), 11232 is_q ? 16 : 8, vec_full_reg_size(s)); 11233 return; 11234 } 11235 11236 if (size == 3) { 11237 assert(is_q); 11238 for (pass = 0; pass < 2; pass++) { 11239 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11240 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11241 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11242 11243 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11244 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11245 11246 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11247 11248 write_vec_element(s, tcg_res, rd, pass, MO_64); 11249 } 11250 } else { 11251 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11252 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11253 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11254 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11255 NeonGenTwoOpFn *genfn = NULL; 11256 NeonGenTwoOpEnvFn *genenvfn = NULL; 11257 11258 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11259 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11260 11261 switch (opcode) { 11262 case 0x0: /* SHADD, UHADD */ 11263 { 11264 static NeonGenTwoOpFn * const fns[3][2] = { 11265 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11266 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11267 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11268 }; 11269 genfn = fns[size][u]; 11270 break; 11271 } 11272 case 0x2: /* SRHADD, URHADD */ 11273 { 11274 static NeonGenTwoOpFn * const fns[3][2] = { 11275 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11276 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11277 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11278 }; 11279 genfn = fns[size][u]; 11280 break; 11281 } 11282 case 0x4: /* SHSUB, UHSUB */ 11283 { 11284 static NeonGenTwoOpFn * const fns[3][2] = { 11285 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11286 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11287 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11288 }; 11289 genfn = fns[size][u]; 11290 break; 11291 } 11292 case 0x9: /* SQSHL, UQSHL */ 11293 { 11294 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11295 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11296 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11297 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11298 }; 11299 genenvfn = fns[size][u]; 11300 break; 11301 } 11302 case 0xa: /* SRSHL, URSHL */ 11303 { 11304 static NeonGenTwoOpFn * const fns[3][2] = { 11305 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11306 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11307 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11308 }; 11309 genfn = fns[size][u]; 11310 break; 11311 } 11312 case 0xb: /* SQRSHL, UQRSHL */ 11313 { 11314 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11315 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11316 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11317 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11318 }; 11319 genenvfn = fns[size][u]; 11320 break; 11321 } 11322 default: 11323 g_assert_not_reached(); 11324 } 11325 11326 if (genenvfn) { 11327 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11328 } else { 11329 genfn(tcg_res, tcg_op1, tcg_op2); 11330 } 11331 11332 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11333 } 11334 } 11335 clear_vec_high(s, is_q, rd); 11336 } 11337 11338 /* AdvSIMD three same 11339 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11340 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11341 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11342 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11343 */ 11344 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11345 { 11346 int opcode = extract32(insn, 11, 5); 11347 11348 switch (opcode) { 11349 case 0x3: /* logic ops */ 11350 disas_simd_3same_logic(s, insn); 11351 break; 11352 case 0x17: /* ADDP */ 11353 case 0x14: /* SMAXP, UMAXP */ 11354 case 0x15: /* SMINP, UMINP */ 11355 { 11356 /* Pairwise operations */ 11357 int is_q = extract32(insn, 30, 1); 11358 int u = extract32(insn, 29, 1); 11359 int size = extract32(insn, 22, 2); 11360 int rm = extract32(insn, 16, 5); 11361 int rn = extract32(insn, 5, 5); 11362 int rd = extract32(insn, 0, 5); 11363 if (opcode == 0x17) { 11364 if (u || (size == 3 && !is_q)) { 11365 unallocated_encoding(s); 11366 return; 11367 } 11368 } else { 11369 if (size == 3) { 11370 unallocated_encoding(s); 11371 return; 11372 } 11373 } 11374 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11375 break; 11376 } 11377 case 0x18 ... 0x31: 11378 /* floating point ops, sz[1] and U are part of opcode */ 11379 disas_simd_3same_float(s, insn); 11380 break; 11381 default: 11382 disas_simd_3same_int(s, insn); 11383 break; 11384 } 11385 } 11386 11387 /* 11388 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11389 * 11390 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11391 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11392 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11393 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11394 * 11395 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11396 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11397 * 11398 */ 11399 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11400 { 11401 int opcode = extract32(insn, 11, 3); 11402 int u = extract32(insn, 29, 1); 11403 int a = extract32(insn, 23, 1); 11404 int is_q = extract32(insn, 30, 1); 11405 int rm = extract32(insn, 16, 5); 11406 int rn = extract32(insn, 5, 5); 11407 int rd = extract32(insn, 0, 5); 11408 /* 11409 * For these floating point ops, the U, a and opcode bits 11410 * together indicate the operation. 11411 */ 11412 int fpopcode = opcode | (a << 3) | (u << 4); 11413 int datasize = is_q ? 128 : 64; 11414 int elements = datasize / 16; 11415 bool pairwise; 11416 TCGv_ptr fpst; 11417 int pass; 11418 11419 switch (fpopcode) { 11420 case 0x0: /* FMAXNM */ 11421 case 0x1: /* FMLA */ 11422 case 0x2: /* FADD */ 11423 case 0x3: /* FMULX */ 11424 case 0x4: /* FCMEQ */ 11425 case 0x6: /* FMAX */ 11426 case 0x7: /* FRECPS */ 11427 case 0x8: /* FMINNM */ 11428 case 0x9: /* FMLS */ 11429 case 0xa: /* FSUB */ 11430 case 0xe: /* FMIN */ 11431 case 0xf: /* FRSQRTS */ 11432 case 0x13: /* FMUL */ 11433 case 0x14: /* FCMGE */ 11434 case 0x15: /* FACGE */ 11435 case 0x17: /* FDIV */ 11436 case 0x1a: /* FABD */ 11437 case 0x1c: /* FCMGT */ 11438 case 0x1d: /* FACGT */ 11439 pairwise = false; 11440 break; 11441 case 0x10: /* FMAXNMP */ 11442 case 0x12: /* FADDP */ 11443 case 0x16: /* FMAXP */ 11444 case 0x18: /* FMINNMP */ 11445 case 0x1e: /* FMINP */ 11446 pairwise = true; 11447 break; 11448 default: 11449 unallocated_encoding(s); 11450 return; 11451 } 11452 11453 if (!dc_isar_feature(aa64_fp16, s)) { 11454 unallocated_encoding(s); 11455 return; 11456 } 11457 11458 if (!fp_access_check(s)) { 11459 return; 11460 } 11461 11462 fpst = fpstatus_ptr(FPST_FPCR_F16); 11463 11464 if (pairwise) { 11465 int maxpass = is_q ? 8 : 4; 11466 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11467 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11468 TCGv_i32 tcg_res[8]; 11469 11470 for (pass = 0; pass < maxpass; pass++) { 11471 int passreg = pass < (maxpass / 2) ? rn : rm; 11472 int passelt = (pass << 1) & (maxpass - 1); 11473 11474 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11475 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11476 tcg_res[pass] = tcg_temp_new_i32(); 11477 11478 switch (fpopcode) { 11479 case 0x10: /* FMAXNMP */ 11480 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11481 fpst); 11482 break; 11483 case 0x12: /* FADDP */ 11484 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11485 break; 11486 case 0x16: /* FMAXP */ 11487 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11488 break; 11489 case 0x18: /* FMINNMP */ 11490 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11491 fpst); 11492 break; 11493 case 0x1e: /* FMINP */ 11494 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11495 break; 11496 default: 11497 g_assert_not_reached(); 11498 } 11499 } 11500 11501 for (pass = 0; pass < maxpass; pass++) { 11502 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11503 } 11504 } else { 11505 for (pass = 0; pass < elements; pass++) { 11506 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11507 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11508 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11509 11510 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11511 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11512 11513 switch (fpopcode) { 11514 case 0x0: /* FMAXNM */ 11515 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11516 break; 11517 case 0x1: /* FMLA */ 11518 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11519 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11520 fpst); 11521 break; 11522 case 0x2: /* FADD */ 11523 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11524 break; 11525 case 0x3: /* FMULX */ 11526 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11527 break; 11528 case 0x4: /* FCMEQ */ 11529 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x6: /* FMAX */ 11532 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 case 0x7: /* FRECPS */ 11535 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11536 break; 11537 case 0x8: /* FMINNM */ 11538 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11539 break; 11540 case 0x9: /* FMLS */ 11541 /* As usual for ARM, separate negation for fused multiply-add */ 11542 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11543 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11544 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11545 fpst); 11546 break; 11547 case 0xa: /* FSUB */ 11548 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11549 break; 11550 case 0xe: /* FMIN */ 11551 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11552 break; 11553 case 0xf: /* FRSQRTS */ 11554 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0x13: /* FMUL */ 11557 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0x14: /* FCMGE */ 11560 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0x15: /* FACGE */ 11563 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11564 break; 11565 case 0x17: /* FDIV */ 11566 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11567 break; 11568 case 0x1a: /* FABD */ 11569 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11571 break; 11572 case 0x1c: /* FCMGT */ 11573 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11574 break; 11575 case 0x1d: /* FACGT */ 11576 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11577 break; 11578 default: 11579 g_assert_not_reached(); 11580 } 11581 11582 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11583 } 11584 } 11585 11586 clear_vec_high(s, is_q, rd); 11587 } 11588 11589 /* AdvSIMD three same extra 11590 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11591 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11592 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11593 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11594 */ 11595 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11596 { 11597 int rd = extract32(insn, 0, 5); 11598 int rn = extract32(insn, 5, 5); 11599 int opcode = extract32(insn, 11, 4); 11600 int rm = extract32(insn, 16, 5); 11601 int size = extract32(insn, 22, 2); 11602 bool u = extract32(insn, 29, 1); 11603 bool is_q = extract32(insn, 30, 1); 11604 bool feature; 11605 int rot; 11606 11607 switch (u * 16 + opcode) { 11608 case 0x10: /* SQRDMLAH (vector) */ 11609 case 0x11: /* SQRDMLSH (vector) */ 11610 if (size != 1 && size != 2) { 11611 unallocated_encoding(s); 11612 return; 11613 } 11614 feature = dc_isar_feature(aa64_rdm, s); 11615 break; 11616 case 0x02: /* SDOT (vector) */ 11617 case 0x12: /* UDOT (vector) */ 11618 if (size != MO_32) { 11619 unallocated_encoding(s); 11620 return; 11621 } 11622 feature = dc_isar_feature(aa64_dp, s); 11623 break; 11624 case 0x03: /* USDOT */ 11625 if (size != MO_32) { 11626 unallocated_encoding(s); 11627 return; 11628 } 11629 feature = dc_isar_feature(aa64_i8mm, s); 11630 break; 11631 case 0x04: /* SMMLA */ 11632 case 0x14: /* UMMLA */ 11633 case 0x05: /* USMMLA */ 11634 if (!is_q || size != MO_32) { 11635 unallocated_encoding(s); 11636 return; 11637 } 11638 feature = dc_isar_feature(aa64_i8mm, s); 11639 break; 11640 case 0x18: /* FCMLA, #0 */ 11641 case 0x19: /* FCMLA, #90 */ 11642 case 0x1a: /* FCMLA, #180 */ 11643 case 0x1b: /* FCMLA, #270 */ 11644 case 0x1c: /* FCADD, #90 */ 11645 case 0x1e: /* FCADD, #270 */ 11646 if (size == 0 11647 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11648 || (size == 3 && !is_q)) { 11649 unallocated_encoding(s); 11650 return; 11651 } 11652 feature = dc_isar_feature(aa64_fcma, s); 11653 break; 11654 case 0x1d: /* BFMMLA */ 11655 if (size != MO_16 || !is_q) { 11656 unallocated_encoding(s); 11657 return; 11658 } 11659 feature = dc_isar_feature(aa64_bf16, s); 11660 break; 11661 case 0x1f: 11662 switch (size) { 11663 case 1: /* BFDOT */ 11664 case 3: /* BFMLAL{B,T} */ 11665 feature = dc_isar_feature(aa64_bf16, s); 11666 break; 11667 default: 11668 unallocated_encoding(s); 11669 return; 11670 } 11671 break; 11672 default: 11673 unallocated_encoding(s); 11674 return; 11675 } 11676 if (!feature) { 11677 unallocated_encoding(s); 11678 return; 11679 } 11680 if (!fp_access_check(s)) { 11681 return; 11682 } 11683 11684 switch (opcode) { 11685 case 0x0: /* SQRDMLAH (vector) */ 11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11687 return; 11688 11689 case 0x1: /* SQRDMLSH (vector) */ 11690 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11691 return; 11692 11693 case 0x2: /* SDOT / UDOT */ 11694 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11695 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11696 return; 11697 11698 case 0x3: /* USDOT */ 11699 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11700 return; 11701 11702 case 0x04: /* SMMLA, UMMLA */ 11703 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11704 u ? gen_helper_gvec_ummla_b 11705 : gen_helper_gvec_smmla_b); 11706 return; 11707 case 0x05: /* USMMLA */ 11708 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11709 return; 11710 11711 case 0x8: /* FCMLA, #0 */ 11712 case 0x9: /* FCMLA, #90 */ 11713 case 0xa: /* FCMLA, #180 */ 11714 case 0xb: /* FCMLA, #270 */ 11715 rot = extract32(opcode, 0, 2); 11716 switch (size) { 11717 case 1: 11718 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11719 gen_helper_gvec_fcmlah); 11720 break; 11721 case 2: 11722 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11723 gen_helper_gvec_fcmlas); 11724 break; 11725 case 3: 11726 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11727 gen_helper_gvec_fcmlad); 11728 break; 11729 default: 11730 g_assert_not_reached(); 11731 } 11732 return; 11733 11734 case 0xc: /* FCADD, #90 */ 11735 case 0xe: /* FCADD, #270 */ 11736 rot = extract32(opcode, 1, 1); 11737 switch (size) { 11738 case 1: 11739 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11740 gen_helper_gvec_fcaddh); 11741 break; 11742 case 2: 11743 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11744 gen_helper_gvec_fcadds); 11745 break; 11746 case 3: 11747 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11748 gen_helper_gvec_fcaddd); 11749 break; 11750 default: 11751 g_assert_not_reached(); 11752 } 11753 return; 11754 11755 case 0xd: /* BFMMLA */ 11756 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11757 return; 11758 case 0xf: 11759 switch (size) { 11760 case 1: /* BFDOT */ 11761 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11762 break; 11763 case 3: /* BFMLAL{B,T} */ 11764 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11765 gen_helper_gvec_bfmlal); 11766 break; 11767 default: 11768 g_assert_not_reached(); 11769 } 11770 return; 11771 11772 default: 11773 g_assert_not_reached(); 11774 } 11775 } 11776 11777 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11778 int size, int rn, int rd) 11779 { 11780 /* Handle 2-reg-misc ops which are widening (so each size element 11781 * in the source becomes a 2*size element in the destination. 11782 * The only instruction like this is FCVTL. 11783 */ 11784 int pass; 11785 11786 if (size == 3) { 11787 /* 32 -> 64 bit fp conversion */ 11788 TCGv_i64 tcg_res[2]; 11789 int srcelt = is_q ? 2 : 0; 11790 11791 for (pass = 0; pass < 2; pass++) { 11792 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11793 tcg_res[pass] = tcg_temp_new_i64(); 11794 11795 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11796 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11797 } 11798 for (pass = 0; pass < 2; pass++) { 11799 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11800 } 11801 } else { 11802 /* 16 -> 32 bit fp conversion */ 11803 int srcelt = is_q ? 4 : 0; 11804 TCGv_i32 tcg_res[4]; 11805 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11806 TCGv_i32 ahp = get_ahp_flag(); 11807 11808 for (pass = 0; pass < 4; pass++) { 11809 tcg_res[pass] = tcg_temp_new_i32(); 11810 11811 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11812 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11813 fpst, ahp); 11814 } 11815 for (pass = 0; pass < 4; pass++) { 11816 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11817 } 11818 } 11819 } 11820 11821 static void handle_rev(DisasContext *s, int opcode, bool u, 11822 bool is_q, int size, int rn, int rd) 11823 { 11824 int op = (opcode << 1) | u; 11825 int opsz = op + size; 11826 int grp_size = 3 - opsz; 11827 int dsize = is_q ? 128 : 64; 11828 int i; 11829 11830 if (opsz >= 3) { 11831 unallocated_encoding(s); 11832 return; 11833 } 11834 11835 if (!fp_access_check(s)) { 11836 return; 11837 } 11838 11839 if (size == 0) { 11840 /* Special case bytes, use bswap op on each group of elements */ 11841 int groups = dsize / (8 << grp_size); 11842 11843 for (i = 0; i < groups; i++) { 11844 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11845 11846 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11847 switch (grp_size) { 11848 case MO_16: 11849 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11850 break; 11851 case MO_32: 11852 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11853 break; 11854 case MO_64: 11855 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11856 break; 11857 default: 11858 g_assert_not_reached(); 11859 } 11860 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11861 } 11862 clear_vec_high(s, is_q, rd); 11863 } else { 11864 int revmask = (1 << grp_size) - 1; 11865 int esize = 8 << size; 11866 int elements = dsize / esize; 11867 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11868 TCGv_i64 tcg_rd[2]; 11869 11870 for (i = 0; i < 2; i++) { 11871 tcg_rd[i] = tcg_temp_new_i64(); 11872 tcg_gen_movi_i64(tcg_rd[i], 0); 11873 } 11874 11875 for (i = 0; i < elements; i++) { 11876 int e_rev = (i & 0xf) ^ revmask; 11877 int w = (e_rev * esize) / 64; 11878 int o = (e_rev * esize) % 64; 11879 11880 read_vec_element(s, tcg_rn, rn, i, size); 11881 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11882 } 11883 11884 for (i = 0; i < 2; i++) { 11885 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11886 } 11887 clear_vec_high(s, true, rd); 11888 } 11889 } 11890 11891 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11892 bool is_q, int size, int rn, int rd) 11893 { 11894 /* Implement the pairwise operations from 2-misc: 11895 * SADDLP, UADDLP, SADALP, UADALP. 11896 * These all add pairs of elements in the input to produce a 11897 * double-width result element in the output (possibly accumulating). 11898 */ 11899 bool accum = (opcode == 0x6); 11900 int maxpass = is_q ? 2 : 1; 11901 int pass; 11902 TCGv_i64 tcg_res[2]; 11903 11904 if (size == 2) { 11905 /* 32 + 32 -> 64 op */ 11906 MemOp memop = size + (u ? 0 : MO_SIGN); 11907 11908 for (pass = 0; pass < maxpass; pass++) { 11909 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11910 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11911 11912 tcg_res[pass] = tcg_temp_new_i64(); 11913 11914 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11915 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11916 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11917 if (accum) { 11918 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11919 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11920 } 11921 } 11922 } else { 11923 for (pass = 0; pass < maxpass; pass++) { 11924 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11925 NeonGenOne64OpFn *genfn; 11926 static NeonGenOne64OpFn * const fns[2][2] = { 11927 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11928 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11929 }; 11930 11931 genfn = fns[size][u]; 11932 11933 tcg_res[pass] = tcg_temp_new_i64(); 11934 11935 read_vec_element(s, tcg_op, rn, pass, MO_64); 11936 genfn(tcg_res[pass], tcg_op); 11937 11938 if (accum) { 11939 read_vec_element(s, tcg_op, rd, pass, MO_64); 11940 if (size == 0) { 11941 gen_helper_neon_addl_u16(tcg_res[pass], 11942 tcg_res[pass], tcg_op); 11943 } else { 11944 gen_helper_neon_addl_u32(tcg_res[pass], 11945 tcg_res[pass], tcg_op); 11946 } 11947 } 11948 } 11949 } 11950 if (!is_q) { 11951 tcg_res[1] = tcg_constant_i64(0); 11952 } 11953 for (pass = 0; pass < 2; pass++) { 11954 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11955 } 11956 } 11957 11958 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11959 { 11960 /* Implement SHLL and SHLL2 */ 11961 int pass; 11962 int part = is_q ? 2 : 0; 11963 TCGv_i64 tcg_res[2]; 11964 11965 for (pass = 0; pass < 2; pass++) { 11966 static NeonGenWidenFn * const widenfns[3] = { 11967 gen_helper_neon_widen_u8, 11968 gen_helper_neon_widen_u16, 11969 tcg_gen_extu_i32_i64, 11970 }; 11971 NeonGenWidenFn *widenfn = widenfns[size]; 11972 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11973 11974 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11975 tcg_res[pass] = tcg_temp_new_i64(); 11976 widenfn(tcg_res[pass], tcg_op); 11977 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11978 } 11979 11980 for (pass = 0; pass < 2; pass++) { 11981 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11982 } 11983 } 11984 11985 /* AdvSIMD two reg misc 11986 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11987 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11988 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11989 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11990 */ 11991 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11992 { 11993 int size = extract32(insn, 22, 2); 11994 int opcode = extract32(insn, 12, 5); 11995 bool u = extract32(insn, 29, 1); 11996 bool is_q = extract32(insn, 30, 1); 11997 int rn = extract32(insn, 5, 5); 11998 int rd = extract32(insn, 0, 5); 11999 bool need_fpstatus = false; 12000 int rmode = -1; 12001 TCGv_i32 tcg_rmode; 12002 TCGv_ptr tcg_fpstatus; 12003 12004 switch (opcode) { 12005 case 0x0: /* REV64, REV32 */ 12006 case 0x1: /* REV16 */ 12007 handle_rev(s, opcode, u, is_q, size, rn, rd); 12008 return; 12009 case 0x5: /* CNT, NOT, RBIT */ 12010 if (u && size == 0) { 12011 /* NOT */ 12012 break; 12013 } else if (u && size == 1) { 12014 /* RBIT */ 12015 break; 12016 } else if (!u && size == 0) { 12017 /* CNT */ 12018 break; 12019 } 12020 unallocated_encoding(s); 12021 return; 12022 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12023 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12024 if (size == 3) { 12025 unallocated_encoding(s); 12026 return; 12027 } 12028 if (!fp_access_check(s)) { 12029 return; 12030 } 12031 12032 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12033 return; 12034 case 0x4: /* CLS, CLZ */ 12035 if (size == 3) { 12036 unallocated_encoding(s); 12037 return; 12038 } 12039 break; 12040 case 0x2: /* SADDLP, UADDLP */ 12041 case 0x6: /* SADALP, UADALP */ 12042 if (size == 3) { 12043 unallocated_encoding(s); 12044 return; 12045 } 12046 if (!fp_access_check(s)) { 12047 return; 12048 } 12049 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12050 return; 12051 case 0x13: /* SHLL, SHLL2 */ 12052 if (u == 0 || size == 3) { 12053 unallocated_encoding(s); 12054 return; 12055 } 12056 if (!fp_access_check(s)) { 12057 return; 12058 } 12059 handle_shll(s, is_q, size, rn, rd); 12060 return; 12061 case 0xa: /* CMLT */ 12062 if (u == 1) { 12063 unallocated_encoding(s); 12064 return; 12065 } 12066 /* fall through */ 12067 case 0x8: /* CMGT, CMGE */ 12068 case 0x9: /* CMEQ, CMLE */ 12069 case 0xb: /* ABS, NEG */ 12070 if (size == 3 && !is_q) { 12071 unallocated_encoding(s); 12072 return; 12073 } 12074 break; 12075 case 0x3: /* SUQADD, USQADD */ 12076 if (size == 3 && !is_q) { 12077 unallocated_encoding(s); 12078 return; 12079 } 12080 if (!fp_access_check(s)) { 12081 return; 12082 } 12083 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12084 return; 12085 case 0x7: /* SQABS, SQNEG */ 12086 if (size == 3 && !is_q) { 12087 unallocated_encoding(s); 12088 return; 12089 } 12090 break; 12091 case 0xc ... 0xf: 12092 case 0x16 ... 0x1f: 12093 { 12094 /* Floating point: U, size[1] and opcode indicate operation; 12095 * size[0] indicates single or double precision. 12096 */ 12097 int is_double = extract32(size, 0, 1); 12098 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12099 size = is_double ? 3 : 2; 12100 switch (opcode) { 12101 case 0x2f: /* FABS */ 12102 case 0x6f: /* FNEG */ 12103 if (size == 3 && !is_q) { 12104 unallocated_encoding(s); 12105 return; 12106 } 12107 break; 12108 case 0x1d: /* SCVTF */ 12109 case 0x5d: /* UCVTF */ 12110 { 12111 bool is_signed = (opcode == 0x1d) ? true : false; 12112 int elements = is_double ? 2 : is_q ? 4 : 2; 12113 if (is_double && !is_q) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 if (!fp_access_check(s)) { 12118 return; 12119 } 12120 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12121 return; 12122 } 12123 case 0x2c: /* FCMGT (zero) */ 12124 case 0x2d: /* FCMEQ (zero) */ 12125 case 0x2e: /* FCMLT (zero) */ 12126 case 0x6c: /* FCMGE (zero) */ 12127 case 0x6d: /* FCMLE (zero) */ 12128 if (size == 3 && !is_q) { 12129 unallocated_encoding(s); 12130 return; 12131 } 12132 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12133 return; 12134 case 0x7f: /* FSQRT */ 12135 if (size == 3 && !is_q) { 12136 unallocated_encoding(s); 12137 return; 12138 } 12139 break; 12140 case 0x1a: /* FCVTNS */ 12141 case 0x1b: /* FCVTMS */ 12142 case 0x3a: /* FCVTPS */ 12143 case 0x3b: /* FCVTZS */ 12144 case 0x5a: /* FCVTNU */ 12145 case 0x5b: /* FCVTMU */ 12146 case 0x7a: /* FCVTPU */ 12147 case 0x7b: /* FCVTZU */ 12148 need_fpstatus = true; 12149 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12150 if (size == 3 && !is_q) { 12151 unallocated_encoding(s); 12152 return; 12153 } 12154 break; 12155 case 0x5c: /* FCVTAU */ 12156 case 0x1c: /* FCVTAS */ 12157 need_fpstatus = true; 12158 rmode = FPROUNDING_TIEAWAY; 12159 if (size == 3 && !is_q) { 12160 unallocated_encoding(s); 12161 return; 12162 } 12163 break; 12164 case 0x3c: /* URECPE */ 12165 if (size == 3) { 12166 unallocated_encoding(s); 12167 return; 12168 } 12169 /* fall through */ 12170 case 0x3d: /* FRECPE */ 12171 case 0x7d: /* FRSQRTE */ 12172 if (size == 3 && !is_q) { 12173 unallocated_encoding(s); 12174 return; 12175 } 12176 if (!fp_access_check(s)) { 12177 return; 12178 } 12179 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12180 return; 12181 case 0x56: /* FCVTXN, FCVTXN2 */ 12182 if (size == 2) { 12183 unallocated_encoding(s); 12184 return; 12185 } 12186 /* fall through */ 12187 case 0x16: /* FCVTN, FCVTN2 */ 12188 /* handle_2misc_narrow does a 2*size -> size operation, but these 12189 * instructions encode the source size rather than dest size. 12190 */ 12191 if (!fp_access_check(s)) { 12192 return; 12193 } 12194 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12195 return; 12196 case 0x36: /* BFCVTN, BFCVTN2 */ 12197 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12198 unallocated_encoding(s); 12199 return; 12200 } 12201 if (!fp_access_check(s)) { 12202 return; 12203 } 12204 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12205 return; 12206 case 0x17: /* FCVTL, FCVTL2 */ 12207 if (!fp_access_check(s)) { 12208 return; 12209 } 12210 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12211 return; 12212 case 0x18: /* FRINTN */ 12213 case 0x19: /* FRINTM */ 12214 case 0x38: /* FRINTP */ 12215 case 0x39: /* FRINTZ */ 12216 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12217 /* fall through */ 12218 case 0x59: /* FRINTX */ 12219 case 0x79: /* FRINTI */ 12220 need_fpstatus = true; 12221 if (size == 3 && !is_q) { 12222 unallocated_encoding(s); 12223 return; 12224 } 12225 break; 12226 case 0x58: /* FRINTA */ 12227 rmode = FPROUNDING_TIEAWAY; 12228 need_fpstatus = true; 12229 if (size == 3 && !is_q) { 12230 unallocated_encoding(s); 12231 return; 12232 } 12233 break; 12234 case 0x7c: /* URSQRTE */ 12235 if (size == 3) { 12236 unallocated_encoding(s); 12237 return; 12238 } 12239 break; 12240 case 0x1e: /* FRINT32Z */ 12241 case 0x1f: /* FRINT64Z */ 12242 rmode = FPROUNDING_ZERO; 12243 /* fall through */ 12244 case 0x5e: /* FRINT32X */ 12245 case 0x5f: /* FRINT64X */ 12246 need_fpstatus = true; 12247 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 break; 12252 default: 12253 unallocated_encoding(s); 12254 return; 12255 } 12256 break; 12257 } 12258 default: 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 12263 if (!fp_access_check(s)) { 12264 return; 12265 } 12266 12267 if (need_fpstatus || rmode >= 0) { 12268 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12269 } else { 12270 tcg_fpstatus = NULL; 12271 } 12272 if (rmode >= 0) { 12273 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12274 } else { 12275 tcg_rmode = NULL; 12276 } 12277 12278 switch (opcode) { 12279 case 0x5: 12280 if (u && size == 0) { /* NOT */ 12281 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12282 return; 12283 } 12284 break; 12285 case 0x8: /* CMGT, CMGE */ 12286 if (u) { 12287 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12288 } else { 12289 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12290 } 12291 return; 12292 case 0x9: /* CMEQ, CMLE */ 12293 if (u) { 12294 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12295 } else { 12296 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12297 } 12298 return; 12299 case 0xa: /* CMLT */ 12300 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12301 return; 12302 case 0xb: 12303 if (u) { /* ABS, NEG */ 12304 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12305 } else { 12306 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12307 } 12308 return; 12309 } 12310 12311 if (size == 3) { 12312 /* All 64-bit element operations can be shared with scalar 2misc */ 12313 int pass; 12314 12315 /* Coverity claims (size == 3 && !is_q) has been eliminated 12316 * from all paths leading to here. 12317 */ 12318 tcg_debug_assert(is_q); 12319 for (pass = 0; pass < 2; pass++) { 12320 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12321 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12322 12323 read_vec_element(s, tcg_op, rn, pass, MO_64); 12324 12325 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12326 tcg_rmode, tcg_fpstatus); 12327 12328 write_vec_element(s, tcg_res, rd, pass, MO_64); 12329 } 12330 } else { 12331 int pass; 12332 12333 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12334 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12335 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12336 12337 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12338 12339 if (size == 2) { 12340 /* Special cases for 32 bit elements */ 12341 switch (opcode) { 12342 case 0x4: /* CLS */ 12343 if (u) { 12344 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12345 } else { 12346 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12347 } 12348 break; 12349 case 0x7: /* SQABS, SQNEG */ 12350 if (u) { 12351 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12352 } else { 12353 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12354 } 12355 break; 12356 case 0x2f: /* FABS */ 12357 gen_helper_vfp_abss(tcg_res, tcg_op); 12358 break; 12359 case 0x6f: /* FNEG */ 12360 gen_helper_vfp_negs(tcg_res, tcg_op); 12361 break; 12362 case 0x7f: /* FSQRT */ 12363 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12364 break; 12365 case 0x1a: /* FCVTNS */ 12366 case 0x1b: /* FCVTMS */ 12367 case 0x1c: /* FCVTAS */ 12368 case 0x3a: /* FCVTPS */ 12369 case 0x3b: /* FCVTZS */ 12370 gen_helper_vfp_tosls(tcg_res, tcg_op, 12371 tcg_constant_i32(0), tcg_fpstatus); 12372 break; 12373 case 0x5a: /* FCVTNU */ 12374 case 0x5b: /* FCVTMU */ 12375 case 0x5c: /* FCVTAU */ 12376 case 0x7a: /* FCVTPU */ 12377 case 0x7b: /* FCVTZU */ 12378 gen_helper_vfp_touls(tcg_res, tcg_op, 12379 tcg_constant_i32(0), tcg_fpstatus); 12380 break; 12381 case 0x18: /* FRINTN */ 12382 case 0x19: /* FRINTM */ 12383 case 0x38: /* FRINTP */ 12384 case 0x39: /* FRINTZ */ 12385 case 0x58: /* FRINTA */ 12386 case 0x79: /* FRINTI */ 12387 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12388 break; 12389 case 0x59: /* FRINTX */ 12390 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12391 break; 12392 case 0x7c: /* URSQRTE */ 12393 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12394 break; 12395 case 0x1e: /* FRINT32Z */ 12396 case 0x5e: /* FRINT32X */ 12397 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12398 break; 12399 case 0x1f: /* FRINT64Z */ 12400 case 0x5f: /* FRINT64X */ 12401 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12402 break; 12403 default: 12404 g_assert_not_reached(); 12405 } 12406 } else { 12407 /* Use helpers for 8 and 16 bit elements */ 12408 switch (opcode) { 12409 case 0x5: /* CNT, RBIT */ 12410 /* For these two insns size is part of the opcode specifier 12411 * (handled earlier); they always operate on byte elements. 12412 */ 12413 if (u) { 12414 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12415 } else { 12416 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12417 } 12418 break; 12419 case 0x7: /* SQABS, SQNEG */ 12420 { 12421 NeonGenOneOpEnvFn *genfn; 12422 static NeonGenOneOpEnvFn * const fns[2][2] = { 12423 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12424 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12425 }; 12426 genfn = fns[size][u]; 12427 genfn(tcg_res, tcg_env, tcg_op); 12428 break; 12429 } 12430 case 0x4: /* CLS, CLZ */ 12431 if (u) { 12432 if (size == 0) { 12433 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12434 } else { 12435 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12436 } 12437 } else { 12438 if (size == 0) { 12439 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12440 } else { 12441 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12442 } 12443 } 12444 break; 12445 default: 12446 g_assert_not_reached(); 12447 } 12448 } 12449 12450 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12451 } 12452 } 12453 clear_vec_high(s, is_q, rd); 12454 12455 if (tcg_rmode) { 12456 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12457 } 12458 } 12459 12460 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12461 * 12462 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12463 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12464 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12465 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12466 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12467 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12468 * 12469 * This actually covers two groups where scalar access is governed by 12470 * bit 28. A bunch of the instructions (float to integral) only exist 12471 * in the vector form and are un-allocated for the scalar decode. Also 12472 * in the scalar decode Q is always 1. 12473 */ 12474 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12475 { 12476 int fpop, opcode, a, u; 12477 int rn, rd; 12478 bool is_q; 12479 bool is_scalar; 12480 bool only_in_vector = false; 12481 12482 int pass; 12483 TCGv_i32 tcg_rmode = NULL; 12484 TCGv_ptr tcg_fpstatus = NULL; 12485 bool need_fpst = true; 12486 int rmode = -1; 12487 12488 if (!dc_isar_feature(aa64_fp16, s)) { 12489 unallocated_encoding(s); 12490 return; 12491 } 12492 12493 rd = extract32(insn, 0, 5); 12494 rn = extract32(insn, 5, 5); 12495 12496 a = extract32(insn, 23, 1); 12497 u = extract32(insn, 29, 1); 12498 is_scalar = extract32(insn, 28, 1); 12499 is_q = extract32(insn, 30, 1); 12500 12501 opcode = extract32(insn, 12, 5); 12502 fpop = deposit32(opcode, 5, 1, a); 12503 fpop = deposit32(fpop, 6, 1, u); 12504 12505 switch (fpop) { 12506 case 0x1d: /* SCVTF */ 12507 case 0x5d: /* UCVTF */ 12508 { 12509 int elements; 12510 12511 if (is_scalar) { 12512 elements = 1; 12513 } else { 12514 elements = (is_q ? 8 : 4); 12515 } 12516 12517 if (!fp_access_check(s)) { 12518 return; 12519 } 12520 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12521 return; 12522 } 12523 break; 12524 case 0x2c: /* FCMGT (zero) */ 12525 case 0x2d: /* FCMEQ (zero) */ 12526 case 0x2e: /* FCMLT (zero) */ 12527 case 0x6c: /* FCMGE (zero) */ 12528 case 0x6d: /* FCMLE (zero) */ 12529 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12530 return; 12531 case 0x3d: /* FRECPE */ 12532 case 0x3f: /* FRECPX */ 12533 break; 12534 case 0x18: /* FRINTN */ 12535 only_in_vector = true; 12536 rmode = FPROUNDING_TIEEVEN; 12537 break; 12538 case 0x19: /* FRINTM */ 12539 only_in_vector = true; 12540 rmode = FPROUNDING_NEGINF; 12541 break; 12542 case 0x38: /* FRINTP */ 12543 only_in_vector = true; 12544 rmode = FPROUNDING_POSINF; 12545 break; 12546 case 0x39: /* FRINTZ */ 12547 only_in_vector = true; 12548 rmode = FPROUNDING_ZERO; 12549 break; 12550 case 0x58: /* FRINTA */ 12551 only_in_vector = true; 12552 rmode = FPROUNDING_TIEAWAY; 12553 break; 12554 case 0x59: /* FRINTX */ 12555 case 0x79: /* FRINTI */ 12556 only_in_vector = true; 12557 /* current rounding mode */ 12558 break; 12559 case 0x1a: /* FCVTNS */ 12560 rmode = FPROUNDING_TIEEVEN; 12561 break; 12562 case 0x1b: /* FCVTMS */ 12563 rmode = FPROUNDING_NEGINF; 12564 break; 12565 case 0x1c: /* FCVTAS */ 12566 rmode = FPROUNDING_TIEAWAY; 12567 break; 12568 case 0x3a: /* FCVTPS */ 12569 rmode = FPROUNDING_POSINF; 12570 break; 12571 case 0x3b: /* FCVTZS */ 12572 rmode = FPROUNDING_ZERO; 12573 break; 12574 case 0x5a: /* FCVTNU */ 12575 rmode = FPROUNDING_TIEEVEN; 12576 break; 12577 case 0x5b: /* FCVTMU */ 12578 rmode = FPROUNDING_NEGINF; 12579 break; 12580 case 0x5c: /* FCVTAU */ 12581 rmode = FPROUNDING_TIEAWAY; 12582 break; 12583 case 0x7a: /* FCVTPU */ 12584 rmode = FPROUNDING_POSINF; 12585 break; 12586 case 0x7b: /* FCVTZU */ 12587 rmode = FPROUNDING_ZERO; 12588 break; 12589 case 0x2f: /* FABS */ 12590 case 0x6f: /* FNEG */ 12591 need_fpst = false; 12592 break; 12593 case 0x7d: /* FRSQRTE */ 12594 case 0x7f: /* FSQRT (vector) */ 12595 break; 12596 default: 12597 unallocated_encoding(s); 12598 return; 12599 } 12600 12601 12602 /* Check additional constraints for the scalar encoding */ 12603 if (is_scalar) { 12604 if (!is_q) { 12605 unallocated_encoding(s); 12606 return; 12607 } 12608 /* FRINTxx is only in the vector form */ 12609 if (only_in_vector) { 12610 unallocated_encoding(s); 12611 return; 12612 } 12613 } 12614 12615 if (!fp_access_check(s)) { 12616 return; 12617 } 12618 12619 if (rmode >= 0 || need_fpst) { 12620 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12621 } 12622 12623 if (rmode >= 0) { 12624 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12625 } 12626 12627 if (is_scalar) { 12628 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12629 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12630 12631 switch (fpop) { 12632 case 0x1a: /* FCVTNS */ 12633 case 0x1b: /* FCVTMS */ 12634 case 0x1c: /* FCVTAS */ 12635 case 0x3a: /* FCVTPS */ 12636 case 0x3b: /* FCVTZS */ 12637 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12638 break; 12639 case 0x3d: /* FRECPE */ 12640 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12641 break; 12642 case 0x3f: /* FRECPX */ 12643 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12644 break; 12645 case 0x5a: /* FCVTNU */ 12646 case 0x5b: /* FCVTMU */ 12647 case 0x5c: /* FCVTAU */ 12648 case 0x7a: /* FCVTPU */ 12649 case 0x7b: /* FCVTZU */ 12650 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12651 break; 12652 case 0x6f: /* FNEG */ 12653 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12654 break; 12655 case 0x7d: /* FRSQRTE */ 12656 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12657 break; 12658 default: 12659 g_assert_not_reached(); 12660 } 12661 12662 /* limit any sign extension going on */ 12663 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12664 write_fp_sreg(s, rd, tcg_res); 12665 } else { 12666 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12667 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12668 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12669 12670 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12671 12672 switch (fpop) { 12673 case 0x1a: /* FCVTNS */ 12674 case 0x1b: /* FCVTMS */ 12675 case 0x1c: /* FCVTAS */ 12676 case 0x3a: /* FCVTPS */ 12677 case 0x3b: /* FCVTZS */ 12678 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12679 break; 12680 case 0x3d: /* FRECPE */ 12681 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12682 break; 12683 case 0x5a: /* FCVTNU */ 12684 case 0x5b: /* FCVTMU */ 12685 case 0x5c: /* FCVTAU */ 12686 case 0x7a: /* FCVTPU */ 12687 case 0x7b: /* FCVTZU */ 12688 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12689 break; 12690 case 0x18: /* FRINTN */ 12691 case 0x19: /* FRINTM */ 12692 case 0x38: /* FRINTP */ 12693 case 0x39: /* FRINTZ */ 12694 case 0x58: /* FRINTA */ 12695 case 0x79: /* FRINTI */ 12696 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12697 break; 12698 case 0x59: /* FRINTX */ 12699 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 case 0x2f: /* FABS */ 12702 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12703 break; 12704 case 0x6f: /* FNEG */ 12705 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12706 break; 12707 case 0x7d: /* FRSQRTE */ 12708 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12709 break; 12710 case 0x7f: /* FSQRT */ 12711 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12712 break; 12713 default: 12714 g_assert_not_reached(); 12715 } 12716 12717 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12718 } 12719 12720 clear_vec_high(s, is_q, rd); 12721 } 12722 12723 if (tcg_rmode) { 12724 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12725 } 12726 } 12727 12728 /* AdvSIMD scalar x indexed element 12729 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12730 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12731 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12732 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12733 * AdvSIMD vector x indexed element 12734 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12735 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12736 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12737 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12738 */ 12739 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12740 { 12741 /* This encoding has two kinds of instruction: 12742 * normal, where we perform elt x idxelt => elt for each 12743 * element in the vector 12744 * long, where we perform elt x idxelt and generate a result of 12745 * double the width of the input element 12746 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12747 */ 12748 bool is_scalar = extract32(insn, 28, 1); 12749 bool is_q = extract32(insn, 30, 1); 12750 bool u = extract32(insn, 29, 1); 12751 int size = extract32(insn, 22, 2); 12752 int l = extract32(insn, 21, 1); 12753 int m = extract32(insn, 20, 1); 12754 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12755 int rm = extract32(insn, 16, 4); 12756 int opcode = extract32(insn, 12, 4); 12757 int h = extract32(insn, 11, 1); 12758 int rn = extract32(insn, 5, 5); 12759 int rd = extract32(insn, 0, 5); 12760 bool is_long = false; 12761 int is_fp = 0; 12762 bool is_fp16 = false; 12763 int index; 12764 TCGv_ptr fpst; 12765 12766 switch (16 * u + opcode) { 12767 case 0x08: /* MUL */ 12768 case 0x10: /* MLA */ 12769 case 0x14: /* MLS */ 12770 if (is_scalar) { 12771 unallocated_encoding(s); 12772 return; 12773 } 12774 break; 12775 case 0x02: /* SMLAL, SMLAL2 */ 12776 case 0x12: /* UMLAL, UMLAL2 */ 12777 case 0x06: /* SMLSL, SMLSL2 */ 12778 case 0x16: /* UMLSL, UMLSL2 */ 12779 case 0x0a: /* SMULL, SMULL2 */ 12780 case 0x1a: /* UMULL, UMULL2 */ 12781 if (is_scalar) { 12782 unallocated_encoding(s); 12783 return; 12784 } 12785 is_long = true; 12786 break; 12787 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12788 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12789 case 0x0b: /* SQDMULL, SQDMULL2 */ 12790 is_long = true; 12791 break; 12792 case 0x0c: /* SQDMULH */ 12793 case 0x0d: /* SQRDMULH */ 12794 break; 12795 case 0x01: /* FMLA */ 12796 case 0x05: /* FMLS */ 12797 case 0x09: /* FMUL */ 12798 case 0x19: /* FMULX */ 12799 is_fp = 1; 12800 break; 12801 case 0x1d: /* SQRDMLAH */ 12802 case 0x1f: /* SQRDMLSH */ 12803 if (!dc_isar_feature(aa64_rdm, s)) { 12804 unallocated_encoding(s); 12805 return; 12806 } 12807 break; 12808 case 0x0e: /* SDOT */ 12809 case 0x1e: /* UDOT */ 12810 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12811 unallocated_encoding(s); 12812 return; 12813 } 12814 break; 12815 case 0x0f: 12816 switch (size) { 12817 case 0: /* SUDOT */ 12818 case 2: /* USDOT */ 12819 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12820 unallocated_encoding(s); 12821 return; 12822 } 12823 size = MO_32; 12824 break; 12825 case 1: /* BFDOT */ 12826 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12827 unallocated_encoding(s); 12828 return; 12829 } 12830 size = MO_32; 12831 break; 12832 case 3: /* BFMLAL{B,T} */ 12833 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12834 unallocated_encoding(s); 12835 return; 12836 } 12837 /* can't set is_fp without other incorrect size checks */ 12838 size = MO_16; 12839 break; 12840 default: 12841 unallocated_encoding(s); 12842 return; 12843 } 12844 break; 12845 case 0x11: /* FCMLA #0 */ 12846 case 0x13: /* FCMLA #90 */ 12847 case 0x15: /* FCMLA #180 */ 12848 case 0x17: /* FCMLA #270 */ 12849 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12850 unallocated_encoding(s); 12851 return; 12852 } 12853 is_fp = 2; 12854 break; 12855 case 0x00: /* FMLAL */ 12856 case 0x04: /* FMLSL */ 12857 case 0x18: /* FMLAL2 */ 12858 case 0x1c: /* FMLSL2 */ 12859 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12860 unallocated_encoding(s); 12861 return; 12862 } 12863 size = MO_16; 12864 /* is_fp, but we pass tcg_env not fp_status. */ 12865 break; 12866 default: 12867 unallocated_encoding(s); 12868 return; 12869 } 12870 12871 switch (is_fp) { 12872 case 1: /* normal fp */ 12873 /* convert insn encoded size to MemOp size */ 12874 switch (size) { 12875 case 0: /* half-precision */ 12876 size = MO_16; 12877 is_fp16 = true; 12878 break; 12879 case MO_32: /* single precision */ 12880 case MO_64: /* double precision */ 12881 break; 12882 default: 12883 unallocated_encoding(s); 12884 return; 12885 } 12886 break; 12887 12888 case 2: /* complex fp */ 12889 /* Each indexable element is a complex pair. */ 12890 size += 1; 12891 switch (size) { 12892 case MO_32: 12893 if (h && !is_q) { 12894 unallocated_encoding(s); 12895 return; 12896 } 12897 is_fp16 = true; 12898 break; 12899 case MO_64: 12900 break; 12901 default: 12902 unallocated_encoding(s); 12903 return; 12904 } 12905 break; 12906 12907 default: /* integer */ 12908 switch (size) { 12909 case MO_8: 12910 case MO_64: 12911 unallocated_encoding(s); 12912 return; 12913 } 12914 break; 12915 } 12916 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12917 unallocated_encoding(s); 12918 return; 12919 } 12920 12921 /* Given MemOp size, adjust register and indexing. */ 12922 switch (size) { 12923 case MO_16: 12924 index = h << 2 | l << 1 | m; 12925 break; 12926 case MO_32: 12927 index = h << 1 | l; 12928 rm |= m << 4; 12929 break; 12930 case MO_64: 12931 if (l || !is_q) { 12932 unallocated_encoding(s); 12933 return; 12934 } 12935 index = h; 12936 rm |= m << 4; 12937 break; 12938 default: 12939 g_assert_not_reached(); 12940 } 12941 12942 if (!fp_access_check(s)) { 12943 return; 12944 } 12945 12946 if (is_fp) { 12947 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12948 } else { 12949 fpst = NULL; 12950 } 12951 12952 switch (16 * u + opcode) { 12953 case 0x0e: /* SDOT */ 12954 case 0x1e: /* UDOT */ 12955 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12956 u ? gen_helper_gvec_udot_idx_b 12957 : gen_helper_gvec_sdot_idx_b); 12958 return; 12959 case 0x0f: 12960 switch (extract32(insn, 22, 2)) { 12961 case 0: /* SUDOT */ 12962 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12963 gen_helper_gvec_sudot_idx_b); 12964 return; 12965 case 1: /* BFDOT */ 12966 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12967 gen_helper_gvec_bfdot_idx); 12968 return; 12969 case 2: /* USDOT */ 12970 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12971 gen_helper_gvec_usdot_idx_b); 12972 return; 12973 case 3: /* BFMLAL{B,T} */ 12974 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12975 gen_helper_gvec_bfmlal_idx); 12976 return; 12977 } 12978 g_assert_not_reached(); 12979 case 0x11: /* FCMLA #0 */ 12980 case 0x13: /* FCMLA #90 */ 12981 case 0x15: /* FCMLA #180 */ 12982 case 0x17: /* FCMLA #270 */ 12983 { 12984 int rot = extract32(insn, 13, 2); 12985 int data = (index << 2) | rot; 12986 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12987 vec_full_reg_offset(s, rn), 12988 vec_full_reg_offset(s, rm), 12989 vec_full_reg_offset(s, rd), fpst, 12990 is_q ? 16 : 8, vec_full_reg_size(s), data, 12991 size == MO_64 12992 ? gen_helper_gvec_fcmlas_idx 12993 : gen_helper_gvec_fcmlah_idx); 12994 } 12995 return; 12996 12997 case 0x00: /* FMLAL */ 12998 case 0x04: /* FMLSL */ 12999 case 0x18: /* FMLAL2 */ 13000 case 0x1c: /* FMLSL2 */ 13001 { 13002 int is_s = extract32(opcode, 2, 1); 13003 int is_2 = u; 13004 int data = (index << 2) | (is_2 << 1) | is_s; 13005 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13006 vec_full_reg_offset(s, rn), 13007 vec_full_reg_offset(s, rm), tcg_env, 13008 is_q ? 16 : 8, vec_full_reg_size(s), 13009 data, gen_helper_gvec_fmlal_idx_a64); 13010 } 13011 return; 13012 13013 case 0x08: /* MUL */ 13014 if (!is_long && !is_scalar) { 13015 static gen_helper_gvec_3 * const fns[3] = { 13016 gen_helper_gvec_mul_idx_h, 13017 gen_helper_gvec_mul_idx_s, 13018 gen_helper_gvec_mul_idx_d, 13019 }; 13020 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13021 vec_full_reg_offset(s, rn), 13022 vec_full_reg_offset(s, rm), 13023 is_q ? 16 : 8, vec_full_reg_size(s), 13024 index, fns[size - 1]); 13025 return; 13026 } 13027 break; 13028 13029 case 0x10: /* MLA */ 13030 if (!is_long && !is_scalar) { 13031 static gen_helper_gvec_4 * const fns[3] = { 13032 gen_helper_gvec_mla_idx_h, 13033 gen_helper_gvec_mla_idx_s, 13034 gen_helper_gvec_mla_idx_d, 13035 }; 13036 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13037 vec_full_reg_offset(s, rn), 13038 vec_full_reg_offset(s, rm), 13039 vec_full_reg_offset(s, rd), 13040 is_q ? 16 : 8, vec_full_reg_size(s), 13041 index, fns[size - 1]); 13042 return; 13043 } 13044 break; 13045 13046 case 0x14: /* MLS */ 13047 if (!is_long && !is_scalar) { 13048 static gen_helper_gvec_4 * const fns[3] = { 13049 gen_helper_gvec_mls_idx_h, 13050 gen_helper_gvec_mls_idx_s, 13051 gen_helper_gvec_mls_idx_d, 13052 }; 13053 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13054 vec_full_reg_offset(s, rn), 13055 vec_full_reg_offset(s, rm), 13056 vec_full_reg_offset(s, rd), 13057 is_q ? 16 : 8, vec_full_reg_size(s), 13058 index, fns[size - 1]); 13059 return; 13060 } 13061 break; 13062 } 13063 13064 if (size == 3) { 13065 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13066 int pass; 13067 13068 assert(is_fp && is_q && !is_long); 13069 13070 read_vec_element(s, tcg_idx, rm, index, MO_64); 13071 13072 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13073 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13074 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13075 13076 read_vec_element(s, tcg_op, rn, pass, MO_64); 13077 13078 switch (16 * u + opcode) { 13079 case 0x05: /* FMLS */ 13080 /* As usual for ARM, separate negation for fused multiply-add */ 13081 gen_helper_vfp_negd(tcg_op, tcg_op); 13082 /* fall through */ 13083 case 0x01: /* FMLA */ 13084 read_vec_element(s, tcg_res, rd, pass, MO_64); 13085 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13086 break; 13087 case 0x09: /* FMUL */ 13088 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13089 break; 13090 case 0x19: /* FMULX */ 13091 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13092 break; 13093 default: 13094 g_assert_not_reached(); 13095 } 13096 13097 write_vec_element(s, tcg_res, rd, pass, MO_64); 13098 } 13099 13100 clear_vec_high(s, !is_scalar, rd); 13101 } else if (!is_long) { 13102 /* 32 bit floating point, or 16 or 32 bit integer. 13103 * For the 16 bit scalar case we use the usual Neon helpers and 13104 * rely on the fact that 0 op 0 == 0 with no side effects. 13105 */ 13106 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13107 int pass, maxpasses; 13108 13109 if (is_scalar) { 13110 maxpasses = 1; 13111 } else { 13112 maxpasses = is_q ? 4 : 2; 13113 } 13114 13115 read_vec_element_i32(s, tcg_idx, rm, index, size); 13116 13117 if (size == 1 && !is_scalar) { 13118 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13119 * the index into both halves of the 32 bit tcg_idx and then use 13120 * the usual Neon helpers. 13121 */ 13122 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13123 } 13124 13125 for (pass = 0; pass < maxpasses; pass++) { 13126 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13127 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13128 13129 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13130 13131 switch (16 * u + opcode) { 13132 case 0x08: /* MUL */ 13133 case 0x10: /* MLA */ 13134 case 0x14: /* MLS */ 13135 { 13136 static NeonGenTwoOpFn * const fns[2][2] = { 13137 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13138 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13139 }; 13140 NeonGenTwoOpFn *genfn; 13141 bool is_sub = opcode == 0x4; 13142 13143 if (size == 1) { 13144 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13145 } else { 13146 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13147 } 13148 if (opcode == 0x8) { 13149 break; 13150 } 13151 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13152 genfn = fns[size - 1][is_sub]; 13153 genfn(tcg_res, tcg_op, tcg_res); 13154 break; 13155 } 13156 case 0x05: /* FMLS */ 13157 case 0x01: /* FMLA */ 13158 read_vec_element_i32(s, tcg_res, rd, pass, 13159 is_scalar ? size : MO_32); 13160 switch (size) { 13161 case 1: 13162 if (opcode == 0x5) { 13163 /* As usual for ARM, separate negation for fused 13164 * multiply-add */ 13165 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13166 } 13167 if (is_scalar) { 13168 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13169 tcg_res, fpst); 13170 } else { 13171 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13172 tcg_res, fpst); 13173 } 13174 break; 13175 case 2: 13176 if (opcode == 0x5) { 13177 /* As usual for ARM, separate negation for 13178 * fused multiply-add */ 13179 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13180 } 13181 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13182 tcg_res, fpst); 13183 break; 13184 default: 13185 g_assert_not_reached(); 13186 } 13187 break; 13188 case 0x09: /* FMUL */ 13189 switch (size) { 13190 case 1: 13191 if (is_scalar) { 13192 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13193 tcg_idx, fpst); 13194 } else { 13195 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13196 tcg_idx, fpst); 13197 } 13198 break; 13199 case 2: 13200 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13201 break; 13202 default: 13203 g_assert_not_reached(); 13204 } 13205 break; 13206 case 0x19: /* FMULX */ 13207 switch (size) { 13208 case 1: 13209 if (is_scalar) { 13210 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13211 tcg_idx, fpst); 13212 } else { 13213 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13214 tcg_idx, fpst); 13215 } 13216 break; 13217 case 2: 13218 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13219 break; 13220 default: 13221 g_assert_not_reached(); 13222 } 13223 break; 13224 case 0x0c: /* SQDMULH */ 13225 if (size == 1) { 13226 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13227 tcg_op, tcg_idx); 13228 } else { 13229 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13230 tcg_op, tcg_idx); 13231 } 13232 break; 13233 case 0x0d: /* SQRDMULH */ 13234 if (size == 1) { 13235 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13236 tcg_op, tcg_idx); 13237 } else { 13238 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13239 tcg_op, tcg_idx); 13240 } 13241 break; 13242 case 0x1d: /* SQRDMLAH */ 13243 read_vec_element_i32(s, tcg_res, rd, pass, 13244 is_scalar ? size : MO_32); 13245 if (size == 1) { 13246 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13247 tcg_op, tcg_idx, tcg_res); 13248 } else { 13249 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13250 tcg_op, tcg_idx, tcg_res); 13251 } 13252 break; 13253 case 0x1f: /* SQRDMLSH */ 13254 read_vec_element_i32(s, tcg_res, rd, pass, 13255 is_scalar ? size : MO_32); 13256 if (size == 1) { 13257 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13258 tcg_op, tcg_idx, tcg_res); 13259 } else { 13260 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13261 tcg_op, tcg_idx, tcg_res); 13262 } 13263 break; 13264 default: 13265 g_assert_not_reached(); 13266 } 13267 13268 if (is_scalar) { 13269 write_fp_sreg(s, rd, tcg_res); 13270 } else { 13271 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13272 } 13273 } 13274 13275 clear_vec_high(s, is_q, rd); 13276 } else { 13277 /* long ops: 16x16->32 or 32x32->64 */ 13278 TCGv_i64 tcg_res[2]; 13279 int pass; 13280 bool satop = extract32(opcode, 0, 1); 13281 MemOp memop = MO_32; 13282 13283 if (satop || !u) { 13284 memop |= MO_SIGN; 13285 } 13286 13287 if (size == 2) { 13288 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13289 13290 read_vec_element(s, tcg_idx, rm, index, memop); 13291 13292 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13293 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13294 TCGv_i64 tcg_passres; 13295 int passelt; 13296 13297 if (is_scalar) { 13298 passelt = 0; 13299 } else { 13300 passelt = pass + (is_q * 2); 13301 } 13302 13303 read_vec_element(s, tcg_op, rn, passelt, memop); 13304 13305 tcg_res[pass] = tcg_temp_new_i64(); 13306 13307 if (opcode == 0xa || opcode == 0xb) { 13308 /* Non-accumulating ops */ 13309 tcg_passres = tcg_res[pass]; 13310 } else { 13311 tcg_passres = tcg_temp_new_i64(); 13312 } 13313 13314 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13315 13316 if (satop) { 13317 /* saturating, doubling */ 13318 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13319 tcg_passres, tcg_passres); 13320 } 13321 13322 if (opcode == 0xa || opcode == 0xb) { 13323 continue; 13324 } 13325 13326 /* Accumulating op: handle accumulate step */ 13327 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13328 13329 switch (opcode) { 13330 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13331 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13332 break; 13333 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13334 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13335 break; 13336 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13337 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13338 /* fall through */ 13339 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13340 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13341 tcg_res[pass], 13342 tcg_passres); 13343 break; 13344 default: 13345 g_assert_not_reached(); 13346 } 13347 } 13348 13349 clear_vec_high(s, !is_scalar, rd); 13350 } else { 13351 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13352 13353 assert(size == 1); 13354 read_vec_element_i32(s, tcg_idx, rm, index, size); 13355 13356 if (!is_scalar) { 13357 /* The simplest way to handle the 16x16 indexed ops is to 13358 * duplicate the index into both halves of the 32 bit tcg_idx 13359 * and then use the usual Neon helpers. 13360 */ 13361 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13362 } 13363 13364 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13365 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13366 TCGv_i64 tcg_passres; 13367 13368 if (is_scalar) { 13369 read_vec_element_i32(s, tcg_op, rn, pass, size); 13370 } else { 13371 read_vec_element_i32(s, tcg_op, rn, 13372 pass + (is_q * 2), MO_32); 13373 } 13374 13375 tcg_res[pass] = tcg_temp_new_i64(); 13376 13377 if (opcode == 0xa || opcode == 0xb) { 13378 /* Non-accumulating ops */ 13379 tcg_passres = tcg_res[pass]; 13380 } else { 13381 tcg_passres = tcg_temp_new_i64(); 13382 } 13383 13384 if (memop & MO_SIGN) { 13385 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13386 } else { 13387 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13388 } 13389 if (satop) { 13390 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13391 tcg_passres, tcg_passres); 13392 } 13393 13394 if (opcode == 0xa || opcode == 0xb) { 13395 continue; 13396 } 13397 13398 /* Accumulating op: handle accumulate step */ 13399 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13400 13401 switch (opcode) { 13402 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13403 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13404 tcg_passres); 13405 break; 13406 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13407 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13408 tcg_passres); 13409 break; 13410 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13411 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13412 /* fall through */ 13413 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13414 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13415 tcg_res[pass], 13416 tcg_passres); 13417 break; 13418 default: 13419 g_assert_not_reached(); 13420 } 13421 } 13422 13423 if (is_scalar) { 13424 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13425 } 13426 } 13427 13428 if (is_scalar) { 13429 tcg_res[1] = tcg_constant_i64(0); 13430 } 13431 13432 for (pass = 0; pass < 2; pass++) { 13433 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13434 } 13435 } 13436 } 13437 13438 /* Crypto AES 13439 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13440 * +-----------------+------+-----------+--------+-----+------+------+ 13441 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13442 * +-----------------+------+-----------+--------+-----+------+------+ 13443 */ 13444 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13445 { 13446 int size = extract32(insn, 22, 2); 13447 int opcode = extract32(insn, 12, 5); 13448 int rn = extract32(insn, 5, 5); 13449 int rd = extract32(insn, 0, 5); 13450 gen_helper_gvec_2 *genfn2 = NULL; 13451 gen_helper_gvec_3 *genfn3 = NULL; 13452 13453 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13454 unallocated_encoding(s); 13455 return; 13456 } 13457 13458 switch (opcode) { 13459 case 0x4: /* AESE */ 13460 genfn3 = gen_helper_crypto_aese; 13461 break; 13462 case 0x6: /* AESMC */ 13463 genfn2 = gen_helper_crypto_aesmc; 13464 break; 13465 case 0x5: /* AESD */ 13466 genfn3 = gen_helper_crypto_aesd; 13467 break; 13468 case 0x7: /* AESIMC */ 13469 genfn2 = gen_helper_crypto_aesimc; 13470 break; 13471 default: 13472 unallocated_encoding(s); 13473 return; 13474 } 13475 13476 if (!fp_access_check(s)) { 13477 return; 13478 } 13479 if (genfn2) { 13480 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13481 } else { 13482 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13483 } 13484 } 13485 13486 /* Crypto three-reg SHA 13487 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13488 * +-----------------+------+---+------+---+--------+-----+------+------+ 13489 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13490 * +-----------------+------+---+------+---+--------+-----+------+------+ 13491 */ 13492 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13493 { 13494 int size = extract32(insn, 22, 2); 13495 int opcode = extract32(insn, 12, 3); 13496 int rm = extract32(insn, 16, 5); 13497 int rn = extract32(insn, 5, 5); 13498 int rd = extract32(insn, 0, 5); 13499 gen_helper_gvec_3 *genfn; 13500 bool feature; 13501 13502 if (size != 0) { 13503 unallocated_encoding(s); 13504 return; 13505 } 13506 13507 switch (opcode) { 13508 case 0: /* SHA1C */ 13509 genfn = gen_helper_crypto_sha1c; 13510 feature = dc_isar_feature(aa64_sha1, s); 13511 break; 13512 case 1: /* SHA1P */ 13513 genfn = gen_helper_crypto_sha1p; 13514 feature = dc_isar_feature(aa64_sha1, s); 13515 break; 13516 case 2: /* SHA1M */ 13517 genfn = gen_helper_crypto_sha1m; 13518 feature = dc_isar_feature(aa64_sha1, s); 13519 break; 13520 case 3: /* SHA1SU0 */ 13521 genfn = gen_helper_crypto_sha1su0; 13522 feature = dc_isar_feature(aa64_sha1, s); 13523 break; 13524 case 4: /* SHA256H */ 13525 genfn = gen_helper_crypto_sha256h; 13526 feature = dc_isar_feature(aa64_sha256, s); 13527 break; 13528 case 5: /* SHA256H2 */ 13529 genfn = gen_helper_crypto_sha256h2; 13530 feature = dc_isar_feature(aa64_sha256, s); 13531 break; 13532 case 6: /* SHA256SU1 */ 13533 genfn = gen_helper_crypto_sha256su1; 13534 feature = dc_isar_feature(aa64_sha256, s); 13535 break; 13536 default: 13537 unallocated_encoding(s); 13538 return; 13539 } 13540 13541 if (!feature) { 13542 unallocated_encoding(s); 13543 return; 13544 } 13545 13546 if (!fp_access_check(s)) { 13547 return; 13548 } 13549 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13550 } 13551 13552 /* Crypto two-reg SHA 13553 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13554 * +-----------------+------+-----------+--------+-----+------+------+ 13555 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13556 * +-----------------+------+-----------+--------+-----+------+------+ 13557 */ 13558 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13559 { 13560 int size = extract32(insn, 22, 2); 13561 int opcode = extract32(insn, 12, 5); 13562 int rn = extract32(insn, 5, 5); 13563 int rd = extract32(insn, 0, 5); 13564 gen_helper_gvec_2 *genfn; 13565 bool feature; 13566 13567 if (size != 0) { 13568 unallocated_encoding(s); 13569 return; 13570 } 13571 13572 switch (opcode) { 13573 case 0: /* SHA1H */ 13574 feature = dc_isar_feature(aa64_sha1, s); 13575 genfn = gen_helper_crypto_sha1h; 13576 break; 13577 case 1: /* SHA1SU1 */ 13578 feature = dc_isar_feature(aa64_sha1, s); 13579 genfn = gen_helper_crypto_sha1su1; 13580 break; 13581 case 2: /* SHA256SU0 */ 13582 feature = dc_isar_feature(aa64_sha256, s); 13583 genfn = gen_helper_crypto_sha256su0; 13584 break; 13585 default: 13586 unallocated_encoding(s); 13587 return; 13588 } 13589 13590 if (!feature) { 13591 unallocated_encoding(s); 13592 return; 13593 } 13594 13595 if (!fp_access_check(s)) { 13596 return; 13597 } 13598 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13599 } 13600 13601 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13602 { 13603 tcg_gen_rotli_i64(d, m, 1); 13604 tcg_gen_xor_i64(d, d, n); 13605 } 13606 13607 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13608 { 13609 tcg_gen_rotli_vec(vece, d, m, 1); 13610 tcg_gen_xor_vec(vece, d, d, n); 13611 } 13612 13613 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13614 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13615 { 13616 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13617 static const GVecGen3 op = { 13618 .fni8 = gen_rax1_i64, 13619 .fniv = gen_rax1_vec, 13620 .opt_opc = vecop_list, 13621 .fno = gen_helper_crypto_rax1, 13622 .vece = MO_64, 13623 }; 13624 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13625 } 13626 13627 /* Crypto three-reg SHA512 13628 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13629 * +-----------------------+------+---+---+-----+--------+------+------+ 13630 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13631 * +-----------------------+------+---+---+-----+--------+------+------+ 13632 */ 13633 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13634 { 13635 int opcode = extract32(insn, 10, 2); 13636 int o = extract32(insn, 14, 1); 13637 int rm = extract32(insn, 16, 5); 13638 int rn = extract32(insn, 5, 5); 13639 int rd = extract32(insn, 0, 5); 13640 bool feature; 13641 gen_helper_gvec_3 *oolfn = NULL; 13642 GVecGen3Fn *gvecfn = NULL; 13643 13644 if (o == 0) { 13645 switch (opcode) { 13646 case 0: /* SHA512H */ 13647 feature = dc_isar_feature(aa64_sha512, s); 13648 oolfn = gen_helper_crypto_sha512h; 13649 break; 13650 case 1: /* SHA512H2 */ 13651 feature = dc_isar_feature(aa64_sha512, s); 13652 oolfn = gen_helper_crypto_sha512h2; 13653 break; 13654 case 2: /* SHA512SU1 */ 13655 feature = dc_isar_feature(aa64_sha512, s); 13656 oolfn = gen_helper_crypto_sha512su1; 13657 break; 13658 case 3: /* RAX1 */ 13659 feature = dc_isar_feature(aa64_sha3, s); 13660 gvecfn = gen_gvec_rax1; 13661 break; 13662 default: 13663 g_assert_not_reached(); 13664 } 13665 } else { 13666 switch (opcode) { 13667 case 0: /* SM3PARTW1 */ 13668 feature = dc_isar_feature(aa64_sm3, s); 13669 oolfn = gen_helper_crypto_sm3partw1; 13670 break; 13671 case 1: /* SM3PARTW2 */ 13672 feature = dc_isar_feature(aa64_sm3, s); 13673 oolfn = gen_helper_crypto_sm3partw2; 13674 break; 13675 case 2: /* SM4EKEY */ 13676 feature = dc_isar_feature(aa64_sm4, s); 13677 oolfn = gen_helper_crypto_sm4ekey; 13678 break; 13679 default: 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 } 13684 13685 if (!feature) { 13686 unallocated_encoding(s); 13687 return; 13688 } 13689 13690 if (!fp_access_check(s)) { 13691 return; 13692 } 13693 13694 if (oolfn) { 13695 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13696 } else { 13697 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13698 } 13699 } 13700 13701 /* Crypto two-reg SHA512 13702 * 31 12 11 10 9 5 4 0 13703 * +-----------------------------------------+--------+------+------+ 13704 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13705 * +-----------------------------------------+--------+------+------+ 13706 */ 13707 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13708 { 13709 int opcode = extract32(insn, 10, 2); 13710 int rn = extract32(insn, 5, 5); 13711 int rd = extract32(insn, 0, 5); 13712 bool feature; 13713 13714 switch (opcode) { 13715 case 0: /* SHA512SU0 */ 13716 feature = dc_isar_feature(aa64_sha512, s); 13717 break; 13718 case 1: /* SM4E */ 13719 feature = dc_isar_feature(aa64_sm4, s); 13720 break; 13721 default: 13722 unallocated_encoding(s); 13723 return; 13724 } 13725 13726 if (!feature) { 13727 unallocated_encoding(s); 13728 return; 13729 } 13730 13731 if (!fp_access_check(s)) { 13732 return; 13733 } 13734 13735 switch (opcode) { 13736 case 0: /* SHA512SU0 */ 13737 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13738 break; 13739 case 1: /* SM4E */ 13740 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13741 break; 13742 default: 13743 g_assert_not_reached(); 13744 } 13745 } 13746 13747 /* Crypto four-register 13748 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13749 * +-------------------+-----+------+---+------+------+------+ 13750 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13751 * +-------------------+-----+------+---+------+------+------+ 13752 */ 13753 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13754 { 13755 int op0 = extract32(insn, 21, 2); 13756 int rm = extract32(insn, 16, 5); 13757 int ra = extract32(insn, 10, 5); 13758 int rn = extract32(insn, 5, 5); 13759 int rd = extract32(insn, 0, 5); 13760 bool feature; 13761 13762 switch (op0) { 13763 case 0: /* EOR3 */ 13764 case 1: /* BCAX */ 13765 feature = dc_isar_feature(aa64_sha3, s); 13766 break; 13767 case 2: /* SM3SS1 */ 13768 feature = dc_isar_feature(aa64_sm3, s); 13769 break; 13770 default: 13771 unallocated_encoding(s); 13772 return; 13773 } 13774 13775 if (!feature) { 13776 unallocated_encoding(s); 13777 return; 13778 } 13779 13780 if (!fp_access_check(s)) { 13781 return; 13782 } 13783 13784 if (op0 < 2) { 13785 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13786 int pass; 13787 13788 tcg_op1 = tcg_temp_new_i64(); 13789 tcg_op2 = tcg_temp_new_i64(); 13790 tcg_op3 = tcg_temp_new_i64(); 13791 tcg_res[0] = tcg_temp_new_i64(); 13792 tcg_res[1] = tcg_temp_new_i64(); 13793 13794 for (pass = 0; pass < 2; pass++) { 13795 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13796 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13797 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13798 13799 if (op0 == 0) { 13800 /* EOR3 */ 13801 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13802 } else { 13803 /* BCAX */ 13804 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13805 } 13806 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13807 } 13808 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13809 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13810 } else { 13811 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13812 13813 tcg_op1 = tcg_temp_new_i32(); 13814 tcg_op2 = tcg_temp_new_i32(); 13815 tcg_op3 = tcg_temp_new_i32(); 13816 tcg_res = tcg_temp_new_i32(); 13817 tcg_zero = tcg_constant_i32(0); 13818 13819 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13820 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13821 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13822 13823 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13824 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13825 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13826 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13827 13828 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13829 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13830 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13831 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13832 } 13833 } 13834 13835 /* Crypto XAR 13836 * 31 21 20 16 15 10 9 5 4 0 13837 * +-----------------------+------+--------+------+------+ 13838 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13839 * +-----------------------+------+--------+------+------+ 13840 */ 13841 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13842 { 13843 int rm = extract32(insn, 16, 5); 13844 int imm6 = extract32(insn, 10, 6); 13845 int rn = extract32(insn, 5, 5); 13846 int rd = extract32(insn, 0, 5); 13847 13848 if (!dc_isar_feature(aa64_sha3, s)) { 13849 unallocated_encoding(s); 13850 return; 13851 } 13852 13853 if (!fp_access_check(s)) { 13854 return; 13855 } 13856 13857 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13858 vec_full_reg_offset(s, rn), 13859 vec_full_reg_offset(s, rm), imm6, 16, 13860 vec_full_reg_size(s)); 13861 } 13862 13863 /* Crypto three-reg imm2 13864 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13865 * +-----------------------+------+-----+------+--------+------+------+ 13866 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13867 * +-----------------------+------+-----+------+--------+------+------+ 13868 */ 13869 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13870 { 13871 static gen_helper_gvec_3 * const fns[4] = { 13872 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13873 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13874 }; 13875 int opcode = extract32(insn, 10, 2); 13876 int imm2 = extract32(insn, 12, 2); 13877 int rm = extract32(insn, 16, 5); 13878 int rn = extract32(insn, 5, 5); 13879 int rd = extract32(insn, 0, 5); 13880 13881 if (!dc_isar_feature(aa64_sm3, s)) { 13882 unallocated_encoding(s); 13883 return; 13884 } 13885 13886 if (!fp_access_check(s)) { 13887 return; 13888 } 13889 13890 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13891 } 13892 13893 /* C3.6 Data processing - SIMD, inc Crypto 13894 * 13895 * As the decode gets a little complex we are using a table based 13896 * approach for this part of the decode. 13897 */ 13898 static const AArch64DecodeTable data_proc_simd[] = { 13899 /* pattern , mask , fn */ 13900 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13901 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13902 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13903 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13904 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13905 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13906 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13907 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13908 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13909 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13910 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13911 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13912 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13913 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13914 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13915 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13916 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13917 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13918 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13919 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13920 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13921 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13922 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13923 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13924 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13925 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13926 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13927 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13928 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13929 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13930 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13931 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13932 { 0x00000000, 0x00000000, NULL } 13933 }; 13934 13935 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13936 { 13937 /* Note that this is called with all non-FP cases from 13938 * table C3-6 so it must UNDEF for entries not specifically 13939 * allocated to instructions in that table. 13940 */ 13941 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13942 if (fn) { 13943 fn(s, insn); 13944 } else { 13945 unallocated_encoding(s); 13946 } 13947 } 13948 13949 /* C3.6 Data processing - SIMD and floating point */ 13950 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13951 { 13952 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13953 disas_data_proc_fp(s, insn); 13954 } else { 13955 /* SIMD, including crypto */ 13956 disas_data_proc_simd(s, insn); 13957 } 13958 } 13959 13960 static bool trans_OK(DisasContext *s, arg_OK *a) 13961 { 13962 return true; 13963 } 13964 13965 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13966 { 13967 s->is_nonstreaming = true; 13968 return true; 13969 } 13970 13971 /** 13972 * is_guarded_page: 13973 * @env: The cpu environment 13974 * @s: The DisasContext 13975 * 13976 * Return true if the page is guarded. 13977 */ 13978 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13979 { 13980 uint64_t addr = s->base.pc_first; 13981 #ifdef CONFIG_USER_ONLY 13982 return page_get_flags(addr) & PAGE_BTI; 13983 #else 13984 CPUTLBEntryFull *full; 13985 void *host; 13986 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13987 int flags; 13988 13989 /* 13990 * We test this immediately after reading an insn, which means 13991 * that the TLB entry must be present and valid, and thus this 13992 * access will never raise an exception. 13993 */ 13994 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13995 false, &host, &full, 0); 13996 assert(!(flags & TLB_INVALID_MASK)); 13997 13998 return full->extra.arm.guarded; 13999 #endif 14000 } 14001 14002 /** 14003 * btype_destination_ok: 14004 * @insn: The instruction at the branch destination 14005 * @bt: SCTLR_ELx.BT 14006 * @btype: PSTATE.BTYPE, and is non-zero 14007 * 14008 * On a guarded page, there are a limited number of insns 14009 * that may be present at the branch target: 14010 * - branch target identifiers, 14011 * - paciasp, pacibsp, 14012 * - BRK insn 14013 * - HLT insn 14014 * Anything else causes a Branch Target Exception. 14015 * 14016 * Return true if the branch is compatible, false to raise BTITRAP. 14017 */ 14018 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14019 { 14020 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14021 /* HINT space */ 14022 switch (extract32(insn, 5, 7)) { 14023 case 0b011001: /* PACIASP */ 14024 case 0b011011: /* PACIBSP */ 14025 /* 14026 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14027 * with btype == 3. Otherwise all btype are ok. 14028 */ 14029 return !bt || btype != 3; 14030 case 0b100000: /* BTI */ 14031 /* Not compatible with any btype. */ 14032 return false; 14033 case 0b100010: /* BTI c */ 14034 /* Not compatible with btype == 3 */ 14035 return btype != 3; 14036 case 0b100100: /* BTI j */ 14037 /* Not compatible with btype == 2 */ 14038 return btype != 2; 14039 case 0b100110: /* BTI jc */ 14040 /* Compatible with any btype. */ 14041 return true; 14042 } 14043 } else { 14044 switch (insn & 0xffe0001fu) { 14045 case 0xd4200000u: /* BRK */ 14046 case 0xd4400000u: /* HLT */ 14047 /* Give priority to the breakpoint exception. */ 14048 return true; 14049 } 14050 } 14051 return false; 14052 } 14053 14054 /* C3.1 A64 instruction index by encoding */ 14055 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14056 { 14057 switch (extract32(insn, 25, 4)) { 14058 case 0x5: 14059 case 0xd: /* Data processing - register */ 14060 disas_data_proc_reg(s, insn); 14061 break; 14062 case 0x7: 14063 case 0xf: /* Data processing - SIMD and floating point */ 14064 disas_data_proc_simd_fp(s, insn); 14065 break; 14066 default: 14067 unallocated_encoding(s); 14068 break; 14069 } 14070 } 14071 14072 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14073 CPUState *cpu) 14074 { 14075 DisasContext *dc = container_of(dcbase, DisasContext, base); 14076 CPUARMState *env = cpu_env(cpu); 14077 ARMCPU *arm_cpu = env_archcpu(env); 14078 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14079 int bound, core_mmu_idx; 14080 14081 dc->isar = &arm_cpu->isar; 14082 dc->condjmp = 0; 14083 dc->pc_save = dc->base.pc_first; 14084 dc->aarch64 = true; 14085 dc->thumb = false; 14086 dc->sctlr_b = 0; 14087 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14088 dc->condexec_mask = 0; 14089 dc->condexec_cond = 0; 14090 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14091 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14092 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14093 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14094 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14095 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14096 #if !defined(CONFIG_USER_ONLY) 14097 dc->user = (dc->current_el == 0); 14098 #endif 14099 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14100 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14101 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14102 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14103 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14104 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14105 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14106 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14107 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14108 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14109 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14110 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14111 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14112 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14113 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14114 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14115 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14116 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14117 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14118 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14119 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14120 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14121 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14122 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 14123 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 14124 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 14125 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 14126 dc->vec_len = 0; 14127 dc->vec_stride = 0; 14128 dc->cp_regs = arm_cpu->cp_regs; 14129 dc->features = env->features; 14130 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14131 dc->gm_blocksize = arm_cpu->gm_blocksize; 14132 14133 #ifdef CONFIG_USER_ONLY 14134 /* In sve_probe_page, we assume TBI is enabled. */ 14135 tcg_debug_assert(dc->tbid & 1); 14136 #endif 14137 14138 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14139 14140 /* Single step state. The code-generation logic here is: 14141 * SS_ACTIVE == 0: 14142 * generate code with no special handling for single-stepping (except 14143 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14144 * this happens anyway because those changes are all system register or 14145 * PSTATE writes). 14146 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14147 * emit code for one insn 14148 * emit code to clear PSTATE.SS 14149 * emit code to generate software step exception for completed step 14150 * end TB (as usual for having generated an exception) 14151 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14152 * emit code to generate a software step exception 14153 * end the TB 14154 */ 14155 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14156 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14157 dc->is_ldex = false; 14158 14159 /* Bound the number of insns to execute to those left on the page. */ 14160 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14161 14162 /* If architectural single step active, limit to 1. */ 14163 if (dc->ss_active) { 14164 bound = 1; 14165 } 14166 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14167 } 14168 14169 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14170 { 14171 } 14172 14173 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14174 { 14175 DisasContext *dc = container_of(dcbase, DisasContext, base); 14176 target_ulong pc_arg = dc->base.pc_next; 14177 14178 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14179 pc_arg &= ~TARGET_PAGE_MASK; 14180 } 14181 tcg_gen_insn_start(pc_arg, 0, 0); 14182 dc->insn_start = tcg_last_op(); 14183 } 14184 14185 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14186 { 14187 DisasContext *s = container_of(dcbase, DisasContext, base); 14188 CPUARMState *env = cpu_env(cpu); 14189 uint64_t pc = s->base.pc_next; 14190 uint32_t insn; 14191 14192 /* Singlestep exceptions have the highest priority. */ 14193 if (s->ss_active && !s->pstate_ss) { 14194 /* Singlestep state is Active-pending. 14195 * If we're in this state at the start of a TB then either 14196 * a) we just took an exception to an EL which is being debugged 14197 * and this is the first insn in the exception handler 14198 * b) debug exceptions were masked and we just unmasked them 14199 * without changing EL (eg by clearing PSTATE.D) 14200 * In either case we're going to take a swstep exception in the 14201 * "did not step an insn" case, and so the syndrome ISV and EX 14202 * bits should be zero. 14203 */ 14204 assert(s->base.num_insns == 1); 14205 gen_swstep_exception(s, 0, 0); 14206 s->base.is_jmp = DISAS_NORETURN; 14207 s->base.pc_next = pc + 4; 14208 return; 14209 } 14210 14211 if (pc & 3) { 14212 /* 14213 * PC alignment fault. This has priority over the instruction abort 14214 * that we would receive from a translation fault via arm_ldl_code. 14215 * This should only be possible after an indirect branch, at the 14216 * start of the TB. 14217 */ 14218 assert(s->base.num_insns == 1); 14219 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14220 s->base.is_jmp = DISAS_NORETURN; 14221 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14222 return; 14223 } 14224 14225 s->pc_curr = pc; 14226 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14227 s->insn = insn; 14228 s->base.pc_next = pc + 4; 14229 14230 s->fp_access_checked = false; 14231 s->sve_access_checked = false; 14232 14233 if (s->pstate_il) { 14234 /* 14235 * Illegal execution state. This has priority over BTI 14236 * exceptions, but comes after instruction abort exceptions. 14237 */ 14238 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14239 return; 14240 } 14241 14242 if (dc_isar_feature(aa64_bti, s)) { 14243 if (s->base.num_insns == 1) { 14244 /* 14245 * At the first insn of the TB, compute s->guarded_page. 14246 * We delayed computing this until successfully reading 14247 * the first insn of the TB, above. This (mostly) ensures 14248 * that the softmmu tlb entry has been populated, and the 14249 * page table GP bit is available. 14250 * 14251 * Note that we need to compute this even if btype == 0, 14252 * because this value is used for BR instructions later 14253 * where ENV is not available. 14254 */ 14255 s->guarded_page = is_guarded_page(env, s); 14256 14257 /* First insn can have btype set to non-zero. */ 14258 tcg_debug_assert(s->btype >= 0); 14259 14260 /* 14261 * Note that the Branch Target Exception has fairly high 14262 * priority -- below debugging exceptions but above most 14263 * everything else. This allows us to handle this now 14264 * instead of waiting until the insn is otherwise decoded. 14265 */ 14266 if (s->btype != 0 14267 && s->guarded_page 14268 && !btype_destination_ok(insn, s->bt, s->btype)) { 14269 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14270 return; 14271 } 14272 } else { 14273 /* Not the first insn: btype must be 0. */ 14274 tcg_debug_assert(s->btype == 0); 14275 } 14276 } 14277 14278 s->is_nonstreaming = false; 14279 if (s->sme_trap_nonstreaming) { 14280 disas_sme_fa64(s, insn); 14281 } 14282 14283 if (!disas_a64(s, insn) && 14284 !disas_sme(s, insn) && 14285 !disas_sve(s, insn)) { 14286 disas_a64_legacy(s, insn); 14287 } 14288 14289 /* 14290 * After execution of most insns, btype is reset to 0. 14291 * Note that we set btype == -1 when the insn sets btype. 14292 */ 14293 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14294 reset_btype(s); 14295 } 14296 } 14297 14298 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14299 { 14300 DisasContext *dc = container_of(dcbase, DisasContext, base); 14301 14302 if (unlikely(dc->ss_active)) { 14303 /* Note that this means single stepping WFI doesn't halt the CPU. 14304 * For conditional branch insns this is harmless unreachable code as 14305 * gen_goto_tb() has already handled emitting the debug exception 14306 * (and thus a tb-jump is not possible when singlestepping). 14307 */ 14308 switch (dc->base.is_jmp) { 14309 default: 14310 gen_a64_update_pc(dc, 4); 14311 /* fall through */ 14312 case DISAS_EXIT: 14313 case DISAS_JUMP: 14314 gen_step_complete_exception(dc); 14315 break; 14316 case DISAS_NORETURN: 14317 break; 14318 } 14319 } else { 14320 switch (dc->base.is_jmp) { 14321 case DISAS_NEXT: 14322 case DISAS_TOO_MANY: 14323 gen_goto_tb(dc, 1, 4); 14324 break; 14325 default: 14326 case DISAS_UPDATE_EXIT: 14327 gen_a64_update_pc(dc, 4); 14328 /* fall through */ 14329 case DISAS_EXIT: 14330 tcg_gen_exit_tb(NULL, 0); 14331 break; 14332 case DISAS_UPDATE_NOCHAIN: 14333 gen_a64_update_pc(dc, 4); 14334 /* fall through */ 14335 case DISAS_JUMP: 14336 tcg_gen_lookup_and_goto_ptr(); 14337 break; 14338 case DISAS_NORETURN: 14339 case DISAS_SWI: 14340 break; 14341 case DISAS_WFE: 14342 gen_a64_update_pc(dc, 4); 14343 gen_helper_wfe(tcg_env); 14344 break; 14345 case DISAS_YIELD: 14346 gen_a64_update_pc(dc, 4); 14347 gen_helper_yield(tcg_env); 14348 break; 14349 case DISAS_WFI: 14350 /* 14351 * This is a special case because we don't want to just halt 14352 * the CPU if trying to debug across a WFI. 14353 */ 14354 gen_a64_update_pc(dc, 4); 14355 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14356 /* 14357 * The helper doesn't necessarily throw an exception, but we 14358 * must go back to the main loop to check for interrupts anyway. 14359 */ 14360 tcg_gen_exit_tb(NULL, 0); 14361 break; 14362 } 14363 } 14364 } 14365 14366 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14367 CPUState *cpu, FILE *logfile) 14368 { 14369 DisasContext *dc = container_of(dcbase, DisasContext, base); 14370 14371 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14372 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14373 } 14374 14375 const TranslatorOps aarch64_translator_ops = { 14376 .init_disas_context = aarch64_tr_init_disas_context, 14377 .tb_start = aarch64_tr_tb_start, 14378 .insn_start = aarch64_tr_insn_start, 14379 .translate_insn = aarch64_tr_translate_insn, 14380 .tb_stop = aarch64_tr_tb_stop, 14381 .disas_log = aarch64_tr_disas_log, 14382 }; 14383