xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision ee48fef0)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5239 {
5240     if (fp_access_check(s)) {
5241         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5242         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5243         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5244         write_fp_dreg(s, a->rd, t0);
5245     }
5246     return true;
5247 }
5248 
5249 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5250 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5251 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5252 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5253 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5254 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5255 
5256 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5257                           gen_helper_gvec_3_ptr * const fns[3])
5258 {
5259     MemOp esz = a->esz;
5260 
5261     switch (esz) {
5262     case MO_64:
5263         if (!a->q) {
5264             return false;
5265         }
5266         break;
5267     case MO_32:
5268         break;
5269     case MO_16:
5270         if (!dc_isar_feature(aa64_fp16, s)) {
5271             return false;
5272         }
5273         break;
5274     default:
5275         return false;
5276     }
5277     if (fp_access_check(s)) {
5278         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5279                           esz == MO_16, 0, fns[esz - 1]);
5280     }
5281     return true;
5282 }
5283 
5284 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5285     gen_helper_gvec_fadd_h,
5286     gen_helper_gvec_fadd_s,
5287     gen_helper_gvec_fadd_d,
5288 };
5289 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5290 
5291 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5292     gen_helper_gvec_fsub_h,
5293     gen_helper_gvec_fsub_s,
5294     gen_helper_gvec_fsub_d,
5295 };
5296 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5297 
5298 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5299     gen_helper_gvec_fdiv_h,
5300     gen_helper_gvec_fdiv_s,
5301     gen_helper_gvec_fdiv_d,
5302 };
5303 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5304 
5305 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5306     gen_helper_gvec_fmul_h,
5307     gen_helper_gvec_fmul_s,
5308     gen_helper_gvec_fmul_d,
5309 };
5310 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5311 
5312 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5313     gen_helper_gvec_fmax_h,
5314     gen_helper_gvec_fmax_s,
5315     gen_helper_gvec_fmax_d,
5316 };
5317 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5318 
5319 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5320     gen_helper_gvec_fmin_h,
5321     gen_helper_gvec_fmin_s,
5322     gen_helper_gvec_fmin_d,
5323 };
5324 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5325 
5326 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5327     gen_helper_gvec_fmaxnum_h,
5328     gen_helper_gvec_fmaxnum_s,
5329     gen_helper_gvec_fmaxnum_d,
5330 };
5331 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5332 
5333 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5334     gen_helper_gvec_fminnum_h,
5335     gen_helper_gvec_fminnum_s,
5336     gen_helper_gvec_fminnum_d,
5337 };
5338 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5339 
5340 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5341     gen_helper_gvec_fmulx_h,
5342     gen_helper_gvec_fmulx_s,
5343     gen_helper_gvec_fmulx_d,
5344 };
5345 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5346 
5347 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5348     gen_helper_gvec_vfma_h,
5349     gen_helper_gvec_vfma_s,
5350     gen_helper_gvec_vfma_d,
5351 };
5352 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5353 
5354 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5355     gen_helper_gvec_vfms_h,
5356     gen_helper_gvec_vfms_s,
5357     gen_helper_gvec_vfms_d,
5358 };
5359 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5360 
5361 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5362     gen_helper_gvec_fceq_h,
5363     gen_helper_gvec_fceq_s,
5364     gen_helper_gvec_fceq_d,
5365 };
5366 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5367 
5368 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5369     gen_helper_gvec_fcge_h,
5370     gen_helper_gvec_fcge_s,
5371     gen_helper_gvec_fcge_d,
5372 };
5373 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5374 
5375 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5376     gen_helper_gvec_fcgt_h,
5377     gen_helper_gvec_fcgt_s,
5378     gen_helper_gvec_fcgt_d,
5379 };
5380 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5381 
5382 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5383     gen_helper_gvec_facge_h,
5384     gen_helper_gvec_facge_s,
5385     gen_helper_gvec_facge_d,
5386 };
5387 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5388 
5389 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5390     gen_helper_gvec_facgt_h,
5391     gen_helper_gvec_facgt_s,
5392     gen_helper_gvec_facgt_d,
5393 };
5394 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5395 
5396 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5397     gen_helper_gvec_fabd_h,
5398     gen_helper_gvec_fabd_s,
5399     gen_helper_gvec_fabd_d,
5400 };
5401 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5402 
5403 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5404     gen_helper_gvec_recps_h,
5405     gen_helper_gvec_recps_s,
5406     gen_helper_gvec_recps_d,
5407 };
5408 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5409 
5410 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5411     gen_helper_gvec_rsqrts_h,
5412     gen_helper_gvec_rsqrts_s,
5413     gen_helper_gvec_rsqrts_d,
5414 };
5415 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5416 
5417 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5418     gen_helper_gvec_faddp_h,
5419     gen_helper_gvec_faddp_s,
5420     gen_helper_gvec_faddp_d,
5421 };
5422 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5423 
5424 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5425     gen_helper_gvec_fmaxp_h,
5426     gen_helper_gvec_fmaxp_s,
5427     gen_helper_gvec_fmaxp_d,
5428 };
5429 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5430 
5431 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5432     gen_helper_gvec_fminp_h,
5433     gen_helper_gvec_fminp_s,
5434     gen_helper_gvec_fminp_d,
5435 };
5436 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5437 
5438 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5439     gen_helper_gvec_fmaxnump_h,
5440     gen_helper_gvec_fmaxnump_s,
5441     gen_helper_gvec_fmaxnump_d,
5442 };
5443 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5444 
5445 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5446     gen_helper_gvec_fminnump_h,
5447     gen_helper_gvec_fminnump_s,
5448     gen_helper_gvec_fminnump_d,
5449 };
5450 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5451 
5452 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5453 {
5454     if (fp_access_check(s)) {
5455         int data = (is_2 << 1) | is_s;
5456         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5457                            vec_full_reg_offset(s, a->rn),
5458                            vec_full_reg_offset(s, a->rm), tcg_env,
5459                            a->q ? 16 : 8, vec_full_reg_size(s),
5460                            data, gen_helper_gvec_fmlal_a64);
5461     }
5462     return true;
5463 }
5464 
5465 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5466 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5467 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5468 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5469 
5470 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5471 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5472 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5473 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5474 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5475 
5476 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5477 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5478 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5479 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5480 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5481 
5482 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5483 {
5484     if (fp_access_check(s)) {
5485         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5486     }
5487     return true;
5488 }
5489 
5490 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5491 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5492 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5493 
5494 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5495 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5496 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5497 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5498 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5499 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5500 
5501 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5502 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5503 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5504 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5505 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5506 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5507 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5508 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5509 
5510 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5511 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5512 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5513 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5514 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5515 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5516 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5517 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5518 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5519 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5520 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5521 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5522 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5523 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5524 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5525 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5526 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5527 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5528 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5529 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5530 
5531 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5532 {
5533     if (a->esz == MO_64 && !a->q) {
5534         return false;
5535     }
5536     if (fp_access_check(s)) {
5537         tcg_gen_gvec_cmp(cond, a->esz,
5538                          vec_full_reg_offset(s, a->rd),
5539                          vec_full_reg_offset(s, a->rn),
5540                          vec_full_reg_offset(s, a->rm),
5541                          a->q ? 16 : 8, vec_full_reg_size(s));
5542     }
5543     return true;
5544 }
5545 
5546 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5547 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5548 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5549 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5550 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5551 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5552 
5553 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5554 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5555 
5556 /*
5557  * Advanced SIMD scalar/vector x indexed element
5558  */
5559 
5560 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5561 {
5562     switch (a->esz) {
5563     case MO_64:
5564         if (fp_access_check(s)) {
5565             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5566             TCGv_i64 t1 = tcg_temp_new_i64();
5567 
5568             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5569             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5570             write_fp_dreg(s, a->rd, t0);
5571         }
5572         break;
5573     case MO_32:
5574         if (fp_access_check(s)) {
5575             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5576             TCGv_i32 t1 = tcg_temp_new_i32();
5577 
5578             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5579             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5580             write_fp_sreg(s, a->rd, t0);
5581         }
5582         break;
5583     case MO_16:
5584         if (!dc_isar_feature(aa64_fp16, s)) {
5585             return false;
5586         }
5587         if (fp_access_check(s)) {
5588             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5589             TCGv_i32 t1 = tcg_temp_new_i32();
5590 
5591             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5592             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5593             write_fp_sreg(s, a->rd, t0);
5594         }
5595         break;
5596     default:
5597         g_assert_not_reached();
5598     }
5599     return true;
5600 }
5601 
5602 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5603 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5604 
5605 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5606 {
5607     switch (a->esz) {
5608     case MO_64:
5609         if (fp_access_check(s)) {
5610             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5611             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5612             TCGv_i64 t2 = tcg_temp_new_i64();
5613 
5614             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5615             if (neg) {
5616                 gen_vfp_negd(t1, t1);
5617             }
5618             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5619             write_fp_dreg(s, a->rd, t0);
5620         }
5621         break;
5622     case MO_32:
5623         if (fp_access_check(s)) {
5624             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5625             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5626             TCGv_i32 t2 = tcg_temp_new_i32();
5627 
5628             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5629             if (neg) {
5630                 gen_vfp_negs(t1, t1);
5631             }
5632             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5633             write_fp_sreg(s, a->rd, t0);
5634         }
5635         break;
5636     case MO_16:
5637         if (!dc_isar_feature(aa64_fp16, s)) {
5638             return false;
5639         }
5640         if (fp_access_check(s)) {
5641             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5642             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5643             TCGv_i32 t2 = tcg_temp_new_i32();
5644 
5645             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5646             if (neg) {
5647                 gen_vfp_negh(t1, t1);
5648             }
5649             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5650                                        fpstatus_ptr(FPST_FPCR_F16));
5651             write_fp_sreg(s, a->rd, t0);
5652         }
5653         break;
5654     default:
5655         g_assert_not_reached();
5656     }
5657     return true;
5658 }
5659 
5660 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5661 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5662 
5663 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5664                                   const ENVScalar2 *f)
5665 {
5666     if (a->esz < MO_16 || a->esz > MO_32) {
5667         return false;
5668     }
5669     if (fp_access_check(s)) {
5670         TCGv_i32 t0 = tcg_temp_new_i32();
5671         TCGv_i32 t1 = tcg_temp_new_i32();
5672 
5673         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5674         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5675         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5676         write_fp_sreg(s, a->rd, t0);
5677     }
5678     return true;
5679 }
5680 
5681 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5682 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5683 
5684 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5685                               gen_helper_gvec_3_ptr * const fns[3])
5686 {
5687     MemOp esz = a->esz;
5688 
5689     switch (esz) {
5690     case MO_64:
5691         if (!a->q) {
5692             return false;
5693         }
5694         break;
5695     case MO_32:
5696         break;
5697     case MO_16:
5698         if (!dc_isar_feature(aa64_fp16, s)) {
5699             return false;
5700         }
5701         break;
5702     default:
5703         g_assert_not_reached();
5704     }
5705     if (fp_access_check(s)) {
5706         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5707                           esz == MO_16, a->idx, fns[esz - 1]);
5708     }
5709     return true;
5710 }
5711 
5712 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5713     gen_helper_gvec_fmul_idx_h,
5714     gen_helper_gvec_fmul_idx_s,
5715     gen_helper_gvec_fmul_idx_d,
5716 };
5717 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5718 
5719 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5720     gen_helper_gvec_fmulx_idx_h,
5721     gen_helper_gvec_fmulx_idx_s,
5722     gen_helper_gvec_fmulx_idx_d,
5723 };
5724 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5725 
5726 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5727 {
5728     static gen_helper_gvec_4_ptr * const fns[3] = {
5729         gen_helper_gvec_fmla_idx_h,
5730         gen_helper_gvec_fmla_idx_s,
5731         gen_helper_gvec_fmla_idx_d,
5732     };
5733     MemOp esz = a->esz;
5734 
5735     switch (esz) {
5736     case MO_64:
5737         if (!a->q) {
5738             return false;
5739         }
5740         break;
5741     case MO_32:
5742         break;
5743     case MO_16:
5744         if (!dc_isar_feature(aa64_fp16, s)) {
5745             return false;
5746         }
5747         break;
5748     default:
5749         g_assert_not_reached();
5750     }
5751     if (fp_access_check(s)) {
5752         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5753                           esz == MO_16, (a->idx << 1) | neg,
5754                           fns[esz - 1]);
5755     }
5756     return true;
5757 }
5758 
5759 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5760 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5761 
5762 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5763 {
5764     if (fp_access_check(s)) {
5765         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5766         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5767                            vec_full_reg_offset(s, a->rn),
5768                            vec_full_reg_offset(s, a->rm), tcg_env,
5769                            a->q ? 16 : 8, vec_full_reg_size(s),
5770                            data, gen_helper_gvec_fmlal_idx_a64);
5771     }
5772     return true;
5773 }
5774 
5775 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5776 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5777 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5778 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5779 
5780 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5781                                gen_helper_gvec_3 * const fns[2])
5782 {
5783     assert(a->esz == MO_16 || a->esz == MO_32);
5784     if (fp_access_check(s)) {
5785         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5786     }
5787     return true;
5788 }
5789 
5790 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5791     gen_helper_gvec_mul_idx_h,
5792     gen_helper_gvec_mul_idx_s,
5793 };
5794 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5795 
5796 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5797 {
5798     static gen_helper_gvec_4 * const fns[2][2] = {
5799         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5800         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5801     };
5802 
5803     assert(a->esz == MO_16 || a->esz == MO_32);
5804     if (fp_access_check(s)) {
5805         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5806                          a->idx, fns[a->esz - 1][sub]);
5807     }
5808     return true;
5809 }
5810 
5811 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5812 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5813 
5814 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5815                                   gen_helper_gvec_4 * const fns[2])
5816 {
5817     assert(a->esz == MO_16 || a->esz == MO_32);
5818     if (fp_access_check(s)) {
5819         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5820                            vec_full_reg_offset(s, a->rn),
5821                            vec_full_reg_offset(s, a->rm),
5822                            offsetof(CPUARMState, vfp.qc),
5823                            a->q ? 16 : 8, vec_full_reg_size(s),
5824                            a->idx, fns[a->esz - 1]);
5825     }
5826     return true;
5827 }
5828 
5829 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5830     gen_helper_neon_sqdmulh_idx_h,
5831     gen_helper_neon_sqdmulh_idx_s,
5832 };
5833 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5834 
5835 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5836     gen_helper_neon_sqrdmulh_idx_h,
5837     gen_helper_neon_sqrdmulh_idx_s,
5838 };
5839 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5840 
5841 /*
5842  * Advanced SIMD scalar pairwise
5843  */
5844 
5845 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5846 {
5847     switch (a->esz) {
5848     case MO_64:
5849         if (fp_access_check(s)) {
5850             TCGv_i64 t0 = tcg_temp_new_i64();
5851             TCGv_i64 t1 = tcg_temp_new_i64();
5852 
5853             read_vec_element(s, t0, a->rn, 0, MO_64);
5854             read_vec_element(s, t1, a->rn, 1, MO_64);
5855             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5856             write_fp_dreg(s, a->rd, t0);
5857         }
5858         break;
5859     case MO_32:
5860         if (fp_access_check(s)) {
5861             TCGv_i32 t0 = tcg_temp_new_i32();
5862             TCGv_i32 t1 = tcg_temp_new_i32();
5863 
5864             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5865             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5866             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5867             write_fp_sreg(s, a->rd, t0);
5868         }
5869         break;
5870     case MO_16:
5871         if (!dc_isar_feature(aa64_fp16, s)) {
5872             return false;
5873         }
5874         if (fp_access_check(s)) {
5875             TCGv_i32 t0 = tcg_temp_new_i32();
5876             TCGv_i32 t1 = tcg_temp_new_i32();
5877 
5878             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5879             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5881             write_fp_sreg(s, a->rd, t0);
5882         }
5883         break;
5884     default:
5885         g_assert_not_reached();
5886     }
5887     return true;
5888 }
5889 
5890 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5891 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5892 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5893 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5894 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5895 
5896 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5897 {
5898     if (fp_access_check(s)) {
5899         TCGv_i64 t0 = tcg_temp_new_i64();
5900         TCGv_i64 t1 = tcg_temp_new_i64();
5901 
5902         read_vec_element(s, t0, a->rn, 0, MO_64);
5903         read_vec_element(s, t1, a->rn, 1, MO_64);
5904         tcg_gen_add_i64(t0, t0, t1);
5905         write_fp_dreg(s, a->rd, t0);
5906     }
5907     return true;
5908 }
5909 
5910 /*
5911  * Floating-point conditional select
5912  */
5913 
5914 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
5915 {
5916     TCGv_i64 t_true, t_false;
5917     DisasCompare64 c;
5918 
5919     switch (a->esz) {
5920     case MO_32:
5921     case MO_64:
5922         break;
5923     case MO_16:
5924         if (!dc_isar_feature(aa64_fp16, s)) {
5925             return false;
5926         }
5927         break;
5928     default:
5929         return false;
5930     }
5931 
5932     if (!fp_access_check(s)) {
5933         return true;
5934     }
5935 
5936     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5937     t_true = tcg_temp_new_i64();
5938     t_false = tcg_temp_new_i64();
5939     read_vec_element(s, t_true, a->rn, 0, a->esz);
5940     read_vec_element(s, t_false, a->rm, 0, a->esz);
5941 
5942     a64_test_cc(&c, a->cond);
5943     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5944                         t_true, t_false);
5945 
5946     /*
5947      * Note that sregs & hregs write back zeros to the high bits,
5948      * and we've already done the zero-extension.
5949      */
5950     write_fp_dreg(s, a->rd, t_true);
5951     return true;
5952 }
5953 
5954 /*
5955  * Floating-point data-processing (3 source)
5956  */
5957 
5958 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
5959 {
5960     TCGv_ptr fpst;
5961 
5962     /*
5963      * These are fused multiply-add.  Note that doing the negations here
5964      * as separate steps is correct: an input NaN should come out with
5965      * its sign bit flipped if it is a negated-input.
5966      */
5967     switch (a->esz) {
5968     case MO_64:
5969         if (fp_access_check(s)) {
5970             TCGv_i64 tn = read_fp_dreg(s, a->rn);
5971             TCGv_i64 tm = read_fp_dreg(s, a->rm);
5972             TCGv_i64 ta = read_fp_dreg(s, a->ra);
5973 
5974             if (neg_a) {
5975                 gen_vfp_negd(ta, ta);
5976             }
5977             if (neg_n) {
5978                 gen_vfp_negd(tn, tn);
5979             }
5980             fpst = fpstatus_ptr(FPST_FPCR);
5981             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
5982             write_fp_dreg(s, a->rd, ta);
5983         }
5984         break;
5985 
5986     case MO_32:
5987         if (fp_access_check(s)) {
5988             TCGv_i32 tn = read_fp_sreg(s, a->rn);
5989             TCGv_i32 tm = read_fp_sreg(s, a->rm);
5990             TCGv_i32 ta = read_fp_sreg(s, a->ra);
5991 
5992             if (neg_a) {
5993                 gen_vfp_negs(ta, ta);
5994             }
5995             if (neg_n) {
5996                 gen_vfp_negs(tn, tn);
5997             }
5998             fpst = fpstatus_ptr(FPST_FPCR);
5999             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6000             write_fp_sreg(s, a->rd, ta);
6001         }
6002         break;
6003 
6004     case MO_16:
6005         if (!dc_isar_feature(aa64_fp16, s)) {
6006             return false;
6007         }
6008         if (fp_access_check(s)) {
6009             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6010             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6011             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6012 
6013             if (neg_a) {
6014                 gen_vfp_negh(ta, ta);
6015             }
6016             if (neg_n) {
6017                 gen_vfp_negh(tn, tn);
6018             }
6019             fpst = fpstatus_ptr(FPST_FPCR_F16);
6020             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6021             write_fp_sreg(s, a->rd, ta);
6022         }
6023         break;
6024 
6025     default:
6026         return false;
6027     }
6028     return true;
6029 }
6030 
6031 TRANS(FMADD, do_fmadd, a, false, false)
6032 TRANS(FNMADD, do_fmadd, a, true, true)
6033 TRANS(FMSUB, do_fmadd, a, false, true)
6034 TRANS(FNMSUB, do_fmadd, a, true, false)
6035 
6036 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6037  * Note that it is the caller's responsibility to ensure that the
6038  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6039  * mandated semantics for out of range shifts.
6040  */
6041 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6042                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6043 {
6044     switch (shift_type) {
6045     case A64_SHIFT_TYPE_LSL:
6046         tcg_gen_shl_i64(dst, src, shift_amount);
6047         break;
6048     case A64_SHIFT_TYPE_LSR:
6049         tcg_gen_shr_i64(dst, src, shift_amount);
6050         break;
6051     case A64_SHIFT_TYPE_ASR:
6052         if (!sf) {
6053             tcg_gen_ext32s_i64(dst, src);
6054         }
6055         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6056         break;
6057     case A64_SHIFT_TYPE_ROR:
6058         if (sf) {
6059             tcg_gen_rotr_i64(dst, src, shift_amount);
6060         } else {
6061             TCGv_i32 t0, t1;
6062             t0 = tcg_temp_new_i32();
6063             t1 = tcg_temp_new_i32();
6064             tcg_gen_extrl_i64_i32(t0, src);
6065             tcg_gen_extrl_i64_i32(t1, shift_amount);
6066             tcg_gen_rotr_i32(t0, t0, t1);
6067             tcg_gen_extu_i32_i64(dst, t0);
6068         }
6069         break;
6070     default:
6071         assert(FALSE); /* all shift types should be handled */
6072         break;
6073     }
6074 
6075     if (!sf) { /* zero extend final result */
6076         tcg_gen_ext32u_i64(dst, dst);
6077     }
6078 }
6079 
6080 /* Shift a TCGv src by immediate, put result in dst.
6081  * The shift amount must be in range (this should always be true as the
6082  * relevant instructions will UNDEF on bad shift immediates).
6083  */
6084 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6085                           enum a64_shift_type shift_type, unsigned int shift_i)
6086 {
6087     assert(shift_i < (sf ? 64 : 32));
6088 
6089     if (shift_i == 0) {
6090         tcg_gen_mov_i64(dst, src);
6091     } else {
6092         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6093     }
6094 }
6095 
6096 /* Logical (shifted register)
6097  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6098  * +----+-----+-----------+-------+---+------+--------+------+------+
6099  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6100  * +----+-----+-----------+-------+---+------+--------+------+------+
6101  */
6102 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6103 {
6104     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6105     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6106 
6107     sf = extract32(insn, 31, 1);
6108     opc = extract32(insn, 29, 2);
6109     shift_type = extract32(insn, 22, 2);
6110     invert = extract32(insn, 21, 1);
6111     rm = extract32(insn, 16, 5);
6112     shift_amount = extract32(insn, 10, 6);
6113     rn = extract32(insn, 5, 5);
6114     rd = extract32(insn, 0, 5);
6115 
6116     if (!sf && (shift_amount & (1 << 5))) {
6117         unallocated_encoding(s);
6118         return;
6119     }
6120 
6121     tcg_rd = cpu_reg(s, rd);
6122 
6123     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6124         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6125          * register-register MOV and MVN, so it is worth special casing.
6126          */
6127         tcg_rm = cpu_reg(s, rm);
6128         if (invert) {
6129             tcg_gen_not_i64(tcg_rd, tcg_rm);
6130             if (!sf) {
6131                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6132             }
6133         } else {
6134             if (sf) {
6135                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6136             } else {
6137                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6138             }
6139         }
6140         return;
6141     }
6142 
6143     tcg_rm = read_cpu_reg(s, rm, sf);
6144 
6145     if (shift_amount) {
6146         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6147     }
6148 
6149     tcg_rn = cpu_reg(s, rn);
6150 
6151     switch (opc | (invert << 2)) {
6152     case 0: /* AND */
6153     case 3: /* ANDS */
6154         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6155         break;
6156     case 1: /* ORR */
6157         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6158         break;
6159     case 2: /* EOR */
6160         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6161         break;
6162     case 4: /* BIC */
6163     case 7: /* BICS */
6164         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6165         break;
6166     case 5: /* ORN */
6167         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6168         break;
6169     case 6: /* EON */
6170         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6171         break;
6172     default:
6173         assert(FALSE);
6174         break;
6175     }
6176 
6177     if (!sf) {
6178         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6179     }
6180 
6181     if (opc == 3) {
6182         gen_logic_CC(sf, tcg_rd);
6183     }
6184 }
6185 
6186 /*
6187  * Add/subtract (extended register)
6188  *
6189  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6190  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6191  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6192  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6193  *
6194  *  sf: 0 -> 32bit, 1 -> 64bit
6195  *  op: 0 -> add  , 1 -> sub
6196  *   S: 1 -> set flags
6197  * opt: 00
6198  * option: extension type (see DecodeRegExtend)
6199  * imm3: optional shift to Rm
6200  *
6201  * Rd = Rn + LSL(extend(Rm), amount)
6202  */
6203 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6204 {
6205     int rd = extract32(insn, 0, 5);
6206     int rn = extract32(insn, 5, 5);
6207     int imm3 = extract32(insn, 10, 3);
6208     int option = extract32(insn, 13, 3);
6209     int rm = extract32(insn, 16, 5);
6210     int opt = extract32(insn, 22, 2);
6211     bool setflags = extract32(insn, 29, 1);
6212     bool sub_op = extract32(insn, 30, 1);
6213     bool sf = extract32(insn, 31, 1);
6214 
6215     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6216     TCGv_i64 tcg_rd;
6217     TCGv_i64 tcg_result;
6218 
6219     if (imm3 > 4 || opt != 0) {
6220         unallocated_encoding(s);
6221         return;
6222     }
6223 
6224     /* non-flag setting ops may use SP */
6225     if (!setflags) {
6226         tcg_rd = cpu_reg_sp(s, rd);
6227     } else {
6228         tcg_rd = cpu_reg(s, rd);
6229     }
6230     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6231 
6232     tcg_rm = read_cpu_reg(s, rm, sf);
6233     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6234 
6235     tcg_result = tcg_temp_new_i64();
6236 
6237     if (!setflags) {
6238         if (sub_op) {
6239             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6240         } else {
6241             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6242         }
6243     } else {
6244         if (sub_op) {
6245             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6246         } else {
6247             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6248         }
6249     }
6250 
6251     if (sf) {
6252         tcg_gen_mov_i64(tcg_rd, tcg_result);
6253     } else {
6254         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6255     }
6256 }
6257 
6258 /*
6259  * Add/subtract (shifted register)
6260  *
6261  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6262  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6263  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6264  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6265  *
6266  *    sf: 0 -> 32bit, 1 -> 64bit
6267  *    op: 0 -> add  , 1 -> sub
6268  *     S: 1 -> set flags
6269  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6270  *  imm6: Shift amount to apply to Rm before the add/sub
6271  */
6272 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6273 {
6274     int rd = extract32(insn, 0, 5);
6275     int rn = extract32(insn, 5, 5);
6276     int imm6 = extract32(insn, 10, 6);
6277     int rm = extract32(insn, 16, 5);
6278     int shift_type = extract32(insn, 22, 2);
6279     bool setflags = extract32(insn, 29, 1);
6280     bool sub_op = extract32(insn, 30, 1);
6281     bool sf = extract32(insn, 31, 1);
6282 
6283     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6284     TCGv_i64 tcg_rn, tcg_rm;
6285     TCGv_i64 tcg_result;
6286 
6287     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6288         unallocated_encoding(s);
6289         return;
6290     }
6291 
6292     tcg_rn = read_cpu_reg(s, rn, sf);
6293     tcg_rm = read_cpu_reg(s, rm, sf);
6294 
6295     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6296 
6297     tcg_result = tcg_temp_new_i64();
6298 
6299     if (!setflags) {
6300         if (sub_op) {
6301             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6302         } else {
6303             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6304         }
6305     } else {
6306         if (sub_op) {
6307             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6308         } else {
6309             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6310         }
6311     }
6312 
6313     if (sf) {
6314         tcg_gen_mov_i64(tcg_rd, tcg_result);
6315     } else {
6316         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6317     }
6318 }
6319 
6320 /* Data-processing (3 source)
6321  *
6322  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6323  *  +--+------+-----------+------+------+----+------+------+------+
6324  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6325  *  +--+------+-----------+------+------+----+------+------+------+
6326  */
6327 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6328 {
6329     int rd = extract32(insn, 0, 5);
6330     int rn = extract32(insn, 5, 5);
6331     int ra = extract32(insn, 10, 5);
6332     int rm = extract32(insn, 16, 5);
6333     int op_id = (extract32(insn, 29, 3) << 4) |
6334         (extract32(insn, 21, 3) << 1) |
6335         extract32(insn, 15, 1);
6336     bool sf = extract32(insn, 31, 1);
6337     bool is_sub = extract32(op_id, 0, 1);
6338     bool is_high = extract32(op_id, 2, 1);
6339     bool is_signed = false;
6340     TCGv_i64 tcg_op1;
6341     TCGv_i64 tcg_op2;
6342     TCGv_i64 tcg_tmp;
6343 
6344     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6345     switch (op_id) {
6346     case 0x42: /* SMADDL */
6347     case 0x43: /* SMSUBL */
6348     case 0x44: /* SMULH */
6349         is_signed = true;
6350         break;
6351     case 0x0: /* MADD (32bit) */
6352     case 0x1: /* MSUB (32bit) */
6353     case 0x40: /* MADD (64bit) */
6354     case 0x41: /* MSUB (64bit) */
6355     case 0x4a: /* UMADDL */
6356     case 0x4b: /* UMSUBL */
6357     case 0x4c: /* UMULH */
6358         break;
6359     default:
6360         unallocated_encoding(s);
6361         return;
6362     }
6363 
6364     if (is_high) {
6365         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6366         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6367         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6368         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6369 
6370         if (is_signed) {
6371             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6372         } else {
6373             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6374         }
6375         return;
6376     }
6377 
6378     tcg_op1 = tcg_temp_new_i64();
6379     tcg_op2 = tcg_temp_new_i64();
6380     tcg_tmp = tcg_temp_new_i64();
6381 
6382     if (op_id < 0x42) {
6383         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6384         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6385     } else {
6386         if (is_signed) {
6387             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6388             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6389         } else {
6390             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6391             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6392         }
6393     }
6394 
6395     if (ra == 31 && !is_sub) {
6396         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6397         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6398     } else {
6399         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6400         if (is_sub) {
6401             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6402         } else {
6403             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6404         }
6405     }
6406 
6407     if (!sf) {
6408         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6409     }
6410 }
6411 
6412 /* Add/subtract (with carry)
6413  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6414  * +--+--+--+------------------------+------+-------------+------+-----+
6415  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6416  * +--+--+--+------------------------+------+-------------+------+-----+
6417  */
6418 
6419 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6420 {
6421     unsigned int sf, op, setflags, rm, rn, rd;
6422     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6423 
6424     sf = extract32(insn, 31, 1);
6425     op = extract32(insn, 30, 1);
6426     setflags = extract32(insn, 29, 1);
6427     rm = extract32(insn, 16, 5);
6428     rn = extract32(insn, 5, 5);
6429     rd = extract32(insn, 0, 5);
6430 
6431     tcg_rd = cpu_reg(s, rd);
6432     tcg_rn = cpu_reg(s, rn);
6433 
6434     if (op) {
6435         tcg_y = tcg_temp_new_i64();
6436         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6437     } else {
6438         tcg_y = cpu_reg(s, rm);
6439     }
6440 
6441     if (setflags) {
6442         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6443     } else {
6444         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6445     }
6446 }
6447 
6448 /*
6449  * Rotate right into flags
6450  *  31 30 29                21       15          10      5  4      0
6451  * +--+--+--+-----------------+--------+-----------+------+--+------+
6452  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6453  * +--+--+--+-----------------+--------+-----------+------+--+------+
6454  */
6455 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6456 {
6457     int mask = extract32(insn, 0, 4);
6458     int o2 = extract32(insn, 4, 1);
6459     int rn = extract32(insn, 5, 5);
6460     int imm6 = extract32(insn, 15, 6);
6461     int sf_op_s = extract32(insn, 29, 3);
6462     TCGv_i64 tcg_rn;
6463     TCGv_i32 nzcv;
6464 
6465     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6466         unallocated_encoding(s);
6467         return;
6468     }
6469 
6470     tcg_rn = read_cpu_reg(s, rn, 1);
6471     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6472 
6473     nzcv = tcg_temp_new_i32();
6474     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6475 
6476     if (mask & 8) { /* N */
6477         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6478     }
6479     if (mask & 4) { /* Z */
6480         tcg_gen_not_i32(cpu_ZF, nzcv);
6481         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6482     }
6483     if (mask & 2) { /* C */
6484         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6485     }
6486     if (mask & 1) { /* V */
6487         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6488     }
6489 }
6490 
6491 /*
6492  * Evaluate into flags
6493  *  31 30 29                21        15   14        10      5  4      0
6494  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6495  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6496  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6497  */
6498 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6499 {
6500     int o3_mask = extract32(insn, 0, 5);
6501     int rn = extract32(insn, 5, 5);
6502     int o2 = extract32(insn, 15, 6);
6503     int sz = extract32(insn, 14, 1);
6504     int sf_op_s = extract32(insn, 29, 3);
6505     TCGv_i32 tmp;
6506     int shift;
6507 
6508     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6509         !dc_isar_feature(aa64_condm_4, s)) {
6510         unallocated_encoding(s);
6511         return;
6512     }
6513     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6514 
6515     tmp = tcg_temp_new_i32();
6516     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6517     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6518     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6519     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6520     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6521 }
6522 
6523 /* Conditional compare (immediate / register)
6524  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6525  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6526  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6527  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6528  *        [1]                             y                [0]       [0]
6529  */
6530 static void disas_cc(DisasContext *s, uint32_t insn)
6531 {
6532     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6533     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6534     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6535     DisasCompare c;
6536 
6537     if (!extract32(insn, 29, 1)) {
6538         unallocated_encoding(s);
6539         return;
6540     }
6541     if (insn & (1 << 10 | 1 << 4)) {
6542         unallocated_encoding(s);
6543         return;
6544     }
6545     sf = extract32(insn, 31, 1);
6546     op = extract32(insn, 30, 1);
6547     is_imm = extract32(insn, 11, 1);
6548     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6549     cond = extract32(insn, 12, 4);
6550     rn = extract32(insn, 5, 5);
6551     nzcv = extract32(insn, 0, 4);
6552 
6553     /* Set T0 = !COND.  */
6554     tcg_t0 = tcg_temp_new_i32();
6555     arm_test_cc(&c, cond);
6556     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6557 
6558     /* Load the arguments for the new comparison.  */
6559     if (is_imm) {
6560         tcg_y = tcg_temp_new_i64();
6561         tcg_gen_movi_i64(tcg_y, y);
6562     } else {
6563         tcg_y = cpu_reg(s, y);
6564     }
6565     tcg_rn = cpu_reg(s, rn);
6566 
6567     /* Set the flags for the new comparison.  */
6568     tcg_tmp = tcg_temp_new_i64();
6569     if (op) {
6570         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6571     } else {
6572         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6573     }
6574 
6575     /* If COND was false, force the flags to #nzcv.  Compute two masks
6576      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6577      * For tcg hosts that support ANDC, we can make do with just T1.
6578      * In either case, allow the tcg optimizer to delete any unused mask.
6579      */
6580     tcg_t1 = tcg_temp_new_i32();
6581     tcg_t2 = tcg_temp_new_i32();
6582     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6583     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6584 
6585     if (nzcv & 8) { /* N */
6586         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6587     } else {
6588         if (TCG_TARGET_HAS_andc_i32) {
6589             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6590         } else {
6591             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6592         }
6593     }
6594     if (nzcv & 4) { /* Z */
6595         if (TCG_TARGET_HAS_andc_i32) {
6596             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6597         } else {
6598             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6599         }
6600     } else {
6601         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6602     }
6603     if (nzcv & 2) { /* C */
6604         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6605     } else {
6606         if (TCG_TARGET_HAS_andc_i32) {
6607             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6608         } else {
6609             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6610         }
6611     }
6612     if (nzcv & 1) { /* V */
6613         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6614     } else {
6615         if (TCG_TARGET_HAS_andc_i32) {
6616             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6617         } else {
6618             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6619         }
6620     }
6621 }
6622 
6623 /* Conditional select
6624  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6625  * +----+----+---+-----------------+------+------+-----+------+------+
6626  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6627  * +----+----+---+-----------------+------+------+-----+------+------+
6628  */
6629 static void disas_cond_select(DisasContext *s, uint32_t insn)
6630 {
6631     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6632     TCGv_i64 tcg_rd, zero;
6633     DisasCompare64 c;
6634 
6635     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6636         /* S == 1 or op2<1> == 1 */
6637         unallocated_encoding(s);
6638         return;
6639     }
6640     sf = extract32(insn, 31, 1);
6641     else_inv = extract32(insn, 30, 1);
6642     rm = extract32(insn, 16, 5);
6643     cond = extract32(insn, 12, 4);
6644     else_inc = extract32(insn, 10, 1);
6645     rn = extract32(insn, 5, 5);
6646     rd = extract32(insn, 0, 5);
6647 
6648     tcg_rd = cpu_reg(s, rd);
6649 
6650     a64_test_cc(&c, cond);
6651     zero = tcg_constant_i64(0);
6652 
6653     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6654         /* CSET & CSETM.  */
6655         if (else_inv) {
6656             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6657                                    tcg_rd, c.value, zero);
6658         } else {
6659             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6660                                 tcg_rd, c.value, zero);
6661         }
6662     } else {
6663         TCGv_i64 t_true = cpu_reg(s, rn);
6664         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6665         if (else_inv && else_inc) {
6666             tcg_gen_neg_i64(t_false, t_false);
6667         } else if (else_inv) {
6668             tcg_gen_not_i64(t_false, t_false);
6669         } else if (else_inc) {
6670             tcg_gen_addi_i64(t_false, t_false, 1);
6671         }
6672         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6673     }
6674 
6675     if (!sf) {
6676         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6677     }
6678 }
6679 
6680 static void handle_clz(DisasContext *s, unsigned int sf,
6681                        unsigned int rn, unsigned int rd)
6682 {
6683     TCGv_i64 tcg_rd, tcg_rn;
6684     tcg_rd = cpu_reg(s, rd);
6685     tcg_rn = cpu_reg(s, rn);
6686 
6687     if (sf) {
6688         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6689     } else {
6690         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6691         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6692         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6693         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6694     }
6695 }
6696 
6697 static void handle_cls(DisasContext *s, unsigned int sf,
6698                        unsigned int rn, unsigned int rd)
6699 {
6700     TCGv_i64 tcg_rd, tcg_rn;
6701     tcg_rd = cpu_reg(s, rd);
6702     tcg_rn = cpu_reg(s, rn);
6703 
6704     if (sf) {
6705         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6706     } else {
6707         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6708         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6709         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6710         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6711     }
6712 }
6713 
6714 static void handle_rbit(DisasContext *s, unsigned int sf,
6715                         unsigned int rn, unsigned int rd)
6716 {
6717     TCGv_i64 tcg_rd, tcg_rn;
6718     tcg_rd = cpu_reg(s, rd);
6719     tcg_rn = cpu_reg(s, rn);
6720 
6721     if (sf) {
6722         gen_helper_rbit64(tcg_rd, tcg_rn);
6723     } else {
6724         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6725         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6726         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6727         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6728     }
6729 }
6730 
6731 /* REV with sf==1, opcode==3 ("REV64") */
6732 static void handle_rev64(DisasContext *s, unsigned int sf,
6733                          unsigned int rn, unsigned int rd)
6734 {
6735     if (!sf) {
6736         unallocated_encoding(s);
6737         return;
6738     }
6739     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6740 }
6741 
6742 /* REV with sf==0, opcode==2
6743  * REV32 (sf==1, opcode==2)
6744  */
6745 static void handle_rev32(DisasContext *s, unsigned int sf,
6746                          unsigned int rn, unsigned int rd)
6747 {
6748     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6749     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6750 
6751     if (sf) {
6752         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6753         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6754     } else {
6755         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6756     }
6757 }
6758 
6759 /* REV16 (opcode==1) */
6760 static void handle_rev16(DisasContext *s, unsigned int sf,
6761                          unsigned int rn, unsigned int rd)
6762 {
6763     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6764     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6765     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6766     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6767 
6768     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6769     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6770     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6771     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6772     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6773 }
6774 
6775 /* Data-processing (1 source)
6776  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6777  * +----+---+---+-----------------+---------+--------+------+------+
6778  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6779  * +----+---+---+-----------------+---------+--------+------+------+
6780  */
6781 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6782 {
6783     unsigned int sf, opcode, opcode2, rn, rd;
6784     TCGv_i64 tcg_rd;
6785 
6786     if (extract32(insn, 29, 1)) {
6787         unallocated_encoding(s);
6788         return;
6789     }
6790 
6791     sf = extract32(insn, 31, 1);
6792     opcode = extract32(insn, 10, 6);
6793     opcode2 = extract32(insn, 16, 5);
6794     rn = extract32(insn, 5, 5);
6795     rd = extract32(insn, 0, 5);
6796 
6797 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6798 
6799     switch (MAP(sf, opcode2, opcode)) {
6800     case MAP(0, 0x00, 0x00): /* RBIT */
6801     case MAP(1, 0x00, 0x00):
6802         handle_rbit(s, sf, rn, rd);
6803         break;
6804     case MAP(0, 0x00, 0x01): /* REV16 */
6805     case MAP(1, 0x00, 0x01):
6806         handle_rev16(s, sf, rn, rd);
6807         break;
6808     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6809     case MAP(1, 0x00, 0x02):
6810         handle_rev32(s, sf, rn, rd);
6811         break;
6812     case MAP(1, 0x00, 0x03): /* REV64 */
6813         handle_rev64(s, sf, rn, rd);
6814         break;
6815     case MAP(0, 0x00, 0x04): /* CLZ */
6816     case MAP(1, 0x00, 0x04):
6817         handle_clz(s, sf, rn, rd);
6818         break;
6819     case MAP(0, 0x00, 0x05): /* CLS */
6820     case MAP(1, 0x00, 0x05):
6821         handle_cls(s, sf, rn, rd);
6822         break;
6823     case MAP(1, 0x01, 0x00): /* PACIA */
6824         if (s->pauth_active) {
6825             tcg_rd = cpu_reg(s, rd);
6826             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6827         } else if (!dc_isar_feature(aa64_pauth, s)) {
6828             goto do_unallocated;
6829         }
6830         break;
6831     case MAP(1, 0x01, 0x01): /* PACIB */
6832         if (s->pauth_active) {
6833             tcg_rd = cpu_reg(s, rd);
6834             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6835         } else if (!dc_isar_feature(aa64_pauth, s)) {
6836             goto do_unallocated;
6837         }
6838         break;
6839     case MAP(1, 0x01, 0x02): /* PACDA */
6840         if (s->pauth_active) {
6841             tcg_rd = cpu_reg(s, rd);
6842             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6843         } else if (!dc_isar_feature(aa64_pauth, s)) {
6844             goto do_unallocated;
6845         }
6846         break;
6847     case MAP(1, 0x01, 0x03): /* PACDB */
6848         if (s->pauth_active) {
6849             tcg_rd = cpu_reg(s, rd);
6850             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6851         } else if (!dc_isar_feature(aa64_pauth, s)) {
6852             goto do_unallocated;
6853         }
6854         break;
6855     case MAP(1, 0x01, 0x04): /* AUTIA */
6856         if (s->pauth_active) {
6857             tcg_rd = cpu_reg(s, rd);
6858             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6859         } else if (!dc_isar_feature(aa64_pauth, s)) {
6860             goto do_unallocated;
6861         }
6862         break;
6863     case MAP(1, 0x01, 0x05): /* AUTIB */
6864         if (s->pauth_active) {
6865             tcg_rd = cpu_reg(s, rd);
6866             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6867         } else if (!dc_isar_feature(aa64_pauth, s)) {
6868             goto do_unallocated;
6869         }
6870         break;
6871     case MAP(1, 0x01, 0x06): /* AUTDA */
6872         if (s->pauth_active) {
6873             tcg_rd = cpu_reg(s, rd);
6874             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6875         } else if (!dc_isar_feature(aa64_pauth, s)) {
6876             goto do_unallocated;
6877         }
6878         break;
6879     case MAP(1, 0x01, 0x07): /* AUTDB */
6880         if (s->pauth_active) {
6881             tcg_rd = cpu_reg(s, rd);
6882             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6883         } else if (!dc_isar_feature(aa64_pauth, s)) {
6884             goto do_unallocated;
6885         }
6886         break;
6887     case MAP(1, 0x01, 0x08): /* PACIZA */
6888         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6889             goto do_unallocated;
6890         } else if (s->pauth_active) {
6891             tcg_rd = cpu_reg(s, rd);
6892             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6893         }
6894         break;
6895     case MAP(1, 0x01, 0x09): /* PACIZB */
6896         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6897             goto do_unallocated;
6898         } else if (s->pauth_active) {
6899             tcg_rd = cpu_reg(s, rd);
6900             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6901         }
6902         break;
6903     case MAP(1, 0x01, 0x0a): /* PACDZA */
6904         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6905             goto do_unallocated;
6906         } else if (s->pauth_active) {
6907             tcg_rd = cpu_reg(s, rd);
6908             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6909         }
6910         break;
6911     case MAP(1, 0x01, 0x0b): /* PACDZB */
6912         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6913             goto do_unallocated;
6914         } else if (s->pauth_active) {
6915             tcg_rd = cpu_reg(s, rd);
6916             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6917         }
6918         break;
6919     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6920         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6921             goto do_unallocated;
6922         } else if (s->pauth_active) {
6923             tcg_rd = cpu_reg(s, rd);
6924             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6925         }
6926         break;
6927     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6928         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6929             goto do_unallocated;
6930         } else if (s->pauth_active) {
6931             tcg_rd = cpu_reg(s, rd);
6932             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6933         }
6934         break;
6935     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6936         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6937             goto do_unallocated;
6938         } else if (s->pauth_active) {
6939             tcg_rd = cpu_reg(s, rd);
6940             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6941         }
6942         break;
6943     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6944         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6945             goto do_unallocated;
6946         } else if (s->pauth_active) {
6947             tcg_rd = cpu_reg(s, rd);
6948             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6949         }
6950         break;
6951     case MAP(1, 0x01, 0x10): /* XPACI */
6952         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6953             goto do_unallocated;
6954         } else if (s->pauth_active) {
6955             tcg_rd = cpu_reg(s, rd);
6956             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6957         }
6958         break;
6959     case MAP(1, 0x01, 0x11): /* XPACD */
6960         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6961             goto do_unallocated;
6962         } else if (s->pauth_active) {
6963             tcg_rd = cpu_reg(s, rd);
6964             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6965         }
6966         break;
6967     default:
6968     do_unallocated:
6969         unallocated_encoding(s);
6970         break;
6971     }
6972 
6973 #undef MAP
6974 }
6975 
6976 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6977                        unsigned int rm, unsigned int rn, unsigned int rd)
6978 {
6979     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6980     tcg_rd = cpu_reg(s, rd);
6981 
6982     if (!sf && is_signed) {
6983         tcg_n = tcg_temp_new_i64();
6984         tcg_m = tcg_temp_new_i64();
6985         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6986         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6987     } else {
6988         tcg_n = read_cpu_reg(s, rn, sf);
6989         tcg_m = read_cpu_reg(s, rm, sf);
6990     }
6991 
6992     if (is_signed) {
6993         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6994     } else {
6995         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6996     }
6997 
6998     if (!sf) { /* zero extend final result */
6999         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7000     }
7001 }
7002 
7003 /* LSLV, LSRV, ASRV, RORV */
7004 static void handle_shift_reg(DisasContext *s,
7005                              enum a64_shift_type shift_type, unsigned int sf,
7006                              unsigned int rm, unsigned int rn, unsigned int rd)
7007 {
7008     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7009     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7010     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7011 
7012     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7013     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7014 }
7015 
7016 /* CRC32[BHWX], CRC32C[BHWX] */
7017 static void handle_crc32(DisasContext *s,
7018                          unsigned int sf, unsigned int sz, bool crc32c,
7019                          unsigned int rm, unsigned int rn, unsigned int rd)
7020 {
7021     TCGv_i64 tcg_acc, tcg_val;
7022     TCGv_i32 tcg_bytes;
7023 
7024     if (!dc_isar_feature(aa64_crc32, s)
7025         || (sf == 1 && sz != 3)
7026         || (sf == 0 && sz == 3)) {
7027         unallocated_encoding(s);
7028         return;
7029     }
7030 
7031     if (sz == 3) {
7032         tcg_val = cpu_reg(s, rm);
7033     } else {
7034         uint64_t mask;
7035         switch (sz) {
7036         case 0:
7037             mask = 0xFF;
7038             break;
7039         case 1:
7040             mask = 0xFFFF;
7041             break;
7042         case 2:
7043             mask = 0xFFFFFFFF;
7044             break;
7045         default:
7046             g_assert_not_reached();
7047         }
7048         tcg_val = tcg_temp_new_i64();
7049         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7050     }
7051 
7052     tcg_acc = cpu_reg(s, rn);
7053     tcg_bytes = tcg_constant_i32(1 << sz);
7054 
7055     if (crc32c) {
7056         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7057     } else {
7058         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7059     }
7060 }
7061 
7062 /* Data-processing (2 source)
7063  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7064  * +----+---+---+-----------------+------+--------+------+------+
7065  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7066  * +----+---+---+-----------------+------+--------+------+------+
7067  */
7068 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7069 {
7070     unsigned int sf, rm, opcode, rn, rd, setflag;
7071     sf = extract32(insn, 31, 1);
7072     setflag = extract32(insn, 29, 1);
7073     rm = extract32(insn, 16, 5);
7074     opcode = extract32(insn, 10, 6);
7075     rn = extract32(insn, 5, 5);
7076     rd = extract32(insn, 0, 5);
7077 
7078     if (setflag && opcode != 0) {
7079         unallocated_encoding(s);
7080         return;
7081     }
7082 
7083     switch (opcode) {
7084     case 0: /* SUBP(S) */
7085         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7086             goto do_unallocated;
7087         } else {
7088             TCGv_i64 tcg_n, tcg_m, tcg_d;
7089 
7090             tcg_n = read_cpu_reg_sp(s, rn, true);
7091             tcg_m = read_cpu_reg_sp(s, rm, true);
7092             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7093             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7094             tcg_d = cpu_reg(s, rd);
7095 
7096             if (setflag) {
7097                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7098             } else {
7099                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7100             }
7101         }
7102         break;
7103     case 2: /* UDIV */
7104         handle_div(s, false, sf, rm, rn, rd);
7105         break;
7106     case 3: /* SDIV */
7107         handle_div(s, true, sf, rm, rn, rd);
7108         break;
7109     case 4: /* IRG */
7110         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7111             goto do_unallocated;
7112         }
7113         if (s->ata[0]) {
7114             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7115                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7116         } else {
7117             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7118                                              cpu_reg_sp(s, rn));
7119         }
7120         break;
7121     case 5: /* GMI */
7122         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7123             goto do_unallocated;
7124         } else {
7125             TCGv_i64 t = tcg_temp_new_i64();
7126 
7127             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7128             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7129             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7130         }
7131         break;
7132     case 8: /* LSLV */
7133         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7134         break;
7135     case 9: /* LSRV */
7136         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7137         break;
7138     case 10: /* ASRV */
7139         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7140         break;
7141     case 11: /* RORV */
7142         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7143         break;
7144     case 12: /* PACGA */
7145         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7146             goto do_unallocated;
7147         }
7148         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7149                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7150         break;
7151     case 16:
7152     case 17:
7153     case 18:
7154     case 19:
7155     case 20:
7156     case 21:
7157     case 22:
7158     case 23: /* CRC32 */
7159     {
7160         int sz = extract32(opcode, 0, 2);
7161         bool crc32c = extract32(opcode, 2, 1);
7162         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7163         break;
7164     }
7165     default:
7166     do_unallocated:
7167         unallocated_encoding(s);
7168         break;
7169     }
7170 }
7171 
7172 /*
7173  * Data processing - register
7174  *  31  30 29  28      25    21  20  16      10         0
7175  * +--+---+--+---+-------+-----+-------+-------+---------+
7176  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7177  * +--+---+--+---+-------+-----+-------+-------+---------+
7178  */
7179 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7180 {
7181     int op0 = extract32(insn, 30, 1);
7182     int op1 = extract32(insn, 28, 1);
7183     int op2 = extract32(insn, 21, 4);
7184     int op3 = extract32(insn, 10, 6);
7185 
7186     if (!op1) {
7187         if (op2 & 8) {
7188             if (op2 & 1) {
7189                 /* Add/sub (extended register) */
7190                 disas_add_sub_ext_reg(s, insn);
7191             } else {
7192                 /* Add/sub (shifted register) */
7193                 disas_add_sub_reg(s, insn);
7194             }
7195         } else {
7196             /* Logical (shifted register) */
7197             disas_logic_reg(s, insn);
7198         }
7199         return;
7200     }
7201 
7202     switch (op2) {
7203     case 0x0:
7204         switch (op3) {
7205         case 0x00: /* Add/subtract (with carry) */
7206             disas_adc_sbc(s, insn);
7207             break;
7208 
7209         case 0x01: /* Rotate right into flags */
7210         case 0x21:
7211             disas_rotate_right_into_flags(s, insn);
7212             break;
7213 
7214         case 0x02: /* Evaluate into flags */
7215         case 0x12:
7216         case 0x22:
7217         case 0x32:
7218             disas_evaluate_into_flags(s, insn);
7219             break;
7220 
7221         default:
7222             goto do_unallocated;
7223         }
7224         break;
7225 
7226     case 0x2: /* Conditional compare */
7227         disas_cc(s, insn); /* both imm and reg forms */
7228         break;
7229 
7230     case 0x4: /* Conditional select */
7231         disas_cond_select(s, insn);
7232         break;
7233 
7234     case 0x6: /* Data-processing */
7235         if (op0) {    /* (1 source) */
7236             disas_data_proc_1src(s, insn);
7237         } else {      /* (2 source) */
7238             disas_data_proc_2src(s, insn);
7239         }
7240         break;
7241     case 0x8 ... 0xf: /* (3 source) */
7242         disas_data_proc_3src(s, insn);
7243         break;
7244 
7245     default:
7246     do_unallocated:
7247         unallocated_encoding(s);
7248         break;
7249     }
7250 }
7251 
7252 static void handle_fp_compare(DisasContext *s, int size,
7253                               unsigned int rn, unsigned int rm,
7254                               bool cmp_with_zero, bool signal_all_nans)
7255 {
7256     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7257     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7258 
7259     if (size == MO_64) {
7260         TCGv_i64 tcg_vn, tcg_vm;
7261 
7262         tcg_vn = read_fp_dreg(s, rn);
7263         if (cmp_with_zero) {
7264             tcg_vm = tcg_constant_i64(0);
7265         } else {
7266             tcg_vm = read_fp_dreg(s, rm);
7267         }
7268         if (signal_all_nans) {
7269             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7270         } else {
7271             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7272         }
7273     } else {
7274         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7275         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7276 
7277         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7278         if (cmp_with_zero) {
7279             tcg_gen_movi_i32(tcg_vm, 0);
7280         } else {
7281             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7282         }
7283 
7284         switch (size) {
7285         case MO_32:
7286             if (signal_all_nans) {
7287                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7288             } else {
7289                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7290             }
7291             break;
7292         case MO_16:
7293             if (signal_all_nans) {
7294                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7295             } else {
7296                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7297             }
7298             break;
7299         default:
7300             g_assert_not_reached();
7301         }
7302     }
7303 
7304     gen_set_nzcv(tcg_flags);
7305 }
7306 
7307 /* Floating point compare
7308  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7309  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7310  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7311  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7312  */
7313 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7314 {
7315     unsigned int mos, type, rm, op, rn, opc, op2r;
7316     int size;
7317 
7318     mos = extract32(insn, 29, 3);
7319     type = extract32(insn, 22, 2);
7320     rm = extract32(insn, 16, 5);
7321     op = extract32(insn, 14, 2);
7322     rn = extract32(insn, 5, 5);
7323     opc = extract32(insn, 3, 2);
7324     op2r = extract32(insn, 0, 3);
7325 
7326     if (mos || op || op2r) {
7327         unallocated_encoding(s);
7328         return;
7329     }
7330 
7331     switch (type) {
7332     case 0:
7333         size = MO_32;
7334         break;
7335     case 1:
7336         size = MO_64;
7337         break;
7338     case 3:
7339         size = MO_16;
7340         if (dc_isar_feature(aa64_fp16, s)) {
7341             break;
7342         }
7343         /* fallthru */
7344     default:
7345         unallocated_encoding(s);
7346         return;
7347     }
7348 
7349     if (!fp_access_check(s)) {
7350         return;
7351     }
7352 
7353     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7354 }
7355 
7356 /* Floating point conditional compare
7357  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7358  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7359  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7360  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7361  */
7362 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7363 {
7364     unsigned int mos, type, rm, cond, rn, op, nzcv;
7365     TCGLabel *label_continue = NULL;
7366     int size;
7367 
7368     mos = extract32(insn, 29, 3);
7369     type = extract32(insn, 22, 2);
7370     rm = extract32(insn, 16, 5);
7371     cond = extract32(insn, 12, 4);
7372     rn = extract32(insn, 5, 5);
7373     op = extract32(insn, 4, 1);
7374     nzcv = extract32(insn, 0, 4);
7375 
7376     if (mos) {
7377         unallocated_encoding(s);
7378         return;
7379     }
7380 
7381     switch (type) {
7382     case 0:
7383         size = MO_32;
7384         break;
7385     case 1:
7386         size = MO_64;
7387         break;
7388     case 3:
7389         size = MO_16;
7390         if (dc_isar_feature(aa64_fp16, s)) {
7391             break;
7392         }
7393         /* fallthru */
7394     default:
7395         unallocated_encoding(s);
7396         return;
7397     }
7398 
7399     if (!fp_access_check(s)) {
7400         return;
7401     }
7402 
7403     if (cond < 0x0e) { /* not always */
7404         TCGLabel *label_match = gen_new_label();
7405         label_continue = gen_new_label();
7406         arm_gen_test_cc(cond, label_match);
7407         /* nomatch: */
7408         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7409         tcg_gen_br(label_continue);
7410         gen_set_label(label_match);
7411     }
7412 
7413     handle_fp_compare(s, size, rn, rm, false, op);
7414 
7415     if (cond < 0x0e) {
7416         gen_set_label(label_continue);
7417     }
7418 }
7419 
7420 /* Floating-point data-processing (1 source) - half precision */
7421 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7422 {
7423     TCGv_ptr fpst = NULL;
7424     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7425     TCGv_i32 tcg_res = tcg_temp_new_i32();
7426 
7427     switch (opcode) {
7428     case 0x0: /* FMOV */
7429         tcg_gen_mov_i32(tcg_res, tcg_op);
7430         break;
7431     case 0x1: /* FABS */
7432         gen_vfp_absh(tcg_res, tcg_op);
7433         break;
7434     case 0x2: /* FNEG */
7435         gen_vfp_negh(tcg_res, tcg_op);
7436         break;
7437     case 0x3: /* FSQRT */
7438         fpst = fpstatus_ptr(FPST_FPCR_F16);
7439         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7440         break;
7441     case 0x8: /* FRINTN */
7442     case 0x9: /* FRINTP */
7443     case 0xa: /* FRINTM */
7444     case 0xb: /* FRINTZ */
7445     case 0xc: /* FRINTA */
7446     {
7447         TCGv_i32 tcg_rmode;
7448 
7449         fpst = fpstatus_ptr(FPST_FPCR_F16);
7450         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7451         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7452         gen_restore_rmode(tcg_rmode, fpst);
7453         break;
7454     }
7455     case 0xe: /* FRINTX */
7456         fpst = fpstatus_ptr(FPST_FPCR_F16);
7457         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7458         break;
7459     case 0xf: /* FRINTI */
7460         fpst = fpstatus_ptr(FPST_FPCR_F16);
7461         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7462         break;
7463     default:
7464         g_assert_not_reached();
7465     }
7466 
7467     write_fp_sreg(s, rd, tcg_res);
7468 }
7469 
7470 /* Floating-point data-processing (1 source) - single precision */
7471 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7472 {
7473     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7474     TCGv_i32 tcg_op, tcg_res;
7475     TCGv_ptr fpst;
7476     int rmode = -1;
7477 
7478     tcg_op = read_fp_sreg(s, rn);
7479     tcg_res = tcg_temp_new_i32();
7480 
7481     switch (opcode) {
7482     case 0x0: /* FMOV */
7483         tcg_gen_mov_i32(tcg_res, tcg_op);
7484         goto done;
7485     case 0x1: /* FABS */
7486         gen_vfp_abss(tcg_res, tcg_op);
7487         goto done;
7488     case 0x2: /* FNEG */
7489         gen_vfp_negs(tcg_res, tcg_op);
7490         goto done;
7491     case 0x3: /* FSQRT */
7492         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7493         goto done;
7494     case 0x6: /* BFCVT */
7495         gen_fpst = gen_helper_bfcvt;
7496         break;
7497     case 0x8: /* FRINTN */
7498     case 0x9: /* FRINTP */
7499     case 0xa: /* FRINTM */
7500     case 0xb: /* FRINTZ */
7501     case 0xc: /* FRINTA */
7502         rmode = opcode & 7;
7503         gen_fpst = gen_helper_rints;
7504         break;
7505     case 0xe: /* FRINTX */
7506         gen_fpst = gen_helper_rints_exact;
7507         break;
7508     case 0xf: /* FRINTI */
7509         gen_fpst = gen_helper_rints;
7510         break;
7511     case 0x10: /* FRINT32Z */
7512         rmode = FPROUNDING_ZERO;
7513         gen_fpst = gen_helper_frint32_s;
7514         break;
7515     case 0x11: /* FRINT32X */
7516         gen_fpst = gen_helper_frint32_s;
7517         break;
7518     case 0x12: /* FRINT64Z */
7519         rmode = FPROUNDING_ZERO;
7520         gen_fpst = gen_helper_frint64_s;
7521         break;
7522     case 0x13: /* FRINT64X */
7523         gen_fpst = gen_helper_frint64_s;
7524         break;
7525     default:
7526         g_assert_not_reached();
7527     }
7528 
7529     fpst = fpstatus_ptr(FPST_FPCR);
7530     if (rmode >= 0) {
7531         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7532         gen_fpst(tcg_res, tcg_op, fpst);
7533         gen_restore_rmode(tcg_rmode, fpst);
7534     } else {
7535         gen_fpst(tcg_res, tcg_op, fpst);
7536     }
7537 
7538  done:
7539     write_fp_sreg(s, rd, tcg_res);
7540 }
7541 
7542 /* Floating-point data-processing (1 source) - double precision */
7543 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7544 {
7545     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7546     TCGv_i64 tcg_op, tcg_res;
7547     TCGv_ptr fpst;
7548     int rmode = -1;
7549 
7550     switch (opcode) {
7551     case 0x0: /* FMOV */
7552         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7553         return;
7554     }
7555 
7556     tcg_op = read_fp_dreg(s, rn);
7557     tcg_res = tcg_temp_new_i64();
7558 
7559     switch (opcode) {
7560     case 0x1: /* FABS */
7561         gen_vfp_absd(tcg_res, tcg_op);
7562         goto done;
7563     case 0x2: /* FNEG */
7564         gen_vfp_negd(tcg_res, tcg_op);
7565         goto done;
7566     case 0x3: /* FSQRT */
7567         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7568         goto done;
7569     case 0x8: /* FRINTN */
7570     case 0x9: /* FRINTP */
7571     case 0xa: /* FRINTM */
7572     case 0xb: /* FRINTZ */
7573     case 0xc: /* FRINTA */
7574         rmode = opcode & 7;
7575         gen_fpst = gen_helper_rintd;
7576         break;
7577     case 0xe: /* FRINTX */
7578         gen_fpst = gen_helper_rintd_exact;
7579         break;
7580     case 0xf: /* FRINTI */
7581         gen_fpst = gen_helper_rintd;
7582         break;
7583     case 0x10: /* FRINT32Z */
7584         rmode = FPROUNDING_ZERO;
7585         gen_fpst = gen_helper_frint32_d;
7586         break;
7587     case 0x11: /* FRINT32X */
7588         gen_fpst = gen_helper_frint32_d;
7589         break;
7590     case 0x12: /* FRINT64Z */
7591         rmode = FPROUNDING_ZERO;
7592         gen_fpst = gen_helper_frint64_d;
7593         break;
7594     case 0x13: /* FRINT64X */
7595         gen_fpst = gen_helper_frint64_d;
7596         break;
7597     default:
7598         g_assert_not_reached();
7599     }
7600 
7601     fpst = fpstatus_ptr(FPST_FPCR);
7602     if (rmode >= 0) {
7603         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7604         gen_fpst(tcg_res, tcg_op, fpst);
7605         gen_restore_rmode(tcg_rmode, fpst);
7606     } else {
7607         gen_fpst(tcg_res, tcg_op, fpst);
7608     }
7609 
7610  done:
7611     write_fp_dreg(s, rd, tcg_res);
7612 }
7613 
7614 static void handle_fp_fcvt(DisasContext *s, int opcode,
7615                            int rd, int rn, int dtype, int ntype)
7616 {
7617     switch (ntype) {
7618     case 0x0:
7619     {
7620         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7621         if (dtype == 1) {
7622             /* Single to double */
7623             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7624             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7625             write_fp_dreg(s, rd, tcg_rd);
7626         } else {
7627             /* Single to half */
7628             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7629             TCGv_i32 ahp = get_ahp_flag();
7630             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7631 
7632             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7633             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7634             write_fp_sreg(s, rd, tcg_rd);
7635         }
7636         break;
7637     }
7638     case 0x1:
7639     {
7640         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7641         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7642         if (dtype == 0) {
7643             /* Double to single */
7644             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7645         } else {
7646             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7647             TCGv_i32 ahp = get_ahp_flag();
7648             /* Double to half */
7649             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7650             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7651         }
7652         write_fp_sreg(s, rd, tcg_rd);
7653         break;
7654     }
7655     case 0x3:
7656     {
7657         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7658         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7659         TCGv_i32 tcg_ahp = get_ahp_flag();
7660         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7661         if (dtype == 0) {
7662             /* Half to single */
7663             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7664             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7665             write_fp_sreg(s, rd, tcg_rd);
7666         } else {
7667             /* Half to double */
7668             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7669             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7670             write_fp_dreg(s, rd, tcg_rd);
7671         }
7672         break;
7673     }
7674     default:
7675         g_assert_not_reached();
7676     }
7677 }
7678 
7679 /* Floating point data-processing (1 source)
7680  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7681  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7682  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7683  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7684  */
7685 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7686 {
7687     int mos = extract32(insn, 29, 3);
7688     int type = extract32(insn, 22, 2);
7689     int opcode = extract32(insn, 15, 6);
7690     int rn = extract32(insn, 5, 5);
7691     int rd = extract32(insn, 0, 5);
7692 
7693     if (mos) {
7694         goto do_unallocated;
7695     }
7696 
7697     switch (opcode) {
7698     case 0x4: case 0x5: case 0x7:
7699     {
7700         /* FCVT between half, single and double precision */
7701         int dtype = extract32(opcode, 0, 2);
7702         if (type == 2 || dtype == type) {
7703             goto do_unallocated;
7704         }
7705         if (!fp_access_check(s)) {
7706             return;
7707         }
7708 
7709         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7710         break;
7711     }
7712 
7713     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7714         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7715             goto do_unallocated;
7716         }
7717         /* fall through */
7718     case 0x0 ... 0x3:
7719     case 0x8 ... 0xc:
7720     case 0xe ... 0xf:
7721         /* 32-to-32 and 64-to-64 ops */
7722         switch (type) {
7723         case 0:
7724             if (!fp_access_check(s)) {
7725                 return;
7726             }
7727             handle_fp_1src_single(s, opcode, rd, rn);
7728             break;
7729         case 1:
7730             if (!fp_access_check(s)) {
7731                 return;
7732             }
7733             handle_fp_1src_double(s, opcode, rd, rn);
7734             break;
7735         case 3:
7736             if (!dc_isar_feature(aa64_fp16, s)) {
7737                 goto do_unallocated;
7738             }
7739 
7740             if (!fp_access_check(s)) {
7741                 return;
7742             }
7743             handle_fp_1src_half(s, opcode, rd, rn);
7744             break;
7745         default:
7746             goto do_unallocated;
7747         }
7748         break;
7749 
7750     case 0x6:
7751         switch (type) {
7752         case 1: /* BFCVT */
7753             if (!dc_isar_feature(aa64_bf16, s)) {
7754                 goto do_unallocated;
7755             }
7756             if (!fp_access_check(s)) {
7757                 return;
7758             }
7759             handle_fp_1src_single(s, opcode, rd, rn);
7760             break;
7761         default:
7762             goto do_unallocated;
7763         }
7764         break;
7765 
7766     default:
7767     do_unallocated:
7768         unallocated_encoding(s);
7769         break;
7770     }
7771 }
7772 
7773 /* Floating point immediate
7774  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7775  * +---+---+---+-----------+------+---+------------+-------+------+------+
7776  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7777  * +---+---+---+-----------+------+---+------------+-------+------+------+
7778  */
7779 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7780 {
7781     int rd = extract32(insn, 0, 5);
7782     int imm5 = extract32(insn, 5, 5);
7783     int imm8 = extract32(insn, 13, 8);
7784     int type = extract32(insn, 22, 2);
7785     int mos = extract32(insn, 29, 3);
7786     uint64_t imm;
7787     MemOp sz;
7788 
7789     if (mos || imm5) {
7790         unallocated_encoding(s);
7791         return;
7792     }
7793 
7794     switch (type) {
7795     case 0:
7796         sz = MO_32;
7797         break;
7798     case 1:
7799         sz = MO_64;
7800         break;
7801     case 3:
7802         sz = MO_16;
7803         if (dc_isar_feature(aa64_fp16, s)) {
7804             break;
7805         }
7806         /* fallthru */
7807     default:
7808         unallocated_encoding(s);
7809         return;
7810     }
7811 
7812     if (!fp_access_check(s)) {
7813         return;
7814     }
7815 
7816     imm = vfp_expand_imm(sz, imm8);
7817     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7818 }
7819 
7820 /* Handle floating point <=> fixed point conversions. Note that we can
7821  * also deal with fp <=> integer conversions as a special case (scale == 64)
7822  * OPTME: consider handling that special case specially or at least skipping
7823  * the call to scalbn in the helpers for zero shifts.
7824  */
7825 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7826                            bool itof, int rmode, int scale, int sf, int type)
7827 {
7828     bool is_signed = !(opcode & 1);
7829     TCGv_ptr tcg_fpstatus;
7830     TCGv_i32 tcg_shift, tcg_single;
7831     TCGv_i64 tcg_double;
7832 
7833     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7834 
7835     tcg_shift = tcg_constant_i32(64 - scale);
7836 
7837     if (itof) {
7838         TCGv_i64 tcg_int = cpu_reg(s, rn);
7839         if (!sf) {
7840             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7841 
7842             if (is_signed) {
7843                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7844             } else {
7845                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7846             }
7847 
7848             tcg_int = tcg_extend;
7849         }
7850 
7851         switch (type) {
7852         case 1: /* float64 */
7853             tcg_double = tcg_temp_new_i64();
7854             if (is_signed) {
7855                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7856                                      tcg_shift, tcg_fpstatus);
7857             } else {
7858                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7859                                      tcg_shift, tcg_fpstatus);
7860             }
7861             write_fp_dreg(s, rd, tcg_double);
7862             break;
7863 
7864         case 0: /* float32 */
7865             tcg_single = tcg_temp_new_i32();
7866             if (is_signed) {
7867                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7868                                      tcg_shift, tcg_fpstatus);
7869             } else {
7870                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7871                                      tcg_shift, tcg_fpstatus);
7872             }
7873             write_fp_sreg(s, rd, tcg_single);
7874             break;
7875 
7876         case 3: /* float16 */
7877             tcg_single = tcg_temp_new_i32();
7878             if (is_signed) {
7879                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7880                                      tcg_shift, tcg_fpstatus);
7881             } else {
7882                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7883                                      tcg_shift, tcg_fpstatus);
7884             }
7885             write_fp_sreg(s, rd, tcg_single);
7886             break;
7887 
7888         default:
7889             g_assert_not_reached();
7890         }
7891     } else {
7892         TCGv_i64 tcg_int = cpu_reg(s, rd);
7893         TCGv_i32 tcg_rmode;
7894 
7895         if (extract32(opcode, 2, 1)) {
7896             /* There are too many rounding modes to all fit into rmode,
7897              * so FCVTA[US] is a special case.
7898              */
7899             rmode = FPROUNDING_TIEAWAY;
7900         }
7901 
7902         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7903 
7904         switch (type) {
7905         case 1: /* float64 */
7906             tcg_double = read_fp_dreg(s, rn);
7907             if (is_signed) {
7908                 if (!sf) {
7909                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7910                                          tcg_shift, tcg_fpstatus);
7911                 } else {
7912                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7913                                          tcg_shift, tcg_fpstatus);
7914                 }
7915             } else {
7916                 if (!sf) {
7917                     gen_helper_vfp_tould(tcg_int, tcg_double,
7918                                          tcg_shift, tcg_fpstatus);
7919                 } else {
7920                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7921                                          tcg_shift, tcg_fpstatus);
7922                 }
7923             }
7924             if (!sf) {
7925                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7926             }
7927             break;
7928 
7929         case 0: /* float32 */
7930             tcg_single = read_fp_sreg(s, rn);
7931             if (sf) {
7932                 if (is_signed) {
7933                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7934                                          tcg_shift, tcg_fpstatus);
7935                 } else {
7936                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7937                                          tcg_shift, tcg_fpstatus);
7938                 }
7939             } else {
7940                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7941                 if (is_signed) {
7942                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7943                                          tcg_shift, tcg_fpstatus);
7944                 } else {
7945                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7946                                          tcg_shift, tcg_fpstatus);
7947                 }
7948                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7949             }
7950             break;
7951 
7952         case 3: /* float16 */
7953             tcg_single = read_fp_sreg(s, rn);
7954             if (sf) {
7955                 if (is_signed) {
7956                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7957                                          tcg_shift, tcg_fpstatus);
7958                 } else {
7959                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7960                                          tcg_shift, tcg_fpstatus);
7961                 }
7962             } else {
7963                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7964                 if (is_signed) {
7965                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7966                                          tcg_shift, tcg_fpstatus);
7967                 } else {
7968                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7969                                          tcg_shift, tcg_fpstatus);
7970                 }
7971                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7972             }
7973             break;
7974 
7975         default:
7976             g_assert_not_reached();
7977         }
7978 
7979         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7980     }
7981 }
7982 
7983 /* Floating point <-> fixed point conversions
7984  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7985  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7986  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7987  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7988  */
7989 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7990 {
7991     int rd = extract32(insn, 0, 5);
7992     int rn = extract32(insn, 5, 5);
7993     int scale = extract32(insn, 10, 6);
7994     int opcode = extract32(insn, 16, 3);
7995     int rmode = extract32(insn, 19, 2);
7996     int type = extract32(insn, 22, 2);
7997     bool sbit = extract32(insn, 29, 1);
7998     bool sf = extract32(insn, 31, 1);
7999     bool itof;
8000 
8001     if (sbit || (!sf && scale < 32)) {
8002         unallocated_encoding(s);
8003         return;
8004     }
8005 
8006     switch (type) {
8007     case 0: /* float32 */
8008     case 1: /* float64 */
8009         break;
8010     case 3: /* float16 */
8011         if (dc_isar_feature(aa64_fp16, s)) {
8012             break;
8013         }
8014         /* fallthru */
8015     default:
8016         unallocated_encoding(s);
8017         return;
8018     }
8019 
8020     switch ((rmode << 3) | opcode) {
8021     case 0x2: /* SCVTF */
8022     case 0x3: /* UCVTF */
8023         itof = true;
8024         break;
8025     case 0x18: /* FCVTZS */
8026     case 0x19: /* FCVTZU */
8027         itof = false;
8028         break;
8029     default:
8030         unallocated_encoding(s);
8031         return;
8032     }
8033 
8034     if (!fp_access_check(s)) {
8035         return;
8036     }
8037 
8038     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8039 }
8040 
8041 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8042 {
8043     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8044      * without conversion.
8045      */
8046 
8047     if (itof) {
8048         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8049         TCGv_i64 tmp;
8050 
8051         switch (type) {
8052         case 0:
8053             /* 32 bit */
8054             tmp = tcg_temp_new_i64();
8055             tcg_gen_ext32u_i64(tmp, tcg_rn);
8056             write_fp_dreg(s, rd, tmp);
8057             break;
8058         case 1:
8059             /* 64 bit */
8060             write_fp_dreg(s, rd, tcg_rn);
8061             break;
8062         case 2:
8063             /* 64 bit to top half. */
8064             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8065             clear_vec_high(s, true, rd);
8066             break;
8067         case 3:
8068             /* 16 bit */
8069             tmp = tcg_temp_new_i64();
8070             tcg_gen_ext16u_i64(tmp, tcg_rn);
8071             write_fp_dreg(s, rd, tmp);
8072             break;
8073         default:
8074             g_assert_not_reached();
8075         }
8076     } else {
8077         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8078 
8079         switch (type) {
8080         case 0:
8081             /* 32 bit */
8082             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8083             break;
8084         case 1:
8085             /* 64 bit */
8086             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8087             break;
8088         case 2:
8089             /* 64 bits from top half */
8090             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8091             break;
8092         case 3:
8093             /* 16 bit */
8094             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8095             break;
8096         default:
8097             g_assert_not_reached();
8098         }
8099     }
8100 }
8101 
8102 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8103 {
8104     TCGv_i64 t = read_fp_dreg(s, rn);
8105     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8106 
8107     gen_helper_fjcvtzs(t, t, fpstatus);
8108 
8109     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8110     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8111     tcg_gen_movi_i32(cpu_CF, 0);
8112     tcg_gen_movi_i32(cpu_NF, 0);
8113     tcg_gen_movi_i32(cpu_VF, 0);
8114 }
8115 
8116 /* Floating point <-> integer conversions
8117  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8118  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8119  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8120  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8121  */
8122 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8123 {
8124     int rd = extract32(insn, 0, 5);
8125     int rn = extract32(insn, 5, 5);
8126     int opcode = extract32(insn, 16, 3);
8127     int rmode = extract32(insn, 19, 2);
8128     int type = extract32(insn, 22, 2);
8129     bool sbit = extract32(insn, 29, 1);
8130     bool sf = extract32(insn, 31, 1);
8131     bool itof = false;
8132 
8133     if (sbit) {
8134         goto do_unallocated;
8135     }
8136 
8137     switch (opcode) {
8138     case 2: /* SCVTF */
8139     case 3: /* UCVTF */
8140         itof = true;
8141         /* fallthru */
8142     case 4: /* FCVTAS */
8143     case 5: /* FCVTAU */
8144         if (rmode != 0) {
8145             goto do_unallocated;
8146         }
8147         /* fallthru */
8148     case 0: /* FCVT[NPMZ]S */
8149     case 1: /* FCVT[NPMZ]U */
8150         switch (type) {
8151         case 0: /* float32 */
8152         case 1: /* float64 */
8153             break;
8154         case 3: /* float16 */
8155             if (!dc_isar_feature(aa64_fp16, s)) {
8156                 goto do_unallocated;
8157             }
8158             break;
8159         default:
8160             goto do_unallocated;
8161         }
8162         if (!fp_access_check(s)) {
8163             return;
8164         }
8165         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8166         break;
8167 
8168     default:
8169         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8170         case 0b01100110: /* FMOV half <-> 32-bit int */
8171         case 0b01100111:
8172         case 0b11100110: /* FMOV half <-> 64-bit int */
8173         case 0b11100111:
8174             if (!dc_isar_feature(aa64_fp16, s)) {
8175                 goto do_unallocated;
8176             }
8177             /* fallthru */
8178         case 0b00000110: /* FMOV 32-bit */
8179         case 0b00000111:
8180         case 0b10100110: /* FMOV 64-bit */
8181         case 0b10100111:
8182         case 0b11001110: /* FMOV top half of 128-bit */
8183         case 0b11001111:
8184             if (!fp_access_check(s)) {
8185                 return;
8186             }
8187             itof = opcode & 1;
8188             handle_fmov(s, rd, rn, type, itof);
8189             break;
8190 
8191         case 0b00111110: /* FJCVTZS */
8192             if (!dc_isar_feature(aa64_jscvt, s)) {
8193                 goto do_unallocated;
8194             } else if (fp_access_check(s)) {
8195                 handle_fjcvtzs(s, rd, rn);
8196             }
8197             break;
8198 
8199         default:
8200         do_unallocated:
8201             unallocated_encoding(s);
8202             return;
8203         }
8204         break;
8205     }
8206 }
8207 
8208 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8209  *   31  30  29 28     25 24                          0
8210  * +---+---+---+---------+-----------------------------+
8211  * |   | 0 |   | 1 1 1 1 |                             |
8212  * +---+---+---+---------+-----------------------------+
8213  */
8214 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8215 {
8216     if (extract32(insn, 24, 1)) {
8217         unallocated_encoding(s); /* in decodetree */
8218     } else if (extract32(insn, 21, 1) == 0) {
8219         /* Floating point to fixed point conversions */
8220         disas_fp_fixed_conv(s, insn);
8221     } else {
8222         switch (extract32(insn, 10, 2)) {
8223         case 1:
8224             /* Floating point conditional compare */
8225             disas_fp_ccomp(s, insn);
8226             break;
8227         case 2:
8228             /* Floating point data-processing (2 source) */
8229             unallocated_encoding(s); /* in decodetree */
8230             break;
8231         case 3:
8232             /* Floating point conditional select */
8233             unallocated_encoding(s); /* in decodetree */
8234             break;
8235         case 0:
8236             switch (ctz32(extract32(insn, 12, 4))) {
8237             case 0: /* [15:12] == xxx1 */
8238                 /* Floating point immediate */
8239                 disas_fp_imm(s, insn);
8240                 break;
8241             case 1: /* [15:12] == xx10 */
8242                 /* Floating point compare */
8243                 disas_fp_compare(s, insn);
8244                 break;
8245             case 2: /* [15:12] == x100 */
8246                 /* Floating point data-processing (1 source) */
8247                 disas_fp_1src(s, insn);
8248                 break;
8249             case 3: /* [15:12] == 1000 */
8250                 unallocated_encoding(s);
8251                 break;
8252             default: /* [15:12] == 0000 */
8253                 /* Floating point <-> integer conversions */
8254                 disas_fp_int_conv(s, insn);
8255                 break;
8256             }
8257             break;
8258         }
8259     }
8260 }
8261 
8262 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8263                      int pos)
8264 {
8265     /* Extract 64 bits from the middle of two concatenated 64 bit
8266      * vector register slices left:right. The extracted bits start
8267      * at 'pos' bits into the right (least significant) side.
8268      * We return the result in tcg_right, and guarantee not to
8269      * trash tcg_left.
8270      */
8271     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8272     assert(pos > 0 && pos < 64);
8273 
8274     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8275     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8276     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8277 }
8278 
8279 /* EXT
8280  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8281  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8282  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8283  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8284  */
8285 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8286 {
8287     int is_q = extract32(insn, 30, 1);
8288     int op2 = extract32(insn, 22, 2);
8289     int imm4 = extract32(insn, 11, 4);
8290     int rm = extract32(insn, 16, 5);
8291     int rn = extract32(insn, 5, 5);
8292     int rd = extract32(insn, 0, 5);
8293     int pos = imm4 << 3;
8294     TCGv_i64 tcg_resl, tcg_resh;
8295 
8296     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8297         unallocated_encoding(s);
8298         return;
8299     }
8300 
8301     if (!fp_access_check(s)) {
8302         return;
8303     }
8304 
8305     tcg_resh = tcg_temp_new_i64();
8306     tcg_resl = tcg_temp_new_i64();
8307 
8308     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8309      * either extracting 128 bits from a 128:128 concatenation, or
8310      * extracting 64 bits from a 64:64 concatenation.
8311      */
8312     if (!is_q) {
8313         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8314         if (pos != 0) {
8315             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8316             do_ext64(s, tcg_resh, tcg_resl, pos);
8317         }
8318     } else {
8319         TCGv_i64 tcg_hh;
8320         typedef struct {
8321             int reg;
8322             int elt;
8323         } EltPosns;
8324         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8325         EltPosns *elt = eltposns;
8326 
8327         if (pos >= 64) {
8328             elt++;
8329             pos -= 64;
8330         }
8331 
8332         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8333         elt++;
8334         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8335         elt++;
8336         if (pos != 0) {
8337             do_ext64(s, tcg_resh, tcg_resl, pos);
8338             tcg_hh = tcg_temp_new_i64();
8339             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8340             do_ext64(s, tcg_hh, tcg_resh, pos);
8341         }
8342     }
8343 
8344     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8345     if (is_q) {
8346         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8347     }
8348     clear_vec_high(s, is_q, rd);
8349 }
8350 
8351 /* TBL/TBX
8352  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8353  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8354  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8355  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8356  */
8357 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8358 {
8359     int op2 = extract32(insn, 22, 2);
8360     int is_q = extract32(insn, 30, 1);
8361     int rm = extract32(insn, 16, 5);
8362     int rn = extract32(insn, 5, 5);
8363     int rd = extract32(insn, 0, 5);
8364     int is_tbx = extract32(insn, 12, 1);
8365     int len = (extract32(insn, 13, 2) + 1) * 16;
8366 
8367     if (op2 != 0) {
8368         unallocated_encoding(s);
8369         return;
8370     }
8371 
8372     if (!fp_access_check(s)) {
8373         return;
8374     }
8375 
8376     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8377                        vec_full_reg_offset(s, rm), tcg_env,
8378                        is_q ? 16 : 8, vec_full_reg_size(s),
8379                        (len << 6) | (is_tbx << 5) | rn,
8380                        gen_helper_simd_tblx);
8381 }
8382 
8383 /* ZIP/UZP/TRN
8384  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8385  * +---+---+-------------+------+---+------+---+------------------+------+
8386  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8387  * +---+---+-------------+------+---+------+---+------------------+------+
8388  */
8389 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8390 {
8391     int rd = extract32(insn, 0, 5);
8392     int rn = extract32(insn, 5, 5);
8393     int rm = extract32(insn, 16, 5);
8394     int size = extract32(insn, 22, 2);
8395     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8396      * bit 2 indicates 1 vs 2 variant of the insn.
8397      */
8398     int opcode = extract32(insn, 12, 2);
8399     bool part = extract32(insn, 14, 1);
8400     bool is_q = extract32(insn, 30, 1);
8401     int esize = 8 << size;
8402     int i;
8403     int datasize = is_q ? 128 : 64;
8404     int elements = datasize / esize;
8405     TCGv_i64 tcg_res[2], tcg_ele;
8406 
8407     if (opcode == 0 || (size == 3 && !is_q)) {
8408         unallocated_encoding(s);
8409         return;
8410     }
8411 
8412     if (!fp_access_check(s)) {
8413         return;
8414     }
8415 
8416     tcg_res[0] = tcg_temp_new_i64();
8417     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8418     tcg_ele = tcg_temp_new_i64();
8419 
8420     for (i = 0; i < elements; i++) {
8421         int o, w;
8422 
8423         switch (opcode) {
8424         case 1: /* UZP1/2 */
8425         {
8426             int midpoint = elements / 2;
8427             if (i < midpoint) {
8428                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8429             } else {
8430                 read_vec_element(s, tcg_ele, rm,
8431                                  2 * (i - midpoint) + part, size);
8432             }
8433             break;
8434         }
8435         case 2: /* TRN1/2 */
8436             if (i & 1) {
8437                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8438             } else {
8439                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8440             }
8441             break;
8442         case 3: /* ZIP1/2 */
8443         {
8444             int base = part * elements / 2;
8445             if (i & 1) {
8446                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8447             } else {
8448                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8449             }
8450             break;
8451         }
8452         default:
8453             g_assert_not_reached();
8454         }
8455 
8456         w = (i * esize) / 64;
8457         o = (i * esize) % 64;
8458         if (o == 0) {
8459             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8460         } else {
8461             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8462             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8463         }
8464     }
8465 
8466     for (i = 0; i <= is_q; ++i) {
8467         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8468     }
8469     clear_vec_high(s, is_q, rd);
8470 }
8471 
8472 /*
8473  * do_reduction_op helper
8474  *
8475  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8476  * important for correct NaN propagation that we do these
8477  * operations in exactly the order specified by the pseudocode.
8478  *
8479  * This is a recursive function, TCG temps should be freed by the
8480  * calling function once it is done with the values.
8481  */
8482 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8483                                 int esize, int size, int vmap, TCGv_ptr fpst)
8484 {
8485     if (esize == size) {
8486         int element;
8487         MemOp msize = esize == 16 ? MO_16 : MO_32;
8488         TCGv_i32 tcg_elem;
8489 
8490         /* We should have one register left here */
8491         assert(ctpop8(vmap) == 1);
8492         element = ctz32(vmap);
8493         assert(element < 8);
8494 
8495         tcg_elem = tcg_temp_new_i32();
8496         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8497         return tcg_elem;
8498     } else {
8499         int bits = size / 2;
8500         int shift = ctpop8(vmap) / 2;
8501         int vmap_lo = (vmap >> shift) & vmap;
8502         int vmap_hi = (vmap & ~vmap_lo);
8503         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8504 
8505         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8506         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8507         tcg_res = tcg_temp_new_i32();
8508 
8509         switch (fpopcode) {
8510         case 0x0c: /* fmaxnmv half-precision */
8511             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8512             break;
8513         case 0x0f: /* fmaxv half-precision */
8514             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8515             break;
8516         case 0x1c: /* fminnmv half-precision */
8517             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8518             break;
8519         case 0x1f: /* fminv half-precision */
8520             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8521             break;
8522         case 0x2c: /* fmaxnmv */
8523             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8524             break;
8525         case 0x2f: /* fmaxv */
8526             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8527             break;
8528         case 0x3c: /* fminnmv */
8529             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8530             break;
8531         case 0x3f: /* fminv */
8532             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8533             break;
8534         default:
8535             g_assert_not_reached();
8536         }
8537         return tcg_res;
8538     }
8539 }
8540 
8541 /* AdvSIMD across lanes
8542  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8543  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8544  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8545  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8546  */
8547 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8548 {
8549     int rd = extract32(insn, 0, 5);
8550     int rn = extract32(insn, 5, 5);
8551     int size = extract32(insn, 22, 2);
8552     int opcode = extract32(insn, 12, 5);
8553     bool is_q = extract32(insn, 30, 1);
8554     bool is_u = extract32(insn, 29, 1);
8555     bool is_fp = false;
8556     bool is_min = false;
8557     int esize;
8558     int elements;
8559     int i;
8560     TCGv_i64 tcg_res, tcg_elt;
8561 
8562     switch (opcode) {
8563     case 0x1b: /* ADDV */
8564         if (is_u) {
8565             unallocated_encoding(s);
8566             return;
8567         }
8568         /* fall through */
8569     case 0x3: /* SADDLV, UADDLV */
8570     case 0xa: /* SMAXV, UMAXV */
8571     case 0x1a: /* SMINV, UMINV */
8572         if (size == 3 || (size == 2 && !is_q)) {
8573             unallocated_encoding(s);
8574             return;
8575         }
8576         break;
8577     case 0xc: /* FMAXNMV, FMINNMV */
8578     case 0xf: /* FMAXV, FMINV */
8579         /* Bit 1 of size field encodes min vs max and the actual size
8580          * depends on the encoding of the U bit. If not set (and FP16
8581          * enabled) then we do half-precision float instead of single
8582          * precision.
8583          */
8584         is_min = extract32(size, 1, 1);
8585         is_fp = true;
8586         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8587             size = 1;
8588         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8589             unallocated_encoding(s);
8590             return;
8591         } else {
8592             size = 2;
8593         }
8594         break;
8595     default:
8596         unallocated_encoding(s);
8597         return;
8598     }
8599 
8600     if (!fp_access_check(s)) {
8601         return;
8602     }
8603 
8604     esize = 8 << size;
8605     elements = (is_q ? 128 : 64) / esize;
8606 
8607     tcg_res = tcg_temp_new_i64();
8608     tcg_elt = tcg_temp_new_i64();
8609 
8610     /* These instructions operate across all lanes of a vector
8611      * to produce a single result. We can guarantee that a 64
8612      * bit intermediate is sufficient:
8613      *  + for [US]ADDLV the maximum element size is 32 bits, and
8614      *    the result type is 64 bits
8615      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8616      *    same as the element size, which is 32 bits at most
8617      * For the integer operations we can choose to work at 64
8618      * or 32 bits and truncate at the end; for simplicity
8619      * we use 64 bits always. The floating point
8620      * ops do require 32 bit intermediates, though.
8621      */
8622     if (!is_fp) {
8623         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8624 
8625         for (i = 1; i < elements; i++) {
8626             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8627 
8628             switch (opcode) {
8629             case 0x03: /* SADDLV / UADDLV */
8630             case 0x1b: /* ADDV */
8631                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8632                 break;
8633             case 0x0a: /* SMAXV / UMAXV */
8634                 if (is_u) {
8635                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8636                 } else {
8637                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8638                 }
8639                 break;
8640             case 0x1a: /* SMINV / UMINV */
8641                 if (is_u) {
8642                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8643                 } else {
8644                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8645                 }
8646                 break;
8647             default:
8648                 g_assert_not_reached();
8649             }
8650 
8651         }
8652     } else {
8653         /* Floating point vector reduction ops which work across 32
8654          * bit (single) or 16 bit (half-precision) intermediates.
8655          * Note that correct NaN propagation requires that we do these
8656          * operations in exactly the order specified by the pseudocode.
8657          */
8658         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8659         int fpopcode = opcode | is_min << 4 | is_u << 5;
8660         int vmap = (1 << elements) - 1;
8661         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8662                                              (is_q ? 128 : 64), vmap, fpst);
8663         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8664     }
8665 
8666     /* Now truncate the result to the width required for the final output */
8667     if (opcode == 0x03) {
8668         /* SADDLV, UADDLV: result is 2*esize */
8669         size++;
8670     }
8671 
8672     switch (size) {
8673     case 0:
8674         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8675         break;
8676     case 1:
8677         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8678         break;
8679     case 2:
8680         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8681         break;
8682     case 3:
8683         break;
8684     default:
8685         g_assert_not_reached();
8686     }
8687 
8688     write_fp_dreg(s, rd, tcg_res);
8689 }
8690 
8691 /* AdvSIMD modified immediate
8692  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8693  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8694  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8695  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8696  *
8697  * There are a number of operations that can be carried out here:
8698  *   MOVI - move (shifted) imm into register
8699  *   MVNI - move inverted (shifted) imm into register
8700  *   ORR  - bitwise OR of (shifted) imm with register
8701  *   BIC  - bitwise clear of (shifted) imm with register
8702  * With ARMv8.2 we also have:
8703  *   FMOV half-precision
8704  */
8705 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8706 {
8707     int rd = extract32(insn, 0, 5);
8708     int cmode = extract32(insn, 12, 4);
8709     int o2 = extract32(insn, 11, 1);
8710     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8711     bool is_neg = extract32(insn, 29, 1);
8712     bool is_q = extract32(insn, 30, 1);
8713     uint64_t imm = 0;
8714 
8715     if (o2) {
8716         if (cmode != 0xf || is_neg) {
8717             unallocated_encoding(s);
8718             return;
8719         }
8720         /* FMOV (vector, immediate) - half-precision */
8721         if (!dc_isar_feature(aa64_fp16, s)) {
8722             unallocated_encoding(s);
8723             return;
8724         }
8725         imm = vfp_expand_imm(MO_16, abcdefgh);
8726         /* now duplicate across the lanes */
8727         imm = dup_const(MO_16, imm);
8728     } else {
8729         if (cmode == 0xf && is_neg && !is_q) {
8730             unallocated_encoding(s);
8731             return;
8732         }
8733         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8734     }
8735 
8736     if (!fp_access_check(s)) {
8737         return;
8738     }
8739 
8740     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8741         /* MOVI or MVNI, with MVNI negation handled above.  */
8742         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8743                              vec_full_reg_size(s), imm);
8744     } else {
8745         /* ORR or BIC, with BIC negation to AND handled above.  */
8746         if (is_neg) {
8747             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8748         } else {
8749             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8750         }
8751     }
8752 }
8753 
8754 /*
8755  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8756  *
8757  * This code is handles the common shifting code and is used by both
8758  * the vector and scalar code.
8759  */
8760 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8761                                     TCGv_i64 tcg_rnd, bool accumulate,
8762                                     bool is_u, int size, int shift)
8763 {
8764     bool extended_result = false;
8765     bool round = tcg_rnd != NULL;
8766     int ext_lshift = 0;
8767     TCGv_i64 tcg_src_hi;
8768 
8769     if (round && size == 3) {
8770         extended_result = true;
8771         ext_lshift = 64 - shift;
8772         tcg_src_hi = tcg_temp_new_i64();
8773     } else if (shift == 64) {
8774         if (!accumulate && is_u) {
8775             /* result is zero */
8776             tcg_gen_movi_i64(tcg_res, 0);
8777             return;
8778         }
8779     }
8780 
8781     /* Deal with the rounding step */
8782     if (round) {
8783         if (extended_result) {
8784             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8785             if (!is_u) {
8786                 /* take care of sign extending tcg_res */
8787                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8788                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8789                                  tcg_src, tcg_src_hi,
8790                                  tcg_rnd, tcg_zero);
8791             } else {
8792                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8793                                  tcg_src, tcg_zero,
8794                                  tcg_rnd, tcg_zero);
8795             }
8796         } else {
8797             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8798         }
8799     }
8800 
8801     /* Now do the shift right */
8802     if (round && extended_result) {
8803         /* extended case, >64 bit precision required */
8804         if (ext_lshift == 0) {
8805             /* special case, only high bits matter */
8806             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8807         } else {
8808             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8809             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8810             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8811         }
8812     } else {
8813         if (is_u) {
8814             if (shift == 64) {
8815                 /* essentially shifting in 64 zeros */
8816                 tcg_gen_movi_i64(tcg_src, 0);
8817             } else {
8818                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8819             }
8820         } else {
8821             if (shift == 64) {
8822                 /* effectively extending the sign-bit */
8823                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8824             } else {
8825                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8826             }
8827         }
8828     }
8829 
8830     if (accumulate) {
8831         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8832     } else {
8833         tcg_gen_mov_i64(tcg_res, tcg_src);
8834     }
8835 }
8836 
8837 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8838 static void handle_scalar_simd_shri(DisasContext *s,
8839                                     bool is_u, int immh, int immb,
8840                                     int opcode, int rn, int rd)
8841 {
8842     const int size = 3;
8843     int immhb = immh << 3 | immb;
8844     int shift = 2 * (8 << size) - immhb;
8845     bool accumulate = false;
8846     bool round = false;
8847     bool insert = false;
8848     TCGv_i64 tcg_rn;
8849     TCGv_i64 tcg_rd;
8850     TCGv_i64 tcg_round;
8851 
8852     if (!extract32(immh, 3, 1)) {
8853         unallocated_encoding(s);
8854         return;
8855     }
8856 
8857     if (!fp_access_check(s)) {
8858         return;
8859     }
8860 
8861     switch (opcode) {
8862     case 0x02: /* SSRA / USRA (accumulate) */
8863         accumulate = true;
8864         break;
8865     case 0x04: /* SRSHR / URSHR (rounding) */
8866         round = true;
8867         break;
8868     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8869         accumulate = round = true;
8870         break;
8871     case 0x08: /* SRI */
8872         insert = true;
8873         break;
8874     }
8875 
8876     if (round) {
8877         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8878     } else {
8879         tcg_round = NULL;
8880     }
8881 
8882     tcg_rn = read_fp_dreg(s, rn);
8883     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8884 
8885     if (insert) {
8886         /* shift count same as element size is valid but does nothing;
8887          * special case to avoid potential shift by 64.
8888          */
8889         int esize = 8 << size;
8890         if (shift != esize) {
8891             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8892             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8893         }
8894     } else {
8895         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8896                                 accumulate, is_u, size, shift);
8897     }
8898 
8899     write_fp_dreg(s, rd, tcg_rd);
8900 }
8901 
8902 /* SHL/SLI - Scalar shift left */
8903 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8904                                     int immh, int immb, int opcode,
8905                                     int rn, int rd)
8906 {
8907     int size = 32 - clz32(immh) - 1;
8908     int immhb = immh << 3 | immb;
8909     int shift = immhb - (8 << size);
8910     TCGv_i64 tcg_rn;
8911     TCGv_i64 tcg_rd;
8912 
8913     if (!extract32(immh, 3, 1)) {
8914         unallocated_encoding(s);
8915         return;
8916     }
8917 
8918     if (!fp_access_check(s)) {
8919         return;
8920     }
8921 
8922     tcg_rn = read_fp_dreg(s, rn);
8923     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8924 
8925     if (insert) {
8926         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8927     } else {
8928         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8929     }
8930 
8931     write_fp_dreg(s, rd, tcg_rd);
8932 }
8933 
8934 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8935  * (signed/unsigned) narrowing */
8936 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8937                                    bool is_u_shift, bool is_u_narrow,
8938                                    int immh, int immb, int opcode,
8939                                    int rn, int rd)
8940 {
8941     int immhb = immh << 3 | immb;
8942     int size = 32 - clz32(immh) - 1;
8943     int esize = 8 << size;
8944     int shift = (2 * esize) - immhb;
8945     int elements = is_scalar ? 1 : (64 / esize);
8946     bool round = extract32(opcode, 0, 1);
8947     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8948     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8949     TCGv_i32 tcg_rd_narrowed;
8950     TCGv_i64 tcg_final;
8951 
8952     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8953         { gen_helper_neon_narrow_sat_s8,
8954           gen_helper_neon_unarrow_sat8 },
8955         { gen_helper_neon_narrow_sat_s16,
8956           gen_helper_neon_unarrow_sat16 },
8957         { gen_helper_neon_narrow_sat_s32,
8958           gen_helper_neon_unarrow_sat32 },
8959         { NULL, NULL },
8960     };
8961     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8962         gen_helper_neon_narrow_sat_u8,
8963         gen_helper_neon_narrow_sat_u16,
8964         gen_helper_neon_narrow_sat_u32,
8965         NULL
8966     };
8967     NeonGenNarrowEnvFn *narrowfn;
8968 
8969     int i;
8970 
8971     assert(size < 4);
8972 
8973     if (extract32(immh, 3, 1)) {
8974         unallocated_encoding(s);
8975         return;
8976     }
8977 
8978     if (!fp_access_check(s)) {
8979         return;
8980     }
8981 
8982     if (is_u_shift) {
8983         narrowfn = unsigned_narrow_fns[size];
8984     } else {
8985         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8986     }
8987 
8988     tcg_rn = tcg_temp_new_i64();
8989     tcg_rd = tcg_temp_new_i64();
8990     tcg_rd_narrowed = tcg_temp_new_i32();
8991     tcg_final = tcg_temp_new_i64();
8992 
8993     if (round) {
8994         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8995     } else {
8996         tcg_round = NULL;
8997     }
8998 
8999     for (i = 0; i < elements; i++) {
9000         read_vec_element(s, tcg_rn, rn, i, ldop);
9001         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9002                                 false, is_u_shift, size+1, shift);
9003         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9004         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9005         if (i == 0) {
9006             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9007         } else {
9008             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9009         }
9010     }
9011 
9012     if (!is_q) {
9013         write_vec_element(s, tcg_final, rd, 0, MO_64);
9014     } else {
9015         write_vec_element(s, tcg_final, rd, 1, MO_64);
9016     }
9017     clear_vec_high(s, is_q, rd);
9018 }
9019 
9020 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9021 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9022                              bool src_unsigned, bool dst_unsigned,
9023                              int immh, int immb, int rn, int rd)
9024 {
9025     int immhb = immh << 3 | immb;
9026     int size = 32 - clz32(immh) - 1;
9027     int shift = immhb - (8 << size);
9028     int pass;
9029 
9030     assert(immh != 0);
9031     assert(!(scalar && is_q));
9032 
9033     if (!scalar) {
9034         if (!is_q && extract32(immh, 3, 1)) {
9035             unallocated_encoding(s);
9036             return;
9037         }
9038 
9039         /* Since we use the variable-shift helpers we must
9040          * replicate the shift count into each element of
9041          * the tcg_shift value.
9042          */
9043         switch (size) {
9044         case 0:
9045             shift |= shift << 8;
9046             /* fall through */
9047         case 1:
9048             shift |= shift << 16;
9049             break;
9050         case 2:
9051         case 3:
9052             break;
9053         default:
9054             g_assert_not_reached();
9055         }
9056     }
9057 
9058     if (!fp_access_check(s)) {
9059         return;
9060     }
9061 
9062     if (size == 3) {
9063         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9064         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9065             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9066             { NULL, gen_helper_neon_qshl_u64 },
9067         };
9068         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9069         int maxpass = is_q ? 2 : 1;
9070 
9071         for (pass = 0; pass < maxpass; pass++) {
9072             TCGv_i64 tcg_op = tcg_temp_new_i64();
9073 
9074             read_vec_element(s, tcg_op, rn, pass, MO_64);
9075             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9076             write_vec_element(s, tcg_op, rd, pass, MO_64);
9077         }
9078         clear_vec_high(s, is_q, rd);
9079     } else {
9080         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9081         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9082             {
9083                 { gen_helper_neon_qshl_s8,
9084                   gen_helper_neon_qshl_s16,
9085                   gen_helper_neon_qshl_s32 },
9086                 { gen_helper_neon_qshlu_s8,
9087                   gen_helper_neon_qshlu_s16,
9088                   gen_helper_neon_qshlu_s32 }
9089             }, {
9090                 { NULL, NULL, NULL },
9091                 { gen_helper_neon_qshl_u8,
9092                   gen_helper_neon_qshl_u16,
9093                   gen_helper_neon_qshl_u32 }
9094             }
9095         };
9096         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9097         MemOp memop = scalar ? size : MO_32;
9098         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9099 
9100         for (pass = 0; pass < maxpass; pass++) {
9101             TCGv_i32 tcg_op = tcg_temp_new_i32();
9102 
9103             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9104             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9105             if (scalar) {
9106                 switch (size) {
9107                 case 0:
9108                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9109                     break;
9110                 case 1:
9111                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9112                     break;
9113                 case 2:
9114                     break;
9115                 default:
9116                     g_assert_not_reached();
9117                 }
9118                 write_fp_sreg(s, rd, tcg_op);
9119             } else {
9120                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9121             }
9122         }
9123 
9124         if (!scalar) {
9125             clear_vec_high(s, is_q, rd);
9126         }
9127     }
9128 }
9129 
9130 /* Common vector code for handling integer to FP conversion */
9131 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9132                                    int elements, int is_signed,
9133                                    int fracbits, int size)
9134 {
9135     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9136     TCGv_i32 tcg_shift = NULL;
9137 
9138     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9139     int pass;
9140 
9141     if (fracbits || size == MO_64) {
9142         tcg_shift = tcg_constant_i32(fracbits);
9143     }
9144 
9145     if (size == MO_64) {
9146         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9147         TCGv_i64 tcg_double = tcg_temp_new_i64();
9148 
9149         for (pass = 0; pass < elements; pass++) {
9150             read_vec_element(s, tcg_int64, rn, pass, mop);
9151 
9152             if (is_signed) {
9153                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9154                                      tcg_shift, tcg_fpst);
9155             } else {
9156                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9157                                      tcg_shift, tcg_fpst);
9158             }
9159             if (elements == 1) {
9160                 write_fp_dreg(s, rd, tcg_double);
9161             } else {
9162                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9163             }
9164         }
9165     } else {
9166         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9167         TCGv_i32 tcg_float = tcg_temp_new_i32();
9168 
9169         for (pass = 0; pass < elements; pass++) {
9170             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9171 
9172             switch (size) {
9173             case MO_32:
9174                 if (fracbits) {
9175                     if (is_signed) {
9176                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9177                                              tcg_shift, tcg_fpst);
9178                     } else {
9179                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9180                                              tcg_shift, tcg_fpst);
9181                     }
9182                 } else {
9183                     if (is_signed) {
9184                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9185                     } else {
9186                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9187                     }
9188                 }
9189                 break;
9190             case MO_16:
9191                 if (fracbits) {
9192                     if (is_signed) {
9193                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9194                                              tcg_shift, tcg_fpst);
9195                     } else {
9196                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9197                                              tcg_shift, tcg_fpst);
9198                     }
9199                 } else {
9200                     if (is_signed) {
9201                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9202                     } else {
9203                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9204                     }
9205                 }
9206                 break;
9207             default:
9208                 g_assert_not_reached();
9209             }
9210 
9211             if (elements == 1) {
9212                 write_fp_sreg(s, rd, tcg_float);
9213             } else {
9214                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9215             }
9216         }
9217     }
9218 
9219     clear_vec_high(s, elements << size == 16, rd);
9220 }
9221 
9222 /* UCVTF/SCVTF - Integer to FP conversion */
9223 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9224                                          bool is_q, bool is_u,
9225                                          int immh, int immb, int opcode,
9226                                          int rn, int rd)
9227 {
9228     int size, elements, fracbits;
9229     int immhb = immh << 3 | immb;
9230 
9231     if (immh & 8) {
9232         size = MO_64;
9233         if (!is_scalar && !is_q) {
9234             unallocated_encoding(s);
9235             return;
9236         }
9237     } else if (immh & 4) {
9238         size = MO_32;
9239     } else if (immh & 2) {
9240         size = MO_16;
9241         if (!dc_isar_feature(aa64_fp16, s)) {
9242             unallocated_encoding(s);
9243             return;
9244         }
9245     } else {
9246         /* immh == 0 would be a failure of the decode logic */
9247         g_assert(immh == 1);
9248         unallocated_encoding(s);
9249         return;
9250     }
9251 
9252     if (is_scalar) {
9253         elements = 1;
9254     } else {
9255         elements = (8 << is_q) >> size;
9256     }
9257     fracbits = (16 << size) - immhb;
9258 
9259     if (!fp_access_check(s)) {
9260         return;
9261     }
9262 
9263     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9264 }
9265 
9266 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9267 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9268                                          bool is_q, bool is_u,
9269                                          int immh, int immb, int rn, int rd)
9270 {
9271     int immhb = immh << 3 | immb;
9272     int pass, size, fracbits;
9273     TCGv_ptr tcg_fpstatus;
9274     TCGv_i32 tcg_rmode, tcg_shift;
9275 
9276     if (immh & 0x8) {
9277         size = MO_64;
9278         if (!is_scalar && !is_q) {
9279             unallocated_encoding(s);
9280             return;
9281         }
9282     } else if (immh & 0x4) {
9283         size = MO_32;
9284     } else if (immh & 0x2) {
9285         size = MO_16;
9286         if (!dc_isar_feature(aa64_fp16, s)) {
9287             unallocated_encoding(s);
9288             return;
9289         }
9290     } else {
9291         /* Should have split out AdvSIMD modified immediate earlier.  */
9292         assert(immh == 1);
9293         unallocated_encoding(s);
9294         return;
9295     }
9296 
9297     if (!fp_access_check(s)) {
9298         return;
9299     }
9300 
9301     assert(!(is_scalar && is_q));
9302 
9303     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9304     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9305     fracbits = (16 << size) - immhb;
9306     tcg_shift = tcg_constant_i32(fracbits);
9307 
9308     if (size == MO_64) {
9309         int maxpass = is_scalar ? 1 : 2;
9310 
9311         for (pass = 0; pass < maxpass; pass++) {
9312             TCGv_i64 tcg_op = tcg_temp_new_i64();
9313 
9314             read_vec_element(s, tcg_op, rn, pass, MO_64);
9315             if (is_u) {
9316                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9317             } else {
9318                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9319             }
9320             write_vec_element(s, tcg_op, rd, pass, MO_64);
9321         }
9322         clear_vec_high(s, is_q, rd);
9323     } else {
9324         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9325         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9326 
9327         switch (size) {
9328         case MO_16:
9329             if (is_u) {
9330                 fn = gen_helper_vfp_touhh;
9331             } else {
9332                 fn = gen_helper_vfp_toshh;
9333             }
9334             break;
9335         case MO_32:
9336             if (is_u) {
9337                 fn = gen_helper_vfp_touls;
9338             } else {
9339                 fn = gen_helper_vfp_tosls;
9340             }
9341             break;
9342         default:
9343             g_assert_not_reached();
9344         }
9345 
9346         for (pass = 0; pass < maxpass; pass++) {
9347             TCGv_i32 tcg_op = tcg_temp_new_i32();
9348 
9349             read_vec_element_i32(s, tcg_op, rn, pass, size);
9350             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9351             if (is_scalar) {
9352                 if (size == MO_16 && !is_u) {
9353                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9354                 }
9355                 write_fp_sreg(s, rd, tcg_op);
9356             } else {
9357                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9358             }
9359         }
9360         if (!is_scalar) {
9361             clear_vec_high(s, is_q, rd);
9362         }
9363     }
9364 
9365     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9366 }
9367 
9368 /* AdvSIMD scalar shift by immediate
9369  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9370  * +-----+---+-------------+------+------+--------+---+------+------+
9371  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9372  * +-----+---+-------------+------+------+--------+---+------+------+
9373  *
9374  * This is the scalar version so it works on a fixed sized registers
9375  */
9376 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9377 {
9378     int rd = extract32(insn, 0, 5);
9379     int rn = extract32(insn, 5, 5);
9380     int opcode = extract32(insn, 11, 5);
9381     int immb = extract32(insn, 16, 3);
9382     int immh = extract32(insn, 19, 4);
9383     bool is_u = extract32(insn, 29, 1);
9384 
9385     if (immh == 0) {
9386         unallocated_encoding(s);
9387         return;
9388     }
9389 
9390     switch (opcode) {
9391     case 0x08: /* SRI */
9392         if (!is_u) {
9393             unallocated_encoding(s);
9394             return;
9395         }
9396         /* fall through */
9397     case 0x00: /* SSHR / USHR */
9398     case 0x02: /* SSRA / USRA */
9399     case 0x04: /* SRSHR / URSHR */
9400     case 0x06: /* SRSRA / URSRA */
9401         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9402         break;
9403     case 0x0a: /* SHL / SLI */
9404         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9405         break;
9406     case 0x1c: /* SCVTF, UCVTF */
9407         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9408                                      opcode, rn, rd);
9409         break;
9410     case 0x10: /* SQSHRUN, SQSHRUN2 */
9411     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9412         if (!is_u) {
9413             unallocated_encoding(s);
9414             return;
9415         }
9416         handle_vec_simd_sqshrn(s, true, false, false, true,
9417                                immh, immb, opcode, rn, rd);
9418         break;
9419     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9420     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9421         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9422                                immh, immb, opcode, rn, rd);
9423         break;
9424     case 0xc: /* SQSHLU */
9425         if (!is_u) {
9426             unallocated_encoding(s);
9427             return;
9428         }
9429         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9430         break;
9431     case 0xe: /* SQSHL, UQSHL */
9432         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9433         break;
9434     case 0x1f: /* FCVTZS, FCVTZU */
9435         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9436         break;
9437     default:
9438         unallocated_encoding(s);
9439         break;
9440     }
9441 }
9442 
9443 /* AdvSIMD scalar three different
9444  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9445  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9446  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9447  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9448  */
9449 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9450 {
9451     bool is_u = extract32(insn, 29, 1);
9452     int size = extract32(insn, 22, 2);
9453     int opcode = extract32(insn, 12, 4);
9454     int rm = extract32(insn, 16, 5);
9455     int rn = extract32(insn, 5, 5);
9456     int rd = extract32(insn, 0, 5);
9457 
9458     if (is_u) {
9459         unallocated_encoding(s);
9460         return;
9461     }
9462 
9463     switch (opcode) {
9464     case 0x9: /* SQDMLAL, SQDMLAL2 */
9465     case 0xb: /* SQDMLSL, SQDMLSL2 */
9466     case 0xd: /* SQDMULL, SQDMULL2 */
9467         if (size == 0 || size == 3) {
9468             unallocated_encoding(s);
9469             return;
9470         }
9471         break;
9472     default:
9473         unallocated_encoding(s);
9474         return;
9475     }
9476 
9477     if (!fp_access_check(s)) {
9478         return;
9479     }
9480 
9481     if (size == 2) {
9482         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9483         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9484         TCGv_i64 tcg_res = tcg_temp_new_i64();
9485 
9486         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9487         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9488 
9489         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9490         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9491 
9492         switch (opcode) {
9493         case 0xd: /* SQDMULL, SQDMULL2 */
9494             break;
9495         case 0xb: /* SQDMLSL, SQDMLSL2 */
9496             tcg_gen_neg_i64(tcg_res, tcg_res);
9497             /* fall through */
9498         case 0x9: /* SQDMLAL, SQDMLAL2 */
9499             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9500             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9501                                               tcg_res, tcg_op1);
9502             break;
9503         default:
9504             g_assert_not_reached();
9505         }
9506 
9507         write_fp_dreg(s, rd, tcg_res);
9508     } else {
9509         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9510         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9511         TCGv_i64 tcg_res = tcg_temp_new_i64();
9512 
9513         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9514         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9515 
9516         switch (opcode) {
9517         case 0xd: /* SQDMULL, SQDMULL2 */
9518             break;
9519         case 0xb: /* SQDMLSL, SQDMLSL2 */
9520             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9521             /* fall through */
9522         case 0x9: /* SQDMLAL, SQDMLAL2 */
9523         {
9524             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9525             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9526             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9527                                               tcg_res, tcg_op3);
9528             break;
9529         }
9530         default:
9531             g_assert_not_reached();
9532         }
9533 
9534         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9535         write_fp_dreg(s, rd, tcg_res);
9536     }
9537 }
9538 
9539 /* AdvSIMD scalar three same extra
9540  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9541  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9542  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9543  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9544  */
9545 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9546                                                    uint32_t insn)
9547 {
9548     int rd = extract32(insn, 0, 5);
9549     int rn = extract32(insn, 5, 5);
9550     int opcode = extract32(insn, 11, 4);
9551     int rm = extract32(insn, 16, 5);
9552     int size = extract32(insn, 22, 2);
9553     bool u = extract32(insn, 29, 1);
9554     TCGv_i32 ele1, ele2, ele3;
9555     TCGv_i64 res;
9556     bool feature;
9557 
9558     switch (u * 16 + opcode) {
9559     case 0x10: /* SQRDMLAH (vector) */
9560     case 0x11: /* SQRDMLSH (vector) */
9561         if (size != 1 && size != 2) {
9562             unallocated_encoding(s);
9563             return;
9564         }
9565         feature = dc_isar_feature(aa64_rdm, s);
9566         break;
9567     default:
9568         unallocated_encoding(s);
9569         return;
9570     }
9571     if (!feature) {
9572         unallocated_encoding(s);
9573         return;
9574     }
9575     if (!fp_access_check(s)) {
9576         return;
9577     }
9578 
9579     /* Do a single operation on the lowest element in the vector.
9580      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9581      * with no side effects for all these operations.
9582      * OPTME: special-purpose helpers would avoid doing some
9583      * unnecessary work in the helper for the 16 bit cases.
9584      */
9585     ele1 = tcg_temp_new_i32();
9586     ele2 = tcg_temp_new_i32();
9587     ele3 = tcg_temp_new_i32();
9588 
9589     read_vec_element_i32(s, ele1, rn, 0, size);
9590     read_vec_element_i32(s, ele2, rm, 0, size);
9591     read_vec_element_i32(s, ele3, rd, 0, size);
9592 
9593     switch (opcode) {
9594     case 0x0: /* SQRDMLAH */
9595         if (size == 1) {
9596             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9597         } else {
9598             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9599         }
9600         break;
9601     case 0x1: /* SQRDMLSH */
9602         if (size == 1) {
9603             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9604         } else {
9605             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9606         }
9607         break;
9608     default:
9609         g_assert_not_reached();
9610     }
9611 
9612     res = tcg_temp_new_i64();
9613     tcg_gen_extu_i32_i64(res, ele3);
9614     write_fp_dreg(s, rd, res);
9615 }
9616 
9617 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9618                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9619                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9620 {
9621     /* Handle 64->64 opcodes which are shared between the scalar and
9622      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9623      * is valid in either group and also the double-precision fp ops.
9624      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9625      * requires them.
9626      */
9627     TCGCond cond;
9628 
9629     switch (opcode) {
9630     case 0x4: /* CLS, CLZ */
9631         if (u) {
9632             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9633         } else {
9634             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9635         }
9636         break;
9637     case 0x5: /* NOT */
9638         /* This opcode is shared with CNT and RBIT but we have earlier
9639          * enforced that size == 3 if and only if this is the NOT insn.
9640          */
9641         tcg_gen_not_i64(tcg_rd, tcg_rn);
9642         break;
9643     case 0x7: /* SQABS, SQNEG */
9644         if (u) {
9645             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9646         } else {
9647             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9648         }
9649         break;
9650     case 0xa: /* CMLT */
9651         cond = TCG_COND_LT;
9652     do_cmop:
9653         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9654         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9655         break;
9656     case 0x8: /* CMGT, CMGE */
9657         cond = u ? TCG_COND_GE : TCG_COND_GT;
9658         goto do_cmop;
9659     case 0x9: /* CMEQ, CMLE */
9660         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9661         goto do_cmop;
9662     case 0xb: /* ABS, NEG */
9663         if (u) {
9664             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9665         } else {
9666             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9667         }
9668         break;
9669     case 0x2f: /* FABS */
9670         gen_vfp_absd(tcg_rd, tcg_rn);
9671         break;
9672     case 0x6f: /* FNEG */
9673         gen_vfp_negd(tcg_rd, tcg_rn);
9674         break;
9675     case 0x7f: /* FSQRT */
9676         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9677         break;
9678     case 0x1a: /* FCVTNS */
9679     case 0x1b: /* FCVTMS */
9680     case 0x1c: /* FCVTAS */
9681     case 0x3a: /* FCVTPS */
9682     case 0x3b: /* FCVTZS */
9683         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9684         break;
9685     case 0x5a: /* FCVTNU */
9686     case 0x5b: /* FCVTMU */
9687     case 0x5c: /* FCVTAU */
9688     case 0x7a: /* FCVTPU */
9689     case 0x7b: /* FCVTZU */
9690         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9691         break;
9692     case 0x18: /* FRINTN */
9693     case 0x19: /* FRINTM */
9694     case 0x38: /* FRINTP */
9695     case 0x39: /* FRINTZ */
9696     case 0x58: /* FRINTA */
9697     case 0x79: /* FRINTI */
9698         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9699         break;
9700     case 0x59: /* FRINTX */
9701         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9702         break;
9703     case 0x1e: /* FRINT32Z */
9704     case 0x5e: /* FRINT32X */
9705         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9706         break;
9707     case 0x1f: /* FRINT64Z */
9708     case 0x5f: /* FRINT64X */
9709         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9710         break;
9711     default:
9712         g_assert_not_reached();
9713     }
9714 }
9715 
9716 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9717                                    bool is_scalar, bool is_u, bool is_q,
9718                                    int size, int rn, int rd)
9719 {
9720     bool is_double = (size == MO_64);
9721     TCGv_ptr fpst;
9722 
9723     if (!fp_access_check(s)) {
9724         return;
9725     }
9726 
9727     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9728 
9729     if (is_double) {
9730         TCGv_i64 tcg_op = tcg_temp_new_i64();
9731         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9732         TCGv_i64 tcg_res = tcg_temp_new_i64();
9733         NeonGenTwoDoubleOpFn *genfn;
9734         bool swap = false;
9735         int pass;
9736 
9737         switch (opcode) {
9738         case 0x2e: /* FCMLT (zero) */
9739             swap = true;
9740             /* fallthrough */
9741         case 0x2c: /* FCMGT (zero) */
9742             genfn = gen_helper_neon_cgt_f64;
9743             break;
9744         case 0x2d: /* FCMEQ (zero) */
9745             genfn = gen_helper_neon_ceq_f64;
9746             break;
9747         case 0x6d: /* FCMLE (zero) */
9748             swap = true;
9749             /* fall through */
9750         case 0x6c: /* FCMGE (zero) */
9751             genfn = gen_helper_neon_cge_f64;
9752             break;
9753         default:
9754             g_assert_not_reached();
9755         }
9756 
9757         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9758             read_vec_element(s, tcg_op, rn, pass, MO_64);
9759             if (swap) {
9760                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9761             } else {
9762                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9763             }
9764             write_vec_element(s, tcg_res, rd, pass, MO_64);
9765         }
9766 
9767         clear_vec_high(s, !is_scalar, rd);
9768     } else {
9769         TCGv_i32 tcg_op = tcg_temp_new_i32();
9770         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9771         TCGv_i32 tcg_res = tcg_temp_new_i32();
9772         NeonGenTwoSingleOpFn *genfn;
9773         bool swap = false;
9774         int pass, maxpasses;
9775 
9776         if (size == MO_16) {
9777             switch (opcode) {
9778             case 0x2e: /* FCMLT (zero) */
9779                 swap = true;
9780                 /* fall through */
9781             case 0x2c: /* FCMGT (zero) */
9782                 genfn = gen_helper_advsimd_cgt_f16;
9783                 break;
9784             case 0x2d: /* FCMEQ (zero) */
9785                 genfn = gen_helper_advsimd_ceq_f16;
9786                 break;
9787             case 0x6d: /* FCMLE (zero) */
9788                 swap = true;
9789                 /* fall through */
9790             case 0x6c: /* FCMGE (zero) */
9791                 genfn = gen_helper_advsimd_cge_f16;
9792                 break;
9793             default:
9794                 g_assert_not_reached();
9795             }
9796         } else {
9797             switch (opcode) {
9798             case 0x2e: /* FCMLT (zero) */
9799                 swap = true;
9800                 /* fall through */
9801             case 0x2c: /* FCMGT (zero) */
9802                 genfn = gen_helper_neon_cgt_f32;
9803                 break;
9804             case 0x2d: /* FCMEQ (zero) */
9805                 genfn = gen_helper_neon_ceq_f32;
9806                 break;
9807             case 0x6d: /* FCMLE (zero) */
9808                 swap = true;
9809                 /* fall through */
9810             case 0x6c: /* FCMGE (zero) */
9811                 genfn = gen_helper_neon_cge_f32;
9812                 break;
9813             default:
9814                 g_assert_not_reached();
9815             }
9816         }
9817 
9818         if (is_scalar) {
9819             maxpasses = 1;
9820         } else {
9821             int vector_size = 8 << is_q;
9822             maxpasses = vector_size >> size;
9823         }
9824 
9825         for (pass = 0; pass < maxpasses; pass++) {
9826             read_vec_element_i32(s, tcg_op, rn, pass, size);
9827             if (swap) {
9828                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9829             } else {
9830                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9831             }
9832             if (is_scalar) {
9833                 write_fp_sreg(s, rd, tcg_res);
9834             } else {
9835                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9836             }
9837         }
9838 
9839         if (!is_scalar) {
9840             clear_vec_high(s, is_q, rd);
9841         }
9842     }
9843 }
9844 
9845 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9846                                     bool is_scalar, bool is_u, bool is_q,
9847                                     int size, int rn, int rd)
9848 {
9849     bool is_double = (size == 3);
9850     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9851 
9852     if (is_double) {
9853         TCGv_i64 tcg_op = tcg_temp_new_i64();
9854         TCGv_i64 tcg_res = tcg_temp_new_i64();
9855         int pass;
9856 
9857         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9858             read_vec_element(s, tcg_op, rn, pass, MO_64);
9859             switch (opcode) {
9860             case 0x3d: /* FRECPE */
9861                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9862                 break;
9863             case 0x3f: /* FRECPX */
9864                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9865                 break;
9866             case 0x7d: /* FRSQRTE */
9867                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9868                 break;
9869             default:
9870                 g_assert_not_reached();
9871             }
9872             write_vec_element(s, tcg_res, rd, pass, MO_64);
9873         }
9874         clear_vec_high(s, !is_scalar, rd);
9875     } else {
9876         TCGv_i32 tcg_op = tcg_temp_new_i32();
9877         TCGv_i32 tcg_res = tcg_temp_new_i32();
9878         int pass, maxpasses;
9879 
9880         if (is_scalar) {
9881             maxpasses = 1;
9882         } else {
9883             maxpasses = is_q ? 4 : 2;
9884         }
9885 
9886         for (pass = 0; pass < maxpasses; pass++) {
9887             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9888 
9889             switch (opcode) {
9890             case 0x3c: /* URECPE */
9891                 gen_helper_recpe_u32(tcg_res, tcg_op);
9892                 break;
9893             case 0x3d: /* FRECPE */
9894                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9895                 break;
9896             case 0x3f: /* FRECPX */
9897                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9898                 break;
9899             case 0x7d: /* FRSQRTE */
9900                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9901                 break;
9902             default:
9903                 g_assert_not_reached();
9904             }
9905 
9906             if (is_scalar) {
9907                 write_fp_sreg(s, rd, tcg_res);
9908             } else {
9909                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9910             }
9911         }
9912         if (!is_scalar) {
9913             clear_vec_high(s, is_q, rd);
9914         }
9915     }
9916 }
9917 
9918 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9919                                 int opcode, bool u, bool is_q,
9920                                 int size, int rn, int rd)
9921 {
9922     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9923      * in the source becomes a size element in the destination).
9924      */
9925     int pass;
9926     TCGv_i32 tcg_res[2];
9927     int destelt = is_q ? 2 : 0;
9928     int passes = scalar ? 1 : 2;
9929 
9930     if (scalar) {
9931         tcg_res[1] = tcg_constant_i32(0);
9932     }
9933 
9934     for (pass = 0; pass < passes; pass++) {
9935         TCGv_i64 tcg_op = tcg_temp_new_i64();
9936         NeonGenNarrowFn *genfn = NULL;
9937         NeonGenNarrowEnvFn *genenvfn = NULL;
9938 
9939         if (scalar) {
9940             read_vec_element(s, tcg_op, rn, pass, size + 1);
9941         } else {
9942             read_vec_element(s, tcg_op, rn, pass, MO_64);
9943         }
9944         tcg_res[pass] = tcg_temp_new_i32();
9945 
9946         switch (opcode) {
9947         case 0x12: /* XTN, SQXTUN */
9948         {
9949             static NeonGenNarrowFn * const xtnfns[3] = {
9950                 gen_helper_neon_narrow_u8,
9951                 gen_helper_neon_narrow_u16,
9952                 tcg_gen_extrl_i64_i32,
9953             };
9954             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9955                 gen_helper_neon_unarrow_sat8,
9956                 gen_helper_neon_unarrow_sat16,
9957                 gen_helper_neon_unarrow_sat32,
9958             };
9959             if (u) {
9960                 genenvfn = sqxtunfns[size];
9961             } else {
9962                 genfn = xtnfns[size];
9963             }
9964             break;
9965         }
9966         case 0x14: /* SQXTN, UQXTN */
9967         {
9968             static NeonGenNarrowEnvFn * const fns[3][2] = {
9969                 { gen_helper_neon_narrow_sat_s8,
9970                   gen_helper_neon_narrow_sat_u8 },
9971                 { gen_helper_neon_narrow_sat_s16,
9972                   gen_helper_neon_narrow_sat_u16 },
9973                 { gen_helper_neon_narrow_sat_s32,
9974                   gen_helper_neon_narrow_sat_u32 },
9975             };
9976             genenvfn = fns[size][u];
9977             break;
9978         }
9979         case 0x16: /* FCVTN, FCVTN2 */
9980             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9981             if (size == 2) {
9982                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9983             } else {
9984                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9985                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9986                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9987                 TCGv_i32 ahp = get_ahp_flag();
9988 
9989                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9990                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9991                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9992                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9993             }
9994             break;
9995         case 0x36: /* BFCVTN, BFCVTN2 */
9996             {
9997                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9998                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9999             }
10000             break;
10001         case 0x56:  /* FCVTXN, FCVTXN2 */
10002             /* 64 bit to 32 bit float conversion
10003              * with von Neumann rounding (round to odd)
10004              */
10005             assert(size == 2);
10006             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10007             break;
10008         default:
10009             g_assert_not_reached();
10010         }
10011 
10012         if (genfn) {
10013             genfn(tcg_res[pass], tcg_op);
10014         } else if (genenvfn) {
10015             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10016         }
10017     }
10018 
10019     for (pass = 0; pass < 2; pass++) {
10020         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10021     }
10022     clear_vec_high(s, is_q, rd);
10023 }
10024 
10025 /* AdvSIMD scalar two reg misc
10026  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10027  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10028  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10029  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10030  */
10031 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10032 {
10033     int rd = extract32(insn, 0, 5);
10034     int rn = extract32(insn, 5, 5);
10035     int opcode = extract32(insn, 12, 5);
10036     int size = extract32(insn, 22, 2);
10037     bool u = extract32(insn, 29, 1);
10038     bool is_fcvt = false;
10039     int rmode;
10040     TCGv_i32 tcg_rmode;
10041     TCGv_ptr tcg_fpstatus;
10042 
10043     switch (opcode) {
10044     case 0x7: /* SQABS / SQNEG */
10045         break;
10046     case 0xa: /* CMLT */
10047         if (u) {
10048             unallocated_encoding(s);
10049             return;
10050         }
10051         /* fall through */
10052     case 0x8: /* CMGT, CMGE */
10053     case 0x9: /* CMEQ, CMLE */
10054     case 0xb: /* ABS, NEG */
10055         if (size != 3) {
10056             unallocated_encoding(s);
10057             return;
10058         }
10059         break;
10060     case 0x12: /* SQXTUN */
10061         if (!u) {
10062             unallocated_encoding(s);
10063             return;
10064         }
10065         /* fall through */
10066     case 0x14: /* SQXTN, UQXTN */
10067         if (size == 3) {
10068             unallocated_encoding(s);
10069             return;
10070         }
10071         if (!fp_access_check(s)) {
10072             return;
10073         }
10074         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10075         return;
10076     case 0xc ... 0xf:
10077     case 0x16 ... 0x1d:
10078     case 0x1f:
10079         /* Floating point: U, size[1] and opcode indicate operation;
10080          * size[0] indicates single or double precision.
10081          */
10082         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10083         size = extract32(size, 0, 1) ? 3 : 2;
10084         switch (opcode) {
10085         case 0x2c: /* FCMGT (zero) */
10086         case 0x2d: /* FCMEQ (zero) */
10087         case 0x2e: /* FCMLT (zero) */
10088         case 0x6c: /* FCMGE (zero) */
10089         case 0x6d: /* FCMLE (zero) */
10090             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10091             return;
10092         case 0x1d: /* SCVTF */
10093         case 0x5d: /* UCVTF */
10094         {
10095             bool is_signed = (opcode == 0x1d);
10096             if (!fp_access_check(s)) {
10097                 return;
10098             }
10099             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10100             return;
10101         }
10102         case 0x3d: /* FRECPE */
10103         case 0x3f: /* FRECPX */
10104         case 0x7d: /* FRSQRTE */
10105             if (!fp_access_check(s)) {
10106                 return;
10107             }
10108             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10109             return;
10110         case 0x1a: /* FCVTNS */
10111         case 0x1b: /* FCVTMS */
10112         case 0x3a: /* FCVTPS */
10113         case 0x3b: /* FCVTZS */
10114         case 0x5a: /* FCVTNU */
10115         case 0x5b: /* FCVTMU */
10116         case 0x7a: /* FCVTPU */
10117         case 0x7b: /* FCVTZU */
10118             is_fcvt = true;
10119             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10120             break;
10121         case 0x1c: /* FCVTAS */
10122         case 0x5c: /* FCVTAU */
10123             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10124             is_fcvt = true;
10125             rmode = FPROUNDING_TIEAWAY;
10126             break;
10127         case 0x56: /* FCVTXN, FCVTXN2 */
10128             if (size == 2) {
10129                 unallocated_encoding(s);
10130                 return;
10131             }
10132             if (!fp_access_check(s)) {
10133                 return;
10134             }
10135             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10136             return;
10137         default:
10138             unallocated_encoding(s);
10139             return;
10140         }
10141         break;
10142     default:
10143     case 0x3: /* USQADD / SUQADD */
10144         unallocated_encoding(s);
10145         return;
10146     }
10147 
10148     if (!fp_access_check(s)) {
10149         return;
10150     }
10151 
10152     if (is_fcvt) {
10153         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10154         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10155     } else {
10156         tcg_fpstatus = NULL;
10157         tcg_rmode = NULL;
10158     }
10159 
10160     if (size == 3) {
10161         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10162         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10163 
10164         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10165         write_fp_dreg(s, rd, tcg_rd);
10166     } else {
10167         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10168         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10169 
10170         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10171 
10172         switch (opcode) {
10173         case 0x7: /* SQABS, SQNEG */
10174         {
10175             NeonGenOneOpEnvFn *genfn;
10176             static NeonGenOneOpEnvFn * const fns[3][2] = {
10177                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10178                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10179                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10180             };
10181             genfn = fns[size][u];
10182             genfn(tcg_rd, tcg_env, tcg_rn);
10183             break;
10184         }
10185         case 0x1a: /* FCVTNS */
10186         case 0x1b: /* FCVTMS */
10187         case 0x1c: /* FCVTAS */
10188         case 0x3a: /* FCVTPS */
10189         case 0x3b: /* FCVTZS */
10190             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10191                                  tcg_fpstatus);
10192             break;
10193         case 0x5a: /* FCVTNU */
10194         case 0x5b: /* FCVTMU */
10195         case 0x5c: /* FCVTAU */
10196         case 0x7a: /* FCVTPU */
10197         case 0x7b: /* FCVTZU */
10198             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10199                                  tcg_fpstatus);
10200             break;
10201         default:
10202             g_assert_not_reached();
10203         }
10204 
10205         write_fp_sreg(s, rd, tcg_rd);
10206     }
10207 
10208     if (is_fcvt) {
10209         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10210     }
10211 }
10212 
10213 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10214 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10215                                  int immh, int immb, int opcode, int rn, int rd)
10216 {
10217     int size = 32 - clz32(immh) - 1;
10218     int immhb = immh << 3 | immb;
10219     int shift = 2 * (8 << size) - immhb;
10220     GVecGen2iFn *gvec_fn;
10221 
10222     if (extract32(immh, 3, 1) && !is_q) {
10223         unallocated_encoding(s);
10224         return;
10225     }
10226     tcg_debug_assert(size <= 3);
10227 
10228     if (!fp_access_check(s)) {
10229         return;
10230     }
10231 
10232     switch (opcode) {
10233     case 0x02: /* SSRA / USRA (accumulate) */
10234         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10235         break;
10236 
10237     case 0x08: /* SRI */
10238         gvec_fn = gen_gvec_sri;
10239         break;
10240 
10241     case 0x00: /* SSHR / USHR */
10242         if (is_u) {
10243             if (shift == 8 << size) {
10244                 /* Shift count the same size as element size produces zero.  */
10245                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10246                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10247                 return;
10248             }
10249             gvec_fn = tcg_gen_gvec_shri;
10250         } else {
10251             /* Shift count the same size as element size produces all sign.  */
10252             if (shift == 8 << size) {
10253                 shift -= 1;
10254             }
10255             gvec_fn = tcg_gen_gvec_sari;
10256         }
10257         break;
10258 
10259     case 0x04: /* SRSHR / URSHR (rounding) */
10260         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10261         break;
10262 
10263     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10264         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10265         break;
10266 
10267     default:
10268         g_assert_not_reached();
10269     }
10270 
10271     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10272 }
10273 
10274 /* SHL/SLI - Vector shift left */
10275 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10276                                  int immh, int immb, int opcode, int rn, int rd)
10277 {
10278     int size = 32 - clz32(immh) - 1;
10279     int immhb = immh << 3 | immb;
10280     int shift = immhb - (8 << size);
10281 
10282     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10283     assert(size >= 0 && size <= 3);
10284 
10285     if (extract32(immh, 3, 1) && !is_q) {
10286         unallocated_encoding(s);
10287         return;
10288     }
10289 
10290     if (!fp_access_check(s)) {
10291         return;
10292     }
10293 
10294     if (insert) {
10295         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10296     } else {
10297         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10298     }
10299 }
10300 
10301 /* USHLL/SHLL - Vector shift left with widening */
10302 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10303                                  int immh, int immb, int opcode, int rn, int rd)
10304 {
10305     int size = 32 - clz32(immh) - 1;
10306     int immhb = immh << 3 | immb;
10307     int shift = immhb - (8 << size);
10308     int dsize = 64;
10309     int esize = 8 << size;
10310     int elements = dsize/esize;
10311     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10312     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10313     int i;
10314 
10315     if (size >= 3) {
10316         unallocated_encoding(s);
10317         return;
10318     }
10319 
10320     if (!fp_access_check(s)) {
10321         return;
10322     }
10323 
10324     /* For the LL variants the store is larger than the load,
10325      * so if rd == rn we would overwrite parts of our input.
10326      * So load everything right now and use shifts in the main loop.
10327      */
10328     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10329 
10330     for (i = 0; i < elements; i++) {
10331         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10332         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10333         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10334         write_vec_element(s, tcg_rd, rd, i, size + 1);
10335     }
10336 }
10337 
10338 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10339 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10340                                  int immh, int immb, int opcode, int rn, int rd)
10341 {
10342     int immhb = immh << 3 | immb;
10343     int size = 32 - clz32(immh) - 1;
10344     int dsize = 64;
10345     int esize = 8 << size;
10346     int elements = dsize/esize;
10347     int shift = (2 * esize) - immhb;
10348     bool round = extract32(opcode, 0, 1);
10349     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10350     TCGv_i64 tcg_round;
10351     int i;
10352 
10353     if (extract32(immh, 3, 1)) {
10354         unallocated_encoding(s);
10355         return;
10356     }
10357 
10358     if (!fp_access_check(s)) {
10359         return;
10360     }
10361 
10362     tcg_rn = tcg_temp_new_i64();
10363     tcg_rd = tcg_temp_new_i64();
10364     tcg_final = tcg_temp_new_i64();
10365     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10366 
10367     if (round) {
10368         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10369     } else {
10370         tcg_round = NULL;
10371     }
10372 
10373     for (i = 0; i < elements; i++) {
10374         read_vec_element(s, tcg_rn, rn, i, size+1);
10375         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10376                                 false, true, size+1, shift);
10377 
10378         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10379     }
10380 
10381     if (!is_q) {
10382         write_vec_element(s, tcg_final, rd, 0, MO_64);
10383     } else {
10384         write_vec_element(s, tcg_final, rd, 1, MO_64);
10385     }
10386 
10387     clear_vec_high(s, is_q, rd);
10388 }
10389 
10390 
10391 /* AdvSIMD shift by immediate
10392  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10393  * +---+---+---+-------------+------+------+--------+---+------+------+
10394  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10395  * +---+---+---+-------------+------+------+--------+---+------+------+
10396  */
10397 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10398 {
10399     int rd = extract32(insn, 0, 5);
10400     int rn = extract32(insn, 5, 5);
10401     int opcode = extract32(insn, 11, 5);
10402     int immb = extract32(insn, 16, 3);
10403     int immh = extract32(insn, 19, 4);
10404     bool is_u = extract32(insn, 29, 1);
10405     bool is_q = extract32(insn, 30, 1);
10406 
10407     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10408     assert(immh != 0);
10409 
10410     switch (opcode) {
10411     case 0x08: /* SRI */
10412         if (!is_u) {
10413             unallocated_encoding(s);
10414             return;
10415         }
10416         /* fall through */
10417     case 0x00: /* SSHR / USHR */
10418     case 0x02: /* SSRA / USRA (accumulate) */
10419     case 0x04: /* SRSHR / URSHR (rounding) */
10420     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10421         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10422         break;
10423     case 0x0a: /* SHL / SLI */
10424         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10425         break;
10426     case 0x10: /* SHRN */
10427     case 0x11: /* RSHRN / SQRSHRUN */
10428         if (is_u) {
10429             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10430                                    opcode, rn, rd);
10431         } else {
10432             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10433         }
10434         break;
10435     case 0x12: /* SQSHRN / UQSHRN */
10436     case 0x13: /* SQRSHRN / UQRSHRN */
10437         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10438                                opcode, rn, rd);
10439         break;
10440     case 0x14: /* SSHLL / USHLL */
10441         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10442         break;
10443     case 0x1c: /* SCVTF / UCVTF */
10444         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10445                                      opcode, rn, rd);
10446         break;
10447     case 0xc: /* SQSHLU */
10448         if (!is_u) {
10449             unallocated_encoding(s);
10450             return;
10451         }
10452         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10453         break;
10454     case 0xe: /* SQSHL, UQSHL */
10455         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10456         break;
10457     case 0x1f: /* FCVTZS/ FCVTZU */
10458         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10459         return;
10460     default:
10461         unallocated_encoding(s);
10462         return;
10463     }
10464 }
10465 
10466 /* Generate code to do a "long" addition or subtraction, ie one done in
10467  * TCGv_i64 on vector lanes twice the width specified by size.
10468  */
10469 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10470                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10471 {
10472     static NeonGenTwo64OpFn * const fns[3][2] = {
10473         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10474         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10475         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10476     };
10477     NeonGenTwo64OpFn *genfn;
10478     assert(size < 3);
10479 
10480     genfn = fns[size][is_sub];
10481     genfn(tcg_res, tcg_op1, tcg_op2);
10482 }
10483 
10484 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10485                                 int opcode, int rd, int rn, int rm)
10486 {
10487     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10488     TCGv_i64 tcg_res[2];
10489     int pass, accop;
10490 
10491     tcg_res[0] = tcg_temp_new_i64();
10492     tcg_res[1] = tcg_temp_new_i64();
10493 
10494     /* Does this op do an adding accumulate, a subtracting accumulate,
10495      * or no accumulate at all?
10496      */
10497     switch (opcode) {
10498     case 5:
10499     case 8:
10500     case 9:
10501         accop = 1;
10502         break;
10503     case 10:
10504     case 11:
10505         accop = -1;
10506         break;
10507     default:
10508         accop = 0;
10509         break;
10510     }
10511 
10512     if (accop != 0) {
10513         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10514         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10515     }
10516 
10517     /* size == 2 means two 32x32->64 operations; this is worth special
10518      * casing because we can generally handle it inline.
10519      */
10520     if (size == 2) {
10521         for (pass = 0; pass < 2; pass++) {
10522             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10523             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10524             TCGv_i64 tcg_passres;
10525             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10526 
10527             int elt = pass + is_q * 2;
10528 
10529             read_vec_element(s, tcg_op1, rn, elt, memop);
10530             read_vec_element(s, tcg_op2, rm, elt, memop);
10531 
10532             if (accop == 0) {
10533                 tcg_passres = tcg_res[pass];
10534             } else {
10535                 tcg_passres = tcg_temp_new_i64();
10536             }
10537 
10538             switch (opcode) {
10539             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10540                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10541                 break;
10542             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10543                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10544                 break;
10545             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10546             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10547             {
10548                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10549                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10550 
10551                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10552                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10553                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10554                                     tcg_passres,
10555                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10556                 break;
10557             }
10558             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10559             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10560             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10561                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10562                 break;
10563             case 9: /* SQDMLAL, SQDMLAL2 */
10564             case 11: /* SQDMLSL, SQDMLSL2 */
10565             case 13: /* SQDMULL, SQDMULL2 */
10566                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10567                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10568                                                   tcg_passres, tcg_passres);
10569                 break;
10570             default:
10571                 g_assert_not_reached();
10572             }
10573 
10574             if (opcode == 9 || opcode == 11) {
10575                 /* saturating accumulate ops */
10576                 if (accop < 0) {
10577                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10578                 }
10579                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10580                                                   tcg_res[pass], tcg_passres);
10581             } else if (accop > 0) {
10582                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10583             } else if (accop < 0) {
10584                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10585             }
10586         }
10587     } else {
10588         /* size 0 or 1, generally helper functions */
10589         for (pass = 0; pass < 2; pass++) {
10590             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10591             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10592             TCGv_i64 tcg_passres;
10593             int elt = pass + is_q * 2;
10594 
10595             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10596             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10597 
10598             if (accop == 0) {
10599                 tcg_passres = tcg_res[pass];
10600             } else {
10601                 tcg_passres = tcg_temp_new_i64();
10602             }
10603 
10604             switch (opcode) {
10605             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10606             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10607             {
10608                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10609                 static NeonGenWidenFn * const widenfns[2][2] = {
10610                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10611                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10612                 };
10613                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10614 
10615                 widenfn(tcg_op2_64, tcg_op2);
10616                 widenfn(tcg_passres, tcg_op1);
10617                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10618                               tcg_passres, tcg_op2_64);
10619                 break;
10620             }
10621             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10622             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10623                 if (size == 0) {
10624                     if (is_u) {
10625                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10626                     } else {
10627                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10628                     }
10629                 } else {
10630                     if (is_u) {
10631                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10632                     } else {
10633                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10634                     }
10635                 }
10636                 break;
10637             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10638             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10639             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10640                 if (size == 0) {
10641                     if (is_u) {
10642                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10643                     } else {
10644                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10645                     }
10646                 } else {
10647                     if (is_u) {
10648                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10649                     } else {
10650                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10651                     }
10652                 }
10653                 break;
10654             case 9: /* SQDMLAL, SQDMLAL2 */
10655             case 11: /* SQDMLSL, SQDMLSL2 */
10656             case 13: /* SQDMULL, SQDMULL2 */
10657                 assert(size == 1);
10658                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10659                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10660                                                   tcg_passres, tcg_passres);
10661                 break;
10662             default:
10663                 g_assert_not_reached();
10664             }
10665 
10666             if (accop != 0) {
10667                 if (opcode == 9 || opcode == 11) {
10668                     /* saturating accumulate ops */
10669                     if (accop < 0) {
10670                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10671                     }
10672                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10673                                                       tcg_res[pass],
10674                                                       tcg_passres);
10675                 } else {
10676                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10677                                   tcg_res[pass], tcg_passres);
10678                 }
10679             }
10680         }
10681     }
10682 
10683     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10684     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10685 }
10686 
10687 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10688                             int opcode, int rd, int rn, int rm)
10689 {
10690     TCGv_i64 tcg_res[2];
10691     int part = is_q ? 2 : 0;
10692     int pass;
10693 
10694     for (pass = 0; pass < 2; pass++) {
10695         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10696         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10697         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10698         static NeonGenWidenFn * const widenfns[3][2] = {
10699             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10700             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10701             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10702         };
10703         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10704 
10705         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10706         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10707         widenfn(tcg_op2_wide, tcg_op2);
10708         tcg_res[pass] = tcg_temp_new_i64();
10709         gen_neon_addl(size, (opcode == 3),
10710                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10711     }
10712 
10713     for (pass = 0; pass < 2; pass++) {
10714         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10715     }
10716 }
10717 
10718 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10719 {
10720     tcg_gen_addi_i64(in, in, 1U << 31);
10721     tcg_gen_extrh_i64_i32(res, in);
10722 }
10723 
10724 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10725                                  int opcode, int rd, int rn, int rm)
10726 {
10727     TCGv_i32 tcg_res[2];
10728     int part = is_q ? 2 : 0;
10729     int pass;
10730 
10731     for (pass = 0; pass < 2; pass++) {
10732         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10733         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10734         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10735         static NeonGenNarrowFn * const narrowfns[3][2] = {
10736             { gen_helper_neon_narrow_high_u8,
10737               gen_helper_neon_narrow_round_high_u8 },
10738             { gen_helper_neon_narrow_high_u16,
10739               gen_helper_neon_narrow_round_high_u16 },
10740             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10741         };
10742         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10743 
10744         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10745         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10746 
10747         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10748 
10749         tcg_res[pass] = tcg_temp_new_i32();
10750         gennarrow(tcg_res[pass], tcg_wideres);
10751     }
10752 
10753     for (pass = 0; pass < 2; pass++) {
10754         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10755     }
10756     clear_vec_high(s, is_q, rd);
10757 }
10758 
10759 /* AdvSIMD three different
10760  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10761  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10762  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10763  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10764  */
10765 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10766 {
10767     /* Instructions in this group fall into three basic classes
10768      * (in each case with the operation working on each element in
10769      * the input vectors):
10770      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10771      *     128 bit input)
10772      * (2) wide 64 x 128 -> 128
10773      * (3) narrowing 128 x 128 -> 64
10774      * Here we do initial decode, catch unallocated cases and
10775      * dispatch to separate functions for each class.
10776      */
10777     int is_q = extract32(insn, 30, 1);
10778     int is_u = extract32(insn, 29, 1);
10779     int size = extract32(insn, 22, 2);
10780     int opcode = extract32(insn, 12, 4);
10781     int rm = extract32(insn, 16, 5);
10782     int rn = extract32(insn, 5, 5);
10783     int rd = extract32(insn, 0, 5);
10784 
10785     switch (opcode) {
10786     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10787     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10788         /* 64 x 128 -> 128 */
10789         if (size == 3) {
10790             unallocated_encoding(s);
10791             return;
10792         }
10793         if (!fp_access_check(s)) {
10794             return;
10795         }
10796         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10797         break;
10798     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10799     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10800         /* 128 x 128 -> 64 */
10801         if (size == 3) {
10802             unallocated_encoding(s);
10803             return;
10804         }
10805         if (!fp_access_check(s)) {
10806             return;
10807         }
10808         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10809         break;
10810     case 14: /* PMULL, PMULL2 */
10811         if (is_u) {
10812             unallocated_encoding(s);
10813             return;
10814         }
10815         switch (size) {
10816         case 0: /* PMULL.P8 */
10817             if (!fp_access_check(s)) {
10818                 return;
10819             }
10820             /* The Q field specifies lo/hi half input for this insn.  */
10821             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10822                              gen_helper_neon_pmull_h);
10823             break;
10824 
10825         case 3: /* PMULL.P64 */
10826             if (!dc_isar_feature(aa64_pmull, s)) {
10827                 unallocated_encoding(s);
10828                 return;
10829             }
10830             if (!fp_access_check(s)) {
10831                 return;
10832             }
10833             /* The Q field specifies lo/hi half input for this insn.  */
10834             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10835                              gen_helper_gvec_pmull_q);
10836             break;
10837 
10838         default:
10839             unallocated_encoding(s);
10840             break;
10841         }
10842         return;
10843     case 9: /* SQDMLAL, SQDMLAL2 */
10844     case 11: /* SQDMLSL, SQDMLSL2 */
10845     case 13: /* SQDMULL, SQDMULL2 */
10846         if (is_u || size == 0) {
10847             unallocated_encoding(s);
10848             return;
10849         }
10850         /* fall through */
10851     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10852     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10853     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10854     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10855     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10856     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10857     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10858         /* 64 x 64 -> 128 */
10859         if (size == 3) {
10860             unallocated_encoding(s);
10861             return;
10862         }
10863         if (!fp_access_check(s)) {
10864             return;
10865         }
10866 
10867         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10868         break;
10869     default:
10870         /* opcode 15 not allocated */
10871         unallocated_encoding(s);
10872         break;
10873     }
10874 }
10875 
10876 /* AdvSIMD three same extra
10877  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10878  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10879  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10880  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10881  */
10882 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10883 {
10884     int rd = extract32(insn, 0, 5);
10885     int rn = extract32(insn, 5, 5);
10886     int opcode = extract32(insn, 11, 4);
10887     int rm = extract32(insn, 16, 5);
10888     int size = extract32(insn, 22, 2);
10889     bool u = extract32(insn, 29, 1);
10890     bool is_q = extract32(insn, 30, 1);
10891     bool feature;
10892     int rot;
10893 
10894     switch (u * 16 + opcode) {
10895     case 0x10: /* SQRDMLAH (vector) */
10896     case 0x11: /* SQRDMLSH (vector) */
10897         if (size != 1 && size != 2) {
10898             unallocated_encoding(s);
10899             return;
10900         }
10901         feature = dc_isar_feature(aa64_rdm, s);
10902         break;
10903     case 0x02: /* SDOT (vector) */
10904     case 0x12: /* UDOT (vector) */
10905         if (size != MO_32) {
10906             unallocated_encoding(s);
10907             return;
10908         }
10909         feature = dc_isar_feature(aa64_dp, s);
10910         break;
10911     case 0x03: /* USDOT */
10912         if (size != MO_32) {
10913             unallocated_encoding(s);
10914             return;
10915         }
10916         feature = dc_isar_feature(aa64_i8mm, s);
10917         break;
10918     case 0x04: /* SMMLA */
10919     case 0x14: /* UMMLA */
10920     case 0x05: /* USMMLA */
10921         if (!is_q || size != MO_32) {
10922             unallocated_encoding(s);
10923             return;
10924         }
10925         feature = dc_isar_feature(aa64_i8mm, s);
10926         break;
10927     case 0x18: /* FCMLA, #0 */
10928     case 0x19: /* FCMLA, #90 */
10929     case 0x1a: /* FCMLA, #180 */
10930     case 0x1b: /* FCMLA, #270 */
10931     case 0x1c: /* FCADD, #90 */
10932     case 0x1e: /* FCADD, #270 */
10933         if (size == 0
10934             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10935             || (size == 3 && !is_q)) {
10936             unallocated_encoding(s);
10937             return;
10938         }
10939         feature = dc_isar_feature(aa64_fcma, s);
10940         break;
10941     case 0x1d: /* BFMMLA */
10942         if (size != MO_16 || !is_q) {
10943             unallocated_encoding(s);
10944             return;
10945         }
10946         feature = dc_isar_feature(aa64_bf16, s);
10947         break;
10948     case 0x1f:
10949         switch (size) {
10950         case 1: /* BFDOT */
10951         case 3: /* BFMLAL{B,T} */
10952             feature = dc_isar_feature(aa64_bf16, s);
10953             break;
10954         default:
10955             unallocated_encoding(s);
10956             return;
10957         }
10958         break;
10959     default:
10960         unallocated_encoding(s);
10961         return;
10962     }
10963     if (!feature) {
10964         unallocated_encoding(s);
10965         return;
10966     }
10967     if (!fp_access_check(s)) {
10968         return;
10969     }
10970 
10971     switch (opcode) {
10972     case 0x0: /* SQRDMLAH (vector) */
10973         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
10974         return;
10975 
10976     case 0x1: /* SQRDMLSH (vector) */
10977         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
10978         return;
10979 
10980     case 0x2: /* SDOT / UDOT */
10981         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
10982                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
10983         return;
10984 
10985     case 0x3: /* USDOT */
10986         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
10987         return;
10988 
10989     case 0x04: /* SMMLA, UMMLA */
10990         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
10991                          u ? gen_helper_gvec_ummla_b
10992                          : gen_helper_gvec_smmla_b);
10993         return;
10994     case 0x05: /* USMMLA */
10995         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
10996         return;
10997 
10998     case 0x8: /* FCMLA, #0 */
10999     case 0x9: /* FCMLA, #90 */
11000     case 0xa: /* FCMLA, #180 */
11001     case 0xb: /* FCMLA, #270 */
11002         rot = extract32(opcode, 0, 2);
11003         switch (size) {
11004         case 1:
11005             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11006                               gen_helper_gvec_fcmlah);
11007             break;
11008         case 2:
11009             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11010                               gen_helper_gvec_fcmlas);
11011             break;
11012         case 3:
11013             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11014                               gen_helper_gvec_fcmlad);
11015             break;
11016         default:
11017             g_assert_not_reached();
11018         }
11019         return;
11020 
11021     case 0xc: /* FCADD, #90 */
11022     case 0xe: /* FCADD, #270 */
11023         rot = extract32(opcode, 1, 1);
11024         switch (size) {
11025         case 1:
11026             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11027                               gen_helper_gvec_fcaddh);
11028             break;
11029         case 2:
11030             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11031                               gen_helper_gvec_fcadds);
11032             break;
11033         case 3:
11034             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11035                               gen_helper_gvec_fcaddd);
11036             break;
11037         default:
11038             g_assert_not_reached();
11039         }
11040         return;
11041 
11042     case 0xd: /* BFMMLA */
11043         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11044         return;
11045     case 0xf:
11046         switch (size) {
11047         case 1: /* BFDOT */
11048             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11049             break;
11050         case 3: /* BFMLAL{B,T} */
11051             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11052                               gen_helper_gvec_bfmlal);
11053             break;
11054         default:
11055             g_assert_not_reached();
11056         }
11057         return;
11058 
11059     default:
11060         g_assert_not_reached();
11061     }
11062 }
11063 
11064 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11065                                   int size, int rn, int rd)
11066 {
11067     /* Handle 2-reg-misc ops which are widening (so each size element
11068      * in the source becomes a 2*size element in the destination.
11069      * The only instruction like this is FCVTL.
11070      */
11071     int pass;
11072 
11073     if (size == 3) {
11074         /* 32 -> 64 bit fp conversion */
11075         TCGv_i64 tcg_res[2];
11076         int srcelt = is_q ? 2 : 0;
11077 
11078         for (pass = 0; pass < 2; pass++) {
11079             TCGv_i32 tcg_op = tcg_temp_new_i32();
11080             tcg_res[pass] = tcg_temp_new_i64();
11081 
11082             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11083             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11084         }
11085         for (pass = 0; pass < 2; pass++) {
11086             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11087         }
11088     } else {
11089         /* 16 -> 32 bit fp conversion */
11090         int srcelt = is_q ? 4 : 0;
11091         TCGv_i32 tcg_res[4];
11092         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11093         TCGv_i32 ahp = get_ahp_flag();
11094 
11095         for (pass = 0; pass < 4; pass++) {
11096             tcg_res[pass] = tcg_temp_new_i32();
11097 
11098             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11099             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11100                                            fpst, ahp);
11101         }
11102         for (pass = 0; pass < 4; pass++) {
11103             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11104         }
11105     }
11106 }
11107 
11108 static void handle_rev(DisasContext *s, int opcode, bool u,
11109                        bool is_q, int size, int rn, int rd)
11110 {
11111     int op = (opcode << 1) | u;
11112     int opsz = op + size;
11113     int grp_size = 3 - opsz;
11114     int dsize = is_q ? 128 : 64;
11115     int i;
11116 
11117     if (opsz >= 3) {
11118         unallocated_encoding(s);
11119         return;
11120     }
11121 
11122     if (!fp_access_check(s)) {
11123         return;
11124     }
11125 
11126     if (size == 0) {
11127         /* Special case bytes, use bswap op on each group of elements */
11128         int groups = dsize / (8 << grp_size);
11129 
11130         for (i = 0; i < groups; i++) {
11131             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11132 
11133             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11134             switch (grp_size) {
11135             case MO_16:
11136                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11137                 break;
11138             case MO_32:
11139                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11140                 break;
11141             case MO_64:
11142                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11143                 break;
11144             default:
11145                 g_assert_not_reached();
11146             }
11147             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11148         }
11149         clear_vec_high(s, is_q, rd);
11150     } else {
11151         int revmask = (1 << grp_size) - 1;
11152         int esize = 8 << size;
11153         int elements = dsize / esize;
11154         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11155         TCGv_i64 tcg_rd[2];
11156 
11157         for (i = 0; i < 2; i++) {
11158             tcg_rd[i] = tcg_temp_new_i64();
11159             tcg_gen_movi_i64(tcg_rd[i], 0);
11160         }
11161 
11162         for (i = 0; i < elements; i++) {
11163             int e_rev = (i & 0xf) ^ revmask;
11164             int w = (e_rev * esize) / 64;
11165             int o = (e_rev * esize) % 64;
11166 
11167             read_vec_element(s, tcg_rn, rn, i, size);
11168             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11169         }
11170 
11171         for (i = 0; i < 2; i++) {
11172             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11173         }
11174         clear_vec_high(s, true, rd);
11175     }
11176 }
11177 
11178 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11179                                   bool is_q, int size, int rn, int rd)
11180 {
11181     /* Implement the pairwise operations from 2-misc:
11182      * SADDLP, UADDLP, SADALP, UADALP.
11183      * These all add pairs of elements in the input to produce a
11184      * double-width result element in the output (possibly accumulating).
11185      */
11186     bool accum = (opcode == 0x6);
11187     int maxpass = is_q ? 2 : 1;
11188     int pass;
11189     TCGv_i64 tcg_res[2];
11190 
11191     if (size == 2) {
11192         /* 32 + 32 -> 64 op */
11193         MemOp memop = size + (u ? 0 : MO_SIGN);
11194 
11195         for (pass = 0; pass < maxpass; pass++) {
11196             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11197             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11198 
11199             tcg_res[pass] = tcg_temp_new_i64();
11200 
11201             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11202             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11203             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11204             if (accum) {
11205                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11206                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11207             }
11208         }
11209     } else {
11210         for (pass = 0; pass < maxpass; pass++) {
11211             TCGv_i64 tcg_op = tcg_temp_new_i64();
11212             NeonGenOne64OpFn *genfn;
11213             static NeonGenOne64OpFn * const fns[2][2] = {
11214                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11215                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11216             };
11217 
11218             genfn = fns[size][u];
11219 
11220             tcg_res[pass] = tcg_temp_new_i64();
11221 
11222             read_vec_element(s, tcg_op, rn, pass, MO_64);
11223             genfn(tcg_res[pass], tcg_op);
11224 
11225             if (accum) {
11226                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11227                 if (size == 0) {
11228                     gen_helper_neon_addl_u16(tcg_res[pass],
11229                                              tcg_res[pass], tcg_op);
11230                 } else {
11231                     gen_helper_neon_addl_u32(tcg_res[pass],
11232                                              tcg_res[pass], tcg_op);
11233                 }
11234             }
11235         }
11236     }
11237     if (!is_q) {
11238         tcg_res[1] = tcg_constant_i64(0);
11239     }
11240     for (pass = 0; pass < 2; pass++) {
11241         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11242     }
11243 }
11244 
11245 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11246 {
11247     /* Implement SHLL and SHLL2 */
11248     int pass;
11249     int part = is_q ? 2 : 0;
11250     TCGv_i64 tcg_res[2];
11251 
11252     for (pass = 0; pass < 2; pass++) {
11253         static NeonGenWidenFn * const widenfns[3] = {
11254             gen_helper_neon_widen_u8,
11255             gen_helper_neon_widen_u16,
11256             tcg_gen_extu_i32_i64,
11257         };
11258         NeonGenWidenFn *widenfn = widenfns[size];
11259         TCGv_i32 tcg_op = tcg_temp_new_i32();
11260 
11261         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11262         tcg_res[pass] = tcg_temp_new_i64();
11263         widenfn(tcg_res[pass], tcg_op);
11264         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11265     }
11266 
11267     for (pass = 0; pass < 2; pass++) {
11268         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11269     }
11270 }
11271 
11272 /* AdvSIMD two reg misc
11273  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11274  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11275  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11276  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11277  */
11278 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11279 {
11280     int size = extract32(insn, 22, 2);
11281     int opcode = extract32(insn, 12, 5);
11282     bool u = extract32(insn, 29, 1);
11283     bool is_q = extract32(insn, 30, 1);
11284     int rn = extract32(insn, 5, 5);
11285     int rd = extract32(insn, 0, 5);
11286     bool need_fpstatus = false;
11287     int rmode = -1;
11288     TCGv_i32 tcg_rmode;
11289     TCGv_ptr tcg_fpstatus;
11290 
11291     switch (opcode) {
11292     case 0x0: /* REV64, REV32 */
11293     case 0x1: /* REV16 */
11294         handle_rev(s, opcode, u, is_q, size, rn, rd);
11295         return;
11296     case 0x5: /* CNT, NOT, RBIT */
11297         if (u && size == 0) {
11298             /* NOT */
11299             break;
11300         } else if (u && size == 1) {
11301             /* RBIT */
11302             break;
11303         } else if (!u && size == 0) {
11304             /* CNT */
11305             break;
11306         }
11307         unallocated_encoding(s);
11308         return;
11309     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11310     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11311         if (size == 3) {
11312             unallocated_encoding(s);
11313             return;
11314         }
11315         if (!fp_access_check(s)) {
11316             return;
11317         }
11318 
11319         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11320         return;
11321     case 0x4: /* CLS, CLZ */
11322         if (size == 3) {
11323             unallocated_encoding(s);
11324             return;
11325         }
11326         break;
11327     case 0x2: /* SADDLP, UADDLP */
11328     case 0x6: /* SADALP, UADALP */
11329         if (size == 3) {
11330             unallocated_encoding(s);
11331             return;
11332         }
11333         if (!fp_access_check(s)) {
11334             return;
11335         }
11336         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11337         return;
11338     case 0x13: /* SHLL, SHLL2 */
11339         if (u == 0 || size == 3) {
11340             unallocated_encoding(s);
11341             return;
11342         }
11343         if (!fp_access_check(s)) {
11344             return;
11345         }
11346         handle_shll(s, is_q, size, rn, rd);
11347         return;
11348     case 0xa: /* CMLT */
11349         if (u == 1) {
11350             unallocated_encoding(s);
11351             return;
11352         }
11353         /* fall through */
11354     case 0x8: /* CMGT, CMGE */
11355     case 0x9: /* CMEQ, CMLE */
11356     case 0xb: /* ABS, NEG */
11357         if (size == 3 && !is_q) {
11358             unallocated_encoding(s);
11359             return;
11360         }
11361         break;
11362     case 0x7: /* SQABS, SQNEG */
11363         if (size == 3 && !is_q) {
11364             unallocated_encoding(s);
11365             return;
11366         }
11367         break;
11368     case 0xc ... 0xf:
11369     case 0x16 ... 0x1f:
11370     {
11371         /* Floating point: U, size[1] and opcode indicate operation;
11372          * size[0] indicates single or double precision.
11373          */
11374         int is_double = extract32(size, 0, 1);
11375         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11376         size = is_double ? 3 : 2;
11377         switch (opcode) {
11378         case 0x2f: /* FABS */
11379         case 0x6f: /* FNEG */
11380             if (size == 3 && !is_q) {
11381                 unallocated_encoding(s);
11382                 return;
11383             }
11384             break;
11385         case 0x1d: /* SCVTF */
11386         case 0x5d: /* UCVTF */
11387         {
11388             bool is_signed = (opcode == 0x1d) ? true : false;
11389             int elements = is_double ? 2 : is_q ? 4 : 2;
11390             if (is_double && !is_q) {
11391                 unallocated_encoding(s);
11392                 return;
11393             }
11394             if (!fp_access_check(s)) {
11395                 return;
11396             }
11397             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11398             return;
11399         }
11400         case 0x2c: /* FCMGT (zero) */
11401         case 0x2d: /* FCMEQ (zero) */
11402         case 0x2e: /* FCMLT (zero) */
11403         case 0x6c: /* FCMGE (zero) */
11404         case 0x6d: /* FCMLE (zero) */
11405             if (size == 3 && !is_q) {
11406                 unallocated_encoding(s);
11407                 return;
11408             }
11409             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11410             return;
11411         case 0x7f: /* FSQRT */
11412             if (size == 3 && !is_q) {
11413                 unallocated_encoding(s);
11414                 return;
11415             }
11416             break;
11417         case 0x1a: /* FCVTNS */
11418         case 0x1b: /* FCVTMS */
11419         case 0x3a: /* FCVTPS */
11420         case 0x3b: /* FCVTZS */
11421         case 0x5a: /* FCVTNU */
11422         case 0x5b: /* FCVTMU */
11423         case 0x7a: /* FCVTPU */
11424         case 0x7b: /* FCVTZU */
11425             need_fpstatus = true;
11426             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11427             if (size == 3 && !is_q) {
11428                 unallocated_encoding(s);
11429                 return;
11430             }
11431             break;
11432         case 0x5c: /* FCVTAU */
11433         case 0x1c: /* FCVTAS */
11434             need_fpstatus = true;
11435             rmode = FPROUNDING_TIEAWAY;
11436             if (size == 3 && !is_q) {
11437                 unallocated_encoding(s);
11438                 return;
11439             }
11440             break;
11441         case 0x3c: /* URECPE */
11442             if (size == 3) {
11443                 unallocated_encoding(s);
11444                 return;
11445             }
11446             /* fall through */
11447         case 0x3d: /* FRECPE */
11448         case 0x7d: /* FRSQRTE */
11449             if (size == 3 && !is_q) {
11450                 unallocated_encoding(s);
11451                 return;
11452             }
11453             if (!fp_access_check(s)) {
11454                 return;
11455             }
11456             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11457             return;
11458         case 0x56: /* FCVTXN, FCVTXN2 */
11459             if (size == 2) {
11460                 unallocated_encoding(s);
11461                 return;
11462             }
11463             /* fall through */
11464         case 0x16: /* FCVTN, FCVTN2 */
11465             /* handle_2misc_narrow does a 2*size -> size operation, but these
11466              * instructions encode the source size rather than dest size.
11467              */
11468             if (!fp_access_check(s)) {
11469                 return;
11470             }
11471             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11472             return;
11473         case 0x36: /* BFCVTN, BFCVTN2 */
11474             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11475                 unallocated_encoding(s);
11476                 return;
11477             }
11478             if (!fp_access_check(s)) {
11479                 return;
11480             }
11481             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11482             return;
11483         case 0x17: /* FCVTL, FCVTL2 */
11484             if (!fp_access_check(s)) {
11485                 return;
11486             }
11487             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11488             return;
11489         case 0x18: /* FRINTN */
11490         case 0x19: /* FRINTM */
11491         case 0x38: /* FRINTP */
11492         case 0x39: /* FRINTZ */
11493             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11494             /* fall through */
11495         case 0x59: /* FRINTX */
11496         case 0x79: /* FRINTI */
11497             need_fpstatus = true;
11498             if (size == 3 && !is_q) {
11499                 unallocated_encoding(s);
11500                 return;
11501             }
11502             break;
11503         case 0x58: /* FRINTA */
11504             rmode = FPROUNDING_TIEAWAY;
11505             need_fpstatus = true;
11506             if (size == 3 && !is_q) {
11507                 unallocated_encoding(s);
11508                 return;
11509             }
11510             break;
11511         case 0x7c: /* URSQRTE */
11512             if (size == 3) {
11513                 unallocated_encoding(s);
11514                 return;
11515             }
11516             break;
11517         case 0x1e: /* FRINT32Z */
11518         case 0x1f: /* FRINT64Z */
11519             rmode = FPROUNDING_ZERO;
11520             /* fall through */
11521         case 0x5e: /* FRINT32X */
11522         case 0x5f: /* FRINT64X */
11523             need_fpstatus = true;
11524             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11525                 unallocated_encoding(s);
11526                 return;
11527             }
11528             break;
11529         default:
11530             unallocated_encoding(s);
11531             return;
11532         }
11533         break;
11534     }
11535     default:
11536     case 0x3: /* SUQADD, USQADD */
11537         unallocated_encoding(s);
11538         return;
11539     }
11540 
11541     if (!fp_access_check(s)) {
11542         return;
11543     }
11544 
11545     if (need_fpstatus || rmode >= 0) {
11546         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11547     } else {
11548         tcg_fpstatus = NULL;
11549     }
11550     if (rmode >= 0) {
11551         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11552     } else {
11553         tcg_rmode = NULL;
11554     }
11555 
11556     switch (opcode) {
11557     case 0x5:
11558         if (u && size == 0) { /* NOT */
11559             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11560             return;
11561         }
11562         break;
11563     case 0x8: /* CMGT, CMGE */
11564         if (u) {
11565             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11566         } else {
11567             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11568         }
11569         return;
11570     case 0x9: /* CMEQ, CMLE */
11571         if (u) {
11572             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11573         } else {
11574             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11575         }
11576         return;
11577     case 0xa: /* CMLT */
11578         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11579         return;
11580     case 0xb:
11581         if (u) { /* ABS, NEG */
11582             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11583         } else {
11584             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11585         }
11586         return;
11587     }
11588 
11589     if (size == 3) {
11590         /* All 64-bit element operations can be shared with scalar 2misc */
11591         int pass;
11592 
11593         /* Coverity claims (size == 3 && !is_q) has been eliminated
11594          * from all paths leading to here.
11595          */
11596         tcg_debug_assert(is_q);
11597         for (pass = 0; pass < 2; pass++) {
11598             TCGv_i64 tcg_op = tcg_temp_new_i64();
11599             TCGv_i64 tcg_res = tcg_temp_new_i64();
11600 
11601             read_vec_element(s, tcg_op, rn, pass, MO_64);
11602 
11603             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11604                             tcg_rmode, tcg_fpstatus);
11605 
11606             write_vec_element(s, tcg_res, rd, pass, MO_64);
11607         }
11608     } else {
11609         int pass;
11610 
11611         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11612             TCGv_i32 tcg_op = tcg_temp_new_i32();
11613             TCGv_i32 tcg_res = tcg_temp_new_i32();
11614 
11615             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11616 
11617             if (size == 2) {
11618                 /* Special cases for 32 bit elements */
11619                 switch (opcode) {
11620                 case 0x4: /* CLS */
11621                     if (u) {
11622                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11623                     } else {
11624                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11625                     }
11626                     break;
11627                 case 0x7: /* SQABS, SQNEG */
11628                     if (u) {
11629                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11630                     } else {
11631                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11632                     }
11633                     break;
11634                 case 0x2f: /* FABS */
11635                     gen_vfp_abss(tcg_res, tcg_op);
11636                     break;
11637                 case 0x6f: /* FNEG */
11638                     gen_vfp_negs(tcg_res, tcg_op);
11639                     break;
11640                 case 0x7f: /* FSQRT */
11641                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11642                     break;
11643                 case 0x1a: /* FCVTNS */
11644                 case 0x1b: /* FCVTMS */
11645                 case 0x1c: /* FCVTAS */
11646                 case 0x3a: /* FCVTPS */
11647                 case 0x3b: /* FCVTZS */
11648                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11649                                          tcg_constant_i32(0), tcg_fpstatus);
11650                     break;
11651                 case 0x5a: /* FCVTNU */
11652                 case 0x5b: /* FCVTMU */
11653                 case 0x5c: /* FCVTAU */
11654                 case 0x7a: /* FCVTPU */
11655                 case 0x7b: /* FCVTZU */
11656                     gen_helper_vfp_touls(tcg_res, tcg_op,
11657                                          tcg_constant_i32(0), tcg_fpstatus);
11658                     break;
11659                 case 0x18: /* FRINTN */
11660                 case 0x19: /* FRINTM */
11661                 case 0x38: /* FRINTP */
11662                 case 0x39: /* FRINTZ */
11663                 case 0x58: /* FRINTA */
11664                 case 0x79: /* FRINTI */
11665                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11666                     break;
11667                 case 0x59: /* FRINTX */
11668                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11669                     break;
11670                 case 0x7c: /* URSQRTE */
11671                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11672                     break;
11673                 case 0x1e: /* FRINT32Z */
11674                 case 0x5e: /* FRINT32X */
11675                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11676                     break;
11677                 case 0x1f: /* FRINT64Z */
11678                 case 0x5f: /* FRINT64X */
11679                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11680                     break;
11681                 default:
11682                     g_assert_not_reached();
11683                 }
11684             } else {
11685                 /* Use helpers for 8 and 16 bit elements */
11686                 switch (opcode) {
11687                 case 0x5: /* CNT, RBIT */
11688                     /* For these two insns size is part of the opcode specifier
11689                      * (handled earlier); they always operate on byte elements.
11690                      */
11691                     if (u) {
11692                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11693                     } else {
11694                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11695                     }
11696                     break;
11697                 case 0x7: /* SQABS, SQNEG */
11698                 {
11699                     NeonGenOneOpEnvFn *genfn;
11700                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11701                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11702                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11703                     };
11704                     genfn = fns[size][u];
11705                     genfn(tcg_res, tcg_env, tcg_op);
11706                     break;
11707                 }
11708                 case 0x4: /* CLS, CLZ */
11709                     if (u) {
11710                         if (size == 0) {
11711                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11712                         } else {
11713                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11714                         }
11715                     } else {
11716                         if (size == 0) {
11717                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11718                         } else {
11719                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11720                         }
11721                     }
11722                     break;
11723                 default:
11724                     g_assert_not_reached();
11725                 }
11726             }
11727 
11728             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11729         }
11730     }
11731     clear_vec_high(s, is_q, rd);
11732 
11733     if (tcg_rmode) {
11734         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11735     }
11736 }
11737 
11738 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11739  *
11740  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11741  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11742  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11743  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11744  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11745  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11746  *
11747  * This actually covers two groups where scalar access is governed by
11748  * bit 28. A bunch of the instructions (float to integral) only exist
11749  * in the vector form and are un-allocated for the scalar decode. Also
11750  * in the scalar decode Q is always 1.
11751  */
11752 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11753 {
11754     int fpop, opcode, a, u;
11755     int rn, rd;
11756     bool is_q;
11757     bool is_scalar;
11758     bool only_in_vector = false;
11759 
11760     int pass;
11761     TCGv_i32 tcg_rmode = NULL;
11762     TCGv_ptr tcg_fpstatus = NULL;
11763     bool need_fpst = true;
11764     int rmode = -1;
11765 
11766     if (!dc_isar_feature(aa64_fp16, s)) {
11767         unallocated_encoding(s);
11768         return;
11769     }
11770 
11771     rd = extract32(insn, 0, 5);
11772     rn = extract32(insn, 5, 5);
11773 
11774     a = extract32(insn, 23, 1);
11775     u = extract32(insn, 29, 1);
11776     is_scalar = extract32(insn, 28, 1);
11777     is_q = extract32(insn, 30, 1);
11778 
11779     opcode = extract32(insn, 12, 5);
11780     fpop = deposit32(opcode, 5, 1, a);
11781     fpop = deposit32(fpop, 6, 1, u);
11782 
11783     switch (fpop) {
11784     case 0x1d: /* SCVTF */
11785     case 0x5d: /* UCVTF */
11786     {
11787         int elements;
11788 
11789         if (is_scalar) {
11790             elements = 1;
11791         } else {
11792             elements = (is_q ? 8 : 4);
11793         }
11794 
11795         if (!fp_access_check(s)) {
11796             return;
11797         }
11798         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11799         return;
11800     }
11801     break;
11802     case 0x2c: /* FCMGT (zero) */
11803     case 0x2d: /* FCMEQ (zero) */
11804     case 0x2e: /* FCMLT (zero) */
11805     case 0x6c: /* FCMGE (zero) */
11806     case 0x6d: /* FCMLE (zero) */
11807         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11808         return;
11809     case 0x3d: /* FRECPE */
11810     case 0x3f: /* FRECPX */
11811         break;
11812     case 0x18: /* FRINTN */
11813         only_in_vector = true;
11814         rmode = FPROUNDING_TIEEVEN;
11815         break;
11816     case 0x19: /* FRINTM */
11817         only_in_vector = true;
11818         rmode = FPROUNDING_NEGINF;
11819         break;
11820     case 0x38: /* FRINTP */
11821         only_in_vector = true;
11822         rmode = FPROUNDING_POSINF;
11823         break;
11824     case 0x39: /* FRINTZ */
11825         only_in_vector = true;
11826         rmode = FPROUNDING_ZERO;
11827         break;
11828     case 0x58: /* FRINTA */
11829         only_in_vector = true;
11830         rmode = FPROUNDING_TIEAWAY;
11831         break;
11832     case 0x59: /* FRINTX */
11833     case 0x79: /* FRINTI */
11834         only_in_vector = true;
11835         /* current rounding mode */
11836         break;
11837     case 0x1a: /* FCVTNS */
11838         rmode = FPROUNDING_TIEEVEN;
11839         break;
11840     case 0x1b: /* FCVTMS */
11841         rmode = FPROUNDING_NEGINF;
11842         break;
11843     case 0x1c: /* FCVTAS */
11844         rmode = FPROUNDING_TIEAWAY;
11845         break;
11846     case 0x3a: /* FCVTPS */
11847         rmode = FPROUNDING_POSINF;
11848         break;
11849     case 0x3b: /* FCVTZS */
11850         rmode = FPROUNDING_ZERO;
11851         break;
11852     case 0x5a: /* FCVTNU */
11853         rmode = FPROUNDING_TIEEVEN;
11854         break;
11855     case 0x5b: /* FCVTMU */
11856         rmode = FPROUNDING_NEGINF;
11857         break;
11858     case 0x5c: /* FCVTAU */
11859         rmode = FPROUNDING_TIEAWAY;
11860         break;
11861     case 0x7a: /* FCVTPU */
11862         rmode = FPROUNDING_POSINF;
11863         break;
11864     case 0x7b: /* FCVTZU */
11865         rmode = FPROUNDING_ZERO;
11866         break;
11867     case 0x2f: /* FABS */
11868     case 0x6f: /* FNEG */
11869         need_fpst = false;
11870         break;
11871     case 0x7d: /* FRSQRTE */
11872     case 0x7f: /* FSQRT (vector) */
11873         break;
11874     default:
11875         unallocated_encoding(s);
11876         return;
11877     }
11878 
11879 
11880     /* Check additional constraints for the scalar encoding */
11881     if (is_scalar) {
11882         if (!is_q) {
11883             unallocated_encoding(s);
11884             return;
11885         }
11886         /* FRINTxx is only in the vector form */
11887         if (only_in_vector) {
11888             unallocated_encoding(s);
11889             return;
11890         }
11891     }
11892 
11893     if (!fp_access_check(s)) {
11894         return;
11895     }
11896 
11897     if (rmode >= 0 || need_fpst) {
11898         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11899     }
11900 
11901     if (rmode >= 0) {
11902         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11903     }
11904 
11905     if (is_scalar) {
11906         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11907         TCGv_i32 tcg_res = tcg_temp_new_i32();
11908 
11909         switch (fpop) {
11910         case 0x1a: /* FCVTNS */
11911         case 0x1b: /* FCVTMS */
11912         case 0x1c: /* FCVTAS */
11913         case 0x3a: /* FCVTPS */
11914         case 0x3b: /* FCVTZS */
11915             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11916             break;
11917         case 0x3d: /* FRECPE */
11918             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11919             break;
11920         case 0x3f: /* FRECPX */
11921             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11922             break;
11923         case 0x5a: /* FCVTNU */
11924         case 0x5b: /* FCVTMU */
11925         case 0x5c: /* FCVTAU */
11926         case 0x7a: /* FCVTPU */
11927         case 0x7b: /* FCVTZU */
11928             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11929             break;
11930         case 0x6f: /* FNEG */
11931             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11932             break;
11933         case 0x7d: /* FRSQRTE */
11934             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11935             break;
11936         default:
11937             g_assert_not_reached();
11938         }
11939 
11940         /* limit any sign extension going on */
11941         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11942         write_fp_sreg(s, rd, tcg_res);
11943     } else {
11944         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11945             TCGv_i32 tcg_op = tcg_temp_new_i32();
11946             TCGv_i32 tcg_res = tcg_temp_new_i32();
11947 
11948             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11949 
11950             switch (fpop) {
11951             case 0x1a: /* FCVTNS */
11952             case 0x1b: /* FCVTMS */
11953             case 0x1c: /* FCVTAS */
11954             case 0x3a: /* FCVTPS */
11955             case 0x3b: /* FCVTZS */
11956                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11957                 break;
11958             case 0x3d: /* FRECPE */
11959                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11960                 break;
11961             case 0x5a: /* FCVTNU */
11962             case 0x5b: /* FCVTMU */
11963             case 0x5c: /* FCVTAU */
11964             case 0x7a: /* FCVTPU */
11965             case 0x7b: /* FCVTZU */
11966                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11967                 break;
11968             case 0x18: /* FRINTN */
11969             case 0x19: /* FRINTM */
11970             case 0x38: /* FRINTP */
11971             case 0x39: /* FRINTZ */
11972             case 0x58: /* FRINTA */
11973             case 0x79: /* FRINTI */
11974                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11975                 break;
11976             case 0x59: /* FRINTX */
11977                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11978                 break;
11979             case 0x2f: /* FABS */
11980                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11981                 break;
11982             case 0x6f: /* FNEG */
11983                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11984                 break;
11985             case 0x7d: /* FRSQRTE */
11986                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11987                 break;
11988             case 0x7f: /* FSQRT */
11989                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11990                 break;
11991             default:
11992                 g_assert_not_reached();
11993             }
11994 
11995             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11996         }
11997 
11998         clear_vec_high(s, is_q, rd);
11999     }
12000 
12001     if (tcg_rmode) {
12002         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12003     }
12004 }
12005 
12006 /* AdvSIMD scalar x indexed element
12007  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12008  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12009  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12010  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12011  * AdvSIMD vector x indexed element
12012  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12013  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12014  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12015  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12016  */
12017 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12018 {
12019     /* This encoding has two kinds of instruction:
12020      *  normal, where we perform elt x idxelt => elt for each
12021      *     element in the vector
12022      *  long, where we perform elt x idxelt and generate a result of
12023      *     double the width of the input element
12024      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12025      */
12026     bool is_scalar = extract32(insn, 28, 1);
12027     bool is_q = extract32(insn, 30, 1);
12028     bool u = extract32(insn, 29, 1);
12029     int size = extract32(insn, 22, 2);
12030     int l = extract32(insn, 21, 1);
12031     int m = extract32(insn, 20, 1);
12032     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12033     int rm = extract32(insn, 16, 4);
12034     int opcode = extract32(insn, 12, 4);
12035     int h = extract32(insn, 11, 1);
12036     int rn = extract32(insn, 5, 5);
12037     int rd = extract32(insn, 0, 5);
12038     bool is_long = false;
12039     int is_fp = 0;
12040     bool is_fp16 = false;
12041     int index;
12042     TCGv_ptr fpst;
12043 
12044     switch (16 * u + opcode) {
12045     case 0x02: /* SMLAL, SMLAL2 */
12046     case 0x12: /* UMLAL, UMLAL2 */
12047     case 0x06: /* SMLSL, SMLSL2 */
12048     case 0x16: /* UMLSL, UMLSL2 */
12049     case 0x0a: /* SMULL, SMULL2 */
12050     case 0x1a: /* UMULL, UMULL2 */
12051         if (is_scalar) {
12052             unallocated_encoding(s);
12053             return;
12054         }
12055         is_long = true;
12056         break;
12057     case 0x03: /* SQDMLAL, SQDMLAL2 */
12058     case 0x07: /* SQDMLSL, SQDMLSL2 */
12059     case 0x0b: /* SQDMULL, SQDMULL2 */
12060         is_long = true;
12061         break;
12062     case 0x1d: /* SQRDMLAH */
12063     case 0x1f: /* SQRDMLSH */
12064         if (!dc_isar_feature(aa64_rdm, s)) {
12065             unallocated_encoding(s);
12066             return;
12067         }
12068         break;
12069     case 0x0e: /* SDOT */
12070     case 0x1e: /* UDOT */
12071         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12072             unallocated_encoding(s);
12073             return;
12074         }
12075         break;
12076     case 0x0f:
12077         switch (size) {
12078         case 0: /* SUDOT */
12079         case 2: /* USDOT */
12080             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12081                 unallocated_encoding(s);
12082                 return;
12083             }
12084             size = MO_32;
12085             break;
12086         case 1: /* BFDOT */
12087             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12088                 unallocated_encoding(s);
12089                 return;
12090             }
12091             size = MO_32;
12092             break;
12093         case 3: /* BFMLAL{B,T} */
12094             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12095                 unallocated_encoding(s);
12096                 return;
12097             }
12098             /* can't set is_fp without other incorrect size checks */
12099             size = MO_16;
12100             break;
12101         default:
12102             unallocated_encoding(s);
12103             return;
12104         }
12105         break;
12106     case 0x11: /* FCMLA #0 */
12107     case 0x13: /* FCMLA #90 */
12108     case 0x15: /* FCMLA #180 */
12109     case 0x17: /* FCMLA #270 */
12110         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12111             unallocated_encoding(s);
12112             return;
12113         }
12114         is_fp = 2;
12115         break;
12116     default:
12117     case 0x00: /* FMLAL */
12118     case 0x01: /* FMLA */
12119     case 0x04: /* FMLSL */
12120     case 0x05: /* FMLS */
12121     case 0x08: /* MUL */
12122     case 0x09: /* FMUL */
12123     case 0x0c: /* SQDMULH */
12124     case 0x0d: /* SQRDMULH */
12125     case 0x10: /* MLA */
12126     case 0x14: /* MLS */
12127     case 0x18: /* FMLAL2 */
12128     case 0x19: /* FMULX */
12129     case 0x1c: /* FMLSL2 */
12130         unallocated_encoding(s);
12131         return;
12132     }
12133 
12134     switch (is_fp) {
12135     case 1: /* normal fp */
12136         unallocated_encoding(s); /* in decodetree */
12137         return;
12138 
12139     case 2: /* complex fp */
12140         /* Each indexable element is a complex pair.  */
12141         size += 1;
12142         switch (size) {
12143         case MO_32:
12144             if (h && !is_q) {
12145                 unallocated_encoding(s);
12146                 return;
12147             }
12148             is_fp16 = true;
12149             break;
12150         case MO_64:
12151             break;
12152         default:
12153             unallocated_encoding(s);
12154             return;
12155         }
12156         break;
12157 
12158     default: /* integer */
12159         switch (size) {
12160         case MO_8:
12161         case MO_64:
12162             unallocated_encoding(s);
12163             return;
12164         }
12165         break;
12166     }
12167     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12168         unallocated_encoding(s);
12169         return;
12170     }
12171 
12172     /* Given MemOp size, adjust register and indexing.  */
12173     switch (size) {
12174     case MO_16:
12175         index = h << 2 | l << 1 | m;
12176         break;
12177     case MO_32:
12178         index = h << 1 | l;
12179         rm |= m << 4;
12180         break;
12181     case MO_64:
12182         if (l || !is_q) {
12183             unallocated_encoding(s);
12184             return;
12185         }
12186         index = h;
12187         rm |= m << 4;
12188         break;
12189     default:
12190         g_assert_not_reached();
12191     }
12192 
12193     if (!fp_access_check(s)) {
12194         return;
12195     }
12196 
12197     if (is_fp) {
12198         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12199     } else {
12200         fpst = NULL;
12201     }
12202 
12203     switch (16 * u + opcode) {
12204     case 0x0e: /* SDOT */
12205     case 0x1e: /* UDOT */
12206         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12207                          u ? gen_helper_gvec_udot_idx_b
12208                          : gen_helper_gvec_sdot_idx_b);
12209         return;
12210     case 0x0f:
12211         switch (extract32(insn, 22, 2)) {
12212         case 0: /* SUDOT */
12213             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12214                              gen_helper_gvec_sudot_idx_b);
12215             return;
12216         case 1: /* BFDOT */
12217             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12218                              gen_helper_gvec_bfdot_idx);
12219             return;
12220         case 2: /* USDOT */
12221             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12222                              gen_helper_gvec_usdot_idx_b);
12223             return;
12224         case 3: /* BFMLAL{B,T} */
12225             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12226                               gen_helper_gvec_bfmlal_idx);
12227             return;
12228         }
12229         g_assert_not_reached();
12230     case 0x11: /* FCMLA #0 */
12231     case 0x13: /* FCMLA #90 */
12232     case 0x15: /* FCMLA #180 */
12233     case 0x17: /* FCMLA #270 */
12234         {
12235             int rot = extract32(insn, 13, 2);
12236             int data = (index << 2) | rot;
12237             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12238                                vec_full_reg_offset(s, rn),
12239                                vec_full_reg_offset(s, rm),
12240                                vec_full_reg_offset(s, rd), fpst,
12241                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12242                                size == MO_64
12243                                ? gen_helper_gvec_fcmlas_idx
12244                                : gen_helper_gvec_fcmlah_idx);
12245         }
12246         return;
12247     }
12248 
12249     if (size == 3) {
12250         g_assert_not_reached();
12251     } else if (!is_long) {
12252         /* 32 bit floating point, or 16 or 32 bit integer.
12253          * For the 16 bit scalar case we use the usual Neon helpers and
12254          * rely on the fact that 0 op 0 == 0 with no side effects.
12255          */
12256         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12257         int pass, maxpasses;
12258 
12259         if (is_scalar) {
12260             maxpasses = 1;
12261         } else {
12262             maxpasses = is_q ? 4 : 2;
12263         }
12264 
12265         read_vec_element_i32(s, tcg_idx, rm, index, size);
12266 
12267         if (size == 1 && !is_scalar) {
12268             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12269              * the index into both halves of the 32 bit tcg_idx and then use
12270              * the usual Neon helpers.
12271              */
12272             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12273         }
12274 
12275         for (pass = 0; pass < maxpasses; pass++) {
12276             TCGv_i32 tcg_op = tcg_temp_new_i32();
12277             TCGv_i32 tcg_res = tcg_temp_new_i32();
12278 
12279             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12280 
12281             switch (16 * u + opcode) {
12282             case 0x10: /* MLA */
12283             case 0x14: /* MLS */
12284             {
12285                 static NeonGenTwoOpFn * const fns[2][2] = {
12286                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12287                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12288                 };
12289                 NeonGenTwoOpFn *genfn;
12290                 bool is_sub = opcode == 0x4;
12291 
12292                 if (size == 1) {
12293                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12294                 } else {
12295                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12296                 }
12297                 if (opcode == 0x8) {
12298                     break;
12299                 }
12300                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12301                 genfn = fns[size - 1][is_sub];
12302                 genfn(tcg_res, tcg_op, tcg_res);
12303                 break;
12304             }
12305             case 0x0c: /* SQDMULH */
12306                 if (size == 1) {
12307                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12308                                                tcg_op, tcg_idx);
12309                 } else {
12310                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12311                                                tcg_op, tcg_idx);
12312                 }
12313                 break;
12314             case 0x0d: /* SQRDMULH */
12315                 if (size == 1) {
12316                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12317                                                 tcg_op, tcg_idx);
12318                 } else {
12319                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12320                                                 tcg_op, tcg_idx);
12321                 }
12322                 break;
12323             case 0x1d: /* SQRDMLAH */
12324                 read_vec_element_i32(s, tcg_res, rd, pass,
12325                                      is_scalar ? size : MO_32);
12326                 if (size == 1) {
12327                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12328                                                 tcg_op, tcg_idx, tcg_res);
12329                 } else {
12330                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12331                                                 tcg_op, tcg_idx, tcg_res);
12332                 }
12333                 break;
12334             case 0x1f: /* SQRDMLSH */
12335                 read_vec_element_i32(s, tcg_res, rd, pass,
12336                                      is_scalar ? size : MO_32);
12337                 if (size == 1) {
12338                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12339                                                 tcg_op, tcg_idx, tcg_res);
12340                 } else {
12341                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12342                                                 tcg_op, tcg_idx, tcg_res);
12343                 }
12344                 break;
12345             default:
12346             case 0x01: /* FMLA */
12347             case 0x05: /* FMLS */
12348             case 0x09: /* FMUL */
12349             case 0x19: /* FMULX */
12350                 g_assert_not_reached();
12351             }
12352 
12353             if (is_scalar) {
12354                 write_fp_sreg(s, rd, tcg_res);
12355             } else {
12356                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12357             }
12358         }
12359 
12360         clear_vec_high(s, is_q, rd);
12361     } else {
12362         /* long ops: 16x16->32 or 32x32->64 */
12363         TCGv_i64 tcg_res[2];
12364         int pass;
12365         bool satop = extract32(opcode, 0, 1);
12366         MemOp memop = MO_32;
12367 
12368         if (satop || !u) {
12369             memop |= MO_SIGN;
12370         }
12371 
12372         if (size == 2) {
12373             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12374 
12375             read_vec_element(s, tcg_idx, rm, index, memop);
12376 
12377             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12378                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12379                 TCGv_i64 tcg_passres;
12380                 int passelt;
12381 
12382                 if (is_scalar) {
12383                     passelt = 0;
12384                 } else {
12385                     passelt = pass + (is_q * 2);
12386                 }
12387 
12388                 read_vec_element(s, tcg_op, rn, passelt, memop);
12389 
12390                 tcg_res[pass] = tcg_temp_new_i64();
12391 
12392                 if (opcode == 0xa || opcode == 0xb) {
12393                     /* Non-accumulating ops */
12394                     tcg_passres = tcg_res[pass];
12395                 } else {
12396                     tcg_passres = tcg_temp_new_i64();
12397                 }
12398 
12399                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12400 
12401                 if (satop) {
12402                     /* saturating, doubling */
12403                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12404                                                       tcg_passres, tcg_passres);
12405                 }
12406 
12407                 if (opcode == 0xa || opcode == 0xb) {
12408                     continue;
12409                 }
12410 
12411                 /* Accumulating op: handle accumulate step */
12412                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12413 
12414                 switch (opcode) {
12415                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12416                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12417                     break;
12418                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12419                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12420                     break;
12421                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12422                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12423                     /* fall through */
12424                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12425                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12426                                                       tcg_res[pass],
12427                                                       tcg_passres);
12428                     break;
12429                 default:
12430                     g_assert_not_reached();
12431                 }
12432             }
12433 
12434             clear_vec_high(s, !is_scalar, rd);
12435         } else {
12436             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12437 
12438             assert(size == 1);
12439             read_vec_element_i32(s, tcg_idx, rm, index, size);
12440 
12441             if (!is_scalar) {
12442                 /* The simplest way to handle the 16x16 indexed ops is to
12443                  * duplicate the index into both halves of the 32 bit tcg_idx
12444                  * and then use the usual Neon helpers.
12445                  */
12446                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12447             }
12448 
12449             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12450                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12451                 TCGv_i64 tcg_passres;
12452 
12453                 if (is_scalar) {
12454                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12455                 } else {
12456                     read_vec_element_i32(s, tcg_op, rn,
12457                                          pass + (is_q * 2), MO_32);
12458                 }
12459 
12460                 tcg_res[pass] = tcg_temp_new_i64();
12461 
12462                 if (opcode == 0xa || opcode == 0xb) {
12463                     /* Non-accumulating ops */
12464                     tcg_passres = tcg_res[pass];
12465                 } else {
12466                     tcg_passres = tcg_temp_new_i64();
12467                 }
12468 
12469                 if (memop & MO_SIGN) {
12470                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12471                 } else {
12472                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12473                 }
12474                 if (satop) {
12475                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12476                                                       tcg_passres, tcg_passres);
12477                 }
12478 
12479                 if (opcode == 0xa || opcode == 0xb) {
12480                     continue;
12481                 }
12482 
12483                 /* Accumulating op: handle accumulate step */
12484                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12485 
12486                 switch (opcode) {
12487                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12488                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12489                                              tcg_passres);
12490                     break;
12491                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12492                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12493                                              tcg_passres);
12494                     break;
12495                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12496                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12497                     /* fall through */
12498                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12499                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12500                                                       tcg_res[pass],
12501                                                       tcg_passres);
12502                     break;
12503                 default:
12504                     g_assert_not_reached();
12505                 }
12506             }
12507 
12508             if (is_scalar) {
12509                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12510             }
12511         }
12512 
12513         if (is_scalar) {
12514             tcg_res[1] = tcg_constant_i64(0);
12515         }
12516 
12517         for (pass = 0; pass < 2; pass++) {
12518             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12519         }
12520     }
12521 }
12522 
12523 /* C3.6 Data processing - SIMD, inc Crypto
12524  *
12525  * As the decode gets a little complex we are using a table based
12526  * approach for this part of the decode.
12527  */
12528 static const AArch64DecodeTable data_proc_simd[] = {
12529     /* pattern  ,  mask     ,  fn                        */
12530     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12531     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12532     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12533     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12534     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12535     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12536     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12537     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12538     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12539     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12540     { 0x2e000000, 0xbf208400, disas_simd_ext },
12541     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
12542     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12543     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12544     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12545     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12546     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12547     { 0x00000000, 0x00000000, NULL }
12548 };
12549 
12550 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12551 {
12552     /* Note that this is called with all non-FP cases from
12553      * table C3-6 so it must UNDEF for entries not specifically
12554      * allocated to instructions in that table.
12555      */
12556     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12557     if (fn) {
12558         fn(s, insn);
12559     } else {
12560         unallocated_encoding(s);
12561     }
12562 }
12563 
12564 /* C3.6 Data processing - SIMD and floating point */
12565 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12566 {
12567     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12568         disas_data_proc_fp(s, insn);
12569     } else {
12570         /* SIMD, including crypto */
12571         disas_data_proc_simd(s, insn);
12572     }
12573 }
12574 
12575 static bool trans_OK(DisasContext *s, arg_OK *a)
12576 {
12577     return true;
12578 }
12579 
12580 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12581 {
12582     s->is_nonstreaming = true;
12583     return true;
12584 }
12585 
12586 /**
12587  * is_guarded_page:
12588  * @env: The cpu environment
12589  * @s: The DisasContext
12590  *
12591  * Return true if the page is guarded.
12592  */
12593 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12594 {
12595     uint64_t addr = s->base.pc_first;
12596 #ifdef CONFIG_USER_ONLY
12597     return page_get_flags(addr) & PAGE_BTI;
12598 #else
12599     CPUTLBEntryFull *full;
12600     void *host;
12601     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12602     int flags;
12603 
12604     /*
12605      * We test this immediately after reading an insn, which means
12606      * that the TLB entry must be present and valid, and thus this
12607      * access will never raise an exception.
12608      */
12609     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12610                               false, &host, &full, 0);
12611     assert(!(flags & TLB_INVALID_MASK));
12612 
12613     return full->extra.arm.guarded;
12614 #endif
12615 }
12616 
12617 /**
12618  * btype_destination_ok:
12619  * @insn: The instruction at the branch destination
12620  * @bt: SCTLR_ELx.BT
12621  * @btype: PSTATE.BTYPE, and is non-zero
12622  *
12623  * On a guarded page, there are a limited number of insns
12624  * that may be present at the branch target:
12625  *   - branch target identifiers,
12626  *   - paciasp, pacibsp,
12627  *   - BRK insn
12628  *   - HLT insn
12629  * Anything else causes a Branch Target Exception.
12630  *
12631  * Return true if the branch is compatible, false to raise BTITRAP.
12632  */
12633 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12634 {
12635     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12636         /* HINT space */
12637         switch (extract32(insn, 5, 7)) {
12638         case 0b011001: /* PACIASP */
12639         case 0b011011: /* PACIBSP */
12640             /*
12641              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12642              * with btype == 3.  Otherwise all btype are ok.
12643              */
12644             return !bt || btype != 3;
12645         case 0b100000: /* BTI */
12646             /* Not compatible with any btype.  */
12647             return false;
12648         case 0b100010: /* BTI c */
12649             /* Not compatible with btype == 3 */
12650             return btype != 3;
12651         case 0b100100: /* BTI j */
12652             /* Not compatible with btype == 2 */
12653             return btype != 2;
12654         case 0b100110: /* BTI jc */
12655             /* Compatible with any btype.  */
12656             return true;
12657         }
12658     } else {
12659         switch (insn & 0xffe0001fu) {
12660         case 0xd4200000u: /* BRK */
12661         case 0xd4400000u: /* HLT */
12662             /* Give priority to the breakpoint exception.  */
12663             return true;
12664         }
12665     }
12666     return false;
12667 }
12668 
12669 /* C3.1 A64 instruction index by encoding */
12670 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12671 {
12672     switch (extract32(insn, 25, 4)) {
12673     case 0x5:
12674     case 0xd:      /* Data processing - register */
12675         disas_data_proc_reg(s, insn);
12676         break;
12677     case 0x7:
12678     case 0xf:      /* Data processing - SIMD and floating point */
12679         disas_data_proc_simd_fp(s, insn);
12680         break;
12681     default:
12682         unallocated_encoding(s);
12683         break;
12684     }
12685 }
12686 
12687 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12688                                           CPUState *cpu)
12689 {
12690     DisasContext *dc = container_of(dcbase, DisasContext, base);
12691     CPUARMState *env = cpu_env(cpu);
12692     ARMCPU *arm_cpu = env_archcpu(env);
12693     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12694     int bound, core_mmu_idx;
12695 
12696     dc->isar = &arm_cpu->isar;
12697     dc->condjmp = 0;
12698     dc->pc_save = dc->base.pc_first;
12699     dc->aarch64 = true;
12700     dc->thumb = false;
12701     dc->sctlr_b = 0;
12702     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12703     dc->condexec_mask = 0;
12704     dc->condexec_cond = 0;
12705     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12706     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12707     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12708     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12709     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12710     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12711 #if !defined(CONFIG_USER_ONLY)
12712     dc->user = (dc->current_el == 0);
12713 #endif
12714     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12715     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12716     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12717     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12718     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12719     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12720     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12721     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12722     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12723     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12724     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12725     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12726     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12727     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12728     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12729     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12730     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12731     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12732     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12733     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12734     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12735     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12736     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12737     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12738     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12739     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12740     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12741     dc->vec_len = 0;
12742     dc->vec_stride = 0;
12743     dc->cp_regs = arm_cpu->cp_regs;
12744     dc->features = env->features;
12745     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12746     dc->gm_blocksize = arm_cpu->gm_blocksize;
12747 
12748 #ifdef CONFIG_USER_ONLY
12749     /* In sve_probe_page, we assume TBI is enabled. */
12750     tcg_debug_assert(dc->tbid & 1);
12751 #endif
12752 
12753     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12754 
12755     /* Single step state. The code-generation logic here is:
12756      *  SS_ACTIVE == 0:
12757      *   generate code with no special handling for single-stepping (except
12758      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12759      *   this happens anyway because those changes are all system register or
12760      *   PSTATE writes).
12761      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12762      *   emit code for one insn
12763      *   emit code to clear PSTATE.SS
12764      *   emit code to generate software step exception for completed step
12765      *   end TB (as usual for having generated an exception)
12766      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12767      *   emit code to generate a software step exception
12768      *   end the TB
12769      */
12770     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12771     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12772     dc->is_ldex = false;
12773 
12774     /* Bound the number of insns to execute to those left on the page.  */
12775     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12776 
12777     /* If architectural single step active, limit to 1.  */
12778     if (dc->ss_active) {
12779         bound = 1;
12780     }
12781     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12782 }
12783 
12784 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12785 {
12786 }
12787 
12788 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12789 {
12790     DisasContext *dc = container_of(dcbase, DisasContext, base);
12791     target_ulong pc_arg = dc->base.pc_next;
12792 
12793     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12794         pc_arg &= ~TARGET_PAGE_MASK;
12795     }
12796     tcg_gen_insn_start(pc_arg, 0, 0);
12797     dc->insn_start_updated = false;
12798 }
12799 
12800 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12801 {
12802     DisasContext *s = container_of(dcbase, DisasContext, base);
12803     CPUARMState *env = cpu_env(cpu);
12804     uint64_t pc = s->base.pc_next;
12805     uint32_t insn;
12806 
12807     /* Singlestep exceptions have the highest priority. */
12808     if (s->ss_active && !s->pstate_ss) {
12809         /* Singlestep state is Active-pending.
12810          * If we're in this state at the start of a TB then either
12811          *  a) we just took an exception to an EL which is being debugged
12812          *     and this is the first insn in the exception handler
12813          *  b) debug exceptions were masked and we just unmasked them
12814          *     without changing EL (eg by clearing PSTATE.D)
12815          * In either case we're going to take a swstep exception in the
12816          * "did not step an insn" case, and so the syndrome ISV and EX
12817          * bits should be zero.
12818          */
12819         assert(s->base.num_insns == 1);
12820         gen_swstep_exception(s, 0, 0);
12821         s->base.is_jmp = DISAS_NORETURN;
12822         s->base.pc_next = pc + 4;
12823         return;
12824     }
12825 
12826     if (pc & 3) {
12827         /*
12828          * PC alignment fault.  This has priority over the instruction abort
12829          * that we would receive from a translation fault via arm_ldl_code.
12830          * This should only be possible after an indirect branch, at the
12831          * start of the TB.
12832          */
12833         assert(s->base.num_insns == 1);
12834         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12835         s->base.is_jmp = DISAS_NORETURN;
12836         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12837         return;
12838     }
12839 
12840     s->pc_curr = pc;
12841     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12842     s->insn = insn;
12843     s->base.pc_next = pc + 4;
12844 
12845     s->fp_access_checked = false;
12846     s->sve_access_checked = false;
12847 
12848     if (s->pstate_il) {
12849         /*
12850          * Illegal execution state. This has priority over BTI
12851          * exceptions, but comes after instruction abort exceptions.
12852          */
12853         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12854         return;
12855     }
12856 
12857     if (dc_isar_feature(aa64_bti, s)) {
12858         if (s->base.num_insns == 1) {
12859             /*
12860              * At the first insn of the TB, compute s->guarded_page.
12861              * We delayed computing this until successfully reading
12862              * the first insn of the TB, above.  This (mostly) ensures
12863              * that the softmmu tlb entry has been populated, and the
12864              * page table GP bit is available.
12865              *
12866              * Note that we need to compute this even if btype == 0,
12867              * because this value is used for BR instructions later
12868              * where ENV is not available.
12869              */
12870             s->guarded_page = is_guarded_page(env, s);
12871 
12872             /* First insn can have btype set to non-zero.  */
12873             tcg_debug_assert(s->btype >= 0);
12874 
12875             /*
12876              * Note that the Branch Target Exception has fairly high
12877              * priority -- below debugging exceptions but above most
12878              * everything else.  This allows us to handle this now
12879              * instead of waiting until the insn is otherwise decoded.
12880              */
12881             if (s->btype != 0
12882                 && s->guarded_page
12883                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12884                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12885                 return;
12886             }
12887         } else {
12888             /* Not the first insn: btype must be 0.  */
12889             tcg_debug_assert(s->btype == 0);
12890         }
12891     }
12892 
12893     s->is_nonstreaming = false;
12894     if (s->sme_trap_nonstreaming) {
12895         disas_sme_fa64(s, insn);
12896     }
12897 
12898     if (!disas_a64(s, insn) &&
12899         !disas_sme(s, insn) &&
12900         !disas_sve(s, insn)) {
12901         disas_a64_legacy(s, insn);
12902     }
12903 
12904     /*
12905      * After execution of most insns, btype is reset to 0.
12906      * Note that we set btype == -1 when the insn sets btype.
12907      */
12908     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12909         reset_btype(s);
12910     }
12911 }
12912 
12913 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12914 {
12915     DisasContext *dc = container_of(dcbase, DisasContext, base);
12916 
12917     if (unlikely(dc->ss_active)) {
12918         /* Note that this means single stepping WFI doesn't halt the CPU.
12919          * For conditional branch insns this is harmless unreachable code as
12920          * gen_goto_tb() has already handled emitting the debug exception
12921          * (and thus a tb-jump is not possible when singlestepping).
12922          */
12923         switch (dc->base.is_jmp) {
12924         default:
12925             gen_a64_update_pc(dc, 4);
12926             /* fall through */
12927         case DISAS_EXIT:
12928         case DISAS_JUMP:
12929             gen_step_complete_exception(dc);
12930             break;
12931         case DISAS_NORETURN:
12932             break;
12933         }
12934     } else {
12935         switch (dc->base.is_jmp) {
12936         case DISAS_NEXT:
12937         case DISAS_TOO_MANY:
12938             gen_goto_tb(dc, 1, 4);
12939             break;
12940         default:
12941         case DISAS_UPDATE_EXIT:
12942             gen_a64_update_pc(dc, 4);
12943             /* fall through */
12944         case DISAS_EXIT:
12945             tcg_gen_exit_tb(NULL, 0);
12946             break;
12947         case DISAS_UPDATE_NOCHAIN:
12948             gen_a64_update_pc(dc, 4);
12949             /* fall through */
12950         case DISAS_JUMP:
12951             tcg_gen_lookup_and_goto_ptr();
12952             break;
12953         case DISAS_NORETURN:
12954         case DISAS_SWI:
12955             break;
12956         case DISAS_WFE:
12957             gen_a64_update_pc(dc, 4);
12958             gen_helper_wfe(tcg_env);
12959             break;
12960         case DISAS_YIELD:
12961             gen_a64_update_pc(dc, 4);
12962             gen_helper_yield(tcg_env);
12963             break;
12964         case DISAS_WFI:
12965             /*
12966              * This is a special case because we don't want to just halt
12967              * the CPU if trying to debug across a WFI.
12968              */
12969             gen_a64_update_pc(dc, 4);
12970             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12971             /*
12972              * The helper doesn't necessarily throw an exception, but we
12973              * must go back to the main loop to check for interrupts anyway.
12974              */
12975             tcg_gen_exit_tb(NULL, 0);
12976             break;
12977         }
12978     }
12979 }
12980 
12981 const TranslatorOps aarch64_translator_ops = {
12982     .init_disas_context = aarch64_tr_init_disas_context,
12983     .tb_start           = aarch64_tr_tb_start,
12984     .insn_start         = aarch64_tr_insn_start,
12985     .translate_insn     = aarch64_tr_translate_insn,
12986     .tb_stop            = aarch64_tr_tb_stop,
12987 };
12988