1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1356 { 1357 if (a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1367 { 1368 if (!a->q && a->esz == MO_64) { 1369 return false; 1370 } 1371 if (fp_access_check(s)) { 1372 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1373 } 1374 return true; 1375 } 1376 1377 /* 1378 * This utility function is for doing register extension with an 1379 * optional shift. You will likely want to pass a temporary for the 1380 * destination register. See DecodeRegExtend() in the ARM ARM. 1381 */ 1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1383 int option, unsigned int shift) 1384 { 1385 int extsize = extract32(option, 0, 2); 1386 bool is_signed = extract32(option, 2, 1); 1387 1388 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1389 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1390 } 1391 1392 static inline void gen_check_sp_alignment(DisasContext *s) 1393 { 1394 /* The AArch64 architecture mandates that (if enabled via PSTATE 1395 * or SCTLR bits) there is a check that SP is 16-aligned on every 1396 * SP-relative load or store (with an exception generated if it is not). 1397 * In line with general QEMU practice regarding misaligned accesses, 1398 * we omit these checks for the sake of guest program performance. 1399 * This function is provided as a hook so we can more easily add these 1400 * checks in future (possibly as a "favour catching guest program bugs 1401 * over speed" user selectable option). 1402 */ 1403 } 1404 1405 /* 1406 * This provides a simple table based table lookup decoder. It is 1407 * intended to be used when the relevant bits for decode are too 1408 * awkwardly placed and switch/if based logic would be confusing and 1409 * deeply nested. Since it's a linear search through the table, tables 1410 * should be kept small. 1411 * 1412 * It returns the first handler where insn & mask == pattern, or 1413 * NULL if there is no match. 1414 * The table is terminated by an empty mask (i.e. 0) 1415 */ 1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1417 uint32_t insn) 1418 { 1419 const AArch64DecodeTable *tptr = table; 1420 1421 while (tptr->mask) { 1422 if ((insn & tptr->mask) == tptr->pattern) { 1423 return tptr->disas_fn; 1424 } 1425 tptr++; 1426 } 1427 return NULL; 1428 } 1429 1430 /* 1431 * The instruction disassembly implemented here matches 1432 * the instruction encoding classifications in chapter C4 1433 * of the ARM Architecture Reference Manual (DDI0487B_a); 1434 * classification names and decode diagrams here should generally 1435 * match up with those in the manual. 1436 */ 1437 1438 static bool trans_B(DisasContext *s, arg_i *a) 1439 { 1440 reset_btype(s); 1441 gen_goto_tb(s, 0, a->imm); 1442 return true; 1443 } 1444 1445 static bool trans_BL(DisasContext *s, arg_i *a) 1446 { 1447 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1448 reset_btype(s); 1449 gen_goto_tb(s, 0, a->imm); 1450 return true; 1451 } 1452 1453 1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1455 { 1456 DisasLabel match; 1457 TCGv_i64 tcg_cmp; 1458 1459 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1460 reset_btype(s); 1461 1462 match = gen_disas_label(s); 1463 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1464 tcg_cmp, 0, match.label); 1465 gen_goto_tb(s, 0, 4); 1466 set_disas_label(s, match); 1467 gen_goto_tb(s, 1, a->imm); 1468 return true; 1469 } 1470 1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1472 { 1473 DisasLabel match; 1474 TCGv_i64 tcg_cmp; 1475 1476 tcg_cmp = tcg_temp_new_i64(); 1477 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1478 1479 reset_btype(s); 1480 1481 match = gen_disas_label(s); 1482 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1483 tcg_cmp, 0, match.label); 1484 gen_goto_tb(s, 0, 4); 1485 set_disas_label(s, match); 1486 gen_goto_tb(s, 1, a->imm); 1487 return true; 1488 } 1489 1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1491 { 1492 /* BC.cond is only present with FEAT_HBC */ 1493 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1494 return false; 1495 } 1496 reset_btype(s); 1497 if (a->cond < 0x0e) { 1498 /* genuinely conditional branches */ 1499 DisasLabel match = gen_disas_label(s); 1500 arm_gen_test_cc(a->cond, match.label); 1501 gen_goto_tb(s, 0, 4); 1502 set_disas_label(s, match); 1503 gen_goto_tb(s, 1, a->imm); 1504 } else { 1505 /* 0xe and 0xf are both "always" conditions */ 1506 gen_goto_tb(s, 0, a->imm); 1507 } 1508 return true; 1509 } 1510 1511 static void set_btype_for_br(DisasContext *s, int rn) 1512 { 1513 if (dc_isar_feature(aa64_bti, s)) { 1514 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1515 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1516 } 1517 } 1518 1519 static void set_btype_for_blr(DisasContext *s) 1520 { 1521 if (dc_isar_feature(aa64_bti, s)) { 1522 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1523 set_btype(s, 2); 1524 } 1525 } 1526 1527 static bool trans_BR(DisasContext *s, arg_r *a) 1528 { 1529 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLR(DisasContext *s, arg_r *a) 1536 { 1537 TCGv_i64 dst = cpu_reg(s, a->rn); 1538 TCGv_i64 lr = cpu_reg(s, 30); 1539 if (dst == lr) { 1540 TCGv_i64 tmp = tcg_temp_new_i64(); 1541 tcg_gen_mov_i64(tmp, dst); 1542 dst = tmp; 1543 } 1544 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1545 gen_a64_set_pc(s, dst); 1546 set_btype_for_blr(s); 1547 s->base.is_jmp = DISAS_JUMP; 1548 return true; 1549 } 1550 1551 static bool trans_RET(DisasContext *s, arg_r *a) 1552 { 1553 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1554 s->base.is_jmp = DISAS_JUMP; 1555 return true; 1556 } 1557 1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1559 TCGv_i64 modifier, bool use_key_a) 1560 { 1561 TCGv_i64 truedst; 1562 /* 1563 * Return the branch target for a BRAA/RETA/etc, which is either 1564 * just the destination dst, or that value with the pauth check 1565 * done and the code removed from the high bits. 1566 */ 1567 if (!s->pauth_active) { 1568 return dst; 1569 } 1570 1571 truedst = tcg_temp_new_i64(); 1572 if (use_key_a) { 1573 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1574 } else { 1575 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1576 } 1577 return truedst; 1578 } 1579 1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1581 { 1582 TCGv_i64 dst; 1583 1584 if (!dc_isar_feature(aa64_pauth, s)) { 1585 return false; 1586 } 1587 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1589 gen_a64_set_pc(s, dst); 1590 set_btype_for_br(s, a->rn); 1591 s->base.is_jmp = DISAS_JUMP; 1592 return true; 1593 } 1594 1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1596 { 1597 TCGv_i64 dst, lr; 1598 1599 if (!dc_isar_feature(aa64_pauth, s)) { 1600 return false; 1601 } 1602 1603 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1604 lr = cpu_reg(s, 30); 1605 if (dst == lr) { 1606 TCGv_i64 tmp = tcg_temp_new_i64(); 1607 tcg_gen_mov_i64(tmp, dst); 1608 dst = tmp; 1609 } 1610 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1611 gen_a64_set_pc(s, dst); 1612 set_btype_for_blr(s); 1613 s->base.is_jmp = DISAS_JUMP; 1614 return true; 1615 } 1616 1617 static bool trans_RETA(DisasContext *s, arg_reta *a) 1618 { 1619 TCGv_i64 dst; 1620 1621 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1622 gen_a64_set_pc(s, dst); 1623 s->base.is_jmp = DISAS_JUMP; 1624 return true; 1625 } 1626 1627 static bool trans_BRA(DisasContext *s, arg_bra *a) 1628 { 1629 TCGv_i64 dst; 1630 1631 if (!dc_isar_feature(aa64_pauth, s)) { 1632 return false; 1633 } 1634 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1635 gen_a64_set_pc(s, dst); 1636 set_btype_for_br(s, a->rn); 1637 s->base.is_jmp = DISAS_JUMP; 1638 return true; 1639 } 1640 1641 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1642 { 1643 TCGv_i64 dst, lr; 1644 1645 if (!dc_isar_feature(aa64_pauth, s)) { 1646 return false; 1647 } 1648 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1649 lr = cpu_reg(s, 30); 1650 if (dst == lr) { 1651 TCGv_i64 tmp = tcg_temp_new_i64(); 1652 tcg_gen_mov_i64(tmp, dst); 1653 dst = tmp; 1654 } 1655 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1656 gen_a64_set_pc(s, dst); 1657 set_btype_for_blr(s); 1658 s->base.is_jmp = DISAS_JUMP; 1659 return true; 1660 } 1661 1662 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1663 { 1664 TCGv_i64 dst; 1665 1666 if (s->current_el == 0) { 1667 return false; 1668 } 1669 if (s->trap_eret) { 1670 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1671 return true; 1672 } 1673 dst = tcg_temp_new_i64(); 1674 tcg_gen_ld_i64(dst, tcg_env, 1675 offsetof(CPUARMState, elr_el[s->current_el])); 1676 1677 translator_io_start(&s->base); 1678 1679 gen_helper_exception_return(tcg_env, dst); 1680 /* Must exit loop to check un-masked IRQs */ 1681 s->base.is_jmp = DISAS_EXIT; 1682 return true; 1683 } 1684 1685 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1686 { 1687 TCGv_i64 dst; 1688 1689 if (!dc_isar_feature(aa64_pauth, s)) { 1690 return false; 1691 } 1692 if (s->current_el == 0) { 1693 return false; 1694 } 1695 /* The FGT trap takes precedence over an auth trap. */ 1696 if (s->trap_eret) { 1697 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1698 return true; 1699 } 1700 dst = tcg_temp_new_i64(); 1701 tcg_gen_ld_i64(dst, tcg_env, 1702 offsetof(CPUARMState, elr_el[s->current_el])); 1703 1704 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1705 1706 translator_io_start(&s->base); 1707 1708 gen_helper_exception_return(tcg_env, dst); 1709 /* Must exit loop to check un-masked IRQs */ 1710 s->base.is_jmp = DISAS_EXIT; 1711 return true; 1712 } 1713 1714 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1715 { 1716 return true; 1717 } 1718 1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1720 { 1721 /* 1722 * When running in MTTCG we don't generate jumps to the yield and 1723 * WFE helpers as it won't affect the scheduling of other vCPUs. 1724 * If we wanted to more completely model WFE/SEV so we don't busy 1725 * spin unnecessarily we would need to do something more involved. 1726 */ 1727 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1728 s->base.is_jmp = DISAS_YIELD; 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1734 { 1735 s->base.is_jmp = DISAS_WFI; 1736 return true; 1737 } 1738 1739 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1740 { 1741 /* 1742 * When running in MTTCG we don't generate jumps to the yield and 1743 * WFE helpers as it won't affect the scheduling of other vCPUs. 1744 * If we wanted to more completely model WFE/SEV so we don't busy 1745 * spin unnecessarily we would need to do something more involved. 1746 */ 1747 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1748 s->base.is_jmp = DISAS_WFE; 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1794 { 1795 /* Without RAS, we must implement this as NOP. */ 1796 if (dc_isar_feature(aa64_ras, s)) { 1797 /* 1798 * QEMU does not have a source of physical SErrors, 1799 * so we are only concerned with virtual SErrors. 1800 * The pseudocode in the ARM for this case is 1801 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1802 * AArch64.vESBOperation(); 1803 * Most of the condition can be evaluated at translation time. 1804 * Test for EL2 present, and defer test for SEL2 to runtime. 1805 */ 1806 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1807 gen_helper_vesb(tcg_env); 1808 } 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1838 { 1839 if (s->pauth_active) { 1840 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1841 } 1842 return true; 1843 } 1844 1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1846 { 1847 if (s->pauth_active) { 1848 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1849 } 1850 return true; 1851 } 1852 1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1854 { 1855 if (s->pauth_active) { 1856 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1857 } 1858 return true; 1859 } 1860 1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1862 { 1863 if (s->pauth_active) { 1864 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1865 } 1866 return true; 1867 } 1868 1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1870 { 1871 if (s->pauth_active) { 1872 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1873 } 1874 return true; 1875 } 1876 1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1878 { 1879 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1880 return true; 1881 } 1882 1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1884 { 1885 /* We handle DSB and DMB the same way */ 1886 TCGBar bar; 1887 1888 switch (a->types) { 1889 case 1: /* MBReqTypes_Reads */ 1890 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1891 break; 1892 case 2: /* MBReqTypes_Writes */ 1893 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1894 break; 1895 default: /* MBReqTypes_All */ 1896 bar = TCG_BAR_SC | TCG_MO_ALL; 1897 break; 1898 } 1899 tcg_gen_mb(bar); 1900 return true; 1901 } 1902 1903 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1904 { 1905 /* 1906 * We need to break the TB after this insn to execute 1907 * self-modifying code correctly and also to take 1908 * any pending interrupts immediately. 1909 */ 1910 reset_btype(s); 1911 gen_goto_tb(s, 0, 4); 1912 return true; 1913 } 1914 1915 static bool trans_SB(DisasContext *s, arg_SB *a) 1916 { 1917 if (!dc_isar_feature(aa64_sb, s)) { 1918 return false; 1919 } 1920 /* 1921 * TODO: There is no speculation barrier opcode for TCG; 1922 * MB and end the TB instead. 1923 */ 1924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1925 gen_goto_tb(s, 0, 4); 1926 return true; 1927 } 1928 1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1930 { 1931 if (!dc_isar_feature(aa64_condm_4, s)) { 1932 return false; 1933 } 1934 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1935 return true; 1936 } 1937 1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1939 { 1940 TCGv_i32 z; 1941 1942 if (!dc_isar_feature(aa64_condm_5, s)) { 1943 return false; 1944 } 1945 1946 z = tcg_temp_new_i32(); 1947 1948 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1949 1950 /* 1951 * (!C & !Z) << 31 1952 * (!(C | Z)) << 31 1953 * ~((C | Z) << 31) 1954 * ~-(C | Z) 1955 * (C | Z) - 1 1956 */ 1957 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1958 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1959 1960 /* !(Z & C) */ 1961 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1962 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1963 1964 /* (!C & Z) << 31 -> -(Z & ~C) */ 1965 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1966 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1967 1968 /* C | Z */ 1969 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1970 1971 return true; 1972 } 1973 1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1975 { 1976 if (!dc_isar_feature(aa64_condm_5, s)) { 1977 return false; 1978 } 1979 1980 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1981 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1982 1983 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1984 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1985 1986 tcg_gen_movi_i32(cpu_NF, 0); 1987 tcg_gen_movi_i32(cpu_VF, 0); 1988 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_UAO); 1999 } else { 2000 clear_pstate_bits(PSTATE_UAO); 2001 } 2002 gen_rebuild_hflags(s); 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_PAN); 2014 } else { 2015 clear_pstate_bits(PSTATE_PAN); 2016 } 2017 gen_rebuild_hflags(s); 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2023 { 2024 if (s->current_el == 0) { 2025 return false; 2026 } 2027 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2028 s->base.is_jmp = DISAS_TOO_MANY; 2029 return true; 2030 } 2031 2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2033 { 2034 if (!dc_isar_feature(aa64_ssbs, s)) { 2035 return false; 2036 } 2037 if (a->imm & 1) { 2038 set_pstate_bits(PSTATE_SSBS); 2039 } else { 2040 clear_pstate_bits(PSTATE_SSBS); 2041 } 2042 /* Don't need to rebuild hflags since SSBS is a nop */ 2043 s->base.is_jmp = DISAS_TOO_MANY; 2044 return true; 2045 } 2046 2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2048 { 2049 if (!dc_isar_feature(aa64_dit, s)) { 2050 return false; 2051 } 2052 if (a->imm & 1) { 2053 set_pstate_bits(PSTATE_DIT); 2054 } else { 2055 clear_pstate_bits(PSTATE_DIT); 2056 } 2057 /* There's no need to rebuild hflags because DIT is a nop */ 2058 s->base.is_jmp = DISAS_TOO_MANY; 2059 return true; 2060 } 2061 2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2063 { 2064 if (dc_isar_feature(aa64_mte, s)) { 2065 /* Full MTE is enabled -- set the TCO bit as directed. */ 2066 if (a->imm & 1) { 2067 set_pstate_bits(PSTATE_TCO); 2068 } else { 2069 clear_pstate_bits(PSTATE_TCO); 2070 } 2071 gen_rebuild_hflags(s); 2072 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2073 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2074 return true; 2075 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2076 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2077 return true; 2078 } else { 2079 /* Insn not present */ 2080 return false; 2081 } 2082 } 2083 2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2085 { 2086 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2087 s->base.is_jmp = DISAS_TOO_MANY; 2088 return true; 2089 } 2090 2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2092 { 2093 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2094 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2095 s->base.is_jmp = DISAS_UPDATE_EXIT; 2096 return true; 2097 } 2098 2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2100 { 2101 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2102 return false; 2103 } 2104 2105 if (a->imm == 0) { 2106 clear_pstate_bits(PSTATE_ALLINT); 2107 } else if (s->current_el > 1) { 2108 set_pstate_bits(PSTATE_ALLINT); 2109 } else { 2110 gen_helper_msr_set_allint_el1(tcg_env); 2111 } 2112 2113 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2114 s->base.is_jmp = DISAS_UPDATE_EXIT; 2115 return true; 2116 } 2117 2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2119 { 2120 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2121 return false; 2122 } 2123 if (sme_access_check(s)) { 2124 int old = s->pstate_sm | (s->pstate_za << 1); 2125 int new = a->imm * 3; 2126 2127 if ((old ^ new) & a->mask) { 2128 /* At least one bit changes. */ 2129 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2130 tcg_constant_i32(a->mask)); 2131 s->base.is_jmp = DISAS_TOO_MANY; 2132 } 2133 } 2134 return true; 2135 } 2136 2137 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2138 { 2139 TCGv_i32 tmp = tcg_temp_new_i32(); 2140 TCGv_i32 nzcv = tcg_temp_new_i32(); 2141 2142 /* build bit 31, N */ 2143 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2144 /* build bit 30, Z */ 2145 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2147 /* build bit 29, C */ 2148 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2149 /* build bit 28, V */ 2150 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2151 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2152 /* generate result */ 2153 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2154 } 2155 2156 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2157 { 2158 TCGv_i32 nzcv = tcg_temp_new_i32(); 2159 2160 /* take NZCV from R[t] */ 2161 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2162 2163 /* bit 31, N */ 2164 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2165 /* bit 30, Z */ 2166 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2167 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2168 /* bit 29, C */ 2169 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2170 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2171 /* bit 28, V */ 2172 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2173 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2174 } 2175 2176 static void gen_sysreg_undef(DisasContext *s, bool isread, 2177 uint8_t op0, uint8_t op1, uint8_t op2, 2178 uint8_t crn, uint8_t crm, uint8_t rt) 2179 { 2180 /* 2181 * Generate code to emit an UNDEF with correct syndrome 2182 * information for a failed system register access. 2183 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2184 * but if FEAT_IDST is implemented then read accesses to registers 2185 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2186 * syndrome. 2187 */ 2188 uint32_t syndrome; 2189 2190 if (isread && dc_isar_feature(aa64_ids, s) && 2191 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2192 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2193 } else { 2194 syndrome = syn_uncategorized(); 2195 } 2196 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2197 } 2198 2199 /* MRS - move from system register 2200 * MSR (register) - move to system register 2201 * SYS 2202 * SYSL 2203 * These are all essentially the same insn in 'read' and 'write' 2204 * versions, with varying op0 fields. 2205 */ 2206 static void handle_sys(DisasContext *s, bool isread, 2207 unsigned int op0, unsigned int op1, unsigned int op2, 2208 unsigned int crn, unsigned int crm, unsigned int rt) 2209 { 2210 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2211 crn, crm, op0, op1, op2); 2212 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2213 bool need_exit_tb = false; 2214 bool nv_trap_to_el2 = false; 2215 bool nv_redirect_reg = false; 2216 bool skip_fp_access_checks = false; 2217 bool nv2_mem_redirect = false; 2218 TCGv_ptr tcg_ri = NULL; 2219 TCGv_i64 tcg_rt; 2220 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2221 2222 if (crn == 11 || crn == 15) { 2223 /* 2224 * Check for TIDCP trap, which must take precedence over 2225 * the UNDEF for "no such register" etc. 2226 */ 2227 switch (s->current_el) { 2228 case 0: 2229 if (dc_isar_feature(aa64_tidcp1, s)) { 2230 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2231 } 2232 break; 2233 case 1: 2234 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2235 break; 2236 } 2237 } 2238 2239 if (!ri) { 2240 /* Unknown register; this might be a guest error or a QEMU 2241 * unimplemented feature. 2242 */ 2243 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2244 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2245 isread ? "read" : "write", op0, op1, crn, crm, op2); 2246 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2247 return; 2248 } 2249 2250 if (s->nv2 && ri->nv2_redirect_offset) { 2251 /* 2252 * Some registers always redirect to memory; some only do so if 2253 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2254 * pairs which share an offset; see the table in R_CSRPQ). 2255 */ 2256 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2257 nv2_mem_redirect = s->nv1; 2258 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2259 nv2_mem_redirect = !s->nv1; 2260 } else { 2261 nv2_mem_redirect = true; 2262 } 2263 } 2264 2265 /* Check access permissions */ 2266 if (!cp_access_ok(s->current_el, ri, isread)) { 2267 /* 2268 * FEAT_NV/NV2 handling does not do the usual FP access checks 2269 * for registers only accessible at EL2 (though it *does* do them 2270 * for registers accessible at EL1). 2271 */ 2272 skip_fp_access_checks = true; 2273 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2274 /* 2275 * This is one of the few EL2 registers which should redirect 2276 * to the equivalent EL1 register. We do that after running 2277 * the EL2 register's accessfn. 2278 */ 2279 nv_redirect_reg = true; 2280 assert(!nv2_mem_redirect); 2281 } else if (nv2_mem_redirect) { 2282 /* 2283 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2284 * UNDEF to EL1. 2285 */ 2286 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2287 /* 2288 * This register / instruction exists and is an EL2 register, so 2289 * we must trap to EL2 if accessed in nested virtualization EL1 2290 * instead of UNDEFing. We'll do that after the usual access checks. 2291 * (This makes a difference only for a couple of registers like 2292 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2293 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2294 * an accessfn which does nothing when called from EL1, because 2295 * the trap-to-EL3 controls which would apply to that register 2296 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2297 */ 2298 nv_trap_to_el2 = true; 2299 } else { 2300 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2301 return; 2302 } 2303 } 2304 2305 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2306 /* Emit code to perform further access permissions checks at 2307 * runtime; this may result in an exception. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 tcg_ri = tcg_temp_new_ptr(); 2311 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2312 tcg_constant_i32(key), 2313 tcg_constant_i32(syndrome), 2314 tcg_constant_i32(isread)); 2315 } else if (ri->type & ARM_CP_RAISES_EXC) { 2316 /* 2317 * The readfn or writefn might raise an exception; 2318 * synchronize the CPU state in case it does. 2319 */ 2320 gen_a64_update_pc(s, 0); 2321 } 2322 2323 if (!skip_fp_access_checks) { 2324 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2325 return; 2326 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2327 return; 2328 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2329 return; 2330 } 2331 } 2332 2333 if (nv_trap_to_el2) { 2334 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2335 return; 2336 } 2337 2338 if (nv_redirect_reg) { 2339 /* 2340 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2341 * Conveniently in all cases the encoding of the EL1 register is 2342 * identical to the EL2 register except that opc1 is 0. 2343 * Get the reginfo for the EL1 register to use for the actual access. 2344 * We don't use the EL1 register's access function, and 2345 * fine-grained-traps on EL1 also do not apply here. 2346 */ 2347 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2348 crn, crm, op0, 0, op2); 2349 ri = get_arm_cp_reginfo(s->cp_regs, key); 2350 assert(ri); 2351 assert(cp_access_ok(s->current_el, ri, isread)); 2352 /* 2353 * We might not have done an update_pc earlier, so check we don't 2354 * need it. We could support this in future if necessary. 2355 */ 2356 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2357 } 2358 2359 if (nv2_mem_redirect) { 2360 /* 2361 * This system register is being redirected into an EL2 memory access. 2362 * This means it is not an IO operation, doesn't change hflags, 2363 * and need not end the TB, because it has no side effects. 2364 * 2365 * The access is 64-bit single copy atomic, guaranteed aligned because 2366 * of the definition of VCNR_EL2. Its endianness depends on 2367 * SCTLR_EL2.EE, not on the data endianness of EL1. 2368 * It is done under either the EL2 translation regime or the EL2&0 2369 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2370 * PSTATE.PAN is 0. 2371 */ 2372 TCGv_i64 ptr = tcg_temp_new_i64(); 2373 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2374 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2375 int memidx = arm_to_core_mmu_idx(armmemidx); 2376 uint32_t syn; 2377 2378 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2379 2380 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2381 tcg_gen_addi_i64(ptr, ptr, 2382 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2383 tcg_rt = cpu_reg(s, rt); 2384 2385 syn = syn_data_abort_vncr(0, !isread, 0); 2386 disas_set_insn_syndrome(s, syn); 2387 if (isread) { 2388 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2389 } else { 2390 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2391 } 2392 return; 2393 } 2394 2395 /* Handle special cases first */ 2396 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2397 case 0: 2398 break; 2399 case ARM_CP_NOP: 2400 return; 2401 case ARM_CP_NZCV: 2402 tcg_rt = cpu_reg(s, rt); 2403 if (isread) { 2404 gen_get_nzcv(tcg_rt); 2405 } else { 2406 gen_set_nzcv(tcg_rt); 2407 } 2408 return; 2409 case ARM_CP_CURRENTEL: 2410 { 2411 /* 2412 * Reads as current EL value from pstate, which is 2413 * guaranteed to be constant by the tb flags. 2414 * For nested virt we should report EL2. 2415 */ 2416 int el = s->nv ? 2 : s->current_el; 2417 tcg_rt = cpu_reg(s, rt); 2418 tcg_gen_movi_i64(tcg_rt, el << 2); 2419 return; 2420 } 2421 case ARM_CP_DC_ZVA: 2422 /* Writes clear the aligned block of memory which rt points into. */ 2423 if (s->mte_active[0]) { 2424 int desc = 0; 2425 2426 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2427 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2428 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2429 2430 tcg_rt = tcg_temp_new_i64(); 2431 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2432 tcg_constant_i32(desc), cpu_reg(s, rt)); 2433 } else { 2434 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2435 } 2436 gen_helper_dc_zva(tcg_env, tcg_rt); 2437 return; 2438 case ARM_CP_DC_GVA: 2439 { 2440 TCGv_i64 clean_addr, tag; 2441 2442 /* 2443 * DC_GVA, like DC_ZVA, requires that we supply the original 2444 * pointer for an invalid page. Probe that address first. 2445 */ 2446 tcg_rt = cpu_reg(s, rt); 2447 clean_addr = clean_data_tbi(s, tcg_rt); 2448 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2449 2450 if (s->ata[0]) { 2451 /* Extract the tag from the register to match STZGM. */ 2452 tag = tcg_temp_new_i64(); 2453 tcg_gen_shri_i64(tag, tcg_rt, 56); 2454 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2455 } 2456 } 2457 return; 2458 case ARM_CP_DC_GZVA: 2459 { 2460 TCGv_i64 clean_addr, tag; 2461 2462 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2463 tcg_rt = cpu_reg(s, rt); 2464 clean_addr = clean_data_tbi(s, tcg_rt); 2465 gen_helper_dc_zva(tcg_env, clean_addr); 2466 2467 if (s->ata[0]) { 2468 /* Extract the tag from the register to match STZGM. */ 2469 tag = tcg_temp_new_i64(); 2470 tcg_gen_shri_i64(tag, tcg_rt, 56); 2471 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2472 } 2473 } 2474 return; 2475 default: 2476 g_assert_not_reached(); 2477 } 2478 2479 if (ri->type & ARM_CP_IO) { 2480 /* I/O operations must end the TB here (whether read or write) */ 2481 need_exit_tb = translator_io_start(&s->base); 2482 } 2483 2484 tcg_rt = cpu_reg(s, rt); 2485 2486 if (isread) { 2487 if (ri->type & ARM_CP_CONST) { 2488 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2489 } else if (ri->readfn) { 2490 if (!tcg_ri) { 2491 tcg_ri = gen_lookup_cp_reg(key); 2492 } 2493 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2494 } else { 2495 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2496 } 2497 } else { 2498 if (ri->type & ARM_CP_CONST) { 2499 /* If not forbidden by access permissions, treat as WI */ 2500 return; 2501 } else if (ri->writefn) { 2502 if (!tcg_ri) { 2503 tcg_ri = gen_lookup_cp_reg(key); 2504 } 2505 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2506 } else { 2507 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2508 } 2509 } 2510 2511 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2512 /* 2513 * A write to any coprocessor register that ends a TB 2514 * must rebuild the hflags for the next TB. 2515 */ 2516 gen_rebuild_hflags(s); 2517 /* 2518 * We default to ending the TB on a coprocessor register write, 2519 * but allow this to be suppressed by the register definition 2520 * (usually only necessary to work around guest bugs). 2521 */ 2522 need_exit_tb = true; 2523 } 2524 if (need_exit_tb) { 2525 s->base.is_jmp = DISAS_UPDATE_EXIT; 2526 } 2527 } 2528 2529 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2530 { 2531 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2532 return true; 2533 } 2534 2535 static bool trans_SVC(DisasContext *s, arg_i *a) 2536 { 2537 /* 2538 * For SVC, HVC and SMC we advance the single-step state 2539 * machine before taking the exception. This is architecturally 2540 * mandated, to ensure that single-stepping a system call 2541 * instruction works properly. 2542 */ 2543 uint32_t syndrome = syn_aa64_svc(a->imm); 2544 if (s->fgt_svc) { 2545 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2546 return true; 2547 } 2548 gen_ss_advance(s); 2549 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2550 return true; 2551 } 2552 2553 static bool trans_HVC(DisasContext *s, arg_i *a) 2554 { 2555 int target_el = s->current_el == 3 ? 3 : 2; 2556 2557 if (s->current_el == 0) { 2558 unallocated_encoding(s); 2559 return true; 2560 } 2561 /* 2562 * The pre HVC helper handles cases when HVC gets trapped 2563 * as an undefined insn by runtime configuration. 2564 */ 2565 gen_a64_update_pc(s, 0); 2566 gen_helper_pre_hvc(tcg_env); 2567 /* Architecture requires ss advance before we do the actual work */ 2568 gen_ss_advance(s); 2569 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2570 return true; 2571 } 2572 2573 static bool trans_SMC(DisasContext *s, arg_i *a) 2574 { 2575 if (s->current_el == 0) { 2576 unallocated_encoding(s); 2577 return true; 2578 } 2579 gen_a64_update_pc(s, 0); 2580 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2581 /* Architecture requires ss advance before we do the actual work */ 2582 gen_ss_advance(s); 2583 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2584 return true; 2585 } 2586 2587 static bool trans_BRK(DisasContext *s, arg_i *a) 2588 { 2589 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2590 return true; 2591 } 2592 2593 static bool trans_HLT(DisasContext *s, arg_i *a) 2594 { 2595 /* 2596 * HLT. This has two purposes. 2597 * Architecturally, it is an external halting debug instruction. 2598 * Since QEMU doesn't implement external debug, we treat this as 2599 * it is required for halting debug disabled: it will UNDEF. 2600 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2601 */ 2602 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2603 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2604 } else { 2605 unallocated_encoding(s); 2606 } 2607 return true; 2608 } 2609 2610 /* 2611 * Load/Store exclusive instructions are implemented by remembering 2612 * the value/address loaded, and seeing if these are the same 2613 * when the store is performed. This is not actually the architecturally 2614 * mandated semantics, but it works for typical guest code sequences 2615 * and avoids having to monitor regular stores. 2616 * 2617 * The store exclusive uses the atomic cmpxchg primitives to avoid 2618 * races in multi-threaded linux-user and when MTTCG softmmu is 2619 * enabled. 2620 */ 2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2622 int size, bool is_pair) 2623 { 2624 int idx = get_mem_index(s); 2625 TCGv_i64 dirty_addr, clean_addr; 2626 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2627 2628 s->is_ldex = true; 2629 dirty_addr = cpu_reg_sp(s, rn); 2630 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2631 2632 g_assert(size <= 3); 2633 if (is_pair) { 2634 g_assert(size >= 2); 2635 if (size == 2) { 2636 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2637 if (s->be_data == MO_LE) { 2638 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2639 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2640 } else { 2641 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2642 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2643 } 2644 } else { 2645 TCGv_i128 t16 = tcg_temp_new_i128(); 2646 2647 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2648 2649 if (s->be_data == MO_LE) { 2650 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2651 cpu_exclusive_high, t16); 2652 } else { 2653 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2654 cpu_exclusive_val, t16); 2655 } 2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2657 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2658 } 2659 } else { 2660 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2661 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2662 } 2663 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2664 } 2665 2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2667 int rn, int size, int is_pair) 2668 { 2669 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2670 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2671 * [addr] = {Rt}; 2672 * if (is_pair) { 2673 * [addr + datasize] = {Rt2}; 2674 * } 2675 * {Rd} = 0; 2676 * } else { 2677 * {Rd} = 1; 2678 * } 2679 * env->exclusive_addr = -1; 2680 */ 2681 TCGLabel *fail_label = gen_new_label(); 2682 TCGLabel *done_label = gen_new_label(); 2683 TCGv_i64 tmp, clean_addr; 2684 MemOp memop; 2685 2686 /* 2687 * FIXME: We are out of spec here. We have recorded only the address 2688 * from load_exclusive, not the entire range, and we assume that the 2689 * size of the access on both sides match. The architecture allows the 2690 * store to be smaller than the load, so long as the stored bytes are 2691 * within the range recorded by the load. 2692 */ 2693 2694 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2695 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2696 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2697 2698 /* 2699 * The write, and any associated faults, only happen if the virtual 2700 * and physical addresses pass the exclusive monitor check. These 2701 * faults are exceedingly unlikely, because normally the guest uses 2702 * the exact same address register for the load_exclusive, and we 2703 * would have recognized these faults there. 2704 * 2705 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2706 * unaligned 4-byte write within the range of an aligned 8-byte load. 2707 * With LSE2, the store would need to cross a 16-byte boundary when the 2708 * load did not, which would mean the store is outside the range 2709 * recorded for the monitor, which would have failed a corrected monitor 2710 * check above. For now, we assume no size change and retain the 2711 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2712 * 2713 * It is possible to trigger an MTE fault, by performing the load with 2714 * a virtual address with a valid tag and performing the store with the 2715 * same virtual address and a different invalid tag. 2716 */ 2717 memop = size + is_pair; 2718 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2719 memop |= MO_ALIGN; 2720 } 2721 memop = finalize_memop(s, memop); 2722 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2723 2724 tmp = tcg_temp_new_i64(); 2725 if (is_pair) { 2726 if (size == 2) { 2727 if (s->be_data == MO_LE) { 2728 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2729 } else { 2730 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2731 } 2732 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2733 cpu_exclusive_val, tmp, 2734 get_mem_index(s), memop); 2735 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2736 } else { 2737 TCGv_i128 t16 = tcg_temp_new_i128(); 2738 TCGv_i128 c16 = tcg_temp_new_i128(); 2739 TCGv_i64 a, b; 2740 2741 if (s->be_data == MO_LE) { 2742 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2743 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2744 cpu_exclusive_high); 2745 } else { 2746 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2747 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2748 cpu_exclusive_val); 2749 } 2750 2751 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2752 get_mem_index(s), memop); 2753 2754 a = tcg_temp_new_i64(); 2755 b = tcg_temp_new_i64(); 2756 if (s->be_data == MO_LE) { 2757 tcg_gen_extr_i128_i64(a, b, t16); 2758 } else { 2759 tcg_gen_extr_i128_i64(b, a, t16); 2760 } 2761 2762 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2763 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2764 tcg_gen_or_i64(tmp, a, b); 2765 2766 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2767 } 2768 } else { 2769 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2770 cpu_reg(s, rt), get_mem_index(s), memop); 2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2772 } 2773 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2774 tcg_gen_br(done_label); 2775 2776 gen_set_label(fail_label); 2777 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2778 gen_set_label(done_label); 2779 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2780 } 2781 2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2783 int rn, int size) 2784 { 2785 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2786 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2787 int memidx = get_mem_index(s); 2788 TCGv_i64 clean_addr; 2789 MemOp memop; 2790 2791 if (rn == 31) { 2792 gen_check_sp_alignment(s); 2793 } 2794 memop = check_atomic_align(s, rn, size); 2795 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2796 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2797 memidx, memop); 2798 } 2799 2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2801 int rn, int size) 2802 { 2803 TCGv_i64 s1 = cpu_reg(s, rs); 2804 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2805 TCGv_i64 t1 = cpu_reg(s, rt); 2806 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2807 TCGv_i64 clean_addr; 2808 int memidx = get_mem_index(s); 2809 MemOp memop; 2810 2811 if (rn == 31) { 2812 gen_check_sp_alignment(s); 2813 } 2814 2815 /* This is a single atomic access, despite the "pair". */ 2816 memop = check_atomic_align(s, rn, size + 1); 2817 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2818 2819 if (size == 2) { 2820 TCGv_i64 cmp = tcg_temp_new_i64(); 2821 TCGv_i64 val = tcg_temp_new_i64(); 2822 2823 if (s->be_data == MO_LE) { 2824 tcg_gen_concat32_i64(val, t1, t2); 2825 tcg_gen_concat32_i64(cmp, s1, s2); 2826 } else { 2827 tcg_gen_concat32_i64(val, t2, t1); 2828 tcg_gen_concat32_i64(cmp, s2, s1); 2829 } 2830 2831 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2832 2833 if (s->be_data == MO_LE) { 2834 tcg_gen_extr32_i64(s1, s2, cmp); 2835 } else { 2836 tcg_gen_extr32_i64(s2, s1, cmp); 2837 } 2838 } else { 2839 TCGv_i128 cmp = tcg_temp_new_i128(); 2840 TCGv_i128 val = tcg_temp_new_i128(); 2841 2842 if (s->be_data == MO_LE) { 2843 tcg_gen_concat_i64_i128(val, t1, t2); 2844 tcg_gen_concat_i64_i128(cmp, s1, s2); 2845 } else { 2846 tcg_gen_concat_i64_i128(val, t2, t1); 2847 tcg_gen_concat_i64_i128(cmp, s2, s1); 2848 } 2849 2850 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2851 2852 if (s->be_data == MO_LE) { 2853 tcg_gen_extr_i128_i64(s1, s2, cmp); 2854 } else { 2855 tcg_gen_extr_i128_i64(s2, s1, cmp); 2856 } 2857 } 2858 } 2859 2860 /* 2861 * Compute the ISS.SF bit for syndrome information if an exception 2862 * is taken on a load or store. This indicates whether the instruction 2863 * is accessing a 32-bit or 64-bit register. This logic is derived 2864 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2865 */ 2866 static bool ldst_iss_sf(int size, bool sign, bool ext) 2867 { 2868 2869 if (sign) { 2870 /* 2871 * Signed loads are 64 bit results if we are not going to 2872 * do a zero-extend from 32 to 64 after the load. 2873 * (For a store, sign and ext are always false.) 2874 */ 2875 return !ext; 2876 } else { 2877 /* Unsigned loads/stores work at the specified size */ 2878 return size == MO_64; 2879 } 2880 } 2881 2882 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2883 { 2884 if (a->rn == 31) { 2885 gen_check_sp_alignment(s); 2886 } 2887 if (a->lasr) { 2888 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2889 } 2890 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2891 return true; 2892 } 2893 2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2895 { 2896 if (a->rn == 31) { 2897 gen_check_sp_alignment(s); 2898 } 2899 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2900 if (a->lasr) { 2901 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2902 } 2903 return true; 2904 } 2905 2906 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2907 { 2908 TCGv_i64 clean_addr; 2909 MemOp memop; 2910 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2911 2912 /* 2913 * StoreLORelease is the same as Store-Release for QEMU, but 2914 * needs the feature-test. 2915 */ 2916 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2917 return false; 2918 } 2919 /* Generate ISS for non-exclusive accesses including LASR. */ 2920 if (a->rn == 31) { 2921 gen_check_sp_alignment(s); 2922 } 2923 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2924 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2925 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2926 true, a->rn != 31, memop); 2927 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2928 iss_sf, a->lasr); 2929 return true; 2930 } 2931 2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2933 { 2934 TCGv_i64 clean_addr; 2935 MemOp memop; 2936 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2937 2938 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2939 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2940 return false; 2941 } 2942 /* Generate ISS for non-exclusive accesses including LASR. */ 2943 if (a->rn == 31) { 2944 gen_check_sp_alignment(s); 2945 } 2946 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2947 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2948 false, a->rn != 31, memop); 2949 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2950 a->rt, iss_sf, a->lasr); 2951 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2952 return true; 2953 } 2954 2955 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2956 { 2957 if (a->rn == 31) { 2958 gen_check_sp_alignment(s); 2959 } 2960 if (a->lasr) { 2961 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2962 } 2963 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2964 return true; 2965 } 2966 2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2968 { 2969 if (a->rn == 31) { 2970 gen_check_sp_alignment(s); 2971 } 2972 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2973 if (a->lasr) { 2974 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2975 } 2976 return true; 2977 } 2978 2979 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2980 { 2981 if (!dc_isar_feature(aa64_atomics, s)) { 2982 return false; 2983 } 2984 if (((a->rt | a->rs) & 1) != 0) { 2985 return false; 2986 } 2987 2988 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2989 return true; 2990 } 2991 2992 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2993 { 2994 if (!dc_isar_feature(aa64_atomics, s)) { 2995 return false; 2996 } 2997 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2998 return true; 2999 } 3000 3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3002 { 3003 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3004 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3005 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3006 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3007 3008 gen_pc_plus_diff(s, clean_addr, a->imm); 3009 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3010 false, true, a->rt, iss_sf, false); 3011 return true; 3012 } 3013 3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3015 { 3016 /* Load register (literal), vector version */ 3017 TCGv_i64 clean_addr; 3018 MemOp memop; 3019 3020 if (!fp_access_check(s)) { 3021 return true; 3022 } 3023 memop = finalize_memop_asimd(s, a->sz); 3024 clean_addr = tcg_temp_new_i64(); 3025 gen_pc_plus_diff(s, clean_addr, a->imm); 3026 do_fp_ld(s, a->rt, clean_addr, memop); 3027 return true; 3028 } 3029 3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3031 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3032 uint64_t offset, bool is_store, MemOp mop) 3033 { 3034 if (a->rn == 31) { 3035 gen_check_sp_alignment(s); 3036 } 3037 3038 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3039 if (!a->p) { 3040 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3041 } 3042 3043 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3044 (a->w || a->rn != 31), 2 << a->sz, mop); 3045 } 3046 3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3048 TCGv_i64 dirty_addr, uint64_t offset) 3049 { 3050 if (a->w) { 3051 if (a->p) { 3052 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3053 } 3054 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3055 } 3056 } 3057 3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3059 { 3060 uint64_t offset = a->imm << a->sz; 3061 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3062 MemOp mop = finalize_memop(s, a->sz); 3063 3064 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3065 tcg_rt = cpu_reg(s, a->rt); 3066 tcg_rt2 = cpu_reg(s, a->rt2); 3067 /* 3068 * We built mop above for the single logical access -- rebuild it 3069 * now for the paired operation. 3070 * 3071 * With LSE2, non-sign-extending pairs are treated atomically if 3072 * aligned, and if unaligned one of the pair will be completely 3073 * within a 16-byte block and that element will be atomic. 3074 * Otherwise each element is separately atomic. 3075 * In all cases, issue one operation with the correct atomicity. 3076 */ 3077 mop = a->sz + 1; 3078 if (s->align_mem) { 3079 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3080 } 3081 mop = finalize_memop_pair(s, mop); 3082 if (a->sz == 2) { 3083 TCGv_i64 tmp = tcg_temp_new_i64(); 3084 3085 if (s->be_data == MO_LE) { 3086 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3087 } else { 3088 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3089 } 3090 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3091 } else { 3092 TCGv_i128 tmp = tcg_temp_new_i128(); 3093 3094 if (s->be_data == MO_LE) { 3095 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3096 } else { 3097 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3098 } 3099 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3100 } 3101 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3102 return true; 3103 } 3104 3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3106 { 3107 uint64_t offset = a->imm << a->sz; 3108 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3109 MemOp mop = finalize_memop(s, a->sz); 3110 3111 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3112 tcg_rt = cpu_reg(s, a->rt); 3113 tcg_rt2 = cpu_reg(s, a->rt2); 3114 3115 /* 3116 * We built mop above for the single logical access -- rebuild it 3117 * now for the paired operation. 3118 * 3119 * With LSE2, non-sign-extending pairs are treated atomically if 3120 * aligned, and if unaligned one of the pair will be completely 3121 * within a 16-byte block and that element will be atomic. 3122 * Otherwise each element is separately atomic. 3123 * In all cases, issue one operation with the correct atomicity. 3124 * 3125 * This treats sign-extending loads like zero-extending loads, 3126 * since that reuses the most code below. 3127 */ 3128 mop = a->sz + 1; 3129 if (s->align_mem) { 3130 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3131 } 3132 mop = finalize_memop_pair(s, mop); 3133 if (a->sz == 2) { 3134 int o2 = s->be_data == MO_LE ? 32 : 0; 3135 int o1 = o2 ^ 32; 3136 3137 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3138 if (a->sign) { 3139 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3140 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3141 } else { 3142 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3143 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3144 } 3145 } else { 3146 TCGv_i128 tmp = tcg_temp_new_i128(); 3147 3148 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3149 if (s->be_data == MO_LE) { 3150 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3151 } else { 3152 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3153 } 3154 } 3155 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3156 return true; 3157 } 3158 3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3160 { 3161 uint64_t offset = a->imm << a->sz; 3162 TCGv_i64 clean_addr, dirty_addr; 3163 MemOp mop; 3164 3165 if (!fp_access_check(s)) { 3166 return true; 3167 } 3168 3169 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3170 mop = finalize_memop_asimd(s, a->sz); 3171 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3172 do_fp_st(s, a->rt, clean_addr, mop); 3173 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3174 do_fp_st(s, a->rt2, clean_addr, mop); 3175 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3176 return true; 3177 } 3178 3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3180 { 3181 uint64_t offset = a->imm << a->sz; 3182 TCGv_i64 clean_addr, dirty_addr; 3183 MemOp mop; 3184 3185 if (!fp_access_check(s)) { 3186 return true; 3187 } 3188 3189 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3190 mop = finalize_memop_asimd(s, a->sz); 3191 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3192 do_fp_ld(s, a->rt, clean_addr, mop); 3193 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3194 do_fp_ld(s, a->rt2, clean_addr, mop); 3195 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3196 return true; 3197 } 3198 3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3200 { 3201 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3202 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3203 MemOp mop; 3204 TCGv_i128 tmp; 3205 3206 /* STGP only comes in one size. */ 3207 tcg_debug_assert(a->sz == MO_64); 3208 3209 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3210 return false; 3211 } 3212 3213 if (a->rn == 31) { 3214 gen_check_sp_alignment(s); 3215 } 3216 3217 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3218 if (!a->p) { 3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3220 } 3221 3222 clean_addr = clean_data_tbi(s, dirty_addr); 3223 tcg_rt = cpu_reg(s, a->rt); 3224 tcg_rt2 = cpu_reg(s, a->rt2); 3225 3226 /* 3227 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3228 * and one tag operation. We implement it as one single aligned 16-byte 3229 * memory operation for convenience. Note that the alignment ensures 3230 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3231 */ 3232 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3233 3234 tmp = tcg_temp_new_i128(); 3235 if (s->be_data == MO_LE) { 3236 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3237 } else { 3238 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3239 } 3240 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3241 3242 /* Perform the tag store, if tag access enabled. */ 3243 if (s->ata[0]) { 3244 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3245 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3246 } else { 3247 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3248 } 3249 } 3250 3251 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3252 return true; 3253 } 3254 3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3256 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3257 uint64_t offset, bool is_store, MemOp mop) 3258 { 3259 int memidx; 3260 3261 if (a->rn == 31) { 3262 gen_check_sp_alignment(s); 3263 } 3264 3265 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3266 if (!a->p) { 3267 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3268 } 3269 memidx = get_a64_user_mem_index(s, a->unpriv); 3270 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3271 a->w || a->rn != 31, 3272 mop, a->unpriv, memidx); 3273 } 3274 3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3276 TCGv_i64 dirty_addr, uint64_t offset) 3277 { 3278 if (a->w) { 3279 if (a->p) { 3280 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3281 } 3282 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3283 } 3284 } 3285 3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3287 { 3288 bool iss_sf, iss_valid = !a->w; 3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3290 int memidx = get_a64_user_mem_index(s, a->unpriv); 3291 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3292 3293 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3294 3295 tcg_rt = cpu_reg(s, a->rt); 3296 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3297 3298 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3299 iss_valid, a->rt, iss_sf, false); 3300 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3301 return true; 3302 } 3303 3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3305 { 3306 bool iss_sf, iss_valid = !a->w; 3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3308 int memidx = get_a64_user_mem_index(s, a->unpriv); 3309 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3310 3311 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3312 3313 tcg_rt = cpu_reg(s, a->rt); 3314 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3315 3316 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3317 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3318 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3319 return true; 3320 } 3321 3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3323 { 3324 TCGv_i64 clean_addr, dirty_addr; 3325 MemOp mop; 3326 3327 if (!fp_access_check(s)) { 3328 return true; 3329 } 3330 mop = finalize_memop_asimd(s, a->sz); 3331 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3332 do_fp_st(s, a->rt, clean_addr, mop); 3333 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3334 return true; 3335 } 3336 3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3338 { 3339 TCGv_i64 clean_addr, dirty_addr; 3340 MemOp mop; 3341 3342 if (!fp_access_check(s)) { 3343 return true; 3344 } 3345 mop = finalize_memop_asimd(s, a->sz); 3346 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3347 do_fp_ld(s, a->rt, clean_addr, mop); 3348 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3349 return true; 3350 } 3351 3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3353 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3354 bool is_store, MemOp memop) 3355 { 3356 TCGv_i64 tcg_rm; 3357 3358 if (a->rn == 31) { 3359 gen_check_sp_alignment(s); 3360 } 3361 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3362 3363 tcg_rm = read_cpu_reg(s, a->rm, 1); 3364 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3365 3366 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3367 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3368 } 3369 3370 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3371 { 3372 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3373 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3374 MemOp memop; 3375 3376 if (extract32(a->opt, 1, 1) == 0) { 3377 return false; 3378 } 3379 3380 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3381 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3382 tcg_rt = cpu_reg(s, a->rt); 3383 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3384 a->ext, true, a->rt, iss_sf, false); 3385 return true; 3386 } 3387 3388 static bool trans_STR(DisasContext *s, arg_ldst *a) 3389 { 3390 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3391 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3392 MemOp memop; 3393 3394 if (extract32(a->opt, 1, 1) == 0) { 3395 return false; 3396 } 3397 3398 memop = finalize_memop(s, a->sz); 3399 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3400 tcg_rt = cpu_reg(s, a->rt); 3401 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3402 return true; 3403 } 3404 3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3406 { 3407 TCGv_i64 clean_addr, dirty_addr; 3408 MemOp memop; 3409 3410 if (extract32(a->opt, 1, 1) == 0) { 3411 return false; 3412 } 3413 3414 if (!fp_access_check(s)) { 3415 return true; 3416 } 3417 3418 memop = finalize_memop_asimd(s, a->sz); 3419 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3420 do_fp_ld(s, a->rt, clean_addr, memop); 3421 return true; 3422 } 3423 3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3425 { 3426 TCGv_i64 clean_addr, dirty_addr; 3427 MemOp memop; 3428 3429 if (extract32(a->opt, 1, 1) == 0) { 3430 return false; 3431 } 3432 3433 if (!fp_access_check(s)) { 3434 return true; 3435 } 3436 3437 memop = finalize_memop_asimd(s, a->sz); 3438 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3439 do_fp_st(s, a->rt, clean_addr, memop); 3440 return true; 3441 } 3442 3443 3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3445 int sign, bool invert) 3446 { 3447 MemOp mop = a->sz | sign; 3448 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3449 3450 if (a->rn == 31) { 3451 gen_check_sp_alignment(s); 3452 } 3453 mop = check_atomic_align(s, a->rn, mop); 3454 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3455 a->rn != 31, mop); 3456 tcg_rs = read_cpu_reg(s, a->rs, true); 3457 tcg_rt = cpu_reg(s, a->rt); 3458 if (invert) { 3459 tcg_gen_not_i64(tcg_rs, tcg_rs); 3460 } 3461 /* 3462 * The tcg atomic primitives are all full barriers. Therefore we 3463 * can ignore the Acquire and Release bits of this instruction. 3464 */ 3465 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3466 3467 if (mop & MO_SIGN) { 3468 switch (a->sz) { 3469 case MO_8: 3470 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3471 break; 3472 case MO_16: 3473 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3474 break; 3475 case MO_32: 3476 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3477 break; 3478 case MO_64: 3479 break; 3480 default: 3481 g_assert_not_reached(); 3482 } 3483 } 3484 return true; 3485 } 3486 3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3496 3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3498 { 3499 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3500 TCGv_i64 clean_addr; 3501 MemOp mop; 3502 3503 if (!dc_isar_feature(aa64_atomics, s) || 3504 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3505 return false; 3506 } 3507 if (a->rn == 31) { 3508 gen_check_sp_alignment(s); 3509 } 3510 mop = check_atomic_align(s, a->rn, a->sz); 3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3512 a->rn != 31, mop); 3513 /* 3514 * LDAPR* are a special case because they are a simple load, not a 3515 * fetch-and-do-something op. 3516 * The architectural consistency requirements here are weaker than 3517 * full load-acquire (we only need "load-acquire processor consistent"), 3518 * but we choose to implement them as full LDAQ. 3519 */ 3520 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3521 true, a->rt, iss_sf, true); 3522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3523 return true; 3524 } 3525 3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3527 { 3528 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3529 MemOp memop; 3530 3531 /* Load with pointer authentication */ 3532 if (!dc_isar_feature(aa64_pauth, s)) { 3533 return false; 3534 } 3535 3536 if (a->rn == 31) { 3537 gen_check_sp_alignment(s); 3538 } 3539 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3540 3541 if (s->pauth_active) { 3542 if (!a->m) { 3543 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3544 tcg_constant_i64(0)); 3545 } else { 3546 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3547 tcg_constant_i64(0)); 3548 } 3549 } 3550 3551 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3552 3553 memop = finalize_memop(s, MO_64); 3554 3555 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3556 clean_addr = gen_mte_check1(s, dirty_addr, false, 3557 a->w || a->rn != 31, memop); 3558 3559 tcg_rt = cpu_reg(s, a->rt); 3560 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3561 /* extend */ false, /* iss_valid */ !a->w, 3562 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3563 3564 if (a->w) { 3565 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3566 } 3567 return true; 3568 } 3569 3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3571 { 3572 TCGv_i64 clean_addr, dirty_addr; 3573 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3574 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3575 3576 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3577 return false; 3578 } 3579 3580 if (a->rn == 31) { 3581 gen_check_sp_alignment(s); 3582 } 3583 3584 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3585 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3586 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3587 clean_addr = clean_data_tbi(s, dirty_addr); 3588 3589 /* 3590 * Load-AcquirePC semantics; we implement as the slightly more 3591 * restrictive Load-Acquire. 3592 */ 3593 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3594 a->rt, iss_sf, true); 3595 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3596 return true; 3597 } 3598 3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3600 { 3601 TCGv_i64 clean_addr, dirty_addr; 3602 MemOp mop = a->sz; 3603 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3604 3605 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3606 return false; 3607 } 3608 3609 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3610 3611 if (a->rn == 31) { 3612 gen_check_sp_alignment(s); 3613 } 3614 3615 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3616 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3617 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3618 clean_addr = clean_data_tbi(s, dirty_addr); 3619 3620 /* Store-Release semantics */ 3621 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3622 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3623 return true; 3624 } 3625 3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3627 { 3628 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3629 MemOp endian, align, mop; 3630 3631 int total; /* total bytes */ 3632 int elements; /* elements per vector */ 3633 int r; 3634 int size = a->sz; 3635 3636 if (!a->p && a->rm != 0) { 3637 /* For non-postindexed accesses the Rm field must be 0 */ 3638 return false; 3639 } 3640 if (size == 3 && !a->q && a->selem != 1) { 3641 return false; 3642 } 3643 if (!fp_access_check(s)) { 3644 return true; 3645 } 3646 3647 if (a->rn == 31) { 3648 gen_check_sp_alignment(s); 3649 } 3650 3651 /* For our purposes, bytes are always little-endian. */ 3652 endian = s->be_data; 3653 if (size == 0) { 3654 endian = MO_LE; 3655 } 3656 3657 total = a->rpt * a->selem * (a->q ? 16 : 8); 3658 tcg_rn = cpu_reg_sp(s, a->rn); 3659 3660 /* 3661 * Issue the MTE check vs the logical repeat count, before we 3662 * promote consecutive little-endian elements below. 3663 */ 3664 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3665 finalize_memop_asimd(s, size)); 3666 3667 /* 3668 * Consecutive little-endian elements from a single register 3669 * can be promoted to a larger little-endian operation. 3670 */ 3671 align = MO_ALIGN; 3672 if (a->selem == 1 && endian == MO_LE) { 3673 align = pow2_align(size); 3674 size = 3; 3675 } 3676 if (!s->align_mem) { 3677 align = 0; 3678 } 3679 mop = endian | size | align; 3680 3681 elements = (a->q ? 16 : 8) >> size; 3682 tcg_ebytes = tcg_constant_i64(1 << size); 3683 for (r = 0; r < a->rpt; r++) { 3684 int e; 3685 for (e = 0; e < elements; e++) { 3686 int xs; 3687 for (xs = 0; xs < a->selem; xs++) { 3688 int tt = (a->rt + r + xs) % 32; 3689 do_vec_ld(s, tt, e, clean_addr, mop); 3690 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3691 } 3692 } 3693 } 3694 3695 /* 3696 * For non-quad operations, setting a slice of the low 64 bits of 3697 * the register clears the high 64 bits (in the ARM ARM pseudocode 3698 * this is implicit in the fact that 'rval' is a 64 bit wide 3699 * variable). For quad operations, we might still need to zero 3700 * the high bits of SVE. 3701 */ 3702 for (r = 0; r < a->rpt * a->selem; r++) { 3703 int tt = (a->rt + r) % 32; 3704 clear_vec_high(s, a->q, tt); 3705 } 3706 3707 if (a->p) { 3708 if (a->rm == 31) { 3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3710 } else { 3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3712 } 3713 } 3714 return true; 3715 } 3716 3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3718 { 3719 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3720 MemOp endian, align, mop; 3721 3722 int total; /* total bytes */ 3723 int elements; /* elements per vector */ 3724 int r; 3725 int size = a->sz; 3726 3727 if (!a->p && a->rm != 0) { 3728 /* For non-postindexed accesses the Rm field must be 0 */ 3729 return false; 3730 } 3731 if (size == 3 && !a->q && a->selem != 1) { 3732 return false; 3733 } 3734 if (!fp_access_check(s)) { 3735 return true; 3736 } 3737 3738 if (a->rn == 31) { 3739 gen_check_sp_alignment(s); 3740 } 3741 3742 /* For our purposes, bytes are always little-endian. */ 3743 endian = s->be_data; 3744 if (size == 0) { 3745 endian = MO_LE; 3746 } 3747 3748 total = a->rpt * a->selem * (a->q ? 16 : 8); 3749 tcg_rn = cpu_reg_sp(s, a->rn); 3750 3751 /* 3752 * Issue the MTE check vs the logical repeat count, before we 3753 * promote consecutive little-endian elements below. 3754 */ 3755 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3756 finalize_memop_asimd(s, size)); 3757 3758 /* 3759 * Consecutive little-endian elements from a single register 3760 * can be promoted to a larger little-endian operation. 3761 */ 3762 align = MO_ALIGN; 3763 if (a->selem == 1 && endian == MO_LE) { 3764 align = pow2_align(size); 3765 size = 3; 3766 } 3767 if (!s->align_mem) { 3768 align = 0; 3769 } 3770 mop = endian | size | align; 3771 3772 elements = (a->q ? 16 : 8) >> size; 3773 tcg_ebytes = tcg_constant_i64(1 << size); 3774 for (r = 0; r < a->rpt; r++) { 3775 int e; 3776 for (e = 0; e < elements; e++) { 3777 int xs; 3778 for (xs = 0; xs < a->selem; xs++) { 3779 int tt = (a->rt + r + xs) % 32; 3780 do_vec_st(s, tt, e, clean_addr, mop); 3781 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3782 } 3783 } 3784 } 3785 3786 if (a->p) { 3787 if (a->rm == 31) { 3788 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3789 } else { 3790 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3791 } 3792 } 3793 return true; 3794 } 3795 3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3797 { 3798 int xs, total, rt; 3799 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3800 MemOp mop; 3801 3802 if (!a->p && a->rm != 0) { 3803 return false; 3804 } 3805 if (!fp_access_check(s)) { 3806 return true; 3807 } 3808 3809 if (a->rn == 31) { 3810 gen_check_sp_alignment(s); 3811 } 3812 3813 total = a->selem << a->scale; 3814 tcg_rn = cpu_reg_sp(s, a->rn); 3815 3816 mop = finalize_memop_asimd(s, a->scale); 3817 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3818 total, mop); 3819 3820 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3821 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3822 do_vec_st(s, rt, a->index, clean_addr, mop); 3823 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3824 } 3825 3826 if (a->p) { 3827 if (a->rm == 31) { 3828 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3829 } else { 3830 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3831 } 3832 } 3833 return true; 3834 } 3835 3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3837 { 3838 int xs, total, rt; 3839 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3840 MemOp mop; 3841 3842 if (!a->p && a->rm != 0) { 3843 return false; 3844 } 3845 if (!fp_access_check(s)) { 3846 return true; 3847 } 3848 3849 if (a->rn == 31) { 3850 gen_check_sp_alignment(s); 3851 } 3852 3853 total = a->selem << a->scale; 3854 tcg_rn = cpu_reg_sp(s, a->rn); 3855 3856 mop = finalize_memop_asimd(s, a->scale); 3857 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3858 total, mop); 3859 3860 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3861 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3862 do_vec_ld(s, rt, a->index, clean_addr, mop); 3863 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3864 } 3865 3866 if (a->p) { 3867 if (a->rm == 31) { 3868 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3869 } else { 3870 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3871 } 3872 } 3873 return true; 3874 } 3875 3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3877 { 3878 int xs, total, rt; 3879 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3880 MemOp mop; 3881 3882 if (!a->p && a->rm != 0) { 3883 return false; 3884 } 3885 if (!fp_access_check(s)) { 3886 return true; 3887 } 3888 3889 if (a->rn == 31) { 3890 gen_check_sp_alignment(s); 3891 } 3892 3893 total = a->selem << a->scale; 3894 tcg_rn = cpu_reg_sp(s, a->rn); 3895 3896 mop = finalize_memop_asimd(s, a->scale); 3897 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3898 total, mop); 3899 3900 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3901 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3902 /* Load and replicate to all elements */ 3903 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3904 3905 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3906 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3907 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3908 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3909 } 3910 3911 if (a->p) { 3912 if (a->rm == 31) { 3913 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3914 } else { 3915 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3916 } 3917 } 3918 return true; 3919 } 3920 3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3922 { 3923 TCGv_i64 addr, clean_addr, tcg_rt; 3924 int size = 4 << s->dcz_blocksize; 3925 3926 if (!dc_isar_feature(aa64_mte, s)) { 3927 return false; 3928 } 3929 if (s->current_el == 0) { 3930 return false; 3931 } 3932 3933 if (a->rn == 31) { 3934 gen_check_sp_alignment(s); 3935 } 3936 3937 addr = read_cpu_reg_sp(s, a->rn, true); 3938 tcg_gen_addi_i64(addr, addr, a->imm); 3939 tcg_rt = cpu_reg(s, a->rt); 3940 3941 if (s->ata[0]) { 3942 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3943 } 3944 /* 3945 * The non-tags portion of STZGM is mostly like DC_ZVA, 3946 * except the alignment happens before the access. 3947 */ 3948 clean_addr = clean_data_tbi(s, addr); 3949 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3950 gen_helper_dc_zva(tcg_env, clean_addr); 3951 return true; 3952 } 3953 3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3955 { 3956 TCGv_i64 addr, clean_addr, tcg_rt; 3957 3958 if (!dc_isar_feature(aa64_mte, s)) { 3959 return false; 3960 } 3961 if (s->current_el == 0) { 3962 return false; 3963 } 3964 3965 if (a->rn == 31) { 3966 gen_check_sp_alignment(s); 3967 } 3968 3969 addr = read_cpu_reg_sp(s, a->rn, true); 3970 tcg_gen_addi_i64(addr, addr, a->imm); 3971 tcg_rt = cpu_reg(s, a->rt); 3972 3973 if (s->ata[0]) { 3974 gen_helper_stgm(tcg_env, addr, tcg_rt); 3975 } else { 3976 MMUAccessType acc = MMU_DATA_STORE; 3977 int size = 4 << s->gm_blocksize; 3978 3979 clean_addr = clean_data_tbi(s, addr); 3980 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3981 gen_probe_access(s, clean_addr, acc, size); 3982 } 3983 return true; 3984 } 3985 3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3987 { 3988 TCGv_i64 addr, clean_addr, tcg_rt; 3989 3990 if (!dc_isar_feature(aa64_mte, s)) { 3991 return false; 3992 } 3993 if (s->current_el == 0) { 3994 return false; 3995 } 3996 3997 if (a->rn == 31) { 3998 gen_check_sp_alignment(s); 3999 } 4000 4001 addr = read_cpu_reg_sp(s, a->rn, true); 4002 tcg_gen_addi_i64(addr, addr, a->imm); 4003 tcg_rt = cpu_reg(s, a->rt); 4004 4005 if (s->ata[0]) { 4006 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4007 } else { 4008 MMUAccessType acc = MMU_DATA_LOAD; 4009 int size = 4 << s->gm_blocksize; 4010 4011 clean_addr = clean_data_tbi(s, addr); 4012 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4013 gen_probe_access(s, clean_addr, acc, size); 4014 /* The result tags are zeros. */ 4015 tcg_gen_movi_i64(tcg_rt, 0); 4016 } 4017 return true; 4018 } 4019 4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4021 { 4022 TCGv_i64 addr, clean_addr, tcg_rt; 4023 4024 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4025 return false; 4026 } 4027 4028 if (a->rn == 31) { 4029 gen_check_sp_alignment(s); 4030 } 4031 4032 addr = read_cpu_reg_sp(s, a->rn, true); 4033 if (!a->p) { 4034 /* pre-index or signed offset */ 4035 tcg_gen_addi_i64(addr, addr, a->imm); 4036 } 4037 4038 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4039 tcg_rt = cpu_reg(s, a->rt); 4040 if (s->ata[0]) { 4041 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4042 } else { 4043 /* 4044 * Tag access disabled: we must check for aborts on the load 4045 * load from [rn+offset], and then insert a 0 tag into rt. 4046 */ 4047 clean_addr = clean_data_tbi(s, addr); 4048 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4049 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4050 } 4051 4052 if (a->w) { 4053 /* pre-index or post-index */ 4054 if (a->p) { 4055 /* post-index */ 4056 tcg_gen_addi_i64(addr, addr, a->imm); 4057 } 4058 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4059 } 4060 return true; 4061 } 4062 4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4064 { 4065 TCGv_i64 addr, tcg_rt; 4066 4067 if (a->rn == 31) { 4068 gen_check_sp_alignment(s); 4069 } 4070 4071 addr = read_cpu_reg_sp(s, a->rn, true); 4072 if (!a->p) { 4073 /* pre-index or signed offset */ 4074 tcg_gen_addi_i64(addr, addr, a->imm); 4075 } 4076 tcg_rt = cpu_reg_sp(s, a->rt); 4077 if (!s->ata[0]) { 4078 /* 4079 * For STG and ST2G, we need to check alignment and probe memory. 4080 * TODO: For STZG and STZ2G, we could rely on the stores below, 4081 * at least for system mode; user-only won't enforce alignment. 4082 */ 4083 if (is_pair) { 4084 gen_helper_st2g_stub(tcg_env, addr); 4085 } else { 4086 gen_helper_stg_stub(tcg_env, addr); 4087 } 4088 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4089 if (is_pair) { 4090 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4091 } else { 4092 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4093 } 4094 } else { 4095 if (is_pair) { 4096 gen_helper_st2g(tcg_env, addr, tcg_rt); 4097 } else { 4098 gen_helper_stg(tcg_env, addr, tcg_rt); 4099 } 4100 } 4101 4102 if (is_zero) { 4103 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4104 TCGv_i64 zero64 = tcg_constant_i64(0); 4105 TCGv_i128 zero128 = tcg_temp_new_i128(); 4106 int mem_index = get_mem_index(s); 4107 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4108 4109 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4110 4111 /* This is 1 or 2 atomic 16-byte operations. */ 4112 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4113 if (is_pair) { 4114 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4115 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4116 } 4117 } 4118 4119 if (a->w) { 4120 /* pre-index or post-index */ 4121 if (a->p) { 4122 /* post-index */ 4123 tcg_gen_addi_i64(addr, addr, a->imm); 4124 } 4125 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4126 } 4127 return true; 4128 } 4129 4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4134 4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4136 4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4138 bool is_setg, SetFn fn) 4139 { 4140 int memidx; 4141 uint32_t syndrome, desc = 0; 4142 4143 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4144 return false; 4145 } 4146 4147 /* 4148 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4149 * us to pull this check before the CheckMOPSEnabled() test 4150 * (which we do in the helper function) 4151 */ 4152 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4153 a->rd == 31 || a->rn == 31) { 4154 return false; 4155 } 4156 4157 memidx = get_a64_user_mem_index(s, a->unpriv); 4158 4159 /* 4160 * We pass option_a == true, matching our implementation; 4161 * we pass wrong_option == false: helper function may set that bit. 4162 */ 4163 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4164 is_epilogue, false, true, a->rd, a->rs, a->rn); 4165 4166 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4167 /* We may need to do MTE tag checking, so assemble the descriptor */ 4168 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4169 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4170 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4171 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4172 } 4173 /* The helper function always needs the memidx even with MTE disabled */ 4174 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4175 4176 /* 4177 * The helper needs the register numbers, but since they're in 4178 * the syndrome anyway, we let it extract them from there rather 4179 * than passing in an extra three integer arguments. 4180 */ 4181 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4182 return true; 4183 } 4184 4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4191 4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4193 4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4195 { 4196 int rmemidx, wmemidx; 4197 uint32_t syndrome, rdesc = 0, wdesc = 0; 4198 bool wunpriv = extract32(a->options, 0, 1); 4199 bool runpriv = extract32(a->options, 1, 1); 4200 4201 /* 4202 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4203 * us to pull this check before the CheckMOPSEnabled() test 4204 * (which we do in the helper function) 4205 */ 4206 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4207 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4208 return false; 4209 } 4210 4211 rmemidx = get_a64_user_mem_index(s, runpriv); 4212 wmemidx = get_a64_user_mem_index(s, wunpriv); 4213 4214 /* 4215 * We pass option_a == true, matching our implementation; 4216 * we pass wrong_option == false: helper function may set that bit. 4217 */ 4218 syndrome = syn_mop(false, false, a->options, is_epilogue, 4219 false, true, a->rd, a->rs, a->rn); 4220 4221 /* If we need to do MTE tag checking, assemble the descriptors */ 4222 if (s->mte_active[runpriv]) { 4223 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4224 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4225 } 4226 if (s->mte_active[wunpriv]) { 4227 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4228 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4229 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4230 } 4231 /* The helper function needs these parts of the descriptor regardless */ 4232 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4233 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4234 4235 /* 4236 * The helper needs the register numbers, but since they're in 4237 * the syndrome anyway, we let it extract them from there rather 4238 * than passing in an extra three integer arguments. 4239 */ 4240 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4241 tcg_constant_i32(rdesc)); 4242 return true; 4243 } 4244 4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4251 4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4253 4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4255 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4256 { 4257 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4258 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4259 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4260 4261 fn(tcg_rd, tcg_rn, tcg_imm); 4262 if (!a->sf) { 4263 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4264 } 4265 return true; 4266 } 4267 4268 /* 4269 * PC-rel. addressing 4270 */ 4271 4272 static bool trans_ADR(DisasContext *s, arg_ri *a) 4273 { 4274 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4275 return true; 4276 } 4277 4278 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4279 { 4280 int64_t offset = (int64_t)a->imm << 12; 4281 4282 /* The page offset is ok for CF_PCREL. */ 4283 offset -= s->pc_curr & 0xfff; 4284 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4285 return true; 4286 } 4287 4288 /* 4289 * Add/subtract (immediate) 4290 */ 4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4295 4296 /* 4297 * Add/subtract (immediate, with tags) 4298 */ 4299 4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4301 bool sub_op) 4302 { 4303 TCGv_i64 tcg_rn, tcg_rd; 4304 int imm; 4305 4306 imm = a->uimm6 << LOG2_TAG_GRANULE; 4307 if (sub_op) { 4308 imm = -imm; 4309 } 4310 4311 tcg_rn = cpu_reg_sp(s, a->rn); 4312 tcg_rd = cpu_reg_sp(s, a->rd); 4313 4314 if (s->ata[0]) { 4315 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4316 tcg_constant_i32(imm), 4317 tcg_constant_i32(a->uimm4)); 4318 } else { 4319 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4320 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4321 } 4322 return true; 4323 } 4324 4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4327 4328 /* The input should be a value in the bottom e bits (with higher 4329 * bits zero); returns that value replicated into every element 4330 * of size e in a 64 bit integer. 4331 */ 4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4333 { 4334 assert(e != 0); 4335 while (e < 64) { 4336 mask |= mask << e; 4337 e *= 2; 4338 } 4339 return mask; 4340 } 4341 4342 /* 4343 * Logical (immediate) 4344 */ 4345 4346 /* 4347 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4348 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4349 * value (ie should cause a guest UNDEF exception), and true if they are 4350 * valid, in which case the decoded bit pattern is written to result. 4351 */ 4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4353 unsigned int imms, unsigned int immr) 4354 { 4355 uint64_t mask; 4356 unsigned e, levels, s, r; 4357 int len; 4358 4359 assert(immn < 2 && imms < 64 && immr < 64); 4360 4361 /* The bit patterns we create here are 64 bit patterns which 4362 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4363 * 64 bits each. Each element contains the same value: a run 4364 * of between 1 and e-1 non-zero bits, rotated within the 4365 * element by between 0 and e-1 bits. 4366 * 4367 * The element size and run length are encoded into immn (1 bit) 4368 * and imms (6 bits) as follows: 4369 * 64 bit elements: immn = 1, imms = <length of run - 1> 4370 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4371 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4372 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4373 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4374 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4375 * Notice that immn = 0, imms = 11111x is the only combination 4376 * not covered by one of the above options; this is reserved. 4377 * Further, <length of run - 1> all-ones is a reserved pattern. 4378 * 4379 * In all cases the rotation is by immr % e (and immr is 6 bits). 4380 */ 4381 4382 /* First determine the element size */ 4383 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4384 if (len < 1) { 4385 /* This is the immn == 0, imms == 0x11111x case */ 4386 return false; 4387 } 4388 e = 1 << len; 4389 4390 levels = e - 1; 4391 s = imms & levels; 4392 r = immr & levels; 4393 4394 if (s == levels) { 4395 /* <length of run - 1> mustn't be all-ones. */ 4396 return false; 4397 } 4398 4399 /* Create the value of one element: s+1 set bits rotated 4400 * by r within the element (which is e bits wide)... 4401 */ 4402 mask = MAKE_64BIT_MASK(0, s + 1); 4403 if (r) { 4404 mask = (mask >> r) | (mask << (e - r)); 4405 mask &= MAKE_64BIT_MASK(0, e); 4406 } 4407 /* ...then replicate the element over the whole 64 bit value */ 4408 mask = bitfield_replicate(mask, e); 4409 *result = mask; 4410 return true; 4411 } 4412 4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4414 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4415 { 4416 TCGv_i64 tcg_rd, tcg_rn; 4417 uint64_t imm; 4418 4419 /* Some immediate field values are reserved. */ 4420 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4421 extract32(a->dbm, 0, 6), 4422 extract32(a->dbm, 6, 6))) { 4423 return false; 4424 } 4425 if (!a->sf) { 4426 imm &= 0xffffffffull; 4427 } 4428 4429 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4430 tcg_rn = cpu_reg(s, a->rn); 4431 4432 fn(tcg_rd, tcg_rn, imm); 4433 if (set_cc) { 4434 gen_logic_CC(a->sf, tcg_rd); 4435 } 4436 if (!a->sf) { 4437 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4438 } 4439 return true; 4440 } 4441 4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4446 4447 /* 4448 * Move wide (immediate) 4449 */ 4450 4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4452 { 4453 int pos = a->hw << 4; 4454 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4455 return true; 4456 } 4457 4458 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4459 { 4460 int pos = a->hw << 4; 4461 uint64_t imm = a->imm; 4462 4463 imm = ~(imm << pos); 4464 if (!a->sf) { 4465 imm = (uint32_t)imm; 4466 } 4467 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4468 return true; 4469 } 4470 4471 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4472 { 4473 int pos = a->hw << 4; 4474 TCGv_i64 tcg_rd, tcg_im; 4475 4476 tcg_rd = cpu_reg(s, a->rd); 4477 tcg_im = tcg_constant_i64(a->imm); 4478 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4479 if (!a->sf) { 4480 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4481 } 4482 return true; 4483 } 4484 4485 /* 4486 * Bitfield 4487 */ 4488 4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4490 { 4491 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4492 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4493 unsigned int bitsize = a->sf ? 64 : 32; 4494 unsigned int ri = a->immr; 4495 unsigned int si = a->imms; 4496 unsigned int pos, len; 4497 4498 if (si >= ri) { 4499 /* Wd<s-r:0> = Wn<s:r> */ 4500 len = (si - ri) + 1; 4501 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4502 if (!a->sf) { 4503 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4504 } 4505 } else { 4506 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4507 len = si + 1; 4508 pos = (bitsize - ri) & (bitsize - 1); 4509 4510 if (len < ri) { 4511 /* 4512 * Sign extend the destination field from len to fill the 4513 * balance of the word. Let the deposit below insert all 4514 * of those sign bits. 4515 */ 4516 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4517 len = ri; 4518 } 4519 4520 /* 4521 * We start with zero, and we haven't modified any bits outside 4522 * bitsize, therefore no final zero-extension is unneeded for !sf. 4523 */ 4524 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4525 } 4526 return true; 4527 } 4528 4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4530 { 4531 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4532 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4533 unsigned int bitsize = a->sf ? 64 : 32; 4534 unsigned int ri = a->immr; 4535 unsigned int si = a->imms; 4536 unsigned int pos, len; 4537 4538 tcg_rd = cpu_reg(s, a->rd); 4539 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4540 4541 if (si >= ri) { 4542 /* Wd<s-r:0> = Wn<s:r> */ 4543 len = (si - ri) + 1; 4544 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4545 } else { 4546 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4547 len = si + 1; 4548 pos = (bitsize - ri) & (bitsize - 1); 4549 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4550 } 4551 return true; 4552 } 4553 4554 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4555 { 4556 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4557 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4558 unsigned int bitsize = a->sf ? 64 : 32; 4559 unsigned int ri = a->immr; 4560 unsigned int si = a->imms; 4561 unsigned int pos, len; 4562 4563 tcg_rd = cpu_reg(s, a->rd); 4564 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4565 4566 if (si >= ri) { 4567 /* Wd<s-r:0> = Wn<s:r> */ 4568 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4569 len = (si - ri) + 1; 4570 pos = 0; 4571 } else { 4572 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4573 len = si + 1; 4574 pos = (bitsize - ri) & (bitsize - 1); 4575 } 4576 4577 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4578 if (!a->sf) { 4579 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4580 } 4581 return true; 4582 } 4583 4584 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4585 { 4586 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4587 4588 tcg_rd = cpu_reg(s, a->rd); 4589 4590 if (unlikely(a->imm == 0)) { 4591 /* 4592 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4593 * so an extract from bit 0 is a special case. 4594 */ 4595 if (a->sf) { 4596 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4597 } else { 4598 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4599 } 4600 } else { 4601 tcg_rm = cpu_reg(s, a->rm); 4602 tcg_rn = cpu_reg(s, a->rn); 4603 4604 if (a->sf) { 4605 /* Specialization to ROR happens in EXTRACT2. */ 4606 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4607 } else { 4608 TCGv_i32 t0 = tcg_temp_new_i32(); 4609 4610 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4611 if (a->rm == a->rn) { 4612 tcg_gen_rotri_i32(t0, t0, a->imm); 4613 } else { 4614 TCGv_i32 t1 = tcg_temp_new_i32(); 4615 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4616 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4617 } 4618 tcg_gen_extu_i32_i64(tcg_rd, t0); 4619 } 4620 } 4621 return true; 4622 } 4623 4624 /* 4625 * Cryptographic AES, SHA, SHA512 4626 */ 4627 4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4632 4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4637 4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4641 4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4645 4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4653 4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4656 4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4659 4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4661 { 4662 if (!dc_isar_feature(aa64_sm3, s)) { 4663 return false; 4664 } 4665 if (fp_access_check(s)) { 4666 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4667 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4668 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4669 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4670 unsigned vsz, dofs; 4671 4672 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4673 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4674 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4675 4676 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4677 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4678 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4679 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4680 4681 /* Clear the whole register first, then store bits [127:96]. */ 4682 vsz = vec_full_reg_size(s); 4683 dofs = vec_full_reg_offset(s, a->rd); 4684 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4685 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4686 } 4687 return true; 4688 } 4689 4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4691 { 4692 if (fp_access_check(s)) { 4693 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4694 } 4695 return true; 4696 } 4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4701 4702 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4703 { 4704 if (!dc_isar_feature(aa64_sha3, s)) { 4705 return false; 4706 } 4707 if (fp_access_check(s)) { 4708 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4709 vec_full_reg_offset(s, a->rn), 4710 vec_full_reg_offset(s, a->rm), a->imm, 16, 4711 vec_full_reg_size(s)); 4712 } 4713 return true; 4714 } 4715 4716 /* 4717 * Advanced SIMD copy 4718 */ 4719 4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4721 { 4722 unsigned esz = ctz32(imm); 4723 if (esz <= MO_64) { 4724 *pesz = esz; 4725 *pidx = imm >> (esz + 1); 4726 return true; 4727 } 4728 return false; 4729 } 4730 4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4732 { 4733 MemOp esz; 4734 unsigned idx; 4735 4736 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4737 return false; 4738 } 4739 if (fp_access_check(s)) { 4740 /* 4741 * This instruction just extracts the specified element and 4742 * zero-extends it into the bottom of the destination register. 4743 */ 4744 TCGv_i64 tmp = tcg_temp_new_i64(); 4745 read_vec_element(s, tmp, a->rn, idx, esz); 4746 write_fp_dreg(s, a->rd, tmp); 4747 } 4748 return true; 4749 } 4750 4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4752 { 4753 MemOp esz; 4754 unsigned idx; 4755 4756 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4757 return false; 4758 } 4759 if (esz == MO_64 && !a->q) { 4760 return false; 4761 } 4762 if (fp_access_check(s)) { 4763 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4764 vec_reg_offset(s, a->rn, idx, esz), 4765 a->q ? 16 : 8, vec_full_reg_size(s)); 4766 } 4767 return true; 4768 } 4769 4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4771 { 4772 MemOp esz; 4773 unsigned idx; 4774 4775 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4776 return false; 4777 } 4778 if (esz == MO_64 && !a->q) { 4779 return false; 4780 } 4781 if (fp_access_check(s)) { 4782 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4783 a->q ? 16 : 8, vec_full_reg_size(s), 4784 cpu_reg(s, a->rn)); 4785 } 4786 return true; 4787 } 4788 4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4790 { 4791 MemOp esz; 4792 unsigned idx; 4793 4794 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4795 return false; 4796 } 4797 if (is_signed) { 4798 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4799 return false; 4800 } 4801 } else { 4802 if (esz == MO_64 ? !a->q : a->q) { 4803 return false; 4804 } 4805 } 4806 if (fp_access_check(s)) { 4807 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4808 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4809 if (is_signed && !a->q) { 4810 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4811 } 4812 } 4813 return true; 4814 } 4815 4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4817 TRANS(UMOV, do_smov_umov, a, 0) 4818 4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4820 { 4821 MemOp esz; 4822 unsigned idx; 4823 4824 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4825 return false; 4826 } 4827 if (fp_access_check(s)) { 4828 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4829 clear_vec_high(s, true, a->rd); 4830 } 4831 return true; 4832 } 4833 4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4835 { 4836 MemOp esz; 4837 unsigned didx, sidx; 4838 4839 if (!decode_esz_idx(a->di, &esz, &didx)) { 4840 return false; 4841 } 4842 sidx = a->si >> esz; 4843 if (fp_access_check(s)) { 4844 TCGv_i64 tmp = tcg_temp_new_i64(); 4845 4846 read_vec_element(s, tmp, a->rn, sidx, esz); 4847 write_vec_element(s, tmp, a->rd, didx, esz); 4848 4849 /* INS is considered a 128-bit write for SVE. */ 4850 clear_vec_high(s, true, a->rd); 4851 } 4852 return true; 4853 } 4854 4855 /* 4856 * Advanced SIMD three same 4857 */ 4858 4859 typedef struct FPScalar { 4860 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4861 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4862 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4863 } FPScalar; 4864 4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4866 { 4867 switch (a->esz) { 4868 case MO_64: 4869 if (fp_access_check(s)) { 4870 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4871 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4872 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4873 write_fp_dreg(s, a->rd, t0); 4874 } 4875 break; 4876 case MO_32: 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4880 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 case MO_16: 4885 if (!dc_isar_feature(aa64_fp16, s)) { 4886 return false; 4887 } 4888 if (fp_access_check(s)) { 4889 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4890 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4891 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4892 write_fp_sreg(s, a->rd, t0); 4893 } 4894 break; 4895 default: 4896 return false; 4897 } 4898 return true; 4899 } 4900 4901 static const FPScalar f_scalar_fadd = { 4902 gen_helper_vfp_addh, 4903 gen_helper_vfp_adds, 4904 gen_helper_vfp_addd, 4905 }; 4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4907 4908 static const FPScalar f_scalar_fsub = { 4909 gen_helper_vfp_subh, 4910 gen_helper_vfp_subs, 4911 gen_helper_vfp_subd, 4912 }; 4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4914 4915 static const FPScalar f_scalar_fdiv = { 4916 gen_helper_vfp_divh, 4917 gen_helper_vfp_divs, 4918 gen_helper_vfp_divd, 4919 }; 4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4921 4922 static const FPScalar f_scalar_fmul = { 4923 gen_helper_vfp_mulh, 4924 gen_helper_vfp_muls, 4925 gen_helper_vfp_muld, 4926 }; 4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4928 4929 static const FPScalar f_scalar_fmax = { 4930 gen_helper_advsimd_maxh, 4931 gen_helper_vfp_maxs, 4932 gen_helper_vfp_maxd, 4933 }; 4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4935 4936 static const FPScalar f_scalar_fmin = { 4937 gen_helper_advsimd_minh, 4938 gen_helper_vfp_mins, 4939 gen_helper_vfp_mind, 4940 }; 4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4942 4943 static const FPScalar f_scalar_fmaxnm = { 4944 gen_helper_advsimd_maxnumh, 4945 gen_helper_vfp_maxnums, 4946 gen_helper_vfp_maxnumd, 4947 }; 4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4949 4950 static const FPScalar f_scalar_fminnm = { 4951 gen_helper_advsimd_minnumh, 4952 gen_helper_vfp_minnums, 4953 gen_helper_vfp_minnumd, 4954 }; 4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4956 4957 static const FPScalar f_scalar_fmulx = { 4958 gen_helper_advsimd_mulxh, 4959 gen_helper_vfp_mulxs, 4960 gen_helper_vfp_mulxd, 4961 }; 4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4963 4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4965 { 4966 gen_helper_vfp_mulh(d, n, m, s); 4967 gen_vfp_negh(d, d); 4968 } 4969 4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4971 { 4972 gen_helper_vfp_muls(d, n, m, s); 4973 gen_vfp_negs(d, d); 4974 } 4975 4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4977 { 4978 gen_helper_vfp_muld(d, n, m, s); 4979 gen_vfp_negd(d, d); 4980 } 4981 4982 static const FPScalar f_scalar_fnmul = { 4983 gen_fnmul_h, 4984 gen_fnmul_s, 4985 gen_fnmul_d, 4986 }; 4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4988 4989 static const FPScalar f_scalar_fcmeq = { 4990 gen_helper_advsimd_ceq_f16, 4991 gen_helper_neon_ceq_f32, 4992 gen_helper_neon_ceq_f64, 4993 }; 4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4995 4996 static const FPScalar f_scalar_fcmge = { 4997 gen_helper_advsimd_cge_f16, 4998 gen_helper_neon_cge_f32, 4999 gen_helper_neon_cge_f64, 5000 }; 5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5002 5003 static const FPScalar f_scalar_fcmgt = { 5004 gen_helper_advsimd_cgt_f16, 5005 gen_helper_neon_cgt_f32, 5006 gen_helper_neon_cgt_f64, 5007 }; 5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5009 5010 static const FPScalar f_scalar_facge = { 5011 gen_helper_advsimd_acge_f16, 5012 gen_helper_neon_acge_f32, 5013 gen_helper_neon_acge_f64, 5014 }; 5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5016 5017 static const FPScalar f_scalar_facgt = { 5018 gen_helper_advsimd_acgt_f16, 5019 gen_helper_neon_acgt_f32, 5020 gen_helper_neon_acgt_f64, 5021 }; 5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5023 5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5025 { 5026 gen_helper_vfp_subh(d, n, m, s); 5027 gen_vfp_absh(d, d); 5028 } 5029 5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5031 { 5032 gen_helper_vfp_subs(d, n, m, s); 5033 gen_vfp_abss(d, d); 5034 } 5035 5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5037 { 5038 gen_helper_vfp_subd(d, n, m, s); 5039 gen_vfp_absd(d, d); 5040 } 5041 5042 static const FPScalar f_scalar_fabd = { 5043 gen_fabd_h, 5044 gen_fabd_s, 5045 gen_fabd_d, 5046 }; 5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5048 5049 static const FPScalar f_scalar_frecps = { 5050 gen_helper_recpsf_f16, 5051 gen_helper_recpsf_f32, 5052 gen_helper_recpsf_f64, 5053 }; 5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5055 5056 static const FPScalar f_scalar_frsqrts = { 5057 gen_helper_rsqrtsf_f16, 5058 gen_helper_rsqrtsf_f32, 5059 gen_helper_rsqrtsf_f64, 5060 }; 5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5062 5063 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5064 gen_helper_gvec_3_ptr * const fns[3]) 5065 { 5066 MemOp esz = a->esz; 5067 5068 switch (esz) { 5069 case MO_64: 5070 if (!a->q) { 5071 return false; 5072 } 5073 break; 5074 case MO_32: 5075 break; 5076 case MO_16: 5077 if (!dc_isar_feature(aa64_fp16, s)) { 5078 return false; 5079 } 5080 break; 5081 default: 5082 return false; 5083 } 5084 if (fp_access_check(s)) { 5085 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5086 esz == MO_16, 0, fns[esz - 1]); 5087 } 5088 return true; 5089 } 5090 5091 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5092 gen_helper_gvec_fadd_h, 5093 gen_helper_gvec_fadd_s, 5094 gen_helper_gvec_fadd_d, 5095 }; 5096 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5097 5098 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5099 gen_helper_gvec_fsub_h, 5100 gen_helper_gvec_fsub_s, 5101 gen_helper_gvec_fsub_d, 5102 }; 5103 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5104 5105 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5106 gen_helper_gvec_fdiv_h, 5107 gen_helper_gvec_fdiv_s, 5108 gen_helper_gvec_fdiv_d, 5109 }; 5110 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5111 5112 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5113 gen_helper_gvec_fmul_h, 5114 gen_helper_gvec_fmul_s, 5115 gen_helper_gvec_fmul_d, 5116 }; 5117 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5118 5119 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5120 gen_helper_gvec_fmax_h, 5121 gen_helper_gvec_fmax_s, 5122 gen_helper_gvec_fmax_d, 5123 }; 5124 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5125 5126 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5127 gen_helper_gvec_fmin_h, 5128 gen_helper_gvec_fmin_s, 5129 gen_helper_gvec_fmin_d, 5130 }; 5131 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5132 5133 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5134 gen_helper_gvec_fmaxnum_h, 5135 gen_helper_gvec_fmaxnum_s, 5136 gen_helper_gvec_fmaxnum_d, 5137 }; 5138 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5139 5140 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5141 gen_helper_gvec_fminnum_h, 5142 gen_helper_gvec_fminnum_s, 5143 gen_helper_gvec_fminnum_d, 5144 }; 5145 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5146 5147 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5148 gen_helper_gvec_fmulx_h, 5149 gen_helper_gvec_fmulx_s, 5150 gen_helper_gvec_fmulx_d, 5151 }; 5152 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5153 5154 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5155 gen_helper_gvec_vfma_h, 5156 gen_helper_gvec_vfma_s, 5157 gen_helper_gvec_vfma_d, 5158 }; 5159 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5160 5161 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5162 gen_helper_gvec_vfms_h, 5163 gen_helper_gvec_vfms_s, 5164 gen_helper_gvec_vfms_d, 5165 }; 5166 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5167 5168 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5169 gen_helper_gvec_fceq_h, 5170 gen_helper_gvec_fceq_s, 5171 gen_helper_gvec_fceq_d, 5172 }; 5173 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5174 5175 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5176 gen_helper_gvec_fcge_h, 5177 gen_helper_gvec_fcge_s, 5178 gen_helper_gvec_fcge_d, 5179 }; 5180 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5181 5182 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5183 gen_helper_gvec_fcgt_h, 5184 gen_helper_gvec_fcgt_s, 5185 gen_helper_gvec_fcgt_d, 5186 }; 5187 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5188 5189 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5190 gen_helper_gvec_facge_h, 5191 gen_helper_gvec_facge_s, 5192 gen_helper_gvec_facge_d, 5193 }; 5194 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5195 5196 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5197 gen_helper_gvec_facgt_h, 5198 gen_helper_gvec_facgt_s, 5199 gen_helper_gvec_facgt_d, 5200 }; 5201 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5202 5203 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5204 gen_helper_gvec_fabd_h, 5205 gen_helper_gvec_fabd_s, 5206 gen_helper_gvec_fabd_d, 5207 }; 5208 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5209 5210 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5211 gen_helper_gvec_recps_h, 5212 gen_helper_gvec_recps_s, 5213 gen_helper_gvec_recps_d, 5214 }; 5215 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5216 5217 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5218 gen_helper_gvec_rsqrts_h, 5219 gen_helper_gvec_rsqrts_s, 5220 gen_helper_gvec_rsqrts_d, 5221 }; 5222 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5223 5224 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5225 gen_helper_gvec_faddp_h, 5226 gen_helper_gvec_faddp_s, 5227 gen_helper_gvec_faddp_d, 5228 }; 5229 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5230 5231 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5232 gen_helper_gvec_fmaxp_h, 5233 gen_helper_gvec_fmaxp_s, 5234 gen_helper_gvec_fmaxp_d, 5235 }; 5236 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5237 5238 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5239 gen_helper_gvec_fminp_h, 5240 gen_helper_gvec_fminp_s, 5241 gen_helper_gvec_fminp_d, 5242 }; 5243 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5244 5245 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5246 gen_helper_gvec_fmaxnump_h, 5247 gen_helper_gvec_fmaxnump_s, 5248 gen_helper_gvec_fmaxnump_d, 5249 }; 5250 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5251 5252 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5253 gen_helper_gvec_fminnump_h, 5254 gen_helper_gvec_fminnump_s, 5255 gen_helper_gvec_fminnump_d, 5256 }; 5257 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5258 5259 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5260 { 5261 if (fp_access_check(s)) { 5262 int data = (is_2 << 1) | is_s; 5263 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5264 vec_full_reg_offset(s, a->rn), 5265 vec_full_reg_offset(s, a->rm), tcg_env, 5266 a->q ? 16 : 8, vec_full_reg_size(s), 5267 data, gen_helper_gvec_fmlal_a64); 5268 } 5269 return true; 5270 } 5271 5272 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5273 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5274 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5275 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5276 5277 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5278 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5279 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5280 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5281 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5282 5283 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 5284 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 5285 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 5286 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 5287 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 5288 5289 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 5290 { 5291 if (fp_access_check(s)) { 5292 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 5293 } 5294 return true; 5295 } 5296 5297 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 5298 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 5299 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 5300 5301 /* 5302 * Advanced SIMD scalar/vector x indexed element 5303 */ 5304 5305 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5306 { 5307 switch (a->esz) { 5308 case MO_64: 5309 if (fp_access_check(s)) { 5310 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5311 TCGv_i64 t1 = tcg_temp_new_i64(); 5312 5313 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5314 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5315 write_fp_dreg(s, a->rd, t0); 5316 } 5317 break; 5318 case MO_32: 5319 if (fp_access_check(s)) { 5320 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5321 TCGv_i32 t1 = tcg_temp_new_i32(); 5322 5323 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5324 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5325 write_fp_sreg(s, a->rd, t0); 5326 } 5327 break; 5328 case MO_16: 5329 if (!dc_isar_feature(aa64_fp16, s)) { 5330 return false; 5331 } 5332 if (fp_access_check(s)) { 5333 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5334 TCGv_i32 t1 = tcg_temp_new_i32(); 5335 5336 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5337 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5338 write_fp_sreg(s, a->rd, t0); 5339 } 5340 break; 5341 default: 5342 g_assert_not_reached(); 5343 } 5344 return true; 5345 } 5346 5347 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5348 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5349 5350 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5351 { 5352 switch (a->esz) { 5353 case MO_64: 5354 if (fp_access_check(s)) { 5355 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5356 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5357 TCGv_i64 t2 = tcg_temp_new_i64(); 5358 5359 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5360 if (neg) { 5361 gen_vfp_negd(t1, t1); 5362 } 5363 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5364 write_fp_dreg(s, a->rd, t0); 5365 } 5366 break; 5367 case MO_32: 5368 if (fp_access_check(s)) { 5369 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5370 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5371 TCGv_i32 t2 = tcg_temp_new_i32(); 5372 5373 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5374 if (neg) { 5375 gen_vfp_negs(t1, t1); 5376 } 5377 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5378 write_fp_sreg(s, a->rd, t0); 5379 } 5380 break; 5381 case MO_16: 5382 if (!dc_isar_feature(aa64_fp16, s)) { 5383 return false; 5384 } 5385 if (fp_access_check(s)) { 5386 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5387 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5388 TCGv_i32 t2 = tcg_temp_new_i32(); 5389 5390 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5391 if (neg) { 5392 gen_vfp_negh(t1, t1); 5393 } 5394 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5395 fpstatus_ptr(FPST_FPCR_F16)); 5396 write_fp_sreg(s, a->rd, t0); 5397 } 5398 break; 5399 default: 5400 g_assert_not_reached(); 5401 } 5402 return true; 5403 } 5404 5405 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5406 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5407 5408 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5409 gen_helper_gvec_3_ptr * const fns[3]) 5410 { 5411 MemOp esz = a->esz; 5412 5413 switch (esz) { 5414 case MO_64: 5415 if (!a->q) { 5416 return false; 5417 } 5418 break; 5419 case MO_32: 5420 break; 5421 case MO_16: 5422 if (!dc_isar_feature(aa64_fp16, s)) { 5423 return false; 5424 } 5425 break; 5426 default: 5427 g_assert_not_reached(); 5428 } 5429 if (fp_access_check(s)) { 5430 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5431 esz == MO_16, a->idx, fns[esz - 1]); 5432 } 5433 return true; 5434 } 5435 5436 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5437 gen_helper_gvec_fmul_idx_h, 5438 gen_helper_gvec_fmul_idx_s, 5439 gen_helper_gvec_fmul_idx_d, 5440 }; 5441 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5442 5443 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5444 gen_helper_gvec_fmulx_idx_h, 5445 gen_helper_gvec_fmulx_idx_s, 5446 gen_helper_gvec_fmulx_idx_d, 5447 }; 5448 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5449 5450 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5451 { 5452 static gen_helper_gvec_4_ptr * const fns[3] = { 5453 gen_helper_gvec_fmla_idx_h, 5454 gen_helper_gvec_fmla_idx_s, 5455 gen_helper_gvec_fmla_idx_d, 5456 }; 5457 MemOp esz = a->esz; 5458 5459 switch (esz) { 5460 case MO_64: 5461 if (!a->q) { 5462 return false; 5463 } 5464 break; 5465 case MO_32: 5466 break; 5467 case MO_16: 5468 if (!dc_isar_feature(aa64_fp16, s)) { 5469 return false; 5470 } 5471 break; 5472 default: 5473 g_assert_not_reached(); 5474 } 5475 if (fp_access_check(s)) { 5476 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5477 esz == MO_16, (a->idx << 1) | neg, 5478 fns[esz - 1]); 5479 } 5480 return true; 5481 } 5482 5483 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5484 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5485 5486 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 5487 { 5488 if (fp_access_check(s)) { 5489 int data = (a->idx << 2) | (is_2 << 1) | is_s; 5490 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5491 vec_full_reg_offset(s, a->rn), 5492 vec_full_reg_offset(s, a->rm), tcg_env, 5493 a->q ? 16 : 8, vec_full_reg_size(s), 5494 data, gen_helper_gvec_fmlal_idx_a64); 5495 } 5496 return true; 5497 } 5498 5499 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 5500 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 5501 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 5502 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 5503 5504 /* 5505 * Advanced SIMD scalar pairwise 5506 */ 5507 5508 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5509 { 5510 switch (a->esz) { 5511 case MO_64: 5512 if (fp_access_check(s)) { 5513 TCGv_i64 t0 = tcg_temp_new_i64(); 5514 TCGv_i64 t1 = tcg_temp_new_i64(); 5515 5516 read_vec_element(s, t0, a->rn, 0, MO_64); 5517 read_vec_element(s, t1, a->rn, 1, MO_64); 5518 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5519 write_fp_dreg(s, a->rd, t0); 5520 } 5521 break; 5522 case MO_32: 5523 if (fp_access_check(s)) { 5524 TCGv_i32 t0 = tcg_temp_new_i32(); 5525 TCGv_i32 t1 = tcg_temp_new_i32(); 5526 5527 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5528 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5529 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5530 write_fp_sreg(s, a->rd, t0); 5531 } 5532 break; 5533 case MO_16: 5534 if (!dc_isar_feature(aa64_fp16, s)) { 5535 return false; 5536 } 5537 if (fp_access_check(s)) { 5538 TCGv_i32 t0 = tcg_temp_new_i32(); 5539 TCGv_i32 t1 = tcg_temp_new_i32(); 5540 5541 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5542 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5543 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5544 write_fp_sreg(s, a->rd, t0); 5545 } 5546 break; 5547 default: 5548 g_assert_not_reached(); 5549 } 5550 return true; 5551 } 5552 5553 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5554 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5555 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5556 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5557 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5558 5559 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5560 { 5561 if (fp_access_check(s)) { 5562 TCGv_i64 t0 = tcg_temp_new_i64(); 5563 TCGv_i64 t1 = tcg_temp_new_i64(); 5564 5565 read_vec_element(s, t0, a->rn, 0, MO_64); 5566 read_vec_element(s, t1, a->rn, 1, MO_64); 5567 tcg_gen_add_i64(t0, t0, t1); 5568 write_fp_dreg(s, a->rd, t0); 5569 } 5570 return true; 5571 } 5572 5573 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5574 * Note that it is the caller's responsibility to ensure that the 5575 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5576 * mandated semantics for out of range shifts. 5577 */ 5578 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5579 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5580 { 5581 switch (shift_type) { 5582 case A64_SHIFT_TYPE_LSL: 5583 tcg_gen_shl_i64(dst, src, shift_amount); 5584 break; 5585 case A64_SHIFT_TYPE_LSR: 5586 tcg_gen_shr_i64(dst, src, shift_amount); 5587 break; 5588 case A64_SHIFT_TYPE_ASR: 5589 if (!sf) { 5590 tcg_gen_ext32s_i64(dst, src); 5591 } 5592 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5593 break; 5594 case A64_SHIFT_TYPE_ROR: 5595 if (sf) { 5596 tcg_gen_rotr_i64(dst, src, shift_amount); 5597 } else { 5598 TCGv_i32 t0, t1; 5599 t0 = tcg_temp_new_i32(); 5600 t1 = tcg_temp_new_i32(); 5601 tcg_gen_extrl_i64_i32(t0, src); 5602 tcg_gen_extrl_i64_i32(t1, shift_amount); 5603 tcg_gen_rotr_i32(t0, t0, t1); 5604 tcg_gen_extu_i32_i64(dst, t0); 5605 } 5606 break; 5607 default: 5608 assert(FALSE); /* all shift types should be handled */ 5609 break; 5610 } 5611 5612 if (!sf) { /* zero extend final result */ 5613 tcg_gen_ext32u_i64(dst, dst); 5614 } 5615 } 5616 5617 /* Shift a TCGv src by immediate, put result in dst. 5618 * The shift amount must be in range (this should always be true as the 5619 * relevant instructions will UNDEF on bad shift immediates). 5620 */ 5621 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5622 enum a64_shift_type shift_type, unsigned int shift_i) 5623 { 5624 assert(shift_i < (sf ? 64 : 32)); 5625 5626 if (shift_i == 0) { 5627 tcg_gen_mov_i64(dst, src); 5628 } else { 5629 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5630 } 5631 } 5632 5633 /* Logical (shifted register) 5634 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5635 * +----+-----+-----------+-------+---+------+--------+------+------+ 5636 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5637 * +----+-----+-----------+-------+---+------+--------+------+------+ 5638 */ 5639 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5640 { 5641 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5642 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5643 5644 sf = extract32(insn, 31, 1); 5645 opc = extract32(insn, 29, 2); 5646 shift_type = extract32(insn, 22, 2); 5647 invert = extract32(insn, 21, 1); 5648 rm = extract32(insn, 16, 5); 5649 shift_amount = extract32(insn, 10, 6); 5650 rn = extract32(insn, 5, 5); 5651 rd = extract32(insn, 0, 5); 5652 5653 if (!sf && (shift_amount & (1 << 5))) { 5654 unallocated_encoding(s); 5655 return; 5656 } 5657 5658 tcg_rd = cpu_reg(s, rd); 5659 5660 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5661 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5662 * register-register MOV and MVN, so it is worth special casing. 5663 */ 5664 tcg_rm = cpu_reg(s, rm); 5665 if (invert) { 5666 tcg_gen_not_i64(tcg_rd, tcg_rm); 5667 if (!sf) { 5668 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5669 } 5670 } else { 5671 if (sf) { 5672 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5673 } else { 5674 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5675 } 5676 } 5677 return; 5678 } 5679 5680 tcg_rm = read_cpu_reg(s, rm, sf); 5681 5682 if (shift_amount) { 5683 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5684 } 5685 5686 tcg_rn = cpu_reg(s, rn); 5687 5688 switch (opc | (invert << 2)) { 5689 case 0: /* AND */ 5690 case 3: /* ANDS */ 5691 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5692 break; 5693 case 1: /* ORR */ 5694 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5695 break; 5696 case 2: /* EOR */ 5697 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5698 break; 5699 case 4: /* BIC */ 5700 case 7: /* BICS */ 5701 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5702 break; 5703 case 5: /* ORN */ 5704 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5705 break; 5706 case 6: /* EON */ 5707 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5708 break; 5709 default: 5710 assert(FALSE); 5711 break; 5712 } 5713 5714 if (!sf) { 5715 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5716 } 5717 5718 if (opc == 3) { 5719 gen_logic_CC(sf, tcg_rd); 5720 } 5721 } 5722 5723 /* 5724 * Add/subtract (extended register) 5725 * 5726 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5727 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5728 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5729 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5730 * 5731 * sf: 0 -> 32bit, 1 -> 64bit 5732 * op: 0 -> add , 1 -> sub 5733 * S: 1 -> set flags 5734 * opt: 00 5735 * option: extension type (see DecodeRegExtend) 5736 * imm3: optional shift to Rm 5737 * 5738 * Rd = Rn + LSL(extend(Rm), amount) 5739 */ 5740 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5741 { 5742 int rd = extract32(insn, 0, 5); 5743 int rn = extract32(insn, 5, 5); 5744 int imm3 = extract32(insn, 10, 3); 5745 int option = extract32(insn, 13, 3); 5746 int rm = extract32(insn, 16, 5); 5747 int opt = extract32(insn, 22, 2); 5748 bool setflags = extract32(insn, 29, 1); 5749 bool sub_op = extract32(insn, 30, 1); 5750 bool sf = extract32(insn, 31, 1); 5751 5752 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5753 TCGv_i64 tcg_rd; 5754 TCGv_i64 tcg_result; 5755 5756 if (imm3 > 4 || opt != 0) { 5757 unallocated_encoding(s); 5758 return; 5759 } 5760 5761 /* non-flag setting ops may use SP */ 5762 if (!setflags) { 5763 tcg_rd = cpu_reg_sp(s, rd); 5764 } else { 5765 tcg_rd = cpu_reg(s, rd); 5766 } 5767 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5768 5769 tcg_rm = read_cpu_reg(s, rm, sf); 5770 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5771 5772 tcg_result = tcg_temp_new_i64(); 5773 5774 if (!setflags) { 5775 if (sub_op) { 5776 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5777 } else { 5778 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5779 } 5780 } else { 5781 if (sub_op) { 5782 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5783 } else { 5784 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5785 } 5786 } 5787 5788 if (sf) { 5789 tcg_gen_mov_i64(tcg_rd, tcg_result); 5790 } else { 5791 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5792 } 5793 } 5794 5795 /* 5796 * Add/subtract (shifted register) 5797 * 5798 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5799 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5800 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5801 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5802 * 5803 * sf: 0 -> 32bit, 1 -> 64bit 5804 * op: 0 -> add , 1 -> sub 5805 * S: 1 -> set flags 5806 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5807 * imm6: Shift amount to apply to Rm before the add/sub 5808 */ 5809 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5810 { 5811 int rd = extract32(insn, 0, 5); 5812 int rn = extract32(insn, 5, 5); 5813 int imm6 = extract32(insn, 10, 6); 5814 int rm = extract32(insn, 16, 5); 5815 int shift_type = extract32(insn, 22, 2); 5816 bool setflags = extract32(insn, 29, 1); 5817 bool sub_op = extract32(insn, 30, 1); 5818 bool sf = extract32(insn, 31, 1); 5819 5820 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5821 TCGv_i64 tcg_rn, tcg_rm; 5822 TCGv_i64 tcg_result; 5823 5824 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5825 unallocated_encoding(s); 5826 return; 5827 } 5828 5829 tcg_rn = read_cpu_reg(s, rn, sf); 5830 tcg_rm = read_cpu_reg(s, rm, sf); 5831 5832 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5833 5834 tcg_result = tcg_temp_new_i64(); 5835 5836 if (!setflags) { 5837 if (sub_op) { 5838 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5839 } else { 5840 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5841 } 5842 } else { 5843 if (sub_op) { 5844 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5845 } else { 5846 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5847 } 5848 } 5849 5850 if (sf) { 5851 tcg_gen_mov_i64(tcg_rd, tcg_result); 5852 } else { 5853 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5854 } 5855 } 5856 5857 /* Data-processing (3 source) 5858 * 5859 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5860 * +--+------+-----------+------+------+----+------+------+------+ 5861 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5862 * +--+------+-----------+------+------+----+------+------+------+ 5863 */ 5864 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5865 { 5866 int rd = extract32(insn, 0, 5); 5867 int rn = extract32(insn, 5, 5); 5868 int ra = extract32(insn, 10, 5); 5869 int rm = extract32(insn, 16, 5); 5870 int op_id = (extract32(insn, 29, 3) << 4) | 5871 (extract32(insn, 21, 3) << 1) | 5872 extract32(insn, 15, 1); 5873 bool sf = extract32(insn, 31, 1); 5874 bool is_sub = extract32(op_id, 0, 1); 5875 bool is_high = extract32(op_id, 2, 1); 5876 bool is_signed = false; 5877 TCGv_i64 tcg_op1; 5878 TCGv_i64 tcg_op2; 5879 TCGv_i64 tcg_tmp; 5880 5881 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5882 switch (op_id) { 5883 case 0x42: /* SMADDL */ 5884 case 0x43: /* SMSUBL */ 5885 case 0x44: /* SMULH */ 5886 is_signed = true; 5887 break; 5888 case 0x0: /* MADD (32bit) */ 5889 case 0x1: /* MSUB (32bit) */ 5890 case 0x40: /* MADD (64bit) */ 5891 case 0x41: /* MSUB (64bit) */ 5892 case 0x4a: /* UMADDL */ 5893 case 0x4b: /* UMSUBL */ 5894 case 0x4c: /* UMULH */ 5895 break; 5896 default: 5897 unallocated_encoding(s); 5898 return; 5899 } 5900 5901 if (is_high) { 5902 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5903 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5904 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5905 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5906 5907 if (is_signed) { 5908 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5909 } else { 5910 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5911 } 5912 return; 5913 } 5914 5915 tcg_op1 = tcg_temp_new_i64(); 5916 tcg_op2 = tcg_temp_new_i64(); 5917 tcg_tmp = tcg_temp_new_i64(); 5918 5919 if (op_id < 0x42) { 5920 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5921 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5922 } else { 5923 if (is_signed) { 5924 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5925 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5926 } else { 5927 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5928 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5929 } 5930 } 5931 5932 if (ra == 31 && !is_sub) { 5933 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5934 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5935 } else { 5936 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5937 if (is_sub) { 5938 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5939 } else { 5940 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5941 } 5942 } 5943 5944 if (!sf) { 5945 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5946 } 5947 } 5948 5949 /* Add/subtract (with carry) 5950 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5951 * +--+--+--+------------------------+------+-------------+------+-----+ 5952 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5953 * +--+--+--+------------------------+------+-------------+------+-----+ 5954 */ 5955 5956 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5957 { 5958 unsigned int sf, op, setflags, rm, rn, rd; 5959 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5960 5961 sf = extract32(insn, 31, 1); 5962 op = extract32(insn, 30, 1); 5963 setflags = extract32(insn, 29, 1); 5964 rm = extract32(insn, 16, 5); 5965 rn = extract32(insn, 5, 5); 5966 rd = extract32(insn, 0, 5); 5967 5968 tcg_rd = cpu_reg(s, rd); 5969 tcg_rn = cpu_reg(s, rn); 5970 5971 if (op) { 5972 tcg_y = tcg_temp_new_i64(); 5973 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5974 } else { 5975 tcg_y = cpu_reg(s, rm); 5976 } 5977 5978 if (setflags) { 5979 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5980 } else { 5981 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5982 } 5983 } 5984 5985 /* 5986 * Rotate right into flags 5987 * 31 30 29 21 15 10 5 4 0 5988 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5989 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5990 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5991 */ 5992 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5993 { 5994 int mask = extract32(insn, 0, 4); 5995 int o2 = extract32(insn, 4, 1); 5996 int rn = extract32(insn, 5, 5); 5997 int imm6 = extract32(insn, 15, 6); 5998 int sf_op_s = extract32(insn, 29, 3); 5999 TCGv_i64 tcg_rn; 6000 TCGv_i32 nzcv; 6001 6002 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 6003 unallocated_encoding(s); 6004 return; 6005 } 6006 6007 tcg_rn = read_cpu_reg(s, rn, 1); 6008 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 6009 6010 nzcv = tcg_temp_new_i32(); 6011 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 6012 6013 if (mask & 8) { /* N */ 6014 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 6015 } 6016 if (mask & 4) { /* Z */ 6017 tcg_gen_not_i32(cpu_ZF, nzcv); 6018 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 6019 } 6020 if (mask & 2) { /* C */ 6021 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 6022 } 6023 if (mask & 1) { /* V */ 6024 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 6025 } 6026 } 6027 6028 /* 6029 * Evaluate into flags 6030 * 31 30 29 21 15 14 10 5 4 0 6031 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6032 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 6033 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6034 */ 6035 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 6036 { 6037 int o3_mask = extract32(insn, 0, 5); 6038 int rn = extract32(insn, 5, 5); 6039 int o2 = extract32(insn, 15, 6); 6040 int sz = extract32(insn, 14, 1); 6041 int sf_op_s = extract32(insn, 29, 3); 6042 TCGv_i32 tmp; 6043 int shift; 6044 6045 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 6046 !dc_isar_feature(aa64_condm_4, s)) { 6047 unallocated_encoding(s); 6048 return; 6049 } 6050 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 6051 6052 tmp = tcg_temp_new_i32(); 6053 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6054 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6055 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6056 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6057 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6058 } 6059 6060 /* Conditional compare (immediate / register) 6061 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6062 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6063 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6064 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6065 * [1] y [0] [0] 6066 */ 6067 static void disas_cc(DisasContext *s, uint32_t insn) 6068 { 6069 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6070 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6071 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6072 DisasCompare c; 6073 6074 if (!extract32(insn, 29, 1)) { 6075 unallocated_encoding(s); 6076 return; 6077 } 6078 if (insn & (1 << 10 | 1 << 4)) { 6079 unallocated_encoding(s); 6080 return; 6081 } 6082 sf = extract32(insn, 31, 1); 6083 op = extract32(insn, 30, 1); 6084 is_imm = extract32(insn, 11, 1); 6085 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6086 cond = extract32(insn, 12, 4); 6087 rn = extract32(insn, 5, 5); 6088 nzcv = extract32(insn, 0, 4); 6089 6090 /* Set T0 = !COND. */ 6091 tcg_t0 = tcg_temp_new_i32(); 6092 arm_test_cc(&c, cond); 6093 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6094 6095 /* Load the arguments for the new comparison. */ 6096 if (is_imm) { 6097 tcg_y = tcg_temp_new_i64(); 6098 tcg_gen_movi_i64(tcg_y, y); 6099 } else { 6100 tcg_y = cpu_reg(s, y); 6101 } 6102 tcg_rn = cpu_reg(s, rn); 6103 6104 /* Set the flags for the new comparison. */ 6105 tcg_tmp = tcg_temp_new_i64(); 6106 if (op) { 6107 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6108 } else { 6109 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6110 } 6111 6112 /* If COND was false, force the flags to #nzcv. Compute two masks 6113 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6114 * For tcg hosts that support ANDC, we can make do with just T1. 6115 * In either case, allow the tcg optimizer to delete any unused mask. 6116 */ 6117 tcg_t1 = tcg_temp_new_i32(); 6118 tcg_t2 = tcg_temp_new_i32(); 6119 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6120 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6121 6122 if (nzcv & 8) { /* N */ 6123 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6124 } else { 6125 if (TCG_TARGET_HAS_andc_i32) { 6126 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6127 } else { 6128 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6129 } 6130 } 6131 if (nzcv & 4) { /* Z */ 6132 if (TCG_TARGET_HAS_andc_i32) { 6133 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6134 } else { 6135 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6136 } 6137 } else { 6138 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6139 } 6140 if (nzcv & 2) { /* C */ 6141 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6142 } else { 6143 if (TCG_TARGET_HAS_andc_i32) { 6144 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6145 } else { 6146 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6147 } 6148 } 6149 if (nzcv & 1) { /* V */ 6150 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6151 } else { 6152 if (TCG_TARGET_HAS_andc_i32) { 6153 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6154 } else { 6155 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6156 } 6157 } 6158 } 6159 6160 /* Conditional select 6161 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6162 * +----+----+---+-----------------+------+------+-----+------+------+ 6163 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6164 * +----+----+---+-----------------+------+------+-----+------+------+ 6165 */ 6166 static void disas_cond_select(DisasContext *s, uint32_t insn) 6167 { 6168 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6169 TCGv_i64 tcg_rd, zero; 6170 DisasCompare64 c; 6171 6172 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6173 /* S == 1 or op2<1> == 1 */ 6174 unallocated_encoding(s); 6175 return; 6176 } 6177 sf = extract32(insn, 31, 1); 6178 else_inv = extract32(insn, 30, 1); 6179 rm = extract32(insn, 16, 5); 6180 cond = extract32(insn, 12, 4); 6181 else_inc = extract32(insn, 10, 1); 6182 rn = extract32(insn, 5, 5); 6183 rd = extract32(insn, 0, 5); 6184 6185 tcg_rd = cpu_reg(s, rd); 6186 6187 a64_test_cc(&c, cond); 6188 zero = tcg_constant_i64(0); 6189 6190 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6191 /* CSET & CSETM. */ 6192 if (else_inv) { 6193 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6194 tcg_rd, c.value, zero); 6195 } else { 6196 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6197 tcg_rd, c.value, zero); 6198 } 6199 } else { 6200 TCGv_i64 t_true = cpu_reg(s, rn); 6201 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6202 if (else_inv && else_inc) { 6203 tcg_gen_neg_i64(t_false, t_false); 6204 } else if (else_inv) { 6205 tcg_gen_not_i64(t_false, t_false); 6206 } else if (else_inc) { 6207 tcg_gen_addi_i64(t_false, t_false, 1); 6208 } 6209 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6210 } 6211 6212 if (!sf) { 6213 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6214 } 6215 } 6216 6217 static void handle_clz(DisasContext *s, unsigned int sf, 6218 unsigned int rn, unsigned int rd) 6219 { 6220 TCGv_i64 tcg_rd, tcg_rn; 6221 tcg_rd = cpu_reg(s, rd); 6222 tcg_rn = cpu_reg(s, rn); 6223 6224 if (sf) { 6225 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6226 } else { 6227 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6228 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6229 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6230 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6231 } 6232 } 6233 6234 static void handle_cls(DisasContext *s, unsigned int sf, 6235 unsigned int rn, unsigned int rd) 6236 { 6237 TCGv_i64 tcg_rd, tcg_rn; 6238 tcg_rd = cpu_reg(s, rd); 6239 tcg_rn = cpu_reg(s, rn); 6240 6241 if (sf) { 6242 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6243 } else { 6244 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6245 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6246 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6247 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6248 } 6249 } 6250 6251 static void handle_rbit(DisasContext *s, unsigned int sf, 6252 unsigned int rn, unsigned int rd) 6253 { 6254 TCGv_i64 tcg_rd, tcg_rn; 6255 tcg_rd = cpu_reg(s, rd); 6256 tcg_rn = cpu_reg(s, rn); 6257 6258 if (sf) { 6259 gen_helper_rbit64(tcg_rd, tcg_rn); 6260 } else { 6261 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6262 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6263 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6264 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6265 } 6266 } 6267 6268 /* REV with sf==1, opcode==3 ("REV64") */ 6269 static void handle_rev64(DisasContext *s, unsigned int sf, 6270 unsigned int rn, unsigned int rd) 6271 { 6272 if (!sf) { 6273 unallocated_encoding(s); 6274 return; 6275 } 6276 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6277 } 6278 6279 /* REV with sf==0, opcode==2 6280 * REV32 (sf==1, opcode==2) 6281 */ 6282 static void handle_rev32(DisasContext *s, unsigned int sf, 6283 unsigned int rn, unsigned int rd) 6284 { 6285 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6286 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6287 6288 if (sf) { 6289 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6290 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6291 } else { 6292 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6293 } 6294 } 6295 6296 /* REV16 (opcode==1) */ 6297 static void handle_rev16(DisasContext *s, unsigned int sf, 6298 unsigned int rn, unsigned int rd) 6299 { 6300 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6301 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6302 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6303 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6304 6305 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6306 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6307 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6308 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6309 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6310 } 6311 6312 /* Data-processing (1 source) 6313 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6314 * +----+---+---+-----------------+---------+--------+------+------+ 6315 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6316 * +----+---+---+-----------------+---------+--------+------+------+ 6317 */ 6318 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6319 { 6320 unsigned int sf, opcode, opcode2, rn, rd; 6321 TCGv_i64 tcg_rd; 6322 6323 if (extract32(insn, 29, 1)) { 6324 unallocated_encoding(s); 6325 return; 6326 } 6327 6328 sf = extract32(insn, 31, 1); 6329 opcode = extract32(insn, 10, 6); 6330 opcode2 = extract32(insn, 16, 5); 6331 rn = extract32(insn, 5, 5); 6332 rd = extract32(insn, 0, 5); 6333 6334 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6335 6336 switch (MAP(sf, opcode2, opcode)) { 6337 case MAP(0, 0x00, 0x00): /* RBIT */ 6338 case MAP(1, 0x00, 0x00): 6339 handle_rbit(s, sf, rn, rd); 6340 break; 6341 case MAP(0, 0x00, 0x01): /* REV16 */ 6342 case MAP(1, 0x00, 0x01): 6343 handle_rev16(s, sf, rn, rd); 6344 break; 6345 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6346 case MAP(1, 0x00, 0x02): 6347 handle_rev32(s, sf, rn, rd); 6348 break; 6349 case MAP(1, 0x00, 0x03): /* REV64 */ 6350 handle_rev64(s, sf, rn, rd); 6351 break; 6352 case MAP(0, 0x00, 0x04): /* CLZ */ 6353 case MAP(1, 0x00, 0x04): 6354 handle_clz(s, sf, rn, rd); 6355 break; 6356 case MAP(0, 0x00, 0x05): /* CLS */ 6357 case MAP(1, 0x00, 0x05): 6358 handle_cls(s, sf, rn, rd); 6359 break; 6360 case MAP(1, 0x01, 0x00): /* PACIA */ 6361 if (s->pauth_active) { 6362 tcg_rd = cpu_reg(s, rd); 6363 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6364 } else if (!dc_isar_feature(aa64_pauth, s)) { 6365 goto do_unallocated; 6366 } 6367 break; 6368 case MAP(1, 0x01, 0x01): /* PACIB */ 6369 if (s->pauth_active) { 6370 tcg_rd = cpu_reg(s, rd); 6371 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6372 } else if (!dc_isar_feature(aa64_pauth, s)) { 6373 goto do_unallocated; 6374 } 6375 break; 6376 case MAP(1, 0x01, 0x02): /* PACDA */ 6377 if (s->pauth_active) { 6378 tcg_rd = cpu_reg(s, rd); 6379 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6380 } else if (!dc_isar_feature(aa64_pauth, s)) { 6381 goto do_unallocated; 6382 } 6383 break; 6384 case MAP(1, 0x01, 0x03): /* PACDB */ 6385 if (s->pauth_active) { 6386 tcg_rd = cpu_reg(s, rd); 6387 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6388 } else if (!dc_isar_feature(aa64_pauth, s)) { 6389 goto do_unallocated; 6390 } 6391 break; 6392 case MAP(1, 0x01, 0x04): /* AUTIA */ 6393 if (s->pauth_active) { 6394 tcg_rd = cpu_reg(s, rd); 6395 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6396 } else if (!dc_isar_feature(aa64_pauth, s)) { 6397 goto do_unallocated; 6398 } 6399 break; 6400 case MAP(1, 0x01, 0x05): /* AUTIB */ 6401 if (s->pauth_active) { 6402 tcg_rd = cpu_reg(s, rd); 6403 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6404 } else if (!dc_isar_feature(aa64_pauth, s)) { 6405 goto do_unallocated; 6406 } 6407 break; 6408 case MAP(1, 0x01, 0x06): /* AUTDA */ 6409 if (s->pauth_active) { 6410 tcg_rd = cpu_reg(s, rd); 6411 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6412 } else if (!dc_isar_feature(aa64_pauth, s)) { 6413 goto do_unallocated; 6414 } 6415 break; 6416 case MAP(1, 0x01, 0x07): /* AUTDB */ 6417 if (s->pauth_active) { 6418 tcg_rd = cpu_reg(s, rd); 6419 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6420 } else if (!dc_isar_feature(aa64_pauth, s)) { 6421 goto do_unallocated; 6422 } 6423 break; 6424 case MAP(1, 0x01, 0x08): /* PACIZA */ 6425 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6426 goto do_unallocated; 6427 } else if (s->pauth_active) { 6428 tcg_rd = cpu_reg(s, rd); 6429 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6430 } 6431 break; 6432 case MAP(1, 0x01, 0x09): /* PACIZB */ 6433 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6434 goto do_unallocated; 6435 } else if (s->pauth_active) { 6436 tcg_rd = cpu_reg(s, rd); 6437 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6438 } 6439 break; 6440 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6441 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6442 goto do_unallocated; 6443 } else if (s->pauth_active) { 6444 tcg_rd = cpu_reg(s, rd); 6445 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6446 } 6447 break; 6448 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6449 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6450 goto do_unallocated; 6451 } else if (s->pauth_active) { 6452 tcg_rd = cpu_reg(s, rd); 6453 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6454 } 6455 break; 6456 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6457 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6458 goto do_unallocated; 6459 } else if (s->pauth_active) { 6460 tcg_rd = cpu_reg(s, rd); 6461 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6462 } 6463 break; 6464 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6465 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6466 goto do_unallocated; 6467 } else if (s->pauth_active) { 6468 tcg_rd = cpu_reg(s, rd); 6469 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6470 } 6471 break; 6472 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6473 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6474 goto do_unallocated; 6475 } else if (s->pauth_active) { 6476 tcg_rd = cpu_reg(s, rd); 6477 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6478 } 6479 break; 6480 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6481 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6482 goto do_unallocated; 6483 } else if (s->pauth_active) { 6484 tcg_rd = cpu_reg(s, rd); 6485 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6486 } 6487 break; 6488 case MAP(1, 0x01, 0x10): /* XPACI */ 6489 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6490 goto do_unallocated; 6491 } else if (s->pauth_active) { 6492 tcg_rd = cpu_reg(s, rd); 6493 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6494 } 6495 break; 6496 case MAP(1, 0x01, 0x11): /* XPACD */ 6497 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6498 goto do_unallocated; 6499 } else if (s->pauth_active) { 6500 tcg_rd = cpu_reg(s, rd); 6501 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6502 } 6503 break; 6504 default: 6505 do_unallocated: 6506 unallocated_encoding(s); 6507 break; 6508 } 6509 6510 #undef MAP 6511 } 6512 6513 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6514 unsigned int rm, unsigned int rn, unsigned int rd) 6515 { 6516 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6517 tcg_rd = cpu_reg(s, rd); 6518 6519 if (!sf && is_signed) { 6520 tcg_n = tcg_temp_new_i64(); 6521 tcg_m = tcg_temp_new_i64(); 6522 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6523 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6524 } else { 6525 tcg_n = read_cpu_reg(s, rn, sf); 6526 tcg_m = read_cpu_reg(s, rm, sf); 6527 } 6528 6529 if (is_signed) { 6530 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6531 } else { 6532 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6533 } 6534 6535 if (!sf) { /* zero extend final result */ 6536 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6537 } 6538 } 6539 6540 /* LSLV, LSRV, ASRV, RORV */ 6541 static void handle_shift_reg(DisasContext *s, 6542 enum a64_shift_type shift_type, unsigned int sf, 6543 unsigned int rm, unsigned int rn, unsigned int rd) 6544 { 6545 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6546 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6547 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6548 6549 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6550 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6551 } 6552 6553 /* CRC32[BHWX], CRC32C[BHWX] */ 6554 static void handle_crc32(DisasContext *s, 6555 unsigned int sf, unsigned int sz, bool crc32c, 6556 unsigned int rm, unsigned int rn, unsigned int rd) 6557 { 6558 TCGv_i64 tcg_acc, tcg_val; 6559 TCGv_i32 tcg_bytes; 6560 6561 if (!dc_isar_feature(aa64_crc32, s) 6562 || (sf == 1 && sz != 3) 6563 || (sf == 0 && sz == 3)) { 6564 unallocated_encoding(s); 6565 return; 6566 } 6567 6568 if (sz == 3) { 6569 tcg_val = cpu_reg(s, rm); 6570 } else { 6571 uint64_t mask; 6572 switch (sz) { 6573 case 0: 6574 mask = 0xFF; 6575 break; 6576 case 1: 6577 mask = 0xFFFF; 6578 break; 6579 case 2: 6580 mask = 0xFFFFFFFF; 6581 break; 6582 default: 6583 g_assert_not_reached(); 6584 } 6585 tcg_val = tcg_temp_new_i64(); 6586 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6587 } 6588 6589 tcg_acc = cpu_reg(s, rn); 6590 tcg_bytes = tcg_constant_i32(1 << sz); 6591 6592 if (crc32c) { 6593 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6594 } else { 6595 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6596 } 6597 } 6598 6599 /* Data-processing (2 source) 6600 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6601 * +----+---+---+-----------------+------+--------+------+------+ 6602 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6603 * +----+---+---+-----------------+------+--------+------+------+ 6604 */ 6605 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6606 { 6607 unsigned int sf, rm, opcode, rn, rd, setflag; 6608 sf = extract32(insn, 31, 1); 6609 setflag = extract32(insn, 29, 1); 6610 rm = extract32(insn, 16, 5); 6611 opcode = extract32(insn, 10, 6); 6612 rn = extract32(insn, 5, 5); 6613 rd = extract32(insn, 0, 5); 6614 6615 if (setflag && opcode != 0) { 6616 unallocated_encoding(s); 6617 return; 6618 } 6619 6620 switch (opcode) { 6621 case 0: /* SUBP(S) */ 6622 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6623 goto do_unallocated; 6624 } else { 6625 TCGv_i64 tcg_n, tcg_m, tcg_d; 6626 6627 tcg_n = read_cpu_reg_sp(s, rn, true); 6628 tcg_m = read_cpu_reg_sp(s, rm, true); 6629 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6630 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6631 tcg_d = cpu_reg(s, rd); 6632 6633 if (setflag) { 6634 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6635 } else { 6636 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6637 } 6638 } 6639 break; 6640 case 2: /* UDIV */ 6641 handle_div(s, false, sf, rm, rn, rd); 6642 break; 6643 case 3: /* SDIV */ 6644 handle_div(s, true, sf, rm, rn, rd); 6645 break; 6646 case 4: /* IRG */ 6647 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6648 goto do_unallocated; 6649 } 6650 if (s->ata[0]) { 6651 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6652 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6653 } else { 6654 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6655 cpu_reg_sp(s, rn)); 6656 } 6657 break; 6658 case 5: /* GMI */ 6659 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6660 goto do_unallocated; 6661 } else { 6662 TCGv_i64 t = tcg_temp_new_i64(); 6663 6664 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6665 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6666 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6667 } 6668 break; 6669 case 8: /* LSLV */ 6670 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6671 break; 6672 case 9: /* LSRV */ 6673 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6674 break; 6675 case 10: /* ASRV */ 6676 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6677 break; 6678 case 11: /* RORV */ 6679 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6680 break; 6681 case 12: /* PACGA */ 6682 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6683 goto do_unallocated; 6684 } 6685 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6686 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6687 break; 6688 case 16: 6689 case 17: 6690 case 18: 6691 case 19: 6692 case 20: 6693 case 21: 6694 case 22: 6695 case 23: /* CRC32 */ 6696 { 6697 int sz = extract32(opcode, 0, 2); 6698 bool crc32c = extract32(opcode, 2, 1); 6699 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6700 break; 6701 } 6702 default: 6703 do_unallocated: 6704 unallocated_encoding(s); 6705 break; 6706 } 6707 } 6708 6709 /* 6710 * Data processing - register 6711 * 31 30 29 28 25 21 20 16 10 0 6712 * +--+---+--+---+-------+-----+-------+-------+---------+ 6713 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6714 * +--+---+--+---+-------+-----+-------+-------+---------+ 6715 */ 6716 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6717 { 6718 int op0 = extract32(insn, 30, 1); 6719 int op1 = extract32(insn, 28, 1); 6720 int op2 = extract32(insn, 21, 4); 6721 int op3 = extract32(insn, 10, 6); 6722 6723 if (!op1) { 6724 if (op2 & 8) { 6725 if (op2 & 1) { 6726 /* Add/sub (extended register) */ 6727 disas_add_sub_ext_reg(s, insn); 6728 } else { 6729 /* Add/sub (shifted register) */ 6730 disas_add_sub_reg(s, insn); 6731 } 6732 } else { 6733 /* Logical (shifted register) */ 6734 disas_logic_reg(s, insn); 6735 } 6736 return; 6737 } 6738 6739 switch (op2) { 6740 case 0x0: 6741 switch (op3) { 6742 case 0x00: /* Add/subtract (with carry) */ 6743 disas_adc_sbc(s, insn); 6744 break; 6745 6746 case 0x01: /* Rotate right into flags */ 6747 case 0x21: 6748 disas_rotate_right_into_flags(s, insn); 6749 break; 6750 6751 case 0x02: /* Evaluate into flags */ 6752 case 0x12: 6753 case 0x22: 6754 case 0x32: 6755 disas_evaluate_into_flags(s, insn); 6756 break; 6757 6758 default: 6759 goto do_unallocated; 6760 } 6761 break; 6762 6763 case 0x2: /* Conditional compare */ 6764 disas_cc(s, insn); /* both imm and reg forms */ 6765 break; 6766 6767 case 0x4: /* Conditional select */ 6768 disas_cond_select(s, insn); 6769 break; 6770 6771 case 0x6: /* Data-processing */ 6772 if (op0) { /* (1 source) */ 6773 disas_data_proc_1src(s, insn); 6774 } else { /* (2 source) */ 6775 disas_data_proc_2src(s, insn); 6776 } 6777 break; 6778 case 0x8 ... 0xf: /* (3 source) */ 6779 disas_data_proc_3src(s, insn); 6780 break; 6781 6782 default: 6783 do_unallocated: 6784 unallocated_encoding(s); 6785 break; 6786 } 6787 } 6788 6789 static void handle_fp_compare(DisasContext *s, int size, 6790 unsigned int rn, unsigned int rm, 6791 bool cmp_with_zero, bool signal_all_nans) 6792 { 6793 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6794 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6795 6796 if (size == MO_64) { 6797 TCGv_i64 tcg_vn, tcg_vm; 6798 6799 tcg_vn = read_fp_dreg(s, rn); 6800 if (cmp_with_zero) { 6801 tcg_vm = tcg_constant_i64(0); 6802 } else { 6803 tcg_vm = read_fp_dreg(s, rm); 6804 } 6805 if (signal_all_nans) { 6806 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6807 } else { 6808 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6809 } 6810 } else { 6811 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6812 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6813 6814 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6815 if (cmp_with_zero) { 6816 tcg_gen_movi_i32(tcg_vm, 0); 6817 } else { 6818 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6819 } 6820 6821 switch (size) { 6822 case MO_32: 6823 if (signal_all_nans) { 6824 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6825 } else { 6826 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6827 } 6828 break; 6829 case MO_16: 6830 if (signal_all_nans) { 6831 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6832 } else { 6833 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6834 } 6835 break; 6836 default: 6837 g_assert_not_reached(); 6838 } 6839 } 6840 6841 gen_set_nzcv(tcg_flags); 6842 } 6843 6844 /* Floating point compare 6845 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6846 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6847 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6848 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6849 */ 6850 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6851 { 6852 unsigned int mos, type, rm, op, rn, opc, op2r; 6853 int size; 6854 6855 mos = extract32(insn, 29, 3); 6856 type = extract32(insn, 22, 2); 6857 rm = extract32(insn, 16, 5); 6858 op = extract32(insn, 14, 2); 6859 rn = extract32(insn, 5, 5); 6860 opc = extract32(insn, 3, 2); 6861 op2r = extract32(insn, 0, 3); 6862 6863 if (mos || op || op2r) { 6864 unallocated_encoding(s); 6865 return; 6866 } 6867 6868 switch (type) { 6869 case 0: 6870 size = MO_32; 6871 break; 6872 case 1: 6873 size = MO_64; 6874 break; 6875 case 3: 6876 size = MO_16; 6877 if (dc_isar_feature(aa64_fp16, s)) { 6878 break; 6879 } 6880 /* fallthru */ 6881 default: 6882 unallocated_encoding(s); 6883 return; 6884 } 6885 6886 if (!fp_access_check(s)) { 6887 return; 6888 } 6889 6890 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6891 } 6892 6893 /* Floating point conditional compare 6894 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6895 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6896 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6897 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6898 */ 6899 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6900 { 6901 unsigned int mos, type, rm, cond, rn, op, nzcv; 6902 TCGLabel *label_continue = NULL; 6903 int size; 6904 6905 mos = extract32(insn, 29, 3); 6906 type = extract32(insn, 22, 2); 6907 rm = extract32(insn, 16, 5); 6908 cond = extract32(insn, 12, 4); 6909 rn = extract32(insn, 5, 5); 6910 op = extract32(insn, 4, 1); 6911 nzcv = extract32(insn, 0, 4); 6912 6913 if (mos) { 6914 unallocated_encoding(s); 6915 return; 6916 } 6917 6918 switch (type) { 6919 case 0: 6920 size = MO_32; 6921 break; 6922 case 1: 6923 size = MO_64; 6924 break; 6925 case 3: 6926 size = MO_16; 6927 if (dc_isar_feature(aa64_fp16, s)) { 6928 break; 6929 } 6930 /* fallthru */ 6931 default: 6932 unallocated_encoding(s); 6933 return; 6934 } 6935 6936 if (!fp_access_check(s)) { 6937 return; 6938 } 6939 6940 if (cond < 0x0e) { /* not always */ 6941 TCGLabel *label_match = gen_new_label(); 6942 label_continue = gen_new_label(); 6943 arm_gen_test_cc(cond, label_match); 6944 /* nomatch: */ 6945 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6946 tcg_gen_br(label_continue); 6947 gen_set_label(label_match); 6948 } 6949 6950 handle_fp_compare(s, size, rn, rm, false, op); 6951 6952 if (cond < 0x0e) { 6953 gen_set_label(label_continue); 6954 } 6955 } 6956 6957 /* Floating point conditional select 6958 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6959 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6960 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6961 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6962 */ 6963 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6964 { 6965 unsigned int mos, type, rm, cond, rn, rd; 6966 TCGv_i64 t_true, t_false; 6967 DisasCompare64 c; 6968 MemOp sz; 6969 6970 mos = extract32(insn, 29, 3); 6971 type = extract32(insn, 22, 2); 6972 rm = extract32(insn, 16, 5); 6973 cond = extract32(insn, 12, 4); 6974 rn = extract32(insn, 5, 5); 6975 rd = extract32(insn, 0, 5); 6976 6977 if (mos) { 6978 unallocated_encoding(s); 6979 return; 6980 } 6981 6982 switch (type) { 6983 case 0: 6984 sz = MO_32; 6985 break; 6986 case 1: 6987 sz = MO_64; 6988 break; 6989 case 3: 6990 sz = MO_16; 6991 if (dc_isar_feature(aa64_fp16, s)) { 6992 break; 6993 } 6994 /* fallthru */ 6995 default: 6996 unallocated_encoding(s); 6997 return; 6998 } 6999 7000 if (!fp_access_check(s)) { 7001 return; 7002 } 7003 7004 /* Zero extend sreg & hreg inputs to 64 bits now. */ 7005 t_true = tcg_temp_new_i64(); 7006 t_false = tcg_temp_new_i64(); 7007 read_vec_element(s, t_true, rn, 0, sz); 7008 read_vec_element(s, t_false, rm, 0, sz); 7009 7010 a64_test_cc(&c, cond); 7011 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 7012 t_true, t_false); 7013 7014 /* Note that sregs & hregs write back zeros to the high bits, 7015 and we've already done the zero-extension. */ 7016 write_fp_dreg(s, rd, t_true); 7017 } 7018 7019 /* Floating-point data-processing (1 source) - half precision */ 7020 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 7021 { 7022 TCGv_ptr fpst = NULL; 7023 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 7024 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7025 7026 switch (opcode) { 7027 case 0x0: /* FMOV */ 7028 tcg_gen_mov_i32(tcg_res, tcg_op); 7029 break; 7030 case 0x1: /* FABS */ 7031 gen_vfp_absh(tcg_res, tcg_op); 7032 break; 7033 case 0x2: /* FNEG */ 7034 gen_vfp_negh(tcg_res, tcg_op); 7035 break; 7036 case 0x3: /* FSQRT */ 7037 fpst = fpstatus_ptr(FPST_FPCR_F16); 7038 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 7039 break; 7040 case 0x8: /* FRINTN */ 7041 case 0x9: /* FRINTP */ 7042 case 0xa: /* FRINTM */ 7043 case 0xb: /* FRINTZ */ 7044 case 0xc: /* FRINTA */ 7045 { 7046 TCGv_i32 tcg_rmode; 7047 7048 fpst = fpstatus_ptr(FPST_FPCR_F16); 7049 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 7050 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7051 gen_restore_rmode(tcg_rmode, fpst); 7052 break; 7053 } 7054 case 0xe: /* FRINTX */ 7055 fpst = fpstatus_ptr(FPST_FPCR_F16); 7056 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7057 break; 7058 case 0xf: /* FRINTI */ 7059 fpst = fpstatus_ptr(FPST_FPCR_F16); 7060 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7061 break; 7062 default: 7063 g_assert_not_reached(); 7064 } 7065 7066 write_fp_sreg(s, rd, tcg_res); 7067 } 7068 7069 /* Floating-point data-processing (1 source) - single precision */ 7070 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7071 { 7072 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7073 TCGv_i32 tcg_op, tcg_res; 7074 TCGv_ptr fpst; 7075 int rmode = -1; 7076 7077 tcg_op = read_fp_sreg(s, rn); 7078 tcg_res = tcg_temp_new_i32(); 7079 7080 switch (opcode) { 7081 case 0x0: /* FMOV */ 7082 tcg_gen_mov_i32(tcg_res, tcg_op); 7083 goto done; 7084 case 0x1: /* FABS */ 7085 gen_vfp_abss(tcg_res, tcg_op); 7086 goto done; 7087 case 0x2: /* FNEG */ 7088 gen_vfp_negs(tcg_res, tcg_op); 7089 goto done; 7090 case 0x3: /* FSQRT */ 7091 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7092 goto done; 7093 case 0x6: /* BFCVT */ 7094 gen_fpst = gen_helper_bfcvt; 7095 break; 7096 case 0x8: /* FRINTN */ 7097 case 0x9: /* FRINTP */ 7098 case 0xa: /* FRINTM */ 7099 case 0xb: /* FRINTZ */ 7100 case 0xc: /* FRINTA */ 7101 rmode = opcode & 7; 7102 gen_fpst = gen_helper_rints; 7103 break; 7104 case 0xe: /* FRINTX */ 7105 gen_fpst = gen_helper_rints_exact; 7106 break; 7107 case 0xf: /* FRINTI */ 7108 gen_fpst = gen_helper_rints; 7109 break; 7110 case 0x10: /* FRINT32Z */ 7111 rmode = FPROUNDING_ZERO; 7112 gen_fpst = gen_helper_frint32_s; 7113 break; 7114 case 0x11: /* FRINT32X */ 7115 gen_fpst = gen_helper_frint32_s; 7116 break; 7117 case 0x12: /* FRINT64Z */ 7118 rmode = FPROUNDING_ZERO; 7119 gen_fpst = gen_helper_frint64_s; 7120 break; 7121 case 0x13: /* FRINT64X */ 7122 gen_fpst = gen_helper_frint64_s; 7123 break; 7124 default: 7125 g_assert_not_reached(); 7126 } 7127 7128 fpst = fpstatus_ptr(FPST_FPCR); 7129 if (rmode >= 0) { 7130 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7131 gen_fpst(tcg_res, tcg_op, fpst); 7132 gen_restore_rmode(tcg_rmode, fpst); 7133 } else { 7134 gen_fpst(tcg_res, tcg_op, fpst); 7135 } 7136 7137 done: 7138 write_fp_sreg(s, rd, tcg_res); 7139 } 7140 7141 /* Floating-point data-processing (1 source) - double precision */ 7142 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7143 { 7144 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7145 TCGv_i64 tcg_op, tcg_res; 7146 TCGv_ptr fpst; 7147 int rmode = -1; 7148 7149 switch (opcode) { 7150 case 0x0: /* FMOV */ 7151 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7152 return; 7153 } 7154 7155 tcg_op = read_fp_dreg(s, rn); 7156 tcg_res = tcg_temp_new_i64(); 7157 7158 switch (opcode) { 7159 case 0x1: /* FABS */ 7160 gen_vfp_absd(tcg_res, tcg_op); 7161 goto done; 7162 case 0x2: /* FNEG */ 7163 gen_vfp_negd(tcg_res, tcg_op); 7164 goto done; 7165 case 0x3: /* FSQRT */ 7166 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7167 goto done; 7168 case 0x8: /* FRINTN */ 7169 case 0x9: /* FRINTP */ 7170 case 0xa: /* FRINTM */ 7171 case 0xb: /* FRINTZ */ 7172 case 0xc: /* FRINTA */ 7173 rmode = opcode & 7; 7174 gen_fpst = gen_helper_rintd; 7175 break; 7176 case 0xe: /* FRINTX */ 7177 gen_fpst = gen_helper_rintd_exact; 7178 break; 7179 case 0xf: /* FRINTI */ 7180 gen_fpst = gen_helper_rintd; 7181 break; 7182 case 0x10: /* FRINT32Z */ 7183 rmode = FPROUNDING_ZERO; 7184 gen_fpst = gen_helper_frint32_d; 7185 break; 7186 case 0x11: /* FRINT32X */ 7187 gen_fpst = gen_helper_frint32_d; 7188 break; 7189 case 0x12: /* FRINT64Z */ 7190 rmode = FPROUNDING_ZERO; 7191 gen_fpst = gen_helper_frint64_d; 7192 break; 7193 case 0x13: /* FRINT64X */ 7194 gen_fpst = gen_helper_frint64_d; 7195 break; 7196 default: 7197 g_assert_not_reached(); 7198 } 7199 7200 fpst = fpstatus_ptr(FPST_FPCR); 7201 if (rmode >= 0) { 7202 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7203 gen_fpst(tcg_res, tcg_op, fpst); 7204 gen_restore_rmode(tcg_rmode, fpst); 7205 } else { 7206 gen_fpst(tcg_res, tcg_op, fpst); 7207 } 7208 7209 done: 7210 write_fp_dreg(s, rd, tcg_res); 7211 } 7212 7213 static void handle_fp_fcvt(DisasContext *s, int opcode, 7214 int rd, int rn, int dtype, int ntype) 7215 { 7216 switch (ntype) { 7217 case 0x0: 7218 { 7219 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7220 if (dtype == 1) { 7221 /* Single to double */ 7222 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7223 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7224 write_fp_dreg(s, rd, tcg_rd); 7225 } else { 7226 /* Single to half */ 7227 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7228 TCGv_i32 ahp = get_ahp_flag(); 7229 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7230 7231 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7232 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7233 write_fp_sreg(s, rd, tcg_rd); 7234 } 7235 break; 7236 } 7237 case 0x1: 7238 { 7239 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7240 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7241 if (dtype == 0) { 7242 /* Double to single */ 7243 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7244 } else { 7245 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7246 TCGv_i32 ahp = get_ahp_flag(); 7247 /* Double to half */ 7248 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7249 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7250 } 7251 write_fp_sreg(s, rd, tcg_rd); 7252 break; 7253 } 7254 case 0x3: 7255 { 7256 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7257 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7258 TCGv_i32 tcg_ahp = get_ahp_flag(); 7259 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7260 if (dtype == 0) { 7261 /* Half to single */ 7262 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7263 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7264 write_fp_sreg(s, rd, tcg_rd); 7265 } else { 7266 /* Half to double */ 7267 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7268 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7269 write_fp_dreg(s, rd, tcg_rd); 7270 } 7271 break; 7272 } 7273 default: 7274 g_assert_not_reached(); 7275 } 7276 } 7277 7278 /* Floating point data-processing (1 source) 7279 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7280 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7281 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7282 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7283 */ 7284 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7285 { 7286 int mos = extract32(insn, 29, 3); 7287 int type = extract32(insn, 22, 2); 7288 int opcode = extract32(insn, 15, 6); 7289 int rn = extract32(insn, 5, 5); 7290 int rd = extract32(insn, 0, 5); 7291 7292 if (mos) { 7293 goto do_unallocated; 7294 } 7295 7296 switch (opcode) { 7297 case 0x4: case 0x5: case 0x7: 7298 { 7299 /* FCVT between half, single and double precision */ 7300 int dtype = extract32(opcode, 0, 2); 7301 if (type == 2 || dtype == type) { 7302 goto do_unallocated; 7303 } 7304 if (!fp_access_check(s)) { 7305 return; 7306 } 7307 7308 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7309 break; 7310 } 7311 7312 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7313 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7314 goto do_unallocated; 7315 } 7316 /* fall through */ 7317 case 0x0 ... 0x3: 7318 case 0x8 ... 0xc: 7319 case 0xe ... 0xf: 7320 /* 32-to-32 and 64-to-64 ops */ 7321 switch (type) { 7322 case 0: 7323 if (!fp_access_check(s)) { 7324 return; 7325 } 7326 handle_fp_1src_single(s, opcode, rd, rn); 7327 break; 7328 case 1: 7329 if (!fp_access_check(s)) { 7330 return; 7331 } 7332 handle_fp_1src_double(s, opcode, rd, rn); 7333 break; 7334 case 3: 7335 if (!dc_isar_feature(aa64_fp16, s)) { 7336 goto do_unallocated; 7337 } 7338 7339 if (!fp_access_check(s)) { 7340 return; 7341 } 7342 handle_fp_1src_half(s, opcode, rd, rn); 7343 break; 7344 default: 7345 goto do_unallocated; 7346 } 7347 break; 7348 7349 case 0x6: 7350 switch (type) { 7351 case 1: /* BFCVT */ 7352 if (!dc_isar_feature(aa64_bf16, s)) { 7353 goto do_unallocated; 7354 } 7355 if (!fp_access_check(s)) { 7356 return; 7357 } 7358 handle_fp_1src_single(s, opcode, rd, rn); 7359 break; 7360 default: 7361 goto do_unallocated; 7362 } 7363 break; 7364 7365 default: 7366 do_unallocated: 7367 unallocated_encoding(s); 7368 break; 7369 } 7370 } 7371 7372 /* Floating-point data-processing (3 source) - single precision */ 7373 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7374 int rd, int rn, int rm, int ra) 7375 { 7376 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7377 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7378 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7379 7380 tcg_op1 = read_fp_sreg(s, rn); 7381 tcg_op2 = read_fp_sreg(s, rm); 7382 tcg_op3 = read_fp_sreg(s, ra); 7383 7384 /* These are fused multiply-add, and must be done as one 7385 * floating point operation with no rounding between the 7386 * multiplication and addition steps. 7387 * NB that doing the negations here as separate steps is 7388 * correct : an input NaN should come out with its sign bit 7389 * flipped if it is a negated-input. 7390 */ 7391 if (o1 == true) { 7392 gen_vfp_negs(tcg_op3, tcg_op3); 7393 } 7394 7395 if (o0 != o1) { 7396 gen_vfp_negs(tcg_op1, tcg_op1); 7397 } 7398 7399 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7400 7401 write_fp_sreg(s, rd, tcg_res); 7402 } 7403 7404 /* Floating-point data-processing (3 source) - double precision */ 7405 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7406 int rd, int rn, int rm, int ra) 7407 { 7408 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7409 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7410 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7411 7412 tcg_op1 = read_fp_dreg(s, rn); 7413 tcg_op2 = read_fp_dreg(s, rm); 7414 tcg_op3 = read_fp_dreg(s, ra); 7415 7416 /* These are fused multiply-add, and must be done as one 7417 * floating point operation with no rounding between the 7418 * multiplication and addition steps. 7419 * NB that doing the negations here as separate steps is 7420 * correct : an input NaN should come out with its sign bit 7421 * flipped if it is a negated-input. 7422 */ 7423 if (o1 == true) { 7424 gen_vfp_negd(tcg_op3, tcg_op3); 7425 } 7426 7427 if (o0 != o1) { 7428 gen_vfp_negd(tcg_op1, tcg_op1); 7429 } 7430 7431 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7432 7433 write_fp_dreg(s, rd, tcg_res); 7434 } 7435 7436 /* Floating-point data-processing (3 source) - half precision */ 7437 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7438 int rd, int rn, int rm, int ra) 7439 { 7440 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7441 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7442 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7443 7444 tcg_op1 = read_fp_hreg(s, rn); 7445 tcg_op2 = read_fp_hreg(s, rm); 7446 tcg_op3 = read_fp_hreg(s, ra); 7447 7448 /* These are fused multiply-add, and must be done as one 7449 * floating point operation with no rounding between the 7450 * multiplication and addition steps. 7451 * NB that doing the negations here as separate steps is 7452 * correct : an input NaN should come out with its sign bit 7453 * flipped if it is a negated-input. 7454 */ 7455 if (o1 == true) { 7456 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7457 } 7458 7459 if (o0 != o1) { 7460 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7461 } 7462 7463 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7464 7465 write_fp_sreg(s, rd, tcg_res); 7466 } 7467 7468 /* Floating point data-processing (3 source) 7469 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7470 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7471 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7472 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7473 */ 7474 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7475 { 7476 int mos = extract32(insn, 29, 3); 7477 int type = extract32(insn, 22, 2); 7478 int rd = extract32(insn, 0, 5); 7479 int rn = extract32(insn, 5, 5); 7480 int ra = extract32(insn, 10, 5); 7481 int rm = extract32(insn, 16, 5); 7482 bool o0 = extract32(insn, 15, 1); 7483 bool o1 = extract32(insn, 21, 1); 7484 7485 if (mos) { 7486 unallocated_encoding(s); 7487 return; 7488 } 7489 7490 switch (type) { 7491 case 0: 7492 if (!fp_access_check(s)) { 7493 return; 7494 } 7495 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7496 break; 7497 case 1: 7498 if (!fp_access_check(s)) { 7499 return; 7500 } 7501 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7502 break; 7503 case 3: 7504 if (!dc_isar_feature(aa64_fp16, s)) { 7505 unallocated_encoding(s); 7506 return; 7507 } 7508 if (!fp_access_check(s)) { 7509 return; 7510 } 7511 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7512 break; 7513 default: 7514 unallocated_encoding(s); 7515 } 7516 } 7517 7518 /* Floating point immediate 7519 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7520 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7521 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7522 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7523 */ 7524 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7525 { 7526 int rd = extract32(insn, 0, 5); 7527 int imm5 = extract32(insn, 5, 5); 7528 int imm8 = extract32(insn, 13, 8); 7529 int type = extract32(insn, 22, 2); 7530 int mos = extract32(insn, 29, 3); 7531 uint64_t imm; 7532 MemOp sz; 7533 7534 if (mos || imm5) { 7535 unallocated_encoding(s); 7536 return; 7537 } 7538 7539 switch (type) { 7540 case 0: 7541 sz = MO_32; 7542 break; 7543 case 1: 7544 sz = MO_64; 7545 break; 7546 case 3: 7547 sz = MO_16; 7548 if (dc_isar_feature(aa64_fp16, s)) { 7549 break; 7550 } 7551 /* fallthru */ 7552 default: 7553 unallocated_encoding(s); 7554 return; 7555 } 7556 7557 if (!fp_access_check(s)) { 7558 return; 7559 } 7560 7561 imm = vfp_expand_imm(sz, imm8); 7562 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7563 } 7564 7565 /* Handle floating point <=> fixed point conversions. Note that we can 7566 * also deal with fp <=> integer conversions as a special case (scale == 64) 7567 * OPTME: consider handling that special case specially or at least skipping 7568 * the call to scalbn in the helpers for zero shifts. 7569 */ 7570 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7571 bool itof, int rmode, int scale, int sf, int type) 7572 { 7573 bool is_signed = !(opcode & 1); 7574 TCGv_ptr tcg_fpstatus; 7575 TCGv_i32 tcg_shift, tcg_single; 7576 TCGv_i64 tcg_double; 7577 7578 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7579 7580 tcg_shift = tcg_constant_i32(64 - scale); 7581 7582 if (itof) { 7583 TCGv_i64 tcg_int = cpu_reg(s, rn); 7584 if (!sf) { 7585 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7586 7587 if (is_signed) { 7588 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7589 } else { 7590 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7591 } 7592 7593 tcg_int = tcg_extend; 7594 } 7595 7596 switch (type) { 7597 case 1: /* float64 */ 7598 tcg_double = tcg_temp_new_i64(); 7599 if (is_signed) { 7600 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7601 tcg_shift, tcg_fpstatus); 7602 } else { 7603 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7604 tcg_shift, tcg_fpstatus); 7605 } 7606 write_fp_dreg(s, rd, tcg_double); 7607 break; 7608 7609 case 0: /* float32 */ 7610 tcg_single = tcg_temp_new_i32(); 7611 if (is_signed) { 7612 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7613 tcg_shift, tcg_fpstatus); 7614 } else { 7615 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7616 tcg_shift, tcg_fpstatus); 7617 } 7618 write_fp_sreg(s, rd, tcg_single); 7619 break; 7620 7621 case 3: /* float16 */ 7622 tcg_single = tcg_temp_new_i32(); 7623 if (is_signed) { 7624 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7625 tcg_shift, tcg_fpstatus); 7626 } else { 7627 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7628 tcg_shift, tcg_fpstatus); 7629 } 7630 write_fp_sreg(s, rd, tcg_single); 7631 break; 7632 7633 default: 7634 g_assert_not_reached(); 7635 } 7636 } else { 7637 TCGv_i64 tcg_int = cpu_reg(s, rd); 7638 TCGv_i32 tcg_rmode; 7639 7640 if (extract32(opcode, 2, 1)) { 7641 /* There are too many rounding modes to all fit into rmode, 7642 * so FCVTA[US] is a special case. 7643 */ 7644 rmode = FPROUNDING_TIEAWAY; 7645 } 7646 7647 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7648 7649 switch (type) { 7650 case 1: /* float64 */ 7651 tcg_double = read_fp_dreg(s, rn); 7652 if (is_signed) { 7653 if (!sf) { 7654 gen_helper_vfp_tosld(tcg_int, tcg_double, 7655 tcg_shift, tcg_fpstatus); 7656 } else { 7657 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7658 tcg_shift, tcg_fpstatus); 7659 } 7660 } else { 7661 if (!sf) { 7662 gen_helper_vfp_tould(tcg_int, tcg_double, 7663 tcg_shift, tcg_fpstatus); 7664 } else { 7665 gen_helper_vfp_touqd(tcg_int, tcg_double, 7666 tcg_shift, tcg_fpstatus); 7667 } 7668 } 7669 if (!sf) { 7670 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7671 } 7672 break; 7673 7674 case 0: /* float32 */ 7675 tcg_single = read_fp_sreg(s, rn); 7676 if (sf) { 7677 if (is_signed) { 7678 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7679 tcg_shift, tcg_fpstatus); 7680 } else { 7681 gen_helper_vfp_touqs(tcg_int, tcg_single, 7682 tcg_shift, tcg_fpstatus); 7683 } 7684 } else { 7685 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7686 if (is_signed) { 7687 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7688 tcg_shift, tcg_fpstatus); 7689 } else { 7690 gen_helper_vfp_touls(tcg_dest, tcg_single, 7691 tcg_shift, tcg_fpstatus); 7692 } 7693 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7694 } 7695 break; 7696 7697 case 3: /* float16 */ 7698 tcg_single = read_fp_sreg(s, rn); 7699 if (sf) { 7700 if (is_signed) { 7701 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7702 tcg_shift, tcg_fpstatus); 7703 } else { 7704 gen_helper_vfp_touqh(tcg_int, tcg_single, 7705 tcg_shift, tcg_fpstatus); 7706 } 7707 } else { 7708 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7709 if (is_signed) { 7710 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7711 tcg_shift, tcg_fpstatus); 7712 } else { 7713 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7714 tcg_shift, tcg_fpstatus); 7715 } 7716 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7717 } 7718 break; 7719 7720 default: 7721 g_assert_not_reached(); 7722 } 7723 7724 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7725 } 7726 } 7727 7728 /* Floating point <-> fixed point conversions 7729 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7730 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7731 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7732 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7733 */ 7734 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7735 { 7736 int rd = extract32(insn, 0, 5); 7737 int rn = extract32(insn, 5, 5); 7738 int scale = extract32(insn, 10, 6); 7739 int opcode = extract32(insn, 16, 3); 7740 int rmode = extract32(insn, 19, 2); 7741 int type = extract32(insn, 22, 2); 7742 bool sbit = extract32(insn, 29, 1); 7743 bool sf = extract32(insn, 31, 1); 7744 bool itof; 7745 7746 if (sbit || (!sf && scale < 32)) { 7747 unallocated_encoding(s); 7748 return; 7749 } 7750 7751 switch (type) { 7752 case 0: /* float32 */ 7753 case 1: /* float64 */ 7754 break; 7755 case 3: /* float16 */ 7756 if (dc_isar_feature(aa64_fp16, s)) { 7757 break; 7758 } 7759 /* fallthru */ 7760 default: 7761 unallocated_encoding(s); 7762 return; 7763 } 7764 7765 switch ((rmode << 3) | opcode) { 7766 case 0x2: /* SCVTF */ 7767 case 0x3: /* UCVTF */ 7768 itof = true; 7769 break; 7770 case 0x18: /* FCVTZS */ 7771 case 0x19: /* FCVTZU */ 7772 itof = false; 7773 break; 7774 default: 7775 unallocated_encoding(s); 7776 return; 7777 } 7778 7779 if (!fp_access_check(s)) { 7780 return; 7781 } 7782 7783 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7784 } 7785 7786 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7787 { 7788 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7789 * without conversion. 7790 */ 7791 7792 if (itof) { 7793 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7794 TCGv_i64 tmp; 7795 7796 switch (type) { 7797 case 0: 7798 /* 32 bit */ 7799 tmp = tcg_temp_new_i64(); 7800 tcg_gen_ext32u_i64(tmp, tcg_rn); 7801 write_fp_dreg(s, rd, tmp); 7802 break; 7803 case 1: 7804 /* 64 bit */ 7805 write_fp_dreg(s, rd, tcg_rn); 7806 break; 7807 case 2: 7808 /* 64 bit to top half. */ 7809 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7810 clear_vec_high(s, true, rd); 7811 break; 7812 case 3: 7813 /* 16 bit */ 7814 tmp = tcg_temp_new_i64(); 7815 tcg_gen_ext16u_i64(tmp, tcg_rn); 7816 write_fp_dreg(s, rd, tmp); 7817 break; 7818 default: 7819 g_assert_not_reached(); 7820 } 7821 } else { 7822 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7823 7824 switch (type) { 7825 case 0: 7826 /* 32 bit */ 7827 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7828 break; 7829 case 1: 7830 /* 64 bit */ 7831 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7832 break; 7833 case 2: 7834 /* 64 bits from top half */ 7835 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7836 break; 7837 case 3: 7838 /* 16 bit */ 7839 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7840 break; 7841 default: 7842 g_assert_not_reached(); 7843 } 7844 } 7845 } 7846 7847 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7848 { 7849 TCGv_i64 t = read_fp_dreg(s, rn); 7850 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7851 7852 gen_helper_fjcvtzs(t, t, fpstatus); 7853 7854 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7855 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7856 tcg_gen_movi_i32(cpu_CF, 0); 7857 tcg_gen_movi_i32(cpu_NF, 0); 7858 tcg_gen_movi_i32(cpu_VF, 0); 7859 } 7860 7861 /* Floating point <-> integer conversions 7862 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7863 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7864 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7865 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7866 */ 7867 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7868 { 7869 int rd = extract32(insn, 0, 5); 7870 int rn = extract32(insn, 5, 5); 7871 int opcode = extract32(insn, 16, 3); 7872 int rmode = extract32(insn, 19, 2); 7873 int type = extract32(insn, 22, 2); 7874 bool sbit = extract32(insn, 29, 1); 7875 bool sf = extract32(insn, 31, 1); 7876 bool itof = false; 7877 7878 if (sbit) { 7879 goto do_unallocated; 7880 } 7881 7882 switch (opcode) { 7883 case 2: /* SCVTF */ 7884 case 3: /* UCVTF */ 7885 itof = true; 7886 /* fallthru */ 7887 case 4: /* FCVTAS */ 7888 case 5: /* FCVTAU */ 7889 if (rmode != 0) { 7890 goto do_unallocated; 7891 } 7892 /* fallthru */ 7893 case 0: /* FCVT[NPMZ]S */ 7894 case 1: /* FCVT[NPMZ]U */ 7895 switch (type) { 7896 case 0: /* float32 */ 7897 case 1: /* float64 */ 7898 break; 7899 case 3: /* float16 */ 7900 if (!dc_isar_feature(aa64_fp16, s)) { 7901 goto do_unallocated; 7902 } 7903 break; 7904 default: 7905 goto do_unallocated; 7906 } 7907 if (!fp_access_check(s)) { 7908 return; 7909 } 7910 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7911 break; 7912 7913 default: 7914 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7915 case 0b01100110: /* FMOV half <-> 32-bit int */ 7916 case 0b01100111: 7917 case 0b11100110: /* FMOV half <-> 64-bit int */ 7918 case 0b11100111: 7919 if (!dc_isar_feature(aa64_fp16, s)) { 7920 goto do_unallocated; 7921 } 7922 /* fallthru */ 7923 case 0b00000110: /* FMOV 32-bit */ 7924 case 0b00000111: 7925 case 0b10100110: /* FMOV 64-bit */ 7926 case 0b10100111: 7927 case 0b11001110: /* FMOV top half of 128-bit */ 7928 case 0b11001111: 7929 if (!fp_access_check(s)) { 7930 return; 7931 } 7932 itof = opcode & 1; 7933 handle_fmov(s, rd, rn, type, itof); 7934 break; 7935 7936 case 0b00111110: /* FJCVTZS */ 7937 if (!dc_isar_feature(aa64_jscvt, s)) { 7938 goto do_unallocated; 7939 } else if (fp_access_check(s)) { 7940 handle_fjcvtzs(s, rd, rn); 7941 } 7942 break; 7943 7944 default: 7945 do_unallocated: 7946 unallocated_encoding(s); 7947 return; 7948 } 7949 break; 7950 } 7951 } 7952 7953 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7954 * 31 30 29 28 25 24 0 7955 * +---+---+---+---------+-----------------------------+ 7956 * | | 0 | | 1 1 1 1 | | 7957 * +---+---+---+---------+-----------------------------+ 7958 */ 7959 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7960 { 7961 if (extract32(insn, 24, 1)) { 7962 /* Floating point data-processing (3 source) */ 7963 disas_fp_3src(s, insn); 7964 } else if (extract32(insn, 21, 1) == 0) { 7965 /* Floating point to fixed point conversions */ 7966 disas_fp_fixed_conv(s, insn); 7967 } else { 7968 switch (extract32(insn, 10, 2)) { 7969 case 1: 7970 /* Floating point conditional compare */ 7971 disas_fp_ccomp(s, insn); 7972 break; 7973 case 2: 7974 /* Floating point data-processing (2 source) */ 7975 unallocated_encoding(s); /* in decodetree */ 7976 break; 7977 case 3: 7978 /* Floating point conditional select */ 7979 disas_fp_csel(s, insn); 7980 break; 7981 case 0: 7982 switch (ctz32(extract32(insn, 12, 4))) { 7983 case 0: /* [15:12] == xxx1 */ 7984 /* Floating point immediate */ 7985 disas_fp_imm(s, insn); 7986 break; 7987 case 1: /* [15:12] == xx10 */ 7988 /* Floating point compare */ 7989 disas_fp_compare(s, insn); 7990 break; 7991 case 2: /* [15:12] == x100 */ 7992 /* Floating point data-processing (1 source) */ 7993 disas_fp_1src(s, insn); 7994 break; 7995 case 3: /* [15:12] == 1000 */ 7996 unallocated_encoding(s); 7997 break; 7998 default: /* [15:12] == 0000 */ 7999 /* Floating point <-> integer conversions */ 8000 disas_fp_int_conv(s, insn); 8001 break; 8002 } 8003 break; 8004 } 8005 } 8006 } 8007 8008 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 8009 int pos) 8010 { 8011 /* Extract 64 bits from the middle of two concatenated 64 bit 8012 * vector register slices left:right. The extracted bits start 8013 * at 'pos' bits into the right (least significant) side. 8014 * We return the result in tcg_right, and guarantee not to 8015 * trash tcg_left. 8016 */ 8017 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8018 assert(pos > 0 && pos < 64); 8019 8020 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8021 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8022 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8023 } 8024 8025 /* EXT 8026 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8027 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8028 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8029 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8030 */ 8031 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8032 { 8033 int is_q = extract32(insn, 30, 1); 8034 int op2 = extract32(insn, 22, 2); 8035 int imm4 = extract32(insn, 11, 4); 8036 int rm = extract32(insn, 16, 5); 8037 int rn = extract32(insn, 5, 5); 8038 int rd = extract32(insn, 0, 5); 8039 int pos = imm4 << 3; 8040 TCGv_i64 tcg_resl, tcg_resh; 8041 8042 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8043 unallocated_encoding(s); 8044 return; 8045 } 8046 8047 if (!fp_access_check(s)) { 8048 return; 8049 } 8050 8051 tcg_resh = tcg_temp_new_i64(); 8052 tcg_resl = tcg_temp_new_i64(); 8053 8054 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8055 * either extracting 128 bits from a 128:128 concatenation, or 8056 * extracting 64 bits from a 64:64 concatenation. 8057 */ 8058 if (!is_q) { 8059 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8060 if (pos != 0) { 8061 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8062 do_ext64(s, tcg_resh, tcg_resl, pos); 8063 } 8064 } else { 8065 TCGv_i64 tcg_hh; 8066 typedef struct { 8067 int reg; 8068 int elt; 8069 } EltPosns; 8070 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8071 EltPosns *elt = eltposns; 8072 8073 if (pos >= 64) { 8074 elt++; 8075 pos -= 64; 8076 } 8077 8078 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8079 elt++; 8080 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8081 elt++; 8082 if (pos != 0) { 8083 do_ext64(s, tcg_resh, tcg_resl, pos); 8084 tcg_hh = tcg_temp_new_i64(); 8085 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8086 do_ext64(s, tcg_hh, tcg_resh, pos); 8087 } 8088 } 8089 8090 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8091 if (is_q) { 8092 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8093 } 8094 clear_vec_high(s, is_q, rd); 8095 } 8096 8097 /* TBL/TBX 8098 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8099 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8100 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8101 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8102 */ 8103 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8104 { 8105 int op2 = extract32(insn, 22, 2); 8106 int is_q = extract32(insn, 30, 1); 8107 int rm = extract32(insn, 16, 5); 8108 int rn = extract32(insn, 5, 5); 8109 int rd = extract32(insn, 0, 5); 8110 int is_tbx = extract32(insn, 12, 1); 8111 int len = (extract32(insn, 13, 2) + 1) * 16; 8112 8113 if (op2 != 0) { 8114 unallocated_encoding(s); 8115 return; 8116 } 8117 8118 if (!fp_access_check(s)) { 8119 return; 8120 } 8121 8122 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8123 vec_full_reg_offset(s, rm), tcg_env, 8124 is_q ? 16 : 8, vec_full_reg_size(s), 8125 (len << 6) | (is_tbx << 5) | rn, 8126 gen_helper_simd_tblx); 8127 } 8128 8129 /* ZIP/UZP/TRN 8130 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8131 * +---+---+-------------+------+---+------+---+------------------+------+ 8132 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8133 * +---+---+-------------+------+---+------+---+------------------+------+ 8134 */ 8135 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8136 { 8137 int rd = extract32(insn, 0, 5); 8138 int rn = extract32(insn, 5, 5); 8139 int rm = extract32(insn, 16, 5); 8140 int size = extract32(insn, 22, 2); 8141 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8142 * bit 2 indicates 1 vs 2 variant of the insn. 8143 */ 8144 int opcode = extract32(insn, 12, 2); 8145 bool part = extract32(insn, 14, 1); 8146 bool is_q = extract32(insn, 30, 1); 8147 int esize = 8 << size; 8148 int i; 8149 int datasize = is_q ? 128 : 64; 8150 int elements = datasize / esize; 8151 TCGv_i64 tcg_res[2], tcg_ele; 8152 8153 if (opcode == 0 || (size == 3 && !is_q)) { 8154 unallocated_encoding(s); 8155 return; 8156 } 8157 8158 if (!fp_access_check(s)) { 8159 return; 8160 } 8161 8162 tcg_res[0] = tcg_temp_new_i64(); 8163 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8164 tcg_ele = tcg_temp_new_i64(); 8165 8166 for (i = 0; i < elements; i++) { 8167 int o, w; 8168 8169 switch (opcode) { 8170 case 1: /* UZP1/2 */ 8171 { 8172 int midpoint = elements / 2; 8173 if (i < midpoint) { 8174 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8175 } else { 8176 read_vec_element(s, tcg_ele, rm, 8177 2 * (i - midpoint) + part, size); 8178 } 8179 break; 8180 } 8181 case 2: /* TRN1/2 */ 8182 if (i & 1) { 8183 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8184 } else { 8185 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8186 } 8187 break; 8188 case 3: /* ZIP1/2 */ 8189 { 8190 int base = part * elements / 2; 8191 if (i & 1) { 8192 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8193 } else { 8194 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8195 } 8196 break; 8197 } 8198 default: 8199 g_assert_not_reached(); 8200 } 8201 8202 w = (i * esize) / 64; 8203 o = (i * esize) % 64; 8204 if (o == 0) { 8205 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8206 } else { 8207 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8208 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8209 } 8210 } 8211 8212 for (i = 0; i <= is_q; ++i) { 8213 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8214 } 8215 clear_vec_high(s, is_q, rd); 8216 } 8217 8218 /* 8219 * do_reduction_op helper 8220 * 8221 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8222 * important for correct NaN propagation that we do these 8223 * operations in exactly the order specified by the pseudocode. 8224 * 8225 * This is a recursive function, TCG temps should be freed by the 8226 * calling function once it is done with the values. 8227 */ 8228 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8229 int esize, int size, int vmap, TCGv_ptr fpst) 8230 { 8231 if (esize == size) { 8232 int element; 8233 MemOp msize = esize == 16 ? MO_16 : MO_32; 8234 TCGv_i32 tcg_elem; 8235 8236 /* We should have one register left here */ 8237 assert(ctpop8(vmap) == 1); 8238 element = ctz32(vmap); 8239 assert(element < 8); 8240 8241 tcg_elem = tcg_temp_new_i32(); 8242 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8243 return tcg_elem; 8244 } else { 8245 int bits = size / 2; 8246 int shift = ctpop8(vmap) / 2; 8247 int vmap_lo = (vmap >> shift) & vmap; 8248 int vmap_hi = (vmap & ~vmap_lo); 8249 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8250 8251 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8252 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8253 tcg_res = tcg_temp_new_i32(); 8254 8255 switch (fpopcode) { 8256 case 0x0c: /* fmaxnmv half-precision */ 8257 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8258 break; 8259 case 0x0f: /* fmaxv half-precision */ 8260 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8261 break; 8262 case 0x1c: /* fminnmv half-precision */ 8263 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8264 break; 8265 case 0x1f: /* fminv half-precision */ 8266 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8267 break; 8268 case 0x2c: /* fmaxnmv */ 8269 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8270 break; 8271 case 0x2f: /* fmaxv */ 8272 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8273 break; 8274 case 0x3c: /* fminnmv */ 8275 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8276 break; 8277 case 0x3f: /* fminv */ 8278 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8279 break; 8280 default: 8281 g_assert_not_reached(); 8282 } 8283 return tcg_res; 8284 } 8285 } 8286 8287 /* AdvSIMD across lanes 8288 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8289 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8290 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8291 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8292 */ 8293 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8294 { 8295 int rd = extract32(insn, 0, 5); 8296 int rn = extract32(insn, 5, 5); 8297 int size = extract32(insn, 22, 2); 8298 int opcode = extract32(insn, 12, 5); 8299 bool is_q = extract32(insn, 30, 1); 8300 bool is_u = extract32(insn, 29, 1); 8301 bool is_fp = false; 8302 bool is_min = false; 8303 int esize; 8304 int elements; 8305 int i; 8306 TCGv_i64 tcg_res, tcg_elt; 8307 8308 switch (opcode) { 8309 case 0x1b: /* ADDV */ 8310 if (is_u) { 8311 unallocated_encoding(s); 8312 return; 8313 } 8314 /* fall through */ 8315 case 0x3: /* SADDLV, UADDLV */ 8316 case 0xa: /* SMAXV, UMAXV */ 8317 case 0x1a: /* SMINV, UMINV */ 8318 if (size == 3 || (size == 2 && !is_q)) { 8319 unallocated_encoding(s); 8320 return; 8321 } 8322 break; 8323 case 0xc: /* FMAXNMV, FMINNMV */ 8324 case 0xf: /* FMAXV, FMINV */ 8325 /* Bit 1 of size field encodes min vs max and the actual size 8326 * depends on the encoding of the U bit. If not set (and FP16 8327 * enabled) then we do half-precision float instead of single 8328 * precision. 8329 */ 8330 is_min = extract32(size, 1, 1); 8331 is_fp = true; 8332 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8333 size = 1; 8334 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8335 unallocated_encoding(s); 8336 return; 8337 } else { 8338 size = 2; 8339 } 8340 break; 8341 default: 8342 unallocated_encoding(s); 8343 return; 8344 } 8345 8346 if (!fp_access_check(s)) { 8347 return; 8348 } 8349 8350 esize = 8 << size; 8351 elements = (is_q ? 128 : 64) / esize; 8352 8353 tcg_res = tcg_temp_new_i64(); 8354 tcg_elt = tcg_temp_new_i64(); 8355 8356 /* These instructions operate across all lanes of a vector 8357 * to produce a single result. We can guarantee that a 64 8358 * bit intermediate is sufficient: 8359 * + for [US]ADDLV the maximum element size is 32 bits, and 8360 * the result type is 64 bits 8361 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8362 * same as the element size, which is 32 bits at most 8363 * For the integer operations we can choose to work at 64 8364 * or 32 bits and truncate at the end; for simplicity 8365 * we use 64 bits always. The floating point 8366 * ops do require 32 bit intermediates, though. 8367 */ 8368 if (!is_fp) { 8369 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8370 8371 for (i = 1; i < elements; i++) { 8372 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8373 8374 switch (opcode) { 8375 case 0x03: /* SADDLV / UADDLV */ 8376 case 0x1b: /* ADDV */ 8377 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8378 break; 8379 case 0x0a: /* SMAXV / UMAXV */ 8380 if (is_u) { 8381 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8382 } else { 8383 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8384 } 8385 break; 8386 case 0x1a: /* SMINV / UMINV */ 8387 if (is_u) { 8388 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8389 } else { 8390 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8391 } 8392 break; 8393 default: 8394 g_assert_not_reached(); 8395 } 8396 8397 } 8398 } else { 8399 /* Floating point vector reduction ops which work across 32 8400 * bit (single) or 16 bit (half-precision) intermediates. 8401 * Note that correct NaN propagation requires that we do these 8402 * operations in exactly the order specified by the pseudocode. 8403 */ 8404 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8405 int fpopcode = opcode | is_min << 4 | is_u << 5; 8406 int vmap = (1 << elements) - 1; 8407 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8408 (is_q ? 128 : 64), vmap, fpst); 8409 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8410 } 8411 8412 /* Now truncate the result to the width required for the final output */ 8413 if (opcode == 0x03) { 8414 /* SADDLV, UADDLV: result is 2*esize */ 8415 size++; 8416 } 8417 8418 switch (size) { 8419 case 0: 8420 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8421 break; 8422 case 1: 8423 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8424 break; 8425 case 2: 8426 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8427 break; 8428 case 3: 8429 break; 8430 default: 8431 g_assert_not_reached(); 8432 } 8433 8434 write_fp_dreg(s, rd, tcg_res); 8435 } 8436 8437 /* AdvSIMD modified immediate 8438 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8439 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8440 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8441 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8442 * 8443 * There are a number of operations that can be carried out here: 8444 * MOVI - move (shifted) imm into register 8445 * MVNI - move inverted (shifted) imm into register 8446 * ORR - bitwise OR of (shifted) imm with register 8447 * BIC - bitwise clear of (shifted) imm with register 8448 * With ARMv8.2 we also have: 8449 * FMOV half-precision 8450 */ 8451 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8452 { 8453 int rd = extract32(insn, 0, 5); 8454 int cmode = extract32(insn, 12, 4); 8455 int o2 = extract32(insn, 11, 1); 8456 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8457 bool is_neg = extract32(insn, 29, 1); 8458 bool is_q = extract32(insn, 30, 1); 8459 uint64_t imm = 0; 8460 8461 if (o2) { 8462 if (cmode != 0xf || is_neg) { 8463 unallocated_encoding(s); 8464 return; 8465 } 8466 /* FMOV (vector, immediate) - half-precision */ 8467 if (!dc_isar_feature(aa64_fp16, s)) { 8468 unallocated_encoding(s); 8469 return; 8470 } 8471 imm = vfp_expand_imm(MO_16, abcdefgh); 8472 /* now duplicate across the lanes */ 8473 imm = dup_const(MO_16, imm); 8474 } else { 8475 if (cmode == 0xf && is_neg && !is_q) { 8476 unallocated_encoding(s); 8477 return; 8478 } 8479 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8480 } 8481 8482 if (!fp_access_check(s)) { 8483 return; 8484 } 8485 8486 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8487 /* MOVI or MVNI, with MVNI negation handled above. */ 8488 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8489 vec_full_reg_size(s), imm); 8490 } else { 8491 /* ORR or BIC, with BIC negation to AND handled above. */ 8492 if (is_neg) { 8493 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8494 } else { 8495 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8496 } 8497 } 8498 } 8499 8500 /* 8501 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8502 * 8503 * This code is handles the common shifting code and is used by both 8504 * the vector and scalar code. 8505 */ 8506 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8507 TCGv_i64 tcg_rnd, bool accumulate, 8508 bool is_u, int size, int shift) 8509 { 8510 bool extended_result = false; 8511 bool round = tcg_rnd != NULL; 8512 int ext_lshift = 0; 8513 TCGv_i64 tcg_src_hi; 8514 8515 if (round && size == 3) { 8516 extended_result = true; 8517 ext_lshift = 64 - shift; 8518 tcg_src_hi = tcg_temp_new_i64(); 8519 } else if (shift == 64) { 8520 if (!accumulate && is_u) { 8521 /* result is zero */ 8522 tcg_gen_movi_i64(tcg_res, 0); 8523 return; 8524 } 8525 } 8526 8527 /* Deal with the rounding step */ 8528 if (round) { 8529 if (extended_result) { 8530 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8531 if (!is_u) { 8532 /* take care of sign extending tcg_res */ 8533 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8534 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8535 tcg_src, tcg_src_hi, 8536 tcg_rnd, tcg_zero); 8537 } else { 8538 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8539 tcg_src, tcg_zero, 8540 tcg_rnd, tcg_zero); 8541 } 8542 } else { 8543 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8544 } 8545 } 8546 8547 /* Now do the shift right */ 8548 if (round && extended_result) { 8549 /* extended case, >64 bit precision required */ 8550 if (ext_lshift == 0) { 8551 /* special case, only high bits matter */ 8552 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8553 } else { 8554 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8555 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8556 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8557 } 8558 } else { 8559 if (is_u) { 8560 if (shift == 64) { 8561 /* essentially shifting in 64 zeros */ 8562 tcg_gen_movi_i64(tcg_src, 0); 8563 } else { 8564 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8565 } 8566 } else { 8567 if (shift == 64) { 8568 /* effectively extending the sign-bit */ 8569 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8570 } else { 8571 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8572 } 8573 } 8574 } 8575 8576 if (accumulate) { 8577 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8578 } else { 8579 tcg_gen_mov_i64(tcg_res, tcg_src); 8580 } 8581 } 8582 8583 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8584 static void handle_scalar_simd_shri(DisasContext *s, 8585 bool is_u, int immh, int immb, 8586 int opcode, int rn, int rd) 8587 { 8588 const int size = 3; 8589 int immhb = immh << 3 | immb; 8590 int shift = 2 * (8 << size) - immhb; 8591 bool accumulate = false; 8592 bool round = false; 8593 bool insert = false; 8594 TCGv_i64 tcg_rn; 8595 TCGv_i64 tcg_rd; 8596 TCGv_i64 tcg_round; 8597 8598 if (!extract32(immh, 3, 1)) { 8599 unallocated_encoding(s); 8600 return; 8601 } 8602 8603 if (!fp_access_check(s)) { 8604 return; 8605 } 8606 8607 switch (opcode) { 8608 case 0x02: /* SSRA / USRA (accumulate) */ 8609 accumulate = true; 8610 break; 8611 case 0x04: /* SRSHR / URSHR (rounding) */ 8612 round = true; 8613 break; 8614 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8615 accumulate = round = true; 8616 break; 8617 case 0x08: /* SRI */ 8618 insert = true; 8619 break; 8620 } 8621 8622 if (round) { 8623 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8624 } else { 8625 tcg_round = NULL; 8626 } 8627 8628 tcg_rn = read_fp_dreg(s, rn); 8629 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8630 8631 if (insert) { 8632 /* shift count same as element size is valid but does nothing; 8633 * special case to avoid potential shift by 64. 8634 */ 8635 int esize = 8 << size; 8636 if (shift != esize) { 8637 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8638 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8639 } 8640 } else { 8641 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8642 accumulate, is_u, size, shift); 8643 } 8644 8645 write_fp_dreg(s, rd, tcg_rd); 8646 } 8647 8648 /* SHL/SLI - Scalar shift left */ 8649 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8650 int immh, int immb, int opcode, 8651 int rn, int rd) 8652 { 8653 int size = 32 - clz32(immh) - 1; 8654 int immhb = immh << 3 | immb; 8655 int shift = immhb - (8 << size); 8656 TCGv_i64 tcg_rn; 8657 TCGv_i64 tcg_rd; 8658 8659 if (!extract32(immh, 3, 1)) { 8660 unallocated_encoding(s); 8661 return; 8662 } 8663 8664 if (!fp_access_check(s)) { 8665 return; 8666 } 8667 8668 tcg_rn = read_fp_dreg(s, rn); 8669 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8670 8671 if (insert) { 8672 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8673 } else { 8674 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8675 } 8676 8677 write_fp_dreg(s, rd, tcg_rd); 8678 } 8679 8680 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8681 * (signed/unsigned) narrowing */ 8682 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8683 bool is_u_shift, bool is_u_narrow, 8684 int immh, int immb, int opcode, 8685 int rn, int rd) 8686 { 8687 int immhb = immh << 3 | immb; 8688 int size = 32 - clz32(immh) - 1; 8689 int esize = 8 << size; 8690 int shift = (2 * esize) - immhb; 8691 int elements = is_scalar ? 1 : (64 / esize); 8692 bool round = extract32(opcode, 0, 1); 8693 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8694 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8695 TCGv_i32 tcg_rd_narrowed; 8696 TCGv_i64 tcg_final; 8697 8698 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8699 { gen_helper_neon_narrow_sat_s8, 8700 gen_helper_neon_unarrow_sat8 }, 8701 { gen_helper_neon_narrow_sat_s16, 8702 gen_helper_neon_unarrow_sat16 }, 8703 { gen_helper_neon_narrow_sat_s32, 8704 gen_helper_neon_unarrow_sat32 }, 8705 { NULL, NULL }, 8706 }; 8707 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8708 gen_helper_neon_narrow_sat_u8, 8709 gen_helper_neon_narrow_sat_u16, 8710 gen_helper_neon_narrow_sat_u32, 8711 NULL 8712 }; 8713 NeonGenNarrowEnvFn *narrowfn; 8714 8715 int i; 8716 8717 assert(size < 4); 8718 8719 if (extract32(immh, 3, 1)) { 8720 unallocated_encoding(s); 8721 return; 8722 } 8723 8724 if (!fp_access_check(s)) { 8725 return; 8726 } 8727 8728 if (is_u_shift) { 8729 narrowfn = unsigned_narrow_fns[size]; 8730 } else { 8731 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8732 } 8733 8734 tcg_rn = tcg_temp_new_i64(); 8735 tcg_rd = tcg_temp_new_i64(); 8736 tcg_rd_narrowed = tcg_temp_new_i32(); 8737 tcg_final = tcg_temp_new_i64(); 8738 8739 if (round) { 8740 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8741 } else { 8742 tcg_round = NULL; 8743 } 8744 8745 for (i = 0; i < elements; i++) { 8746 read_vec_element(s, tcg_rn, rn, i, ldop); 8747 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8748 false, is_u_shift, size+1, shift); 8749 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8750 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8751 if (i == 0) { 8752 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8753 } else { 8754 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8755 } 8756 } 8757 8758 if (!is_q) { 8759 write_vec_element(s, tcg_final, rd, 0, MO_64); 8760 } else { 8761 write_vec_element(s, tcg_final, rd, 1, MO_64); 8762 } 8763 clear_vec_high(s, is_q, rd); 8764 } 8765 8766 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8767 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8768 bool src_unsigned, bool dst_unsigned, 8769 int immh, int immb, int rn, int rd) 8770 { 8771 int immhb = immh << 3 | immb; 8772 int size = 32 - clz32(immh) - 1; 8773 int shift = immhb - (8 << size); 8774 int pass; 8775 8776 assert(immh != 0); 8777 assert(!(scalar && is_q)); 8778 8779 if (!scalar) { 8780 if (!is_q && extract32(immh, 3, 1)) { 8781 unallocated_encoding(s); 8782 return; 8783 } 8784 8785 /* Since we use the variable-shift helpers we must 8786 * replicate the shift count into each element of 8787 * the tcg_shift value. 8788 */ 8789 switch (size) { 8790 case 0: 8791 shift |= shift << 8; 8792 /* fall through */ 8793 case 1: 8794 shift |= shift << 16; 8795 break; 8796 case 2: 8797 case 3: 8798 break; 8799 default: 8800 g_assert_not_reached(); 8801 } 8802 } 8803 8804 if (!fp_access_check(s)) { 8805 return; 8806 } 8807 8808 if (size == 3) { 8809 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8810 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8811 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8812 { NULL, gen_helper_neon_qshl_u64 }, 8813 }; 8814 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8815 int maxpass = is_q ? 2 : 1; 8816 8817 for (pass = 0; pass < maxpass; pass++) { 8818 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8819 8820 read_vec_element(s, tcg_op, rn, pass, MO_64); 8821 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8822 write_vec_element(s, tcg_op, rd, pass, MO_64); 8823 } 8824 clear_vec_high(s, is_q, rd); 8825 } else { 8826 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8827 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8828 { 8829 { gen_helper_neon_qshl_s8, 8830 gen_helper_neon_qshl_s16, 8831 gen_helper_neon_qshl_s32 }, 8832 { gen_helper_neon_qshlu_s8, 8833 gen_helper_neon_qshlu_s16, 8834 gen_helper_neon_qshlu_s32 } 8835 }, { 8836 { NULL, NULL, NULL }, 8837 { gen_helper_neon_qshl_u8, 8838 gen_helper_neon_qshl_u16, 8839 gen_helper_neon_qshl_u32 } 8840 } 8841 }; 8842 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8843 MemOp memop = scalar ? size : MO_32; 8844 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8845 8846 for (pass = 0; pass < maxpass; pass++) { 8847 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8848 8849 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8850 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8851 if (scalar) { 8852 switch (size) { 8853 case 0: 8854 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8855 break; 8856 case 1: 8857 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8858 break; 8859 case 2: 8860 break; 8861 default: 8862 g_assert_not_reached(); 8863 } 8864 write_fp_sreg(s, rd, tcg_op); 8865 } else { 8866 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8867 } 8868 } 8869 8870 if (!scalar) { 8871 clear_vec_high(s, is_q, rd); 8872 } 8873 } 8874 } 8875 8876 /* Common vector code for handling integer to FP conversion */ 8877 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8878 int elements, int is_signed, 8879 int fracbits, int size) 8880 { 8881 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8882 TCGv_i32 tcg_shift = NULL; 8883 8884 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8885 int pass; 8886 8887 if (fracbits || size == MO_64) { 8888 tcg_shift = tcg_constant_i32(fracbits); 8889 } 8890 8891 if (size == MO_64) { 8892 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8893 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8894 8895 for (pass = 0; pass < elements; pass++) { 8896 read_vec_element(s, tcg_int64, rn, pass, mop); 8897 8898 if (is_signed) { 8899 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8900 tcg_shift, tcg_fpst); 8901 } else { 8902 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8903 tcg_shift, tcg_fpst); 8904 } 8905 if (elements == 1) { 8906 write_fp_dreg(s, rd, tcg_double); 8907 } else { 8908 write_vec_element(s, tcg_double, rd, pass, MO_64); 8909 } 8910 } 8911 } else { 8912 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8913 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8914 8915 for (pass = 0; pass < elements; pass++) { 8916 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8917 8918 switch (size) { 8919 case MO_32: 8920 if (fracbits) { 8921 if (is_signed) { 8922 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8923 tcg_shift, tcg_fpst); 8924 } else { 8925 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8926 tcg_shift, tcg_fpst); 8927 } 8928 } else { 8929 if (is_signed) { 8930 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8931 } else { 8932 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8933 } 8934 } 8935 break; 8936 case MO_16: 8937 if (fracbits) { 8938 if (is_signed) { 8939 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8940 tcg_shift, tcg_fpst); 8941 } else { 8942 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8943 tcg_shift, tcg_fpst); 8944 } 8945 } else { 8946 if (is_signed) { 8947 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8948 } else { 8949 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8950 } 8951 } 8952 break; 8953 default: 8954 g_assert_not_reached(); 8955 } 8956 8957 if (elements == 1) { 8958 write_fp_sreg(s, rd, tcg_float); 8959 } else { 8960 write_vec_element_i32(s, tcg_float, rd, pass, size); 8961 } 8962 } 8963 } 8964 8965 clear_vec_high(s, elements << size == 16, rd); 8966 } 8967 8968 /* UCVTF/SCVTF - Integer to FP conversion */ 8969 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8970 bool is_q, bool is_u, 8971 int immh, int immb, int opcode, 8972 int rn, int rd) 8973 { 8974 int size, elements, fracbits; 8975 int immhb = immh << 3 | immb; 8976 8977 if (immh & 8) { 8978 size = MO_64; 8979 if (!is_scalar && !is_q) { 8980 unallocated_encoding(s); 8981 return; 8982 } 8983 } else if (immh & 4) { 8984 size = MO_32; 8985 } else if (immh & 2) { 8986 size = MO_16; 8987 if (!dc_isar_feature(aa64_fp16, s)) { 8988 unallocated_encoding(s); 8989 return; 8990 } 8991 } else { 8992 /* immh == 0 would be a failure of the decode logic */ 8993 g_assert(immh == 1); 8994 unallocated_encoding(s); 8995 return; 8996 } 8997 8998 if (is_scalar) { 8999 elements = 1; 9000 } else { 9001 elements = (8 << is_q) >> size; 9002 } 9003 fracbits = (16 << size) - immhb; 9004 9005 if (!fp_access_check(s)) { 9006 return; 9007 } 9008 9009 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9010 } 9011 9012 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9013 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9014 bool is_q, bool is_u, 9015 int immh, int immb, int rn, int rd) 9016 { 9017 int immhb = immh << 3 | immb; 9018 int pass, size, fracbits; 9019 TCGv_ptr tcg_fpstatus; 9020 TCGv_i32 tcg_rmode, tcg_shift; 9021 9022 if (immh & 0x8) { 9023 size = MO_64; 9024 if (!is_scalar && !is_q) { 9025 unallocated_encoding(s); 9026 return; 9027 } 9028 } else if (immh & 0x4) { 9029 size = MO_32; 9030 } else if (immh & 0x2) { 9031 size = MO_16; 9032 if (!dc_isar_feature(aa64_fp16, s)) { 9033 unallocated_encoding(s); 9034 return; 9035 } 9036 } else { 9037 /* Should have split out AdvSIMD modified immediate earlier. */ 9038 assert(immh == 1); 9039 unallocated_encoding(s); 9040 return; 9041 } 9042 9043 if (!fp_access_check(s)) { 9044 return; 9045 } 9046 9047 assert(!(is_scalar && is_q)); 9048 9049 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9050 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9051 fracbits = (16 << size) - immhb; 9052 tcg_shift = tcg_constant_i32(fracbits); 9053 9054 if (size == MO_64) { 9055 int maxpass = is_scalar ? 1 : 2; 9056 9057 for (pass = 0; pass < maxpass; pass++) { 9058 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9059 9060 read_vec_element(s, tcg_op, rn, pass, MO_64); 9061 if (is_u) { 9062 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9063 } else { 9064 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9065 } 9066 write_vec_element(s, tcg_op, rd, pass, MO_64); 9067 } 9068 clear_vec_high(s, is_q, rd); 9069 } else { 9070 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9071 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9072 9073 switch (size) { 9074 case MO_16: 9075 if (is_u) { 9076 fn = gen_helper_vfp_touhh; 9077 } else { 9078 fn = gen_helper_vfp_toshh; 9079 } 9080 break; 9081 case MO_32: 9082 if (is_u) { 9083 fn = gen_helper_vfp_touls; 9084 } else { 9085 fn = gen_helper_vfp_tosls; 9086 } 9087 break; 9088 default: 9089 g_assert_not_reached(); 9090 } 9091 9092 for (pass = 0; pass < maxpass; pass++) { 9093 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9094 9095 read_vec_element_i32(s, tcg_op, rn, pass, size); 9096 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9097 if (is_scalar) { 9098 if (size == MO_16 && !is_u) { 9099 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9100 } 9101 write_fp_sreg(s, rd, tcg_op); 9102 } else { 9103 write_vec_element_i32(s, tcg_op, rd, pass, size); 9104 } 9105 } 9106 if (!is_scalar) { 9107 clear_vec_high(s, is_q, rd); 9108 } 9109 } 9110 9111 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9112 } 9113 9114 /* AdvSIMD scalar shift by immediate 9115 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9116 * +-----+---+-------------+------+------+--------+---+------+------+ 9117 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9118 * +-----+---+-------------+------+------+--------+---+------+------+ 9119 * 9120 * This is the scalar version so it works on a fixed sized registers 9121 */ 9122 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9123 { 9124 int rd = extract32(insn, 0, 5); 9125 int rn = extract32(insn, 5, 5); 9126 int opcode = extract32(insn, 11, 5); 9127 int immb = extract32(insn, 16, 3); 9128 int immh = extract32(insn, 19, 4); 9129 bool is_u = extract32(insn, 29, 1); 9130 9131 if (immh == 0) { 9132 unallocated_encoding(s); 9133 return; 9134 } 9135 9136 switch (opcode) { 9137 case 0x08: /* SRI */ 9138 if (!is_u) { 9139 unallocated_encoding(s); 9140 return; 9141 } 9142 /* fall through */ 9143 case 0x00: /* SSHR / USHR */ 9144 case 0x02: /* SSRA / USRA */ 9145 case 0x04: /* SRSHR / URSHR */ 9146 case 0x06: /* SRSRA / URSRA */ 9147 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9148 break; 9149 case 0x0a: /* SHL / SLI */ 9150 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9151 break; 9152 case 0x1c: /* SCVTF, UCVTF */ 9153 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9154 opcode, rn, rd); 9155 break; 9156 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9157 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9158 if (!is_u) { 9159 unallocated_encoding(s); 9160 return; 9161 } 9162 handle_vec_simd_sqshrn(s, true, false, false, true, 9163 immh, immb, opcode, rn, rd); 9164 break; 9165 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9166 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9167 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9168 immh, immb, opcode, rn, rd); 9169 break; 9170 case 0xc: /* SQSHLU */ 9171 if (!is_u) { 9172 unallocated_encoding(s); 9173 return; 9174 } 9175 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9176 break; 9177 case 0xe: /* SQSHL, UQSHL */ 9178 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9179 break; 9180 case 0x1f: /* FCVTZS, FCVTZU */ 9181 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9182 break; 9183 default: 9184 unallocated_encoding(s); 9185 break; 9186 } 9187 } 9188 9189 /* AdvSIMD scalar three different 9190 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9191 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9192 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9193 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9194 */ 9195 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9196 { 9197 bool is_u = extract32(insn, 29, 1); 9198 int size = extract32(insn, 22, 2); 9199 int opcode = extract32(insn, 12, 4); 9200 int rm = extract32(insn, 16, 5); 9201 int rn = extract32(insn, 5, 5); 9202 int rd = extract32(insn, 0, 5); 9203 9204 if (is_u) { 9205 unallocated_encoding(s); 9206 return; 9207 } 9208 9209 switch (opcode) { 9210 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9211 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9212 case 0xd: /* SQDMULL, SQDMULL2 */ 9213 if (size == 0 || size == 3) { 9214 unallocated_encoding(s); 9215 return; 9216 } 9217 break; 9218 default: 9219 unallocated_encoding(s); 9220 return; 9221 } 9222 9223 if (!fp_access_check(s)) { 9224 return; 9225 } 9226 9227 if (size == 2) { 9228 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9229 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9230 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9231 9232 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9233 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9234 9235 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9236 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9237 9238 switch (opcode) { 9239 case 0xd: /* SQDMULL, SQDMULL2 */ 9240 break; 9241 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9242 tcg_gen_neg_i64(tcg_res, tcg_res); 9243 /* fall through */ 9244 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9245 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9246 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9247 tcg_res, tcg_op1); 9248 break; 9249 default: 9250 g_assert_not_reached(); 9251 } 9252 9253 write_fp_dreg(s, rd, tcg_res); 9254 } else { 9255 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9256 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9257 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9258 9259 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9260 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9261 9262 switch (opcode) { 9263 case 0xd: /* SQDMULL, SQDMULL2 */ 9264 break; 9265 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9266 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9267 /* fall through */ 9268 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9269 { 9270 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9271 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9272 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9273 tcg_res, tcg_op3); 9274 break; 9275 } 9276 default: 9277 g_assert_not_reached(); 9278 } 9279 9280 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9281 write_fp_dreg(s, rd, tcg_res); 9282 } 9283 } 9284 9285 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9286 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9287 { 9288 /* Handle 64x64->64 opcodes which are shared between the scalar 9289 * and vector 3-same groups. We cover every opcode where size == 3 9290 * is valid in either the three-reg-same (integer, not pairwise) 9291 * or scalar-three-reg-same groups. 9292 */ 9293 TCGCond cond; 9294 9295 switch (opcode) { 9296 case 0x1: /* SQADD */ 9297 if (u) { 9298 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9299 } else { 9300 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9301 } 9302 break; 9303 case 0x5: /* SQSUB */ 9304 if (u) { 9305 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9306 } else { 9307 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9308 } 9309 break; 9310 case 0x6: /* CMGT, CMHI */ 9311 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9312 do_cmop: 9313 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9314 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9315 break; 9316 case 0x7: /* CMGE, CMHS */ 9317 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9318 goto do_cmop; 9319 case 0x11: /* CMTST, CMEQ */ 9320 if (u) { 9321 cond = TCG_COND_EQ; 9322 goto do_cmop; 9323 } 9324 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9325 break; 9326 case 0x8: /* SSHL, USHL */ 9327 if (u) { 9328 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9329 } else { 9330 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9331 } 9332 break; 9333 case 0x9: /* SQSHL, UQSHL */ 9334 if (u) { 9335 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9336 } else { 9337 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9338 } 9339 break; 9340 case 0xa: /* SRSHL, URSHL */ 9341 if (u) { 9342 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9343 } else { 9344 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9345 } 9346 break; 9347 case 0xb: /* SQRSHL, UQRSHL */ 9348 if (u) { 9349 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9350 } else { 9351 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9352 } 9353 break; 9354 case 0x10: /* ADD, SUB */ 9355 if (u) { 9356 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9357 } else { 9358 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9359 } 9360 break; 9361 default: 9362 g_assert_not_reached(); 9363 } 9364 } 9365 9366 /* AdvSIMD scalar three same 9367 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9368 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9369 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9370 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9371 */ 9372 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9373 { 9374 int rd = extract32(insn, 0, 5); 9375 int rn = extract32(insn, 5, 5); 9376 int opcode = extract32(insn, 11, 5); 9377 int rm = extract32(insn, 16, 5); 9378 int size = extract32(insn, 22, 2); 9379 bool u = extract32(insn, 29, 1); 9380 TCGv_i64 tcg_rd; 9381 9382 switch (opcode) { 9383 case 0x1: /* SQADD, UQADD */ 9384 case 0x5: /* SQSUB, UQSUB */ 9385 case 0x9: /* SQSHL, UQSHL */ 9386 case 0xb: /* SQRSHL, UQRSHL */ 9387 break; 9388 case 0x8: /* SSHL, USHL */ 9389 case 0xa: /* SRSHL, URSHL */ 9390 case 0x6: /* CMGT, CMHI */ 9391 case 0x7: /* CMGE, CMHS */ 9392 case 0x11: /* CMTST, CMEQ */ 9393 case 0x10: /* ADD, SUB (vector) */ 9394 if (size != 3) { 9395 unallocated_encoding(s); 9396 return; 9397 } 9398 break; 9399 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9400 if (size != 1 && size != 2) { 9401 unallocated_encoding(s); 9402 return; 9403 } 9404 break; 9405 default: 9406 unallocated_encoding(s); 9407 return; 9408 } 9409 9410 if (!fp_access_check(s)) { 9411 return; 9412 } 9413 9414 tcg_rd = tcg_temp_new_i64(); 9415 9416 if (size == 3) { 9417 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9418 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9419 9420 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9421 } else { 9422 /* Do a single operation on the lowest element in the vector. 9423 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9424 * no side effects for all these operations. 9425 * OPTME: special-purpose helpers would avoid doing some 9426 * unnecessary work in the helper for the 8 and 16 bit cases. 9427 */ 9428 NeonGenTwoOpEnvFn *genenvfn; 9429 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9430 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9431 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9432 9433 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9434 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9435 9436 switch (opcode) { 9437 case 0x1: /* SQADD, UQADD */ 9438 { 9439 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9440 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9441 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9442 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9443 }; 9444 genenvfn = fns[size][u]; 9445 break; 9446 } 9447 case 0x5: /* SQSUB, UQSUB */ 9448 { 9449 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9450 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9451 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9452 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9453 }; 9454 genenvfn = fns[size][u]; 9455 break; 9456 } 9457 case 0x9: /* SQSHL, UQSHL */ 9458 { 9459 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9460 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9461 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9462 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9463 }; 9464 genenvfn = fns[size][u]; 9465 break; 9466 } 9467 case 0xb: /* SQRSHL, UQRSHL */ 9468 { 9469 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9470 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9471 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9472 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9473 }; 9474 genenvfn = fns[size][u]; 9475 break; 9476 } 9477 case 0x16: /* SQDMULH, SQRDMULH */ 9478 { 9479 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9480 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9481 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9482 }; 9483 assert(size == 1 || size == 2); 9484 genenvfn = fns[size - 1][u]; 9485 break; 9486 } 9487 default: 9488 g_assert_not_reached(); 9489 } 9490 9491 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9492 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9493 } 9494 9495 write_fp_dreg(s, rd, tcg_rd); 9496 } 9497 9498 /* AdvSIMD scalar three same extra 9499 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9500 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9501 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9502 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9503 */ 9504 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9505 uint32_t insn) 9506 { 9507 int rd = extract32(insn, 0, 5); 9508 int rn = extract32(insn, 5, 5); 9509 int opcode = extract32(insn, 11, 4); 9510 int rm = extract32(insn, 16, 5); 9511 int size = extract32(insn, 22, 2); 9512 bool u = extract32(insn, 29, 1); 9513 TCGv_i32 ele1, ele2, ele3; 9514 TCGv_i64 res; 9515 bool feature; 9516 9517 switch (u * 16 + opcode) { 9518 case 0x10: /* SQRDMLAH (vector) */ 9519 case 0x11: /* SQRDMLSH (vector) */ 9520 if (size != 1 && size != 2) { 9521 unallocated_encoding(s); 9522 return; 9523 } 9524 feature = dc_isar_feature(aa64_rdm, s); 9525 break; 9526 default: 9527 unallocated_encoding(s); 9528 return; 9529 } 9530 if (!feature) { 9531 unallocated_encoding(s); 9532 return; 9533 } 9534 if (!fp_access_check(s)) { 9535 return; 9536 } 9537 9538 /* Do a single operation on the lowest element in the vector. 9539 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9540 * with no side effects for all these operations. 9541 * OPTME: special-purpose helpers would avoid doing some 9542 * unnecessary work in the helper for the 16 bit cases. 9543 */ 9544 ele1 = tcg_temp_new_i32(); 9545 ele2 = tcg_temp_new_i32(); 9546 ele3 = tcg_temp_new_i32(); 9547 9548 read_vec_element_i32(s, ele1, rn, 0, size); 9549 read_vec_element_i32(s, ele2, rm, 0, size); 9550 read_vec_element_i32(s, ele3, rd, 0, size); 9551 9552 switch (opcode) { 9553 case 0x0: /* SQRDMLAH */ 9554 if (size == 1) { 9555 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9556 } else { 9557 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9558 } 9559 break; 9560 case 0x1: /* SQRDMLSH */ 9561 if (size == 1) { 9562 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9563 } else { 9564 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9565 } 9566 break; 9567 default: 9568 g_assert_not_reached(); 9569 } 9570 9571 res = tcg_temp_new_i64(); 9572 tcg_gen_extu_i32_i64(res, ele3); 9573 write_fp_dreg(s, rd, res); 9574 } 9575 9576 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9577 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9578 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9579 { 9580 /* Handle 64->64 opcodes which are shared between the scalar and 9581 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9582 * is valid in either group and also the double-precision fp ops. 9583 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9584 * requires them. 9585 */ 9586 TCGCond cond; 9587 9588 switch (opcode) { 9589 case 0x4: /* CLS, CLZ */ 9590 if (u) { 9591 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9592 } else { 9593 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9594 } 9595 break; 9596 case 0x5: /* NOT */ 9597 /* This opcode is shared with CNT and RBIT but we have earlier 9598 * enforced that size == 3 if and only if this is the NOT insn. 9599 */ 9600 tcg_gen_not_i64(tcg_rd, tcg_rn); 9601 break; 9602 case 0x7: /* SQABS, SQNEG */ 9603 if (u) { 9604 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9605 } else { 9606 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9607 } 9608 break; 9609 case 0xa: /* CMLT */ 9610 cond = TCG_COND_LT; 9611 do_cmop: 9612 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9613 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9614 break; 9615 case 0x8: /* CMGT, CMGE */ 9616 cond = u ? TCG_COND_GE : TCG_COND_GT; 9617 goto do_cmop; 9618 case 0x9: /* CMEQ, CMLE */ 9619 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9620 goto do_cmop; 9621 case 0xb: /* ABS, NEG */ 9622 if (u) { 9623 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9624 } else { 9625 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9626 } 9627 break; 9628 case 0x2f: /* FABS */ 9629 gen_vfp_absd(tcg_rd, tcg_rn); 9630 break; 9631 case 0x6f: /* FNEG */ 9632 gen_vfp_negd(tcg_rd, tcg_rn); 9633 break; 9634 case 0x7f: /* FSQRT */ 9635 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9636 break; 9637 case 0x1a: /* FCVTNS */ 9638 case 0x1b: /* FCVTMS */ 9639 case 0x1c: /* FCVTAS */ 9640 case 0x3a: /* FCVTPS */ 9641 case 0x3b: /* FCVTZS */ 9642 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9643 break; 9644 case 0x5a: /* FCVTNU */ 9645 case 0x5b: /* FCVTMU */ 9646 case 0x5c: /* FCVTAU */ 9647 case 0x7a: /* FCVTPU */ 9648 case 0x7b: /* FCVTZU */ 9649 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9650 break; 9651 case 0x18: /* FRINTN */ 9652 case 0x19: /* FRINTM */ 9653 case 0x38: /* FRINTP */ 9654 case 0x39: /* FRINTZ */ 9655 case 0x58: /* FRINTA */ 9656 case 0x79: /* FRINTI */ 9657 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9658 break; 9659 case 0x59: /* FRINTX */ 9660 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9661 break; 9662 case 0x1e: /* FRINT32Z */ 9663 case 0x5e: /* FRINT32X */ 9664 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9665 break; 9666 case 0x1f: /* FRINT64Z */ 9667 case 0x5f: /* FRINT64X */ 9668 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9669 break; 9670 default: 9671 g_assert_not_reached(); 9672 } 9673 } 9674 9675 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9676 bool is_scalar, bool is_u, bool is_q, 9677 int size, int rn, int rd) 9678 { 9679 bool is_double = (size == MO_64); 9680 TCGv_ptr fpst; 9681 9682 if (!fp_access_check(s)) { 9683 return; 9684 } 9685 9686 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9687 9688 if (is_double) { 9689 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9690 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9691 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9692 NeonGenTwoDoubleOpFn *genfn; 9693 bool swap = false; 9694 int pass; 9695 9696 switch (opcode) { 9697 case 0x2e: /* FCMLT (zero) */ 9698 swap = true; 9699 /* fallthrough */ 9700 case 0x2c: /* FCMGT (zero) */ 9701 genfn = gen_helper_neon_cgt_f64; 9702 break; 9703 case 0x2d: /* FCMEQ (zero) */ 9704 genfn = gen_helper_neon_ceq_f64; 9705 break; 9706 case 0x6d: /* FCMLE (zero) */ 9707 swap = true; 9708 /* fall through */ 9709 case 0x6c: /* FCMGE (zero) */ 9710 genfn = gen_helper_neon_cge_f64; 9711 break; 9712 default: 9713 g_assert_not_reached(); 9714 } 9715 9716 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9717 read_vec_element(s, tcg_op, rn, pass, MO_64); 9718 if (swap) { 9719 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9720 } else { 9721 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9722 } 9723 write_vec_element(s, tcg_res, rd, pass, MO_64); 9724 } 9725 9726 clear_vec_high(s, !is_scalar, rd); 9727 } else { 9728 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9729 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9730 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9731 NeonGenTwoSingleOpFn *genfn; 9732 bool swap = false; 9733 int pass, maxpasses; 9734 9735 if (size == MO_16) { 9736 switch (opcode) { 9737 case 0x2e: /* FCMLT (zero) */ 9738 swap = true; 9739 /* fall through */ 9740 case 0x2c: /* FCMGT (zero) */ 9741 genfn = gen_helper_advsimd_cgt_f16; 9742 break; 9743 case 0x2d: /* FCMEQ (zero) */ 9744 genfn = gen_helper_advsimd_ceq_f16; 9745 break; 9746 case 0x6d: /* FCMLE (zero) */ 9747 swap = true; 9748 /* fall through */ 9749 case 0x6c: /* FCMGE (zero) */ 9750 genfn = gen_helper_advsimd_cge_f16; 9751 break; 9752 default: 9753 g_assert_not_reached(); 9754 } 9755 } else { 9756 switch (opcode) { 9757 case 0x2e: /* FCMLT (zero) */ 9758 swap = true; 9759 /* fall through */ 9760 case 0x2c: /* FCMGT (zero) */ 9761 genfn = gen_helper_neon_cgt_f32; 9762 break; 9763 case 0x2d: /* FCMEQ (zero) */ 9764 genfn = gen_helper_neon_ceq_f32; 9765 break; 9766 case 0x6d: /* FCMLE (zero) */ 9767 swap = true; 9768 /* fall through */ 9769 case 0x6c: /* FCMGE (zero) */ 9770 genfn = gen_helper_neon_cge_f32; 9771 break; 9772 default: 9773 g_assert_not_reached(); 9774 } 9775 } 9776 9777 if (is_scalar) { 9778 maxpasses = 1; 9779 } else { 9780 int vector_size = 8 << is_q; 9781 maxpasses = vector_size >> size; 9782 } 9783 9784 for (pass = 0; pass < maxpasses; pass++) { 9785 read_vec_element_i32(s, tcg_op, rn, pass, size); 9786 if (swap) { 9787 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9788 } else { 9789 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9790 } 9791 if (is_scalar) { 9792 write_fp_sreg(s, rd, tcg_res); 9793 } else { 9794 write_vec_element_i32(s, tcg_res, rd, pass, size); 9795 } 9796 } 9797 9798 if (!is_scalar) { 9799 clear_vec_high(s, is_q, rd); 9800 } 9801 } 9802 } 9803 9804 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9805 bool is_scalar, bool is_u, bool is_q, 9806 int size, int rn, int rd) 9807 { 9808 bool is_double = (size == 3); 9809 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9810 9811 if (is_double) { 9812 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9813 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9814 int pass; 9815 9816 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9817 read_vec_element(s, tcg_op, rn, pass, MO_64); 9818 switch (opcode) { 9819 case 0x3d: /* FRECPE */ 9820 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9821 break; 9822 case 0x3f: /* FRECPX */ 9823 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9824 break; 9825 case 0x7d: /* FRSQRTE */ 9826 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9827 break; 9828 default: 9829 g_assert_not_reached(); 9830 } 9831 write_vec_element(s, tcg_res, rd, pass, MO_64); 9832 } 9833 clear_vec_high(s, !is_scalar, rd); 9834 } else { 9835 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9836 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9837 int pass, maxpasses; 9838 9839 if (is_scalar) { 9840 maxpasses = 1; 9841 } else { 9842 maxpasses = is_q ? 4 : 2; 9843 } 9844 9845 for (pass = 0; pass < maxpasses; pass++) { 9846 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9847 9848 switch (opcode) { 9849 case 0x3c: /* URECPE */ 9850 gen_helper_recpe_u32(tcg_res, tcg_op); 9851 break; 9852 case 0x3d: /* FRECPE */ 9853 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9854 break; 9855 case 0x3f: /* FRECPX */ 9856 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9857 break; 9858 case 0x7d: /* FRSQRTE */ 9859 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9860 break; 9861 default: 9862 g_assert_not_reached(); 9863 } 9864 9865 if (is_scalar) { 9866 write_fp_sreg(s, rd, tcg_res); 9867 } else { 9868 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9869 } 9870 } 9871 if (!is_scalar) { 9872 clear_vec_high(s, is_q, rd); 9873 } 9874 } 9875 } 9876 9877 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9878 int opcode, bool u, bool is_q, 9879 int size, int rn, int rd) 9880 { 9881 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9882 * in the source becomes a size element in the destination). 9883 */ 9884 int pass; 9885 TCGv_i32 tcg_res[2]; 9886 int destelt = is_q ? 2 : 0; 9887 int passes = scalar ? 1 : 2; 9888 9889 if (scalar) { 9890 tcg_res[1] = tcg_constant_i32(0); 9891 } 9892 9893 for (pass = 0; pass < passes; pass++) { 9894 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9895 NeonGenNarrowFn *genfn = NULL; 9896 NeonGenNarrowEnvFn *genenvfn = NULL; 9897 9898 if (scalar) { 9899 read_vec_element(s, tcg_op, rn, pass, size + 1); 9900 } else { 9901 read_vec_element(s, tcg_op, rn, pass, MO_64); 9902 } 9903 tcg_res[pass] = tcg_temp_new_i32(); 9904 9905 switch (opcode) { 9906 case 0x12: /* XTN, SQXTUN */ 9907 { 9908 static NeonGenNarrowFn * const xtnfns[3] = { 9909 gen_helper_neon_narrow_u8, 9910 gen_helper_neon_narrow_u16, 9911 tcg_gen_extrl_i64_i32, 9912 }; 9913 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9914 gen_helper_neon_unarrow_sat8, 9915 gen_helper_neon_unarrow_sat16, 9916 gen_helper_neon_unarrow_sat32, 9917 }; 9918 if (u) { 9919 genenvfn = sqxtunfns[size]; 9920 } else { 9921 genfn = xtnfns[size]; 9922 } 9923 break; 9924 } 9925 case 0x14: /* SQXTN, UQXTN */ 9926 { 9927 static NeonGenNarrowEnvFn * const fns[3][2] = { 9928 { gen_helper_neon_narrow_sat_s8, 9929 gen_helper_neon_narrow_sat_u8 }, 9930 { gen_helper_neon_narrow_sat_s16, 9931 gen_helper_neon_narrow_sat_u16 }, 9932 { gen_helper_neon_narrow_sat_s32, 9933 gen_helper_neon_narrow_sat_u32 }, 9934 }; 9935 genenvfn = fns[size][u]; 9936 break; 9937 } 9938 case 0x16: /* FCVTN, FCVTN2 */ 9939 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9940 if (size == 2) { 9941 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9942 } else { 9943 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9944 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9945 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9946 TCGv_i32 ahp = get_ahp_flag(); 9947 9948 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9949 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9950 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9951 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9952 } 9953 break; 9954 case 0x36: /* BFCVTN, BFCVTN2 */ 9955 { 9956 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9957 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9958 } 9959 break; 9960 case 0x56: /* FCVTXN, FCVTXN2 */ 9961 /* 64 bit to 32 bit float conversion 9962 * with von Neumann rounding (round to odd) 9963 */ 9964 assert(size == 2); 9965 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9966 break; 9967 default: 9968 g_assert_not_reached(); 9969 } 9970 9971 if (genfn) { 9972 genfn(tcg_res[pass], tcg_op); 9973 } else if (genenvfn) { 9974 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9975 } 9976 } 9977 9978 for (pass = 0; pass < 2; pass++) { 9979 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9980 } 9981 clear_vec_high(s, is_q, rd); 9982 } 9983 9984 /* Remaining saturating accumulating ops */ 9985 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9986 bool is_q, int size, int rn, int rd) 9987 { 9988 bool is_double = (size == 3); 9989 9990 if (is_double) { 9991 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9992 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9993 int pass; 9994 9995 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9996 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9997 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9998 9999 if (is_u) { /* USQADD */ 10000 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10001 } else { /* SUQADD */ 10002 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10003 } 10004 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10005 } 10006 clear_vec_high(s, !is_scalar, rd); 10007 } else { 10008 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10009 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10010 int pass, maxpasses; 10011 10012 if (is_scalar) { 10013 maxpasses = 1; 10014 } else { 10015 maxpasses = is_q ? 4 : 2; 10016 } 10017 10018 for (pass = 0; pass < maxpasses; pass++) { 10019 if (is_scalar) { 10020 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10021 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10022 } else { 10023 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10024 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10025 } 10026 10027 if (is_u) { /* USQADD */ 10028 switch (size) { 10029 case 0: 10030 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10031 break; 10032 case 1: 10033 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10034 break; 10035 case 2: 10036 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10037 break; 10038 default: 10039 g_assert_not_reached(); 10040 } 10041 } else { /* SUQADD */ 10042 switch (size) { 10043 case 0: 10044 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10045 break; 10046 case 1: 10047 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10048 break; 10049 case 2: 10050 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10051 break; 10052 default: 10053 g_assert_not_reached(); 10054 } 10055 } 10056 10057 if (is_scalar) { 10058 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10059 } 10060 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10061 } 10062 clear_vec_high(s, is_q, rd); 10063 } 10064 } 10065 10066 /* AdvSIMD scalar two reg misc 10067 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10068 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10069 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10070 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10071 */ 10072 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10073 { 10074 int rd = extract32(insn, 0, 5); 10075 int rn = extract32(insn, 5, 5); 10076 int opcode = extract32(insn, 12, 5); 10077 int size = extract32(insn, 22, 2); 10078 bool u = extract32(insn, 29, 1); 10079 bool is_fcvt = false; 10080 int rmode; 10081 TCGv_i32 tcg_rmode; 10082 TCGv_ptr tcg_fpstatus; 10083 10084 switch (opcode) { 10085 case 0x3: /* USQADD / SUQADD*/ 10086 if (!fp_access_check(s)) { 10087 return; 10088 } 10089 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10090 return; 10091 case 0x7: /* SQABS / SQNEG */ 10092 break; 10093 case 0xa: /* CMLT */ 10094 if (u) { 10095 unallocated_encoding(s); 10096 return; 10097 } 10098 /* fall through */ 10099 case 0x8: /* CMGT, CMGE */ 10100 case 0x9: /* CMEQ, CMLE */ 10101 case 0xb: /* ABS, NEG */ 10102 if (size != 3) { 10103 unallocated_encoding(s); 10104 return; 10105 } 10106 break; 10107 case 0x12: /* SQXTUN */ 10108 if (!u) { 10109 unallocated_encoding(s); 10110 return; 10111 } 10112 /* fall through */ 10113 case 0x14: /* SQXTN, UQXTN */ 10114 if (size == 3) { 10115 unallocated_encoding(s); 10116 return; 10117 } 10118 if (!fp_access_check(s)) { 10119 return; 10120 } 10121 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10122 return; 10123 case 0xc ... 0xf: 10124 case 0x16 ... 0x1d: 10125 case 0x1f: 10126 /* Floating point: U, size[1] and opcode indicate operation; 10127 * size[0] indicates single or double precision. 10128 */ 10129 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10130 size = extract32(size, 0, 1) ? 3 : 2; 10131 switch (opcode) { 10132 case 0x2c: /* FCMGT (zero) */ 10133 case 0x2d: /* FCMEQ (zero) */ 10134 case 0x2e: /* FCMLT (zero) */ 10135 case 0x6c: /* FCMGE (zero) */ 10136 case 0x6d: /* FCMLE (zero) */ 10137 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10138 return; 10139 case 0x1d: /* SCVTF */ 10140 case 0x5d: /* UCVTF */ 10141 { 10142 bool is_signed = (opcode == 0x1d); 10143 if (!fp_access_check(s)) { 10144 return; 10145 } 10146 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10147 return; 10148 } 10149 case 0x3d: /* FRECPE */ 10150 case 0x3f: /* FRECPX */ 10151 case 0x7d: /* FRSQRTE */ 10152 if (!fp_access_check(s)) { 10153 return; 10154 } 10155 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10156 return; 10157 case 0x1a: /* FCVTNS */ 10158 case 0x1b: /* FCVTMS */ 10159 case 0x3a: /* FCVTPS */ 10160 case 0x3b: /* FCVTZS */ 10161 case 0x5a: /* FCVTNU */ 10162 case 0x5b: /* FCVTMU */ 10163 case 0x7a: /* FCVTPU */ 10164 case 0x7b: /* FCVTZU */ 10165 is_fcvt = true; 10166 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10167 break; 10168 case 0x1c: /* FCVTAS */ 10169 case 0x5c: /* FCVTAU */ 10170 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10171 is_fcvt = true; 10172 rmode = FPROUNDING_TIEAWAY; 10173 break; 10174 case 0x56: /* FCVTXN, FCVTXN2 */ 10175 if (size == 2) { 10176 unallocated_encoding(s); 10177 return; 10178 } 10179 if (!fp_access_check(s)) { 10180 return; 10181 } 10182 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10183 return; 10184 default: 10185 unallocated_encoding(s); 10186 return; 10187 } 10188 break; 10189 default: 10190 unallocated_encoding(s); 10191 return; 10192 } 10193 10194 if (!fp_access_check(s)) { 10195 return; 10196 } 10197 10198 if (is_fcvt) { 10199 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10200 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10201 } else { 10202 tcg_fpstatus = NULL; 10203 tcg_rmode = NULL; 10204 } 10205 10206 if (size == 3) { 10207 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10208 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10209 10210 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10211 write_fp_dreg(s, rd, tcg_rd); 10212 } else { 10213 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10214 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10215 10216 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10217 10218 switch (opcode) { 10219 case 0x7: /* SQABS, SQNEG */ 10220 { 10221 NeonGenOneOpEnvFn *genfn; 10222 static NeonGenOneOpEnvFn * const fns[3][2] = { 10223 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10224 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10225 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10226 }; 10227 genfn = fns[size][u]; 10228 genfn(tcg_rd, tcg_env, tcg_rn); 10229 break; 10230 } 10231 case 0x1a: /* FCVTNS */ 10232 case 0x1b: /* FCVTMS */ 10233 case 0x1c: /* FCVTAS */ 10234 case 0x3a: /* FCVTPS */ 10235 case 0x3b: /* FCVTZS */ 10236 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10237 tcg_fpstatus); 10238 break; 10239 case 0x5a: /* FCVTNU */ 10240 case 0x5b: /* FCVTMU */ 10241 case 0x5c: /* FCVTAU */ 10242 case 0x7a: /* FCVTPU */ 10243 case 0x7b: /* FCVTZU */ 10244 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10245 tcg_fpstatus); 10246 break; 10247 default: 10248 g_assert_not_reached(); 10249 } 10250 10251 write_fp_sreg(s, rd, tcg_rd); 10252 } 10253 10254 if (is_fcvt) { 10255 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10256 } 10257 } 10258 10259 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10260 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10261 int immh, int immb, int opcode, int rn, int rd) 10262 { 10263 int size = 32 - clz32(immh) - 1; 10264 int immhb = immh << 3 | immb; 10265 int shift = 2 * (8 << size) - immhb; 10266 GVecGen2iFn *gvec_fn; 10267 10268 if (extract32(immh, 3, 1) && !is_q) { 10269 unallocated_encoding(s); 10270 return; 10271 } 10272 tcg_debug_assert(size <= 3); 10273 10274 if (!fp_access_check(s)) { 10275 return; 10276 } 10277 10278 switch (opcode) { 10279 case 0x02: /* SSRA / USRA (accumulate) */ 10280 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10281 break; 10282 10283 case 0x08: /* SRI */ 10284 gvec_fn = gen_gvec_sri; 10285 break; 10286 10287 case 0x00: /* SSHR / USHR */ 10288 if (is_u) { 10289 if (shift == 8 << size) { 10290 /* Shift count the same size as element size produces zero. */ 10291 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10292 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10293 return; 10294 } 10295 gvec_fn = tcg_gen_gvec_shri; 10296 } else { 10297 /* Shift count the same size as element size produces all sign. */ 10298 if (shift == 8 << size) { 10299 shift -= 1; 10300 } 10301 gvec_fn = tcg_gen_gvec_sari; 10302 } 10303 break; 10304 10305 case 0x04: /* SRSHR / URSHR (rounding) */ 10306 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10307 break; 10308 10309 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10310 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10311 break; 10312 10313 default: 10314 g_assert_not_reached(); 10315 } 10316 10317 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10318 } 10319 10320 /* SHL/SLI - Vector shift left */ 10321 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10322 int immh, int immb, int opcode, int rn, int rd) 10323 { 10324 int size = 32 - clz32(immh) - 1; 10325 int immhb = immh << 3 | immb; 10326 int shift = immhb - (8 << size); 10327 10328 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10329 assert(size >= 0 && size <= 3); 10330 10331 if (extract32(immh, 3, 1) && !is_q) { 10332 unallocated_encoding(s); 10333 return; 10334 } 10335 10336 if (!fp_access_check(s)) { 10337 return; 10338 } 10339 10340 if (insert) { 10341 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10342 } else { 10343 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10344 } 10345 } 10346 10347 /* USHLL/SHLL - Vector shift left with widening */ 10348 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10349 int immh, int immb, int opcode, int rn, int rd) 10350 { 10351 int size = 32 - clz32(immh) - 1; 10352 int immhb = immh << 3 | immb; 10353 int shift = immhb - (8 << size); 10354 int dsize = 64; 10355 int esize = 8 << size; 10356 int elements = dsize/esize; 10357 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10358 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10359 int i; 10360 10361 if (size >= 3) { 10362 unallocated_encoding(s); 10363 return; 10364 } 10365 10366 if (!fp_access_check(s)) { 10367 return; 10368 } 10369 10370 /* For the LL variants the store is larger than the load, 10371 * so if rd == rn we would overwrite parts of our input. 10372 * So load everything right now and use shifts in the main loop. 10373 */ 10374 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10375 10376 for (i = 0; i < elements; i++) { 10377 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10378 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10379 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10380 write_vec_element(s, tcg_rd, rd, i, size + 1); 10381 } 10382 } 10383 10384 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10385 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10386 int immh, int immb, int opcode, int rn, int rd) 10387 { 10388 int immhb = immh << 3 | immb; 10389 int size = 32 - clz32(immh) - 1; 10390 int dsize = 64; 10391 int esize = 8 << size; 10392 int elements = dsize/esize; 10393 int shift = (2 * esize) - immhb; 10394 bool round = extract32(opcode, 0, 1); 10395 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10396 TCGv_i64 tcg_round; 10397 int i; 10398 10399 if (extract32(immh, 3, 1)) { 10400 unallocated_encoding(s); 10401 return; 10402 } 10403 10404 if (!fp_access_check(s)) { 10405 return; 10406 } 10407 10408 tcg_rn = tcg_temp_new_i64(); 10409 tcg_rd = tcg_temp_new_i64(); 10410 tcg_final = tcg_temp_new_i64(); 10411 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10412 10413 if (round) { 10414 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10415 } else { 10416 tcg_round = NULL; 10417 } 10418 10419 for (i = 0; i < elements; i++) { 10420 read_vec_element(s, tcg_rn, rn, i, size+1); 10421 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10422 false, true, size+1, shift); 10423 10424 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10425 } 10426 10427 if (!is_q) { 10428 write_vec_element(s, tcg_final, rd, 0, MO_64); 10429 } else { 10430 write_vec_element(s, tcg_final, rd, 1, MO_64); 10431 } 10432 10433 clear_vec_high(s, is_q, rd); 10434 } 10435 10436 10437 /* AdvSIMD shift by immediate 10438 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10439 * +---+---+---+-------------+------+------+--------+---+------+------+ 10440 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10441 * +---+---+---+-------------+------+------+--------+---+------+------+ 10442 */ 10443 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10444 { 10445 int rd = extract32(insn, 0, 5); 10446 int rn = extract32(insn, 5, 5); 10447 int opcode = extract32(insn, 11, 5); 10448 int immb = extract32(insn, 16, 3); 10449 int immh = extract32(insn, 19, 4); 10450 bool is_u = extract32(insn, 29, 1); 10451 bool is_q = extract32(insn, 30, 1); 10452 10453 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10454 assert(immh != 0); 10455 10456 switch (opcode) { 10457 case 0x08: /* SRI */ 10458 if (!is_u) { 10459 unallocated_encoding(s); 10460 return; 10461 } 10462 /* fall through */ 10463 case 0x00: /* SSHR / USHR */ 10464 case 0x02: /* SSRA / USRA (accumulate) */ 10465 case 0x04: /* SRSHR / URSHR (rounding) */ 10466 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10467 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10468 break; 10469 case 0x0a: /* SHL / SLI */ 10470 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10471 break; 10472 case 0x10: /* SHRN */ 10473 case 0x11: /* RSHRN / SQRSHRUN */ 10474 if (is_u) { 10475 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10476 opcode, rn, rd); 10477 } else { 10478 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10479 } 10480 break; 10481 case 0x12: /* SQSHRN / UQSHRN */ 10482 case 0x13: /* SQRSHRN / UQRSHRN */ 10483 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10484 opcode, rn, rd); 10485 break; 10486 case 0x14: /* SSHLL / USHLL */ 10487 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10488 break; 10489 case 0x1c: /* SCVTF / UCVTF */ 10490 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10491 opcode, rn, rd); 10492 break; 10493 case 0xc: /* SQSHLU */ 10494 if (!is_u) { 10495 unallocated_encoding(s); 10496 return; 10497 } 10498 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10499 break; 10500 case 0xe: /* SQSHL, UQSHL */ 10501 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10502 break; 10503 case 0x1f: /* FCVTZS/ FCVTZU */ 10504 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10505 return; 10506 default: 10507 unallocated_encoding(s); 10508 return; 10509 } 10510 } 10511 10512 /* Generate code to do a "long" addition or subtraction, ie one done in 10513 * TCGv_i64 on vector lanes twice the width specified by size. 10514 */ 10515 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10516 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10517 { 10518 static NeonGenTwo64OpFn * const fns[3][2] = { 10519 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10520 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10521 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10522 }; 10523 NeonGenTwo64OpFn *genfn; 10524 assert(size < 3); 10525 10526 genfn = fns[size][is_sub]; 10527 genfn(tcg_res, tcg_op1, tcg_op2); 10528 } 10529 10530 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10531 int opcode, int rd, int rn, int rm) 10532 { 10533 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10534 TCGv_i64 tcg_res[2]; 10535 int pass, accop; 10536 10537 tcg_res[0] = tcg_temp_new_i64(); 10538 tcg_res[1] = tcg_temp_new_i64(); 10539 10540 /* Does this op do an adding accumulate, a subtracting accumulate, 10541 * or no accumulate at all? 10542 */ 10543 switch (opcode) { 10544 case 5: 10545 case 8: 10546 case 9: 10547 accop = 1; 10548 break; 10549 case 10: 10550 case 11: 10551 accop = -1; 10552 break; 10553 default: 10554 accop = 0; 10555 break; 10556 } 10557 10558 if (accop != 0) { 10559 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10560 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10561 } 10562 10563 /* size == 2 means two 32x32->64 operations; this is worth special 10564 * casing because we can generally handle it inline. 10565 */ 10566 if (size == 2) { 10567 for (pass = 0; pass < 2; pass++) { 10568 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10569 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10570 TCGv_i64 tcg_passres; 10571 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10572 10573 int elt = pass + is_q * 2; 10574 10575 read_vec_element(s, tcg_op1, rn, elt, memop); 10576 read_vec_element(s, tcg_op2, rm, elt, memop); 10577 10578 if (accop == 0) { 10579 tcg_passres = tcg_res[pass]; 10580 } else { 10581 tcg_passres = tcg_temp_new_i64(); 10582 } 10583 10584 switch (opcode) { 10585 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10586 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10587 break; 10588 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10589 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10590 break; 10591 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10592 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10593 { 10594 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10595 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10596 10597 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10598 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10599 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10600 tcg_passres, 10601 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10602 break; 10603 } 10604 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10605 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10606 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10607 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10608 break; 10609 case 9: /* SQDMLAL, SQDMLAL2 */ 10610 case 11: /* SQDMLSL, SQDMLSL2 */ 10611 case 13: /* SQDMULL, SQDMULL2 */ 10612 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10613 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10614 tcg_passres, tcg_passres); 10615 break; 10616 default: 10617 g_assert_not_reached(); 10618 } 10619 10620 if (opcode == 9 || opcode == 11) { 10621 /* saturating accumulate ops */ 10622 if (accop < 0) { 10623 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10624 } 10625 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10626 tcg_res[pass], tcg_passres); 10627 } else if (accop > 0) { 10628 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10629 } else if (accop < 0) { 10630 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10631 } 10632 } 10633 } else { 10634 /* size 0 or 1, generally helper functions */ 10635 for (pass = 0; pass < 2; pass++) { 10636 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10637 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10638 TCGv_i64 tcg_passres; 10639 int elt = pass + is_q * 2; 10640 10641 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10642 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10643 10644 if (accop == 0) { 10645 tcg_passres = tcg_res[pass]; 10646 } else { 10647 tcg_passres = tcg_temp_new_i64(); 10648 } 10649 10650 switch (opcode) { 10651 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10652 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10653 { 10654 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10655 static NeonGenWidenFn * const widenfns[2][2] = { 10656 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10657 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10658 }; 10659 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10660 10661 widenfn(tcg_op2_64, tcg_op2); 10662 widenfn(tcg_passres, tcg_op1); 10663 gen_neon_addl(size, (opcode == 2), tcg_passres, 10664 tcg_passres, tcg_op2_64); 10665 break; 10666 } 10667 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10668 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10669 if (size == 0) { 10670 if (is_u) { 10671 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10672 } else { 10673 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10674 } 10675 } else { 10676 if (is_u) { 10677 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10678 } else { 10679 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10680 } 10681 } 10682 break; 10683 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10684 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10685 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10686 if (size == 0) { 10687 if (is_u) { 10688 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10689 } else { 10690 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10691 } 10692 } else { 10693 if (is_u) { 10694 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10695 } else { 10696 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10697 } 10698 } 10699 break; 10700 case 9: /* SQDMLAL, SQDMLAL2 */ 10701 case 11: /* SQDMLSL, SQDMLSL2 */ 10702 case 13: /* SQDMULL, SQDMULL2 */ 10703 assert(size == 1); 10704 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10705 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10706 tcg_passres, tcg_passres); 10707 break; 10708 default: 10709 g_assert_not_reached(); 10710 } 10711 10712 if (accop != 0) { 10713 if (opcode == 9 || opcode == 11) { 10714 /* saturating accumulate ops */ 10715 if (accop < 0) { 10716 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10717 } 10718 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10719 tcg_res[pass], 10720 tcg_passres); 10721 } else { 10722 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10723 tcg_res[pass], tcg_passres); 10724 } 10725 } 10726 } 10727 } 10728 10729 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10730 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10731 } 10732 10733 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10734 int opcode, int rd, int rn, int rm) 10735 { 10736 TCGv_i64 tcg_res[2]; 10737 int part = is_q ? 2 : 0; 10738 int pass; 10739 10740 for (pass = 0; pass < 2; pass++) { 10741 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10742 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10743 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10744 static NeonGenWidenFn * const widenfns[3][2] = { 10745 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10746 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10747 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10748 }; 10749 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10750 10751 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10752 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10753 widenfn(tcg_op2_wide, tcg_op2); 10754 tcg_res[pass] = tcg_temp_new_i64(); 10755 gen_neon_addl(size, (opcode == 3), 10756 tcg_res[pass], tcg_op1, tcg_op2_wide); 10757 } 10758 10759 for (pass = 0; pass < 2; pass++) { 10760 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10761 } 10762 } 10763 10764 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10765 { 10766 tcg_gen_addi_i64(in, in, 1U << 31); 10767 tcg_gen_extrh_i64_i32(res, in); 10768 } 10769 10770 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10771 int opcode, int rd, int rn, int rm) 10772 { 10773 TCGv_i32 tcg_res[2]; 10774 int part = is_q ? 2 : 0; 10775 int pass; 10776 10777 for (pass = 0; pass < 2; pass++) { 10778 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10779 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10780 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10781 static NeonGenNarrowFn * const narrowfns[3][2] = { 10782 { gen_helper_neon_narrow_high_u8, 10783 gen_helper_neon_narrow_round_high_u8 }, 10784 { gen_helper_neon_narrow_high_u16, 10785 gen_helper_neon_narrow_round_high_u16 }, 10786 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10787 }; 10788 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10789 10790 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10791 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10792 10793 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10794 10795 tcg_res[pass] = tcg_temp_new_i32(); 10796 gennarrow(tcg_res[pass], tcg_wideres); 10797 } 10798 10799 for (pass = 0; pass < 2; pass++) { 10800 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10801 } 10802 clear_vec_high(s, is_q, rd); 10803 } 10804 10805 /* AdvSIMD three different 10806 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10807 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10808 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10809 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10810 */ 10811 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10812 { 10813 /* Instructions in this group fall into three basic classes 10814 * (in each case with the operation working on each element in 10815 * the input vectors): 10816 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10817 * 128 bit input) 10818 * (2) wide 64 x 128 -> 128 10819 * (3) narrowing 128 x 128 -> 64 10820 * Here we do initial decode, catch unallocated cases and 10821 * dispatch to separate functions for each class. 10822 */ 10823 int is_q = extract32(insn, 30, 1); 10824 int is_u = extract32(insn, 29, 1); 10825 int size = extract32(insn, 22, 2); 10826 int opcode = extract32(insn, 12, 4); 10827 int rm = extract32(insn, 16, 5); 10828 int rn = extract32(insn, 5, 5); 10829 int rd = extract32(insn, 0, 5); 10830 10831 switch (opcode) { 10832 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10833 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10834 /* 64 x 128 -> 128 */ 10835 if (size == 3) { 10836 unallocated_encoding(s); 10837 return; 10838 } 10839 if (!fp_access_check(s)) { 10840 return; 10841 } 10842 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10843 break; 10844 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10845 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10846 /* 128 x 128 -> 64 */ 10847 if (size == 3) { 10848 unallocated_encoding(s); 10849 return; 10850 } 10851 if (!fp_access_check(s)) { 10852 return; 10853 } 10854 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10855 break; 10856 case 14: /* PMULL, PMULL2 */ 10857 if (is_u) { 10858 unallocated_encoding(s); 10859 return; 10860 } 10861 switch (size) { 10862 case 0: /* PMULL.P8 */ 10863 if (!fp_access_check(s)) { 10864 return; 10865 } 10866 /* The Q field specifies lo/hi half input for this insn. */ 10867 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10868 gen_helper_neon_pmull_h); 10869 break; 10870 10871 case 3: /* PMULL.P64 */ 10872 if (!dc_isar_feature(aa64_pmull, s)) { 10873 unallocated_encoding(s); 10874 return; 10875 } 10876 if (!fp_access_check(s)) { 10877 return; 10878 } 10879 /* The Q field specifies lo/hi half input for this insn. */ 10880 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10881 gen_helper_gvec_pmull_q); 10882 break; 10883 10884 default: 10885 unallocated_encoding(s); 10886 break; 10887 } 10888 return; 10889 case 9: /* SQDMLAL, SQDMLAL2 */ 10890 case 11: /* SQDMLSL, SQDMLSL2 */ 10891 case 13: /* SQDMULL, SQDMULL2 */ 10892 if (is_u || size == 0) { 10893 unallocated_encoding(s); 10894 return; 10895 } 10896 /* fall through */ 10897 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10898 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10899 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10900 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10901 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10902 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10903 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10904 /* 64 x 64 -> 128 */ 10905 if (size == 3) { 10906 unallocated_encoding(s); 10907 return; 10908 } 10909 if (!fp_access_check(s)) { 10910 return; 10911 } 10912 10913 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10914 break; 10915 default: 10916 /* opcode 15 not allocated */ 10917 unallocated_encoding(s); 10918 break; 10919 } 10920 } 10921 10922 /* Integer op subgroup of C3.6.16. */ 10923 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10924 { 10925 int is_q = extract32(insn, 30, 1); 10926 int u = extract32(insn, 29, 1); 10927 int size = extract32(insn, 22, 2); 10928 int opcode = extract32(insn, 11, 5); 10929 int rm = extract32(insn, 16, 5); 10930 int rn = extract32(insn, 5, 5); 10931 int rd = extract32(insn, 0, 5); 10932 int pass; 10933 TCGCond cond; 10934 10935 switch (opcode) { 10936 case 0x13: /* MUL, PMUL */ 10937 if (u && size != 0) { 10938 unallocated_encoding(s); 10939 return; 10940 } 10941 /* fall through */ 10942 case 0x0: /* SHADD, UHADD */ 10943 case 0x2: /* SRHADD, URHADD */ 10944 case 0x4: /* SHSUB, UHSUB */ 10945 case 0xc: /* SMAX, UMAX */ 10946 case 0xd: /* SMIN, UMIN */ 10947 case 0xe: /* SABD, UABD */ 10948 case 0xf: /* SABA, UABA */ 10949 case 0x12: /* MLA, MLS */ 10950 if (size == 3) { 10951 unallocated_encoding(s); 10952 return; 10953 } 10954 break; 10955 case 0x16: /* SQDMULH, SQRDMULH */ 10956 if (size == 0 || size == 3) { 10957 unallocated_encoding(s); 10958 return; 10959 } 10960 break; 10961 default: 10962 if (size == 3 && !is_q) { 10963 unallocated_encoding(s); 10964 return; 10965 } 10966 break; 10967 } 10968 10969 if (!fp_access_check(s)) { 10970 return; 10971 } 10972 10973 switch (opcode) { 10974 case 0x01: /* SQADD, UQADD */ 10975 if (u) { 10976 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 10977 } else { 10978 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 10979 } 10980 return; 10981 case 0x05: /* SQSUB, UQSUB */ 10982 if (u) { 10983 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 10984 } else { 10985 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 10986 } 10987 return; 10988 case 0x08: /* SSHL, USHL */ 10989 if (u) { 10990 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 10991 } else { 10992 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 10993 } 10994 return; 10995 case 0x0c: /* SMAX, UMAX */ 10996 if (u) { 10997 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 10998 } else { 10999 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11000 } 11001 return; 11002 case 0x0d: /* SMIN, UMIN */ 11003 if (u) { 11004 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11005 } else { 11006 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11007 } 11008 return; 11009 case 0xe: /* SABD, UABD */ 11010 if (u) { 11011 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11012 } else { 11013 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11014 } 11015 return; 11016 case 0xf: /* SABA, UABA */ 11017 if (u) { 11018 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11019 } else { 11020 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11021 } 11022 return; 11023 case 0x10: /* ADD, SUB */ 11024 if (u) { 11025 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11026 } else { 11027 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11028 } 11029 return; 11030 case 0x13: /* MUL, PMUL */ 11031 if (!u) { /* MUL */ 11032 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11033 } else { /* PMUL */ 11034 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11035 } 11036 return; 11037 case 0x12: /* MLA, MLS */ 11038 if (u) { 11039 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11040 } else { 11041 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11042 } 11043 return; 11044 case 0x16: /* SQDMULH, SQRDMULH */ 11045 { 11046 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11047 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11048 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11049 }; 11050 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11051 } 11052 return; 11053 case 0x11: 11054 if (!u) { /* CMTST */ 11055 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11056 return; 11057 } 11058 /* else CMEQ */ 11059 cond = TCG_COND_EQ; 11060 goto do_gvec_cmp; 11061 case 0x06: /* CMGT, CMHI */ 11062 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11063 goto do_gvec_cmp; 11064 case 0x07: /* CMGE, CMHS */ 11065 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11066 do_gvec_cmp: 11067 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11068 vec_full_reg_offset(s, rn), 11069 vec_full_reg_offset(s, rm), 11070 is_q ? 16 : 8, vec_full_reg_size(s)); 11071 return; 11072 } 11073 11074 if (size == 3) { 11075 assert(is_q); 11076 for (pass = 0; pass < 2; pass++) { 11077 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11078 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11079 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11080 11081 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11082 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11083 11084 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11085 11086 write_vec_element(s, tcg_res, rd, pass, MO_64); 11087 } 11088 } else { 11089 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11090 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11091 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11092 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11093 NeonGenTwoOpFn *genfn = NULL; 11094 NeonGenTwoOpEnvFn *genenvfn = NULL; 11095 11096 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11097 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11098 11099 switch (opcode) { 11100 case 0x0: /* SHADD, UHADD */ 11101 { 11102 static NeonGenTwoOpFn * const fns[3][2] = { 11103 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11104 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11105 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11106 }; 11107 genfn = fns[size][u]; 11108 break; 11109 } 11110 case 0x2: /* SRHADD, URHADD */ 11111 { 11112 static NeonGenTwoOpFn * const fns[3][2] = { 11113 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11114 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11115 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11116 }; 11117 genfn = fns[size][u]; 11118 break; 11119 } 11120 case 0x4: /* SHSUB, UHSUB */ 11121 { 11122 static NeonGenTwoOpFn * const fns[3][2] = { 11123 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11124 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11125 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11126 }; 11127 genfn = fns[size][u]; 11128 break; 11129 } 11130 case 0x9: /* SQSHL, UQSHL */ 11131 { 11132 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11133 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11134 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11135 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11136 }; 11137 genenvfn = fns[size][u]; 11138 break; 11139 } 11140 case 0xa: /* SRSHL, URSHL */ 11141 { 11142 static NeonGenTwoOpFn * const fns[3][2] = { 11143 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11144 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11145 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11146 }; 11147 genfn = fns[size][u]; 11148 break; 11149 } 11150 case 0xb: /* SQRSHL, UQRSHL */ 11151 { 11152 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11153 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11154 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11155 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11156 }; 11157 genenvfn = fns[size][u]; 11158 break; 11159 } 11160 default: 11161 g_assert_not_reached(); 11162 } 11163 11164 if (genenvfn) { 11165 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11166 } else { 11167 genfn(tcg_res, tcg_op1, tcg_op2); 11168 } 11169 11170 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11171 } 11172 } 11173 clear_vec_high(s, is_q, rd); 11174 } 11175 11176 /* AdvSIMD three same 11177 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11178 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11179 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11180 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11181 */ 11182 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11183 { 11184 int opcode = extract32(insn, 11, 5); 11185 11186 switch (opcode) { 11187 default: 11188 disas_simd_3same_int(s, insn); 11189 break; 11190 case 0x3: /* logic ops */ 11191 case 0x14: /* SMAXP, UMAXP */ 11192 case 0x15: /* SMINP, UMINP */ 11193 case 0x17: /* ADDP */ 11194 case 0x18 ... 0x31: /* floating point ops */ 11195 unallocated_encoding(s); 11196 break; 11197 } 11198 } 11199 11200 /* AdvSIMD three same extra 11201 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11202 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11203 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11204 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11205 */ 11206 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11207 { 11208 int rd = extract32(insn, 0, 5); 11209 int rn = extract32(insn, 5, 5); 11210 int opcode = extract32(insn, 11, 4); 11211 int rm = extract32(insn, 16, 5); 11212 int size = extract32(insn, 22, 2); 11213 bool u = extract32(insn, 29, 1); 11214 bool is_q = extract32(insn, 30, 1); 11215 bool feature; 11216 int rot; 11217 11218 switch (u * 16 + opcode) { 11219 case 0x10: /* SQRDMLAH (vector) */ 11220 case 0x11: /* SQRDMLSH (vector) */ 11221 if (size != 1 && size != 2) { 11222 unallocated_encoding(s); 11223 return; 11224 } 11225 feature = dc_isar_feature(aa64_rdm, s); 11226 break; 11227 case 0x02: /* SDOT (vector) */ 11228 case 0x12: /* UDOT (vector) */ 11229 if (size != MO_32) { 11230 unallocated_encoding(s); 11231 return; 11232 } 11233 feature = dc_isar_feature(aa64_dp, s); 11234 break; 11235 case 0x03: /* USDOT */ 11236 if (size != MO_32) { 11237 unallocated_encoding(s); 11238 return; 11239 } 11240 feature = dc_isar_feature(aa64_i8mm, s); 11241 break; 11242 case 0x04: /* SMMLA */ 11243 case 0x14: /* UMMLA */ 11244 case 0x05: /* USMMLA */ 11245 if (!is_q || size != MO_32) { 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 feature = dc_isar_feature(aa64_i8mm, s); 11250 break; 11251 case 0x18: /* FCMLA, #0 */ 11252 case 0x19: /* FCMLA, #90 */ 11253 case 0x1a: /* FCMLA, #180 */ 11254 case 0x1b: /* FCMLA, #270 */ 11255 case 0x1c: /* FCADD, #90 */ 11256 case 0x1e: /* FCADD, #270 */ 11257 if (size == 0 11258 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11259 || (size == 3 && !is_q)) { 11260 unallocated_encoding(s); 11261 return; 11262 } 11263 feature = dc_isar_feature(aa64_fcma, s); 11264 break; 11265 case 0x1d: /* BFMMLA */ 11266 if (size != MO_16 || !is_q) { 11267 unallocated_encoding(s); 11268 return; 11269 } 11270 feature = dc_isar_feature(aa64_bf16, s); 11271 break; 11272 case 0x1f: 11273 switch (size) { 11274 case 1: /* BFDOT */ 11275 case 3: /* BFMLAL{B,T} */ 11276 feature = dc_isar_feature(aa64_bf16, s); 11277 break; 11278 default: 11279 unallocated_encoding(s); 11280 return; 11281 } 11282 break; 11283 default: 11284 unallocated_encoding(s); 11285 return; 11286 } 11287 if (!feature) { 11288 unallocated_encoding(s); 11289 return; 11290 } 11291 if (!fp_access_check(s)) { 11292 return; 11293 } 11294 11295 switch (opcode) { 11296 case 0x0: /* SQRDMLAH (vector) */ 11297 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11298 return; 11299 11300 case 0x1: /* SQRDMLSH (vector) */ 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11302 return; 11303 11304 case 0x2: /* SDOT / UDOT */ 11305 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11306 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11307 return; 11308 11309 case 0x3: /* USDOT */ 11310 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11311 return; 11312 11313 case 0x04: /* SMMLA, UMMLA */ 11314 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11315 u ? gen_helper_gvec_ummla_b 11316 : gen_helper_gvec_smmla_b); 11317 return; 11318 case 0x05: /* USMMLA */ 11319 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11320 return; 11321 11322 case 0x8: /* FCMLA, #0 */ 11323 case 0x9: /* FCMLA, #90 */ 11324 case 0xa: /* FCMLA, #180 */ 11325 case 0xb: /* FCMLA, #270 */ 11326 rot = extract32(opcode, 0, 2); 11327 switch (size) { 11328 case 1: 11329 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11330 gen_helper_gvec_fcmlah); 11331 break; 11332 case 2: 11333 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11334 gen_helper_gvec_fcmlas); 11335 break; 11336 case 3: 11337 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11338 gen_helper_gvec_fcmlad); 11339 break; 11340 default: 11341 g_assert_not_reached(); 11342 } 11343 return; 11344 11345 case 0xc: /* FCADD, #90 */ 11346 case 0xe: /* FCADD, #270 */ 11347 rot = extract32(opcode, 1, 1); 11348 switch (size) { 11349 case 1: 11350 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11351 gen_helper_gvec_fcaddh); 11352 break; 11353 case 2: 11354 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11355 gen_helper_gvec_fcadds); 11356 break; 11357 case 3: 11358 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11359 gen_helper_gvec_fcaddd); 11360 break; 11361 default: 11362 g_assert_not_reached(); 11363 } 11364 return; 11365 11366 case 0xd: /* BFMMLA */ 11367 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11368 return; 11369 case 0xf: 11370 switch (size) { 11371 case 1: /* BFDOT */ 11372 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11373 break; 11374 case 3: /* BFMLAL{B,T} */ 11375 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11376 gen_helper_gvec_bfmlal); 11377 break; 11378 default: 11379 g_assert_not_reached(); 11380 } 11381 return; 11382 11383 default: 11384 g_assert_not_reached(); 11385 } 11386 } 11387 11388 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11389 int size, int rn, int rd) 11390 { 11391 /* Handle 2-reg-misc ops which are widening (so each size element 11392 * in the source becomes a 2*size element in the destination. 11393 * The only instruction like this is FCVTL. 11394 */ 11395 int pass; 11396 11397 if (size == 3) { 11398 /* 32 -> 64 bit fp conversion */ 11399 TCGv_i64 tcg_res[2]; 11400 int srcelt = is_q ? 2 : 0; 11401 11402 for (pass = 0; pass < 2; pass++) { 11403 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11404 tcg_res[pass] = tcg_temp_new_i64(); 11405 11406 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11407 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11408 } 11409 for (pass = 0; pass < 2; pass++) { 11410 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11411 } 11412 } else { 11413 /* 16 -> 32 bit fp conversion */ 11414 int srcelt = is_q ? 4 : 0; 11415 TCGv_i32 tcg_res[4]; 11416 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11417 TCGv_i32 ahp = get_ahp_flag(); 11418 11419 for (pass = 0; pass < 4; pass++) { 11420 tcg_res[pass] = tcg_temp_new_i32(); 11421 11422 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11423 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11424 fpst, ahp); 11425 } 11426 for (pass = 0; pass < 4; pass++) { 11427 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11428 } 11429 } 11430 } 11431 11432 static void handle_rev(DisasContext *s, int opcode, bool u, 11433 bool is_q, int size, int rn, int rd) 11434 { 11435 int op = (opcode << 1) | u; 11436 int opsz = op + size; 11437 int grp_size = 3 - opsz; 11438 int dsize = is_q ? 128 : 64; 11439 int i; 11440 11441 if (opsz >= 3) { 11442 unallocated_encoding(s); 11443 return; 11444 } 11445 11446 if (!fp_access_check(s)) { 11447 return; 11448 } 11449 11450 if (size == 0) { 11451 /* Special case bytes, use bswap op on each group of elements */ 11452 int groups = dsize / (8 << grp_size); 11453 11454 for (i = 0; i < groups; i++) { 11455 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11456 11457 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11458 switch (grp_size) { 11459 case MO_16: 11460 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11461 break; 11462 case MO_32: 11463 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11464 break; 11465 case MO_64: 11466 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11467 break; 11468 default: 11469 g_assert_not_reached(); 11470 } 11471 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11472 } 11473 clear_vec_high(s, is_q, rd); 11474 } else { 11475 int revmask = (1 << grp_size) - 1; 11476 int esize = 8 << size; 11477 int elements = dsize / esize; 11478 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11479 TCGv_i64 tcg_rd[2]; 11480 11481 for (i = 0; i < 2; i++) { 11482 tcg_rd[i] = tcg_temp_new_i64(); 11483 tcg_gen_movi_i64(tcg_rd[i], 0); 11484 } 11485 11486 for (i = 0; i < elements; i++) { 11487 int e_rev = (i & 0xf) ^ revmask; 11488 int w = (e_rev * esize) / 64; 11489 int o = (e_rev * esize) % 64; 11490 11491 read_vec_element(s, tcg_rn, rn, i, size); 11492 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11493 } 11494 11495 for (i = 0; i < 2; i++) { 11496 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11497 } 11498 clear_vec_high(s, true, rd); 11499 } 11500 } 11501 11502 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11503 bool is_q, int size, int rn, int rd) 11504 { 11505 /* Implement the pairwise operations from 2-misc: 11506 * SADDLP, UADDLP, SADALP, UADALP. 11507 * These all add pairs of elements in the input to produce a 11508 * double-width result element in the output (possibly accumulating). 11509 */ 11510 bool accum = (opcode == 0x6); 11511 int maxpass = is_q ? 2 : 1; 11512 int pass; 11513 TCGv_i64 tcg_res[2]; 11514 11515 if (size == 2) { 11516 /* 32 + 32 -> 64 op */ 11517 MemOp memop = size + (u ? 0 : MO_SIGN); 11518 11519 for (pass = 0; pass < maxpass; pass++) { 11520 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11521 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11522 11523 tcg_res[pass] = tcg_temp_new_i64(); 11524 11525 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11526 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11527 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11528 if (accum) { 11529 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11530 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11531 } 11532 } 11533 } else { 11534 for (pass = 0; pass < maxpass; pass++) { 11535 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11536 NeonGenOne64OpFn *genfn; 11537 static NeonGenOne64OpFn * const fns[2][2] = { 11538 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11539 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11540 }; 11541 11542 genfn = fns[size][u]; 11543 11544 tcg_res[pass] = tcg_temp_new_i64(); 11545 11546 read_vec_element(s, tcg_op, rn, pass, MO_64); 11547 genfn(tcg_res[pass], tcg_op); 11548 11549 if (accum) { 11550 read_vec_element(s, tcg_op, rd, pass, MO_64); 11551 if (size == 0) { 11552 gen_helper_neon_addl_u16(tcg_res[pass], 11553 tcg_res[pass], tcg_op); 11554 } else { 11555 gen_helper_neon_addl_u32(tcg_res[pass], 11556 tcg_res[pass], tcg_op); 11557 } 11558 } 11559 } 11560 } 11561 if (!is_q) { 11562 tcg_res[1] = tcg_constant_i64(0); 11563 } 11564 for (pass = 0; pass < 2; pass++) { 11565 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11566 } 11567 } 11568 11569 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11570 { 11571 /* Implement SHLL and SHLL2 */ 11572 int pass; 11573 int part = is_q ? 2 : 0; 11574 TCGv_i64 tcg_res[2]; 11575 11576 for (pass = 0; pass < 2; pass++) { 11577 static NeonGenWidenFn * const widenfns[3] = { 11578 gen_helper_neon_widen_u8, 11579 gen_helper_neon_widen_u16, 11580 tcg_gen_extu_i32_i64, 11581 }; 11582 NeonGenWidenFn *widenfn = widenfns[size]; 11583 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11584 11585 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11586 tcg_res[pass] = tcg_temp_new_i64(); 11587 widenfn(tcg_res[pass], tcg_op); 11588 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11589 } 11590 11591 for (pass = 0; pass < 2; pass++) { 11592 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11593 } 11594 } 11595 11596 /* AdvSIMD two reg misc 11597 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11598 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11599 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11600 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11601 */ 11602 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11603 { 11604 int size = extract32(insn, 22, 2); 11605 int opcode = extract32(insn, 12, 5); 11606 bool u = extract32(insn, 29, 1); 11607 bool is_q = extract32(insn, 30, 1); 11608 int rn = extract32(insn, 5, 5); 11609 int rd = extract32(insn, 0, 5); 11610 bool need_fpstatus = false; 11611 int rmode = -1; 11612 TCGv_i32 tcg_rmode; 11613 TCGv_ptr tcg_fpstatus; 11614 11615 switch (opcode) { 11616 case 0x0: /* REV64, REV32 */ 11617 case 0x1: /* REV16 */ 11618 handle_rev(s, opcode, u, is_q, size, rn, rd); 11619 return; 11620 case 0x5: /* CNT, NOT, RBIT */ 11621 if (u && size == 0) { 11622 /* NOT */ 11623 break; 11624 } else if (u && size == 1) { 11625 /* RBIT */ 11626 break; 11627 } else if (!u && size == 0) { 11628 /* CNT */ 11629 break; 11630 } 11631 unallocated_encoding(s); 11632 return; 11633 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11634 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11635 if (size == 3) { 11636 unallocated_encoding(s); 11637 return; 11638 } 11639 if (!fp_access_check(s)) { 11640 return; 11641 } 11642 11643 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11644 return; 11645 case 0x4: /* CLS, CLZ */ 11646 if (size == 3) { 11647 unallocated_encoding(s); 11648 return; 11649 } 11650 break; 11651 case 0x2: /* SADDLP, UADDLP */ 11652 case 0x6: /* SADALP, UADALP */ 11653 if (size == 3) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 if (!fp_access_check(s)) { 11658 return; 11659 } 11660 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11661 return; 11662 case 0x13: /* SHLL, SHLL2 */ 11663 if (u == 0 || size == 3) { 11664 unallocated_encoding(s); 11665 return; 11666 } 11667 if (!fp_access_check(s)) { 11668 return; 11669 } 11670 handle_shll(s, is_q, size, rn, rd); 11671 return; 11672 case 0xa: /* CMLT */ 11673 if (u == 1) { 11674 unallocated_encoding(s); 11675 return; 11676 } 11677 /* fall through */ 11678 case 0x8: /* CMGT, CMGE */ 11679 case 0x9: /* CMEQ, CMLE */ 11680 case 0xb: /* ABS, NEG */ 11681 if (size == 3 && !is_q) { 11682 unallocated_encoding(s); 11683 return; 11684 } 11685 break; 11686 case 0x3: /* SUQADD, USQADD */ 11687 if (size == 3 && !is_q) { 11688 unallocated_encoding(s); 11689 return; 11690 } 11691 if (!fp_access_check(s)) { 11692 return; 11693 } 11694 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11695 return; 11696 case 0x7: /* SQABS, SQNEG */ 11697 if (size == 3 && !is_q) { 11698 unallocated_encoding(s); 11699 return; 11700 } 11701 break; 11702 case 0xc ... 0xf: 11703 case 0x16 ... 0x1f: 11704 { 11705 /* Floating point: U, size[1] and opcode indicate operation; 11706 * size[0] indicates single or double precision. 11707 */ 11708 int is_double = extract32(size, 0, 1); 11709 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11710 size = is_double ? 3 : 2; 11711 switch (opcode) { 11712 case 0x2f: /* FABS */ 11713 case 0x6f: /* FNEG */ 11714 if (size == 3 && !is_q) { 11715 unallocated_encoding(s); 11716 return; 11717 } 11718 break; 11719 case 0x1d: /* SCVTF */ 11720 case 0x5d: /* UCVTF */ 11721 { 11722 bool is_signed = (opcode == 0x1d) ? true : false; 11723 int elements = is_double ? 2 : is_q ? 4 : 2; 11724 if (is_double && !is_q) { 11725 unallocated_encoding(s); 11726 return; 11727 } 11728 if (!fp_access_check(s)) { 11729 return; 11730 } 11731 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11732 return; 11733 } 11734 case 0x2c: /* FCMGT (zero) */ 11735 case 0x2d: /* FCMEQ (zero) */ 11736 case 0x2e: /* FCMLT (zero) */ 11737 case 0x6c: /* FCMGE (zero) */ 11738 case 0x6d: /* FCMLE (zero) */ 11739 if (size == 3 && !is_q) { 11740 unallocated_encoding(s); 11741 return; 11742 } 11743 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11744 return; 11745 case 0x7f: /* FSQRT */ 11746 if (size == 3 && !is_q) { 11747 unallocated_encoding(s); 11748 return; 11749 } 11750 break; 11751 case 0x1a: /* FCVTNS */ 11752 case 0x1b: /* FCVTMS */ 11753 case 0x3a: /* FCVTPS */ 11754 case 0x3b: /* FCVTZS */ 11755 case 0x5a: /* FCVTNU */ 11756 case 0x5b: /* FCVTMU */ 11757 case 0x7a: /* FCVTPU */ 11758 case 0x7b: /* FCVTZU */ 11759 need_fpstatus = true; 11760 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11761 if (size == 3 && !is_q) { 11762 unallocated_encoding(s); 11763 return; 11764 } 11765 break; 11766 case 0x5c: /* FCVTAU */ 11767 case 0x1c: /* FCVTAS */ 11768 need_fpstatus = true; 11769 rmode = FPROUNDING_TIEAWAY; 11770 if (size == 3 && !is_q) { 11771 unallocated_encoding(s); 11772 return; 11773 } 11774 break; 11775 case 0x3c: /* URECPE */ 11776 if (size == 3) { 11777 unallocated_encoding(s); 11778 return; 11779 } 11780 /* fall through */ 11781 case 0x3d: /* FRECPE */ 11782 case 0x7d: /* FRSQRTE */ 11783 if (size == 3 && !is_q) { 11784 unallocated_encoding(s); 11785 return; 11786 } 11787 if (!fp_access_check(s)) { 11788 return; 11789 } 11790 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11791 return; 11792 case 0x56: /* FCVTXN, FCVTXN2 */ 11793 if (size == 2) { 11794 unallocated_encoding(s); 11795 return; 11796 } 11797 /* fall through */ 11798 case 0x16: /* FCVTN, FCVTN2 */ 11799 /* handle_2misc_narrow does a 2*size -> size operation, but these 11800 * instructions encode the source size rather than dest size. 11801 */ 11802 if (!fp_access_check(s)) { 11803 return; 11804 } 11805 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11806 return; 11807 case 0x36: /* BFCVTN, BFCVTN2 */ 11808 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11809 unallocated_encoding(s); 11810 return; 11811 } 11812 if (!fp_access_check(s)) { 11813 return; 11814 } 11815 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11816 return; 11817 case 0x17: /* FCVTL, FCVTL2 */ 11818 if (!fp_access_check(s)) { 11819 return; 11820 } 11821 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11822 return; 11823 case 0x18: /* FRINTN */ 11824 case 0x19: /* FRINTM */ 11825 case 0x38: /* FRINTP */ 11826 case 0x39: /* FRINTZ */ 11827 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11828 /* fall through */ 11829 case 0x59: /* FRINTX */ 11830 case 0x79: /* FRINTI */ 11831 need_fpstatus = true; 11832 if (size == 3 && !is_q) { 11833 unallocated_encoding(s); 11834 return; 11835 } 11836 break; 11837 case 0x58: /* FRINTA */ 11838 rmode = FPROUNDING_TIEAWAY; 11839 need_fpstatus = true; 11840 if (size == 3 && !is_q) { 11841 unallocated_encoding(s); 11842 return; 11843 } 11844 break; 11845 case 0x7c: /* URSQRTE */ 11846 if (size == 3) { 11847 unallocated_encoding(s); 11848 return; 11849 } 11850 break; 11851 case 0x1e: /* FRINT32Z */ 11852 case 0x1f: /* FRINT64Z */ 11853 rmode = FPROUNDING_ZERO; 11854 /* fall through */ 11855 case 0x5e: /* FRINT32X */ 11856 case 0x5f: /* FRINT64X */ 11857 need_fpstatus = true; 11858 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11859 unallocated_encoding(s); 11860 return; 11861 } 11862 break; 11863 default: 11864 unallocated_encoding(s); 11865 return; 11866 } 11867 break; 11868 } 11869 default: 11870 unallocated_encoding(s); 11871 return; 11872 } 11873 11874 if (!fp_access_check(s)) { 11875 return; 11876 } 11877 11878 if (need_fpstatus || rmode >= 0) { 11879 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11880 } else { 11881 tcg_fpstatus = NULL; 11882 } 11883 if (rmode >= 0) { 11884 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11885 } else { 11886 tcg_rmode = NULL; 11887 } 11888 11889 switch (opcode) { 11890 case 0x5: 11891 if (u && size == 0) { /* NOT */ 11892 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11893 return; 11894 } 11895 break; 11896 case 0x8: /* CMGT, CMGE */ 11897 if (u) { 11898 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11899 } else { 11900 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11901 } 11902 return; 11903 case 0x9: /* CMEQ, CMLE */ 11904 if (u) { 11905 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11906 } else { 11907 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11908 } 11909 return; 11910 case 0xa: /* CMLT */ 11911 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11912 return; 11913 case 0xb: 11914 if (u) { /* ABS, NEG */ 11915 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11916 } else { 11917 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11918 } 11919 return; 11920 } 11921 11922 if (size == 3) { 11923 /* All 64-bit element operations can be shared with scalar 2misc */ 11924 int pass; 11925 11926 /* Coverity claims (size == 3 && !is_q) has been eliminated 11927 * from all paths leading to here. 11928 */ 11929 tcg_debug_assert(is_q); 11930 for (pass = 0; pass < 2; pass++) { 11931 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11932 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11933 11934 read_vec_element(s, tcg_op, rn, pass, MO_64); 11935 11936 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11937 tcg_rmode, tcg_fpstatus); 11938 11939 write_vec_element(s, tcg_res, rd, pass, MO_64); 11940 } 11941 } else { 11942 int pass; 11943 11944 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11945 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11946 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11947 11948 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11949 11950 if (size == 2) { 11951 /* Special cases for 32 bit elements */ 11952 switch (opcode) { 11953 case 0x4: /* CLS */ 11954 if (u) { 11955 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11956 } else { 11957 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11958 } 11959 break; 11960 case 0x7: /* SQABS, SQNEG */ 11961 if (u) { 11962 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11963 } else { 11964 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11965 } 11966 break; 11967 case 0x2f: /* FABS */ 11968 gen_vfp_abss(tcg_res, tcg_op); 11969 break; 11970 case 0x6f: /* FNEG */ 11971 gen_vfp_negs(tcg_res, tcg_op); 11972 break; 11973 case 0x7f: /* FSQRT */ 11974 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 11975 break; 11976 case 0x1a: /* FCVTNS */ 11977 case 0x1b: /* FCVTMS */ 11978 case 0x1c: /* FCVTAS */ 11979 case 0x3a: /* FCVTPS */ 11980 case 0x3b: /* FCVTZS */ 11981 gen_helper_vfp_tosls(tcg_res, tcg_op, 11982 tcg_constant_i32(0), tcg_fpstatus); 11983 break; 11984 case 0x5a: /* FCVTNU */ 11985 case 0x5b: /* FCVTMU */ 11986 case 0x5c: /* FCVTAU */ 11987 case 0x7a: /* FCVTPU */ 11988 case 0x7b: /* FCVTZU */ 11989 gen_helper_vfp_touls(tcg_res, tcg_op, 11990 tcg_constant_i32(0), tcg_fpstatus); 11991 break; 11992 case 0x18: /* FRINTN */ 11993 case 0x19: /* FRINTM */ 11994 case 0x38: /* FRINTP */ 11995 case 0x39: /* FRINTZ */ 11996 case 0x58: /* FRINTA */ 11997 case 0x79: /* FRINTI */ 11998 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 11999 break; 12000 case 0x59: /* FRINTX */ 12001 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12002 break; 12003 case 0x7c: /* URSQRTE */ 12004 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12005 break; 12006 case 0x1e: /* FRINT32Z */ 12007 case 0x5e: /* FRINT32X */ 12008 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12009 break; 12010 case 0x1f: /* FRINT64Z */ 12011 case 0x5f: /* FRINT64X */ 12012 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12013 break; 12014 default: 12015 g_assert_not_reached(); 12016 } 12017 } else { 12018 /* Use helpers for 8 and 16 bit elements */ 12019 switch (opcode) { 12020 case 0x5: /* CNT, RBIT */ 12021 /* For these two insns size is part of the opcode specifier 12022 * (handled earlier); they always operate on byte elements. 12023 */ 12024 if (u) { 12025 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12026 } else { 12027 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12028 } 12029 break; 12030 case 0x7: /* SQABS, SQNEG */ 12031 { 12032 NeonGenOneOpEnvFn *genfn; 12033 static NeonGenOneOpEnvFn * const fns[2][2] = { 12034 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12035 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12036 }; 12037 genfn = fns[size][u]; 12038 genfn(tcg_res, tcg_env, tcg_op); 12039 break; 12040 } 12041 case 0x4: /* CLS, CLZ */ 12042 if (u) { 12043 if (size == 0) { 12044 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12045 } else { 12046 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12047 } 12048 } else { 12049 if (size == 0) { 12050 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12051 } else { 12052 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12053 } 12054 } 12055 break; 12056 default: 12057 g_assert_not_reached(); 12058 } 12059 } 12060 12061 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12062 } 12063 } 12064 clear_vec_high(s, is_q, rd); 12065 12066 if (tcg_rmode) { 12067 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12068 } 12069 } 12070 12071 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12072 * 12073 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12074 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12075 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12076 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12077 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12078 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12079 * 12080 * This actually covers two groups where scalar access is governed by 12081 * bit 28. A bunch of the instructions (float to integral) only exist 12082 * in the vector form and are un-allocated for the scalar decode. Also 12083 * in the scalar decode Q is always 1. 12084 */ 12085 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12086 { 12087 int fpop, opcode, a, u; 12088 int rn, rd; 12089 bool is_q; 12090 bool is_scalar; 12091 bool only_in_vector = false; 12092 12093 int pass; 12094 TCGv_i32 tcg_rmode = NULL; 12095 TCGv_ptr tcg_fpstatus = NULL; 12096 bool need_fpst = true; 12097 int rmode = -1; 12098 12099 if (!dc_isar_feature(aa64_fp16, s)) { 12100 unallocated_encoding(s); 12101 return; 12102 } 12103 12104 rd = extract32(insn, 0, 5); 12105 rn = extract32(insn, 5, 5); 12106 12107 a = extract32(insn, 23, 1); 12108 u = extract32(insn, 29, 1); 12109 is_scalar = extract32(insn, 28, 1); 12110 is_q = extract32(insn, 30, 1); 12111 12112 opcode = extract32(insn, 12, 5); 12113 fpop = deposit32(opcode, 5, 1, a); 12114 fpop = deposit32(fpop, 6, 1, u); 12115 12116 switch (fpop) { 12117 case 0x1d: /* SCVTF */ 12118 case 0x5d: /* UCVTF */ 12119 { 12120 int elements; 12121 12122 if (is_scalar) { 12123 elements = 1; 12124 } else { 12125 elements = (is_q ? 8 : 4); 12126 } 12127 12128 if (!fp_access_check(s)) { 12129 return; 12130 } 12131 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12132 return; 12133 } 12134 break; 12135 case 0x2c: /* FCMGT (zero) */ 12136 case 0x2d: /* FCMEQ (zero) */ 12137 case 0x2e: /* FCMLT (zero) */ 12138 case 0x6c: /* FCMGE (zero) */ 12139 case 0x6d: /* FCMLE (zero) */ 12140 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12141 return; 12142 case 0x3d: /* FRECPE */ 12143 case 0x3f: /* FRECPX */ 12144 break; 12145 case 0x18: /* FRINTN */ 12146 only_in_vector = true; 12147 rmode = FPROUNDING_TIEEVEN; 12148 break; 12149 case 0x19: /* FRINTM */ 12150 only_in_vector = true; 12151 rmode = FPROUNDING_NEGINF; 12152 break; 12153 case 0x38: /* FRINTP */ 12154 only_in_vector = true; 12155 rmode = FPROUNDING_POSINF; 12156 break; 12157 case 0x39: /* FRINTZ */ 12158 only_in_vector = true; 12159 rmode = FPROUNDING_ZERO; 12160 break; 12161 case 0x58: /* FRINTA */ 12162 only_in_vector = true; 12163 rmode = FPROUNDING_TIEAWAY; 12164 break; 12165 case 0x59: /* FRINTX */ 12166 case 0x79: /* FRINTI */ 12167 only_in_vector = true; 12168 /* current rounding mode */ 12169 break; 12170 case 0x1a: /* FCVTNS */ 12171 rmode = FPROUNDING_TIEEVEN; 12172 break; 12173 case 0x1b: /* FCVTMS */ 12174 rmode = FPROUNDING_NEGINF; 12175 break; 12176 case 0x1c: /* FCVTAS */ 12177 rmode = FPROUNDING_TIEAWAY; 12178 break; 12179 case 0x3a: /* FCVTPS */ 12180 rmode = FPROUNDING_POSINF; 12181 break; 12182 case 0x3b: /* FCVTZS */ 12183 rmode = FPROUNDING_ZERO; 12184 break; 12185 case 0x5a: /* FCVTNU */ 12186 rmode = FPROUNDING_TIEEVEN; 12187 break; 12188 case 0x5b: /* FCVTMU */ 12189 rmode = FPROUNDING_NEGINF; 12190 break; 12191 case 0x5c: /* FCVTAU */ 12192 rmode = FPROUNDING_TIEAWAY; 12193 break; 12194 case 0x7a: /* FCVTPU */ 12195 rmode = FPROUNDING_POSINF; 12196 break; 12197 case 0x7b: /* FCVTZU */ 12198 rmode = FPROUNDING_ZERO; 12199 break; 12200 case 0x2f: /* FABS */ 12201 case 0x6f: /* FNEG */ 12202 need_fpst = false; 12203 break; 12204 case 0x7d: /* FRSQRTE */ 12205 case 0x7f: /* FSQRT (vector) */ 12206 break; 12207 default: 12208 unallocated_encoding(s); 12209 return; 12210 } 12211 12212 12213 /* Check additional constraints for the scalar encoding */ 12214 if (is_scalar) { 12215 if (!is_q) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 /* FRINTxx is only in the vector form */ 12220 if (only_in_vector) { 12221 unallocated_encoding(s); 12222 return; 12223 } 12224 } 12225 12226 if (!fp_access_check(s)) { 12227 return; 12228 } 12229 12230 if (rmode >= 0 || need_fpst) { 12231 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12232 } 12233 12234 if (rmode >= 0) { 12235 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12236 } 12237 12238 if (is_scalar) { 12239 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12240 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12241 12242 switch (fpop) { 12243 case 0x1a: /* FCVTNS */ 12244 case 0x1b: /* FCVTMS */ 12245 case 0x1c: /* FCVTAS */ 12246 case 0x3a: /* FCVTPS */ 12247 case 0x3b: /* FCVTZS */ 12248 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12249 break; 12250 case 0x3d: /* FRECPE */ 12251 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12252 break; 12253 case 0x3f: /* FRECPX */ 12254 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12255 break; 12256 case 0x5a: /* FCVTNU */ 12257 case 0x5b: /* FCVTMU */ 12258 case 0x5c: /* FCVTAU */ 12259 case 0x7a: /* FCVTPU */ 12260 case 0x7b: /* FCVTZU */ 12261 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12262 break; 12263 case 0x6f: /* FNEG */ 12264 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12265 break; 12266 case 0x7d: /* FRSQRTE */ 12267 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12268 break; 12269 default: 12270 g_assert_not_reached(); 12271 } 12272 12273 /* limit any sign extension going on */ 12274 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12275 write_fp_sreg(s, rd, tcg_res); 12276 } else { 12277 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12278 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12279 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12280 12281 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12282 12283 switch (fpop) { 12284 case 0x1a: /* FCVTNS */ 12285 case 0x1b: /* FCVTMS */ 12286 case 0x1c: /* FCVTAS */ 12287 case 0x3a: /* FCVTPS */ 12288 case 0x3b: /* FCVTZS */ 12289 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12290 break; 12291 case 0x3d: /* FRECPE */ 12292 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12293 break; 12294 case 0x5a: /* FCVTNU */ 12295 case 0x5b: /* FCVTMU */ 12296 case 0x5c: /* FCVTAU */ 12297 case 0x7a: /* FCVTPU */ 12298 case 0x7b: /* FCVTZU */ 12299 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12300 break; 12301 case 0x18: /* FRINTN */ 12302 case 0x19: /* FRINTM */ 12303 case 0x38: /* FRINTP */ 12304 case 0x39: /* FRINTZ */ 12305 case 0x58: /* FRINTA */ 12306 case 0x79: /* FRINTI */ 12307 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12308 break; 12309 case 0x59: /* FRINTX */ 12310 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12311 break; 12312 case 0x2f: /* FABS */ 12313 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12314 break; 12315 case 0x6f: /* FNEG */ 12316 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12317 break; 12318 case 0x7d: /* FRSQRTE */ 12319 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12320 break; 12321 case 0x7f: /* FSQRT */ 12322 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12323 break; 12324 default: 12325 g_assert_not_reached(); 12326 } 12327 12328 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12329 } 12330 12331 clear_vec_high(s, is_q, rd); 12332 } 12333 12334 if (tcg_rmode) { 12335 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12336 } 12337 } 12338 12339 /* AdvSIMD scalar x indexed element 12340 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12341 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12342 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12343 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12344 * AdvSIMD vector x indexed element 12345 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12346 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12347 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12348 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12349 */ 12350 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12351 { 12352 /* This encoding has two kinds of instruction: 12353 * normal, where we perform elt x idxelt => elt for each 12354 * element in the vector 12355 * long, where we perform elt x idxelt and generate a result of 12356 * double the width of the input element 12357 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12358 */ 12359 bool is_scalar = extract32(insn, 28, 1); 12360 bool is_q = extract32(insn, 30, 1); 12361 bool u = extract32(insn, 29, 1); 12362 int size = extract32(insn, 22, 2); 12363 int l = extract32(insn, 21, 1); 12364 int m = extract32(insn, 20, 1); 12365 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12366 int rm = extract32(insn, 16, 4); 12367 int opcode = extract32(insn, 12, 4); 12368 int h = extract32(insn, 11, 1); 12369 int rn = extract32(insn, 5, 5); 12370 int rd = extract32(insn, 0, 5); 12371 bool is_long = false; 12372 int is_fp = 0; 12373 bool is_fp16 = false; 12374 int index; 12375 TCGv_ptr fpst; 12376 12377 switch (16 * u + opcode) { 12378 case 0x08: /* MUL */ 12379 case 0x10: /* MLA */ 12380 case 0x14: /* MLS */ 12381 if (is_scalar) { 12382 unallocated_encoding(s); 12383 return; 12384 } 12385 break; 12386 case 0x02: /* SMLAL, SMLAL2 */ 12387 case 0x12: /* UMLAL, UMLAL2 */ 12388 case 0x06: /* SMLSL, SMLSL2 */ 12389 case 0x16: /* UMLSL, UMLSL2 */ 12390 case 0x0a: /* SMULL, SMULL2 */ 12391 case 0x1a: /* UMULL, UMULL2 */ 12392 if (is_scalar) { 12393 unallocated_encoding(s); 12394 return; 12395 } 12396 is_long = true; 12397 break; 12398 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12399 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12400 case 0x0b: /* SQDMULL, SQDMULL2 */ 12401 is_long = true; 12402 break; 12403 case 0x0c: /* SQDMULH */ 12404 case 0x0d: /* SQRDMULH */ 12405 break; 12406 case 0x1d: /* SQRDMLAH */ 12407 case 0x1f: /* SQRDMLSH */ 12408 if (!dc_isar_feature(aa64_rdm, s)) { 12409 unallocated_encoding(s); 12410 return; 12411 } 12412 break; 12413 case 0x0e: /* SDOT */ 12414 case 0x1e: /* UDOT */ 12415 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12416 unallocated_encoding(s); 12417 return; 12418 } 12419 break; 12420 case 0x0f: 12421 switch (size) { 12422 case 0: /* SUDOT */ 12423 case 2: /* USDOT */ 12424 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12425 unallocated_encoding(s); 12426 return; 12427 } 12428 size = MO_32; 12429 break; 12430 case 1: /* BFDOT */ 12431 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12432 unallocated_encoding(s); 12433 return; 12434 } 12435 size = MO_32; 12436 break; 12437 case 3: /* BFMLAL{B,T} */ 12438 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12439 unallocated_encoding(s); 12440 return; 12441 } 12442 /* can't set is_fp without other incorrect size checks */ 12443 size = MO_16; 12444 break; 12445 default: 12446 unallocated_encoding(s); 12447 return; 12448 } 12449 break; 12450 case 0x11: /* FCMLA #0 */ 12451 case 0x13: /* FCMLA #90 */ 12452 case 0x15: /* FCMLA #180 */ 12453 case 0x17: /* FCMLA #270 */ 12454 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12455 unallocated_encoding(s); 12456 return; 12457 } 12458 is_fp = 2; 12459 break; 12460 default: 12461 case 0x00: /* FMLAL */ 12462 case 0x01: /* FMLA */ 12463 case 0x04: /* FMLSL */ 12464 case 0x05: /* FMLS */ 12465 case 0x09: /* FMUL */ 12466 case 0x18: /* FMLAL2 */ 12467 case 0x19: /* FMULX */ 12468 case 0x1c: /* FMLSL2 */ 12469 unallocated_encoding(s); 12470 return; 12471 } 12472 12473 switch (is_fp) { 12474 case 1: /* normal fp */ 12475 unallocated_encoding(s); /* in decodetree */ 12476 return; 12477 12478 case 2: /* complex fp */ 12479 /* Each indexable element is a complex pair. */ 12480 size += 1; 12481 switch (size) { 12482 case MO_32: 12483 if (h && !is_q) { 12484 unallocated_encoding(s); 12485 return; 12486 } 12487 is_fp16 = true; 12488 break; 12489 case MO_64: 12490 break; 12491 default: 12492 unallocated_encoding(s); 12493 return; 12494 } 12495 break; 12496 12497 default: /* integer */ 12498 switch (size) { 12499 case MO_8: 12500 case MO_64: 12501 unallocated_encoding(s); 12502 return; 12503 } 12504 break; 12505 } 12506 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12507 unallocated_encoding(s); 12508 return; 12509 } 12510 12511 /* Given MemOp size, adjust register and indexing. */ 12512 switch (size) { 12513 case MO_16: 12514 index = h << 2 | l << 1 | m; 12515 break; 12516 case MO_32: 12517 index = h << 1 | l; 12518 rm |= m << 4; 12519 break; 12520 case MO_64: 12521 if (l || !is_q) { 12522 unallocated_encoding(s); 12523 return; 12524 } 12525 index = h; 12526 rm |= m << 4; 12527 break; 12528 default: 12529 g_assert_not_reached(); 12530 } 12531 12532 if (!fp_access_check(s)) { 12533 return; 12534 } 12535 12536 if (is_fp) { 12537 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12538 } else { 12539 fpst = NULL; 12540 } 12541 12542 switch (16 * u + opcode) { 12543 case 0x0e: /* SDOT */ 12544 case 0x1e: /* UDOT */ 12545 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12546 u ? gen_helper_gvec_udot_idx_b 12547 : gen_helper_gvec_sdot_idx_b); 12548 return; 12549 case 0x0f: 12550 switch (extract32(insn, 22, 2)) { 12551 case 0: /* SUDOT */ 12552 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12553 gen_helper_gvec_sudot_idx_b); 12554 return; 12555 case 1: /* BFDOT */ 12556 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12557 gen_helper_gvec_bfdot_idx); 12558 return; 12559 case 2: /* USDOT */ 12560 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12561 gen_helper_gvec_usdot_idx_b); 12562 return; 12563 case 3: /* BFMLAL{B,T} */ 12564 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12565 gen_helper_gvec_bfmlal_idx); 12566 return; 12567 } 12568 g_assert_not_reached(); 12569 case 0x11: /* FCMLA #0 */ 12570 case 0x13: /* FCMLA #90 */ 12571 case 0x15: /* FCMLA #180 */ 12572 case 0x17: /* FCMLA #270 */ 12573 { 12574 int rot = extract32(insn, 13, 2); 12575 int data = (index << 2) | rot; 12576 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12577 vec_full_reg_offset(s, rn), 12578 vec_full_reg_offset(s, rm), 12579 vec_full_reg_offset(s, rd), fpst, 12580 is_q ? 16 : 8, vec_full_reg_size(s), data, 12581 size == MO_64 12582 ? gen_helper_gvec_fcmlas_idx 12583 : gen_helper_gvec_fcmlah_idx); 12584 } 12585 return; 12586 12587 case 0x08: /* MUL */ 12588 if (!is_long && !is_scalar) { 12589 static gen_helper_gvec_3 * const fns[3] = { 12590 gen_helper_gvec_mul_idx_h, 12591 gen_helper_gvec_mul_idx_s, 12592 gen_helper_gvec_mul_idx_d, 12593 }; 12594 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12595 vec_full_reg_offset(s, rn), 12596 vec_full_reg_offset(s, rm), 12597 is_q ? 16 : 8, vec_full_reg_size(s), 12598 index, fns[size - 1]); 12599 return; 12600 } 12601 break; 12602 12603 case 0x10: /* MLA */ 12604 if (!is_long && !is_scalar) { 12605 static gen_helper_gvec_4 * const fns[3] = { 12606 gen_helper_gvec_mla_idx_h, 12607 gen_helper_gvec_mla_idx_s, 12608 gen_helper_gvec_mla_idx_d, 12609 }; 12610 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12611 vec_full_reg_offset(s, rn), 12612 vec_full_reg_offset(s, rm), 12613 vec_full_reg_offset(s, rd), 12614 is_q ? 16 : 8, vec_full_reg_size(s), 12615 index, fns[size - 1]); 12616 return; 12617 } 12618 break; 12619 12620 case 0x14: /* MLS */ 12621 if (!is_long && !is_scalar) { 12622 static gen_helper_gvec_4 * const fns[3] = { 12623 gen_helper_gvec_mls_idx_h, 12624 gen_helper_gvec_mls_idx_s, 12625 gen_helper_gvec_mls_idx_d, 12626 }; 12627 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12628 vec_full_reg_offset(s, rn), 12629 vec_full_reg_offset(s, rm), 12630 vec_full_reg_offset(s, rd), 12631 is_q ? 16 : 8, vec_full_reg_size(s), 12632 index, fns[size - 1]); 12633 return; 12634 } 12635 break; 12636 } 12637 12638 if (size == 3) { 12639 g_assert_not_reached(); 12640 } else if (!is_long) { 12641 /* 32 bit floating point, or 16 or 32 bit integer. 12642 * For the 16 bit scalar case we use the usual Neon helpers and 12643 * rely on the fact that 0 op 0 == 0 with no side effects. 12644 */ 12645 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12646 int pass, maxpasses; 12647 12648 if (is_scalar) { 12649 maxpasses = 1; 12650 } else { 12651 maxpasses = is_q ? 4 : 2; 12652 } 12653 12654 read_vec_element_i32(s, tcg_idx, rm, index, size); 12655 12656 if (size == 1 && !is_scalar) { 12657 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12658 * the index into both halves of the 32 bit tcg_idx and then use 12659 * the usual Neon helpers. 12660 */ 12661 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12662 } 12663 12664 for (pass = 0; pass < maxpasses; pass++) { 12665 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12666 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12667 12668 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12669 12670 switch (16 * u + opcode) { 12671 case 0x08: /* MUL */ 12672 case 0x10: /* MLA */ 12673 case 0x14: /* MLS */ 12674 { 12675 static NeonGenTwoOpFn * const fns[2][2] = { 12676 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12677 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12678 }; 12679 NeonGenTwoOpFn *genfn; 12680 bool is_sub = opcode == 0x4; 12681 12682 if (size == 1) { 12683 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12684 } else { 12685 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12686 } 12687 if (opcode == 0x8) { 12688 break; 12689 } 12690 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12691 genfn = fns[size - 1][is_sub]; 12692 genfn(tcg_res, tcg_op, tcg_res); 12693 break; 12694 } 12695 case 0x0c: /* SQDMULH */ 12696 if (size == 1) { 12697 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12698 tcg_op, tcg_idx); 12699 } else { 12700 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12701 tcg_op, tcg_idx); 12702 } 12703 break; 12704 case 0x0d: /* SQRDMULH */ 12705 if (size == 1) { 12706 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12707 tcg_op, tcg_idx); 12708 } else { 12709 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12710 tcg_op, tcg_idx); 12711 } 12712 break; 12713 case 0x1d: /* SQRDMLAH */ 12714 read_vec_element_i32(s, tcg_res, rd, pass, 12715 is_scalar ? size : MO_32); 12716 if (size == 1) { 12717 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12718 tcg_op, tcg_idx, tcg_res); 12719 } else { 12720 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12721 tcg_op, tcg_idx, tcg_res); 12722 } 12723 break; 12724 case 0x1f: /* SQRDMLSH */ 12725 read_vec_element_i32(s, tcg_res, rd, pass, 12726 is_scalar ? size : MO_32); 12727 if (size == 1) { 12728 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12729 tcg_op, tcg_idx, tcg_res); 12730 } else { 12731 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12732 tcg_op, tcg_idx, tcg_res); 12733 } 12734 break; 12735 default: 12736 case 0x01: /* FMLA */ 12737 case 0x05: /* FMLS */ 12738 case 0x09: /* FMUL */ 12739 case 0x19: /* FMULX */ 12740 g_assert_not_reached(); 12741 } 12742 12743 if (is_scalar) { 12744 write_fp_sreg(s, rd, tcg_res); 12745 } else { 12746 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12747 } 12748 } 12749 12750 clear_vec_high(s, is_q, rd); 12751 } else { 12752 /* long ops: 16x16->32 or 32x32->64 */ 12753 TCGv_i64 tcg_res[2]; 12754 int pass; 12755 bool satop = extract32(opcode, 0, 1); 12756 MemOp memop = MO_32; 12757 12758 if (satop || !u) { 12759 memop |= MO_SIGN; 12760 } 12761 12762 if (size == 2) { 12763 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12764 12765 read_vec_element(s, tcg_idx, rm, index, memop); 12766 12767 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12768 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12769 TCGv_i64 tcg_passres; 12770 int passelt; 12771 12772 if (is_scalar) { 12773 passelt = 0; 12774 } else { 12775 passelt = pass + (is_q * 2); 12776 } 12777 12778 read_vec_element(s, tcg_op, rn, passelt, memop); 12779 12780 tcg_res[pass] = tcg_temp_new_i64(); 12781 12782 if (opcode == 0xa || opcode == 0xb) { 12783 /* Non-accumulating ops */ 12784 tcg_passres = tcg_res[pass]; 12785 } else { 12786 tcg_passres = tcg_temp_new_i64(); 12787 } 12788 12789 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12790 12791 if (satop) { 12792 /* saturating, doubling */ 12793 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12794 tcg_passres, tcg_passres); 12795 } 12796 12797 if (opcode == 0xa || opcode == 0xb) { 12798 continue; 12799 } 12800 12801 /* Accumulating op: handle accumulate step */ 12802 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12803 12804 switch (opcode) { 12805 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12806 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12807 break; 12808 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12809 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12810 break; 12811 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12812 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12813 /* fall through */ 12814 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12815 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12816 tcg_res[pass], 12817 tcg_passres); 12818 break; 12819 default: 12820 g_assert_not_reached(); 12821 } 12822 } 12823 12824 clear_vec_high(s, !is_scalar, rd); 12825 } else { 12826 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12827 12828 assert(size == 1); 12829 read_vec_element_i32(s, tcg_idx, rm, index, size); 12830 12831 if (!is_scalar) { 12832 /* The simplest way to handle the 16x16 indexed ops is to 12833 * duplicate the index into both halves of the 32 bit tcg_idx 12834 * and then use the usual Neon helpers. 12835 */ 12836 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12837 } 12838 12839 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12840 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12841 TCGv_i64 tcg_passres; 12842 12843 if (is_scalar) { 12844 read_vec_element_i32(s, tcg_op, rn, pass, size); 12845 } else { 12846 read_vec_element_i32(s, tcg_op, rn, 12847 pass + (is_q * 2), MO_32); 12848 } 12849 12850 tcg_res[pass] = tcg_temp_new_i64(); 12851 12852 if (opcode == 0xa || opcode == 0xb) { 12853 /* Non-accumulating ops */ 12854 tcg_passres = tcg_res[pass]; 12855 } else { 12856 tcg_passres = tcg_temp_new_i64(); 12857 } 12858 12859 if (memop & MO_SIGN) { 12860 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12861 } else { 12862 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12863 } 12864 if (satop) { 12865 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12866 tcg_passres, tcg_passres); 12867 } 12868 12869 if (opcode == 0xa || opcode == 0xb) { 12870 continue; 12871 } 12872 12873 /* Accumulating op: handle accumulate step */ 12874 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12875 12876 switch (opcode) { 12877 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12878 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12879 tcg_passres); 12880 break; 12881 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12882 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12883 tcg_passres); 12884 break; 12885 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12886 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12887 /* fall through */ 12888 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12889 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12890 tcg_res[pass], 12891 tcg_passres); 12892 break; 12893 default: 12894 g_assert_not_reached(); 12895 } 12896 } 12897 12898 if (is_scalar) { 12899 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12900 } 12901 } 12902 12903 if (is_scalar) { 12904 tcg_res[1] = tcg_constant_i64(0); 12905 } 12906 12907 for (pass = 0; pass < 2; pass++) { 12908 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12909 } 12910 } 12911 } 12912 12913 /* C3.6 Data processing - SIMD, inc Crypto 12914 * 12915 * As the decode gets a little complex we are using a table based 12916 * approach for this part of the decode. 12917 */ 12918 static const AArch64DecodeTable data_proc_simd[] = { 12919 /* pattern , mask , fn */ 12920 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 12921 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 12922 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 12923 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 12924 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 12925 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 12926 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 12927 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 12928 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 12929 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 12930 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 12931 { 0x2e000000, 0xbf208400, disas_simd_ext }, 12932 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 12933 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 12934 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 12935 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 12936 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 12937 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 12938 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 12939 { 0x00000000, 0x00000000, NULL } 12940 }; 12941 12942 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 12943 { 12944 /* Note that this is called with all non-FP cases from 12945 * table C3-6 so it must UNDEF for entries not specifically 12946 * allocated to instructions in that table. 12947 */ 12948 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 12949 if (fn) { 12950 fn(s, insn); 12951 } else { 12952 unallocated_encoding(s); 12953 } 12954 } 12955 12956 /* C3.6 Data processing - SIMD and floating point */ 12957 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 12958 { 12959 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 12960 disas_data_proc_fp(s, insn); 12961 } else { 12962 /* SIMD, including crypto */ 12963 disas_data_proc_simd(s, insn); 12964 } 12965 } 12966 12967 static bool trans_OK(DisasContext *s, arg_OK *a) 12968 { 12969 return true; 12970 } 12971 12972 static bool trans_FAIL(DisasContext *s, arg_OK *a) 12973 { 12974 s->is_nonstreaming = true; 12975 return true; 12976 } 12977 12978 /** 12979 * is_guarded_page: 12980 * @env: The cpu environment 12981 * @s: The DisasContext 12982 * 12983 * Return true if the page is guarded. 12984 */ 12985 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 12986 { 12987 uint64_t addr = s->base.pc_first; 12988 #ifdef CONFIG_USER_ONLY 12989 return page_get_flags(addr) & PAGE_BTI; 12990 #else 12991 CPUTLBEntryFull *full; 12992 void *host; 12993 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 12994 int flags; 12995 12996 /* 12997 * We test this immediately after reading an insn, which means 12998 * that the TLB entry must be present and valid, and thus this 12999 * access will never raise an exception. 13000 */ 13001 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13002 false, &host, &full, 0); 13003 assert(!(flags & TLB_INVALID_MASK)); 13004 13005 return full->extra.arm.guarded; 13006 #endif 13007 } 13008 13009 /** 13010 * btype_destination_ok: 13011 * @insn: The instruction at the branch destination 13012 * @bt: SCTLR_ELx.BT 13013 * @btype: PSTATE.BTYPE, and is non-zero 13014 * 13015 * On a guarded page, there are a limited number of insns 13016 * that may be present at the branch target: 13017 * - branch target identifiers, 13018 * - paciasp, pacibsp, 13019 * - BRK insn 13020 * - HLT insn 13021 * Anything else causes a Branch Target Exception. 13022 * 13023 * Return true if the branch is compatible, false to raise BTITRAP. 13024 */ 13025 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13026 { 13027 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13028 /* HINT space */ 13029 switch (extract32(insn, 5, 7)) { 13030 case 0b011001: /* PACIASP */ 13031 case 0b011011: /* PACIBSP */ 13032 /* 13033 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13034 * with btype == 3. Otherwise all btype are ok. 13035 */ 13036 return !bt || btype != 3; 13037 case 0b100000: /* BTI */ 13038 /* Not compatible with any btype. */ 13039 return false; 13040 case 0b100010: /* BTI c */ 13041 /* Not compatible with btype == 3 */ 13042 return btype != 3; 13043 case 0b100100: /* BTI j */ 13044 /* Not compatible with btype == 2 */ 13045 return btype != 2; 13046 case 0b100110: /* BTI jc */ 13047 /* Compatible with any btype. */ 13048 return true; 13049 } 13050 } else { 13051 switch (insn & 0xffe0001fu) { 13052 case 0xd4200000u: /* BRK */ 13053 case 0xd4400000u: /* HLT */ 13054 /* Give priority to the breakpoint exception. */ 13055 return true; 13056 } 13057 } 13058 return false; 13059 } 13060 13061 /* C3.1 A64 instruction index by encoding */ 13062 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13063 { 13064 switch (extract32(insn, 25, 4)) { 13065 case 0x5: 13066 case 0xd: /* Data processing - register */ 13067 disas_data_proc_reg(s, insn); 13068 break; 13069 case 0x7: 13070 case 0xf: /* Data processing - SIMD and floating point */ 13071 disas_data_proc_simd_fp(s, insn); 13072 break; 13073 default: 13074 unallocated_encoding(s); 13075 break; 13076 } 13077 } 13078 13079 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13080 CPUState *cpu) 13081 { 13082 DisasContext *dc = container_of(dcbase, DisasContext, base); 13083 CPUARMState *env = cpu_env(cpu); 13084 ARMCPU *arm_cpu = env_archcpu(env); 13085 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13086 int bound, core_mmu_idx; 13087 13088 dc->isar = &arm_cpu->isar; 13089 dc->condjmp = 0; 13090 dc->pc_save = dc->base.pc_first; 13091 dc->aarch64 = true; 13092 dc->thumb = false; 13093 dc->sctlr_b = 0; 13094 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13095 dc->condexec_mask = 0; 13096 dc->condexec_cond = 0; 13097 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13098 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13099 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13100 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13101 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13102 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13103 #if !defined(CONFIG_USER_ONLY) 13104 dc->user = (dc->current_el == 0); 13105 #endif 13106 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13107 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13108 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13109 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13110 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13111 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13112 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13113 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13114 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13115 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13116 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13117 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13118 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13119 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13120 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13121 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13122 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13123 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13124 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13125 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13126 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13127 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13128 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13129 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13130 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13131 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13132 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13133 dc->vec_len = 0; 13134 dc->vec_stride = 0; 13135 dc->cp_regs = arm_cpu->cp_regs; 13136 dc->features = env->features; 13137 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13138 dc->gm_blocksize = arm_cpu->gm_blocksize; 13139 13140 #ifdef CONFIG_USER_ONLY 13141 /* In sve_probe_page, we assume TBI is enabled. */ 13142 tcg_debug_assert(dc->tbid & 1); 13143 #endif 13144 13145 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13146 13147 /* Single step state. The code-generation logic here is: 13148 * SS_ACTIVE == 0: 13149 * generate code with no special handling for single-stepping (except 13150 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13151 * this happens anyway because those changes are all system register or 13152 * PSTATE writes). 13153 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13154 * emit code for one insn 13155 * emit code to clear PSTATE.SS 13156 * emit code to generate software step exception for completed step 13157 * end TB (as usual for having generated an exception) 13158 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13159 * emit code to generate a software step exception 13160 * end the TB 13161 */ 13162 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13163 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13164 dc->is_ldex = false; 13165 13166 /* Bound the number of insns to execute to those left on the page. */ 13167 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13168 13169 /* If architectural single step active, limit to 1. */ 13170 if (dc->ss_active) { 13171 bound = 1; 13172 } 13173 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13174 } 13175 13176 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13177 { 13178 } 13179 13180 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13181 { 13182 DisasContext *dc = container_of(dcbase, DisasContext, base); 13183 target_ulong pc_arg = dc->base.pc_next; 13184 13185 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13186 pc_arg &= ~TARGET_PAGE_MASK; 13187 } 13188 tcg_gen_insn_start(pc_arg, 0, 0); 13189 dc->insn_start_updated = false; 13190 } 13191 13192 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13193 { 13194 DisasContext *s = container_of(dcbase, DisasContext, base); 13195 CPUARMState *env = cpu_env(cpu); 13196 uint64_t pc = s->base.pc_next; 13197 uint32_t insn; 13198 13199 /* Singlestep exceptions have the highest priority. */ 13200 if (s->ss_active && !s->pstate_ss) { 13201 /* Singlestep state is Active-pending. 13202 * If we're in this state at the start of a TB then either 13203 * a) we just took an exception to an EL which is being debugged 13204 * and this is the first insn in the exception handler 13205 * b) debug exceptions were masked and we just unmasked them 13206 * without changing EL (eg by clearing PSTATE.D) 13207 * In either case we're going to take a swstep exception in the 13208 * "did not step an insn" case, and so the syndrome ISV and EX 13209 * bits should be zero. 13210 */ 13211 assert(s->base.num_insns == 1); 13212 gen_swstep_exception(s, 0, 0); 13213 s->base.is_jmp = DISAS_NORETURN; 13214 s->base.pc_next = pc + 4; 13215 return; 13216 } 13217 13218 if (pc & 3) { 13219 /* 13220 * PC alignment fault. This has priority over the instruction abort 13221 * that we would receive from a translation fault via arm_ldl_code. 13222 * This should only be possible after an indirect branch, at the 13223 * start of the TB. 13224 */ 13225 assert(s->base.num_insns == 1); 13226 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13227 s->base.is_jmp = DISAS_NORETURN; 13228 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13229 return; 13230 } 13231 13232 s->pc_curr = pc; 13233 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13234 s->insn = insn; 13235 s->base.pc_next = pc + 4; 13236 13237 s->fp_access_checked = false; 13238 s->sve_access_checked = false; 13239 13240 if (s->pstate_il) { 13241 /* 13242 * Illegal execution state. This has priority over BTI 13243 * exceptions, but comes after instruction abort exceptions. 13244 */ 13245 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13246 return; 13247 } 13248 13249 if (dc_isar_feature(aa64_bti, s)) { 13250 if (s->base.num_insns == 1) { 13251 /* 13252 * At the first insn of the TB, compute s->guarded_page. 13253 * We delayed computing this until successfully reading 13254 * the first insn of the TB, above. This (mostly) ensures 13255 * that the softmmu tlb entry has been populated, and the 13256 * page table GP bit is available. 13257 * 13258 * Note that we need to compute this even if btype == 0, 13259 * because this value is used for BR instructions later 13260 * where ENV is not available. 13261 */ 13262 s->guarded_page = is_guarded_page(env, s); 13263 13264 /* First insn can have btype set to non-zero. */ 13265 tcg_debug_assert(s->btype >= 0); 13266 13267 /* 13268 * Note that the Branch Target Exception has fairly high 13269 * priority -- below debugging exceptions but above most 13270 * everything else. This allows us to handle this now 13271 * instead of waiting until the insn is otherwise decoded. 13272 */ 13273 if (s->btype != 0 13274 && s->guarded_page 13275 && !btype_destination_ok(insn, s->bt, s->btype)) { 13276 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13277 return; 13278 } 13279 } else { 13280 /* Not the first insn: btype must be 0. */ 13281 tcg_debug_assert(s->btype == 0); 13282 } 13283 } 13284 13285 s->is_nonstreaming = false; 13286 if (s->sme_trap_nonstreaming) { 13287 disas_sme_fa64(s, insn); 13288 } 13289 13290 if (!disas_a64(s, insn) && 13291 !disas_sme(s, insn) && 13292 !disas_sve(s, insn)) { 13293 disas_a64_legacy(s, insn); 13294 } 13295 13296 /* 13297 * After execution of most insns, btype is reset to 0. 13298 * Note that we set btype == -1 when the insn sets btype. 13299 */ 13300 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13301 reset_btype(s); 13302 } 13303 } 13304 13305 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13306 { 13307 DisasContext *dc = container_of(dcbase, DisasContext, base); 13308 13309 if (unlikely(dc->ss_active)) { 13310 /* Note that this means single stepping WFI doesn't halt the CPU. 13311 * For conditional branch insns this is harmless unreachable code as 13312 * gen_goto_tb() has already handled emitting the debug exception 13313 * (and thus a tb-jump is not possible when singlestepping). 13314 */ 13315 switch (dc->base.is_jmp) { 13316 default: 13317 gen_a64_update_pc(dc, 4); 13318 /* fall through */ 13319 case DISAS_EXIT: 13320 case DISAS_JUMP: 13321 gen_step_complete_exception(dc); 13322 break; 13323 case DISAS_NORETURN: 13324 break; 13325 } 13326 } else { 13327 switch (dc->base.is_jmp) { 13328 case DISAS_NEXT: 13329 case DISAS_TOO_MANY: 13330 gen_goto_tb(dc, 1, 4); 13331 break; 13332 default: 13333 case DISAS_UPDATE_EXIT: 13334 gen_a64_update_pc(dc, 4); 13335 /* fall through */ 13336 case DISAS_EXIT: 13337 tcg_gen_exit_tb(NULL, 0); 13338 break; 13339 case DISAS_UPDATE_NOCHAIN: 13340 gen_a64_update_pc(dc, 4); 13341 /* fall through */ 13342 case DISAS_JUMP: 13343 tcg_gen_lookup_and_goto_ptr(); 13344 break; 13345 case DISAS_NORETURN: 13346 case DISAS_SWI: 13347 break; 13348 case DISAS_WFE: 13349 gen_a64_update_pc(dc, 4); 13350 gen_helper_wfe(tcg_env); 13351 break; 13352 case DISAS_YIELD: 13353 gen_a64_update_pc(dc, 4); 13354 gen_helper_yield(tcg_env); 13355 break; 13356 case DISAS_WFI: 13357 /* 13358 * This is a special case because we don't want to just halt 13359 * the CPU if trying to debug across a WFI. 13360 */ 13361 gen_a64_update_pc(dc, 4); 13362 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13363 /* 13364 * The helper doesn't necessarily throw an exception, but we 13365 * must go back to the main loop to check for interrupts anyway. 13366 */ 13367 tcg_gen_exit_tb(NULL, 0); 13368 break; 13369 } 13370 } 13371 } 13372 13373 const TranslatorOps aarch64_translator_ops = { 13374 .init_disas_context = aarch64_tr_init_disas_context, 13375 .tb_start = aarch64_tr_tb_start, 13376 .insn_start = aarch64_tr_insn_start, 13377 .translate_insn = aarch64_tr_translate_insn, 13378 .tb_stop = aarch64_tr_tb_stop, 13379 }; 13380