xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision f698e452)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, 0, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 /*
5596  * Advanced SIMD scalar/vector x indexed element
5597  */
5598 
5599 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5600 {
5601     switch (a->esz) {
5602     case MO_64:
5603         if (fp_access_check(s)) {
5604             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5605             TCGv_i64 t1 = tcg_temp_new_i64();
5606 
5607             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5608             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5609             write_fp_dreg(s, a->rd, t0);
5610         }
5611         break;
5612     case MO_32:
5613         if (fp_access_check(s)) {
5614             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5615             TCGv_i32 t1 = tcg_temp_new_i32();
5616 
5617             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5618             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5619             write_fp_sreg(s, a->rd, t0);
5620         }
5621         break;
5622     case MO_16:
5623         if (!dc_isar_feature(aa64_fp16, s)) {
5624             return false;
5625         }
5626         if (fp_access_check(s)) {
5627             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5628             TCGv_i32 t1 = tcg_temp_new_i32();
5629 
5630             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5631             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5632             write_fp_sreg(s, a->rd, t0);
5633         }
5634         break;
5635     default:
5636         g_assert_not_reached();
5637     }
5638     return true;
5639 }
5640 
5641 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5642 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5643 
5644 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5645 {
5646     switch (a->esz) {
5647     case MO_64:
5648         if (fp_access_check(s)) {
5649             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5650             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5651             TCGv_i64 t2 = tcg_temp_new_i64();
5652 
5653             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5654             if (neg) {
5655                 gen_vfp_negd(t1, t1);
5656             }
5657             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5658             write_fp_dreg(s, a->rd, t0);
5659         }
5660         break;
5661     case MO_32:
5662         if (fp_access_check(s)) {
5663             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5664             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5665             TCGv_i32 t2 = tcg_temp_new_i32();
5666 
5667             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5668             if (neg) {
5669                 gen_vfp_negs(t1, t1);
5670             }
5671             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5672             write_fp_sreg(s, a->rd, t0);
5673         }
5674         break;
5675     case MO_16:
5676         if (!dc_isar_feature(aa64_fp16, s)) {
5677             return false;
5678         }
5679         if (fp_access_check(s)) {
5680             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5681             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5682             TCGv_i32 t2 = tcg_temp_new_i32();
5683 
5684             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5685             if (neg) {
5686                 gen_vfp_negh(t1, t1);
5687             }
5688             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5689                                        fpstatus_ptr(FPST_FPCR_F16));
5690             write_fp_sreg(s, a->rd, t0);
5691         }
5692         break;
5693     default:
5694         g_assert_not_reached();
5695     }
5696     return true;
5697 }
5698 
5699 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5700 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5701 
5702 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5703                                   const ENVScalar2 *f)
5704 {
5705     if (a->esz < MO_16 || a->esz > MO_32) {
5706         return false;
5707     }
5708     if (fp_access_check(s)) {
5709         TCGv_i32 t0 = tcg_temp_new_i32();
5710         TCGv_i32 t1 = tcg_temp_new_i32();
5711 
5712         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5713         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5714         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5715         write_fp_sreg(s, a->rd, t0);
5716     }
5717     return true;
5718 }
5719 
5720 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5721 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5722 
5723 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5724                                   const ENVScalar3 *f)
5725 {
5726     if (a->esz < MO_16 || a->esz > MO_32) {
5727         return false;
5728     }
5729     if (fp_access_check(s)) {
5730         TCGv_i32 t0 = tcg_temp_new_i32();
5731         TCGv_i32 t1 = tcg_temp_new_i32();
5732         TCGv_i32 t2 = tcg_temp_new_i32();
5733 
5734         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5735         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5736         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5737         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5738         write_fp_sreg(s, a->rd, t0);
5739     }
5740     return true;
5741 }
5742 
5743 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5744 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5745 
5746 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5747                               gen_helper_gvec_3_ptr * const fns[3])
5748 {
5749     MemOp esz = a->esz;
5750 
5751     switch (esz) {
5752     case MO_64:
5753         if (!a->q) {
5754             return false;
5755         }
5756         break;
5757     case MO_32:
5758         break;
5759     case MO_16:
5760         if (!dc_isar_feature(aa64_fp16, s)) {
5761             return false;
5762         }
5763         break;
5764     default:
5765         g_assert_not_reached();
5766     }
5767     if (fp_access_check(s)) {
5768         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5769                           esz == MO_16, a->idx, fns[esz - 1]);
5770     }
5771     return true;
5772 }
5773 
5774 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5775     gen_helper_gvec_fmul_idx_h,
5776     gen_helper_gvec_fmul_idx_s,
5777     gen_helper_gvec_fmul_idx_d,
5778 };
5779 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5780 
5781 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5782     gen_helper_gvec_fmulx_idx_h,
5783     gen_helper_gvec_fmulx_idx_s,
5784     gen_helper_gvec_fmulx_idx_d,
5785 };
5786 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5787 
5788 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5789 {
5790     static gen_helper_gvec_4_ptr * const fns[3] = {
5791         gen_helper_gvec_fmla_idx_h,
5792         gen_helper_gvec_fmla_idx_s,
5793         gen_helper_gvec_fmla_idx_d,
5794     };
5795     MemOp esz = a->esz;
5796 
5797     switch (esz) {
5798     case MO_64:
5799         if (!a->q) {
5800             return false;
5801         }
5802         break;
5803     case MO_32:
5804         break;
5805     case MO_16:
5806         if (!dc_isar_feature(aa64_fp16, s)) {
5807             return false;
5808         }
5809         break;
5810     default:
5811         g_assert_not_reached();
5812     }
5813     if (fp_access_check(s)) {
5814         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5815                           esz == MO_16, (a->idx << 1) | neg,
5816                           fns[esz - 1]);
5817     }
5818     return true;
5819 }
5820 
5821 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5822 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5823 
5824 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5825 {
5826     if (fp_access_check(s)) {
5827         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5828         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5829                            vec_full_reg_offset(s, a->rn),
5830                            vec_full_reg_offset(s, a->rm), tcg_env,
5831                            a->q ? 16 : 8, vec_full_reg_size(s),
5832                            data, gen_helper_gvec_fmlal_idx_a64);
5833     }
5834     return true;
5835 }
5836 
5837 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5838 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5839 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5840 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5841 
5842 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5843                                gen_helper_gvec_3 * const fns[2])
5844 {
5845     assert(a->esz == MO_16 || a->esz == MO_32);
5846     if (fp_access_check(s)) {
5847         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5848     }
5849     return true;
5850 }
5851 
5852 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5853     gen_helper_gvec_mul_idx_h,
5854     gen_helper_gvec_mul_idx_s,
5855 };
5856 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5857 
5858 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5859 {
5860     static gen_helper_gvec_4 * const fns[2][2] = {
5861         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5862         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5863     };
5864 
5865     assert(a->esz == MO_16 || a->esz == MO_32);
5866     if (fp_access_check(s)) {
5867         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5868                          a->idx, fns[a->esz - 1][sub]);
5869     }
5870     return true;
5871 }
5872 
5873 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5874 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5875 
5876 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5877                                   gen_helper_gvec_4 * const fns[2])
5878 {
5879     assert(a->esz == MO_16 || a->esz == MO_32);
5880     if (fp_access_check(s)) {
5881         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5882                            vec_full_reg_offset(s, a->rn),
5883                            vec_full_reg_offset(s, a->rm),
5884                            offsetof(CPUARMState, vfp.qc),
5885                            a->q ? 16 : 8, vec_full_reg_size(s),
5886                            a->idx, fns[a->esz - 1]);
5887     }
5888     return true;
5889 }
5890 
5891 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5892     gen_helper_neon_sqdmulh_idx_h,
5893     gen_helper_neon_sqdmulh_idx_s,
5894 };
5895 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5896 
5897 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5898     gen_helper_neon_sqrdmulh_idx_h,
5899     gen_helper_neon_sqrdmulh_idx_s,
5900 };
5901 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5902 
5903 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5904     gen_helper_neon_sqrdmlah_idx_h,
5905     gen_helper_neon_sqrdmlah_idx_s,
5906 };
5907 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5908            f_vector_idx_sqrdmlah)
5909 
5910 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5911     gen_helper_neon_sqrdmlsh_idx_h,
5912     gen_helper_neon_sqrdmlsh_idx_s,
5913 };
5914 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5915            f_vector_idx_sqrdmlsh)
5916 
5917 /*
5918  * Advanced SIMD scalar pairwise
5919  */
5920 
5921 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5922 {
5923     switch (a->esz) {
5924     case MO_64:
5925         if (fp_access_check(s)) {
5926             TCGv_i64 t0 = tcg_temp_new_i64();
5927             TCGv_i64 t1 = tcg_temp_new_i64();
5928 
5929             read_vec_element(s, t0, a->rn, 0, MO_64);
5930             read_vec_element(s, t1, a->rn, 1, MO_64);
5931             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5932             write_fp_dreg(s, a->rd, t0);
5933         }
5934         break;
5935     case MO_32:
5936         if (fp_access_check(s)) {
5937             TCGv_i32 t0 = tcg_temp_new_i32();
5938             TCGv_i32 t1 = tcg_temp_new_i32();
5939 
5940             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5941             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5942             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5943             write_fp_sreg(s, a->rd, t0);
5944         }
5945         break;
5946     case MO_16:
5947         if (!dc_isar_feature(aa64_fp16, s)) {
5948             return false;
5949         }
5950         if (fp_access_check(s)) {
5951             TCGv_i32 t0 = tcg_temp_new_i32();
5952             TCGv_i32 t1 = tcg_temp_new_i32();
5953 
5954             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5955             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5956             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5957             write_fp_sreg(s, a->rd, t0);
5958         }
5959         break;
5960     default:
5961         g_assert_not_reached();
5962     }
5963     return true;
5964 }
5965 
5966 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5967 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5968 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5969 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5970 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5971 
5972 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5973 {
5974     if (fp_access_check(s)) {
5975         TCGv_i64 t0 = tcg_temp_new_i64();
5976         TCGv_i64 t1 = tcg_temp_new_i64();
5977 
5978         read_vec_element(s, t0, a->rn, 0, MO_64);
5979         read_vec_element(s, t1, a->rn, 1, MO_64);
5980         tcg_gen_add_i64(t0, t0, t1);
5981         write_fp_dreg(s, a->rd, t0);
5982     }
5983     return true;
5984 }
5985 
5986 /*
5987  * Floating-point conditional select
5988  */
5989 
5990 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
5991 {
5992     TCGv_i64 t_true, t_false;
5993     DisasCompare64 c;
5994 
5995     switch (a->esz) {
5996     case MO_32:
5997     case MO_64:
5998         break;
5999     case MO_16:
6000         if (!dc_isar_feature(aa64_fp16, s)) {
6001             return false;
6002         }
6003         break;
6004     default:
6005         return false;
6006     }
6007 
6008     if (!fp_access_check(s)) {
6009         return true;
6010     }
6011 
6012     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6013     t_true = tcg_temp_new_i64();
6014     t_false = tcg_temp_new_i64();
6015     read_vec_element(s, t_true, a->rn, 0, a->esz);
6016     read_vec_element(s, t_false, a->rm, 0, a->esz);
6017 
6018     a64_test_cc(&c, a->cond);
6019     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6020                         t_true, t_false);
6021 
6022     /*
6023      * Note that sregs & hregs write back zeros to the high bits,
6024      * and we've already done the zero-extension.
6025      */
6026     write_fp_dreg(s, a->rd, t_true);
6027     return true;
6028 }
6029 
6030 /*
6031  * Floating-point data-processing (3 source)
6032  */
6033 
6034 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6035 {
6036     TCGv_ptr fpst;
6037 
6038     /*
6039      * These are fused multiply-add.  Note that doing the negations here
6040      * as separate steps is correct: an input NaN should come out with
6041      * its sign bit flipped if it is a negated-input.
6042      */
6043     switch (a->esz) {
6044     case MO_64:
6045         if (fp_access_check(s)) {
6046             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6047             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6048             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6049 
6050             if (neg_a) {
6051                 gen_vfp_negd(ta, ta);
6052             }
6053             if (neg_n) {
6054                 gen_vfp_negd(tn, tn);
6055             }
6056             fpst = fpstatus_ptr(FPST_FPCR);
6057             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6058             write_fp_dreg(s, a->rd, ta);
6059         }
6060         break;
6061 
6062     case MO_32:
6063         if (fp_access_check(s)) {
6064             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6065             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6066             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6067 
6068             if (neg_a) {
6069                 gen_vfp_negs(ta, ta);
6070             }
6071             if (neg_n) {
6072                 gen_vfp_negs(tn, tn);
6073             }
6074             fpst = fpstatus_ptr(FPST_FPCR);
6075             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6076             write_fp_sreg(s, a->rd, ta);
6077         }
6078         break;
6079 
6080     case MO_16:
6081         if (!dc_isar_feature(aa64_fp16, s)) {
6082             return false;
6083         }
6084         if (fp_access_check(s)) {
6085             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6086             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6087             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6088 
6089             if (neg_a) {
6090                 gen_vfp_negh(ta, ta);
6091             }
6092             if (neg_n) {
6093                 gen_vfp_negh(tn, tn);
6094             }
6095             fpst = fpstatus_ptr(FPST_FPCR_F16);
6096             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6097             write_fp_sreg(s, a->rd, ta);
6098         }
6099         break;
6100 
6101     default:
6102         return false;
6103     }
6104     return true;
6105 }
6106 
6107 TRANS(FMADD, do_fmadd, a, false, false)
6108 TRANS(FNMADD, do_fmadd, a, true, true)
6109 TRANS(FMSUB, do_fmadd, a, false, true)
6110 TRANS(FNMSUB, do_fmadd, a, true, false)
6111 
6112 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6113  * Note that it is the caller's responsibility to ensure that the
6114  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6115  * mandated semantics for out of range shifts.
6116  */
6117 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6118                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6119 {
6120     switch (shift_type) {
6121     case A64_SHIFT_TYPE_LSL:
6122         tcg_gen_shl_i64(dst, src, shift_amount);
6123         break;
6124     case A64_SHIFT_TYPE_LSR:
6125         tcg_gen_shr_i64(dst, src, shift_amount);
6126         break;
6127     case A64_SHIFT_TYPE_ASR:
6128         if (!sf) {
6129             tcg_gen_ext32s_i64(dst, src);
6130         }
6131         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6132         break;
6133     case A64_SHIFT_TYPE_ROR:
6134         if (sf) {
6135             tcg_gen_rotr_i64(dst, src, shift_amount);
6136         } else {
6137             TCGv_i32 t0, t1;
6138             t0 = tcg_temp_new_i32();
6139             t1 = tcg_temp_new_i32();
6140             tcg_gen_extrl_i64_i32(t0, src);
6141             tcg_gen_extrl_i64_i32(t1, shift_amount);
6142             tcg_gen_rotr_i32(t0, t0, t1);
6143             tcg_gen_extu_i32_i64(dst, t0);
6144         }
6145         break;
6146     default:
6147         assert(FALSE); /* all shift types should be handled */
6148         break;
6149     }
6150 
6151     if (!sf) { /* zero extend final result */
6152         tcg_gen_ext32u_i64(dst, dst);
6153     }
6154 }
6155 
6156 /* Shift a TCGv src by immediate, put result in dst.
6157  * The shift amount must be in range (this should always be true as the
6158  * relevant instructions will UNDEF on bad shift immediates).
6159  */
6160 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6161                           enum a64_shift_type shift_type, unsigned int shift_i)
6162 {
6163     assert(shift_i < (sf ? 64 : 32));
6164 
6165     if (shift_i == 0) {
6166         tcg_gen_mov_i64(dst, src);
6167     } else {
6168         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6169     }
6170 }
6171 
6172 /* Logical (shifted register)
6173  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6174  * +----+-----+-----------+-------+---+------+--------+------+------+
6175  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6176  * +----+-----+-----------+-------+---+------+--------+------+------+
6177  */
6178 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6179 {
6180     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6181     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6182 
6183     sf = extract32(insn, 31, 1);
6184     opc = extract32(insn, 29, 2);
6185     shift_type = extract32(insn, 22, 2);
6186     invert = extract32(insn, 21, 1);
6187     rm = extract32(insn, 16, 5);
6188     shift_amount = extract32(insn, 10, 6);
6189     rn = extract32(insn, 5, 5);
6190     rd = extract32(insn, 0, 5);
6191 
6192     if (!sf && (shift_amount & (1 << 5))) {
6193         unallocated_encoding(s);
6194         return;
6195     }
6196 
6197     tcg_rd = cpu_reg(s, rd);
6198 
6199     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6200         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6201          * register-register MOV and MVN, so it is worth special casing.
6202          */
6203         tcg_rm = cpu_reg(s, rm);
6204         if (invert) {
6205             tcg_gen_not_i64(tcg_rd, tcg_rm);
6206             if (!sf) {
6207                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6208             }
6209         } else {
6210             if (sf) {
6211                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6212             } else {
6213                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6214             }
6215         }
6216         return;
6217     }
6218 
6219     tcg_rm = read_cpu_reg(s, rm, sf);
6220 
6221     if (shift_amount) {
6222         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6223     }
6224 
6225     tcg_rn = cpu_reg(s, rn);
6226 
6227     switch (opc | (invert << 2)) {
6228     case 0: /* AND */
6229     case 3: /* ANDS */
6230         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6231         break;
6232     case 1: /* ORR */
6233         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6234         break;
6235     case 2: /* EOR */
6236         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6237         break;
6238     case 4: /* BIC */
6239     case 7: /* BICS */
6240         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6241         break;
6242     case 5: /* ORN */
6243         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6244         break;
6245     case 6: /* EON */
6246         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6247         break;
6248     default:
6249         assert(FALSE);
6250         break;
6251     }
6252 
6253     if (!sf) {
6254         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6255     }
6256 
6257     if (opc == 3) {
6258         gen_logic_CC(sf, tcg_rd);
6259     }
6260 }
6261 
6262 /*
6263  * Add/subtract (extended register)
6264  *
6265  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6266  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6267  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6268  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6269  *
6270  *  sf: 0 -> 32bit, 1 -> 64bit
6271  *  op: 0 -> add  , 1 -> sub
6272  *   S: 1 -> set flags
6273  * opt: 00
6274  * option: extension type (see DecodeRegExtend)
6275  * imm3: optional shift to Rm
6276  *
6277  * Rd = Rn + LSL(extend(Rm), amount)
6278  */
6279 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6280 {
6281     int rd = extract32(insn, 0, 5);
6282     int rn = extract32(insn, 5, 5);
6283     int imm3 = extract32(insn, 10, 3);
6284     int option = extract32(insn, 13, 3);
6285     int rm = extract32(insn, 16, 5);
6286     int opt = extract32(insn, 22, 2);
6287     bool setflags = extract32(insn, 29, 1);
6288     bool sub_op = extract32(insn, 30, 1);
6289     bool sf = extract32(insn, 31, 1);
6290 
6291     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6292     TCGv_i64 tcg_rd;
6293     TCGv_i64 tcg_result;
6294 
6295     if (imm3 > 4 || opt != 0) {
6296         unallocated_encoding(s);
6297         return;
6298     }
6299 
6300     /* non-flag setting ops may use SP */
6301     if (!setflags) {
6302         tcg_rd = cpu_reg_sp(s, rd);
6303     } else {
6304         tcg_rd = cpu_reg(s, rd);
6305     }
6306     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6307 
6308     tcg_rm = read_cpu_reg(s, rm, sf);
6309     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6310 
6311     tcg_result = tcg_temp_new_i64();
6312 
6313     if (!setflags) {
6314         if (sub_op) {
6315             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6316         } else {
6317             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6318         }
6319     } else {
6320         if (sub_op) {
6321             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6322         } else {
6323             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6324         }
6325     }
6326 
6327     if (sf) {
6328         tcg_gen_mov_i64(tcg_rd, tcg_result);
6329     } else {
6330         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6331     }
6332 }
6333 
6334 /*
6335  * Add/subtract (shifted register)
6336  *
6337  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6338  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6339  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6340  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6341  *
6342  *    sf: 0 -> 32bit, 1 -> 64bit
6343  *    op: 0 -> add  , 1 -> sub
6344  *     S: 1 -> set flags
6345  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6346  *  imm6: Shift amount to apply to Rm before the add/sub
6347  */
6348 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6349 {
6350     int rd = extract32(insn, 0, 5);
6351     int rn = extract32(insn, 5, 5);
6352     int imm6 = extract32(insn, 10, 6);
6353     int rm = extract32(insn, 16, 5);
6354     int shift_type = extract32(insn, 22, 2);
6355     bool setflags = extract32(insn, 29, 1);
6356     bool sub_op = extract32(insn, 30, 1);
6357     bool sf = extract32(insn, 31, 1);
6358 
6359     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6360     TCGv_i64 tcg_rn, tcg_rm;
6361     TCGv_i64 tcg_result;
6362 
6363     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6364         unallocated_encoding(s);
6365         return;
6366     }
6367 
6368     tcg_rn = read_cpu_reg(s, rn, sf);
6369     tcg_rm = read_cpu_reg(s, rm, sf);
6370 
6371     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6372 
6373     tcg_result = tcg_temp_new_i64();
6374 
6375     if (!setflags) {
6376         if (sub_op) {
6377             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6378         } else {
6379             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6380         }
6381     } else {
6382         if (sub_op) {
6383             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6384         } else {
6385             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6386         }
6387     }
6388 
6389     if (sf) {
6390         tcg_gen_mov_i64(tcg_rd, tcg_result);
6391     } else {
6392         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6393     }
6394 }
6395 
6396 /* Data-processing (3 source)
6397  *
6398  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6399  *  +--+------+-----------+------+------+----+------+------+------+
6400  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6401  *  +--+------+-----------+------+------+----+------+------+------+
6402  */
6403 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6404 {
6405     int rd = extract32(insn, 0, 5);
6406     int rn = extract32(insn, 5, 5);
6407     int ra = extract32(insn, 10, 5);
6408     int rm = extract32(insn, 16, 5);
6409     int op_id = (extract32(insn, 29, 3) << 4) |
6410         (extract32(insn, 21, 3) << 1) |
6411         extract32(insn, 15, 1);
6412     bool sf = extract32(insn, 31, 1);
6413     bool is_sub = extract32(op_id, 0, 1);
6414     bool is_high = extract32(op_id, 2, 1);
6415     bool is_signed = false;
6416     TCGv_i64 tcg_op1;
6417     TCGv_i64 tcg_op2;
6418     TCGv_i64 tcg_tmp;
6419 
6420     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6421     switch (op_id) {
6422     case 0x42: /* SMADDL */
6423     case 0x43: /* SMSUBL */
6424     case 0x44: /* SMULH */
6425         is_signed = true;
6426         break;
6427     case 0x0: /* MADD (32bit) */
6428     case 0x1: /* MSUB (32bit) */
6429     case 0x40: /* MADD (64bit) */
6430     case 0x41: /* MSUB (64bit) */
6431     case 0x4a: /* UMADDL */
6432     case 0x4b: /* UMSUBL */
6433     case 0x4c: /* UMULH */
6434         break;
6435     default:
6436         unallocated_encoding(s);
6437         return;
6438     }
6439 
6440     if (is_high) {
6441         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6442         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6443         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6444         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6445 
6446         if (is_signed) {
6447             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6448         } else {
6449             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6450         }
6451         return;
6452     }
6453 
6454     tcg_op1 = tcg_temp_new_i64();
6455     tcg_op2 = tcg_temp_new_i64();
6456     tcg_tmp = tcg_temp_new_i64();
6457 
6458     if (op_id < 0x42) {
6459         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6460         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6461     } else {
6462         if (is_signed) {
6463             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6464             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6465         } else {
6466             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6467             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6468         }
6469     }
6470 
6471     if (ra == 31 && !is_sub) {
6472         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6473         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6474     } else {
6475         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6476         if (is_sub) {
6477             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6478         } else {
6479             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6480         }
6481     }
6482 
6483     if (!sf) {
6484         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6485     }
6486 }
6487 
6488 /* Add/subtract (with carry)
6489  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6490  * +--+--+--+------------------------+------+-------------+------+-----+
6491  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6492  * +--+--+--+------------------------+------+-------------+------+-----+
6493  */
6494 
6495 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6496 {
6497     unsigned int sf, op, setflags, rm, rn, rd;
6498     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6499 
6500     sf = extract32(insn, 31, 1);
6501     op = extract32(insn, 30, 1);
6502     setflags = extract32(insn, 29, 1);
6503     rm = extract32(insn, 16, 5);
6504     rn = extract32(insn, 5, 5);
6505     rd = extract32(insn, 0, 5);
6506 
6507     tcg_rd = cpu_reg(s, rd);
6508     tcg_rn = cpu_reg(s, rn);
6509 
6510     if (op) {
6511         tcg_y = tcg_temp_new_i64();
6512         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6513     } else {
6514         tcg_y = cpu_reg(s, rm);
6515     }
6516 
6517     if (setflags) {
6518         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6519     } else {
6520         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6521     }
6522 }
6523 
6524 /*
6525  * Rotate right into flags
6526  *  31 30 29                21       15          10      5  4      0
6527  * +--+--+--+-----------------+--------+-----------+------+--+------+
6528  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6529  * +--+--+--+-----------------+--------+-----------+------+--+------+
6530  */
6531 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6532 {
6533     int mask = extract32(insn, 0, 4);
6534     int o2 = extract32(insn, 4, 1);
6535     int rn = extract32(insn, 5, 5);
6536     int imm6 = extract32(insn, 15, 6);
6537     int sf_op_s = extract32(insn, 29, 3);
6538     TCGv_i64 tcg_rn;
6539     TCGv_i32 nzcv;
6540 
6541     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6542         unallocated_encoding(s);
6543         return;
6544     }
6545 
6546     tcg_rn = read_cpu_reg(s, rn, 1);
6547     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6548 
6549     nzcv = tcg_temp_new_i32();
6550     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6551 
6552     if (mask & 8) { /* N */
6553         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6554     }
6555     if (mask & 4) { /* Z */
6556         tcg_gen_not_i32(cpu_ZF, nzcv);
6557         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6558     }
6559     if (mask & 2) { /* C */
6560         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6561     }
6562     if (mask & 1) { /* V */
6563         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6564     }
6565 }
6566 
6567 /*
6568  * Evaluate into flags
6569  *  31 30 29                21        15   14        10      5  4      0
6570  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6571  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6572  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6573  */
6574 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6575 {
6576     int o3_mask = extract32(insn, 0, 5);
6577     int rn = extract32(insn, 5, 5);
6578     int o2 = extract32(insn, 15, 6);
6579     int sz = extract32(insn, 14, 1);
6580     int sf_op_s = extract32(insn, 29, 3);
6581     TCGv_i32 tmp;
6582     int shift;
6583 
6584     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6585         !dc_isar_feature(aa64_condm_4, s)) {
6586         unallocated_encoding(s);
6587         return;
6588     }
6589     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6590 
6591     tmp = tcg_temp_new_i32();
6592     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6593     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6594     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6595     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6596     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6597 }
6598 
6599 /* Conditional compare (immediate / register)
6600  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6601  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6602  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6603  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6604  *        [1]                             y                [0]       [0]
6605  */
6606 static void disas_cc(DisasContext *s, uint32_t insn)
6607 {
6608     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6609     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6610     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6611     DisasCompare c;
6612 
6613     if (!extract32(insn, 29, 1)) {
6614         unallocated_encoding(s);
6615         return;
6616     }
6617     if (insn & (1 << 10 | 1 << 4)) {
6618         unallocated_encoding(s);
6619         return;
6620     }
6621     sf = extract32(insn, 31, 1);
6622     op = extract32(insn, 30, 1);
6623     is_imm = extract32(insn, 11, 1);
6624     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6625     cond = extract32(insn, 12, 4);
6626     rn = extract32(insn, 5, 5);
6627     nzcv = extract32(insn, 0, 4);
6628 
6629     /* Set T0 = !COND.  */
6630     tcg_t0 = tcg_temp_new_i32();
6631     arm_test_cc(&c, cond);
6632     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6633 
6634     /* Load the arguments for the new comparison.  */
6635     if (is_imm) {
6636         tcg_y = tcg_temp_new_i64();
6637         tcg_gen_movi_i64(tcg_y, y);
6638     } else {
6639         tcg_y = cpu_reg(s, y);
6640     }
6641     tcg_rn = cpu_reg(s, rn);
6642 
6643     /* Set the flags for the new comparison.  */
6644     tcg_tmp = tcg_temp_new_i64();
6645     if (op) {
6646         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6647     } else {
6648         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6649     }
6650 
6651     /* If COND was false, force the flags to #nzcv.  Compute two masks
6652      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6653      * For tcg hosts that support ANDC, we can make do with just T1.
6654      * In either case, allow the tcg optimizer to delete any unused mask.
6655      */
6656     tcg_t1 = tcg_temp_new_i32();
6657     tcg_t2 = tcg_temp_new_i32();
6658     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6659     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6660 
6661     if (nzcv & 8) { /* N */
6662         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6663     } else {
6664         if (TCG_TARGET_HAS_andc_i32) {
6665             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6666         } else {
6667             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6668         }
6669     }
6670     if (nzcv & 4) { /* Z */
6671         if (TCG_TARGET_HAS_andc_i32) {
6672             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6673         } else {
6674             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6675         }
6676     } else {
6677         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6678     }
6679     if (nzcv & 2) { /* C */
6680         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6681     } else {
6682         if (TCG_TARGET_HAS_andc_i32) {
6683             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6684         } else {
6685             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6686         }
6687     }
6688     if (nzcv & 1) { /* V */
6689         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6690     } else {
6691         if (TCG_TARGET_HAS_andc_i32) {
6692             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6693         } else {
6694             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6695         }
6696     }
6697 }
6698 
6699 /* Conditional select
6700  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6701  * +----+----+---+-----------------+------+------+-----+------+------+
6702  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6703  * +----+----+---+-----------------+------+------+-----+------+------+
6704  */
6705 static void disas_cond_select(DisasContext *s, uint32_t insn)
6706 {
6707     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6708     TCGv_i64 tcg_rd, zero;
6709     DisasCompare64 c;
6710 
6711     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6712         /* S == 1 or op2<1> == 1 */
6713         unallocated_encoding(s);
6714         return;
6715     }
6716     sf = extract32(insn, 31, 1);
6717     else_inv = extract32(insn, 30, 1);
6718     rm = extract32(insn, 16, 5);
6719     cond = extract32(insn, 12, 4);
6720     else_inc = extract32(insn, 10, 1);
6721     rn = extract32(insn, 5, 5);
6722     rd = extract32(insn, 0, 5);
6723 
6724     tcg_rd = cpu_reg(s, rd);
6725 
6726     a64_test_cc(&c, cond);
6727     zero = tcg_constant_i64(0);
6728 
6729     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6730         /* CSET & CSETM.  */
6731         if (else_inv) {
6732             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6733                                    tcg_rd, c.value, zero);
6734         } else {
6735             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6736                                 tcg_rd, c.value, zero);
6737         }
6738     } else {
6739         TCGv_i64 t_true = cpu_reg(s, rn);
6740         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6741         if (else_inv && else_inc) {
6742             tcg_gen_neg_i64(t_false, t_false);
6743         } else if (else_inv) {
6744             tcg_gen_not_i64(t_false, t_false);
6745         } else if (else_inc) {
6746             tcg_gen_addi_i64(t_false, t_false, 1);
6747         }
6748         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6749     }
6750 
6751     if (!sf) {
6752         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6753     }
6754 }
6755 
6756 static void handle_clz(DisasContext *s, unsigned int sf,
6757                        unsigned int rn, unsigned int rd)
6758 {
6759     TCGv_i64 tcg_rd, tcg_rn;
6760     tcg_rd = cpu_reg(s, rd);
6761     tcg_rn = cpu_reg(s, rn);
6762 
6763     if (sf) {
6764         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6765     } else {
6766         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6767         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6768         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6769         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6770     }
6771 }
6772 
6773 static void handle_cls(DisasContext *s, unsigned int sf,
6774                        unsigned int rn, unsigned int rd)
6775 {
6776     TCGv_i64 tcg_rd, tcg_rn;
6777     tcg_rd = cpu_reg(s, rd);
6778     tcg_rn = cpu_reg(s, rn);
6779 
6780     if (sf) {
6781         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6782     } else {
6783         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6784         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6785         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6786         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6787     }
6788 }
6789 
6790 static void handle_rbit(DisasContext *s, unsigned int sf,
6791                         unsigned int rn, unsigned int rd)
6792 {
6793     TCGv_i64 tcg_rd, tcg_rn;
6794     tcg_rd = cpu_reg(s, rd);
6795     tcg_rn = cpu_reg(s, rn);
6796 
6797     if (sf) {
6798         gen_helper_rbit64(tcg_rd, tcg_rn);
6799     } else {
6800         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6801         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6802         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6803         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6804     }
6805 }
6806 
6807 /* REV with sf==1, opcode==3 ("REV64") */
6808 static void handle_rev64(DisasContext *s, unsigned int sf,
6809                          unsigned int rn, unsigned int rd)
6810 {
6811     if (!sf) {
6812         unallocated_encoding(s);
6813         return;
6814     }
6815     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6816 }
6817 
6818 /* REV with sf==0, opcode==2
6819  * REV32 (sf==1, opcode==2)
6820  */
6821 static void handle_rev32(DisasContext *s, unsigned int sf,
6822                          unsigned int rn, unsigned int rd)
6823 {
6824     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6825     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6826 
6827     if (sf) {
6828         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6829         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6830     } else {
6831         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6832     }
6833 }
6834 
6835 /* REV16 (opcode==1) */
6836 static void handle_rev16(DisasContext *s, unsigned int sf,
6837                          unsigned int rn, unsigned int rd)
6838 {
6839     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6840     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6841     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6842     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6843 
6844     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6845     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6846     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6847     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6848     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6849 }
6850 
6851 /* Data-processing (1 source)
6852  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6853  * +----+---+---+-----------------+---------+--------+------+------+
6854  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6855  * +----+---+---+-----------------+---------+--------+------+------+
6856  */
6857 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6858 {
6859     unsigned int sf, opcode, opcode2, rn, rd;
6860     TCGv_i64 tcg_rd;
6861 
6862     if (extract32(insn, 29, 1)) {
6863         unallocated_encoding(s);
6864         return;
6865     }
6866 
6867     sf = extract32(insn, 31, 1);
6868     opcode = extract32(insn, 10, 6);
6869     opcode2 = extract32(insn, 16, 5);
6870     rn = extract32(insn, 5, 5);
6871     rd = extract32(insn, 0, 5);
6872 
6873 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6874 
6875     switch (MAP(sf, opcode2, opcode)) {
6876     case MAP(0, 0x00, 0x00): /* RBIT */
6877     case MAP(1, 0x00, 0x00):
6878         handle_rbit(s, sf, rn, rd);
6879         break;
6880     case MAP(0, 0x00, 0x01): /* REV16 */
6881     case MAP(1, 0x00, 0x01):
6882         handle_rev16(s, sf, rn, rd);
6883         break;
6884     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6885     case MAP(1, 0x00, 0x02):
6886         handle_rev32(s, sf, rn, rd);
6887         break;
6888     case MAP(1, 0x00, 0x03): /* REV64 */
6889         handle_rev64(s, sf, rn, rd);
6890         break;
6891     case MAP(0, 0x00, 0x04): /* CLZ */
6892     case MAP(1, 0x00, 0x04):
6893         handle_clz(s, sf, rn, rd);
6894         break;
6895     case MAP(0, 0x00, 0x05): /* CLS */
6896     case MAP(1, 0x00, 0x05):
6897         handle_cls(s, sf, rn, rd);
6898         break;
6899     case MAP(1, 0x01, 0x00): /* PACIA */
6900         if (s->pauth_active) {
6901             tcg_rd = cpu_reg(s, rd);
6902             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6903         } else if (!dc_isar_feature(aa64_pauth, s)) {
6904             goto do_unallocated;
6905         }
6906         break;
6907     case MAP(1, 0x01, 0x01): /* PACIB */
6908         if (s->pauth_active) {
6909             tcg_rd = cpu_reg(s, rd);
6910             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6911         } else if (!dc_isar_feature(aa64_pauth, s)) {
6912             goto do_unallocated;
6913         }
6914         break;
6915     case MAP(1, 0x01, 0x02): /* PACDA */
6916         if (s->pauth_active) {
6917             tcg_rd = cpu_reg(s, rd);
6918             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6919         } else if (!dc_isar_feature(aa64_pauth, s)) {
6920             goto do_unallocated;
6921         }
6922         break;
6923     case MAP(1, 0x01, 0x03): /* PACDB */
6924         if (s->pauth_active) {
6925             tcg_rd = cpu_reg(s, rd);
6926             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6927         } else if (!dc_isar_feature(aa64_pauth, s)) {
6928             goto do_unallocated;
6929         }
6930         break;
6931     case MAP(1, 0x01, 0x04): /* AUTIA */
6932         if (s->pauth_active) {
6933             tcg_rd = cpu_reg(s, rd);
6934             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6935         } else if (!dc_isar_feature(aa64_pauth, s)) {
6936             goto do_unallocated;
6937         }
6938         break;
6939     case MAP(1, 0x01, 0x05): /* AUTIB */
6940         if (s->pauth_active) {
6941             tcg_rd = cpu_reg(s, rd);
6942             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6943         } else if (!dc_isar_feature(aa64_pauth, s)) {
6944             goto do_unallocated;
6945         }
6946         break;
6947     case MAP(1, 0x01, 0x06): /* AUTDA */
6948         if (s->pauth_active) {
6949             tcg_rd = cpu_reg(s, rd);
6950             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6951         } else if (!dc_isar_feature(aa64_pauth, s)) {
6952             goto do_unallocated;
6953         }
6954         break;
6955     case MAP(1, 0x01, 0x07): /* AUTDB */
6956         if (s->pauth_active) {
6957             tcg_rd = cpu_reg(s, rd);
6958             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6959         } else if (!dc_isar_feature(aa64_pauth, s)) {
6960             goto do_unallocated;
6961         }
6962         break;
6963     case MAP(1, 0x01, 0x08): /* PACIZA */
6964         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6965             goto do_unallocated;
6966         } else if (s->pauth_active) {
6967             tcg_rd = cpu_reg(s, rd);
6968             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6969         }
6970         break;
6971     case MAP(1, 0x01, 0x09): /* PACIZB */
6972         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6973             goto do_unallocated;
6974         } else if (s->pauth_active) {
6975             tcg_rd = cpu_reg(s, rd);
6976             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6977         }
6978         break;
6979     case MAP(1, 0x01, 0x0a): /* PACDZA */
6980         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6981             goto do_unallocated;
6982         } else if (s->pauth_active) {
6983             tcg_rd = cpu_reg(s, rd);
6984             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6985         }
6986         break;
6987     case MAP(1, 0x01, 0x0b): /* PACDZB */
6988         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6989             goto do_unallocated;
6990         } else if (s->pauth_active) {
6991             tcg_rd = cpu_reg(s, rd);
6992             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6993         }
6994         break;
6995     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6996         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6997             goto do_unallocated;
6998         } else if (s->pauth_active) {
6999             tcg_rd = cpu_reg(s, rd);
7000             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7001         }
7002         break;
7003     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7004         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7005             goto do_unallocated;
7006         } else if (s->pauth_active) {
7007             tcg_rd = cpu_reg(s, rd);
7008             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7009         }
7010         break;
7011     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7012         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7013             goto do_unallocated;
7014         } else if (s->pauth_active) {
7015             tcg_rd = cpu_reg(s, rd);
7016             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7017         }
7018         break;
7019     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7020         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7021             goto do_unallocated;
7022         } else if (s->pauth_active) {
7023             tcg_rd = cpu_reg(s, rd);
7024             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7025         }
7026         break;
7027     case MAP(1, 0x01, 0x10): /* XPACI */
7028         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7029             goto do_unallocated;
7030         } else if (s->pauth_active) {
7031             tcg_rd = cpu_reg(s, rd);
7032             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7033         }
7034         break;
7035     case MAP(1, 0x01, 0x11): /* XPACD */
7036         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7037             goto do_unallocated;
7038         } else if (s->pauth_active) {
7039             tcg_rd = cpu_reg(s, rd);
7040             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7041         }
7042         break;
7043     default:
7044     do_unallocated:
7045         unallocated_encoding(s);
7046         break;
7047     }
7048 
7049 #undef MAP
7050 }
7051 
7052 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7053                        unsigned int rm, unsigned int rn, unsigned int rd)
7054 {
7055     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7056     tcg_rd = cpu_reg(s, rd);
7057 
7058     if (!sf && is_signed) {
7059         tcg_n = tcg_temp_new_i64();
7060         tcg_m = tcg_temp_new_i64();
7061         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7062         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7063     } else {
7064         tcg_n = read_cpu_reg(s, rn, sf);
7065         tcg_m = read_cpu_reg(s, rm, sf);
7066     }
7067 
7068     if (is_signed) {
7069         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7070     } else {
7071         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7072     }
7073 
7074     if (!sf) { /* zero extend final result */
7075         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7076     }
7077 }
7078 
7079 /* LSLV, LSRV, ASRV, RORV */
7080 static void handle_shift_reg(DisasContext *s,
7081                              enum a64_shift_type shift_type, unsigned int sf,
7082                              unsigned int rm, unsigned int rn, unsigned int rd)
7083 {
7084     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7085     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7086     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7087 
7088     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7089     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7090 }
7091 
7092 /* CRC32[BHWX], CRC32C[BHWX] */
7093 static void handle_crc32(DisasContext *s,
7094                          unsigned int sf, unsigned int sz, bool crc32c,
7095                          unsigned int rm, unsigned int rn, unsigned int rd)
7096 {
7097     TCGv_i64 tcg_acc, tcg_val;
7098     TCGv_i32 tcg_bytes;
7099 
7100     if (!dc_isar_feature(aa64_crc32, s)
7101         || (sf == 1 && sz != 3)
7102         || (sf == 0 && sz == 3)) {
7103         unallocated_encoding(s);
7104         return;
7105     }
7106 
7107     if (sz == 3) {
7108         tcg_val = cpu_reg(s, rm);
7109     } else {
7110         uint64_t mask;
7111         switch (sz) {
7112         case 0:
7113             mask = 0xFF;
7114             break;
7115         case 1:
7116             mask = 0xFFFF;
7117             break;
7118         case 2:
7119             mask = 0xFFFFFFFF;
7120             break;
7121         default:
7122             g_assert_not_reached();
7123         }
7124         tcg_val = tcg_temp_new_i64();
7125         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7126     }
7127 
7128     tcg_acc = cpu_reg(s, rn);
7129     tcg_bytes = tcg_constant_i32(1 << sz);
7130 
7131     if (crc32c) {
7132         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7133     } else {
7134         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7135     }
7136 }
7137 
7138 /* Data-processing (2 source)
7139  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7140  * +----+---+---+-----------------+------+--------+------+------+
7141  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7142  * +----+---+---+-----------------+------+--------+------+------+
7143  */
7144 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7145 {
7146     unsigned int sf, rm, opcode, rn, rd, setflag;
7147     sf = extract32(insn, 31, 1);
7148     setflag = extract32(insn, 29, 1);
7149     rm = extract32(insn, 16, 5);
7150     opcode = extract32(insn, 10, 6);
7151     rn = extract32(insn, 5, 5);
7152     rd = extract32(insn, 0, 5);
7153 
7154     if (setflag && opcode != 0) {
7155         unallocated_encoding(s);
7156         return;
7157     }
7158 
7159     switch (opcode) {
7160     case 0: /* SUBP(S) */
7161         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7162             goto do_unallocated;
7163         } else {
7164             TCGv_i64 tcg_n, tcg_m, tcg_d;
7165 
7166             tcg_n = read_cpu_reg_sp(s, rn, true);
7167             tcg_m = read_cpu_reg_sp(s, rm, true);
7168             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7169             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7170             tcg_d = cpu_reg(s, rd);
7171 
7172             if (setflag) {
7173                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7174             } else {
7175                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7176             }
7177         }
7178         break;
7179     case 2: /* UDIV */
7180         handle_div(s, false, sf, rm, rn, rd);
7181         break;
7182     case 3: /* SDIV */
7183         handle_div(s, true, sf, rm, rn, rd);
7184         break;
7185     case 4: /* IRG */
7186         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7187             goto do_unallocated;
7188         }
7189         if (s->ata[0]) {
7190             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7191                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7192         } else {
7193             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7194                                              cpu_reg_sp(s, rn));
7195         }
7196         break;
7197     case 5: /* GMI */
7198         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7199             goto do_unallocated;
7200         } else {
7201             TCGv_i64 t = tcg_temp_new_i64();
7202 
7203             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7204             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7205             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7206         }
7207         break;
7208     case 8: /* LSLV */
7209         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7210         break;
7211     case 9: /* LSRV */
7212         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7213         break;
7214     case 10: /* ASRV */
7215         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7216         break;
7217     case 11: /* RORV */
7218         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7219         break;
7220     case 12: /* PACGA */
7221         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7222             goto do_unallocated;
7223         }
7224         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7225                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7226         break;
7227     case 16:
7228     case 17:
7229     case 18:
7230     case 19:
7231     case 20:
7232     case 21:
7233     case 22:
7234     case 23: /* CRC32 */
7235     {
7236         int sz = extract32(opcode, 0, 2);
7237         bool crc32c = extract32(opcode, 2, 1);
7238         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7239         break;
7240     }
7241     default:
7242     do_unallocated:
7243         unallocated_encoding(s);
7244         break;
7245     }
7246 }
7247 
7248 /*
7249  * Data processing - register
7250  *  31  30 29  28      25    21  20  16      10         0
7251  * +--+---+--+---+-------+-----+-------+-------+---------+
7252  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7253  * +--+---+--+---+-------+-----+-------+-------+---------+
7254  */
7255 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7256 {
7257     int op0 = extract32(insn, 30, 1);
7258     int op1 = extract32(insn, 28, 1);
7259     int op2 = extract32(insn, 21, 4);
7260     int op3 = extract32(insn, 10, 6);
7261 
7262     if (!op1) {
7263         if (op2 & 8) {
7264             if (op2 & 1) {
7265                 /* Add/sub (extended register) */
7266                 disas_add_sub_ext_reg(s, insn);
7267             } else {
7268                 /* Add/sub (shifted register) */
7269                 disas_add_sub_reg(s, insn);
7270             }
7271         } else {
7272             /* Logical (shifted register) */
7273             disas_logic_reg(s, insn);
7274         }
7275         return;
7276     }
7277 
7278     switch (op2) {
7279     case 0x0:
7280         switch (op3) {
7281         case 0x00: /* Add/subtract (with carry) */
7282             disas_adc_sbc(s, insn);
7283             break;
7284 
7285         case 0x01: /* Rotate right into flags */
7286         case 0x21:
7287             disas_rotate_right_into_flags(s, insn);
7288             break;
7289 
7290         case 0x02: /* Evaluate into flags */
7291         case 0x12:
7292         case 0x22:
7293         case 0x32:
7294             disas_evaluate_into_flags(s, insn);
7295             break;
7296 
7297         default:
7298             goto do_unallocated;
7299         }
7300         break;
7301 
7302     case 0x2: /* Conditional compare */
7303         disas_cc(s, insn); /* both imm and reg forms */
7304         break;
7305 
7306     case 0x4: /* Conditional select */
7307         disas_cond_select(s, insn);
7308         break;
7309 
7310     case 0x6: /* Data-processing */
7311         if (op0) {    /* (1 source) */
7312             disas_data_proc_1src(s, insn);
7313         } else {      /* (2 source) */
7314             disas_data_proc_2src(s, insn);
7315         }
7316         break;
7317     case 0x8 ... 0xf: /* (3 source) */
7318         disas_data_proc_3src(s, insn);
7319         break;
7320 
7321     default:
7322     do_unallocated:
7323         unallocated_encoding(s);
7324         break;
7325     }
7326 }
7327 
7328 static void handle_fp_compare(DisasContext *s, int size,
7329                               unsigned int rn, unsigned int rm,
7330                               bool cmp_with_zero, bool signal_all_nans)
7331 {
7332     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7333     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7334 
7335     if (size == MO_64) {
7336         TCGv_i64 tcg_vn, tcg_vm;
7337 
7338         tcg_vn = read_fp_dreg(s, rn);
7339         if (cmp_with_zero) {
7340             tcg_vm = tcg_constant_i64(0);
7341         } else {
7342             tcg_vm = read_fp_dreg(s, rm);
7343         }
7344         if (signal_all_nans) {
7345             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7346         } else {
7347             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7348         }
7349     } else {
7350         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7351         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7352 
7353         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7354         if (cmp_with_zero) {
7355             tcg_gen_movi_i32(tcg_vm, 0);
7356         } else {
7357             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7358         }
7359 
7360         switch (size) {
7361         case MO_32:
7362             if (signal_all_nans) {
7363                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7364             } else {
7365                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7366             }
7367             break;
7368         case MO_16:
7369             if (signal_all_nans) {
7370                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7371             } else {
7372                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7373             }
7374             break;
7375         default:
7376             g_assert_not_reached();
7377         }
7378     }
7379 
7380     gen_set_nzcv(tcg_flags);
7381 }
7382 
7383 /* Floating point compare
7384  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7385  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7386  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7387  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7388  */
7389 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7390 {
7391     unsigned int mos, type, rm, op, rn, opc, op2r;
7392     int size;
7393 
7394     mos = extract32(insn, 29, 3);
7395     type = extract32(insn, 22, 2);
7396     rm = extract32(insn, 16, 5);
7397     op = extract32(insn, 14, 2);
7398     rn = extract32(insn, 5, 5);
7399     opc = extract32(insn, 3, 2);
7400     op2r = extract32(insn, 0, 3);
7401 
7402     if (mos || op || op2r) {
7403         unallocated_encoding(s);
7404         return;
7405     }
7406 
7407     switch (type) {
7408     case 0:
7409         size = MO_32;
7410         break;
7411     case 1:
7412         size = MO_64;
7413         break;
7414     case 3:
7415         size = MO_16;
7416         if (dc_isar_feature(aa64_fp16, s)) {
7417             break;
7418         }
7419         /* fallthru */
7420     default:
7421         unallocated_encoding(s);
7422         return;
7423     }
7424 
7425     if (!fp_access_check(s)) {
7426         return;
7427     }
7428 
7429     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7430 }
7431 
7432 /* Floating point conditional compare
7433  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7434  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7435  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7436  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7437  */
7438 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7439 {
7440     unsigned int mos, type, rm, cond, rn, op, nzcv;
7441     TCGLabel *label_continue = NULL;
7442     int size;
7443 
7444     mos = extract32(insn, 29, 3);
7445     type = extract32(insn, 22, 2);
7446     rm = extract32(insn, 16, 5);
7447     cond = extract32(insn, 12, 4);
7448     rn = extract32(insn, 5, 5);
7449     op = extract32(insn, 4, 1);
7450     nzcv = extract32(insn, 0, 4);
7451 
7452     if (mos) {
7453         unallocated_encoding(s);
7454         return;
7455     }
7456 
7457     switch (type) {
7458     case 0:
7459         size = MO_32;
7460         break;
7461     case 1:
7462         size = MO_64;
7463         break;
7464     case 3:
7465         size = MO_16;
7466         if (dc_isar_feature(aa64_fp16, s)) {
7467             break;
7468         }
7469         /* fallthru */
7470     default:
7471         unallocated_encoding(s);
7472         return;
7473     }
7474 
7475     if (!fp_access_check(s)) {
7476         return;
7477     }
7478 
7479     if (cond < 0x0e) { /* not always */
7480         TCGLabel *label_match = gen_new_label();
7481         label_continue = gen_new_label();
7482         arm_gen_test_cc(cond, label_match);
7483         /* nomatch: */
7484         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7485         tcg_gen_br(label_continue);
7486         gen_set_label(label_match);
7487     }
7488 
7489     handle_fp_compare(s, size, rn, rm, false, op);
7490 
7491     if (cond < 0x0e) {
7492         gen_set_label(label_continue);
7493     }
7494 }
7495 
7496 /* Floating-point data-processing (1 source) - half precision */
7497 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7498 {
7499     TCGv_ptr fpst = NULL;
7500     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7501     TCGv_i32 tcg_res = tcg_temp_new_i32();
7502 
7503     switch (opcode) {
7504     case 0x0: /* FMOV */
7505         tcg_gen_mov_i32(tcg_res, tcg_op);
7506         break;
7507     case 0x1: /* FABS */
7508         gen_vfp_absh(tcg_res, tcg_op);
7509         break;
7510     case 0x2: /* FNEG */
7511         gen_vfp_negh(tcg_res, tcg_op);
7512         break;
7513     case 0x3: /* FSQRT */
7514         fpst = fpstatus_ptr(FPST_FPCR_F16);
7515         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7516         break;
7517     case 0x8: /* FRINTN */
7518     case 0x9: /* FRINTP */
7519     case 0xa: /* FRINTM */
7520     case 0xb: /* FRINTZ */
7521     case 0xc: /* FRINTA */
7522     {
7523         TCGv_i32 tcg_rmode;
7524 
7525         fpst = fpstatus_ptr(FPST_FPCR_F16);
7526         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7527         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7528         gen_restore_rmode(tcg_rmode, fpst);
7529         break;
7530     }
7531     case 0xe: /* FRINTX */
7532         fpst = fpstatus_ptr(FPST_FPCR_F16);
7533         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7534         break;
7535     case 0xf: /* FRINTI */
7536         fpst = fpstatus_ptr(FPST_FPCR_F16);
7537         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7538         break;
7539     default:
7540         g_assert_not_reached();
7541     }
7542 
7543     write_fp_sreg(s, rd, tcg_res);
7544 }
7545 
7546 /* Floating-point data-processing (1 source) - single precision */
7547 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7548 {
7549     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7550     TCGv_i32 tcg_op, tcg_res;
7551     TCGv_ptr fpst;
7552     int rmode = -1;
7553 
7554     tcg_op = read_fp_sreg(s, rn);
7555     tcg_res = tcg_temp_new_i32();
7556 
7557     switch (opcode) {
7558     case 0x0: /* FMOV */
7559         tcg_gen_mov_i32(tcg_res, tcg_op);
7560         goto done;
7561     case 0x1: /* FABS */
7562         gen_vfp_abss(tcg_res, tcg_op);
7563         goto done;
7564     case 0x2: /* FNEG */
7565         gen_vfp_negs(tcg_res, tcg_op);
7566         goto done;
7567     case 0x3: /* FSQRT */
7568         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7569         goto done;
7570     case 0x6: /* BFCVT */
7571         gen_fpst = gen_helper_bfcvt;
7572         break;
7573     case 0x8: /* FRINTN */
7574     case 0x9: /* FRINTP */
7575     case 0xa: /* FRINTM */
7576     case 0xb: /* FRINTZ */
7577     case 0xc: /* FRINTA */
7578         rmode = opcode & 7;
7579         gen_fpst = gen_helper_rints;
7580         break;
7581     case 0xe: /* FRINTX */
7582         gen_fpst = gen_helper_rints_exact;
7583         break;
7584     case 0xf: /* FRINTI */
7585         gen_fpst = gen_helper_rints;
7586         break;
7587     case 0x10: /* FRINT32Z */
7588         rmode = FPROUNDING_ZERO;
7589         gen_fpst = gen_helper_frint32_s;
7590         break;
7591     case 0x11: /* FRINT32X */
7592         gen_fpst = gen_helper_frint32_s;
7593         break;
7594     case 0x12: /* FRINT64Z */
7595         rmode = FPROUNDING_ZERO;
7596         gen_fpst = gen_helper_frint64_s;
7597         break;
7598     case 0x13: /* FRINT64X */
7599         gen_fpst = gen_helper_frint64_s;
7600         break;
7601     default:
7602         g_assert_not_reached();
7603     }
7604 
7605     fpst = fpstatus_ptr(FPST_FPCR);
7606     if (rmode >= 0) {
7607         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7608         gen_fpst(tcg_res, tcg_op, fpst);
7609         gen_restore_rmode(tcg_rmode, fpst);
7610     } else {
7611         gen_fpst(tcg_res, tcg_op, fpst);
7612     }
7613 
7614  done:
7615     write_fp_sreg(s, rd, tcg_res);
7616 }
7617 
7618 /* Floating-point data-processing (1 source) - double precision */
7619 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7620 {
7621     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7622     TCGv_i64 tcg_op, tcg_res;
7623     TCGv_ptr fpst;
7624     int rmode = -1;
7625 
7626     switch (opcode) {
7627     case 0x0: /* FMOV */
7628         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7629         return;
7630     }
7631 
7632     tcg_op = read_fp_dreg(s, rn);
7633     tcg_res = tcg_temp_new_i64();
7634 
7635     switch (opcode) {
7636     case 0x1: /* FABS */
7637         gen_vfp_absd(tcg_res, tcg_op);
7638         goto done;
7639     case 0x2: /* FNEG */
7640         gen_vfp_negd(tcg_res, tcg_op);
7641         goto done;
7642     case 0x3: /* FSQRT */
7643         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7644         goto done;
7645     case 0x8: /* FRINTN */
7646     case 0x9: /* FRINTP */
7647     case 0xa: /* FRINTM */
7648     case 0xb: /* FRINTZ */
7649     case 0xc: /* FRINTA */
7650         rmode = opcode & 7;
7651         gen_fpst = gen_helper_rintd;
7652         break;
7653     case 0xe: /* FRINTX */
7654         gen_fpst = gen_helper_rintd_exact;
7655         break;
7656     case 0xf: /* FRINTI */
7657         gen_fpst = gen_helper_rintd;
7658         break;
7659     case 0x10: /* FRINT32Z */
7660         rmode = FPROUNDING_ZERO;
7661         gen_fpst = gen_helper_frint32_d;
7662         break;
7663     case 0x11: /* FRINT32X */
7664         gen_fpst = gen_helper_frint32_d;
7665         break;
7666     case 0x12: /* FRINT64Z */
7667         rmode = FPROUNDING_ZERO;
7668         gen_fpst = gen_helper_frint64_d;
7669         break;
7670     case 0x13: /* FRINT64X */
7671         gen_fpst = gen_helper_frint64_d;
7672         break;
7673     default:
7674         g_assert_not_reached();
7675     }
7676 
7677     fpst = fpstatus_ptr(FPST_FPCR);
7678     if (rmode >= 0) {
7679         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7680         gen_fpst(tcg_res, tcg_op, fpst);
7681         gen_restore_rmode(tcg_rmode, fpst);
7682     } else {
7683         gen_fpst(tcg_res, tcg_op, fpst);
7684     }
7685 
7686  done:
7687     write_fp_dreg(s, rd, tcg_res);
7688 }
7689 
7690 static void handle_fp_fcvt(DisasContext *s, int opcode,
7691                            int rd, int rn, int dtype, int ntype)
7692 {
7693     switch (ntype) {
7694     case 0x0:
7695     {
7696         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7697         if (dtype == 1) {
7698             /* Single to double */
7699             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7700             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7701             write_fp_dreg(s, rd, tcg_rd);
7702         } else {
7703             /* Single to half */
7704             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7705             TCGv_i32 ahp = get_ahp_flag();
7706             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7707 
7708             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7709             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7710             write_fp_sreg(s, rd, tcg_rd);
7711         }
7712         break;
7713     }
7714     case 0x1:
7715     {
7716         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7717         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7718         if (dtype == 0) {
7719             /* Double to single */
7720             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7721         } else {
7722             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7723             TCGv_i32 ahp = get_ahp_flag();
7724             /* Double to half */
7725             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7726             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7727         }
7728         write_fp_sreg(s, rd, tcg_rd);
7729         break;
7730     }
7731     case 0x3:
7732     {
7733         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7734         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7735         TCGv_i32 tcg_ahp = get_ahp_flag();
7736         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7737         if (dtype == 0) {
7738             /* Half to single */
7739             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7740             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7741             write_fp_sreg(s, rd, tcg_rd);
7742         } else {
7743             /* Half to double */
7744             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7745             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7746             write_fp_dreg(s, rd, tcg_rd);
7747         }
7748         break;
7749     }
7750     default:
7751         g_assert_not_reached();
7752     }
7753 }
7754 
7755 /* Floating point data-processing (1 source)
7756  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7757  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7758  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7759  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7760  */
7761 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7762 {
7763     int mos = extract32(insn, 29, 3);
7764     int type = extract32(insn, 22, 2);
7765     int opcode = extract32(insn, 15, 6);
7766     int rn = extract32(insn, 5, 5);
7767     int rd = extract32(insn, 0, 5);
7768 
7769     if (mos) {
7770         goto do_unallocated;
7771     }
7772 
7773     switch (opcode) {
7774     case 0x4: case 0x5: case 0x7:
7775     {
7776         /* FCVT between half, single and double precision */
7777         int dtype = extract32(opcode, 0, 2);
7778         if (type == 2 || dtype == type) {
7779             goto do_unallocated;
7780         }
7781         if (!fp_access_check(s)) {
7782             return;
7783         }
7784 
7785         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7786         break;
7787     }
7788 
7789     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7790         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7791             goto do_unallocated;
7792         }
7793         /* fall through */
7794     case 0x0 ... 0x3:
7795     case 0x8 ... 0xc:
7796     case 0xe ... 0xf:
7797         /* 32-to-32 and 64-to-64 ops */
7798         switch (type) {
7799         case 0:
7800             if (!fp_access_check(s)) {
7801                 return;
7802             }
7803             handle_fp_1src_single(s, opcode, rd, rn);
7804             break;
7805         case 1:
7806             if (!fp_access_check(s)) {
7807                 return;
7808             }
7809             handle_fp_1src_double(s, opcode, rd, rn);
7810             break;
7811         case 3:
7812             if (!dc_isar_feature(aa64_fp16, s)) {
7813                 goto do_unallocated;
7814             }
7815 
7816             if (!fp_access_check(s)) {
7817                 return;
7818             }
7819             handle_fp_1src_half(s, opcode, rd, rn);
7820             break;
7821         default:
7822             goto do_unallocated;
7823         }
7824         break;
7825 
7826     case 0x6:
7827         switch (type) {
7828         case 1: /* BFCVT */
7829             if (!dc_isar_feature(aa64_bf16, s)) {
7830                 goto do_unallocated;
7831             }
7832             if (!fp_access_check(s)) {
7833                 return;
7834             }
7835             handle_fp_1src_single(s, opcode, rd, rn);
7836             break;
7837         default:
7838             goto do_unallocated;
7839         }
7840         break;
7841 
7842     default:
7843     do_unallocated:
7844         unallocated_encoding(s);
7845         break;
7846     }
7847 }
7848 
7849 /* Floating point immediate
7850  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7851  * +---+---+---+-----------+------+---+------------+-------+------+------+
7852  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7853  * +---+---+---+-----------+------+---+------------+-------+------+------+
7854  */
7855 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7856 {
7857     int rd = extract32(insn, 0, 5);
7858     int imm5 = extract32(insn, 5, 5);
7859     int imm8 = extract32(insn, 13, 8);
7860     int type = extract32(insn, 22, 2);
7861     int mos = extract32(insn, 29, 3);
7862     uint64_t imm;
7863     MemOp sz;
7864 
7865     if (mos || imm5) {
7866         unallocated_encoding(s);
7867         return;
7868     }
7869 
7870     switch (type) {
7871     case 0:
7872         sz = MO_32;
7873         break;
7874     case 1:
7875         sz = MO_64;
7876         break;
7877     case 3:
7878         sz = MO_16;
7879         if (dc_isar_feature(aa64_fp16, s)) {
7880             break;
7881         }
7882         /* fallthru */
7883     default:
7884         unallocated_encoding(s);
7885         return;
7886     }
7887 
7888     if (!fp_access_check(s)) {
7889         return;
7890     }
7891 
7892     imm = vfp_expand_imm(sz, imm8);
7893     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7894 }
7895 
7896 /* Handle floating point <=> fixed point conversions. Note that we can
7897  * also deal with fp <=> integer conversions as a special case (scale == 64)
7898  * OPTME: consider handling that special case specially or at least skipping
7899  * the call to scalbn in the helpers for zero shifts.
7900  */
7901 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7902                            bool itof, int rmode, int scale, int sf, int type)
7903 {
7904     bool is_signed = !(opcode & 1);
7905     TCGv_ptr tcg_fpstatus;
7906     TCGv_i32 tcg_shift, tcg_single;
7907     TCGv_i64 tcg_double;
7908 
7909     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7910 
7911     tcg_shift = tcg_constant_i32(64 - scale);
7912 
7913     if (itof) {
7914         TCGv_i64 tcg_int = cpu_reg(s, rn);
7915         if (!sf) {
7916             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7917 
7918             if (is_signed) {
7919                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7920             } else {
7921                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7922             }
7923 
7924             tcg_int = tcg_extend;
7925         }
7926 
7927         switch (type) {
7928         case 1: /* float64 */
7929             tcg_double = tcg_temp_new_i64();
7930             if (is_signed) {
7931                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7932                                      tcg_shift, tcg_fpstatus);
7933             } else {
7934                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7935                                      tcg_shift, tcg_fpstatus);
7936             }
7937             write_fp_dreg(s, rd, tcg_double);
7938             break;
7939 
7940         case 0: /* float32 */
7941             tcg_single = tcg_temp_new_i32();
7942             if (is_signed) {
7943                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7944                                      tcg_shift, tcg_fpstatus);
7945             } else {
7946                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7947                                      tcg_shift, tcg_fpstatus);
7948             }
7949             write_fp_sreg(s, rd, tcg_single);
7950             break;
7951 
7952         case 3: /* float16 */
7953             tcg_single = tcg_temp_new_i32();
7954             if (is_signed) {
7955                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7956                                      tcg_shift, tcg_fpstatus);
7957             } else {
7958                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7959                                      tcg_shift, tcg_fpstatus);
7960             }
7961             write_fp_sreg(s, rd, tcg_single);
7962             break;
7963 
7964         default:
7965             g_assert_not_reached();
7966         }
7967     } else {
7968         TCGv_i64 tcg_int = cpu_reg(s, rd);
7969         TCGv_i32 tcg_rmode;
7970 
7971         if (extract32(opcode, 2, 1)) {
7972             /* There are too many rounding modes to all fit into rmode,
7973              * so FCVTA[US] is a special case.
7974              */
7975             rmode = FPROUNDING_TIEAWAY;
7976         }
7977 
7978         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7979 
7980         switch (type) {
7981         case 1: /* float64 */
7982             tcg_double = read_fp_dreg(s, rn);
7983             if (is_signed) {
7984                 if (!sf) {
7985                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7986                                          tcg_shift, tcg_fpstatus);
7987                 } else {
7988                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7989                                          tcg_shift, tcg_fpstatus);
7990                 }
7991             } else {
7992                 if (!sf) {
7993                     gen_helper_vfp_tould(tcg_int, tcg_double,
7994                                          tcg_shift, tcg_fpstatus);
7995                 } else {
7996                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7997                                          tcg_shift, tcg_fpstatus);
7998                 }
7999             }
8000             if (!sf) {
8001                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8002             }
8003             break;
8004 
8005         case 0: /* float32 */
8006             tcg_single = read_fp_sreg(s, rn);
8007             if (sf) {
8008                 if (is_signed) {
8009                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8010                                          tcg_shift, tcg_fpstatus);
8011                 } else {
8012                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8013                                          tcg_shift, tcg_fpstatus);
8014                 }
8015             } else {
8016                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8017                 if (is_signed) {
8018                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8019                                          tcg_shift, tcg_fpstatus);
8020                 } else {
8021                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8022                                          tcg_shift, tcg_fpstatus);
8023                 }
8024                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8025             }
8026             break;
8027 
8028         case 3: /* float16 */
8029             tcg_single = read_fp_sreg(s, rn);
8030             if (sf) {
8031                 if (is_signed) {
8032                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8033                                          tcg_shift, tcg_fpstatus);
8034                 } else {
8035                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8036                                          tcg_shift, tcg_fpstatus);
8037                 }
8038             } else {
8039                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8040                 if (is_signed) {
8041                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8042                                          tcg_shift, tcg_fpstatus);
8043                 } else {
8044                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8045                                          tcg_shift, tcg_fpstatus);
8046                 }
8047                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8048             }
8049             break;
8050 
8051         default:
8052             g_assert_not_reached();
8053         }
8054 
8055         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8056     }
8057 }
8058 
8059 /* Floating point <-> fixed point conversions
8060  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8061  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8062  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8063  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8064  */
8065 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8066 {
8067     int rd = extract32(insn, 0, 5);
8068     int rn = extract32(insn, 5, 5);
8069     int scale = extract32(insn, 10, 6);
8070     int opcode = extract32(insn, 16, 3);
8071     int rmode = extract32(insn, 19, 2);
8072     int type = extract32(insn, 22, 2);
8073     bool sbit = extract32(insn, 29, 1);
8074     bool sf = extract32(insn, 31, 1);
8075     bool itof;
8076 
8077     if (sbit || (!sf && scale < 32)) {
8078         unallocated_encoding(s);
8079         return;
8080     }
8081 
8082     switch (type) {
8083     case 0: /* float32 */
8084     case 1: /* float64 */
8085         break;
8086     case 3: /* float16 */
8087         if (dc_isar_feature(aa64_fp16, s)) {
8088             break;
8089         }
8090         /* fallthru */
8091     default:
8092         unallocated_encoding(s);
8093         return;
8094     }
8095 
8096     switch ((rmode << 3) | opcode) {
8097     case 0x2: /* SCVTF */
8098     case 0x3: /* UCVTF */
8099         itof = true;
8100         break;
8101     case 0x18: /* FCVTZS */
8102     case 0x19: /* FCVTZU */
8103         itof = false;
8104         break;
8105     default:
8106         unallocated_encoding(s);
8107         return;
8108     }
8109 
8110     if (!fp_access_check(s)) {
8111         return;
8112     }
8113 
8114     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8115 }
8116 
8117 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8118 {
8119     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8120      * without conversion.
8121      */
8122 
8123     if (itof) {
8124         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8125         TCGv_i64 tmp;
8126 
8127         switch (type) {
8128         case 0:
8129             /* 32 bit */
8130             tmp = tcg_temp_new_i64();
8131             tcg_gen_ext32u_i64(tmp, tcg_rn);
8132             write_fp_dreg(s, rd, tmp);
8133             break;
8134         case 1:
8135             /* 64 bit */
8136             write_fp_dreg(s, rd, tcg_rn);
8137             break;
8138         case 2:
8139             /* 64 bit to top half. */
8140             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8141             clear_vec_high(s, true, rd);
8142             break;
8143         case 3:
8144             /* 16 bit */
8145             tmp = tcg_temp_new_i64();
8146             tcg_gen_ext16u_i64(tmp, tcg_rn);
8147             write_fp_dreg(s, rd, tmp);
8148             break;
8149         default:
8150             g_assert_not_reached();
8151         }
8152     } else {
8153         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8154 
8155         switch (type) {
8156         case 0:
8157             /* 32 bit */
8158             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8159             break;
8160         case 1:
8161             /* 64 bit */
8162             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8163             break;
8164         case 2:
8165             /* 64 bits from top half */
8166             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8167             break;
8168         case 3:
8169             /* 16 bit */
8170             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8171             break;
8172         default:
8173             g_assert_not_reached();
8174         }
8175     }
8176 }
8177 
8178 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8179 {
8180     TCGv_i64 t = read_fp_dreg(s, rn);
8181     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8182 
8183     gen_helper_fjcvtzs(t, t, fpstatus);
8184 
8185     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8186     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8187     tcg_gen_movi_i32(cpu_CF, 0);
8188     tcg_gen_movi_i32(cpu_NF, 0);
8189     tcg_gen_movi_i32(cpu_VF, 0);
8190 }
8191 
8192 /* Floating point <-> integer conversions
8193  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8194  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8195  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8196  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8197  */
8198 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8199 {
8200     int rd = extract32(insn, 0, 5);
8201     int rn = extract32(insn, 5, 5);
8202     int opcode = extract32(insn, 16, 3);
8203     int rmode = extract32(insn, 19, 2);
8204     int type = extract32(insn, 22, 2);
8205     bool sbit = extract32(insn, 29, 1);
8206     bool sf = extract32(insn, 31, 1);
8207     bool itof = false;
8208 
8209     if (sbit) {
8210         goto do_unallocated;
8211     }
8212 
8213     switch (opcode) {
8214     case 2: /* SCVTF */
8215     case 3: /* UCVTF */
8216         itof = true;
8217         /* fallthru */
8218     case 4: /* FCVTAS */
8219     case 5: /* FCVTAU */
8220         if (rmode != 0) {
8221             goto do_unallocated;
8222         }
8223         /* fallthru */
8224     case 0: /* FCVT[NPMZ]S */
8225     case 1: /* FCVT[NPMZ]U */
8226         switch (type) {
8227         case 0: /* float32 */
8228         case 1: /* float64 */
8229             break;
8230         case 3: /* float16 */
8231             if (!dc_isar_feature(aa64_fp16, s)) {
8232                 goto do_unallocated;
8233             }
8234             break;
8235         default:
8236             goto do_unallocated;
8237         }
8238         if (!fp_access_check(s)) {
8239             return;
8240         }
8241         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8242         break;
8243 
8244     default:
8245         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8246         case 0b01100110: /* FMOV half <-> 32-bit int */
8247         case 0b01100111:
8248         case 0b11100110: /* FMOV half <-> 64-bit int */
8249         case 0b11100111:
8250             if (!dc_isar_feature(aa64_fp16, s)) {
8251                 goto do_unallocated;
8252             }
8253             /* fallthru */
8254         case 0b00000110: /* FMOV 32-bit */
8255         case 0b00000111:
8256         case 0b10100110: /* FMOV 64-bit */
8257         case 0b10100111:
8258         case 0b11001110: /* FMOV top half of 128-bit */
8259         case 0b11001111:
8260             if (!fp_access_check(s)) {
8261                 return;
8262             }
8263             itof = opcode & 1;
8264             handle_fmov(s, rd, rn, type, itof);
8265             break;
8266 
8267         case 0b00111110: /* FJCVTZS */
8268             if (!dc_isar_feature(aa64_jscvt, s)) {
8269                 goto do_unallocated;
8270             } else if (fp_access_check(s)) {
8271                 handle_fjcvtzs(s, rd, rn);
8272             }
8273             break;
8274 
8275         default:
8276         do_unallocated:
8277             unallocated_encoding(s);
8278             return;
8279         }
8280         break;
8281     }
8282 }
8283 
8284 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8285  *   31  30  29 28     25 24                          0
8286  * +---+---+---+---------+-----------------------------+
8287  * |   | 0 |   | 1 1 1 1 |                             |
8288  * +---+---+---+---------+-----------------------------+
8289  */
8290 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8291 {
8292     if (extract32(insn, 24, 1)) {
8293         unallocated_encoding(s); /* in decodetree */
8294     } else if (extract32(insn, 21, 1) == 0) {
8295         /* Floating point to fixed point conversions */
8296         disas_fp_fixed_conv(s, insn);
8297     } else {
8298         switch (extract32(insn, 10, 2)) {
8299         case 1:
8300             /* Floating point conditional compare */
8301             disas_fp_ccomp(s, insn);
8302             break;
8303         case 2:
8304             /* Floating point data-processing (2 source) */
8305             unallocated_encoding(s); /* in decodetree */
8306             break;
8307         case 3:
8308             /* Floating point conditional select */
8309             unallocated_encoding(s); /* in decodetree */
8310             break;
8311         case 0:
8312             switch (ctz32(extract32(insn, 12, 4))) {
8313             case 0: /* [15:12] == xxx1 */
8314                 /* Floating point immediate */
8315                 disas_fp_imm(s, insn);
8316                 break;
8317             case 1: /* [15:12] == xx10 */
8318                 /* Floating point compare */
8319                 disas_fp_compare(s, insn);
8320                 break;
8321             case 2: /* [15:12] == x100 */
8322                 /* Floating point data-processing (1 source) */
8323                 disas_fp_1src(s, insn);
8324                 break;
8325             case 3: /* [15:12] == 1000 */
8326                 unallocated_encoding(s);
8327                 break;
8328             default: /* [15:12] == 0000 */
8329                 /* Floating point <-> integer conversions */
8330                 disas_fp_int_conv(s, insn);
8331                 break;
8332             }
8333             break;
8334         }
8335     }
8336 }
8337 
8338 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8339                      int pos)
8340 {
8341     /* Extract 64 bits from the middle of two concatenated 64 bit
8342      * vector register slices left:right. The extracted bits start
8343      * at 'pos' bits into the right (least significant) side.
8344      * We return the result in tcg_right, and guarantee not to
8345      * trash tcg_left.
8346      */
8347     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8348     assert(pos > 0 && pos < 64);
8349 
8350     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8351     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8352     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8353 }
8354 
8355 /* EXT
8356  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8357  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8358  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8359  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8360  */
8361 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8362 {
8363     int is_q = extract32(insn, 30, 1);
8364     int op2 = extract32(insn, 22, 2);
8365     int imm4 = extract32(insn, 11, 4);
8366     int rm = extract32(insn, 16, 5);
8367     int rn = extract32(insn, 5, 5);
8368     int rd = extract32(insn, 0, 5);
8369     int pos = imm4 << 3;
8370     TCGv_i64 tcg_resl, tcg_resh;
8371 
8372     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8373         unallocated_encoding(s);
8374         return;
8375     }
8376 
8377     if (!fp_access_check(s)) {
8378         return;
8379     }
8380 
8381     tcg_resh = tcg_temp_new_i64();
8382     tcg_resl = tcg_temp_new_i64();
8383 
8384     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8385      * either extracting 128 bits from a 128:128 concatenation, or
8386      * extracting 64 bits from a 64:64 concatenation.
8387      */
8388     if (!is_q) {
8389         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8390         if (pos != 0) {
8391             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8392             do_ext64(s, tcg_resh, tcg_resl, pos);
8393         }
8394     } else {
8395         TCGv_i64 tcg_hh;
8396         typedef struct {
8397             int reg;
8398             int elt;
8399         } EltPosns;
8400         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8401         EltPosns *elt = eltposns;
8402 
8403         if (pos >= 64) {
8404             elt++;
8405             pos -= 64;
8406         }
8407 
8408         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8409         elt++;
8410         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8411         elt++;
8412         if (pos != 0) {
8413             do_ext64(s, tcg_resh, tcg_resl, pos);
8414             tcg_hh = tcg_temp_new_i64();
8415             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8416             do_ext64(s, tcg_hh, tcg_resh, pos);
8417         }
8418     }
8419 
8420     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8421     if (is_q) {
8422         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8423     }
8424     clear_vec_high(s, is_q, rd);
8425 }
8426 
8427 /* TBL/TBX
8428  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8429  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8430  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8431  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8432  */
8433 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8434 {
8435     int op2 = extract32(insn, 22, 2);
8436     int is_q = extract32(insn, 30, 1);
8437     int rm = extract32(insn, 16, 5);
8438     int rn = extract32(insn, 5, 5);
8439     int rd = extract32(insn, 0, 5);
8440     int is_tbx = extract32(insn, 12, 1);
8441     int len = (extract32(insn, 13, 2) + 1) * 16;
8442 
8443     if (op2 != 0) {
8444         unallocated_encoding(s);
8445         return;
8446     }
8447 
8448     if (!fp_access_check(s)) {
8449         return;
8450     }
8451 
8452     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8453                        vec_full_reg_offset(s, rm), tcg_env,
8454                        is_q ? 16 : 8, vec_full_reg_size(s),
8455                        (len << 6) | (is_tbx << 5) | rn,
8456                        gen_helper_simd_tblx);
8457 }
8458 
8459 /* ZIP/UZP/TRN
8460  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8461  * +---+---+-------------+------+---+------+---+------------------+------+
8462  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8463  * +---+---+-------------+------+---+------+---+------------------+------+
8464  */
8465 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8466 {
8467     int rd = extract32(insn, 0, 5);
8468     int rn = extract32(insn, 5, 5);
8469     int rm = extract32(insn, 16, 5);
8470     int size = extract32(insn, 22, 2);
8471     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8472      * bit 2 indicates 1 vs 2 variant of the insn.
8473      */
8474     int opcode = extract32(insn, 12, 2);
8475     bool part = extract32(insn, 14, 1);
8476     bool is_q = extract32(insn, 30, 1);
8477     int esize = 8 << size;
8478     int i;
8479     int datasize = is_q ? 128 : 64;
8480     int elements = datasize / esize;
8481     TCGv_i64 tcg_res[2], tcg_ele;
8482 
8483     if (opcode == 0 || (size == 3 && !is_q)) {
8484         unallocated_encoding(s);
8485         return;
8486     }
8487 
8488     if (!fp_access_check(s)) {
8489         return;
8490     }
8491 
8492     tcg_res[0] = tcg_temp_new_i64();
8493     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8494     tcg_ele = tcg_temp_new_i64();
8495 
8496     for (i = 0; i < elements; i++) {
8497         int o, w;
8498 
8499         switch (opcode) {
8500         case 1: /* UZP1/2 */
8501         {
8502             int midpoint = elements / 2;
8503             if (i < midpoint) {
8504                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8505             } else {
8506                 read_vec_element(s, tcg_ele, rm,
8507                                  2 * (i - midpoint) + part, size);
8508             }
8509             break;
8510         }
8511         case 2: /* TRN1/2 */
8512             if (i & 1) {
8513                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8514             } else {
8515                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8516             }
8517             break;
8518         case 3: /* ZIP1/2 */
8519         {
8520             int base = part * elements / 2;
8521             if (i & 1) {
8522                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8523             } else {
8524                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8525             }
8526             break;
8527         }
8528         default:
8529             g_assert_not_reached();
8530         }
8531 
8532         w = (i * esize) / 64;
8533         o = (i * esize) % 64;
8534         if (o == 0) {
8535             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8536         } else {
8537             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8538             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8539         }
8540     }
8541 
8542     for (i = 0; i <= is_q; ++i) {
8543         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8544     }
8545     clear_vec_high(s, is_q, rd);
8546 }
8547 
8548 /*
8549  * do_reduction_op helper
8550  *
8551  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8552  * important for correct NaN propagation that we do these
8553  * operations in exactly the order specified by the pseudocode.
8554  *
8555  * This is a recursive function, TCG temps should be freed by the
8556  * calling function once it is done with the values.
8557  */
8558 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8559                                 int esize, int size, int vmap, TCGv_ptr fpst)
8560 {
8561     if (esize == size) {
8562         int element;
8563         MemOp msize = esize == 16 ? MO_16 : MO_32;
8564         TCGv_i32 tcg_elem;
8565 
8566         /* We should have one register left here */
8567         assert(ctpop8(vmap) == 1);
8568         element = ctz32(vmap);
8569         assert(element < 8);
8570 
8571         tcg_elem = tcg_temp_new_i32();
8572         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8573         return tcg_elem;
8574     } else {
8575         int bits = size / 2;
8576         int shift = ctpop8(vmap) / 2;
8577         int vmap_lo = (vmap >> shift) & vmap;
8578         int vmap_hi = (vmap & ~vmap_lo);
8579         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8580 
8581         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8582         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8583         tcg_res = tcg_temp_new_i32();
8584 
8585         switch (fpopcode) {
8586         case 0x0c: /* fmaxnmv half-precision */
8587             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8588             break;
8589         case 0x0f: /* fmaxv half-precision */
8590             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8591             break;
8592         case 0x1c: /* fminnmv half-precision */
8593             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8594             break;
8595         case 0x1f: /* fminv half-precision */
8596             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8597             break;
8598         case 0x2c: /* fmaxnmv */
8599             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8600             break;
8601         case 0x2f: /* fmaxv */
8602             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8603             break;
8604         case 0x3c: /* fminnmv */
8605             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8606             break;
8607         case 0x3f: /* fminv */
8608             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8609             break;
8610         default:
8611             g_assert_not_reached();
8612         }
8613         return tcg_res;
8614     }
8615 }
8616 
8617 /* AdvSIMD across lanes
8618  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8619  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8620  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8621  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8622  */
8623 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8624 {
8625     int rd = extract32(insn, 0, 5);
8626     int rn = extract32(insn, 5, 5);
8627     int size = extract32(insn, 22, 2);
8628     int opcode = extract32(insn, 12, 5);
8629     bool is_q = extract32(insn, 30, 1);
8630     bool is_u = extract32(insn, 29, 1);
8631     bool is_fp = false;
8632     bool is_min = false;
8633     int esize;
8634     int elements;
8635     int i;
8636     TCGv_i64 tcg_res, tcg_elt;
8637 
8638     switch (opcode) {
8639     case 0x1b: /* ADDV */
8640         if (is_u) {
8641             unallocated_encoding(s);
8642             return;
8643         }
8644         /* fall through */
8645     case 0x3: /* SADDLV, UADDLV */
8646     case 0xa: /* SMAXV, UMAXV */
8647     case 0x1a: /* SMINV, UMINV */
8648         if (size == 3 || (size == 2 && !is_q)) {
8649             unallocated_encoding(s);
8650             return;
8651         }
8652         break;
8653     case 0xc: /* FMAXNMV, FMINNMV */
8654     case 0xf: /* FMAXV, FMINV */
8655         /* Bit 1 of size field encodes min vs max and the actual size
8656          * depends on the encoding of the U bit. If not set (and FP16
8657          * enabled) then we do half-precision float instead of single
8658          * precision.
8659          */
8660         is_min = extract32(size, 1, 1);
8661         is_fp = true;
8662         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8663             size = 1;
8664         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8665             unallocated_encoding(s);
8666             return;
8667         } else {
8668             size = 2;
8669         }
8670         break;
8671     default:
8672         unallocated_encoding(s);
8673         return;
8674     }
8675 
8676     if (!fp_access_check(s)) {
8677         return;
8678     }
8679 
8680     esize = 8 << size;
8681     elements = (is_q ? 128 : 64) / esize;
8682 
8683     tcg_res = tcg_temp_new_i64();
8684     tcg_elt = tcg_temp_new_i64();
8685 
8686     /* These instructions operate across all lanes of a vector
8687      * to produce a single result. We can guarantee that a 64
8688      * bit intermediate is sufficient:
8689      *  + for [US]ADDLV the maximum element size is 32 bits, and
8690      *    the result type is 64 bits
8691      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8692      *    same as the element size, which is 32 bits at most
8693      * For the integer operations we can choose to work at 64
8694      * or 32 bits and truncate at the end; for simplicity
8695      * we use 64 bits always. The floating point
8696      * ops do require 32 bit intermediates, though.
8697      */
8698     if (!is_fp) {
8699         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8700 
8701         for (i = 1; i < elements; i++) {
8702             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8703 
8704             switch (opcode) {
8705             case 0x03: /* SADDLV / UADDLV */
8706             case 0x1b: /* ADDV */
8707                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8708                 break;
8709             case 0x0a: /* SMAXV / UMAXV */
8710                 if (is_u) {
8711                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8712                 } else {
8713                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8714                 }
8715                 break;
8716             case 0x1a: /* SMINV / UMINV */
8717                 if (is_u) {
8718                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8719                 } else {
8720                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8721                 }
8722                 break;
8723             default:
8724                 g_assert_not_reached();
8725             }
8726 
8727         }
8728     } else {
8729         /* Floating point vector reduction ops which work across 32
8730          * bit (single) or 16 bit (half-precision) intermediates.
8731          * Note that correct NaN propagation requires that we do these
8732          * operations in exactly the order specified by the pseudocode.
8733          */
8734         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8735         int fpopcode = opcode | is_min << 4 | is_u << 5;
8736         int vmap = (1 << elements) - 1;
8737         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8738                                              (is_q ? 128 : 64), vmap, fpst);
8739         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8740     }
8741 
8742     /* Now truncate the result to the width required for the final output */
8743     if (opcode == 0x03) {
8744         /* SADDLV, UADDLV: result is 2*esize */
8745         size++;
8746     }
8747 
8748     switch (size) {
8749     case 0:
8750         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8751         break;
8752     case 1:
8753         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8754         break;
8755     case 2:
8756         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8757         break;
8758     case 3:
8759         break;
8760     default:
8761         g_assert_not_reached();
8762     }
8763 
8764     write_fp_dreg(s, rd, tcg_res);
8765 }
8766 
8767 /* AdvSIMD modified immediate
8768  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8769  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8770  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8771  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8772  *
8773  * There are a number of operations that can be carried out here:
8774  *   MOVI - move (shifted) imm into register
8775  *   MVNI - move inverted (shifted) imm into register
8776  *   ORR  - bitwise OR of (shifted) imm with register
8777  *   BIC  - bitwise clear of (shifted) imm with register
8778  * With ARMv8.2 we also have:
8779  *   FMOV half-precision
8780  */
8781 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8782 {
8783     int rd = extract32(insn, 0, 5);
8784     int cmode = extract32(insn, 12, 4);
8785     int o2 = extract32(insn, 11, 1);
8786     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8787     bool is_neg = extract32(insn, 29, 1);
8788     bool is_q = extract32(insn, 30, 1);
8789     uint64_t imm = 0;
8790 
8791     if (o2) {
8792         if (cmode != 0xf || is_neg) {
8793             unallocated_encoding(s);
8794             return;
8795         }
8796         /* FMOV (vector, immediate) - half-precision */
8797         if (!dc_isar_feature(aa64_fp16, s)) {
8798             unallocated_encoding(s);
8799             return;
8800         }
8801         imm = vfp_expand_imm(MO_16, abcdefgh);
8802         /* now duplicate across the lanes */
8803         imm = dup_const(MO_16, imm);
8804     } else {
8805         if (cmode == 0xf && is_neg && !is_q) {
8806             unallocated_encoding(s);
8807             return;
8808         }
8809         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8810     }
8811 
8812     if (!fp_access_check(s)) {
8813         return;
8814     }
8815 
8816     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8817         /* MOVI or MVNI, with MVNI negation handled above.  */
8818         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8819                              vec_full_reg_size(s), imm);
8820     } else {
8821         /* ORR or BIC, with BIC negation to AND handled above.  */
8822         if (is_neg) {
8823             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8824         } else {
8825             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8826         }
8827     }
8828 }
8829 
8830 /*
8831  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8832  *
8833  * This code is handles the common shifting code and is used by both
8834  * the vector and scalar code.
8835  */
8836 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8837                                     TCGv_i64 tcg_rnd, bool accumulate,
8838                                     bool is_u, int size, int shift)
8839 {
8840     bool extended_result = false;
8841     bool round = tcg_rnd != NULL;
8842     int ext_lshift = 0;
8843     TCGv_i64 tcg_src_hi;
8844 
8845     if (round && size == 3) {
8846         extended_result = true;
8847         ext_lshift = 64 - shift;
8848         tcg_src_hi = tcg_temp_new_i64();
8849     } else if (shift == 64) {
8850         if (!accumulate && is_u) {
8851             /* result is zero */
8852             tcg_gen_movi_i64(tcg_res, 0);
8853             return;
8854         }
8855     }
8856 
8857     /* Deal with the rounding step */
8858     if (round) {
8859         if (extended_result) {
8860             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8861             if (!is_u) {
8862                 /* take care of sign extending tcg_res */
8863                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8864                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8865                                  tcg_src, tcg_src_hi,
8866                                  tcg_rnd, tcg_zero);
8867             } else {
8868                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8869                                  tcg_src, tcg_zero,
8870                                  tcg_rnd, tcg_zero);
8871             }
8872         } else {
8873             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8874         }
8875     }
8876 
8877     /* Now do the shift right */
8878     if (round && extended_result) {
8879         /* extended case, >64 bit precision required */
8880         if (ext_lshift == 0) {
8881             /* special case, only high bits matter */
8882             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8883         } else {
8884             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8885             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8886             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8887         }
8888     } else {
8889         if (is_u) {
8890             if (shift == 64) {
8891                 /* essentially shifting in 64 zeros */
8892                 tcg_gen_movi_i64(tcg_src, 0);
8893             } else {
8894                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8895             }
8896         } else {
8897             if (shift == 64) {
8898                 /* effectively extending the sign-bit */
8899                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8900             } else {
8901                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8902             }
8903         }
8904     }
8905 
8906     if (accumulate) {
8907         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8908     } else {
8909         tcg_gen_mov_i64(tcg_res, tcg_src);
8910     }
8911 }
8912 
8913 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8914 static void handle_scalar_simd_shri(DisasContext *s,
8915                                     bool is_u, int immh, int immb,
8916                                     int opcode, int rn, int rd)
8917 {
8918     const int size = 3;
8919     int immhb = immh << 3 | immb;
8920     int shift = 2 * (8 << size) - immhb;
8921     bool accumulate = false;
8922     bool round = false;
8923     bool insert = false;
8924     TCGv_i64 tcg_rn;
8925     TCGv_i64 tcg_rd;
8926     TCGv_i64 tcg_round;
8927 
8928     if (!extract32(immh, 3, 1)) {
8929         unallocated_encoding(s);
8930         return;
8931     }
8932 
8933     if (!fp_access_check(s)) {
8934         return;
8935     }
8936 
8937     switch (opcode) {
8938     case 0x02: /* SSRA / USRA (accumulate) */
8939         accumulate = true;
8940         break;
8941     case 0x04: /* SRSHR / URSHR (rounding) */
8942         round = true;
8943         break;
8944     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8945         accumulate = round = true;
8946         break;
8947     case 0x08: /* SRI */
8948         insert = true;
8949         break;
8950     }
8951 
8952     if (round) {
8953         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8954     } else {
8955         tcg_round = NULL;
8956     }
8957 
8958     tcg_rn = read_fp_dreg(s, rn);
8959     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8960 
8961     if (insert) {
8962         /* shift count same as element size is valid but does nothing;
8963          * special case to avoid potential shift by 64.
8964          */
8965         int esize = 8 << size;
8966         if (shift != esize) {
8967             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8968             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8969         }
8970     } else {
8971         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8972                                 accumulate, is_u, size, shift);
8973     }
8974 
8975     write_fp_dreg(s, rd, tcg_rd);
8976 }
8977 
8978 /* SHL/SLI - Scalar shift left */
8979 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8980                                     int immh, int immb, int opcode,
8981                                     int rn, int rd)
8982 {
8983     int size = 32 - clz32(immh) - 1;
8984     int immhb = immh << 3 | immb;
8985     int shift = immhb - (8 << size);
8986     TCGv_i64 tcg_rn;
8987     TCGv_i64 tcg_rd;
8988 
8989     if (!extract32(immh, 3, 1)) {
8990         unallocated_encoding(s);
8991         return;
8992     }
8993 
8994     if (!fp_access_check(s)) {
8995         return;
8996     }
8997 
8998     tcg_rn = read_fp_dreg(s, rn);
8999     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9000 
9001     if (insert) {
9002         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9003     } else {
9004         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9005     }
9006 
9007     write_fp_dreg(s, rd, tcg_rd);
9008 }
9009 
9010 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9011  * (signed/unsigned) narrowing */
9012 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9013                                    bool is_u_shift, bool is_u_narrow,
9014                                    int immh, int immb, int opcode,
9015                                    int rn, int rd)
9016 {
9017     int immhb = immh << 3 | immb;
9018     int size = 32 - clz32(immh) - 1;
9019     int esize = 8 << size;
9020     int shift = (2 * esize) - immhb;
9021     int elements = is_scalar ? 1 : (64 / esize);
9022     bool round = extract32(opcode, 0, 1);
9023     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9024     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9025     TCGv_i32 tcg_rd_narrowed;
9026     TCGv_i64 tcg_final;
9027 
9028     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9029         { gen_helper_neon_narrow_sat_s8,
9030           gen_helper_neon_unarrow_sat8 },
9031         { gen_helper_neon_narrow_sat_s16,
9032           gen_helper_neon_unarrow_sat16 },
9033         { gen_helper_neon_narrow_sat_s32,
9034           gen_helper_neon_unarrow_sat32 },
9035         { NULL, NULL },
9036     };
9037     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9038         gen_helper_neon_narrow_sat_u8,
9039         gen_helper_neon_narrow_sat_u16,
9040         gen_helper_neon_narrow_sat_u32,
9041         NULL
9042     };
9043     NeonGenNarrowEnvFn *narrowfn;
9044 
9045     int i;
9046 
9047     assert(size < 4);
9048 
9049     if (extract32(immh, 3, 1)) {
9050         unallocated_encoding(s);
9051         return;
9052     }
9053 
9054     if (!fp_access_check(s)) {
9055         return;
9056     }
9057 
9058     if (is_u_shift) {
9059         narrowfn = unsigned_narrow_fns[size];
9060     } else {
9061         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9062     }
9063 
9064     tcg_rn = tcg_temp_new_i64();
9065     tcg_rd = tcg_temp_new_i64();
9066     tcg_rd_narrowed = tcg_temp_new_i32();
9067     tcg_final = tcg_temp_new_i64();
9068 
9069     if (round) {
9070         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9071     } else {
9072         tcg_round = NULL;
9073     }
9074 
9075     for (i = 0; i < elements; i++) {
9076         read_vec_element(s, tcg_rn, rn, i, ldop);
9077         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9078                                 false, is_u_shift, size+1, shift);
9079         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9080         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9081         if (i == 0) {
9082             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9083         } else {
9084             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9085         }
9086     }
9087 
9088     if (!is_q) {
9089         write_vec_element(s, tcg_final, rd, 0, MO_64);
9090     } else {
9091         write_vec_element(s, tcg_final, rd, 1, MO_64);
9092     }
9093     clear_vec_high(s, is_q, rd);
9094 }
9095 
9096 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9097 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9098                              bool src_unsigned, bool dst_unsigned,
9099                              int immh, int immb, int rn, int rd)
9100 {
9101     int immhb = immh << 3 | immb;
9102     int size = 32 - clz32(immh) - 1;
9103     int shift = immhb - (8 << size);
9104     int pass;
9105 
9106     assert(immh != 0);
9107     assert(!(scalar && is_q));
9108 
9109     if (!scalar) {
9110         if (!is_q && extract32(immh, 3, 1)) {
9111             unallocated_encoding(s);
9112             return;
9113         }
9114 
9115         /* Since we use the variable-shift helpers we must
9116          * replicate the shift count into each element of
9117          * the tcg_shift value.
9118          */
9119         switch (size) {
9120         case 0:
9121             shift |= shift << 8;
9122             /* fall through */
9123         case 1:
9124             shift |= shift << 16;
9125             break;
9126         case 2:
9127         case 3:
9128             break;
9129         default:
9130             g_assert_not_reached();
9131         }
9132     }
9133 
9134     if (!fp_access_check(s)) {
9135         return;
9136     }
9137 
9138     if (size == 3) {
9139         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9140         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9141             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9142             { NULL, gen_helper_neon_qshl_u64 },
9143         };
9144         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9145         int maxpass = is_q ? 2 : 1;
9146 
9147         for (pass = 0; pass < maxpass; pass++) {
9148             TCGv_i64 tcg_op = tcg_temp_new_i64();
9149 
9150             read_vec_element(s, tcg_op, rn, pass, MO_64);
9151             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9152             write_vec_element(s, tcg_op, rd, pass, MO_64);
9153         }
9154         clear_vec_high(s, is_q, rd);
9155     } else {
9156         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9157         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9158             {
9159                 { gen_helper_neon_qshl_s8,
9160                   gen_helper_neon_qshl_s16,
9161                   gen_helper_neon_qshl_s32 },
9162                 { gen_helper_neon_qshlu_s8,
9163                   gen_helper_neon_qshlu_s16,
9164                   gen_helper_neon_qshlu_s32 }
9165             }, {
9166                 { NULL, NULL, NULL },
9167                 { gen_helper_neon_qshl_u8,
9168                   gen_helper_neon_qshl_u16,
9169                   gen_helper_neon_qshl_u32 }
9170             }
9171         };
9172         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9173         MemOp memop = scalar ? size : MO_32;
9174         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9175 
9176         for (pass = 0; pass < maxpass; pass++) {
9177             TCGv_i32 tcg_op = tcg_temp_new_i32();
9178 
9179             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9180             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9181             if (scalar) {
9182                 switch (size) {
9183                 case 0:
9184                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9185                     break;
9186                 case 1:
9187                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9188                     break;
9189                 case 2:
9190                     break;
9191                 default:
9192                     g_assert_not_reached();
9193                 }
9194                 write_fp_sreg(s, rd, tcg_op);
9195             } else {
9196                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9197             }
9198         }
9199 
9200         if (!scalar) {
9201             clear_vec_high(s, is_q, rd);
9202         }
9203     }
9204 }
9205 
9206 /* Common vector code for handling integer to FP conversion */
9207 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9208                                    int elements, int is_signed,
9209                                    int fracbits, int size)
9210 {
9211     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9212     TCGv_i32 tcg_shift = NULL;
9213 
9214     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9215     int pass;
9216 
9217     if (fracbits || size == MO_64) {
9218         tcg_shift = tcg_constant_i32(fracbits);
9219     }
9220 
9221     if (size == MO_64) {
9222         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9223         TCGv_i64 tcg_double = tcg_temp_new_i64();
9224 
9225         for (pass = 0; pass < elements; pass++) {
9226             read_vec_element(s, tcg_int64, rn, pass, mop);
9227 
9228             if (is_signed) {
9229                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9230                                      tcg_shift, tcg_fpst);
9231             } else {
9232                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9233                                      tcg_shift, tcg_fpst);
9234             }
9235             if (elements == 1) {
9236                 write_fp_dreg(s, rd, tcg_double);
9237             } else {
9238                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9239             }
9240         }
9241     } else {
9242         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9243         TCGv_i32 tcg_float = tcg_temp_new_i32();
9244 
9245         for (pass = 0; pass < elements; pass++) {
9246             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9247 
9248             switch (size) {
9249             case MO_32:
9250                 if (fracbits) {
9251                     if (is_signed) {
9252                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9253                                              tcg_shift, tcg_fpst);
9254                     } else {
9255                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9256                                              tcg_shift, tcg_fpst);
9257                     }
9258                 } else {
9259                     if (is_signed) {
9260                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9261                     } else {
9262                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9263                     }
9264                 }
9265                 break;
9266             case MO_16:
9267                 if (fracbits) {
9268                     if (is_signed) {
9269                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9270                                              tcg_shift, tcg_fpst);
9271                     } else {
9272                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9273                                              tcg_shift, tcg_fpst);
9274                     }
9275                 } else {
9276                     if (is_signed) {
9277                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9278                     } else {
9279                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9280                     }
9281                 }
9282                 break;
9283             default:
9284                 g_assert_not_reached();
9285             }
9286 
9287             if (elements == 1) {
9288                 write_fp_sreg(s, rd, tcg_float);
9289             } else {
9290                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9291             }
9292         }
9293     }
9294 
9295     clear_vec_high(s, elements << size == 16, rd);
9296 }
9297 
9298 /* UCVTF/SCVTF - Integer to FP conversion */
9299 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9300                                          bool is_q, bool is_u,
9301                                          int immh, int immb, int opcode,
9302                                          int rn, int rd)
9303 {
9304     int size, elements, fracbits;
9305     int immhb = immh << 3 | immb;
9306 
9307     if (immh & 8) {
9308         size = MO_64;
9309         if (!is_scalar && !is_q) {
9310             unallocated_encoding(s);
9311             return;
9312         }
9313     } else if (immh & 4) {
9314         size = MO_32;
9315     } else if (immh & 2) {
9316         size = MO_16;
9317         if (!dc_isar_feature(aa64_fp16, s)) {
9318             unallocated_encoding(s);
9319             return;
9320         }
9321     } else {
9322         /* immh == 0 would be a failure of the decode logic */
9323         g_assert(immh == 1);
9324         unallocated_encoding(s);
9325         return;
9326     }
9327 
9328     if (is_scalar) {
9329         elements = 1;
9330     } else {
9331         elements = (8 << is_q) >> size;
9332     }
9333     fracbits = (16 << size) - immhb;
9334 
9335     if (!fp_access_check(s)) {
9336         return;
9337     }
9338 
9339     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9340 }
9341 
9342 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9343 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9344                                          bool is_q, bool is_u,
9345                                          int immh, int immb, int rn, int rd)
9346 {
9347     int immhb = immh << 3 | immb;
9348     int pass, size, fracbits;
9349     TCGv_ptr tcg_fpstatus;
9350     TCGv_i32 tcg_rmode, tcg_shift;
9351 
9352     if (immh & 0x8) {
9353         size = MO_64;
9354         if (!is_scalar && !is_q) {
9355             unallocated_encoding(s);
9356             return;
9357         }
9358     } else if (immh & 0x4) {
9359         size = MO_32;
9360     } else if (immh & 0x2) {
9361         size = MO_16;
9362         if (!dc_isar_feature(aa64_fp16, s)) {
9363             unallocated_encoding(s);
9364             return;
9365         }
9366     } else {
9367         /* Should have split out AdvSIMD modified immediate earlier.  */
9368         assert(immh == 1);
9369         unallocated_encoding(s);
9370         return;
9371     }
9372 
9373     if (!fp_access_check(s)) {
9374         return;
9375     }
9376 
9377     assert(!(is_scalar && is_q));
9378 
9379     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9380     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9381     fracbits = (16 << size) - immhb;
9382     tcg_shift = tcg_constant_i32(fracbits);
9383 
9384     if (size == MO_64) {
9385         int maxpass = is_scalar ? 1 : 2;
9386 
9387         for (pass = 0; pass < maxpass; pass++) {
9388             TCGv_i64 tcg_op = tcg_temp_new_i64();
9389 
9390             read_vec_element(s, tcg_op, rn, pass, MO_64);
9391             if (is_u) {
9392                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9393             } else {
9394                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9395             }
9396             write_vec_element(s, tcg_op, rd, pass, MO_64);
9397         }
9398         clear_vec_high(s, is_q, rd);
9399     } else {
9400         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9401         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9402 
9403         switch (size) {
9404         case MO_16:
9405             if (is_u) {
9406                 fn = gen_helper_vfp_touhh;
9407             } else {
9408                 fn = gen_helper_vfp_toshh;
9409             }
9410             break;
9411         case MO_32:
9412             if (is_u) {
9413                 fn = gen_helper_vfp_touls;
9414             } else {
9415                 fn = gen_helper_vfp_tosls;
9416             }
9417             break;
9418         default:
9419             g_assert_not_reached();
9420         }
9421 
9422         for (pass = 0; pass < maxpass; pass++) {
9423             TCGv_i32 tcg_op = tcg_temp_new_i32();
9424 
9425             read_vec_element_i32(s, tcg_op, rn, pass, size);
9426             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9427             if (is_scalar) {
9428                 if (size == MO_16 && !is_u) {
9429                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9430                 }
9431                 write_fp_sreg(s, rd, tcg_op);
9432             } else {
9433                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9434             }
9435         }
9436         if (!is_scalar) {
9437             clear_vec_high(s, is_q, rd);
9438         }
9439     }
9440 
9441     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9442 }
9443 
9444 /* AdvSIMD scalar shift by immediate
9445  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9446  * +-----+---+-------------+------+------+--------+---+------+------+
9447  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9448  * +-----+---+-------------+------+------+--------+---+------+------+
9449  *
9450  * This is the scalar version so it works on a fixed sized registers
9451  */
9452 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9453 {
9454     int rd = extract32(insn, 0, 5);
9455     int rn = extract32(insn, 5, 5);
9456     int opcode = extract32(insn, 11, 5);
9457     int immb = extract32(insn, 16, 3);
9458     int immh = extract32(insn, 19, 4);
9459     bool is_u = extract32(insn, 29, 1);
9460 
9461     if (immh == 0) {
9462         unallocated_encoding(s);
9463         return;
9464     }
9465 
9466     switch (opcode) {
9467     case 0x08: /* SRI */
9468         if (!is_u) {
9469             unallocated_encoding(s);
9470             return;
9471         }
9472         /* fall through */
9473     case 0x00: /* SSHR / USHR */
9474     case 0x02: /* SSRA / USRA */
9475     case 0x04: /* SRSHR / URSHR */
9476     case 0x06: /* SRSRA / URSRA */
9477         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9478         break;
9479     case 0x0a: /* SHL / SLI */
9480         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9481         break;
9482     case 0x1c: /* SCVTF, UCVTF */
9483         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9484                                      opcode, rn, rd);
9485         break;
9486     case 0x10: /* SQSHRUN, SQSHRUN2 */
9487     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9488         if (!is_u) {
9489             unallocated_encoding(s);
9490             return;
9491         }
9492         handle_vec_simd_sqshrn(s, true, false, false, true,
9493                                immh, immb, opcode, rn, rd);
9494         break;
9495     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9496     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9497         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9498                                immh, immb, opcode, rn, rd);
9499         break;
9500     case 0xc: /* SQSHLU */
9501         if (!is_u) {
9502             unallocated_encoding(s);
9503             return;
9504         }
9505         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9506         break;
9507     case 0xe: /* SQSHL, UQSHL */
9508         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9509         break;
9510     case 0x1f: /* FCVTZS, FCVTZU */
9511         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9512         break;
9513     default:
9514         unallocated_encoding(s);
9515         break;
9516     }
9517 }
9518 
9519 /* AdvSIMD scalar three different
9520  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9521  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9522  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9523  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9524  */
9525 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9526 {
9527     bool is_u = extract32(insn, 29, 1);
9528     int size = extract32(insn, 22, 2);
9529     int opcode = extract32(insn, 12, 4);
9530     int rm = extract32(insn, 16, 5);
9531     int rn = extract32(insn, 5, 5);
9532     int rd = extract32(insn, 0, 5);
9533 
9534     if (is_u) {
9535         unallocated_encoding(s);
9536         return;
9537     }
9538 
9539     switch (opcode) {
9540     case 0x9: /* SQDMLAL, SQDMLAL2 */
9541     case 0xb: /* SQDMLSL, SQDMLSL2 */
9542     case 0xd: /* SQDMULL, SQDMULL2 */
9543         if (size == 0 || size == 3) {
9544             unallocated_encoding(s);
9545             return;
9546         }
9547         break;
9548     default:
9549         unallocated_encoding(s);
9550         return;
9551     }
9552 
9553     if (!fp_access_check(s)) {
9554         return;
9555     }
9556 
9557     if (size == 2) {
9558         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9559         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9560         TCGv_i64 tcg_res = tcg_temp_new_i64();
9561 
9562         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9563         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9564 
9565         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9566         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9567 
9568         switch (opcode) {
9569         case 0xd: /* SQDMULL, SQDMULL2 */
9570             break;
9571         case 0xb: /* SQDMLSL, SQDMLSL2 */
9572             tcg_gen_neg_i64(tcg_res, tcg_res);
9573             /* fall through */
9574         case 0x9: /* SQDMLAL, SQDMLAL2 */
9575             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9576             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9577                                               tcg_res, tcg_op1);
9578             break;
9579         default:
9580             g_assert_not_reached();
9581         }
9582 
9583         write_fp_dreg(s, rd, tcg_res);
9584     } else {
9585         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9586         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9587         TCGv_i64 tcg_res = tcg_temp_new_i64();
9588 
9589         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9590         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9591 
9592         switch (opcode) {
9593         case 0xd: /* SQDMULL, SQDMULL2 */
9594             break;
9595         case 0xb: /* SQDMLSL, SQDMLSL2 */
9596             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9597             /* fall through */
9598         case 0x9: /* SQDMLAL, SQDMLAL2 */
9599         {
9600             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9601             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9602             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9603                                               tcg_res, tcg_op3);
9604             break;
9605         }
9606         default:
9607             g_assert_not_reached();
9608         }
9609 
9610         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9611         write_fp_dreg(s, rd, tcg_res);
9612     }
9613 }
9614 
9615 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9616                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9617                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9618 {
9619     /* Handle 64->64 opcodes which are shared between the scalar and
9620      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9621      * is valid in either group and also the double-precision fp ops.
9622      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9623      * requires them.
9624      */
9625     TCGCond cond;
9626 
9627     switch (opcode) {
9628     case 0x4: /* CLS, CLZ */
9629         if (u) {
9630             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9631         } else {
9632             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9633         }
9634         break;
9635     case 0x5: /* NOT */
9636         /* This opcode is shared with CNT and RBIT but we have earlier
9637          * enforced that size == 3 if and only if this is the NOT insn.
9638          */
9639         tcg_gen_not_i64(tcg_rd, tcg_rn);
9640         break;
9641     case 0x7: /* SQABS, SQNEG */
9642         if (u) {
9643             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9644         } else {
9645             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9646         }
9647         break;
9648     case 0xa: /* CMLT */
9649         cond = TCG_COND_LT;
9650     do_cmop:
9651         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9652         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9653         break;
9654     case 0x8: /* CMGT, CMGE */
9655         cond = u ? TCG_COND_GE : TCG_COND_GT;
9656         goto do_cmop;
9657     case 0x9: /* CMEQ, CMLE */
9658         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9659         goto do_cmop;
9660     case 0xb: /* ABS, NEG */
9661         if (u) {
9662             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9663         } else {
9664             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9665         }
9666         break;
9667     case 0x2f: /* FABS */
9668         gen_vfp_absd(tcg_rd, tcg_rn);
9669         break;
9670     case 0x6f: /* FNEG */
9671         gen_vfp_negd(tcg_rd, tcg_rn);
9672         break;
9673     case 0x7f: /* FSQRT */
9674         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9675         break;
9676     case 0x1a: /* FCVTNS */
9677     case 0x1b: /* FCVTMS */
9678     case 0x1c: /* FCVTAS */
9679     case 0x3a: /* FCVTPS */
9680     case 0x3b: /* FCVTZS */
9681         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9682         break;
9683     case 0x5a: /* FCVTNU */
9684     case 0x5b: /* FCVTMU */
9685     case 0x5c: /* FCVTAU */
9686     case 0x7a: /* FCVTPU */
9687     case 0x7b: /* FCVTZU */
9688         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9689         break;
9690     case 0x18: /* FRINTN */
9691     case 0x19: /* FRINTM */
9692     case 0x38: /* FRINTP */
9693     case 0x39: /* FRINTZ */
9694     case 0x58: /* FRINTA */
9695     case 0x79: /* FRINTI */
9696         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9697         break;
9698     case 0x59: /* FRINTX */
9699         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9700         break;
9701     case 0x1e: /* FRINT32Z */
9702     case 0x5e: /* FRINT32X */
9703         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9704         break;
9705     case 0x1f: /* FRINT64Z */
9706     case 0x5f: /* FRINT64X */
9707         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9708         break;
9709     default:
9710         g_assert_not_reached();
9711     }
9712 }
9713 
9714 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9715                                    bool is_scalar, bool is_u, bool is_q,
9716                                    int size, int rn, int rd)
9717 {
9718     bool is_double = (size == MO_64);
9719     TCGv_ptr fpst;
9720 
9721     if (!fp_access_check(s)) {
9722         return;
9723     }
9724 
9725     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9726 
9727     if (is_double) {
9728         TCGv_i64 tcg_op = tcg_temp_new_i64();
9729         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9730         TCGv_i64 tcg_res = tcg_temp_new_i64();
9731         NeonGenTwoDoubleOpFn *genfn;
9732         bool swap = false;
9733         int pass;
9734 
9735         switch (opcode) {
9736         case 0x2e: /* FCMLT (zero) */
9737             swap = true;
9738             /* fallthrough */
9739         case 0x2c: /* FCMGT (zero) */
9740             genfn = gen_helper_neon_cgt_f64;
9741             break;
9742         case 0x2d: /* FCMEQ (zero) */
9743             genfn = gen_helper_neon_ceq_f64;
9744             break;
9745         case 0x6d: /* FCMLE (zero) */
9746             swap = true;
9747             /* fall through */
9748         case 0x6c: /* FCMGE (zero) */
9749             genfn = gen_helper_neon_cge_f64;
9750             break;
9751         default:
9752             g_assert_not_reached();
9753         }
9754 
9755         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9756             read_vec_element(s, tcg_op, rn, pass, MO_64);
9757             if (swap) {
9758                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9759             } else {
9760                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9761             }
9762             write_vec_element(s, tcg_res, rd, pass, MO_64);
9763         }
9764 
9765         clear_vec_high(s, !is_scalar, rd);
9766     } else {
9767         TCGv_i32 tcg_op = tcg_temp_new_i32();
9768         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9769         TCGv_i32 tcg_res = tcg_temp_new_i32();
9770         NeonGenTwoSingleOpFn *genfn;
9771         bool swap = false;
9772         int pass, maxpasses;
9773 
9774         if (size == MO_16) {
9775             switch (opcode) {
9776             case 0x2e: /* FCMLT (zero) */
9777                 swap = true;
9778                 /* fall through */
9779             case 0x2c: /* FCMGT (zero) */
9780                 genfn = gen_helper_advsimd_cgt_f16;
9781                 break;
9782             case 0x2d: /* FCMEQ (zero) */
9783                 genfn = gen_helper_advsimd_ceq_f16;
9784                 break;
9785             case 0x6d: /* FCMLE (zero) */
9786                 swap = true;
9787                 /* fall through */
9788             case 0x6c: /* FCMGE (zero) */
9789                 genfn = gen_helper_advsimd_cge_f16;
9790                 break;
9791             default:
9792                 g_assert_not_reached();
9793             }
9794         } else {
9795             switch (opcode) {
9796             case 0x2e: /* FCMLT (zero) */
9797                 swap = true;
9798                 /* fall through */
9799             case 0x2c: /* FCMGT (zero) */
9800                 genfn = gen_helper_neon_cgt_f32;
9801                 break;
9802             case 0x2d: /* FCMEQ (zero) */
9803                 genfn = gen_helper_neon_ceq_f32;
9804                 break;
9805             case 0x6d: /* FCMLE (zero) */
9806                 swap = true;
9807                 /* fall through */
9808             case 0x6c: /* FCMGE (zero) */
9809                 genfn = gen_helper_neon_cge_f32;
9810                 break;
9811             default:
9812                 g_assert_not_reached();
9813             }
9814         }
9815 
9816         if (is_scalar) {
9817             maxpasses = 1;
9818         } else {
9819             int vector_size = 8 << is_q;
9820             maxpasses = vector_size >> size;
9821         }
9822 
9823         for (pass = 0; pass < maxpasses; pass++) {
9824             read_vec_element_i32(s, tcg_op, rn, pass, size);
9825             if (swap) {
9826                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9827             } else {
9828                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9829             }
9830             if (is_scalar) {
9831                 write_fp_sreg(s, rd, tcg_res);
9832             } else {
9833                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9834             }
9835         }
9836 
9837         if (!is_scalar) {
9838             clear_vec_high(s, is_q, rd);
9839         }
9840     }
9841 }
9842 
9843 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9844                                     bool is_scalar, bool is_u, bool is_q,
9845                                     int size, int rn, int rd)
9846 {
9847     bool is_double = (size == 3);
9848     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9849 
9850     if (is_double) {
9851         TCGv_i64 tcg_op = tcg_temp_new_i64();
9852         TCGv_i64 tcg_res = tcg_temp_new_i64();
9853         int pass;
9854 
9855         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9856             read_vec_element(s, tcg_op, rn, pass, MO_64);
9857             switch (opcode) {
9858             case 0x3d: /* FRECPE */
9859                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9860                 break;
9861             case 0x3f: /* FRECPX */
9862                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9863                 break;
9864             case 0x7d: /* FRSQRTE */
9865                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9866                 break;
9867             default:
9868                 g_assert_not_reached();
9869             }
9870             write_vec_element(s, tcg_res, rd, pass, MO_64);
9871         }
9872         clear_vec_high(s, !is_scalar, rd);
9873     } else {
9874         TCGv_i32 tcg_op = tcg_temp_new_i32();
9875         TCGv_i32 tcg_res = tcg_temp_new_i32();
9876         int pass, maxpasses;
9877 
9878         if (is_scalar) {
9879             maxpasses = 1;
9880         } else {
9881             maxpasses = is_q ? 4 : 2;
9882         }
9883 
9884         for (pass = 0; pass < maxpasses; pass++) {
9885             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9886 
9887             switch (opcode) {
9888             case 0x3c: /* URECPE */
9889                 gen_helper_recpe_u32(tcg_res, tcg_op);
9890                 break;
9891             case 0x3d: /* FRECPE */
9892                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9893                 break;
9894             case 0x3f: /* FRECPX */
9895                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9896                 break;
9897             case 0x7d: /* FRSQRTE */
9898                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9899                 break;
9900             default:
9901                 g_assert_not_reached();
9902             }
9903 
9904             if (is_scalar) {
9905                 write_fp_sreg(s, rd, tcg_res);
9906             } else {
9907                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9908             }
9909         }
9910         if (!is_scalar) {
9911             clear_vec_high(s, is_q, rd);
9912         }
9913     }
9914 }
9915 
9916 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9917                                 int opcode, bool u, bool is_q,
9918                                 int size, int rn, int rd)
9919 {
9920     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9921      * in the source becomes a size element in the destination).
9922      */
9923     int pass;
9924     TCGv_i32 tcg_res[2];
9925     int destelt = is_q ? 2 : 0;
9926     int passes = scalar ? 1 : 2;
9927 
9928     if (scalar) {
9929         tcg_res[1] = tcg_constant_i32(0);
9930     }
9931 
9932     for (pass = 0; pass < passes; pass++) {
9933         TCGv_i64 tcg_op = tcg_temp_new_i64();
9934         NeonGenNarrowFn *genfn = NULL;
9935         NeonGenNarrowEnvFn *genenvfn = NULL;
9936 
9937         if (scalar) {
9938             read_vec_element(s, tcg_op, rn, pass, size + 1);
9939         } else {
9940             read_vec_element(s, tcg_op, rn, pass, MO_64);
9941         }
9942         tcg_res[pass] = tcg_temp_new_i32();
9943 
9944         switch (opcode) {
9945         case 0x12: /* XTN, SQXTUN */
9946         {
9947             static NeonGenNarrowFn * const xtnfns[3] = {
9948                 gen_helper_neon_narrow_u8,
9949                 gen_helper_neon_narrow_u16,
9950                 tcg_gen_extrl_i64_i32,
9951             };
9952             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9953                 gen_helper_neon_unarrow_sat8,
9954                 gen_helper_neon_unarrow_sat16,
9955                 gen_helper_neon_unarrow_sat32,
9956             };
9957             if (u) {
9958                 genenvfn = sqxtunfns[size];
9959             } else {
9960                 genfn = xtnfns[size];
9961             }
9962             break;
9963         }
9964         case 0x14: /* SQXTN, UQXTN */
9965         {
9966             static NeonGenNarrowEnvFn * const fns[3][2] = {
9967                 { gen_helper_neon_narrow_sat_s8,
9968                   gen_helper_neon_narrow_sat_u8 },
9969                 { gen_helper_neon_narrow_sat_s16,
9970                   gen_helper_neon_narrow_sat_u16 },
9971                 { gen_helper_neon_narrow_sat_s32,
9972                   gen_helper_neon_narrow_sat_u32 },
9973             };
9974             genenvfn = fns[size][u];
9975             break;
9976         }
9977         case 0x16: /* FCVTN, FCVTN2 */
9978             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9979             if (size == 2) {
9980                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9981             } else {
9982                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9983                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9984                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9985                 TCGv_i32 ahp = get_ahp_flag();
9986 
9987                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9988                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9989                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9990                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9991             }
9992             break;
9993         case 0x36: /* BFCVTN, BFCVTN2 */
9994             {
9995                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9996                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9997             }
9998             break;
9999         case 0x56:  /* FCVTXN, FCVTXN2 */
10000             /* 64 bit to 32 bit float conversion
10001              * with von Neumann rounding (round to odd)
10002              */
10003             assert(size == 2);
10004             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10005             break;
10006         default:
10007             g_assert_not_reached();
10008         }
10009 
10010         if (genfn) {
10011             genfn(tcg_res[pass], tcg_op);
10012         } else if (genenvfn) {
10013             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10014         }
10015     }
10016 
10017     for (pass = 0; pass < 2; pass++) {
10018         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10019     }
10020     clear_vec_high(s, is_q, rd);
10021 }
10022 
10023 /* AdvSIMD scalar two reg misc
10024  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10025  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10026  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10027  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10028  */
10029 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10030 {
10031     int rd = extract32(insn, 0, 5);
10032     int rn = extract32(insn, 5, 5);
10033     int opcode = extract32(insn, 12, 5);
10034     int size = extract32(insn, 22, 2);
10035     bool u = extract32(insn, 29, 1);
10036     bool is_fcvt = false;
10037     int rmode;
10038     TCGv_i32 tcg_rmode;
10039     TCGv_ptr tcg_fpstatus;
10040 
10041     switch (opcode) {
10042     case 0x7: /* SQABS / SQNEG */
10043         break;
10044     case 0xa: /* CMLT */
10045         if (u) {
10046             unallocated_encoding(s);
10047             return;
10048         }
10049         /* fall through */
10050     case 0x8: /* CMGT, CMGE */
10051     case 0x9: /* CMEQ, CMLE */
10052     case 0xb: /* ABS, NEG */
10053         if (size != 3) {
10054             unallocated_encoding(s);
10055             return;
10056         }
10057         break;
10058     case 0x12: /* SQXTUN */
10059         if (!u) {
10060             unallocated_encoding(s);
10061             return;
10062         }
10063         /* fall through */
10064     case 0x14: /* SQXTN, UQXTN */
10065         if (size == 3) {
10066             unallocated_encoding(s);
10067             return;
10068         }
10069         if (!fp_access_check(s)) {
10070             return;
10071         }
10072         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10073         return;
10074     case 0xc ... 0xf:
10075     case 0x16 ... 0x1d:
10076     case 0x1f:
10077         /* Floating point: U, size[1] and opcode indicate operation;
10078          * size[0] indicates single or double precision.
10079          */
10080         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10081         size = extract32(size, 0, 1) ? 3 : 2;
10082         switch (opcode) {
10083         case 0x2c: /* FCMGT (zero) */
10084         case 0x2d: /* FCMEQ (zero) */
10085         case 0x2e: /* FCMLT (zero) */
10086         case 0x6c: /* FCMGE (zero) */
10087         case 0x6d: /* FCMLE (zero) */
10088             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10089             return;
10090         case 0x1d: /* SCVTF */
10091         case 0x5d: /* UCVTF */
10092         {
10093             bool is_signed = (opcode == 0x1d);
10094             if (!fp_access_check(s)) {
10095                 return;
10096             }
10097             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10098             return;
10099         }
10100         case 0x3d: /* FRECPE */
10101         case 0x3f: /* FRECPX */
10102         case 0x7d: /* FRSQRTE */
10103             if (!fp_access_check(s)) {
10104                 return;
10105             }
10106             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10107             return;
10108         case 0x1a: /* FCVTNS */
10109         case 0x1b: /* FCVTMS */
10110         case 0x3a: /* FCVTPS */
10111         case 0x3b: /* FCVTZS */
10112         case 0x5a: /* FCVTNU */
10113         case 0x5b: /* FCVTMU */
10114         case 0x7a: /* FCVTPU */
10115         case 0x7b: /* FCVTZU */
10116             is_fcvt = true;
10117             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10118             break;
10119         case 0x1c: /* FCVTAS */
10120         case 0x5c: /* FCVTAU */
10121             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10122             is_fcvt = true;
10123             rmode = FPROUNDING_TIEAWAY;
10124             break;
10125         case 0x56: /* FCVTXN, FCVTXN2 */
10126             if (size == 2) {
10127                 unallocated_encoding(s);
10128                 return;
10129             }
10130             if (!fp_access_check(s)) {
10131                 return;
10132             }
10133             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10134             return;
10135         default:
10136             unallocated_encoding(s);
10137             return;
10138         }
10139         break;
10140     default:
10141     case 0x3: /* USQADD / SUQADD */
10142         unallocated_encoding(s);
10143         return;
10144     }
10145 
10146     if (!fp_access_check(s)) {
10147         return;
10148     }
10149 
10150     if (is_fcvt) {
10151         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10152         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10153     } else {
10154         tcg_fpstatus = NULL;
10155         tcg_rmode = NULL;
10156     }
10157 
10158     if (size == 3) {
10159         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10160         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10161 
10162         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10163         write_fp_dreg(s, rd, tcg_rd);
10164     } else {
10165         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10166         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10167 
10168         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10169 
10170         switch (opcode) {
10171         case 0x7: /* SQABS, SQNEG */
10172         {
10173             NeonGenOneOpEnvFn *genfn;
10174             static NeonGenOneOpEnvFn * const fns[3][2] = {
10175                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10176                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10177                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10178             };
10179             genfn = fns[size][u];
10180             genfn(tcg_rd, tcg_env, tcg_rn);
10181             break;
10182         }
10183         case 0x1a: /* FCVTNS */
10184         case 0x1b: /* FCVTMS */
10185         case 0x1c: /* FCVTAS */
10186         case 0x3a: /* FCVTPS */
10187         case 0x3b: /* FCVTZS */
10188             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10189                                  tcg_fpstatus);
10190             break;
10191         case 0x5a: /* FCVTNU */
10192         case 0x5b: /* FCVTMU */
10193         case 0x5c: /* FCVTAU */
10194         case 0x7a: /* FCVTPU */
10195         case 0x7b: /* FCVTZU */
10196             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10197                                  tcg_fpstatus);
10198             break;
10199         default:
10200             g_assert_not_reached();
10201         }
10202 
10203         write_fp_sreg(s, rd, tcg_rd);
10204     }
10205 
10206     if (is_fcvt) {
10207         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10208     }
10209 }
10210 
10211 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10212 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10213                                  int immh, int immb, int opcode, int rn, int rd)
10214 {
10215     int size = 32 - clz32(immh) - 1;
10216     int immhb = immh << 3 | immb;
10217     int shift = 2 * (8 << size) - immhb;
10218     GVecGen2iFn *gvec_fn;
10219 
10220     if (extract32(immh, 3, 1) && !is_q) {
10221         unallocated_encoding(s);
10222         return;
10223     }
10224     tcg_debug_assert(size <= 3);
10225 
10226     if (!fp_access_check(s)) {
10227         return;
10228     }
10229 
10230     switch (opcode) {
10231     case 0x02: /* SSRA / USRA (accumulate) */
10232         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10233         break;
10234 
10235     case 0x08: /* SRI */
10236         gvec_fn = gen_gvec_sri;
10237         break;
10238 
10239     case 0x00: /* SSHR / USHR */
10240         if (is_u) {
10241             if (shift == 8 << size) {
10242                 /* Shift count the same size as element size produces zero.  */
10243                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10244                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10245                 return;
10246             }
10247             gvec_fn = tcg_gen_gvec_shri;
10248         } else {
10249             /* Shift count the same size as element size produces all sign.  */
10250             if (shift == 8 << size) {
10251                 shift -= 1;
10252             }
10253             gvec_fn = tcg_gen_gvec_sari;
10254         }
10255         break;
10256 
10257     case 0x04: /* SRSHR / URSHR (rounding) */
10258         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10259         break;
10260 
10261     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10262         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10263         break;
10264 
10265     default:
10266         g_assert_not_reached();
10267     }
10268 
10269     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10270 }
10271 
10272 /* SHL/SLI - Vector shift left */
10273 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10274                                  int immh, int immb, int opcode, int rn, int rd)
10275 {
10276     int size = 32 - clz32(immh) - 1;
10277     int immhb = immh << 3 | immb;
10278     int shift = immhb - (8 << size);
10279 
10280     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10281     assert(size >= 0 && size <= 3);
10282 
10283     if (extract32(immh, 3, 1) && !is_q) {
10284         unallocated_encoding(s);
10285         return;
10286     }
10287 
10288     if (!fp_access_check(s)) {
10289         return;
10290     }
10291 
10292     if (insert) {
10293         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10294     } else {
10295         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10296     }
10297 }
10298 
10299 /* USHLL/SHLL - Vector shift left with widening */
10300 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10301                                  int immh, int immb, int opcode, int rn, int rd)
10302 {
10303     int size = 32 - clz32(immh) - 1;
10304     int immhb = immh << 3 | immb;
10305     int shift = immhb - (8 << size);
10306     int dsize = 64;
10307     int esize = 8 << size;
10308     int elements = dsize/esize;
10309     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10310     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10311     int i;
10312 
10313     if (size >= 3) {
10314         unallocated_encoding(s);
10315         return;
10316     }
10317 
10318     if (!fp_access_check(s)) {
10319         return;
10320     }
10321 
10322     /* For the LL variants the store is larger than the load,
10323      * so if rd == rn we would overwrite parts of our input.
10324      * So load everything right now and use shifts in the main loop.
10325      */
10326     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10327 
10328     for (i = 0; i < elements; i++) {
10329         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10330         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10331         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10332         write_vec_element(s, tcg_rd, rd, i, size + 1);
10333     }
10334 }
10335 
10336 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10337 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10338                                  int immh, int immb, int opcode, int rn, int rd)
10339 {
10340     int immhb = immh << 3 | immb;
10341     int size = 32 - clz32(immh) - 1;
10342     int dsize = 64;
10343     int esize = 8 << size;
10344     int elements = dsize/esize;
10345     int shift = (2 * esize) - immhb;
10346     bool round = extract32(opcode, 0, 1);
10347     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10348     TCGv_i64 tcg_round;
10349     int i;
10350 
10351     if (extract32(immh, 3, 1)) {
10352         unallocated_encoding(s);
10353         return;
10354     }
10355 
10356     if (!fp_access_check(s)) {
10357         return;
10358     }
10359 
10360     tcg_rn = tcg_temp_new_i64();
10361     tcg_rd = tcg_temp_new_i64();
10362     tcg_final = tcg_temp_new_i64();
10363     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10364 
10365     if (round) {
10366         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10367     } else {
10368         tcg_round = NULL;
10369     }
10370 
10371     for (i = 0; i < elements; i++) {
10372         read_vec_element(s, tcg_rn, rn, i, size+1);
10373         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10374                                 false, true, size+1, shift);
10375 
10376         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10377     }
10378 
10379     if (!is_q) {
10380         write_vec_element(s, tcg_final, rd, 0, MO_64);
10381     } else {
10382         write_vec_element(s, tcg_final, rd, 1, MO_64);
10383     }
10384 
10385     clear_vec_high(s, is_q, rd);
10386 }
10387 
10388 
10389 /* AdvSIMD shift by immediate
10390  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10391  * +---+---+---+-------------+------+------+--------+---+------+------+
10392  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10393  * +---+---+---+-------------+------+------+--------+---+------+------+
10394  */
10395 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10396 {
10397     int rd = extract32(insn, 0, 5);
10398     int rn = extract32(insn, 5, 5);
10399     int opcode = extract32(insn, 11, 5);
10400     int immb = extract32(insn, 16, 3);
10401     int immh = extract32(insn, 19, 4);
10402     bool is_u = extract32(insn, 29, 1);
10403     bool is_q = extract32(insn, 30, 1);
10404 
10405     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10406     assert(immh != 0);
10407 
10408     switch (opcode) {
10409     case 0x08: /* SRI */
10410         if (!is_u) {
10411             unallocated_encoding(s);
10412             return;
10413         }
10414         /* fall through */
10415     case 0x00: /* SSHR / USHR */
10416     case 0x02: /* SSRA / USRA (accumulate) */
10417     case 0x04: /* SRSHR / URSHR (rounding) */
10418     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10419         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10420         break;
10421     case 0x0a: /* SHL / SLI */
10422         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10423         break;
10424     case 0x10: /* SHRN */
10425     case 0x11: /* RSHRN / SQRSHRUN */
10426         if (is_u) {
10427             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10428                                    opcode, rn, rd);
10429         } else {
10430             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10431         }
10432         break;
10433     case 0x12: /* SQSHRN / UQSHRN */
10434     case 0x13: /* SQRSHRN / UQRSHRN */
10435         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10436                                opcode, rn, rd);
10437         break;
10438     case 0x14: /* SSHLL / USHLL */
10439         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10440         break;
10441     case 0x1c: /* SCVTF / UCVTF */
10442         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10443                                      opcode, rn, rd);
10444         break;
10445     case 0xc: /* SQSHLU */
10446         if (!is_u) {
10447             unallocated_encoding(s);
10448             return;
10449         }
10450         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10451         break;
10452     case 0xe: /* SQSHL, UQSHL */
10453         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10454         break;
10455     case 0x1f: /* FCVTZS/ FCVTZU */
10456         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10457         return;
10458     default:
10459         unallocated_encoding(s);
10460         return;
10461     }
10462 }
10463 
10464 /* Generate code to do a "long" addition or subtraction, ie one done in
10465  * TCGv_i64 on vector lanes twice the width specified by size.
10466  */
10467 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10468                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10469 {
10470     static NeonGenTwo64OpFn * const fns[3][2] = {
10471         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10472         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10473         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10474     };
10475     NeonGenTwo64OpFn *genfn;
10476     assert(size < 3);
10477 
10478     genfn = fns[size][is_sub];
10479     genfn(tcg_res, tcg_op1, tcg_op2);
10480 }
10481 
10482 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10483                                 int opcode, int rd, int rn, int rm)
10484 {
10485     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10486     TCGv_i64 tcg_res[2];
10487     int pass, accop;
10488 
10489     tcg_res[0] = tcg_temp_new_i64();
10490     tcg_res[1] = tcg_temp_new_i64();
10491 
10492     /* Does this op do an adding accumulate, a subtracting accumulate,
10493      * or no accumulate at all?
10494      */
10495     switch (opcode) {
10496     case 5:
10497     case 8:
10498     case 9:
10499         accop = 1;
10500         break;
10501     case 10:
10502     case 11:
10503         accop = -1;
10504         break;
10505     default:
10506         accop = 0;
10507         break;
10508     }
10509 
10510     if (accop != 0) {
10511         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10512         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10513     }
10514 
10515     /* size == 2 means two 32x32->64 operations; this is worth special
10516      * casing because we can generally handle it inline.
10517      */
10518     if (size == 2) {
10519         for (pass = 0; pass < 2; pass++) {
10520             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10521             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10522             TCGv_i64 tcg_passres;
10523             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10524 
10525             int elt = pass + is_q * 2;
10526 
10527             read_vec_element(s, tcg_op1, rn, elt, memop);
10528             read_vec_element(s, tcg_op2, rm, elt, memop);
10529 
10530             if (accop == 0) {
10531                 tcg_passres = tcg_res[pass];
10532             } else {
10533                 tcg_passres = tcg_temp_new_i64();
10534             }
10535 
10536             switch (opcode) {
10537             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10538                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10539                 break;
10540             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10541                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10542                 break;
10543             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10544             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10545             {
10546                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10547                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10548 
10549                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10550                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10551                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10552                                     tcg_passres,
10553                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10554                 break;
10555             }
10556             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10557             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10558             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10559                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10560                 break;
10561             case 9: /* SQDMLAL, SQDMLAL2 */
10562             case 11: /* SQDMLSL, SQDMLSL2 */
10563             case 13: /* SQDMULL, SQDMULL2 */
10564                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10565                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10566                                                   tcg_passres, tcg_passres);
10567                 break;
10568             default:
10569                 g_assert_not_reached();
10570             }
10571 
10572             if (opcode == 9 || opcode == 11) {
10573                 /* saturating accumulate ops */
10574                 if (accop < 0) {
10575                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10576                 }
10577                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10578                                                   tcg_res[pass], tcg_passres);
10579             } else if (accop > 0) {
10580                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10581             } else if (accop < 0) {
10582                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10583             }
10584         }
10585     } else {
10586         /* size 0 or 1, generally helper functions */
10587         for (pass = 0; pass < 2; pass++) {
10588             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10589             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10590             TCGv_i64 tcg_passres;
10591             int elt = pass + is_q * 2;
10592 
10593             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10594             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10595 
10596             if (accop == 0) {
10597                 tcg_passres = tcg_res[pass];
10598             } else {
10599                 tcg_passres = tcg_temp_new_i64();
10600             }
10601 
10602             switch (opcode) {
10603             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10604             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10605             {
10606                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10607                 static NeonGenWidenFn * const widenfns[2][2] = {
10608                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10609                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10610                 };
10611                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10612 
10613                 widenfn(tcg_op2_64, tcg_op2);
10614                 widenfn(tcg_passres, tcg_op1);
10615                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10616                               tcg_passres, tcg_op2_64);
10617                 break;
10618             }
10619             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10620             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10621                 if (size == 0) {
10622                     if (is_u) {
10623                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10624                     } else {
10625                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10626                     }
10627                 } else {
10628                     if (is_u) {
10629                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10630                     } else {
10631                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10632                     }
10633                 }
10634                 break;
10635             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10636             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10637             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10638                 if (size == 0) {
10639                     if (is_u) {
10640                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10641                     } else {
10642                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10643                     }
10644                 } else {
10645                     if (is_u) {
10646                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10647                     } else {
10648                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10649                     }
10650                 }
10651                 break;
10652             case 9: /* SQDMLAL, SQDMLAL2 */
10653             case 11: /* SQDMLSL, SQDMLSL2 */
10654             case 13: /* SQDMULL, SQDMULL2 */
10655                 assert(size == 1);
10656                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10657                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10658                                                   tcg_passres, tcg_passres);
10659                 break;
10660             default:
10661                 g_assert_not_reached();
10662             }
10663 
10664             if (accop != 0) {
10665                 if (opcode == 9 || opcode == 11) {
10666                     /* saturating accumulate ops */
10667                     if (accop < 0) {
10668                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10669                     }
10670                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10671                                                       tcg_res[pass],
10672                                                       tcg_passres);
10673                 } else {
10674                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10675                                   tcg_res[pass], tcg_passres);
10676                 }
10677             }
10678         }
10679     }
10680 
10681     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10682     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10683 }
10684 
10685 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10686                             int opcode, int rd, int rn, int rm)
10687 {
10688     TCGv_i64 tcg_res[2];
10689     int part = is_q ? 2 : 0;
10690     int pass;
10691 
10692     for (pass = 0; pass < 2; pass++) {
10693         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10694         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10695         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10696         static NeonGenWidenFn * const widenfns[3][2] = {
10697             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10698             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10699             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10700         };
10701         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10702 
10703         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10704         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10705         widenfn(tcg_op2_wide, tcg_op2);
10706         tcg_res[pass] = tcg_temp_new_i64();
10707         gen_neon_addl(size, (opcode == 3),
10708                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10709     }
10710 
10711     for (pass = 0; pass < 2; pass++) {
10712         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10713     }
10714 }
10715 
10716 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10717 {
10718     tcg_gen_addi_i64(in, in, 1U << 31);
10719     tcg_gen_extrh_i64_i32(res, in);
10720 }
10721 
10722 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10723                                  int opcode, int rd, int rn, int rm)
10724 {
10725     TCGv_i32 tcg_res[2];
10726     int part = is_q ? 2 : 0;
10727     int pass;
10728 
10729     for (pass = 0; pass < 2; pass++) {
10730         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10731         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10732         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10733         static NeonGenNarrowFn * const narrowfns[3][2] = {
10734             { gen_helper_neon_narrow_high_u8,
10735               gen_helper_neon_narrow_round_high_u8 },
10736             { gen_helper_neon_narrow_high_u16,
10737               gen_helper_neon_narrow_round_high_u16 },
10738             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10739         };
10740         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10741 
10742         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10743         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10744 
10745         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10746 
10747         tcg_res[pass] = tcg_temp_new_i32();
10748         gennarrow(tcg_res[pass], tcg_wideres);
10749     }
10750 
10751     for (pass = 0; pass < 2; pass++) {
10752         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10753     }
10754     clear_vec_high(s, is_q, rd);
10755 }
10756 
10757 /* AdvSIMD three different
10758  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10759  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10760  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10761  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10762  */
10763 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10764 {
10765     /* Instructions in this group fall into three basic classes
10766      * (in each case with the operation working on each element in
10767      * the input vectors):
10768      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10769      *     128 bit input)
10770      * (2) wide 64 x 128 -> 128
10771      * (3) narrowing 128 x 128 -> 64
10772      * Here we do initial decode, catch unallocated cases and
10773      * dispatch to separate functions for each class.
10774      */
10775     int is_q = extract32(insn, 30, 1);
10776     int is_u = extract32(insn, 29, 1);
10777     int size = extract32(insn, 22, 2);
10778     int opcode = extract32(insn, 12, 4);
10779     int rm = extract32(insn, 16, 5);
10780     int rn = extract32(insn, 5, 5);
10781     int rd = extract32(insn, 0, 5);
10782 
10783     switch (opcode) {
10784     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10785     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10786         /* 64 x 128 -> 128 */
10787         if (size == 3) {
10788             unallocated_encoding(s);
10789             return;
10790         }
10791         if (!fp_access_check(s)) {
10792             return;
10793         }
10794         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10795         break;
10796     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10797     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10798         /* 128 x 128 -> 64 */
10799         if (size == 3) {
10800             unallocated_encoding(s);
10801             return;
10802         }
10803         if (!fp_access_check(s)) {
10804             return;
10805         }
10806         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10807         break;
10808     case 14: /* PMULL, PMULL2 */
10809         if (is_u) {
10810             unallocated_encoding(s);
10811             return;
10812         }
10813         switch (size) {
10814         case 0: /* PMULL.P8 */
10815             if (!fp_access_check(s)) {
10816                 return;
10817             }
10818             /* The Q field specifies lo/hi half input for this insn.  */
10819             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10820                              gen_helper_neon_pmull_h);
10821             break;
10822 
10823         case 3: /* PMULL.P64 */
10824             if (!dc_isar_feature(aa64_pmull, s)) {
10825                 unallocated_encoding(s);
10826                 return;
10827             }
10828             if (!fp_access_check(s)) {
10829                 return;
10830             }
10831             /* The Q field specifies lo/hi half input for this insn.  */
10832             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10833                              gen_helper_gvec_pmull_q);
10834             break;
10835 
10836         default:
10837             unallocated_encoding(s);
10838             break;
10839         }
10840         return;
10841     case 9: /* SQDMLAL, SQDMLAL2 */
10842     case 11: /* SQDMLSL, SQDMLSL2 */
10843     case 13: /* SQDMULL, SQDMULL2 */
10844         if (is_u || size == 0) {
10845             unallocated_encoding(s);
10846             return;
10847         }
10848         /* fall through */
10849     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10850     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10851     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10852     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10853     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10854     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10855     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10856         /* 64 x 64 -> 128 */
10857         if (size == 3) {
10858             unallocated_encoding(s);
10859             return;
10860         }
10861         if (!fp_access_check(s)) {
10862             return;
10863         }
10864 
10865         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10866         break;
10867     default:
10868         /* opcode 15 not allocated */
10869         unallocated_encoding(s);
10870         break;
10871     }
10872 }
10873 
10874 /* AdvSIMD three same extra
10875  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10876  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10877  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10878  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10879  */
10880 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10881 {
10882     int rd = extract32(insn, 0, 5);
10883     int rn = extract32(insn, 5, 5);
10884     int opcode = extract32(insn, 11, 4);
10885     int rm = extract32(insn, 16, 5);
10886     int size = extract32(insn, 22, 2);
10887     bool u = extract32(insn, 29, 1);
10888     bool is_q = extract32(insn, 30, 1);
10889     bool feature;
10890     int rot;
10891 
10892     switch (u * 16 + opcode) {
10893     case 0x02: /* SDOT (vector) */
10894     case 0x12: /* UDOT (vector) */
10895         if (size != MO_32) {
10896             unallocated_encoding(s);
10897             return;
10898         }
10899         feature = dc_isar_feature(aa64_dp, s);
10900         break;
10901     case 0x03: /* USDOT */
10902         if (size != MO_32) {
10903             unallocated_encoding(s);
10904             return;
10905         }
10906         feature = dc_isar_feature(aa64_i8mm, s);
10907         break;
10908     case 0x04: /* SMMLA */
10909     case 0x14: /* UMMLA */
10910     case 0x05: /* USMMLA */
10911         if (!is_q || size != MO_32) {
10912             unallocated_encoding(s);
10913             return;
10914         }
10915         feature = dc_isar_feature(aa64_i8mm, s);
10916         break;
10917     case 0x18: /* FCMLA, #0 */
10918     case 0x19: /* FCMLA, #90 */
10919     case 0x1a: /* FCMLA, #180 */
10920     case 0x1b: /* FCMLA, #270 */
10921     case 0x1c: /* FCADD, #90 */
10922     case 0x1e: /* FCADD, #270 */
10923         if (size == 0
10924             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10925             || (size == 3 && !is_q)) {
10926             unallocated_encoding(s);
10927             return;
10928         }
10929         feature = dc_isar_feature(aa64_fcma, s);
10930         break;
10931     case 0x1d: /* BFMMLA */
10932         if (size != MO_16 || !is_q) {
10933             unallocated_encoding(s);
10934             return;
10935         }
10936         feature = dc_isar_feature(aa64_bf16, s);
10937         break;
10938     case 0x1f:
10939         switch (size) {
10940         case 1: /* BFDOT */
10941         case 3: /* BFMLAL{B,T} */
10942             feature = dc_isar_feature(aa64_bf16, s);
10943             break;
10944         default:
10945             unallocated_encoding(s);
10946             return;
10947         }
10948         break;
10949     default:
10950     case 0x10: /* SQRDMLAH (vector) */
10951     case 0x11: /* SQRDMLSH (vector) */
10952         unallocated_encoding(s);
10953         return;
10954     }
10955     if (!feature) {
10956         unallocated_encoding(s);
10957         return;
10958     }
10959     if (!fp_access_check(s)) {
10960         return;
10961     }
10962 
10963     switch (opcode) {
10964     case 0x2: /* SDOT / UDOT */
10965         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
10966                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
10967         return;
10968 
10969     case 0x3: /* USDOT */
10970         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
10971         return;
10972 
10973     case 0x04: /* SMMLA, UMMLA */
10974         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
10975                          u ? gen_helper_gvec_ummla_b
10976                          : gen_helper_gvec_smmla_b);
10977         return;
10978     case 0x05: /* USMMLA */
10979         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
10980         return;
10981 
10982     case 0x8: /* FCMLA, #0 */
10983     case 0x9: /* FCMLA, #90 */
10984     case 0xa: /* FCMLA, #180 */
10985     case 0xb: /* FCMLA, #270 */
10986         rot = extract32(opcode, 0, 2);
10987         switch (size) {
10988         case 1:
10989             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
10990                               gen_helper_gvec_fcmlah);
10991             break;
10992         case 2:
10993             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
10994                               gen_helper_gvec_fcmlas);
10995             break;
10996         case 3:
10997             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
10998                               gen_helper_gvec_fcmlad);
10999             break;
11000         default:
11001             g_assert_not_reached();
11002         }
11003         return;
11004 
11005     case 0xc: /* FCADD, #90 */
11006     case 0xe: /* FCADD, #270 */
11007         rot = extract32(opcode, 1, 1);
11008         switch (size) {
11009         case 1:
11010             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11011                               gen_helper_gvec_fcaddh);
11012             break;
11013         case 2:
11014             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11015                               gen_helper_gvec_fcadds);
11016             break;
11017         case 3:
11018             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11019                               gen_helper_gvec_fcaddd);
11020             break;
11021         default:
11022             g_assert_not_reached();
11023         }
11024         return;
11025 
11026     case 0xd: /* BFMMLA */
11027         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11028         return;
11029     case 0xf:
11030         switch (size) {
11031         case 1: /* BFDOT */
11032             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11033             break;
11034         case 3: /* BFMLAL{B,T} */
11035             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11036                               gen_helper_gvec_bfmlal);
11037             break;
11038         default:
11039             g_assert_not_reached();
11040         }
11041         return;
11042 
11043     default:
11044         g_assert_not_reached();
11045     }
11046 }
11047 
11048 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11049                                   int size, int rn, int rd)
11050 {
11051     /* Handle 2-reg-misc ops which are widening (so each size element
11052      * in the source becomes a 2*size element in the destination.
11053      * The only instruction like this is FCVTL.
11054      */
11055     int pass;
11056 
11057     if (size == 3) {
11058         /* 32 -> 64 bit fp conversion */
11059         TCGv_i64 tcg_res[2];
11060         int srcelt = is_q ? 2 : 0;
11061 
11062         for (pass = 0; pass < 2; pass++) {
11063             TCGv_i32 tcg_op = tcg_temp_new_i32();
11064             tcg_res[pass] = tcg_temp_new_i64();
11065 
11066             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11067             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11068         }
11069         for (pass = 0; pass < 2; pass++) {
11070             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11071         }
11072     } else {
11073         /* 16 -> 32 bit fp conversion */
11074         int srcelt = is_q ? 4 : 0;
11075         TCGv_i32 tcg_res[4];
11076         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11077         TCGv_i32 ahp = get_ahp_flag();
11078 
11079         for (pass = 0; pass < 4; pass++) {
11080             tcg_res[pass] = tcg_temp_new_i32();
11081 
11082             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11083             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11084                                            fpst, ahp);
11085         }
11086         for (pass = 0; pass < 4; pass++) {
11087             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11088         }
11089     }
11090 }
11091 
11092 static void handle_rev(DisasContext *s, int opcode, bool u,
11093                        bool is_q, int size, int rn, int rd)
11094 {
11095     int op = (opcode << 1) | u;
11096     int opsz = op + size;
11097     int grp_size = 3 - opsz;
11098     int dsize = is_q ? 128 : 64;
11099     int i;
11100 
11101     if (opsz >= 3) {
11102         unallocated_encoding(s);
11103         return;
11104     }
11105 
11106     if (!fp_access_check(s)) {
11107         return;
11108     }
11109 
11110     if (size == 0) {
11111         /* Special case bytes, use bswap op on each group of elements */
11112         int groups = dsize / (8 << grp_size);
11113 
11114         for (i = 0; i < groups; i++) {
11115             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11116 
11117             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11118             switch (grp_size) {
11119             case MO_16:
11120                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11121                 break;
11122             case MO_32:
11123                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11124                 break;
11125             case MO_64:
11126                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11127                 break;
11128             default:
11129                 g_assert_not_reached();
11130             }
11131             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11132         }
11133         clear_vec_high(s, is_q, rd);
11134     } else {
11135         int revmask = (1 << grp_size) - 1;
11136         int esize = 8 << size;
11137         int elements = dsize / esize;
11138         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11139         TCGv_i64 tcg_rd[2];
11140 
11141         for (i = 0; i < 2; i++) {
11142             tcg_rd[i] = tcg_temp_new_i64();
11143             tcg_gen_movi_i64(tcg_rd[i], 0);
11144         }
11145 
11146         for (i = 0; i < elements; i++) {
11147             int e_rev = (i & 0xf) ^ revmask;
11148             int w = (e_rev * esize) / 64;
11149             int o = (e_rev * esize) % 64;
11150 
11151             read_vec_element(s, tcg_rn, rn, i, size);
11152             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11153         }
11154 
11155         for (i = 0; i < 2; i++) {
11156             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11157         }
11158         clear_vec_high(s, true, rd);
11159     }
11160 }
11161 
11162 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11163                                   bool is_q, int size, int rn, int rd)
11164 {
11165     /* Implement the pairwise operations from 2-misc:
11166      * SADDLP, UADDLP, SADALP, UADALP.
11167      * These all add pairs of elements in the input to produce a
11168      * double-width result element in the output (possibly accumulating).
11169      */
11170     bool accum = (opcode == 0x6);
11171     int maxpass = is_q ? 2 : 1;
11172     int pass;
11173     TCGv_i64 tcg_res[2];
11174 
11175     if (size == 2) {
11176         /* 32 + 32 -> 64 op */
11177         MemOp memop = size + (u ? 0 : MO_SIGN);
11178 
11179         for (pass = 0; pass < maxpass; pass++) {
11180             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11181             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11182 
11183             tcg_res[pass] = tcg_temp_new_i64();
11184 
11185             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11186             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11187             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11188             if (accum) {
11189                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11190                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11191             }
11192         }
11193     } else {
11194         for (pass = 0; pass < maxpass; pass++) {
11195             TCGv_i64 tcg_op = tcg_temp_new_i64();
11196             NeonGenOne64OpFn *genfn;
11197             static NeonGenOne64OpFn * const fns[2][2] = {
11198                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11199                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11200             };
11201 
11202             genfn = fns[size][u];
11203 
11204             tcg_res[pass] = tcg_temp_new_i64();
11205 
11206             read_vec_element(s, tcg_op, rn, pass, MO_64);
11207             genfn(tcg_res[pass], tcg_op);
11208 
11209             if (accum) {
11210                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11211                 if (size == 0) {
11212                     gen_helper_neon_addl_u16(tcg_res[pass],
11213                                              tcg_res[pass], tcg_op);
11214                 } else {
11215                     gen_helper_neon_addl_u32(tcg_res[pass],
11216                                              tcg_res[pass], tcg_op);
11217                 }
11218             }
11219         }
11220     }
11221     if (!is_q) {
11222         tcg_res[1] = tcg_constant_i64(0);
11223     }
11224     for (pass = 0; pass < 2; pass++) {
11225         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11226     }
11227 }
11228 
11229 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11230 {
11231     /* Implement SHLL and SHLL2 */
11232     int pass;
11233     int part = is_q ? 2 : 0;
11234     TCGv_i64 tcg_res[2];
11235 
11236     for (pass = 0; pass < 2; pass++) {
11237         static NeonGenWidenFn * const widenfns[3] = {
11238             gen_helper_neon_widen_u8,
11239             gen_helper_neon_widen_u16,
11240             tcg_gen_extu_i32_i64,
11241         };
11242         NeonGenWidenFn *widenfn = widenfns[size];
11243         TCGv_i32 tcg_op = tcg_temp_new_i32();
11244 
11245         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11246         tcg_res[pass] = tcg_temp_new_i64();
11247         widenfn(tcg_res[pass], tcg_op);
11248         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11249     }
11250 
11251     for (pass = 0; pass < 2; pass++) {
11252         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11253     }
11254 }
11255 
11256 /* AdvSIMD two reg misc
11257  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11258  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11259  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11260  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11261  */
11262 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11263 {
11264     int size = extract32(insn, 22, 2);
11265     int opcode = extract32(insn, 12, 5);
11266     bool u = extract32(insn, 29, 1);
11267     bool is_q = extract32(insn, 30, 1);
11268     int rn = extract32(insn, 5, 5);
11269     int rd = extract32(insn, 0, 5);
11270     bool need_fpstatus = false;
11271     int rmode = -1;
11272     TCGv_i32 tcg_rmode;
11273     TCGv_ptr tcg_fpstatus;
11274 
11275     switch (opcode) {
11276     case 0x0: /* REV64, REV32 */
11277     case 0x1: /* REV16 */
11278         handle_rev(s, opcode, u, is_q, size, rn, rd);
11279         return;
11280     case 0x5: /* CNT, NOT, RBIT */
11281         if (u && size == 0) {
11282             /* NOT */
11283             break;
11284         } else if (u && size == 1) {
11285             /* RBIT */
11286             break;
11287         } else if (!u && size == 0) {
11288             /* CNT */
11289             break;
11290         }
11291         unallocated_encoding(s);
11292         return;
11293     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11294     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11295         if (size == 3) {
11296             unallocated_encoding(s);
11297             return;
11298         }
11299         if (!fp_access_check(s)) {
11300             return;
11301         }
11302 
11303         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11304         return;
11305     case 0x4: /* CLS, CLZ */
11306         if (size == 3) {
11307             unallocated_encoding(s);
11308             return;
11309         }
11310         break;
11311     case 0x2: /* SADDLP, UADDLP */
11312     case 0x6: /* SADALP, UADALP */
11313         if (size == 3) {
11314             unallocated_encoding(s);
11315             return;
11316         }
11317         if (!fp_access_check(s)) {
11318             return;
11319         }
11320         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11321         return;
11322     case 0x13: /* SHLL, SHLL2 */
11323         if (u == 0 || size == 3) {
11324             unallocated_encoding(s);
11325             return;
11326         }
11327         if (!fp_access_check(s)) {
11328             return;
11329         }
11330         handle_shll(s, is_q, size, rn, rd);
11331         return;
11332     case 0xa: /* CMLT */
11333         if (u == 1) {
11334             unallocated_encoding(s);
11335             return;
11336         }
11337         /* fall through */
11338     case 0x8: /* CMGT, CMGE */
11339     case 0x9: /* CMEQ, CMLE */
11340     case 0xb: /* ABS, NEG */
11341         if (size == 3 && !is_q) {
11342             unallocated_encoding(s);
11343             return;
11344         }
11345         break;
11346     case 0x7: /* SQABS, SQNEG */
11347         if (size == 3 && !is_q) {
11348             unallocated_encoding(s);
11349             return;
11350         }
11351         break;
11352     case 0xc ... 0xf:
11353     case 0x16 ... 0x1f:
11354     {
11355         /* Floating point: U, size[1] and opcode indicate operation;
11356          * size[0] indicates single or double precision.
11357          */
11358         int is_double = extract32(size, 0, 1);
11359         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11360         size = is_double ? 3 : 2;
11361         switch (opcode) {
11362         case 0x2f: /* FABS */
11363         case 0x6f: /* FNEG */
11364             if (size == 3 && !is_q) {
11365                 unallocated_encoding(s);
11366                 return;
11367             }
11368             break;
11369         case 0x1d: /* SCVTF */
11370         case 0x5d: /* UCVTF */
11371         {
11372             bool is_signed = (opcode == 0x1d) ? true : false;
11373             int elements = is_double ? 2 : is_q ? 4 : 2;
11374             if (is_double && !is_q) {
11375                 unallocated_encoding(s);
11376                 return;
11377             }
11378             if (!fp_access_check(s)) {
11379                 return;
11380             }
11381             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11382             return;
11383         }
11384         case 0x2c: /* FCMGT (zero) */
11385         case 0x2d: /* FCMEQ (zero) */
11386         case 0x2e: /* FCMLT (zero) */
11387         case 0x6c: /* FCMGE (zero) */
11388         case 0x6d: /* FCMLE (zero) */
11389             if (size == 3 && !is_q) {
11390                 unallocated_encoding(s);
11391                 return;
11392             }
11393             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11394             return;
11395         case 0x7f: /* FSQRT */
11396             if (size == 3 && !is_q) {
11397                 unallocated_encoding(s);
11398                 return;
11399             }
11400             break;
11401         case 0x1a: /* FCVTNS */
11402         case 0x1b: /* FCVTMS */
11403         case 0x3a: /* FCVTPS */
11404         case 0x3b: /* FCVTZS */
11405         case 0x5a: /* FCVTNU */
11406         case 0x5b: /* FCVTMU */
11407         case 0x7a: /* FCVTPU */
11408         case 0x7b: /* FCVTZU */
11409             need_fpstatus = true;
11410             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11411             if (size == 3 && !is_q) {
11412                 unallocated_encoding(s);
11413                 return;
11414             }
11415             break;
11416         case 0x5c: /* FCVTAU */
11417         case 0x1c: /* FCVTAS */
11418             need_fpstatus = true;
11419             rmode = FPROUNDING_TIEAWAY;
11420             if (size == 3 && !is_q) {
11421                 unallocated_encoding(s);
11422                 return;
11423             }
11424             break;
11425         case 0x3c: /* URECPE */
11426             if (size == 3) {
11427                 unallocated_encoding(s);
11428                 return;
11429             }
11430             /* fall through */
11431         case 0x3d: /* FRECPE */
11432         case 0x7d: /* FRSQRTE */
11433             if (size == 3 && !is_q) {
11434                 unallocated_encoding(s);
11435                 return;
11436             }
11437             if (!fp_access_check(s)) {
11438                 return;
11439             }
11440             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11441             return;
11442         case 0x56: /* FCVTXN, FCVTXN2 */
11443             if (size == 2) {
11444                 unallocated_encoding(s);
11445                 return;
11446             }
11447             /* fall through */
11448         case 0x16: /* FCVTN, FCVTN2 */
11449             /* handle_2misc_narrow does a 2*size -> size operation, but these
11450              * instructions encode the source size rather than dest size.
11451              */
11452             if (!fp_access_check(s)) {
11453                 return;
11454             }
11455             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11456             return;
11457         case 0x36: /* BFCVTN, BFCVTN2 */
11458             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11459                 unallocated_encoding(s);
11460                 return;
11461             }
11462             if (!fp_access_check(s)) {
11463                 return;
11464             }
11465             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11466             return;
11467         case 0x17: /* FCVTL, FCVTL2 */
11468             if (!fp_access_check(s)) {
11469                 return;
11470             }
11471             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11472             return;
11473         case 0x18: /* FRINTN */
11474         case 0x19: /* FRINTM */
11475         case 0x38: /* FRINTP */
11476         case 0x39: /* FRINTZ */
11477             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11478             /* fall through */
11479         case 0x59: /* FRINTX */
11480         case 0x79: /* FRINTI */
11481             need_fpstatus = true;
11482             if (size == 3 && !is_q) {
11483                 unallocated_encoding(s);
11484                 return;
11485             }
11486             break;
11487         case 0x58: /* FRINTA */
11488             rmode = FPROUNDING_TIEAWAY;
11489             need_fpstatus = true;
11490             if (size == 3 && !is_q) {
11491                 unallocated_encoding(s);
11492                 return;
11493             }
11494             break;
11495         case 0x7c: /* URSQRTE */
11496             if (size == 3) {
11497                 unallocated_encoding(s);
11498                 return;
11499             }
11500             break;
11501         case 0x1e: /* FRINT32Z */
11502         case 0x1f: /* FRINT64Z */
11503             rmode = FPROUNDING_ZERO;
11504             /* fall through */
11505         case 0x5e: /* FRINT32X */
11506         case 0x5f: /* FRINT64X */
11507             need_fpstatus = true;
11508             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11509                 unallocated_encoding(s);
11510                 return;
11511             }
11512             break;
11513         default:
11514             unallocated_encoding(s);
11515             return;
11516         }
11517         break;
11518     }
11519     default:
11520     case 0x3: /* SUQADD, USQADD */
11521         unallocated_encoding(s);
11522         return;
11523     }
11524 
11525     if (!fp_access_check(s)) {
11526         return;
11527     }
11528 
11529     if (need_fpstatus || rmode >= 0) {
11530         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11531     } else {
11532         tcg_fpstatus = NULL;
11533     }
11534     if (rmode >= 0) {
11535         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11536     } else {
11537         tcg_rmode = NULL;
11538     }
11539 
11540     switch (opcode) {
11541     case 0x5:
11542         if (u && size == 0) { /* NOT */
11543             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11544             return;
11545         }
11546         break;
11547     case 0x8: /* CMGT, CMGE */
11548         if (u) {
11549             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11550         } else {
11551             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11552         }
11553         return;
11554     case 0x9: /* CMEQ, CMLE */
11555         if (u) {
11556             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11557         } else {
11558             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11559         }
11560         return;
11561     case 0xa: /* CMLT */
11562         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11563         return;
11564     case 0xb:
11565         if (u) { /* ABS, NEG */
11566             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11567         } else {
11568             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11569         }
11570         return;
11571     }
11572 
11573     if (size == 3) {
11574         /* All 64-bit element operations can be shared with scalar 2misc */
11575         int pass;
11576 
11577         /* Coverity claims (size == 3 && !is_q) has been eliminated
11578          * from all paths leading to here.
11579          */
11580         tcg_debug_assert(is_q);
11581         for (pass = 0; pass < 2; pass++) {
11582             TCGv_i64 tcg_op = tcg_temp_new_i64();
11583             TCGv_i64 tcg_res = tcg_temp_new_i64();
11584 
11585             read_vec_element(s, tcg_op, rn, pass, MO_64);
11586 
11587             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11588                             tcg_rmode, tcg_fpstatus);
11589 
11590             write_vec_element(s, tcg_res, rd, pass, MO_64);
11591         }
11592     } else {
11593         int pass;
11594 
11595         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11596             TCGv_i32 tcg_op = tcg_temp_new_i32();
11597             TCGv_i32 tcg_res = tcg_temp_new_i32();
11598 
11599             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11600 
11601             if (size == 2) {
11602                 /* Special cases for 32 bit elements */
11603                 switch (opcode) {
11604                 case 0x4: /* CLS */
11605                     if (u) {
11606                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11607                     } else {
11608                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11609                     }
11610                     break;
11611                 case 0x7: /* SQABS, SQNEG */
11612                     if (u) {
11613                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11614                     } else {
11615                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11616                     }
11617                     break;
11618                 case 0x2f: /* FABS */
11619                     gen_vfp_abss(tcg_res, tcg_op);
11620                     break;
11621                 case 0x6f: /* FNEG */
11622                     gen_vfp_negs(tcg_res, tcg_op);
11623                     break;
11624                 case 0x7f: /* FSQRT */
11625                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11626                     break;
11627                 case 0x1a: /* FCVTNS */
11628                 case 0x1b: /* FCVTMS */
11629                 case 0x1c: /* FCVTAS */
11630                 case 0x3a: /* FCVTPS */
11631                 case 0x3b: /* FCVTZS */
11632                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11633                                          tcg_constant_i32(0), tcg_fpstatus);
11634                     break;
11635                 case 0x5a: /* FCVTNU */
11636                 case 0x5b: /* FCVTMU */
11637                 case 0x5c: /* FCVTAU */
11638                 case 0x7a: /* FCVTPU */
11639                 case 0x7b: /* FCVTZU */
11640                     gen_helper_vfp_touls(tcg_res, tcg_op,
11641                                          tcg_constant_i32(0), tcg_fpstatus);
11642                     break;
11643                 case 0x18: /* FRINTN */
11644                 case 0x19: /* FRINTM */
11645                 case 0x38: /* FRINTP */
11646                 case 0x39: /* FRINTZ */
11647                 case 0x58: /* FRINTA */
11648                 case 0x79: /* FRINTI */
11649                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11650                     break;
11651                 case 0x59: /* FRINTX */
11652                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11653                     break;
11654                 case 0x7c: /* URSQRTE */
11655                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11656                     break;
11657                 case 0x1e: /* FRINT32Z */
11658                 case 0x5e: /* FRINT32X */
11659                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11660                     break;
11661                 case 0x1f: /* FRINT64Z */
11662                 case 0x5f: /* FRINT64X */
11663                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11664                     break;
11665                 default:
11666                     g_assert_not_reached();
11667                 }
11668             } else {
11669                 /* Use helpers for 8 and 16 bit elements */
11670                 switch (opcode) {
11671                 case 0x5: /* CNT, RBIT */
11672                     /* For these two insns size is part of the opcode specifier
11673                      * (handled earlier); they always operate on byte elements.
11674                      */
11675                     if (u) {
11676                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11677                     } else {
11678                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11679                     }
11680                     break;
11681                 case 0x7: /* SQABS, SQNEG */
11682                 {
11683                     NeonGenOneOpEnvFn *genfn;
11684                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11685                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11686                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11687                     };
11688                     genfn = fns[size][u];
11689                     genfn(tcg_res, tcg_env, tcg_op);
11690                     break;
11691                 }
11692                 case 0x4: /* CLS, CLZ */
11693                     if (u) {
11694                         if (size == 0) {
11695                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11696                         } else {
11697                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11698                         }
11699                     } else {
11700                         if (size == 0) {
11701                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11702                         } else {
11703                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11704                         }
11705                     }
11706                     break;
11707                 default:
11708                     g_assert_not_reached();
11709                 }
11710             }
11711 
11712             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11713         }
11714     }
11715     clear_vec_high(s, is_q, rd);
11716 
11717     if (tcg_rmode) {
11718         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11719     }
11720 }
11721 
11722 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11723  *
11724  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11725  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11726  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11727  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11728  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11729  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11730  *
11731  * This actually covers two groups where scalar access is governed by
11732  * bit 28. A bunch of the instructions (float to integral) only exist
11733  * in the vector form and are un-allocated for the scalar decode. Also
11734  * in the scalar decode Q is always 1.
11735  */
11736 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11737 {
11738     int fpop, opcode, a, u;
11739     int rn, rd;
11740     bool is_q;
11741     bool is_scalar;
11742     bool only_in_vector = false;
11743 
11744     int pass;
11745     TCGv_i32 tcg_rmode = NULL;
11746     TCGv_ptr tcg_fpstatus = NULL;
11747     bool need_fpst = true;
11748     int rmode = -1;
11749 
11750     if (!dc_isar_feature(aa64_fp16, s)) {
11751         unallocated_encoding(s);
11752         return;
11753     }
11754 
11755     rd = extract32(insn, 0, 5);
11756     rn = extract32(insn, 5, 5);
11757 
11758     a = extract32(insn, 23, 1);
11759     u = extract32(insn, 29, 1);
11760     is_scalar = extract32(insn, 28, 1);
11761     is_q = extract32(insn, 30, 1);
11762 
11763     opcode = extract32(insn, 12, 5);
11764     fpop = deposit32(opcode, 5, 1, a);
11765     fpop = deposit32(fpop, 6, 1, u);
11766 
11767     switch (fpop) {
11768     case 0x1d: /* SCVTF */
11769     case 0x5d: /* UCVTF */
11770     {
11771         int elements;
11772 
11773         if (is_scalar) {
11774             elements = 1;
11775         } else {
11776             elements = (is_q ? 8 : 4);
11777         }
11778 
11779         if (!fp_access_check(s)) {
11780             return;
11781         }
11782         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11783         return;
11784     }
11785     break;
11786     case 0x2c: /* FCMGT (zero) */
11787     case 0x2d: /* FCMEQ (zero) */
11788     case 0x2e: /* FCMLT (zero) */
11789     case 0x6c: /* FCMGE (zero) */
11790     case 0x6d: /* FCMLE (zero) */
11791         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11792         return;
11793     case 0x3d: /* FRECPE */
11794     case 0x3f: /* FRECPX */
11795         break;
11796     case 0x18: /* FRINTN */
11797         only_in_vector = true;
11798         rmode = FPROUNDING_TIEEVEN;
11799         break;
11800     case 0x19: /* FRINTM */
11801         only_in_vector = true;
11802         rmode = FPROUNDING_NEGINF;
11803         break;
11804     case 0x38: /* FRINTP */
11805         only_in_vector = true;
11806         rmode = FPROUNDING_POSINF;
11807         break;
11808     case 0x39: /* FRINTZ */
11809         only_in_vector = true;
11810         rmode = FPROUNDING_ZERO;
11811         break;
11812     case 0x58: /* FRINTA */
11813         only_in_vector = true;
11814         rmode = FPROUNDING_TIEAWAY;
11815         break;
11816     case 0x59: /* FRINTX */
11817     case 0x79: /* FRINTI */
11818         only_in_vector = true;
11819         /* current rounding mode */
11820         break;
11821     case 0x1a: /* FCVTNS */
11822         rmode = FPROUNDING_TIEEVEN;
11823         break;
11824     case 0x1b: /* FCVTMS */
11825         rmode = FPROUNDING_NEGINF;
11826         break;
11827     case 0x1c: /* FCVTAS */
11828         rmode = FPROUNDING_TIEAWAY;
11829         break;
11830     case 0x3a: /* FCVTPS */
11831         rmode = FPROUNDING_POSINF;
11832         break;
11833     case 0x3b: /* FCVTZS */
11834         rmode = FPROUNDING_ZERO;
11835         break;
11836     case 0x5a: /* FCVTNU */
11837         rmode = FPROUNDING_TIEEVEN;
11838         break;
11839     case 0x5b: /* FCVTMU */
11840         rmode = FPROUNDING_NEGINF;
11841         break;
11842     case 0x5c: /* FCVTAU */
11843         rmode = FPROUNDING_TIEAWAY;
11844         break;
11845     case 0x7a: /* FCVTPU */
11846         rmode = FPROUNDING_POSINF;
11847         break;
11848     case 0x7b: /* FCVTZU */
11849         rmode = FPROUNDING_ZERO;
11850         break;
11851     case 0x2f: /* FABS */
11852     case 0x6f: /* FNEG */
11853         need_fpst = false;
11854         break;
11855     case 0x7d: /* FRSQRTE */
11856     case 0x7f: /* FSQRT (vector) */
11857         break;
11858     default:
11859         unallocated_encoding(s);
11860         return;
11861     }
11862 
11863 
11864     /* Check additional constraints for the scalar encoding */
11865     if (is_scalar) {
11866         if (!is_q) {
11867             unallocated_encoding(s);
11868             return;
11869         }
11870         /* FRINTxx is only in the vector form */
11871         if (only_in_vector) {
11872             unallocated_encoding(s);
11873             return;
11874         }
11875     }
11876 
11877     if (!fp_access_check(s)) {
11878         return;
11879     }
11880 
11881     if (rmode >= 0 || need_fpst) {
11882         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11883     }
11884 
11885     if (rmode >= 0) {
11886         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11887     }
11888 
11889     if (is_scalar) {
11890         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11891         TCGv_i32 tcg_res = tcg_temp_new_i32();
11892 
11893         switch (fpop) {
11894         case 0x1a: /* FCVTNS */
11895         case 0x1b: /* FCVTMS */
11896         case 0x1c: /* FCVTAS */
11897         case 0x3a: /* FCVTPS */
11898         case 0x3b: /* FCVTZS */
11899             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11900             break;
11901         case 0x3d: /* FRECPE */
11902             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11903             break;
11904         case 0x3f: /* FRECPX */
11905             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11906             break;
11907         case 0x5a: /* FCVTNU */
11908         case 0x5b: /* FCVTMU */
11909         case 0x5c: /* FCVTAU */
11910         case 0x7a: /* FCVTPU */
11911         case 0x7b: /* FCVTZU */
11912             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11913             break;
11914         case 0x6f: /* FNEG */
11915             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11916             break;
11917         case 0x7d: /* FRSQRTE */
11918             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11919             break;
11920         default:
11921             g_assert_not_reached();
11922         }
11923 
11924         /* limit any sign extension going on */
11925         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11926         write_fp_sreg(s, rd, tcg_res);
11927     } else {
11928         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11929             TCGv_i32 tcg_op = tcg_temp_new_i32();
11930             TCGv_i32 tcg_res = tcg_temp_new_i32();
11931 
11932             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11933 
11934             switch (fpop) {
11935             case 0x1a: /* FCVTNS */
11936             case 0x1b: /* FCVTMS */
11937             case 0x1c: /* FCVTAS */
11938             case 0x3a: /* FCVTPS */
11939             case 0x3b: /* FCVTZS */
11940                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11941                 break;
11942             case 0x3d: /* FRECPE */
11943                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11944                 break;
11945             case 0x5a: /* FCVTNU */
11946             case 0x5b: /* FCVTMU */
11947             case 0x5c: /* FCVTAU */
11948             case 0x7a: /* FCVTPU */
11949             case 0x7b: /* FCVTZU */
11950                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11951                 break;
11952             case 0x18: /* FRINTN */
11953             case 0x19: /* FRINTM */
11954             case 0x38: /* FRINTP */
11955             case 0x39: /* FRINTZ */
11956             case 0x58: /* FRINTA */
11957             case 0x79: /* FRINTI */
11958                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11959                 break;
11960             case 0x59: /* FRINTX */
11961                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11962                 break;
11963             case 0x2f: /* FABS */
11964                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11965                 break;
11966             case 0x6f: /* FNEG */
11967                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11968                 break;
11969             case 0x7d: /* FRSQRTE */
11970                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11971                 break;
11972             case 0x7f: /* FSQRT */
11973                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11974                 break;
11975             default:
11976                 g_assert_not_reached();
11977             }
11978 
11979             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11980         }
11981 
11982         clear_vec_high(s, is_q, rd);
11983     }
11984 
11985     if (tcg_rmode) {
11986         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11987     }
11988 }
11989 
11990 /* AdvSIMD scalar x indexed element
11991  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11992  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11993  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11994  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11995  * AdvSIMD vector x indexed element
11996  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
11997  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11998  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
11999  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12000  */
12001 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12002 {
12003     /* This encoding has two kinds of instruction:
12004      *  normal, where we perform elt x idxelt => elt for each
12005      *     element in the vector
12006      *  long, where we perform elt x idxelt and generate a result of
12007      *     double the width of the input element
12008      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12009      */
12010     bool is_scalar = extract32(insn, 28, 1);
12011     bool is_q = extract32(insn, 30, 1);
12012     bool u = extract32(insn, 29, 1);
12013     int size = extract32(insn, 22, 2);
12014     int l = extract32(insn, 21, 1);
12015     int m = extract32(insn, 20, 1);
12016     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12017     int rm = extract32(insn, 16, 4);
12018     int opcode = extract32(insn, 12, 4);
12019     int h = extract32(insn, 11, 1);
12020     int rn = extract32(insn, 5, 5);
12021     int rd = extract32(insn, 0, 5);
12022     bool is_long = false;
12023     int is_fp = 0;
12024     bool is_fp16 = false;
12025     int index;
12026     TCGv_ptr fpst;
12027 
12028     switch (16 * u + opcode) {
12029     case 0x02: /* SMLAL, SMLAL2 */
12030     case 0x12: /* UMLAL, UMLAL2 */
12031     case 0x06: /* SMLSL, SMLSL2 */
12032     case 0x16: /* UMLSL, UMLSL2 */
12033     case 0x0a: /* SMULL, SMULL2 */
12034     case 0x1a: /* UMULL, UMULL2 */
12035         if (is_scalar) {
12036             unallocated_encoding(s);
12037             return;
12038         }
12039         is_long = true;
12040         break;
12041     case 0x03: /* SQDMLAL, SQDMLAL2 */
12042     case 0x07: /* SQDMLSL, SQDMLSL2 */
12043     case 0x0b: /* SQDMULL, SQDMULL2 */
12044         is_long = true;
12045         break;
12046     case 0x0e: /* SDOT */
12047     case 0x1e: /* UDOT */
12048         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12049             unallocated_encoding(s);
12050             return;
12051         }
12052         break;
12053     case 0x0f:
12054         switch (size) {
12055         case 0: /* SUDOT */
12056         case 2: /* USDOT */
12057             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12058                 unallocated_encoding(s);
12059                 return;
12060             }
12061             size = MO_32;
12062             break;
12063         case 1: /* BFDOT */
12064             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12065                 unallocated_encoding(s);
12066                 return;
12067             }
12068             size = MO_32;
12069             break;
12070         case 3: /* BFMLAL{B,T} */
12071             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12072                 unallocated_encoding(s);
12073                 return;
12074             }
12075             /* can't set is_fp without other incorrect size checks */
12076             size = MO_16;
12077             break;
12078         default:
12079             unallocated_encoding(s);
12080             return;
12081         }
12082         break;
12083     case 0x11: /* FCMLA #0 */
12084     case 0x13: /* FCMLA #90 */
12085     case 0x15: /* FCMLA #180 */
12086     case 0x17: /* FCMLA #270 */
12087         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12088             unallocated_encoding(s);
12089             return;
12090         }
12091         is_fp = 2;
12092         break;
12093     default:
12094     case 0x00: /* FMLAL */
12095     case 0x01: /* FMLA */
12096     case 0x04: /* FMLSL */
12097     case 0x05: /* FMLS */
12098     case 0x08: /* MUL */
12099     case 0x09: /* FMUL */
12100     case 0x0c: /* SQDMULH */
12101     case 0x0d: /* SQRDMULH */
12102     case 0x10: /* MLA */
12103     case 0x14: /* MLS */
12104     case 0x18: /* FMLAL2 */
12105     case 0x19: /* FMULX */
12106     case 0x1c: /* FMLSL2 */
12107     case 0x1d: /* SQRDMLAH */
12108     case 0x1f: /* SQRDMLSH */
12109         unallocated_encoding(s);
12110         return;
12111     }
12112 
12113     switch (is_fp) {
12114     case 1: /* normal fp */
12115         unallocated_encoding(s); /* in decodetree */
12116         return;
12117 
12118     case 2: /* complex fp */
12119         /* Each indexable element is a complex pair.  */
12120         size += 1;
12121         switch (size) {
12122         case MO_32:
12123             if (h && !is_q) {
12124                 unallocated_encoding(s);
12125                 return;
12126             }
12127             is_fp16 = true;
12128             break;
12129         case MO_64:
12130             break;
12131         default:
12132             unallocated_encoding(s);
12133             return;
12134         }
12135         break;
12136 
12137     default: /* integer */
12138         switch (size) {
12139         case MO_8:
12140         case MO_64:
12141             unallocated_encoding(s);
12142             return;
12143         }
12144         break;
12145     }
12146     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12147         unallocated_encoding(s);
12148         return;
12149     }
12150 
12151     /* Given MemOp size, adjust register and indexing.  */
12152     switch (size) {
12153     case MO_16:
12154         index = h << 2 | l << 1 | m;
12155         break;
12156     case MO_32:
12157         index = h << 1 | l;
12158         rm |= m << 4;
12159         break;
12160     case MO_64:
12161         if (l || !is_q) {
12162             unallocated_encoding(s);
12163             return;
12164         }
12165         index = h;
12166         rm |= m << 4;
12167         break;
12168     default:
12169         g_assert_not_reached();
12170     }
12171 
12172     if (!fp_access_check(s)) {
12173         return;
12174     }
12175 
12176     if (is_fp) {
12177         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12178     } else {
12179         fpst = NULL;
12180     }
12181 
12182     switch (16 * u + opcode) {
12183     case 0x0e: /* SDOT */
12184     case 0x1e: /* UDOT */
12185         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12186                          u ? gen_helper_gvec_udot_idx_b
12187                          : gen_helper_gvec_sdot_idx_b);
12188         return;
12189     case 0x0f:
12190         switch (extract32(insn, 22, 2)) {
12191         case 0: /* SUDOT */
12192             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12193                              gen_helper_gvec_sudot_idx_b);
12194             return;
12195         case 1: /* BFDOT */
12196             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12197                              gen_helper_gvec_bfdot_idx);
12198             return;
12199         case 2: /* USDOT */
12200             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12201                              gen_helper_gvec_usdot_idx_b);
12202             return;
12203         case 3: /* BFMLAL{B,T} */
12204             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12205                               gen_helper_gvec_bfmlal_idx);
12206             return;
12207         }
12208         g_assert_not_reached();
12209     case 0x11: /* FCMLA #0 */
12210     case 0x13: /* FCMLA #90 */
12211     case 0x15: /* FCMLA #180 */
12212     case 0x17: /* FCMLA #270 */
12213         {
12214             int rot = extract32(insn, 13, 2);
12215             int data = (index << 2) | rot;
12216             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12217                                vec_full_reg_offset(s, rn),
12218                                vec_full_reg_offset(s, rm),
12219                                vec_full_reg_offset(s, rd), fpst,
12220                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12221                                size == MO_64
12222                                ? gen_helper_gvec_fcmlas_idx
12223                                : gen_helper_gvec_fcmlah_idx);
12224         }
12225         return;
12226     }
12227 
12228     if (size == 3) {
12229         g_assert_not_reached();
12230     } else if (!is_long) {
12231         /* 32 bit floating point, or 16 or 32 bit integer.
12232          * For the 16 bit scalar case we use the usual Neon helpers and
12233          * rely on the fact that 0 op 0 == 0 with no side effects.
12234          */
12235         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12236         int pass, maxpasses;
12237 
12238         if (is_scalar) {
12239             maxpasses = 1;
12240         } else {
12241             maxpasses = is_q ? 4 : 2;
12242         }
12243 
12244         read_vec_element_i32(s, tcg_idx, rm, index, size);
12245 
12246         if (size == 1 && !is_scalar) {
12247             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12248              * the index into both halves of the 32 bit tcg_idx and then use
12249              * the usual Neon helpers.
12250              */
12251             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12252         }
12253 
12254         for (pass = 0; pass < maxpasses; pass++) {
12255             TCGv_i32 tcg_op = tcg_temp_new_i32();
12256             TCGv_i32 tcg_res = tcg_temp_new_i32();
12257 
12258             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12259 
12260             switch (16 * u + opcode) {
12261             case 0x10: /* MLA */
12262             case 0x14: /* MLS */
12263             {
12264                 static NeonGenTwoOpFn * const fns[2][2] = {
12265                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12266                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12267                 };
12268                 NeonGenTwoOpFn *genfn;
12269                 bool is_sub = opcode == 0x4;
12270 
12271                 if (size == 1) {
12272                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12273                 } else {
12274                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12275                 }
12276                 if (opcode == 0x8) {
12277                     break;
12278                 }
12279                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12280                 genfn = fns[size - 1][is_sub];
12281                 genfn(tcg_res, tcg_op, tcg_res);
12282                 break;
12283             }
12284             case 0x0c: /* SQDMULH */
12285                 if (size == 1) {
12286                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12287                                                tcg_op, tcg_idx);
12288                 } else {
12289                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12290                                                tcg_op, tcg_idx);
12291                 }
12292                 break;
12293             case 0x0d: /* SQRDMULH */
12294                 if (size == 1) {
12295                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12296                                                 tcg_op, tcg_idx);
12297                 } else {
12298                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12299                                                 tcg_op, tcg_idx);
12300                 }
12301                 break;
12302             default:
12303             case 0x01: /* FMLA */
12304             case 0x05: /* FMLS */
12305             case 0x09: /* FMUL */
12306             case 0x19: /* FMULX */
12307             case 0x1d: /* SQRDMLAH */
12308             case 0x1f: /* SQRDMLSH */
12309                 g_assert_not_reached();
12310             }
12311 
12312             if (is_scalar) {
12313                 write_fp_sreg(s, rd, tcg_res);
12314             } else {
12315                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12316             }
12317         }
12318 
12319         clear_vec_high(s, is_q, rd);
12320     } else {
12321         /* long ops: 16x16->32 or 32x32->64 */
12322         TCGv_i64 tcg_res[2];
12323         int pass;
12324         bool satop = extract32(opcode, 0, 1);
12325         MemOp memop = MO_32;
12326 
12327         if (satop || !u) {
12328             memop |= MO_SIGN;
12329         }
12330 
12331         if (size == 2) {
12332             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12333 
12334             read_vec_element(s, tcg_idx, rm, index, memop);
12335 
12336             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12337                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12338                 TCGv_i64 tcg_passres;
12339                 int passelt;
12340 
12341                 if (is_scalar) {
12342                     passelt = 0;
12343                 } else {
12344                     passelt = pass + (is_q * 2);
12345                 }
12346 
12347                 read_vec_element(s, tcg_op, rn, passelt, memop);
12348 
12349                 tcg_res[pass] = tcg_temp_new_i64();
12350 
12351                 if (opcode == 0xa || opcode == 0xb) {
12352                     /* Non-accumulating ops */
12353                     tcg_passres = tcg_res[pass];
12354                 } else {
12355                     tcg_passres = tcg_temp_new_i64();
12356                 }
12357 
12358                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12359 
12360                 if (satop) {
12361                     /* saturating, doubling */
12362                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12363                                                       tcg_passres, tcg_passres);
12364                 }
12365 
12366                 if (opcode == 0xa || opcode == 0xb) {
12367                     continue;
12368                 }
12369 
12370                 /* Accumulating op: handle accumulate step */
12371                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12372 
12373                 switch (opcode) {
12374                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12375                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12376                     break;
12377                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12378                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12379                     break;
12380                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12381                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12382                     /* fall through */
12383                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12384                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12385                                                       tcg_res[pass],
12386                                                       tcg_passres);
12387                     break;
12388                 default:
12389                     g_assert_not_reached();
12390                 }
12391             }
12392 
12393             clear_vec_high(s, !is_scalar, rd);
12394         } else {
12395             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12396 
12397             assert(size == 1);
12398             read_vec_element_i32(s, tcg_idx, rm, index, size);
12399 
12400             if (!is_scalar) {
12401                 /* The simplest way to handle the 16x16 indexed ops is to
12402                  * duplicate the index into both halves of the 32 bit tcg_idx
12403                  * and then use the usual Neon helpers.
12404                  */
12405                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12406             }
12407 
12408             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12409                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12410                 TCGv_i64 tcg_passres;
12411 
12412                 if (is_scalar) {
12413                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12414                 } else {
12415                     read_vec_element_i32(s, tcg_op, rn,
12416                                          pass + (is_q * 2), MO_32);
12417                 }
12418 
12419                 tcg_res[pass] = tcg_temp_new_i64();
12420 
12421                 if (opcode == 0xa || opcode == 0xb) {
12422                     /* Non-accumulating ops */
12423                     tcg_passres = tcg_res[pass];
12424                 } else {
12425                     tcg_passres = tcg_temp_new_i64();
12426                 }
12427 
12428                 if (memop & MO_SIGN) {
12429                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12430                 } else {
12431                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12432                 }
12433                 if (satop) {
12434                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12435                                                       tcg_passres, tcg_passres);
12436                 }
12437 
12438                 if (opcode == 0xa || opcode == 0xb) {
12439                     continue;
12440                 }
12441 
12442                 /* Accumulating op: handle accumulate step */
12443                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12444 
12445                 switch (opcode) {
12446                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12447                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12448                                              tcg_passres);
12449                     break;
12450                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12451                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12452                                              tcg_passres);
12453                     break;
12454                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12455                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12456                     /* fall through */
12457                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12458                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12459                                                       tcg_res[pass],
12460                                                       tcg_passres);
12461                     break;
12462                 default:
12463                     g_assert_not_reached();
12464                 }
12465             }
12466 
12467             if (is_scalar) {
12468                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12469             }
12470         }
12471 
12472         if (is_scalar) {
12473             tcg_res[1] = tcg_constant_i64(0);
12474         }
12475 
12476         for (pass = 0; pass < 2; pass++) {
12477             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12478         }
12479     }
12480 }
12481 
12482 /* C3.6 Data processing - SIMD, inc Crypto
12483  *
12484  * As the decode gets a little complex we are using a table based
12485  * approach for this part of the decode.
12486  */
12487 static const AArch64DecodeTable data_proc_simd[] = {
12488     /* pattern  ,  mask     ,  fn                        */
12489     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12490     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12491     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12492     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12493     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12494     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12495     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12496     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12497     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12498     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12499     { 0x2e000000, 0xbf208400, disas_simd_ext },
12500     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12501     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12502     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12503     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12504     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12505     { 0x00000000, 0x00000000, NULL }
12506 };
12507 
12508 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12509 {
12510     /* Note that this is called with all non-FP cases from
12511      * table C3-6 so it must UNDEF for entries not specifically
12512      * allocated to instructions in that table.
12513      */
12514     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12515     if (fn) {
12516         fn(s, insn);
12517     } else {
12518         unallocated_encoding(s);
12519     }
12520 }
12521 
12522 /* C3.6 Data processing - SIMD and floating point */
12523 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12524 {
12525     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12526         disas_data_proc_fp(s, insn);
12527     } else {
12528         /* SIMD, including crypto */
12529         disas_data_proc_simd(s, insn);
12530     }
12531 }
12532 
12533 static bool trans_OK(DisasContext *s, arg_OK *a)
12534 {
12535     return true;
12536 }
12537 
12538 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12539 {
12540     s->is_nonstreaming = true;
12541     return true;
12542 }
12543 
12544 /**
12545  * is_guarded_page:
12546  * @env: The cpu environment
12547  * @s: The DisasContext
12548  *
12549  * Return true if the page is guarded.
12550  */
12551 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12552 {
12553     uint64_t addr = s->base.pc_first;
12554 #ifdef CONFIG_USER_ONLY
12555     return page_get_flags(addr) & PAGE_BTI;
12556 #else
12557     CPUTLBEntryFull *full;
12558     void *host;
12559     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12560     int flags;
12561 
12562     /*
12563      * We test this immediately after reading an insn, which means
12564      * that the TLB entry must be present and valid, and thus this
12565      * access will never raise an exception.
12566      */
12567     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12568                               false, &host, &full, 0);
12569     assert(!(flags & TLB_INVALID_MASK));
12570 
12571     return full->extra.arm.guarded;
12572 #endif
12573 }
12574 
12575 /**
12576  * btype_destination_ok:
12577  * @insn: The instruction at the branch destination
12578  * @bt: SCTLR_ELx.BT
12579  * @btype: PSTATE.BTYPE, and is non-zero
12580  *
12581  * On a guarded page, there are a limited number of insns
12582  * that may be present at the branch target:
12583  *   - branch target identifiers,
12584  *   - paciasp, pacibsp,
12585  *   - BRK insn
12586  *   - HLT insn
12587  * Anything else causes a Branch Target Exception.
12588  *
12589  * Return true if the branch is compatible, false to raise BTITRAP.
12590  */
12591 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12592 {
12593     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12594         /* HINT space */
12595         switch (extract32(insn, 5, 7)) {
12596         case 0b011001: /* PACIASP */
12597         case 0b011011: /* PACIBSP */
12598             /*
12599              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12600              * with btype == 3.  Otherwise all btype are ok.
12601              */
12602             return !bt || btype != 3;
12603         case 0b100000: /* BTI */
12604             /* Not compatible with any btype.  */
12605             return false;
12606         case 0b100010: /* BTI c */
12607             /* Not compatible with btype == 3 */
12608             return btype != 3;
12609         case 0b100100: /* BTI j */
12610             /* Not compatible with btype == 2 */
12611             return btype != 2;
12612         case 0b100110: /* BTI jc */
12613             /* Compatible with any btype.  */
12614             return true;
12615         }
12616     } else {
12617         switch (insn & 0xffe0001fu) {
12618         case 0xd4200000u: /* BRK */
12619         case 0xd4400000u: /* HLT */
12620             /* Give priority to the breakpoint exception.  */
12621             return true;
12622         }
12623     }
12624     return false;
12625 }
12626 
12627 /* C3.1 A64 instruction index by encoding */
12628 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12629 {
12630     switch (extract32(insn, 25, 4)) {
12631     case 0x5:
12632     case 0xd:      /* Data processing - register */
12633         disas_data_proc_reg(s, insn);
12634         break;
12635     case 0x7:
12636     case 0xf:      /* Data processing - SIMD and floating point */
12637         disas_data_proc_simd_fp(s, insn);
12638         break;
12639     default:
12640         unallocated_encoding(s);
12641         break;
12642     }
12643 }
12644 
12645 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12646                                           CPUState *cpu)
12647 {
12648     DisasContext *dc = container_of(dcbase, DisasContext, base);
12649     CPUARMState *env = cpu_env(cpu);
12650     ARMCPU *arm_cpu = env_archcpu(env);
12651     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12652     int bound, core_mmu_idx;
12653 
12654     dc->isar = &arm_cpu->isar;
12655     dc->condjmp = 0;
12656     dc->pc_save = dc->base.pc_first;
12657     dc->aarch64 = true;
12658     dc->thumb = false;
12659     dc->sctlr_b = 0;
12660     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12661     dc->condexec_mask = 0;
12662     dc->condexec_cond = 0;
12663     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12664     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12665     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12666     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12667     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12668     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12669 #if !defined(CONFIG_USER_ONLY)
12670     dc->user = (dc->current_el == 0);
12671 #endif
12672     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12673     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12674     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12675     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12676     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12677     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12678     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12679     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12680     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12681     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12682     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12683     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12684     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12685     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12686     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12687     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12688     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12689     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12690     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12691     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12692     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12693     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12694     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12695     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12696     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12697     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12698     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12699     dc->vec_len = 0;
12700     dc->vec_stride = 0;
12701     dc->cp_regs = arm_cpu->cp_regs;
12702     dc->features = env->features;
12703     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12704     dc->gm_blocksize = arm_cpu->gm_blocksize;
12705 
12706 #ifdef CONFIG_USER_ONLY
12707     /* In sve_probe_page, we assume TBI is enabled. */
12708     tcg_debug_assert(dc->tbid & 1);
12709 #endif
12710 
12711     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12712 
12713     /* Single step state. The code-generation logic here is:
12714      *  SS_ACTIVE == 0:
12715      *   generate code with no special handling for single-stepping (except
12716      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12717      *   this happens anyway because those changes are all system register or
12718      *   PSTATE writes).
12719      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12720      *   emit code for one insn
12721      *   emit code to clear PSTATE.SS
12722      *   emit code to generate software step exception for completed step
12723      *   end TB (as usual for having generated an exception)
12724      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12725      *   emit code to generate a software step exception
12726      *   end the TB
12727      */
12728     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12729     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12730     dc->is_ldex = false;
12731 
12732     /* Bound the number of insns to execute to those left on the page.  */
12733     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12734 
12735     /* If architectural single step active, limit to 1.  */
12736     if (dc->ss_active) {
12737         bound = 1;
12738     }
12739     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12740 }
12741 
12742 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12743 {
12744 }
12745 
12746 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12747 {
12748     DisasContext *dc = container_of(dcbase, DisasContext, base);
12749     target_ulong pc_arg = dc->base.pc_next;
12750 
12751     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12752         pc_arg &= ~TARGET_PAGE_MASK;
12753     }
12754     tcg_gen_insn_start(pc_arg, 0, 0);
12755     dc->insn_start_updated = false;
12756 }
12757 
12758 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12759 {
12760     DisasContext *s = container_of(dcbase, DisasContext, base);
12761     CPUARMState *env = cpu_env(cpu);
12762     uint64_t pc = s->base.pc_next;
12763     uint32_t insn;
12764 
12765     /* Singlestep exceptions have the highest priority. */
12766     if (s->ss_active && !s->pstate_ss) {
12767         /* Singlestep state is Active-pending.
12768          * If we're in this state at the start of a TB then either
12769          *  a) we just took an exception to an EL which is being debugged
12770          *     and this is the first insn in the exception handler
12771          *  b) debug exceptions were masked and we just unmasked them
12772          *     without changing EL (eg by clearing PSTATE.D)
12773          * In either case we're going to take a swstep exception in the
12774          * "did not step an insn" case, and so the syndrome ISV and EX
12775          * bits should be zero.
12776          */
12777         assert(s->base.num_insns == 1);
12778         gen_swstep_exception(s, 0, 0);
12779         s->base.is_jmp = DISAS_NORETURN;
12780         s->base.pc_next = pc + 4;
12781         return;
12782     }
12783 
12784     if (pc & 3) {
12785         /*
12786          * PC alignment fault.  This has priority over the instruction abort
12787          * that we would receive from a translation fault via arm_ldl_code.
12788          * This should only be possible after an indirect branch, at the
12789          * start of the TB.
12790          */
12791         assert(s->base.num_insns == 1);
12792         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12793         s->base.is_jmp = DISAS_NORETURN;
12794         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12795         return;
12796     }
12797 
12798     s->pc_curr = pc;
12799     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12800     s->insn = insn;
12801     s->base.pc_next = pc + 4;
12802 
12803     s->fp_access_checked = false;
12804     s->sve_access_checked = false;
12805 
12806     if (s->pstate_il) {
12807         /*
12808          * Illegal execution state. This has priority over BTI
12809          * exceptions, but comes after instruction abort exceptions.
12810          */
12811         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12812         return;
12813     }
12814 
12815     if (dc_isar_feature(aa64_bti, s)) {
12816         if (s->base.num_insns == 1) {
12817             /*
12818              * At the first insn of the TB, compute s->guarded_page.
12819              * We delayed computing this until successfully reading
12820              * the first insn of the TB, above.  This (mostly) ensures
12821              * that the softmmu tlb entry has been populated, and the
12822              * page table GP bit is available.
12823              *
12824              * Note that we need to compute this even if btype == 0,
12825              * because this value is used for BR instructions later
12826              * where ENV is not available.
12827              */
12828             s->guarded_page = is_guarded_page(env, s);
12829 
12830             /* First insn can have btype set to non-zero.  */
12831             tcg_debug_assert(s->btype >= 0);
12832 
12833             /*
12834              * Note that the Branch Target Exception has fairly high
12835              * priority -- below debugging exceptions but above most
12836              * everything else.  This allows us to handle this now
12837              * instead of waiting until the insn is otherwise decoded.
12838              */
12839             if (s->btype != 0
12840                 && s->guarded_page
12841                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12842                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12843                 return;
12844             }
12845         } else {
12846             /* Not the first insn: btype must be 0.  */
12847             tcg_debug_assert(s->btype == 0);
12848         }
12849     }
12850 
12851     s->is_nonstreaming = false;
12852     if (s->sme_trap_nonstreaming) {
12853         disas_sme_fa64(s, insn);
12854     }
12855 
12856     if (!disas_a64(s, insn) &&
12857         !disas_sme(s, insn) &&
12858         !disas_sve(s, insn)) {
12859         disas_a64_legacy(s, insn);
12860     }
12861 
12862     /*
12863      * After execution of most insns, btype is reset to 0.
12864      * Note that we set btype == -1 when the insn sets btype.
12865      */
12866     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12867         reset_btype(s);
12868     }
12869 }
12870 
12871 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12872 {
12873     DisasContext *dc = container_of(dcbase, DisasContext, base);
12874 
12875     if (unlikely(dc->ss_active)) {
12876         /* Note that this means single stepping WFI doesn't halt the CPU.
12877          * For conditional branch insns this is harmless unreachable code as
12878          * gen_goto_tb() has already handled emitting the debug exception
12879          * (and thus a tb-jump is not possible when singlestepping).
12880          */
12881         switch (dc->base.is_jmp) {
12882         default:
12883             gen_a64_update_pc(dc, 4);
12884             /* fall through */
12885         case DISAS_EXIT:
12886         case DISAS_JUMP:
12887             gen_step_complete_exception(dc);
12888             break;
12889         case DISAS_NORETURN:
12890             break;
12891         }
12892     } else {
12893         switch (dc->base.is_jmp) {
12894         case DISAS_NEXT:
12895         case DISAS_TOO_MANY:
12896             gen_goto_tb(dc, 1, 4);
12897             break;
12898         default:
12899         case DISAS_UPDATE_EXIT:
12900             gen_a64_update_pc(dc, 4);
12901             /* fall through */
12902         case DISAS_EXIT:
12903             tcg_gen_exit_tb(NULL, 0);
12904             break;
12905         case DISAS_UPDATE_NOCHAIN:
12906             gen_a64_update_pc(dc, 4);
12907             /* fall through */
12908         case DISAS_JUMP:
12909             tcg_gen_lookup_and_goto_ptr();
12910             break;
12911         case DISAS_NORETURN:
12912         case DISAS_SWI:
12913             break;
12914         case DISAS_WFE:
12915             gen_a64_update_pc(dc, 4);
12916             gen_helper_wfe(tcg_env);
12917             break;
12918         case DISAS_YIELD:
12919             gen_a64_update_pc(dc, 4);
12920             gen_helper_yield(tcg_env);
12921             break;
12922         case DISAS_WFI:
12923             /*
12924              * This is a special case because we don't want to just halt
12925              * the CPU if trying to debug across a WFI.
12926              */
12927             gen_a64_update_pc(dc, 4);
12928             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12929             /*
12930              * The helper doesn't necessarily throw an exception, but we
12931              * must go back to the main loop to check for interrupts anyway.
12932              */
12933             tcg_gen_exit_tb(NULL, 0);
12934             break;
12935         }
12936     }
12937 }
12938 
12939 const TranslatorOps aarch64_translator_ops = {
12940     .init_disas_context = aarch64_tr_init_disas_context,
12941     .tb_start           = aarch64_tr_tb_start,
12942     .insn_start         = aarch64_tr_insn_start,
12943     .translate_insn     = aarch64_tr_translate_insn,
12944     .tb_stop            = aarch64_tr_tb_stop,
12945 };
12946