1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 memop = finalize_memop(s, memop); 842 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 843 844 if (iss_valid) { 845 uint32_t syn; 846 847 syn = syn_data_abort_with_iss(0, 848 (memop & MO_SIZE), 849 false, 850 iss_srt, 851 iss_sf, 852 iss_ar, 853 0, 0, 0, 0, 0, false); 854 disas_set_insn_syndrome(s, syn); 855 } 856 } 857 858 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 859 TCGv_i64 tcg_addr, MemOp memop, 860 bool iss_valid, 861 unsigned int iss_srt, 862 bool iss_sf, bool iss_ar) 863 { 864 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 865 iss_valid, iss_srt, iss_sf, iss_ar); 866 } 867 868 /* 869 * Load from memory to GPR register 870 */ 871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 872 MemOp memop, bool extend, int memidx, 873 bool iss_valid, unsigned int iss_srt, 874 bool iss_sf, bool iss_ar) 875 { 876 memop = finalize_memop(s, memop); 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 MemOp mop = finalize_memop_asimd(s, size); 915 916 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 917 918 if (size < MO_128) { 919 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 920 } else { 921 TCGv_i64 tmphi = tcg_temp_new_i64(); 922 TCGv_i128 t16 = tcg_temp_new_i128(); 923 924 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 925 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 926 927 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 928 } 929 } 930 931 /* 932 * Load from memory to FP register 933 */ 934 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 935 { 936 /* This always zero-extends and writes to a full 128 bit wide vector */ 937 TCGv_i64 tmplo = tcg_temp_new_i64(); 938 TCGv_i64 tmphi = NULL; 939 MemOp mop = finalize_memop_asimd(s, size); 940 941 if (size < MO_128) { 942 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 943 } else { 944 TCGv_i128 t16 = tcg_temp_new_i128(); 945 946 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 947 948 tmphi = tcg_temp_new_i64(); 949 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 950 } 951 952 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 953 954 if (tmphi) { 955 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 956 } 957 clear_vec_high(s, tmphi != NULL, destidx); 958 } 959 960 /* 961 * Vector load/store helpers. 962 * 963 * The principal difference between this and a FP load is that we don't 964 * zero extend as we are filling a partial chunk of the vector register. 965 * These functions don't support 128 bit loads/stores, which would be 966 * normal load/store operations. 967 * 968 * The _i32 versions are useful when operating on 32 bit quantities 969 * (eg for floating point single or using Neon helper functions). 970 */ 971 972 /* Get value of an element within a vector register */ 973 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 974 int element, MemOp memop) 975 { 976 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 977 switch ((unsigned)memop) { 978 case MO_8: 979 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_16: 982 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_32: 985 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_8|MO_SIGN: 988 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_16|MO_SIGN: 991 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_32|MO_SIGN: 994 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 case MO_64: 997 case MO_64|MO_SIGN: 998 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 default: 1001 g_assert_not_reached(); 1002 } 1003 } 1004 1005 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1006 int element, MemOp memop) 1007 { 1008 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1009 switch (memop) { 1010 case MO_8: 1011 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16: 1014 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_8|MO_SIGN: 1017 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_16|MO_SIGN: 1020 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 case MO_32: 1023 case MO_32|MO_SIGN: 1024 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 default: 1027 g_assert_not_reached(); 1028 } 1029 } 1030 1031 /* Set value of an element within a vector register */ 1032 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1033 int element, MemOp memop) 1034 { 1035 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1036 switch (memop) { 1037 case MO_8: 1038 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_16: 1041 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_32: 1044 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 case MO_64: 1047 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1055 int destidx, int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1058 switch (memop) { 1059 case MO_8: 1060 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1067 break; 1068 default: 1069 g_assert_not_reached(); 1070 } 1071 } 1072 1073 /* Store from vector register to memory */ 1074 static void do_vec_st(DisasContext *s, int srcidx, int element, 1075 TCGv_i64 tcg_addr, MemOp mop) 1076 { 1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1078 1079 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1081 } 1082 1083 /* Load from memory to vector register */ 1084 static void do_vec_ld(DisasContext *s, int destidx, int element, 1085 TCGv_i64 tcg_addr, MemOp mop) 1086 { 1087 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1088 1089 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1090 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1091 } 1092 1093 /* Check that FP/Neon access is enabled. If it is, return 1094 * true. If not, emit code to generate an appropriate exception, 1095 * and return false; the caller should not emit any code for 1096 * the instruction. Note that this check must happen after all 1097 * unallocated-encoding checks (otherwise the syndrome information 1098 * for the resulting exception will be incorrect). 1099 */ 1100 static bool fp_access_check_only(DisasContext *s) 1101 { 1102 if (s->fp_excp_el) { 1103 assert(!s->fp_access_checked); 1104 s->fp_access_checked = true; 1105 1106 gen_exception_insn_el(s, 0, EXCP_UDEF, 1107 syn_fp_access_trap(1, 0xe, false, 0), 1108 s->fp_excp_el); 1109 return false; 1110 } 1111 s->fp_access_checked = true; 1112 return true; 1113 } 1114 1115 static bool fp_access_check(DisasContext *s) 1116 { 1117 if (!fp_access_check_only(s)) { 1118 return false; 1119 } 1120 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1121 gen_exception_insn(s, 0, EXCP_UDEF, 1122 syn_smetrap(SME_ET_Streaming, false)); 1123 return false; 1124 } 1125 return true; 1126 } 1127 1128 /* 1129 * Check that SVE access is enabled. If it is, return true. 1130 * If not, emit code to generate an appropriate exception and return false. 1131 * This function corresponds to CheckSVEEnabled(). 1132 */ 1133 bool sve_access_check(DisasContext *s) 1134 { 1135 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1136 assert(dc_isar_feature(aa64_sme, s)); 1137 if (!sme_sm_enabled_check(s)) { 1138 goto fail_exit; 1139 } 1140 } else if (s->sve_excp_el) { 1141 gen_exception_insn_el(s, 0, EXCP_UDEF, 1142 syn_sve_access_trap(), s->sve_excp_el); 1143 goto fail_exit; 1144 } 1145 s->sve_access_checked = true; 1146 return fp_access_check(s); 1147 1148 fail_exit: 1149 /* Assert that we only raise one exception per instruction. */ 1150 assert(!s->sve_access_checked); 1151 s->sve_access_checked = true; 1152 return false; 1153 } 1154 1155 /* 1156 * Check that SME access is enabled, raise an exception if not. 1157 * Note that this function corresponds to CheckSMEAccess and is 1158 * only used directly for cpregs. 1159 */ 1160 static bool sme_access_check(DisasContext *s) 1161 { 1162 if (s->sme_excp_el) { 1163 gen_exception_insn_el(s, 0, EXCP_UDEF, 1164 syn_smetrap(SME_ET_AccessTrap, false), 1165 s->sme_excp_el); 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 /* This function corresponds to CheckSMEEnabled. */ 1172 bool sme_enabled_check(DisasContext *s) 1173 { 1174 /* 1175 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1176 * to be zero when fp_excp_el has priority. This is because we need 1177 * sme_excp_el by itself for cpregs access checks. 1178 */ 1179 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1180 s->fp_access_checked = true; 1181 return sme_access_check(s); 1182 } 1183 return fp_access_check_only(s); 1184 } 1185 1186 /* Common subroutine for CheckSMEAnd*Enabled. */ 1187 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1188 { 1189 if (!sme_enabled_check(s)) { 1190 return false; 1191 } 1192 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1193 gen_exception_insn(s, 0, EXCP_UDEF, 1194 syn_smetrap(SME_ET_NotStreaming, false)); 1195 return false; 1196 } 1197 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1198 gen_exception_insn(s, 0, EXCP_UDEF, 1199 syn_smetrap(SME_ET_InactiveZA, false)); 1200 return false; 1201 } 1202 return true; 1203 } 1204 1205 /* 1206 * This utility function is for doing register extension with an 1207 * optional shift. You will likely want to pass a temporary for the 1208 * destination register. See DecodeRegExtend() in the ARM ARM. 1209 */ 1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1211 int option, unsigned int shift) 1212 { 1213 int extsize = extract32(option, 0, 2); 1214 bool is_signed = extract32(option, 2, 1); 1215 1216 if (is_signed) { 1217 switch (extsize) { 1218 case 0: 1219 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1220 break; 1221 case 1: 1222 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1223 break; 1224 case 2: 1225 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1226 break; 1227 case 3: 1228 tcg_gen_mov_i64(tcg_out, tcg_in); 1229 break; 1230 } 1231 } else { 1232 switch (extsize) { 1233 case 0: 1234 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1235 break; 1236 case 1: 1237 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1238 break; 1239 case 2: 1240 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1241 break; 1242 case 3: 1243 tcg_gen_mov_i64(tcg_out, tcg_in); 1244 break; 1245 } 1246 } 1247 1248 if (shift) { 1249 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1250 } 1251 } 1252 1253 static inline void gen_check_sp_alignment(DisasContext *s) 1254 { 1255 /* The AArch64 architecture mandates that (if enabled via PSTATE 1256 * or SCTLR bits) there is a check that SP is 16-aligned on every 1257 * SP-relative load or store (with an exception generated if it is not). 1258 * In line with general QEMU practice regarding misaligned accesses, 1259 * we omit these checks for the sake of guest program performance. 1260 * This function is provided as a hook so we can more easily add these 1261 * checks in future (possibly as a "favour catching guest program bugs 1262 * over speed" user selectable option). 1263 */ 1264 } 1265 1266 /* 1267 * This provides a simple table based table lookup decoder. It is 1268 * intended to be used when the relevant bits for decode are too 1269 * awkwardly placed and switch/if based logic would be confusing and 1270 * deeply nested. Since it's a linear search through the table, tables 1271 * should be kept small. 1272 * 1273 * It returns the first handler where insn & mask == pattern, or 1274 * NULL if there is no match. 1275 * The table is terminated by an empty mask (i.e. 0) 1276 */ 1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1278 uint32_t insn) 1279 { 1280 const AArch64DecodeTable *tptr = table; 1281 1282 while (tptr->mask) { 1283 if ((insn & tptr->mask) == tptr->pattern) { 1284 return tptr->disas_fn; 1285 } 1286 tptr++; 1287 } 1288 return NULL; 1289 } 1290 1291 /* 1292 * The instruction disassembly implemented here matches 1293 * the instruction encoding classifications in chapter C4 1294 * of the ARM Architecture Reference Manual (DDI0487B_a); 1295 * classification names and decode diagrams here should generally 1296 * match up with those in the manual. 1297 */ 1298 1299 static bool trans_B(DisasContext *s, arg_i *a) 1300 { 1301 reset_btype(s); 1302 gen_goto_tb(s, 0, a->imm); 1303 return true; 1304 } 1305 1306 static bool trans_BL(DisasContext *s, arg_i *a) 1307 { 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 reset_btype(s); 1310 gen_goto_tb(s, 0, a->imm); 1311 return true; 1312 } 1313 1314 1315 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1316 { 1317 DisasLabel match; 1318 TCGv_i64 tcg_cmp; 1319 1320 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1321 reset_btype(s); 1322 1323 match = gen_disas_label(s); 1324 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1325 tcg_cmp, 0, match.label); 1326 gen_goto_tb(s, 0, 4); 1327 set_disas_label(s, match); 1328 gen_goto_tb(s, 1, a->imm); 1329 return true; 1330 } 1331 1332 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1333 { 1334 DisasLabel match; 1335 TCGv_i64 tcg_cmp; 1336 1337 tcg_cmp = tcg_temp_new_i64(); 1338 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1339 1340 reset_btype(s); 1341 1342 match = gen_disas_label(s); 1343 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1344 tcg_cmp, 0, match.label); 1345 gen_goto_tb(s, 0, 4); 1346 set_disas_label(s, match); 1347 gen_goto_tb(s, 1, a->imm); 1348 return true; 1349 } 1350 1351 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1352 { 1353 reset_btype(s); 1354 if (a->cond < 0x0e) { 1355 /* genuinely conditional branches */ 1356 DisasLabel match = gen_disas_label(s); 1357 arm_gen_test_cc(a->cond, match.label); 1358 gen_goto_tb(s, 0, 4); 1359 set_disas_label(s, match); 1360 gen_goto_tb(s, 1, a->imm); 1361 } else { 1362 /* 0xe and 0xf are both "always" conditions */ 1363 gen_goto_tb(s, 0, a->imm); 1364 } 1365 return true; 1366 } 1367 1368 static void set_btype_for_br(DisasContext *s, int rn) 1369 { 1370 if (dc_isar_feature(aa64_bti, s)) { 1371 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1372 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1373 } 1374 } 1375 1376 static void set_btype_for_blr(DisasContext *s) 1377 { 1378 if (dc_isar_feature(aa64_bti, s)) { 1379 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1380 set_btype(s, 2); 1381 } 1382 } 1383 1384 static bool trans_BR(DisasContext *s, arg_r *a) 1385 { 1386 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1387 set_btype_for_br(s, a->rn); 1388 s->base.is_jmp = DISAS_JUMP; 1389 return true; 1390 } 1391 1392 static bool trans_BLR(DisasContext *s, arg_r *a) 1393 { 1394 TCGv_i64 dst = cpu_reg(s, a->rn); 1395 TCGv_i64 lr = cpu_reg(s, 30); 1396 if (dst == lr) { 1397 TCGv_i64 tmp = tcg_temp_new_i64(); 1398 tcg_gen_mov_i64(tmp, dst); 1399 dst = tmp; 1400 } 1401 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1402 gen_a64_set_pc(s, dst); 1403 set_btype_for_blr(s); 1404 s->base.is_jmp = DISAS_JUMP; 1405 return true; 1406 } 1407 1408 static bool trans_RET(DisasContext *s, arg_r *a) 1409 { 1410 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1411 s->base.is_jmp = DISAS_JUMP; 1412 return true; 1413 } 1414 1415 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1416 TCGv_i64 modifier, bool use_key_a) 1417 { 1418 TCGv_i64 truedst; 1419 /* 1420 * Return the branch target for a BRAA/RETA/etc, which is either 1421 * just the destination dst, or that value with the pauth check 1422 * done and the code removed from the high bits. 1423 */ 1424 if (!s->pauth_active) { 1425 return dst; 1426 } 1427 1428 truedst = tcg_temp_new_i64(); 1429 if (use_key_a) { 1430 gen_helper_autia(truedst, cpu_env, dst, modifier); 1431 } else { 1432 gen_helper_autib(truedst, cpu_env, dst, modifier); 1433 } 1434 return truedst; 1435 } 1436 1437 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1438 { 1439 TCGv_i64 dst; 1440 1441 if (!dc_isar_feature(aa64_pauth, s)) { 1442 return false; 1443 } 1444 1445 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1446 gen_a64_set_pc(s, dst); 1447 set_btype_for_br(s, a->rn); 1448 s->base.is_jmp = DISAS_JUMP; 1449 return true; 1450 } 1451 1452 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1453 { 1454 TCGv_i64 dst, lr; 1455 1456 if (!dc_isar_feature(aa64_pauth, s)) { 1457 return false; 1458 } 1459 1460 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1461 lr = cpu_reg(s, 30); 1462 if (dst == lr) { 1463 TCGv_i64 tmp = tcg_temp_new_i64(); 1464 tcg_gen_mov_i64(tmp, dst); 1465 dst = tmp; 1466 } 1467 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1468 gen_a64_set_pc(s, dst); 1469 set_btype_for_blr(s); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_RETA(DisasContext *s, arg_reta *a) 1475 { 1476 TCGv_i64 dst; 1477 1478 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1479 gen_a64_set_pc(s, dst); 1480 s->base.is_jmp = DISAS_JUMP; 1481 return true; 1482 } 1483 1484 static bool trans_BRA(DisasContext *s, arg_bra *a) 1485 { 1486 TCGv_i64 dst; 1487 1488 if (!dc_isar_feature(aa64_pauth, s)) { 1489 return false; 1490 } 1491 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1492 gen_a64_set_pc(s, dst); 1493 set_btype_for_br(s, a->rn); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1499 { 1500 TCGv_i64 dst, lr; 1501 1502 if (!dc_isar_feature(aa64_pauth, s)) { 1503 return false; 1504 } 1505 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1506 lr = cpu_reg(s, 30); 1507 if (dst == lr) { 1508 TCGv_i64 tmp = tcg_temp_new_i64(); 1509 tcg_gen_mov_i64(tmp, dst); 1510 dst = tmp; 1511 } 1512 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1513 gen_a64_set_pc(s, dst); 1514 set_btype_for_blr(s); 1515 s->base.is_jmp = DISAS_JUMP; 1516 return true; 1517 } 1518 1519 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (s->current_el == 0) { 1524 return false; 1525 } 1526 if (s->fgt_eret) { 1527 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1528 return true; 1529 } 1530 dst = tcg_temp_new_i64(); 1531 tcg_gen_ld_i64(dst, cpu_env, 1532 offsetof(CPUARMState, elr_el[s->current_el])); 1533 1534 translator_io_start(&s->base); 1535 1536 gen_helper_exception_return(cpu_env, dst); 1537 /* Must exit loop to check un-masked IRQs */ 1538 s->base.is_jmp = DISAS_EXIT; 1539 return true; 1540 } 1541 1542 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1543 { 1544 TCGv_i64 dst; 1545 1546 if (!dc_isar_feature(aa64_pauth, s)) { 1547 return false; 1548 } 1549 if (s->current_el == 0) { 1550 return false; 1551 } 1552 /* The FGT trap takes precedence over an auth trap. */ 1553 if (s->fgt_eret) { 1554 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1555 return true; 1556 } 1557 dst = tcg_temp_new_i64(); 1558 tcg_gen_ld_i64(dst, cpu_env, 1559 offsetof(CPUARMState, elr_el[s->current_el])); 1560 1561 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1562 1563 translator_io_start(&s->base); 1564 1565 gen_helper_exception_return(cpu_env, dst); 1566 /* Must exit loop to check un-masked IRQs */ 1567 s->base.is_jmp = DISAS_EXIT; 1568 return true; 1569 } 1570 1571 /* HINT instruction group, including various allocated HINTs */ 1572 static void handle_hint(DisasContext *s, uint32_t insn, 1573 unsigned int op1, unsigned int op2, unsigned int crm) 1574 { 1575 unsigned int selector = crm << 3 | op2; 1576 1577 if (op1 != 3) { 1578 unallocated_encoding(s); 1579 return; 1580 } 1581 1582 switch (selector) { 1583 case 0b00000: /* NOP */ 1584 break; 1585 case 0b00011: /* WFI */ 1586 s->base.is_jmp = DISAS_WFI; 1587 break; 1588 case 0b00001: /* YIELD */ 1589 /* When running in MTTCG we don't generate jumps to the yield and 1590 * WFE helpers as it won't affect the scheduling of other vCPUs. 1591 * If we wanted to more completely model WFE/SEV so we don't busy 1592 * spin unnecessarily we would need to do something more involved. 1593 */ 1594 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1595 s->base.is_jmp = DISAS_YIELD; 1596 } 1597 break; 1598 case 0b00010: /* WFE */ 1599 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1600 s->base.is_jmp = DISAS_WFE; 1601 } 1602 break; 1603 case 0b00100: /* SEV */ 1604 case 0b00101: /* SEVL */ 1605 case 0b00110: /* DGH */ 1606 /* we treat all as NOP at least for now */ 1607 break; 1608 case 0b00111: /* XPACLRI */ 1609 if (s->pauth_active) { 1610 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1611 } 1612 break; 1613 case 0b01000: /* PACIA1716 */ 1614 if (s->pauth_active) { 1615 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1616 } 1617 break; 1618 case 0b01010: /* PACIB1716 */ 1619 if (s->pauth_active) { 1620 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1621 } 1622 break; 1623 case 0b01100: /* AUTIA1716 */ 1624 if (s->pauth_active) { 1625 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1626 } 1627 break; 1628 case 0b01110: /* AUTIB1716 */ 1629 if (s->pauth_active) { 1630 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1631 } 1632 break; 1633 case 0b10000: /* ESB */ 1634 /* Without RAS, we must implement this as NOP. */ 1635 if (dc_isar_feature(aa64_ras, s)) { 1636 /* 1637 * QEMU does not have a source of physical SErrors, 1638 * so we are only concerned with virtual SErrors. 1639 * The pseudocode in the ARM for this case is 1640 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1641 * AArch64.vESBOperation(); 1642 * Most of the condition can be evaluated at translation time. 1643 * Test for EL2 present, and defer test for SEL2 to runtime. 1644 */ 1645 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1646 gen_helper_vesb(cpu_env); 1647 } 1648 } 1649 break; 1650 case 0b11000: /* PACIAZ */ 1651 if (s->pauth_active) { 1652 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1653 tcg_constant_i64(0)); 1654 } 1655 break; 1656 case 0b11001: /* PACIASP */ 1657 if (s->pauth_active) { 1658 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1659 } 1660 break; 1661 case 0b11010: /* PACIBZ */ 1662 if (s->pauth_active) { 1663 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1664 tcg_constant_i64(0)); 1665 } 1666 break; 1667 case 0b11011: /* PACIBSP */ 1668 if (s->pauth_active) { 1669 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1670 } 1671 break; 1672 case 0b11100: /* AUTIAZ */ 1673 if (s->pauth_active) { 1674 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1675 tcg_constant_i64(0)); 1676 } 1677 break; 1678 case 0b11101: /* AUTIASP */ 1679 if (s->pauth_active) { 1680 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1681 } 1682 break; 1683 case 0b11110: /* AUTIBZ */ 1684 if (s->pauth_active) { 1685 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1686 tcg_constant_i64(0)); 1687 } 1688 break; 1689 case 0b11111: /* AUTIBSP */ 1690 if (s->pauth_active) { 1691 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1692 } 1693 break; 1694 default: 1695 /* default specified as NOP equivalent */ 1696 break; 1697 } 1698 } 1699 1700 static void gen_clrex(DisasContext *s, uint32_t insn) 1701 { 1702 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1703 } 1704 1705 /* CLREX, DSB, DMB, ISB */ 1706 static void handle_sync(DisasContext *s, uint32_t insn, 1707 unsigned int op1, unsigned int op2, unsigned int crm) 1708 { 1709 TCGBar bar; 1710 1711 if (op1 != 3) { 1712 unallocated_encoding(s); 1713 return; 1714 } 1715 1716 switch (op2) { 1717 case 2: /* CLREX */ 1718 gen_clrex(s, insn); 1719 return; 1720 case 4: /* DSB */ 1721 case 5: /* DMB */ 1722 switch (crm & 3) { 1723 case 1: /* MBReqTypes_Reads */ 1724 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1725 break; 1726 case 2: /* MBReqTypes_Writes */ 1727 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1728 break; 1729 default: /* MBReqTypes_All */ 1730 bar = TCG_BAR_SC | TCG_MO_ALL; 1731 break; 1732 } 1733 tcg_gen_mb(bar); 1734 return; 1735 case 6: /* ISB */ 1736 /* We need to break the TB after this insn to execute 1737 * a self-modified code correctly and also to take 1738 * any pending interrupts immediately. 1739 */ 1740 reset_btype(s); 1741 gen_goto_tb(s, 0, 4); 1742 return; 1743 1744 case 7: /* SB */ 1745 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1746 goto do_unallocated; 1747 } 1748 /* 1749 * TODO: There is no speculation barrier opcode for TCG; 1750 * MB and end the TB instead. 1751 */ 1752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1753 gen_goto_tb(s, 0, 4); 1754 return; 1755 1756 default: 1757 do_unallocated: 1758 unallocated_encoding(s); 1759 return; 1760 } 1761 } 1762 1763 static void gen_xaflag(void) 1764 { 1765 TCGv_i32 z = tcg_temp_new_i32(); 1766 1767 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1768 1769 /* 1770 * (!C & !Z) << 31 1771 * (!(C | Z)) << 31 1772 * ~((C | Z) << 31) 1773 * ~-(C | Z) 1774 * (C | Z) - 1 1775 */ 1776 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1777 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1778 1779 /* !(Z & C) */ 1780 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1781 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1782 1783 /* (!C & Z) << 31 -> -(Z & ~C) */ 1784 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1785 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1786 1787 /* C | Z */ 1788 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1789 } 1790 1791 static void gen_axflag(void) 1792 { 1793 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1794 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1795 1796 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1797 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1798 1799 tcg_gen_movi_i32(cpu_NF, 0); 1800 tcg_gen_movi_i32(cpu_VF, 0); 1801 } 1802 1803 /* MSR (immediate) - move immediate to processor state field */ 1804 static void handle_msr_i(DisasContext *s, uint32_t insn, 1805 unsigned int op1, unsigned int op2, unsigned int crm) 1806 { 1807 int op = op1 << 3 | op2; 1808 1809 /* End the TB by default, chaining is ok. */ 1810 s->base.is_jmp = DISAS_TOO_MANY; 1811 1812 switch (op) { 1813 case 0x00: /* CFINV */ 1814 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1815 goto do_unallocated; 1816 } 1817 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1818 s->base.is_jmp = DISAS_NEXT; 1819 break; 1820 1821 case 0x01: /* XAFlag */ 1822 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1823 goto do_unallocated; 1824 } 1825 gen_xaflag(); 1826 s->base.is_jmp = DISAS_NEXT; 1827 break; 1828 1829 case 0x02: /* AXFlag */ 1830 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1831 goto do_unallocated; 1832 } 1833 gen_axflag(); 1834 s->base.is_jmp = DISAS_NEXT; 1835 break; 1836 1837 case 0x03: /* UAO */ 1838 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1839 goto do_unallocated; 1840 } 1841 if (crm & 1) { 1842 set_pstate_bits(PSTATE_UAO); 1843 } else { 1844 clear_pstate_bits(PSTATE_UAO); 1845 } 1846 gen_rebuild_hflags(s); 1847 break; 1848 1849 case 0x04: /* PAN */ 1850 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1851 goto do_unallocated; 1852 } 1853 if (crm & 1) { 1854 set_pstate_bits(PSTATE_PAN); 1855 } else { 1856 clear_pstate_bits(PSTATE_PAN); 1857 } 1858 gen_rebuild_hflags(s); 1859 break; 1860 1861 case 0x05: /* SPSel */ 1862 if (s->current_el == 0) { 1863 goto do_unallocated; 1864 } 1865 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1866 break; 1867 1868 case 0x19: /* SSBS */ 1869 if (!dc_isar_feature(aa64_ssbs, s)) { 1870 goto do_unallocated; 1871 } 1872 if (crm & 1) { 1873 set_pstate_bits(PSTATE_SSBS); 1874 } else { 1875 clear_pstate_bits(PSTATE_SSBS); 1876 } 1877 /* Don't need to rebuild hflags since SSBS is a nop */ 1878 break; 1879 1880 case 0x1a: /* DIT */ 1881 if (!dc_isar_feature(aa64_dit, s)) { 1882 goto do_unallocated; 1883 } 1884 if (crm & 1) { 1885 set_pstate_bits(PSTATE_DIT); 1886 } else { 1887 clear_pstate_bits(PSTATE_DIT); 1888 } 1889 /* There's no need to rebuild hflags because DIT is a nop */ 1890 break; 1891 1892 case 0x1e: /* DAIFSet */ 1893 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1894 break; 1895 1896 case 0x1f: /* DAIFClear */ 1897 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1898 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1899 s->base.is_jmp = DISAS_UPDATE_EXIT; 1900 break; 1901 1902 case 0x1c: /* TCO */ 1903 if (dc_isar_feature(aa64_mte, s)) { 1904 /* Full MTE is enabled -- set the TCO bit as directed. */ 1905 if (crm & 1) { 1906 set_pstate_bits(PSTATE_TCO); 1907 } else { 1908 clear_pstate_bits(PSTATE_TCO); 1909 } 1910 gen_rebuild_hflags(s); 1911 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1912 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1913 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1914 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1915 s->base.is_jmp = DISAS_NEXT; 1916 } else { 1917 goto do_unallocated; 1918 } 1919 break; 1920 1921 case 0x1b: /* SVCR* */ 1922 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1923 goto do_unallocated; 1924 } 1925 if (sme_access_check(s)) { 1926 int old = s->pstate_sm | (s->pstate_za << 1); 1927 int new = (crm & 1) * 3; 1928 int msk = (crm >> 1) & 3; 1929 1930 if ((old ^ new) & msk) { 1931 /* At least one bit changes. */ 1932 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1933 tcg_constant_i32(msk)); 1934 } else { 1935 s->base.is_jmp = DISAS_NEXT; 1936 } 1937 } 1938 break; 1939 1940 default: 1941 do_unallocated: 1942 unallocated_encoding(s); 1943 return; 1944 } 1945 } 1946 1947 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1948 { 1949 TCGv_i32 tmp = tcg_temp_new_i32(); 1950 TCGv_i32 nzcv = tcg_temp_new_i32(); 1951 1952 /* build bit 31, N */ 1953 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1954 /* build bit 30, Z */ 1955 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1956 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1957 /* build bit 29, C */ 1958 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1959 /* build bit 28, V */ 1960 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1961 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1962 /* generate result */ 1963 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1964 } 1965 1966 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1967 { 1968 TCGv_i32 nzcv = tcg_temp_new_i32(); 1969 1970 /* take NZCV from R[t] */ 1971 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1972 1973 /* bit 31, N */ 1974 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1975 /* bit 30, Z */ 1976 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1977 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1978 /* bit 29, C */ 1979 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1980 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1981 /* bit 28, V */ 1982 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1983 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1984 } 1985 1986 static void gen_sysreg_undef(DisasContext *s, bool isread, 1987 uint8_t op0, uint8_t op1, uint8_t op2, 1988 uint8_t crn, uint8_t crm, uint8_t rt) 1989 { 1990 /* 1991 * Generate code to emit an UNDEF with correct syndrome 1992 * information for a failed system register access. 1993 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1994 * but if FEAT_IDST is implemented then read accesses to registers 1995 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1996 * syndrome. 1997 */ 1998 uint32_t syndrome; 1999 2000 if (isread && dc_isar_feature(aa64_ids, s) && 2001 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2002 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2003 } else { 2004 syndrome = syn_uncategorized(); 2005 } 2006 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2007 } 2008 2009 /* MRS - move from system register 2010 * MSR (register) - move to system register 2011 * SYS 2012 * SYSL 2013 * These are all essentially the same insn in 'read' and 'write' 2014 * versions, with varying op0 fields. 2015 */ 2016 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2017 unsigned int op0, unsigned int op1, unsigned int op2, 2018 unsigned int crn, unsigned int crm, unsigned int rt) 2019 { 2020 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2021 crn, crm, op0, op1, op2); 2022 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2023 bool need_exit_tb = false; 2024 TCGv_ptr tcg_ri = NULL; 2025 TCGv_i64 tcg_rt; 2026 2027 if (!ri) { 2028 /* Unknown register; this might be a guest error or a QEMU 2029 * unimplemented feature. 2030 */ 2031 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2032 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2033 isread ? "read" : "write", op0, op1, crn, crm, op2); 2034 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2035 return; 2036 } 2037 2038 /* Check access permissions */ 2039 if (!cp_access_ok(s->current_el, ri, isread)) { 2040 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2041 return; 2042 } 2043 2044 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2045 /* Emit code to perform further access permissions checks at 2046 * runtime; this may result in an exception. 2047 */ 2048 uint32_t syndrome; 2049 2050 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2051 gen_a64_update_pc(s, 0); 2052 tcg_ri = tcg_temp_new_ptr(); 2053 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2054 tcg_constant_i32(key), 2055 tcg_constant_i32(syndrome), 2056 tcg_constant_i32(isread)); 2057 } else if (ri->type & ARM_CP_RAISES_EXC) { 2058 /* 2059 * The readfn or writefn might raise an exception; 2060 * synchronize the CPU state in case it does. 2061 */ 2062 gen_a64_update_pc(s, 0); 2063 } 2064 2065 /* Handle special cases first */ 2066 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2067 case 0: 2068 break; 2069 case ARM_CP_NOP: 2070 return; 2071 case ARM_CP_NZCV: 2072 tcg_rt = cpu_reg(s, rt); 2073 if (isread) { 2074 gen_get_nzcv(tcg_rt); 2075 } else { 2076 gen_set_nzcv(tcg_rt); 2077 } 2078 return; 2079 case ARM_CP_CURRENTEL: 2080 /* Reads as current EL value from pstate, which is 2081 * guaranteed to be constant by the tb flags. 2082 */ 2083 tcg_rt = cpu_reg(s, rt); 2084 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2085 return; 2086 case ARM_CP_DC_ZVA: 2087 /* Writes clear the aligned block of memory which rt points into. */ 2088 if (s->mte_active[0]) { 2089 int desc = 0; 2090 2091 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2092 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2093 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2094 2095 tcg_rt = tcg_temp_new_i64(); 2096 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2097 tcg_constant_i32(desc), cpu_reg(s, rt)); 2098 } else { 2099 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2100 } 2101 gen_helper_dc_zva(cpu_env, tcg_rt); 2102 return; 2103 case ARM_CP_DC_GVA: 2104 { 2105 TCGv_i64 clean_addr, tag; 2106 2107 /* 2108 * DC_GVA, like DC_ZVA, requires that we supply the original 2109 * pointer for an invalid page. Probe that address first. 2110 */ 2111 tcg_rt = cpu_reg(s, rt); 2112 clean_addr = clean_data_tbi(s, tcg_rt); 2113 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2114 2115 if (s->ata) { 2116 /* Extract the tag from the register to match STZGM. */ 2117 tag = tcg_temp_new_i64(); 2118 tcg_gen_shri_i64(tag, tcg_rt, 56); 2119 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2120 } 2121 } 2122 return; 2123 case ARM_CP_DC_GZVA: 2124 { 2125 TCGv_i64 clean_addr, tag; 2126 2127 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2128 tcg_rt = cpu_reg(s, rt); 2129 clean_addr = clean_data_tbi(s, tcg_rt); 2130 gen_helper_dc_zva(cpu_env, clean_addr); 2131 2132 if (s->ata) { 2133 /* Extract the tag from the register to match STZGM. */ 2134 tag = tcg_temp_new_i64(); 2135 tcg_gen_shri_i64(tag, tcg_rt, 56); 2136 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2137 } 2138 } 2139 return; 2140 default: 2141 g_assert_not_reached(); 2142 } 2143 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2146 return; 2147 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2148 return; 2149 } 2150 2151 if (ri->type & ARM_CP_IO) { 2152 /* I/O operations must end the TB here (whether read or write) */ 2153 need_exit_tb = translator_io_start(&s->base); 2154 } 2155 2156 tcg_rt = cpu_reg(s, rt); 2157 2158 if (isread) { 2159 if (ri->type & ARM_CP_CONST) { 2160 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2161 } else if (ri->readfn) { 2162 if (!tcg_ri) { 2163 tcg_ri = gen_lookup_cp_reg(key); 2164 } 2165 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2166 } else { 2167 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2168 } 2169 } else { 2170 if (ri->type & ARM_CP_CONST) { 2171 /* If not forbidden by access permissions, treat as WI */ 2172 return; 2173 } else if (ri->writefn) { 2174 if (!tcg_ri) { 2175 tcg_ri = gen_lookup_cp_reg(key); 2176 } 2177 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2178 } else { 2179 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2180 } 2181 } 2182 2183 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2184 /* 2185 * A write to any coprocessor regiser that ends a TB 2186 * must rebuild the hflags for the next TB. 2187 */ 2188 gen_rebuild_hflags(s); 2189 /* 2190 * We default to ending the TB on a coprocessor register write, 2191 * but allow this to be suppressed by the register definition 2192 * (usually only necessary to work around guest bugs). 2193 */ 2194 need_exit_tb = true; 2195 } 2196 if (need_exit_tb) { 2197 s->base.is_jmp = DISAS_UPDATE_EXIT; 2198 } 2199 } 2200 2201 /* System 2202 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2205 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2206 */ 2207 static void disas_system(DisasContext *s, uint32_t insn) 2208 { 2209 unsigned int l, op0, op1, crn, crm, op2, rt; 2210 l = extract32(insn, 21, 1); 2211 op0 = extract32(insn, 19, 2); 2212 op1 = extract32(insn, 16, 3); 2213 crn = extract32(insn, 12, 4); 2214 crm = extract32(insn, 8, 4); 2215 op2 = extract32(insn, 5, 3); 2216 rt = extract32(insn, 0, 5); 2217 2218 if (op0 == 0) { 2219 if (l || rt != 31) { 2220 unallocated_encoding(s); 2221 return; 2222 } 2223 switch (crn) { 2224 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2225 handle_hint(s, insn, op1, op2, crm); 2226 break; 2227 case 3: /* CLREX, DSB, DMB, ISB */ 2228 handle_sync(s, insn, op1, op2, crm); 2229 break; 2230 case 4: /* MSR (immediate) */ 2231 handle_msr_i(s, insn, op1, op2, crm); 2232 break; 2233 default: 2234 unallocated_encoding(s); 2235 break; 2236 } 2237 return; 2238 } 2239 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2240 } 2241 2242 /* Exception generation 2243 * 2244 * 31 24 23 21 20 5 4 2 1 0 2245 * +-----------------+-----+------------------------+-----+----+ 2246 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2247 * +-----------------------+------------------------+----------+ 2248 */ 2249 static void disas_exc(DisasContext *s, uint32_t insn) 2250 { 2251 int opc = extract32(insn, 21, 3); 2252 int op2_ll = extract32(insn, 0, 5); 2253 int imm16 = extract32(insn, 5, 16); 2254 uint32_t syndrome; 2255 2256 switch (opc) { 2257 case 0: 2258 /* For SVC, HVC and SMC we advance the single-step state 2259 * machine before taking the exception. This is architecturally 2260 * mandated, to ensure that single-stepping a system call 2261 * instruction works properly. 2262 */ 2263 switch (op2_ll) { 2264 case 1: /* SVC */ 2265 syndrome = syn_aa64_svc(imm16); 2266 if (s->fgt_svc) { 2267 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2268 break; 2269 } 2270 gen_ss_advance(s); 2271 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2272 break; 2273 case 2: /* HVC */ 2274 if (s->current_el == 0) { 2275 unallocated_encoding(s); 2276 break; 2277 } 2278 /* The pre HVC helper handles cases when HVC gets trapped 2279 * as an undefined insn by runtime configuration. 2280 */ 2281 gen_a64_update_pc(s, 0); 2282 gen_helper_pre_hvc(cpu_env); 2283 gen_ss_advance(s); 2284 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2285 break; 2286 case 3: /* SMC */ 2287 if (s->current_el == 0) { 2288 unallocated_encoding(s); 2289 break; 2290 } 2291 gen_a64_update_pc(s, 0); 2292 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2293 gen_ss_advance(s); 2294 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2295 break; 2296 default: 2297 unallocated_encoding(s); 2298 break; 2299 } 2300 break; 2301 case 1: 2302 if (op2_ll != 0) { 2303 unallocated_encoding(s); 2304 break; 2305 } 2306 /* BRK */ 2307 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2308 break; 2309 case 2: 2310 if (op2_ll != 0) { 2311 unallocated_encoding(s); 2312 break; 2313 } 2314 /* HLT. This has two purposes. 2315 * Architecturally, it is an external halting debug instruction. 2316 * Since QEMU doesn't implement external debug, we treat this as 2317 * it is required for halting debug disabled: it will UNDEF. 2318 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2319 */ 2320 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2321 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2322 } else { 2323 unallocated_encoding(s); 2324 } 2325 break; 2326 case 5: 2327 if (op2_ll < 1 || op2_ll > 3) { 2328 unallocated_encoding(s); 2329 break; 2330 } 2331 /* DCPS1, DCPS2, DCPS3 */ 2332 unallocated_encoding(s); 2333 break; 2334 default: 2335 unallocated_encoding(s); 2336 break; 2337 } 2338 } 2339 2340 /* Branches, exception generating and system instructions */ 2341 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2342 { 2343 switch (extract32(insn, 25, 7)) { 2344 case 0x6a: /* Exception generation / System */ 2345 if (insn & (1 << 24)) { 2346 if (extract32(insn, 22, 2) == 0) { 2347 disas_system(s, insn); 2348 } else { 2349 unallocated_encoding(s); 2350 } 2351 } else { 2352 disas_exc(s, insn); 2353 } 2354 break; 2355 default: 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 } 2360 2361 /* 2362 * Load/Store exclusive instructions are implemented by remembering 2363 * the value/address loaded, and seeing if these are the same 2364 * when the store is performed. This is not actually the architecturally 2365 * mandated semantics, but it works for typical guest code sequences 2366 * and avoids having to monitor regular stores. 2367 * 2368 * The store exclusive uses the atomic cmpxchg primitives to avoid 2369 * races in multi-threaded linux-user and when MTTCG softmmu is 2370 * enabled. 2371 */ 2372 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2373 TCGv_i64 addr, int size, bool is_pair) 2374 { 2375 int idx = get_mem_index(s); 2376 MemOp memop; 2377 2378 g_assert(size <= 3); 2379 if (is_pair) { 2380 g_assert(size >= 2); 2381 if (size == 2) { 2382 /* The pair must be single-copy atomic for the doubleword. */ 2383 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2384 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2385 if (s->be_data == MO_LE) { 2386 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2387 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2388 } else { 2389 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2390 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2391 } 2392 } else { 2393 /* 2394 * The pair must be single-copy atomic for *each* doubleword, not 2395 * the entire quadword, however it must be quadword aligned. 2396 * Expose the complete load to tcg, for ease of tlb lookup, 2397 * but indicate that only 8-byte atomicity is required. 2398 */ 2399 TCGv_i128 t16 = tcg_temp_new_i128(); 2400 2401 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2402 MO_ATOM_IFALIGN_PAIR); 2403 tcg_gen_qemu_ld_i128(t16, addr, idx, memop); 2404 2405 if (s->be_data == MO_LE) { 2406 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2407 cpu_exclusive_high, t16); 2408 } else { 2409 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2410 cpu_exclusive_val, t16); 2411 } 2412 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2413 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2414 } 2415 } else { 2416 memop = finalize_memop(s, size | MO_ALIGN); 2417 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2418 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2419 } 2420 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2421 } 2422 2423 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2424 TCGv_i64 addr, int size, int is_pair) 2425 { 2426 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2427 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2428 * [addr] = {Rt}; 2429 * if (is_pair) { 2430 * [addr + datasize] = {Rt2}; 2431 * } 2432 * {Rd} = 0; 2433 * } else { 2434 * {Rd} = 1; 2435 * } 2436 * env->exclusive_addr = -1; 2437 */ 2438 TCGLabel *fail_label = gen_new_label(); 2439 TCGLabel *done_label = gen_new_label(); 2440 TCGv_i64 tmp; 2441 2442 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2443 2444 tmp = tcg_temp_new_i64(); 2445 if (is_pair) { 2446 if (size == 2) { 2447 if (s->be_data == MO_LE) { 2448 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2449 } else { 2450 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2451 } 2452 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2453 cpu_exclusive_val, tmp, 2454 get_mem_index(s), 2455 MO_64 | MO_ALIGN | s->be_data); 2456 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2457 } else { 2458 TCGv_i128 t16 = tcg_temp_new_i128(); 2459 TCGv_i128 c16 = tcg_temp_new_i128(); 2460 TCGv_i64 a, b; 2461 2462 if (s->be_data == MO_LE) { 2463 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2464 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2465 cpu_exclusive_high); 2466 } else { 2467 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2468 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2469 cpu_exclusive_val); 2470 } 2471 2472 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2473 get_mem_index(s), 2474 MO_128 | MO_ALIGN | s->be_data); 2475 2476 a = tcg_temp_new_i64(); 2477 b = tcg_temp_new_i64(); 2478 if (s->be_data == MO_LE) { 2479 tcg_gen_extr_i128_i64(a, b, t16); 2480 } else { 2481 tcg_gen_extr_i128_i64(b, a, t16); 2482 } 2483 2484 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2485 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2486 tcg_gen_or_i64(tmp, a, b); 2487 2488 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2489 } 2490 } else { 2491 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2492 cpu_reg(s, rt), get_mem_index(s), 2493 size | MO_ALIGN | s->be_data); 2494 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2495 } 2496 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2497 tcg_gen_br(done_label); 2498 2499 gen_set_label(fail_label); 2500 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2501 gen_set_label(done_label); 2502 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2503 } 2504 2505 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2506 int rn, int size) 2507 { 2508 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2509 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2510 int memidx = get_mem_index(s); 2511 TCGv_i64 clean_addr; 2512 2513 if (rn == 31) { 2514 gen_check_sp_alignment(s); 2515 } 2516 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2517 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2518 size | MO_ALIGN | s->be_data); 2519 } 2520 2521 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2522 int rn, int size) 2523 { 2524 TCGv_i64 s1 = cpu_reg(s, rs); 2525 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2526 TCGv_i64 t1 = cpu_reg(s, rt); 2527 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2528 TCGv_i64 clean_addr; 2529 int memidx = get_mem_index(s); 2530 2531 if (rn == 31) { 2532 gen_check_sp_alignment(s); 2533 } 2534 2535 /* This is a single atomic access, despite the "pair". */ 2536 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2537 2538 if (size == 2) { 2539 TCGv_i64 cmp = tcg_temp_new_i64(); 2540 TCGv_i64 val = tcg_temp_new_i64(); 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat32_i64(val, t1, t2); 2544 tcg_gen_concat32_i64(cmp, s1, s2); 2545 } else { 2546 tcg_gen_concat32_i64(val, t2, t1); 2547 tcg_gen_concat32_i64(cmp, s2, s1); 2548 } 2549 2550 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2551 MO_64 | MO_ALIGN | s->be_data); 2552 2553 if (s->be_data == MO_LE) { 2554 tcg_gen_extr32_i64(s1, s2, cmp); 2555 } else { 2556 tcg_gen_extr32_i64(s2, s1, cmp); 2557 } 2558 } else { 2559 TCGv_i128 cmp = tcg_temp_new_i128(); 2560 TCGv_i128 val = tcg_temp_new_i128(); 2561 2562 if (s->be_data == MO_LE) { 2563 tcg_gen_concat_i64_i128(val, t1, t2); 2564 tcg_gen_concat_i64_i128(cmp, s1, s2); 2565 } else { 2566 tcg_gen_concat_i64_i128(val, t2, t1); 2567 tcg_gen_concat_i64_i128(cmp, s2, s1); 2568 } 2569 2570 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2571 MO_128 | MO_ALIGN | s->be_data); 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_extr_i128_i64(s1, s2, cmp); 2575 } else { 2576 tcg_gen_extr_i128_i64(s2, s1, cmp); 2577 } 2578 } 2579 } 2580 2581 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2582 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2583 */ 2584 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2585 { 2586 int opc0 = extract32(opc, 0, 1); 2587 int regsize; 2588 2589 if (is_signed) { 2590 regsize = opc0 ? 32 : 64; 2591 } else { 2592 regsize = size == 3 ? 64 : 32; 2593 } 2594 return regsize == 64; 2595 } 2596 2597 /* Load/store exclusive 2598 * 2599 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2600 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2601 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2602 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2603 * 2604 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2605 * L: 0 -> store, 1 -> load 2606 * o2: 0 -> exclusive, 1 -> not 2607 * o1: 0 -> single register, 1 -> register pair 2608 * o0: 1 -> load-acquire/store-release, 0 -> not 2609 */ 2610 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2611 { 2612 int rt = extract32(insn, 0, 5); 2613 int rn = extract32(insn, 5, 5); 2614 int rt2 = extract32(insn, 10, 5); 2615 int rs = extract32(insn, 16, 5); 2616 int is_lasr = extract32(insn, 15, 1); 2617 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2618 int size = extract32(insn, 30, 2); 2619 TCGv_i64 clean_addr; 2620 2621 switch (o2_L_o1_o0) { 2622 case 0x0: /* STXR */ 2623 case 0x1: /* STLXR */ 2624 if (rn == 31) { 2625 gen_check_sp_alignment(s); 2626 } 2627 if (is_lasr) { 2628 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2629 } 2630 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2631 true, rn != 31, size); 2632 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2633 return; 2634 2635 case 0x4: /* LDXR */ 2636 case 0x5: /* LDAXR */ 2637 if (rn == 31) { 2638 gen_check_sp_alignment(s); 2639 } 2640 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2641 false, rn != 31, size); 2642 s->is_ldex = true; 2643 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2644 if (is_lasr) { 2645 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2646 } 2647 return; 2648 2649 case 0x8: /* STLLR */ 2650 if (!dc_isar_feature(aa64_lor, s)) { 2651 break; 2652 } 2653 /* StoreLORelease is the same as Store-Release for QEMU. */ 2654 /* fall through */ 2655 case 0x9: /* STLR */ 2656 /* Generate ISS for non-exclusive accesses including LASR. */ 2657 if (rn == 31) { 2658 gen_check_sp_alignment(s); 2659 } 2660 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2661 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2662 true, rn != 31, size); 2663 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2664 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2665 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2666 return; 2667 2668 case 0xc: /* LDLAR */ 2669 if (!dc_isar_feature(aa64_lor, s)) { 2670 break; 2671 } 2672 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2673 /* fall through */ 2674 case 0xd: /* LDAR */ 2675 /* Generate ISS for non-exclusive accesses including LASR. */ 2676 if (rn == 31) { 2677 gen_check_sp_alignment(s); 2678 } 2679 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2680 false, rn != 31, size); 2681 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2682 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2683 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2684 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2685 return; 2686 2687 case 0x2: case 0x3: /* CASP / STXP */ 2688 if (size & 2) { /* STXP / STLXP */ 2689 if (rn == 31) { 2690 gen_check_sp_alignment(s); 2691 } 2692 if (is_lasr) { 2693 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2694 } 2695 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2696 true, rn != 31, size); 2697 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2698 return; 2699 } 2700 if (rt2 == 31 2701 && ((rt | rs) & 1) == 0 2702 && dc_isar_feature(aa64_atomics, s)) { 2703 /* CASP / CASPL */ 2704 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2705 return; 2706 } 2707 break; 2708 2709 case 0x6: case 0x7: /* CASPA / LDXP */ 2710 if (size & 2) { /* LDXP / LDAXP */ 2711 if (rn == 31) { 2712 gen_check_sp_alignment(s); 2713 } 2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2715 false, rn != 31, size); 2716 s->is_ldex = true; 2717 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2718 if (is_lasr) { 2719 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2720 } 2721 return; 2722 } 2723 if (rt2 == 31 2724 && ((rt | rs) & 1) == 0 2725 && dc_isar_feature(aa64_atomics, s)) { 2726 /* CASPA / CASPAL */ 2727 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2728 return; 2729 } 2730 break; 2731 2732 case 0xa: /* CAS */ 2733 case 0xb: /* CASL */ 2734 case 0xe: /* CASA */ 2735 case 0xf: /* CASAL */ 2736 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2737 gen_compare_and_swap(s, rs, rt, rn, size); 2738 return; 2739 } 2740 break; 2741 } 2742 unallocated_encoding(s); 2743 } 2744 2745 /* 2746 * Load register (literal) 2747 * 2748 * 31 30 29 27 26 25 24 23 5 4 0 2749 * +-----+-------+---+-----+-------------------+-------+ 2750 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2751 * +-----+-------+---+-----+-------------------+-------+ 2752 * 2753 * V: 1 -> vector (simd/fp) 2754 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2755 * 10-> 32 bit signed, 11 -> prefetch 2756 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2757 */ 2758 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2759 { 2760 int rt = extract32(insn, 0, 5); 2761 int64_t imm = sextract32(insn, 5, 19) << 2; 2762 bool is_vector = extract32(insn, 26, 1); 2763 int opc = extract32(insn, 30, 2); 2764 bool is_signed = false; 2765 int size = 2; 2766 TCGv_i64 tcg_rt, clean_addr; 2767 2768 if (is_vector) { 2769 if (opc == 3) { 2770 unallocated_encoding(s); 2771 return; 2772 } 2773 size = 2 + opc; 2774 if (!fp_access_check(s)) { 2775 return; 2776 } 2777 } else { 2778 if (opc == 3) { 2779 /* PRFM (literal) : prefetch */ 2780 return; 2781 } 2782 size = 2 + extract32(opc, 0, 1); 2783 is_signed = extract32(opc, 1, 1); 2784 } 2785 2786 tcg_rt = cpu_reg(s, rt); 2787 2788 clean_addr = tcg_temp_new_i64(); 2789 gen_pc_plus_diff(s, clean_addr, imm); 2790 if (is_vector) { 2791 do_fp_ld(s, rt, clean_addr, size); 2792 } else { 2793 /* Only unsigned 32bit loads target 32bit registers. */ 2794 bool iss_sf = opc != 0; 2795 2796 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2797 false, true, rt, iss_sf, false); 2798 } 2799 } 2800 2801 /* 2802 * LDNP (Load Pair - non-temporal hint) 2803 * LDP (Load Pair - non vector) 2804 * LDPSW (Load Pair Signed Word - non vector) 2805 * STNP (Store Pair - non-temporal hint) 2806 * STP (Store Pair - non vector) 2807 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2808 * LDP (Load Pair of SIMD&FP) 2809 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2810 * STP (Store Pair of SIMD&FP) 2811 * 2812 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2813 * +-----+-------+---+---+-------+---+-----------------------------+ 2814 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2815 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2816 * 2817 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2818 * LDPSW/STGP 01 2819 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2820 * V: 0 -> GPR, 1 -> Vector 2821 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2822 * 10 -> signed offset, 11 -> pre-index 2823 * L: 0 -> Store 1 -> Load 2824 * 2825 * Rt, Rt2 = GPR or SIMD registers to be stored 2826 * Rn = general purpose register containing address 2827 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2828 */ 2829 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2830 { 2831 int rt = extract32(insn, 0, 5); 2832 int rn = extract32(insn, 5, 5); 2833 int rt2 = extract32(insn, 10, 5); 2834 uint64_t offset = sextract64(insn, 15, 7); 2835 int index = extract32(insn, 23, 2); 2836 bool is_vector = extract32(insn, 26, 1); 2837 bool is_load = extract32(insn, 22, 1); 2838 int opc = extract32(insn, 30, 2); 2839 2840 bool is_signed = false; 2841 bool postindex = false; 2842 bool wback = false; 2843 bool set_tag = false; 2844 2845 TCGv_i64 clean_addr, dirty_addr; 2846 2847 int size; 2848 2849 if (opc == 3) { 2850 unallocated_encoding(s); 2851 return; 2852 } 2853 2854 if (is_vector) { 2855 size = 2 + opc; 2856 } else if (opc == 1 && !is_load) { 2857 /* STGP */ 2858 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2859 unallocated_encoding(s); 2860 return; 2861 } 2862 size = 3; 2863 set_tag = true; 2864 } else { 2865 size = 2 + extract32(opc, 1, 1); 2866 is_signed = extract32(opc, 0, 1); 2867 if (!is_load && is_signed) { 2868 unallocated_encoding(s); 2869 return; 2870 } 2871 } 2872 2873 switch (index) { 2874 case 1: /* post-index */ 2875 postindex = true; 2876 wback = true; 2877 break; 2878 case 0: 2879 /* signed offset with "non-temporal" hint. Since we don't emulate 2880 * caches we don't care about hints to the cache system about 2881 * data access patterns, and handle this identically to plain 2882 * signed offset. 2883 */ 2884 if (is_signed) { 2885 /* There is no non-temporal-hint version of LDPSW */ 2886 unallocated_encoding(s); 2887 return; 2888 } 2889 postindex = false; 2890 break; 2891 case 2: /* signed offset, rn not updated */ 2892 postindex = false; 2893 break; 2894 case 3: /* pre-index */ 2895 postindex = false; 2896 wback = true; 2897 break; 2898 } 2899 2900 if (is_vector && !fp_access_check(s)) { 2901 return; 2902 } 2903 2904 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2905 2906 if (rn == 31) { 2907 gen_check_sp_alignment(s); 2908 } 2909 2910 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2911 if (!postindex) { 2912 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2913 } 2914 2915 if (set_tag) { 2916 if (!s->ata) { 2917 /* 2918 * TODO: We could rely on the stores below, at least for 2919 * system mode, if we arrange to add MO_ALIGN_16. 2920 */ 2921 gen_helper_stg_stub(cpu_env, dirty_addr); 2922 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2923 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2924 } else { 2925 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2926 } 2927 } 2928 2929 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2930 (wback || rn != 31) && !set_tag, 2 << size); 2931 2932 if (is_vector) { 2933 if (is_load) { 2934 do_fp_ld(s, rt, clean_addr, size); 2935 } else { 2936 do_fp_st(s, rt, clean_addr, size); 2937 } 2938 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2939 if (is_load) { 2940 do_fp_ld(s, rt2, clean_addr, size); 2941 } else { 2942 do_fp_st(s, rt2, clean_addr, size); 2943 } 2944 } else { 2945 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2946 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2947 2948 if (is_load) { 2949 TCGv_i64 tmp = tcg_temp_new_i64(); 2950 2951 /* Do not modify tcg_rt before recognizing any exception 2952 * from the second load. 2953 */ 2954 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 2955 false, false, 0, false, false); 2956 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2957 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 2958 false, false, 0, false, false); 2959 2960 tcg_gen_mov_i64(tcg_rt, tmp); 2961 } else { 2962 do_gpr_st(s, tcg_rt, clean_addr, size, 2963 false, 0, false, false); 2964 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2965 do_gpr_st(s, tcg_rt2, clean_addr, size, 2966 false, 0, false, false); 2967 } 2968 } 2969 2970 if (wback) { 2971 if (postindex) { 2972 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2973 } 2974 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 2975 } 2976 } 2977 2978 /* 2979 * Load/store (immediate post-indexed) 2980 * Load/store (immediate pre-indexed) 2981 * Load/store (unscaled immediate) 2982 * 2983 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 2984 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2985 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 2986 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2987 * 2988 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 2989 10 -> unprivileged 2990 * V = 0 -> non-vector 2991 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 2992 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 2993 */ 2994 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 2995 int opc, 2996 int size, 2997 int rt, 2998 bool is_vector) 2999 { 3000 int rn = extract32(insn, 5, 5); 3001 int imm9 = sextract32(insn, 12, 9); 3002 int idx = extract32(insn, 10, 2); 3003 bool is_signed = false; 3004 bool is_store = false; 3005 bool is_extended = false; 3006 bool is_unpriv = (idx == 2); 3007 bool iss_valid; 3008 bool post_index; 3009 bool writeback; 3010 int memidx; 3011 3012 TCGv_i64 clean_addr, dirty_addr; 3013 3014 if (is_vector) { 3015 size |= (opc & 2) << 1; 3016 if (size > 4 || is_unpriv) { 3017 unallocated_encoding(s); 3018 return; 3019 } 3020 is_store = ((opc & 1) == 0); 3021 if (!fp_access_check(s)) { 3022 return; 3023 } 3024 } else { 3025 if (size == 3 && opc == 2) { 3026 /* PRFM - prefetch */ 3027 if (idx != 0) { 3028 unallocated_encoding(s); 3029 return; 3030 } 3031 return; 3032 } 3033 if (opc == 3 && size > 1) { 3034 unallocated_encoding(s); 3035 return; 3036 } 3037 is_store = (opc == 0); 3038 is_signed = extract32(opc, 1, 1); 3039 is_extended = (size < 3) && extract32(opc, 0, 1); 3040 } 3041 3042 switch (idx) { 3043 case 0: 3044 case 2: 3045 post_index = false; 3046 writeback = false; 3047 break; 3048 case 1: 3049 post_index = true; 3050 writeback = true; 3051 break; 3052 case 3: 3053 post_index = false; 3054 writeback = true; 3055 break; 3056 default: 3057 g_assert_not_reached(); 3058 } 3059 3060 iss_valid = !is_vector && !writeback; 3061 3062 if (rn == 31) { 3063 gen_check_sp_alignment(s); 3064 } 3065 3066 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3067 if (!post_index) { 3068 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3069 } 3070 3071 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3072 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3073 writeback || rn != 31, 3074 size, is_unpriv, memidx); 3075 3076 if (is_vector) { 3077 if (is_store) { 3078 do_fp_st(s, rt, clean_addr, size); 3079 } else { 3080 do_fp_ld(s, rt, clean_addr, size); 3081 } 3082 } else { 3083 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3084 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3085 3086 if (is_store) { 3087 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3088 iss_valid, rt, iss_sf, false); 3089 } else { 3090 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3091 is_extended, memidx, 3092 iss_valid, rt, iss_sf, false); 3093 } 3094 } 3095 3096 if (writeback) { 3097 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3098 if (post_index) { 3099 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3100 } 3101 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3102 } 3103 } 3104 3105 /* 3106 * Load/store (register offset) 3107 * 3108 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3109 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3110 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3111 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3112 * 3113 * For non-vector: 3114 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3115 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3116 * For vector: 3117 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3118 * opc<0>: 0 -> store, 1 -> load 3119 * V: 1 -> vector/simd 3120 * opt: extend encoding (see DecodeRegExtend) 3121 * S: if S=1 then scale (essentially index by sizeof(size)) 3122 * Rt: register to transfer into/out of 3123 * Rn: address register or SP for base 3124 * Rm: offset register or ZR for offset 3125 */ 3126 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3127 int opc, 3128 int size, 3129 int rt, 3130 bool is_vector) 3131 { 3132 int rn = extract32(insn, 5, 5); 3133 int shift = extract32(insn, 12, 1); 3134 int rm = extract32(insn, 16, 5); 3135 int opt = extract32(insn, 13, 3); 3136 bool is_signed = false; 3137 bool is_store = false; 3138 bool is_extended = false; 3139 3140 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3141 3142 if (extract32(opt, 1, 1) == 0) { 3143 unallocated_encoding(s); 3144 return; 3145 } 3146 3147 if (is_vector) { 3148 size |= (opc & 2) << 1; 3149 if (size > 4) { 3150 unallocated_encoding(s); 3151 return; 3152 } 3153 is_store = !extract32(opc, 0, 1); 3154 if (!fp_access_check(s)) { 3155 return; 3156 } 3157 } else { 3158 if (size == 3 && opc == 2) { 3159 /* PRFM - prefetch */ 3160 return; 3161 } 3162 if (opc == 3 && size > 1) { 3163 unallocated_encoding(s); 3164 return; 3165 } 3166 is_store = (opc == 0); 3167 is_signed = extract32(opc, 1, 1); 3168 is_extended = (size < 3) && extract32(opc, 0, 1); 3169 } 3170 3171 if (rn == 31) { 3172 gen_check_sp_alignment(s); 3173 } 3174 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3175 3176 tcg_rm = read_cpu_reg(s, rm, 1); 3177 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3178 3179 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3180 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3181 3182 if (is_vector) { 3183 if (is_store) { 3184 do_fp_st(s, rt, clean_addr, size); 3185 } else { 3186 do_fp_ld(s, rt, clean_addr, size); 3187 } 3188 } else { 3189 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3190 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3191 if (is_store) { 3192 do_gpr_st(s, tcg_rt, clean_addr, size, 3193 true, rt, iss_sf, false); 3194 } else { 3195 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3196 is_extended, true, rt, iss_sf, false); 3197 } 3198 } 3199 } 3200 3201 /* 3202 * Load/store (unsigned immediate) 3203 * 3204 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3205 * +----+-------+---+-----+-----+------------+-------+------+ 3206 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3207 * +----+-------+---+-----+-----+------------+-------+------+ 3208 * 3209 * For non-vector: 3210 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3211 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3212 * For vector: 3213 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3214 * opc<0>: 0 -> store, 1 -> load 3215 * Rn: base address register (inc SP) 3216 * Rt: target register 3217 */ 3218 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3219 int opc, 3220 int size, 3221 int rt, 3222 bool is_vector) 3223 { 3224 int rn = extract32(insn, 5, 5); 3225 unsigned int imm12 = extract32(insn, 10, 12); 3226 unsigned int offset; 3227 3228 TCGv_i64 clean_addr, dirty_addr; 3229 3230 bool is_store; 3231 bool is_signed = false; 3232 bool is_extended = false; 3233 3234 if (is_vector) { 3235 size |= (opc & 2) << 1; 3236 if (size > 4) { 3237 unallocated_encoding(s); 3238 return; 3239 } 3240 is_store = !extract32(opc, 0, 1); 3241 if (!fp_access_check(s)) { 3242 return; 3243 } 3244 } else { 3245 if (size == 3 && opc == 2) { 3246 /* PRFM - prefetch */ 3247 return; 3248 } 3249 if (opc == 3 && size > 1) { 3250 unallocated_encoding(s); 3251 return; 3252 } 3253 is_store = (opc == 0); 3254 is_signed = extract32(opc, 1, 1); 3255 is_extended = (size < 3) && extract32(opc, 0, 1); 3256 } 3257 3258 if (rn == 31) { 3259 gen_check_sp_alignment(s); 3260 } 3261 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3262 offset = imm12 << size; 3263 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3264 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3265 3266 if (is_vector) { 3267 if (is_store) { 3268 do_fp_st(s, rt, clean_addr, size); 3269 } else { 3270 do_fp_ld(s, rt, clean_addr, size); 3271 } 3272 } else { 3273 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3274 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3275 if (is_store) { 3276 do_gpr_st(s, tcg_rt, clean_addr, size, 3277 true, rt, iss_sf, false); 3278 } else { 3279 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3280 is_extended, true, rt, iss_sf, false); 3281 } 3282 } 3283 } 3284 3285 /* Atomic memory operations 3286 * 3287 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3288 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3289 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3290 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3291 * 3292 * Rt: the result register 3293 * Rn: base address or SP 3294 * Rs: the source register for the operation 3295 * V: vector flag (always 0 as of v8.3) 3296 * A: acquire flag 3297 * R: release flag 3298 */ 3299 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3300 int size, int rt, bool is_vector) 3301 { 3302 int rs = extract32(insn, 16, 5); 3303 int rn = extract32(insn, 5, 5); 3304 int o3_opc = extract32(insn, 12, 4); 3305 bool r = extract32(insn, 22, 1); 3306 bool a = extract32(insn, 23, 1); 3307 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3308 AtomicThreeOpFn *fn = NULL; 3309 MemOp mop = s->be_data | size | MO_ALIGN; 3310 3311 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3312 unallocated_encoding(s); 3313 return; 3314 } 3315 switch (o3_opc) { 3316 case 000: /* LDADD */ 3317 fn = tcg_gen_atomic_fetch_add_i64; 3318 break; 3319 case 001: /* LDCLR */ 3320 fn = tcg_gen_atomic_fetch_and_i64; 3321 break; 3322 case 002: /* LDEOR */ 3323 fn = tcg_gen_atomic_fetch_xor_i64; 3324 break; 3325 case 003: /* LDSET */ 3326 fn = tcg_gen_atomic_fetch_or_i64; 3327 break; 3328 case 004: /* LDSMAX */ 3329 fn = tcg_gen_atomic_fetch_smax_i64; 3330 mop |= MO_SIGN; 3331 break; 3332 case 005: /* LDSMIN */ 3333 fn = tcg_gen_atomic_fetch_smin_i64; 3334 mop |= MO_SIGN; 3335 break; 3336 case 006: /* LDUMAX */ 3337 fn = tcg_gen_atomic_fetch_umax_i64; 3338 break; 3339 case 007: /* LDUMIN */ 3340 fn = tcg_gen_atomic_fetch_umin_i64; 3341 break; 3342 case 010: /* SWP */ 3343 fn = tcg_gen_atomic_xchg_i64; 3344 break; 3345 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3346 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3347 rs != 31 || a != 1 || r != 0) { 3348 unallocated_encoding(s); 3349 return; 3350 } 3351 break; 3352 default: 3353 unallocated_encoding(s); 3354 return; 3355 } 3356 3357 if (rn == 31) { 3358 gen_check_sp_alignment(s); 3359 } 3360 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3361 3362 if (o3_opc == 014) { 3363 /* 3364 * LDAPR* are a special case because they are a simple load, not a 3365 * fetch-and-do-something op. 3366 * The architectural consistency requirements here are weaker than 3367 * full load-acquire (we only need "load-acquire processor consistent"), 3368 * but we choose to implement them as full LDAQ. 3369 */ 3370 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3371 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3372 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3373 return; 3374 } 3375 3376 tcg_rs = read_cpu_reg(s, rs, true); 3377 tcg_rt = cpu_reg(s, rt); 3378 3379 if (o3_opc == 1) { /* LDCLR */ 3380 tcg_gen_not_i64(tcg_rs, tcg_rs); 3381 } 3382 3383 /* The tcg atomic primitives are all full barriers. Therefore we 3384 * can ignore the Acquire and Release bits of this instruction. 3385 */ 3386 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3387 3388 if ((mop & MO_SIGN) && size != MO_64) { 3389 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3390 } 3391 } 3392 3393 /* 3394 * PAC memory operations 3395 * 3396 * 31 30 27 26 24 22 21 12 11 10 5 0 3397 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3398 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3399 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3400 * 3401 * Rt: the result register 3402 * Rn: base address or SP 3403 * V: vector flag (always 0 as of v8.3) 3404 * M: clear for key DA, set for key DB 3405 * W: pre-indexing flag 3406 * S: sign for imm9. 3407 */ 3408 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3409 int size, int rt, bool is_vector) 3410 { 3411 int rn = extract32(insn, 5, 5); 3412 bool is_wback = extract32(insn, 11, 1); 3413 bool use_key_a = !extract32(insn, 23, 1); 3414 int offset; 3415 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3416 3417 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3418 unallocated_encoding(s); 3419 return; 3420 } 3421 3422 if (rn == 31) { 3423 gen_check_sp_alignment(s); 3424 } 3425 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3426 3427 if (s->pauth_active) { 3428 if (use_key_a) { 3429 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3430 tcg_constant_i64(0)); 3431 } else { 3432 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3433 tcg_constant_i64(0)); 3434 } 3435 } 3436 3437 /* Form the 10-bit signed, scaled offset. */ 3438 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3439 offset = sextract32(offset << size, 0, 10 + size); 3440 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3441 3442 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3443 clean_addr = gen_mte_check1(s, dirty_addr, false, 3444 is_wback || rn != 31, size); 3445 3446 tcg_rt = cpu_reg(s, rt); 3447 do_gpr_ld(s, tcg_rt, clean_addr, size, 3448 /* extend */ false, /* iss_valid */ !is_wback, 3449 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3450 3451 if (is_wback) { 3452 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3453 } 3454 } 3455 3456 /* 3457 * LDAPR/STLR (unscaled immediate) 3458 * 3459 * 31 30 24 22 21 12 10 5 0 3460 * +------+-------------+-----+---+--------+-----+----+-----+ 3461 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3462 * +------+-------------+-----+---+--------+-----+----+-----+ 3463 * 3464 * Rt: source or destination register 3465 * Rn: base register 3466 * imm9: unscaled immediate offset 3467 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3468 * size: size of load/store 3469 */ 3470 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3471 { 3472 int rt = extract32(insn, 0, 5); 3473 int rn = extract32(insn, 5, 5); 3474 int offset = sextract32(insn, 12, 9); 3475 int opc = extract32(insn, 22, 2); 3476 int size = extract32(insn, 30, 2); 3477 TCGv_i64 clean_addr, dirty_addr; 3478 bool is_store = false; 3479 bool extend = false; 3480 bool iss_sf; 3481 MemOp mop; 3482 3483 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3484 unallocated_encoding(s); 3485 return; 3486 } 3487 3488 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3489 mop = size | MO_ALIGN; 3490 3491 switch (opc) { 3492 case 0: /* STLURB */ 3493 is_store = true; 3494 break; 3495 case 1: /* LDAPUR* */ 3496 break; 3497 case 2: /* LDAPURS* 64-bit variant */ 3498 if (size == 3) { 3499 unallocated_encoding(s); 3500 return; 3501 } 3502 mop |= MO_SIGN; 3503 break; 3504 case 3: /* LDAPURS* 32-bit variant */ 3505 if (size > 1) { 3506 unallocated_encoding(s); 3507 return; 3508 } 3509 mop |= MO_SIGN; 3510 extend = true; /* zero-extend 32->64 after signed load */ 3511 break; 3512 default: 3513 g_assert_not_reached(); 3514 } 3515 3516 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3517 3518 if (rn == 31) { 3519 gen_check_sp_alignment(s); 3520 } 3521 3522 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3523 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3524 clean_addr = clean_data_tbi(s, dirty_addr); 3525 3526 if (is_store) { 3527 /* Store-Release semantics */ 3528 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3529 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3530 } else { 3531 /* 3532 * Load-AcquirePC semantics; we implement as the slightly more 3533 * restrictive Load-Acquire. 3534 */ 3535 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3536 extend, true, rt, iss_sf, true); 3537 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3538 } 3539 } 3540 3541 /* Load/store register (all forms) */ 3542 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3543 { 3544 int rt = extract32(insn, 0, 5); 3545 int opc = extract32(insn, 22, 2); 3546 bool is_vector = extract32(insn, 26, 1); 3547 int size = extract32(insn, 30, 2); 3548 3549 switch (extract32(insn, 24, 2)) { 3550 case 0: 3551 if (extract32(insn, 21, 1) == 0) { 3552 /* Load/store register (unscaled immediate) 3553 * Load/store immediate pre/post-indexed 3554 * Load/store register unprivileged 3555 */ 3556 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3557 return; 3558 } 3559 switch (extract32(insn, 10, 2)) { 3560 case 0: 3561 disas_ldst_atomic(s, insn, size, rt, is_vector); 3562 return; 3563 case 2: 3564 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3565 return; 3566 default: 3567 disas_ldst_pac(s, insn, size, rt, is_vector); 3568 return; 3569 } 3570 break; 3571 case 1: 3572 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3573 return; 3574 } 3575 unallocated_encoding(s); 3576 } 3577 3578 /* AdvSIMD load/store multiple structures 3579 * 3580 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3581 * +---+---+---------------+---+-------------+--------+------+------+------+ 3582 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3583 * +---+---+---------------+---+-------------+--------+------+------+------+ 3584 * 3585 * AdvSIMD load/store multiple structures (post-indexed) 3586 * 3587 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3588 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3589 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3590 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3591 * 3592 * Rt: first (or only) SIMD&FP register to be transferred 3593 * Rn: base address or SP 3594 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3595 */ 3596 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3597 { 3598 int rt = extract32(insn, 0, 5); 3599 int rn = extract32(insn, 5, 5); 3600 int rm = extract32(insn, 16, 5); 3601 int size = extract32(insn, 10, 2); 3602 int opcode = extract32(insn, 12, 4); 3603 bool is_store = !extract32(insn, 22, 1); 3604 bool is_postidx = extract32(insn, 23, 1); 3605 bool is_q = extract32(insn, 30, 1); 3606 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3607 MemOp endian, align, mop; 3608 3609 int total; /* total bytes */ 3610 int elements; /* elements per vector */ 3611 int rpt; /* num iterations */ 3612 int selem; /* structure elements */ 3613 int r; 3614 3615 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3616 unallocated_encoding(s); 3617 return; 3618 } 3619 3620 if (!is_postidx && rm != 0) { 3621 unallocated_encoding(s); 3622 return; 3623 } 3624 3625 /* From the shared decode logic */ 3626 switch (opcode) { 3627 case 0x0: 3628 rpt = 1; 3629 selem = 4; 3630 break; 3631 case 0x2: 3632 rpt = 4; 3633 selem = 1; 3634 break; 3635 case 0x4: 3636 rpt = 1; 3637 selem = 3; 3638 break; 3639 case 0x6: 3640 rpt = 3; 3641 selem = 1; 3642 break; 3643 case 0x7: 3644 rpt = 1; 3645 selem = 1; 3646 break; 3647 case 0x8: 3648 rpt = 1; 3649 selem = 2; 3650 break; 3651 case 0xa: 3652 rpt = 2; 3653 selem = 1; 3654 break; 3655 default: 3656 unallocated_encoding(s); 3657 return; 3658 } 3659 3660 if (size == 3 && !is_q && selem != 1) { 3661 /* reserved */ 3662 unallocated_encoding(s); 3663 return; 3664 } 3665 3666 if (!fp_access_check(s)) { 3667 return; 3668 } 3669 3670 if (rn == 31) { 3671 gen_check_sp_alignment(s); 3672 } 3673 3674 /* For our purposes, bytes are always little-endian. */ 3675 endian = s->be_data; 3676 if (size == 0) { 3677 endian = MO_LE; 3678 } 3679 3680 total = rpt * selem * (is_q ? 16 : 8); 3681 tcg_rn = cpu_reg_sp(s, rn); 3682 3683 /* 3684 * Issue the MTE check vs the logical repeat count, before we 3685 * promote consecutive little-endian elements below. 3686 */ 3687 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3688 total); 3689 3690 /* 3691 * Consecutive little-endian elements from a single register 3692 * can be promoted to a larger little-endian operation. 3693 */ 3694 align = MO_ALIGN; 3695 if (selem == 1 && endian == MO_LE) { 3696 align = pow2_align(size); 3697 size = 3; 3698 } 3699 if (!s->align_mem) { 3700 align = 0; 3701 } 3702 mop = endian | size | align; 3703 3704 elements = (is_q ? 16 : 8) >> size; 3705 tcg_ebytes = tcg_constant_i64(1 << size); 3706 for (r = 0; r < rpt; r++) { 3707 int e; 3708 for (e = 0; e < elements; e++) { 3709 int xs; 3710 for (xs = 0; xs < selem; xs++) { 3711 int tt = (rt + r + xs) % 32; 3712 if (is_store) { 3713 do_vec_st(s, tt, e, clean_addr, mop); 3714 } else { 3715 do_vec_ld(s, tt, e, clean_addr, mop); 3716 } 3717 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3718 } 3719 } 3720 } 3721 3722 if (!is_store) { 3723 /* For non-quad operations, setting a slice of the low 3724 * 64 bits of the register clears the high 64 bits (in 3725 * the ARM ARM pseudocode this is implicit in the fact 3726 * that 'rval' is a 64 bit wide variable). 3727 * For quad operations, we might still need to zero the 3728 * high bits of SVE. 3729 */ 3730 for (r = 0; r < rpt * selem; r++) { 3731 int tt = (rt + r) % 32; 3732 clear_vec_high(s, is_q, tt); 3733 } 3734 } 3735 3736 if (is_postidx) { 3737 if (rm == 31) { 3738 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3739 } else { 3740 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3741 } 3742 } 3743 } 3744 3745 /* AdvSIMD load/store single structure 3746 * 3747 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3748 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3749 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3750 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3751 * 3752 * AdvSIMD load/store single structure (post-indexed) 3753 * 3754 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3755 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3756 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3757 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3758 * 3759 * Rt: first (or only) SIMD&FP register to be transferred 3760 * Rn: base address or SP 3761 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3762 * index = encoded in Q:S:size dependent on size 3763 * 3764 * lane_size = encoded in R, opc 3765 * transfer width = encoded in opc, S, size 3766 */ 3767 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3768 { 3769 int rt = extract32(insn, 0, 5); 3770 int rn = extract32(insn, 5, 5); 3771 int rm = extract32(insn, 16, 5); 3772 int size = extract32(insn, 10, 2); 3773 int S = extract32(insn, 12, 1); 3774 int opc = extract32(insn, 13, 3); 3775 int R = extract32(insn, 21, 1); 3776 int is_load = extract32(insn, 22, 1); 3777 int is_postidx = extract32(insn, 23, 1); 3778 int is_q = extract32(insn, 30, 1); 3779 3780 int scale = extract32(opc, 1, 2); 3781 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3782 bool replicate = false; 3783 int index = is_q << 3 | S << 2 | size; 3784 int xs, total; 3785 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3786 MemOp mop; 3787 3788 if (extract32(insn, 31, 1)) { 3789 unallocated_encoding(s); 3790 return; 3791 } 3792 if (!is_postidx && rm != 0) { 3793 unallocated_encoding(s); 3794 return; 3795 } 3796 3797 switch (scale) { 3798 case 3: 3799 if (!is_load || S) { 3800 unallocated_encoding(s); 3801 return; 3802 } 3803 scale = size; 3804 replicate = true; 3805 break; 3806 case 0: 3807 break; 3808 case 1: 3809 if (extract32(size, 0, 1)) { 3810 unallocated_encoding(s); 3811 return; 3812 } 3813 index >>= 1; 3814 break; 3815 case 2: 3816 if (extract32(size, 1, 1)) { 3817 unallocated_encoding(s); 3818 return; 3819 } 3820 if (!extract32(size, 0, 1)) { 3821 index >>= 2; 3822 } else { 3823 if (S) { 3824 unallocated_encoding(s); 3825 return; 3826 } 3827 index >>= 3; 3828 scale = 3; 3829 } 3830 break; 3831 default: 3832 g_assert_not_reached(); 3833 } 3834 3835 if (!fp_access_check(s)) { 3836 return; 3837 } 3838 3839 if (rn == 31) { 3840 gen_check_sp_alignment(s); 3841 } 3842 3843 total = selem << scale; 3844 tcg_rn = cpu_reg_sp(s, rn); 3845 3846 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3847 total); 3848 mop = finalize_memop(s, scale); 3849 3850 tcg_ebytes = tcg_constant_i64(1 << scale); 3851 for (xs = 0; xs < selem; xs++) { 3852 if (replicate) { 3853 /* Load and replicate to all elements */ 3854 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3855 3856 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3857 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3858 (is_q + 1) * 8, vec_full_reg_size(s), 3859 tcg_tmp); 3860 } else { 3861 /* Load/store one element per register */ 3862 if (is_load) { 3863 do_vec_ld(s, rt, index, clean_addr, mop); 3864 } else { 3865 do_vec_st(s, rt, index, clean_addr, mop); 3866 } 3867 } 3868 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3869 rt = (rt + 1) % 32; 3870 } 3871 3872 if (is_postidx) { 3873 if (rm == 31) { 3874 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3875 } else { 3876 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3877 } 3878 } 3879 } 3880 3881 /* 3882 * Load/Store memory tags 3883 * 3884 * 31 30 29 24 22 21 12 10 5 0 3885 * +-----+-------------+-----+---+------+-----+------+------+ 3886 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3887 * +-----+-------------+-----+---+------+-----+------+------+ 3888 */ 3889 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3890 { 3891 int rt = extract32(insn, 0, 5); 3892 int rn = extract32(insn, 5, 5); 3893 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3894 int op2 = extract32(insn, 10, 2); 3895 int op1 = extract32(insn, 22, 2); 3896 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3897 int index = 0; 3898 TCGv_i64 addr, clean_addr, tcg_rt; 3899 3900 /* We checked insn bits [29:24,21] in the caller. */ 3901 if (extract32(insn, 30, 2) != 3) { 3902 goto do_unallocated; 3903 } 3904 3905 /* 3906 * @index is a tri-state variable which has 3 states: 3907 * < 0 : post-index, writeback 3908 * = 0 : signed offset 3909 * > 0 : pre-index, writeback 3910 */ 3911 switch (op1) { 3912 case 0: 3913 if (op2 != 0) { 3914 /* STG */ 3915 index = op2 - 2; 3916 } else { 3917 /* STZGM */ 3918 if (s->current_el == 0 || offset != 0) { 3919 goto do_unallocated; 3920 } 3921 is_mult = is_zero = true; 3922 } 3923 break; 3924 case 1: 3925 if (op2 != 0) { 3926 /* STZG */ 3927 is_zero = true; 3928 index = op2 - 2; 3929 } else { 3930 /* LDG */ 3931 is_load = true; 3932 } 3933 break; 3934 case 2: 3935 if (op2 != 0) { 3936 /* ST2G */ 3937 is_pair = true; 3938 index = op2 - 2; 3939 } else { 3940 /* STGM */ 3941 if (s->current_el == 0 || offset != 0) { 3942 goto do_unallocated; 3943 } 3944 is_mult = true; 3945 } 3946 break; 3947 case 3: 3948 if (op2 != 0) { 3949 /* STZ2G */ 3950 is_pair = is_zero = true; 3951 index = op2 - 2; 3952 } else { 3953 /* LDGM */ 3954 if (s->current_el == 0 || offset != 0) { 3955 goto do_unallocated; 3956 } 3957 is_mult = is_load = true; 3958 } 3959 break; 3960 3961 default: 3962 do_unallocated: 3963 unallocated_encoding(s); 3964 return; 3965 } 3966 3967 if (is_mult 3968 ? !dc_isar_feature(aa64_mte, s) 3969 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 3970 goto do_unallocated; 3971 } 3972 3973 if (rn == 31) { 3974 gen_check_sp_alignment(s); 3975 } 3976 3977 addr = read_cpu_reg_sp(s, rn, true); 3978 if (index >= 0) { 3979 /* pre-index or signed offset */ 3980 tcg_gen_addi_i64(addr, addr, offset); 3981 } 3982 3983 if (is_mult) { 3984 tcg_rt = cpu_reg(s, rt); 3985 3986 if (is_zero) { 3987 int size = 4 << s->dcz_blocksize; 3988 3989 if (s->ata) { 3990 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3991 } 3992 /* 3993 * The non-tags portion of STZGM is mostly like DC_ZVA, 3994 * except the alignment happens before the access. 3995 */ 3996 clean_addr = clean_data_tbi(s, addr); 3997 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3998 gen_helper_dc_zva(cpu_env, clean_addr); 3999 } else if (s->ata) { 4000 if (is_load) { 4001 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4002 } else { 4003 gen_helper_stgm(cpu_env, addr, tcg_rt); 4004 } 4005 } else { 4006 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4007 int size = 4 << GMID_EL1_BS; 4008 4009 clean_addr = clean_data_tbi(s, addr); 4010 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4011 gen_probe_access(s, clean_addr, acc, size); 4012 4013 if (is_load) { 4014 /* The result tags are zeros. */ 4015 tcg_gen_movi_i64(tcg_rt, 0); 4016 } 4017 } 4018 return; 4019 } 4020 4021 if (is_load) { 4022 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4023 tcg_rt = cpu_reg(s, rt); 4024 if (s->ata) { 4025 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4026 } else { 4027 clean_addr = clean_data_tbi(s, addr); 4028 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4029 gen_address_with_allocation_tag0(tcg_rt, addr); 4030 } 4031 } else { 4032 tcg_rt = cpu_reg_sp(s, rt); 4033 if (!s->ata) { 4034 /* 4035 * For STG and ST2G, we need to check alignment and probe memory. 4036 * TODO: For STZG and STZ2G, we could rely on the stores below, 4037 * at least for system mode; user-only won't enforce alignment. 4038 */ 4039 if (is_pair) { 4040 gen_helper_st2g_stub(cpu_env, addr); 4041 } else { 4042 gen_helper_stg_stub(cpu_env, addr); 4043 } 4044 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4045 if (is_pair) { 4046 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4047 } else { 4048 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4049 } 4050 } else { 4051 if (is_pair) { 4052 gen_helper_st2g(cpu_env, addr, tcg_rt); 4053 } else { 4054 gen_helper_stg(cpu_env, addr, tcg_rt); 4055 } 4056 } 4057 } 4058 4059 if (is_zero) { 4060 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4061 TCGv_i64 zero64 = tcg_constant_i64(0); 4062 TCGv_i128 zero128 = tcg_temp_new_i128(); 4063 int mem_index = get_mem_index(s); 4064 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4065 4066 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4067 4068 /* This is 1 or 2 atomic 16-byte operations. */ 4069 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4070 if (is_pair) { 4071 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4072 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4073 } 4074 } 4075 4076 if (index != 0) { 4077 /* pre-index or post-index */ 4078 if (index < 0) { 4079 /* post-index */ 4080 tcg_gen_addi_i64(addr, addr, offset); 4081 } 4082 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4083 } 4084 } 4085 4086 /* Loads and stores */ 4087 static void disas_ldst(DisasContext *s, uint32_t insn) 4088 { 4089 switch (extract32(insn, 24, 6)) { 4090 case 0x08: /* Load/store exclusive */ 4091 disas_ldst_excl(s, insn); 4092 break; 4093 case 0x18: case 0x1c: /* Load register (literal) */ 4094 disas_ld_lit(s, insn); 4095 break; 4096 case 0x28: case 0x29: 4097 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4098 disas_ldst_pair(s, insn); 4099 break; 4100 case 0x38: case 0x39: 4101 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4102 disas_ldst_reg(s, insn); 4103 break; 4104 case 0x0c: /* AdvSIMD load/store multiple structures */ 4105 disas_ldst_multiple_struct(s, insn); 4106 break; 4107 case 0x0d: /* AdvSIMD load/store single structure */ 4108 disas_ldst_single_struct(s, insn); 4109 break; 4110 case 0x19: 4111 if (extract32(insn, 21, 1) != 0) { 4112 disas_ldst_tag(s, insn); 4113 } else if (extract32(insn, 10, 2) == 0) { 4114 disas_ldst_ldapr_stlr(s, insn); 4115 } else { 4116 unallocated_encoding(s); 4117 } 4118 break; 4119 default: 4120 unallocated_encoding(s); 4121 break; 4122 } 4123 } 4124 4125 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4126 4127 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4128 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4129 { 4130 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4131 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4132 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4133 4134 fn(tcg_rd, tcg_rn, tcg_imm); 4135 if (!a->sf) { 4136 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4137 } 4138 return true; 4139 } 4140 4141 /* 4142 * PC-rel. addressing 4143 */ 4144 4145 static bool trans_ADR(DisasContext *s, arg_ri *a) 4146 { 4147 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4148 return true; 4149 } 4150 4151 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4152 { 4153 int64_t offset = (int64_t)a->imm << 12; 4154 4155 /* The page offset is ok for CF_PCREL. */ 4156 offset -= s->pc_curr & 0xfff; 4157 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4158 return true; 4159 } 4160 4161 /* 4162 * Add/subtract (immediate) 4163 */ 4164 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4165 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4166 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4167 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4168 4169 /* 4170 * Add/subtract (immediate, with tags) 4171 */ 4172 4173 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4174 bool sub_op) 4175 { 4176 TCGv_i64 tcg_rn, tcg_rd; 4177 int imm; 4178 4179 imm = a->uimm6 << LOG2_TAG_GRANULE; 4180 if (sub_op) { 4181 imm = -imm; 4182 } 4183 4184 tcg_rn = cpu_reg_sp(s, a->rn); 4185 tcg_rd = cpu_reg_sp(s, a->rd); 4186 4187 if (s->ata) { 4188 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4189 tcg_constant_i32(imm), 4190 tcg_constant_i32(a->uimm4)); 4191 } else { 4192 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4193 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4194 } 4195 return true; 4196 } 4197 4198 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4199 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4200 4201 /* The input should be a value in the bottom e bits (with higher 4202 * bits zero); returns that value replicated into every element 4203 * of size e in a 64 bit integer. 4204 */ 4205 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4206 { 4207 assert(e != 0); 4208 while (e < 64) { 4209 mask |= mask << e; 4210 e *= 2; 4211 } 4212 return mask; 4213 } 4214 4215 /* 4216 * Logical (immediate) 4217 */ 4218 4219 /* 4220 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4221 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4222 * value (ie should cause a guest UNDEF exception), and true if they are 4223 * valid, in which case the decoded bit pattern is written to result. 4224 */ 4225 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4226 unsigned int imms, unsigned int immr) 4227 { 4228 uint64_t mask; 4229 unsigned e, levels, s, r; 4230 int len; 4231 4232 assert(immn < 2 && imms < 64 && immr < 64); 4233 4234 /* The bit patterns we create here are 64 bit patterns which 4235 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4236 * 64 bits each. Each element contains the same value: a run 4237 * of between 1 and e-1 non-zero bits, rotated within the 4238 * element by between 0 and e-1 bits. 4239 * 4240 * The element size and run length are encoded into immn (1 bit) 4241 * and imms (6 bits) as follows: 4242 * 64 bit elements: immn = 1, imms = <length of run - 1> 4243 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4244 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4245 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4246 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4247 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4248 * Notice that immn = 0, imms = 11111x is the only combination 4249 * not covered by one of the above options; this is reserved. 4250 * Further, <length of run - 1> all-ones is a reserved pattern. 4251 * 4252 * In all cases the rotation is by immr % e (and immr is 6 bits). 4253 */ 4254 4255 /* First determine the element size */ 4256 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4257 if (len < 1) { 4258 /* This is the immn == 0, imms == 0x11111x case */ 4259 return false; 4260 } 4261 e = 1 << len; 4262 4263 levels = e - 1; 4264 s = imms & levels; 4265 r = immr & levels; 4266 4267 if (s == levels) { 4268 /* <length of run - 1> mustn't be all-ones. */ 4269 return false; 4270 } 4271 4272 /* Create the value of one element: s+1 set bits rotated 4273 * by r within the element (which is e bits wide)... 4274 */ 4275 mask = MAKE_64BIT_MASK(0, s + 1); 4276 if (r) { 4277 mask = (mask >> r) | (mask << (e - r)); 4278 mask &= MAKE_64BIT_MASK(0, e); 4279 } 4280 /* ...then replicate the element over the whole 64 bit value */ 4281 mask = bitfield_replicate(mask, e); 4282 *result = mask; 4283 return true; 4284 } 4285 4286 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4287 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4288 { 4289 TCGv_i64 tcg_rd, tcg_rn; 4290 uint64_t imm; 4291 4292 /* Some immediate field values are reserved. */ 4293 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4294 extract32(a->dbm, 0, 6), 4295 extract32(a->dbm, 6, 6))) { 4296 return false; 4297 } 4298 if (!a->sf) { 4299 imm &= 0xffffffffull; 4300 } 4301 4302 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4303 tcg_rn = cpu_reg(s, a->rn); 4304 4305 fn(tcg_rd, tcg_rn, imm); 4306 if (set_cc) { 4307 gen_logic_CC(a->sf, tcg_rd); 4308 } 4309 if (!a->sf) { 4310 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4311 } 4312 return true; 4313 } 4314 4315 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4316 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4317 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4318 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4319 4320 /* 4321 * Move wide (immediate) 4322 */ 4323 4324 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4325 { 4326 int pos = a->hw << 4; 4327 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4328 return true; 4329 } 4330 4331 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4332 { 4333 int pos = a->hw << 4; 4334 uint64_t imm = a->imm; 4335 4336 imm = ~(imm << pos); 4337 if (!a->sf) { 4338 imm = (uint32_t)imm; 4339 } 4340 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4341 return true; 4342 } 4343 4344 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4345 { 4346 int pos = a->hw << 4; 4347 TCGv_i64 tcg_rd, tcg_im; 4348 4349 tcg_rd = cpu_reg(s, a->rd); 4350 tcg_im = tcg_constant_i64(a->imm); 4351 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4352 if (!a->sf) { 4353 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4354 } 4355 return true; 4356 } 4357 4358 /* 4359 * Bitfield 4360 */ 4361 4362 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4363 { 4364 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4365 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4366 unsigned int bitsize = a->sf ? 64 : 32; 4367 unsigned int ri = a->immr; 4368 unsigned int si = a->imms; 4369 unsigned int pos, len; 4370 4371 if (si >= ri) { 4372 /* Wd<s-r:0> = Wn<s:r> */ 4373 len = (si - ri) + 1; 4374 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4375 if (!a->sf) { 4376 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4377 } 4378 } else { 4379 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4380 len = si + 1; 4381 pos = (bitsize - ri) & (bitsize - 1); 4382 4383 if (len < ri) { 4384 /* 4385 * Sign extend the destination field from len to fill the 4386 * balance of the word. Let the deposit below insert all 4387 * of those sign bits. 4388 */ 4389 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4390 len = ri; 4391 } 4392 4393 /* 4394 * We start with zero, and we haven't modified any bits outside 4395 * bitsize, therefore no final zero-extension is unneeded for !sf. 4396 */ 4397 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4398 } 4399 return true; 4400 } 4401 4402 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4403 { 4404 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4405 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4406 unsigned int bitsize = a->sf ? 64 : 32; 4407 unsigned int ri = a->immr; 4408 unsigned int si = a->imms; 4409 unsigned int pos, len; 4410 4411 tcg_rd = cpu_reg(s, a->rd); 4412 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4413 4414 if (si >= ri) { 4415 /* Wd<s-r:0> = Wn<s:r> */ 4416 len = (si - ri) + 1; 4417 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4418 } else { 4419 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4420 len = si + 1; 4421 pos = (bitsize - ri) & (bitsize - 1); 4422 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4423 } 4424 return true; 4425 } 4426 4427 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4428 { 4429 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4430 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4431 unsigned int bitsize = a->sf ? 64 : 32; 4432 unsigned int ri = a->immr; 4433 unsigned int si = a->imms; 4434 unsigned int pos, len; 4435 4436 tcg_rd = cpu_reg(s, a->rd); 4437 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4438 4439 if (si >= ri) { 4440 /* Wd<s-r:0> = Wn<s:r> */ 4441 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4442 len = (si - ri) + 1; 4443 pos = 0; 4444 } else { 4445 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4446 len = si + 1; 4447 pos = (bitsize - ri) & (bitsize - 1); 4448 } 4449 4450 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4451 if (!a->sf) { 4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4453 } 4454 return true; 4455 } 4456 4457 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4458 { 4459 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4460 4461 tcg_rd = cpu_reg(s, a->rd); 4462 4463 if (unlikely(a->imm == 0)) { 4464 /* 4465 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4466 * so an extract from bit 0 is a special case. 4467 */ 4468 if (a->sf) { 4469 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4470 } else { 4471 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4472 } 4473 } else { 4474 tcg_rm = cpu_reg(s, a->rm); 4475 tcg_rn = cpu_reg(s, a->rn); 4476 4477 if (a->sf) { 4478 /* Specialization to ROR happens in EXTRACT2. */ 4479 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4480 } else { 4481 TCGv_i32 t0 = tcg_temp_new_i32(); 4482 4483 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4484 if (a->rm == a->rn) { 4485 tcg_gen_rotri_i32(t0, t0, a->imm); 4486 } else { 4487 TCGv_i32 t1 = tcg_temp_new_i32(); 4488 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4489 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4490 } 4491 tcg_gen_extu_i32_i64(tcg_rd, t0); 4492 } 4493 } 4494 return true; 4495 } 4496 4497 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4498 * Note that it is the caller's responsibility to ensure that the 4499 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4500 * mandated semantics for out of range shifts. 4501 */ 4502 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4503 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4504 { 4505 switch (shift_type) { 4506 case A64_SHIFT_TYPE_LSL: 4507 tcg_gen_shl_i64(dst, src, shift_amount); 4508 break; 4509 case A64_SHIFT_TYPE_LSR: 4510 tcg_gen_shr_i64(dst, src, shift_amount); 4511 break; 4512 case A64_SHIFT_TYPE_ASR: 4513 if (!sf) { 4514 tcg_gen_ext32s_i64(dst, src); 4515 } 4516 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4517 break; 4518 case A64_SHIFT_TYPE_ROR: 4519 if (sf) { 4520 tcg_gen_rotr_i64(dst, src, shift_amount); 4521 } else { 4522 TCGv_i32 t0, t1; 4523 t0 = tcg_temp_new_i32(); 4524 t1 = tcg_temp_new_i32(); 4525 tcg_gen_extrl_i64_i32(t0, src); 4526 tcg_gen_extrl_i64_i32(t1, shift_amount); 4527 tcg_gen_rotr_i32(t0, t0, t1); 4528 tcg_gen_extu_i32_i64(dst, t0); 4529 } 4530 break; 4531 default: 4532 assert(FALSE); /* all shift types should be handled */ 4533 break; 4534 } 4535 4536 if (!sf) { /* zero extend final result */ 4537 tcg_gen_ext32u_i64(dst, dst); 4538 } 4539 } 4540 4541 /* Shift a TCGv src by immediate, put result in dst. 4542 * The shift amount must be in range (this should always be true as the 4543 * relevant instructions will UNDEF on bad shift immediates). 4544 */ 4545 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4546 enum a64_shift_type shift_type, unsigned int shift_i) 4547 { 4548 assert(shift_i < (sf ? 64 : 32)); 4549 4550 if (shift_i == 0) { 4551 tcg_gen_mov_i64(dst, src); 4552 } else { 4553 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4554 } 4555 } 4556 4557 /* Logical (shifted register) 4558 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4559 * +----+-----+-----------+-------+---+------+--------+------+------+ 4560 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4561 * +----+-----+-----------+-------+---+------+--------+------+------+ 4562 */ 4563 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4564 { 4565 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4566 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4567 4568 sf = extract32(insn, 31, 1); 4569 opc = extract32(insn, 29, 2); 4570 shift_type = extract32(insn, 22, 2); 4571 invert = extract32(insn, 21, 1); 4572 rm = extract32(insn, 16, 5); 4573 shift_amount = extract32(insn, 10, 6); 4574 rn = extract32(insn, 5, 5); 4575 rd = extract32(insn, 0, 5); 4576 4577 if (!sf && (shift_amount & (1 << 5))) { 4578 unallocated_encoding(s); 4579 return; 4580 } 4581 4582 tcg_rd = cpu_reg(s, rd); 4583 4584 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4585 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4586 * register-register MOV and MVN, so it is worth special casing. 4587 */ 4588 tcg_rm = cpu_reg(s, rm); 4589 if (invert) { 4590 tcg_gen_not_i64(tcg_rd, tcg_rm); 4591 if (!sf) { 4592 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4593 } 4594 } else { 4595 if (sf) { 4596 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4597 } else { 4598 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4599 } 4600 } 4601 return; 4602 } 4603 4604 tcg_rm = read_cpu_reg(s, rm, sf); 4605 4606 if (shift_amount) { 4607 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4608 } 4609 4610 tcg_rn = cpu_reg(s, rn); 4611 4612 switch (opc | (invert << 2)) { 4613 case 0: /* AND */ 4614 case 3: /* ANDS */ 4615 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4616 break; 4617 case 1: /* ORR */ 4618 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4619 break; 4620 case 2: /* EOR */ 4621 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4622 break; 4623 case 4: /* BIC */ 4624 case 7: /* BICS */ 4625 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4626 break; 4627 case 5: /* ORN */ 4628 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4629 break; 4630 case 6: /* EON */ 4631 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4632 break; 4633 default: 4634 assert(FALSE); 4635 break; 4636 } 4637 4638 if (!sf) { 4639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4640 } 4641 4642 if (opc == 3) { 4643 gen_logic_CC(sf, tcg_rd); 4644 } 4645 } 4646 4647 /* 4648 * Add/subtract (extended register) 4649 * 4650 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4651 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4652 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4653 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4654 * 4655 * sf: 0 -> 32bit, 1 -> 64bit 4656 * op: 0 -> add , 1 -> sub 4657 * S: 1 -> set flags 4658 * opt: 00 4659 * option: extension type (see DecodeRegExtend) 4660 * imm3: optional shift to Rm 4661 * 4662 * Rd = Rn + LSL(extend(Rm), amount) 4663 */ 4664 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4665 { 4666 int rd = extract32(insn, 0, 5); 4667 int rn = extract32(insn, 5, 5); 4668 int imm3 = extract32(insn, 10, 3); 4669 int option = extract32(insn, 13, 3); 4670 int rm = extract32(insn, 16, 5); 4671 int opt = extract32(insn, 22, 2); 4672 bool setflags = extract32(insn, 29, 1); 4673 bool sub_op = extract32(insn, 30, 1); 4674 bool sf = extract32(insn, 31, 1); 4675 4676 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4677 TCGv_i64 tcg_rd; 4678 TCGv_i64 tcg_result; 4679 4680 if (imm3 > 4 || opt != 0) { 4681 unallocated_encoding(s); 4682 return; 4683 } 4684 4685 /* non-flag setting ops may use SP */ 4686 if (!setflags) { 4687 tcg_rd = cpu_reg_sp(s, rd); 4688 } else { 4689 tcg_rd = cpu_reg(s, rd); 4690 } 4691 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4692 4693 tcg_rm = read_cpu_reg(s, rm, sf); 4694 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4695 4696 tcg_result = tcg_temp_new_i64(); 4697 4698 if (!setflags) { 4699 if (sub_op) { 4700 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4701 } else { 4702 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4703 } 4704 } else { 4705 if (sub_op) { 4706 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4707 } else { 4708 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4709 } 4710 } 4711 4712 if (sf) { 4713 tcg_gen_mov_i64(tcg_rd, tcg_result); 4714 } else { 4715 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4716 } 4717 } 4718 4719 /* 4720 * Add/subtract (shifted register) 4721 * 4722 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4723 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4724 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4725 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4726 * 4727 * sf: 0 -> 32bit, 1 -> 64bit 4728 * op: 0 -> add , 1 -> sub 4729 * S: 1 -> set flags 4730 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4731 * imm6: Shift amount to apply to Rm before the add/sub 4732 */ 4733 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4734 { 4735 int rd = extract32(insn, 0, 5); 4736 int rn = extract32(insn, 5, 5); 4737 int imm6 = extract32(insn, 10, 6); 4738 int rm = extract32(insn, 16, 5); 4739 int shift_type = extract32(insn, 22, 2); 4740 bool setflags = extract32(insn, 29, 1); 4741 bool sub_op = extract32(insn, 30, 1); 4742 bool sf = extract32(insn, 31, 1); 4743 4744 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4745 TCGv_i64 tcg_rn, tcg_rm; 4746 TCGv_i64 tcg_result; 4747 4748 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4749 unallocated_encoding(s); 4750 return; 4751 } 4752 4753 tcg_rn = read_cpu_reg(s, rn, sf); 4754 tcg_rm = read_cpu_reg(s, rm, sf); 4755 4756 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4757 4758 tcg_result = tcg_temp_new_i64(); 4759 4760 if (!setflags) { 4761 if (sub_op) { 4762 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4763 } else { 4764 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4765 } 4766 } else { 4767 if (sub_op) { 4768 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4769 } else { 4770 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4771 } 4772 } 4773 4774 if (sf) { 4775 tcg_gen_mov_i64(tcg_rd, tcg_result); 4776 } else { 4777 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4778 } 4779 } 4780 4781 /* Data-processing (3 source) 4782 * 4783 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4784 * +--+------+-----------+------+------+----+------+------+------+ 4785 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4786 * +--+------+-----------+------+------+----+------+------+------+ 4787 */ 4788 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4789 { 4790 int rd = extract32(insn, 0, 5); 4791 int rn = extract32(insn, 5, 5); 4792 int ra = extract32(insn, 10, 5); 4793 int rm = extract32(insn, 16, 5); 4794 int op_id = (extract32(insn, 29, 3) << 4) | 4795 (extract32(insn, 21, 3) << 1) | 4796 extract32(insn, 15, 1); 4797 bool sf = extract32(insn, 31, 1); 4798 bool is_sub = extract32(op_id, 0, 1); 4799 bool is_high = extract32(op_id, 2, 1); 4800 bool is_signed = false; 4801 TCGv_i64 tcg_op1; 4802 TCGv_i64 tcg_op2; 4803 TCGv_i64 tcg_tmp; 4804 4805 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4806 switch (op_id) { 4807 case 0x42: /* SMADDL */ 4808 case 0x43: /* SMSUBL */ 4809 case 0x44: /* SMULH */ 4810 is_signed = true; 4811 break; 4812 case 0x0: /* MADD (32bit) */ 4813 case 0x1: /* MSUB (32bit) */ 4814 case 0x40: /* MADD (64bit) */ 4815 case 0x41: /* MSUB (64bit) */ 4816 case 0x4a: /* UMADDL */ 4817 case 0x4b: /* UMSUBL */ 4818 case 0x4c: /* UMULH */ 4819 break; 4820 default: 4821 unallocated_encoding(s); 4822 return; 4823 } 4824 4825 if (is_high) { 4826 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4827 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4828 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4829 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4830 4831 if (is_signed) { 4832 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4833 } else { 4834 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4835 } 4836 return; 4837 } 4838 4839 tcg_op1 = tcg_temp_new_i64(); 4840 tcg_op2 = tcg_temp_new_i64(); 4841 tcg_tmp = tcg_temp_new_i64(); 4842 4843 if (op_id < 0x42) { 4844 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4845 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4846 } else { 4847 if (is_signed) { 4848 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4849 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4850 } else { 4851 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4852 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4853 } 4854 } 4855 4856 if (ra == 31 && !is_sub) { 4857 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4858 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4859 } else { 4860 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4861 if (is_sub) { 4862 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4863 } else { 4864 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4865 } 4866 } 4867 4868 if (!sf) { 4869 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4870 } 4871 } 4872 4873 /* Add/subtract (with carry) 4874 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4875 * +--+--+--+------------------------+------+-------------+------+-----+ 4876 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4877 * +--+--+--+------------------------+------+-------------+------+-----+ 4878 */ 4879 4880 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4881 { 4882 unsigned int sf, op, setflags, rm, rn, rd; 4883 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4884 4885 sf = extract32(insn, 31, 1); 4886 op = extract32(insn, 30, 1); 4887 setflags = extract32(insn, 29, 1); 4888 rm = extract32(insn, 16, 5); 4889 rn = extract32(insn, 5, 5); 4890 rd = extract32(insn, 0, 5); 4891 4892 tcg_rd = cpu_reg(s, rd); 4893 tcg_rn = cpu_reg(s, rn); 4894 4895 if (op) { 4896 tcg_y = tcg_temp_new_i64(); 4897 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4898 } else { 4899 tcg_y = cpu_reg(s, rm); 4900 } 4901 4902 if (setflags) { 4903 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4904 } else { 4905 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4906 } 4907 } 4908 4909 /* 4910 * Rotate right into flags 4911 * 31 30 29 21 15 10 5 4 0 4912 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4913 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4914 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4915 */ 4916 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4917 { 4918 int mask = extract32(insn, 0, 4); 4919 int o2 = extract32(insn, 4, 1); 4920 int rn = extract32(insn, 5, 5); 4921 int imm6 = extract32(insn, 15, 6); 4922 int sf_op_s = extract32(insn, 29, 3); 4923 TCGv_i64 tcg_rn; 4924 TCGv_i32 nzcv; 4925 4926 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4927 unallocated_encoding(s); 4928 return; 4929 } 4930 4931 tcg_rn = read_cpu_reg(s, rn, 1); 4932 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4933 4934 nzcv = tcg_temp_new_i32(); 4935 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4936 4937 if (mask & 8) { /* N */ 4938 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4939 } 4940 if (mask & 4) { /* Z */ 4941 tcg_gen_not_i32(cpu_ZF, nzcv); 4942 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4943 } 4944 if (mask & 2) { /* C */ 4945 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4946 } 4947 if (mask & 1) { /* V */ 4948 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4949 } 4950 } 4951 4952 /* 4953 * Evaluate into flags 4954 * 31 30 29 21 15 14 10 5 4 0 4955 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4956 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4957 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4958 */ 4959 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4960 { 4961 int o3_mask = extract32(insn, 0, 5); 4962 int rn = extract32(insn, 5, 5); 4963 int o2 = extract32(insn, 15, 6); 4964 int sz = extract32(insn, 14, 1); 4965 int sf_op_s = extract32(insn, 29, 3); 4966 TCGv_i32 tmp; 4967 int shift; 4968 4969 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4970 !dc_isar_feature(aa64_condm_4, s)) { 4971 unallocated_encoding(s); 4972 return; 4973 } 4974 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4975 4976 tmp = tcg_temp_new_i32(); 4977 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4978 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4979 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4980 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4981 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4982 } 4983 4984 /* Conditional compare (immediate / register) 4985 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4986 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4987 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4988 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4989 * [1] y [0] [0] 4990 */ 4991 static void disas_cc(DisasContext *s, uint32_t insn) 4992 { 4993 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4994 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4995 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4996 DisasCompare c; 4997 4998 if (!extract32(insn, 29, 1)) { 4999 unallocated_encoding(s); 5000 return; 5001 } 5002 if (insn & (1 << 10 | 1 << 4)) { 5003 unallocated_encoding(s); 5004 return; 5005 } 5006 sf = extract32(insn, 31, 1); 5007 op = extract32(insn, 30, 1); 5008 is_imm = extract32(insn, 11, 1); 5009 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5010 cond = extract32(insn, 12, 4); 5011 rn = extract32(insn, 5, 5); 5012 nzcv = extract32(insn, 0, 4); 5013 5014 /* Set T0 = !COND. */ 5015 tcg_t0 = tcg_temp_new_i32(); 5016 arm_test_cc(&c, cond); 5017 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5018 5019 /* Load the arguments for the new comparison. */ 5020 if (is_imm) { 5021 tcg_y = tcg_temp_new_i64(); 5022 tcg_gen_movi_i64(tcg_y, y); 5023 } else { 5024 tcg_y = cpu_reg(s, y); 5025 } 5026 tcg_rn = cpu_reg(s, rn); 5027 5028 /* Set the flags for the new comparison. */ 5029 tcg_tmp = tcg_temp_new_i64(); 5030 if (op) { 5031 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5032 } else { 5033 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5034 } 5035 5036 /* If COND was false, force the flags to #nzcv. Compute two masks 5037 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5038 * For tcg hosts that support ANDC, we can make do with just T1. 5039 * In either case, allow the tcg optimizer to delete any unused mask. 5040 */ 5041 tcg_t1 = tcg_temp_new_i32(); 5042 tcg_t2 = tcg_temp_new_i32(); 5043 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5044 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5045 5046 if (nzcv & 8) { /* N */ 5047 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5048 } else { 5049 if (TCG_TARGET_HAS_andc_i32) { 5050 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5051 } else { 5052 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5053 } 5054 } 5055 if (nzcv & 4) { /* Z */ 5056 if (TCG_TARGET_HAS_andc_i32) { 5057 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5058 } else { 5059 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5060 } 5061 } else { 5062 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5063 } 5064 if (nzcv & 2) { /* C */ 5065 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5066 } else { 5067 if (TCG_TARGET_HAS_andc_i32) { 5068 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5069 } else { 5070 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5071 } 5072 } 5073 if (nzcv & 1) { /* V */ 5074 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5075 } else { 5076 if (TCG_TARGET_HAS_andc_i32) { 5077 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5078 } else { 5079 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5080 } 5081 } 5082 } 5083 5084 /* Conditional select 5085 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5086 * +----+----+---+-----------------+------+------+-----+------+------+ 5087 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5088 * +----+----+---+-----------------+------+------+-----+------+------+ 5089 */ 5090 static void disas_cond_select(DisasContext *s, uint32_t insn) 5091 { 5092 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5093 TCGv_i64 tcg_rd, zero; 5094 DisasCompare64 c; 5095 5096 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5097 /* S == 1 or op2<1> == 1 */ 5098 unallocated_encoding(s); 5099 return; 5100 } 5101 sf = extract32(insn, 31, 1); 5102 else_inv = extract32(insn, 30, 1); 5103 rm = extract32(insn, 16, 5); 5104 cond = extract32(insn, 12, 4); 5105 else_inc = extract32(insn, 10, 1); 5106 rn = extract32(insn, 5, 5); 5107 rd = extract32(insn, 0, 5); 5108 5109 tcg_rd = cpu_reg(s, rd); 5110 5111 a64_test_cc(&c, cond); 5112 zero = tcg_constant_i64(0); 5113 5114 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5115 /* CSET & CSETM. */ 5116 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5117 if (else_inv) { 5118 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5119 } 5120 } else { 5121 TCGv_i64 t_true = cpu_reg(s, rn); 5122 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5123 if (else_inv && else_inc) { 5124 tcg_gen_neg_i64(t_false, t_false); 5125 } else if (else_inv) { 5126 tcg_gen_not_i64(t_false, t_false); 5127 } else if (else_inc) { 5128 tcg_gen_addi_i64(t_false, t_false, 1); 5129 } 5130 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5131 } 5132 5133 if (!sf) { 5134 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5135 } 5136 } 5137 5138 static void handle_clz(DisasContext *s, unsigned int sf, 5139 unsigned int rn, unsigned int rd) 5140 { 5141 TCGv_i64 tcg_rd, tcg_rn; 5142 tcg_rd = cpu_reg(s, rd); 5143 tcg_rn = cpu_reg(s, rn); 5144 5145 if (sf) { 5146 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5147 } else { 5148 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5149 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5150 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5151 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5152 } 5153 } 5154 5155 static void handle_cls(DisasContext *s, unsigned int sf, 5156 unsigned int rn, unsigned int rd) 5157 { 5158 TCGv_i64 tcg_rd, tcg_rn; 5159 tcg_rd = cpu_reg(s, rd); 5160 tcg_rn = cpu_reg(s, rn); 5161 5162 if (sf) { 5163 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5164 } else { 5165 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5166 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5167 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5168 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5169 } 5170 } 5171 5172 static void handle_rbit(DisasContext *s, unsigned int sf, 5173 unsigned int rn, unsigned int rd) 5174 { 5175 TCGv_i64 tcg_rd, tcg_rn; 5176 tcg_rd = cpu_reg(s, rd); 5177 tcg_rn = cpu_reg(s, rn); 5178 5179 if (sf) { 5180 gen_helper_rbit64(tcg_rd, tcg_rn); 5181 } else { 5182 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5183 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5184 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5185 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5186 } 5187 } 5188 5189 /* REV with sf==1, opcode==3 ("REV64") */ 5190 static void handle_rev64(DisasContext *s, unsigned int sf, 5191 unsigned int rn, unsigned int rd) 5192 { 5193 if (!sf) { 5194 unallocated_encoding(s); 5195 return; 5196 } 5197 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5198 } 5199 5200 /* REV with sf==0, opcode==2 5201 * REV32 (sf==1, opcode==2) 5202 */ 5203 static void handle_rev32(DisasContext *s, unsigned int sf, 5204 unsigned int rn, unsigned int rd) 5205 { 5206 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5207 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5208 5209 if (sf) { 5210 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5211 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5212 } else { 5213 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5214 } 5215 } 5216 5217 /* REV16 (opcode==1) */ 5218 static void handle_rev16(DisasContext *s, unsigned int sf, 5219 unsigned int rn, unsigned int rd) 5220 { 5221 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5222 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5223 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5224 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5225 5226 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5227 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5228 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5229 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5230 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5231 } 5232 5233 /* Data-processing (1 source) 5234 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5235 * +----+---+---+-----------------+---------+--------+------+------+ 5236 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5237 * +----+---+---+-----------------+---------+--------+------+------+ 5238 */ 5239 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5240 { 5241 unsigned int sf, opcode, opcode2, rn, rd; 5242 TCGv_i64 tcg_rd; 5243 5244 if (extract32(insn, 29, 1)) { 5245 unallocated_encoding(s); 5246 return; 5247 } 5248 5249 sf = extract32(insn, 31, 1); 5250 opcode = extract32(insn, 10, 6); 5251 opcode2 = extract32(insn, 16, 5); 5252 rn = extract32(insn, 5, 5); 5253 rd = extract32(insn, 0, 5); 5254 5255 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5256 5257 switch (MAP(sf, opcode2, opcode)) { 5258 case MAP(0, 0x00, 0x00): /* RBIT */ 5259 case MAP(1, 0x00, 0x00): 5260 handle_rbit(s, sf, rn, rd); 5261 break; 5262 case MAP(0, 0x00, 0x01): /* REV16 */ 5263 case MAP(1, 0x00, 0x01): 5264 handle_rev16(s, sf, rn, rd); 5265 break; 5266 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5267 case MAP(1, 0x00, 0x02): 5268 handle_rev32(s, sf, rn, rd); 5269 break; 5270 case MAP(1, 0x00, 0x03): /* REV64 */ 5271 handle_rev64(s, sf, rn, rd); 5272 break; 5273 case MAP(0, 0x00, 0x04): /* CLZ */ 5274 case MAP(1, 0x00, 0x04): 5275 handle_clz(s, sf, rn, rd); 5276 break; 5277 case MAP(0, 0x00, 0x05): /* CLS */ 5278 case MAP(1, 0x00, 0x05): 5279 handle_cls(s, sf, rn, rd); 5280 break; 5281 case MAP(1, 0x01, 0x00): /* PACIA */ 5282 if (s->pauth_active) { 5283 tcg_rd = cpu_reg(s, rd); 5284 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5285 } else if (!dc_isar_feature(aa64_pauth, s)) { 5286 goto do_unallocated; 5287 } 5288 break; 5289 case MAP(1, 0x01, 0x01): /* PACIB */ 5290 if (s->pauth_active) { 5291 tcg_rd = cpu_reg(s, rd); 5292 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5293 } else if (!dc_isar_feature(aa64_pauth, s)) { 5294 goto do_unallocated; 5295 } 5296 break; 5297 case MAP(1, 0x01, 0x02): /* PACDA */ 5298 if (s->pauth_active) { 5299 tcg_rd = cpu_reg(s, rd); 5300 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5301 } else if (!dc_isar_feature(aa64_pauth, s)) { 5302 goto do_unallocated; 5303 } 5304 break; 5305 case MAP(1, 0x01, 0x03): /* PACDB */ 5306 if (s->pauth_active) { 5307 tcg_rd = cpu_reg(s, rd); 5308 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5309 } else if (!dc_isar_feature(aa64_pauth, s)) { 5310 goto do_unallocated; 5311 } 5312 break; 5313 case MAP(1, 0x01, 0x04): /* AUTIA */ 5314 if (s->pauth_active) { 5315 tcg_rd = cpu_reg(s, rd); 5316 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5317 } else if (!dc_isar_feature(aa64_pauth, s)) { 5318 goto do_unallocated; 5319 } 5320 break; 5321 case MAP(1, 0x01, 0x05): /* AUTIB */ 5322 if (s->pauth_active) { 5323 tcg_rd = cpu_reg(s, rd); 5324 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5325 } else if (!dc_isar_feature(aa64_pauth, s)) { 5326 goto do_unallocated; 5327 } 5328 break; 5329 case MAP(1, 0x01, 0x06): /* AUTDA */ 5330 if (s->pauth_active) { 5331 tcg_rd = cpu_reg(s, rd); 5332 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5333 } else if (!dc_isar_feature(aa64_pauth, s)) { 5334 goto do_unallocated; 5335 } 5336 break; 5337 case MAP(1, 0x01, 0x07): /* AUTDB */ 5338 if (s->pauth_active) { 5339 tcg_rd = cpu_reg(s, rd); 5340 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5341 } else if (!dc_isar_feature(aa64_pauth, s)) { 5342 goto do_unallocated; 5343 } 5344 break; 5345 case MAP(1, 0x01, 0x08): /* PACIZA */ 5346 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5347 goto do_unallocated; 5348 } else if (s->pauth_active) { 5349 tcg_rd = cpu_reg(s, rd); 5350 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5351 } 5352 break; 5353 case MAP(1, 0x01, 0x09): /* PACIZB */ 5354 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5355 goto do_unallocated; 5356 } else if (s->pauth_active) { 5357 tcg_rd = cpu_reg(s, rd); 5358 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5359 } 5360 break; 5361 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5362 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5363 goto do_unallocated; 5364 } else if (s->pauth_active) { 5365 tcg_rd = cpu_reg(s, rd); 5366 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5367 } 5368 break; 5369 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5370 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5371 goto do_unallocated; 5372 } else if (s->pauth_active) { 5373 tcg_rd = cpu_reg(s, rd); 5374 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5375 } 5376 break; 5377 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5378 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5379 goto do_unallocated; 5380 } else if (s->pauth_active) { 5381 tcg_rd = cpu_reg(s, rd); 5382 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5383 } 5384 break; 5385 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5386 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5387 goto do_unallocated; 5388 } else if (s->pauth_active) { 5389 tcg_rd = cpu_reg(s, rd); 5390 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5391 } 5392 break; 5393 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5394 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5395 goto do_unallocated; 5396 } else if (s->pauth_active) { 5397 tcg_rd = cpu_reg(s, rd); 5398 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5399 } 5400 break; 5401 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5402 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5403 goto do_unallocated; 5404 } else if (s->pauth_active) { 5405 tcg_rd = cpu_reg(s, rd); 5406 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5407 } 5408 break; 5409 case MAP(1, 0x01, 0x10): /* XPACI */ 5410 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5411 goto do_unallocated; 5412 } else if (s->pauth_active) { 5413 tcg_rd = cpu_reg(s, rd); 5414 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5415 } 5416 break; 5417 case MAP(1, 0x01, 0x11): /* XPACD */ 5418 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5419 goto do_unallocated; 5420 } else if (s->pauth_active) { 5421 tcg_rd = cpu_reg(s, rd); 5422 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5423 } 5424 break; 5425 default: 5426 do_unallocated: 5427 unallocated_encoding(s); 5428 break; 5429 } 5430 5431 #undef MAP 5432 } 5433 5434 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5435 unsigned int rm, unsigned int rn, unsigned int rd) 5436 { 5437 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5438 tcg_rd = cpu_reg(s, rd); 5439 5440 if (!sf && is_signed) { 5441 tcg_n = tcg_temp_new_i64(); 5442 tcg_m = tcg_temp_new_i64(); 5443 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5444 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5445 } else { 5446 tcg_n = read_cpu_reg(s, rn, sf); 5447 tcg_m = read_cpu_reg(s, rm, sf); 5448 } 5449 5450 if (is_signed) { 5451 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5452 } else { 5453 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5454 } 5455 5456 if (!sf) { /* zero extend final result */ 5457 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5458 } 5459 } 5460 5461 /* LSLV, LSRV, ASRV, RORV */ 5462 static void handle_shift_reg(DisasContext *s, 5463 enum a64_shift_type shift_type, unsigned int sf, 5464 unsigned int rm, unsigned int rn, unsigned int rd) 5465 { 5466 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5467 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5468 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5469 5470 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5471 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5472 } 5473 5474 /* CRC32[BHWX], CRC32C[BHWX] */ 5475 static void handle_crc32(DisasContext *s, 5476 unsigned int sf, unsigned int sz, bool crc32c, 5477 unsigned int rm, unsigned int rn, unsigned int rd) 5478 { 5479 TCGv_i64 tcg_acc, tcg_val; 5480 TCGv_i32 tcg_bytes; 5481 5482 if (!dc_isar_feature(aa64_crc32, s) 5483 || (sf == 1 && sz != 3) 5484 || (sf == 0 && sz == 3)) { 5485 unallocated_encoding(s); 5486 return; 5487 } 5488 5489 if (sz == 3) { 5490 tcg_val = cpu_reg(s, rm); 5491 } else { 5492 uint64_t mask; 5493 switch (sz) { 5494 case 0: 5495 mask = 0xFF; 5496 break; 5497 case 1: 5498 mask = 0xFFFF; 5499 break; 5500 case 2: 5501 mask = 0xFFFFFFFF; 5502 break; 5503 default: 5504 g_assert_not_reached(); 5505 } 5506 tcg_val = tcg_temp_new_i64(); 5507 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5508 } 5509 5510 tcg_acc = cpu_reg(s, rn); 5511 tcg_bytes = tcg_constant_i32(1 << sz); 5512 5513 if (crc32c) { 5514 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5515 } else { 5516 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5517 } 5518 } 5519 5520 /* Data-processing (2 source) 5521 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5522 * +----+---+---+-----------------+------+--------+------+------+ 5523 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5524 * +----+---+---+-----------------+------+--------+------+------+ 5525 */ 5526 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5527 { 5528 unsigned int sf, rm, opcode, rn, rd, setflag; 5529 sf = extract32(insn, 31, 1); 5530 setflag = extract32(insn, 29, 1); 5531 rm = extract32(insn, 16, 5); 5532 opcode = extract32(insn, 10, 6); 5533 rn = extract32(insn, 5, 5); 5534 rd = extract32(insn, 0, 5); 5535 5536 if (setflag && opcode != 0) { 5537 unallocated_encoding(s); 5538 return; 5539 } 5540 5541 switch (opcode) { 5542 case 0: /* SUBP(S) */ 5543 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5544 goto do_unallocated; 5545 } else { 5546 TCGv_i64 tcg_n, tcg_m, tcg_d; 5547 5548 tcg_n = read_cpu_reg_sp(s, rn, true); 5549 tcg_m = read_cpu_reg_sp(s, rm, true); 5550 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5551 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5552 tcg_d = cpu_reg(s, rd); 5553 5554 if (setflag) { 5555 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5556 } else { 5557 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5558 } 5559 } 5560 break; 5561 case 2: /* UDIV */ 5562 handle_div(s, false, sf, rm, rn, rd); 5563 break; 5564 case 3: /* SDIV */ 5565 handle_div(s, true, sf, rm, rn, rd); 5566 break; 5567 case 4: /* IRG */ 5568 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5569 goto do_unallocated; 5570 } 5571 if (s->ata) { 5572 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5573 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5574 } else { 5575 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5576 cpu_reg_sp(s, rn)); 5577 } 5578 break; 5579 case 5: /* GMI */ 5580 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5581 goto do_unallocated; 5582 } else { 5583 TCGv_i64 t = tcg_temp_new_i64(); 5584 5585 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5586 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5587 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5588 } 5589 break; 5590 case 8: /* LSLV */ 5591 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5592 break; 5593 case 9: /* LSRV */ 5594 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5595 break; 5596 case 10: /* ASRV */ 5597 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5598 break; 5599 case 11: /* RORV */ 5600 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5601 break; 5602 case 12: /* PACGA */ 5603 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5604 goto do_unallocated; 5605 } 5606 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5607 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5608 break; 5609 case 16: 5610 case 17: 5611 case 18: 5612 case 19: 5613 case 20: 5614 case 21: 5615 case 22: 5616 case 23: /* CRC32 */ 5617 { 5618 int sz = extract32(opcode, 0, 2); 5619 bool crc32c = extract32(opcode, 2, 1); 5620 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5621 break; 5622 } 5623 default: 5624 do_unallocated: 5625 unallocated_encoding(s); 5626 break; 5627 } 5628 } 5629 5630 /* 5631 * Data processing - register 5632 * 31 30 29 28 25 21 20 16 10 0 5633 * +--+---+--+---+-------+-----+-------+-------+---------+ 5634 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5635 * +--+---+--+---+-------+-----+-------+-------+---------+ 5636 */ 5637 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5638 { 5639 int op0 = extract32(insn, 30, 1); 5640 int op1 = extract32(insn, 28, 1); 5641 int op2 = extract32(insn, 21, 4); 5642 int op3 = extract32(insn, 10, 6); 5643 5644 if (!op1) { 5645 if (op2 & 8) { 5646 if (op2 & 1) { 5647 /* Add/sub (extended register) */ 5648 disas_add_sub_ext_reg(s, insn); 5649 } else { 5650 /* Add/sub (shifted register) */ 5651 disas_add_sub_reg(s, insn); 5652 } 5653 } else { 5654 /* Logical (shifted register) */ 5655 disas_logic_reg(s, insn); 5656 } 5657 return; 5658 } 5659 5660 switch (op2) { 5661 case 0x0: 5662 switch (op3) { 5663 case 0x00: /* Add/subtract (with carry) */ 5664 disas_adc_sbc(s, insn); 5665 break; 5666 5667 case 0x01: /* Rotate right into flags */ 5668 case 0x21: 5669 disas_rotate_right_into_flags(s, insn); 5670 break; 5671 5672 case 0x02: /* Evaluate into flags */ 5673 case 0x12: 5674 case 0x22: 5675 case 0x32: 5676 disas_evaluate_into_flags(s, insn); 5677 break; 5678 5679 default: 5680 goto do_unallocated; 5681 } 5682 break; 5683 5684 case 0x2: /* Conditional compare */ 5685 disas_cc(s, insn); /* both imm and reg forms */ 5686 break; 5687 5688 case 0x4: /* Conditional select */ 5689 disas_cond_select(s, insn); 5690 break; 5691 5692 case 0x6: /* Data-processing */ 5693 if (op0) { /* (1 source) */ 5694 disas_data_proc_1src(s, insn); 5695 } else { /* (2 source) */ 5696 disas_data_proc_2src(s, insn); 5697 } 5698 break; 5699 case 0x8 ... 0xf: /* (3 source) */ 5700 disas_data_proc_3src(s, insn); 5701 break; 5702 5703 default: 5704 do_unallocated: 5705 unallocated_encoding(s); 5706 break; 5707 } 5708 } 5709 5710 static void handle_fp_compare(DisasContext *s, int size, 5711 unsigned int rn, unsigned int rm, 5712 bool cmp_with_zero, bool signal_all_nans) 5713 { 5714 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5715 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5716 5717 if (size == MO_64) { 5718 TCGv_i64 tcg_vn, tcg_vm; 5719 5720 tcg_vn = read_fp_dreg(s, rn); 5721 if (cmp_with_zero) { 5722 tcg_vm = tcg_constant_i64(0); 5723 } else { 5724 tcg_vm = read_fp_dreg(s, rm); 5725 } 5726 if (signal_all_nans) { 5727 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5728 } else { 5729 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5730 } 5731 } else { 5732 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5733 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5734 5735 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5736 if (cmp_with_zero) { 5737 tcg_gen_movi_i32(tcg_vm, 0); 5738 } else { 5739 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5740 } 5741 5742 switch (size) { 5743 case MO_32: 5744 if (signal_all_nans) { 5745 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5746 } else { 5747 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5748 } 5749 break; 5750 case MO_16: 5751 if (signal_all_nans) { 5752 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5753 } else { 5754 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5755 } 5756 break; 5757 default: 5758 g_assert_not_reached(); 5759 } 5760 } 5761 5762 gen_set_nzcv(tcg_flags); 5763 } 5764 5765 /* Floating point compare 5766 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5767 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5768 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5769 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5770 */ 5771 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5772 { 5773 unsigned int mos, type, rm, op, rn, opc, op2r; 5774 int size; 5775 5776 mos = extract32(insn, 29, 3); 5777 type = extract32(insn, 22, 2); 5778 rm = extract32(insn, 16, 5); 5779 op = extract32(insn, 14, 2); 5780 rn = extract32(insn, 5, 5); 5781 opc = extract32(insn, 3, 2); 5782 op2r = extract32(insn, 0, 3); 5783 5784 if (mos || op || op2r) { 5785 unallocated_encoding(s); 5786 return; 5787 } 5788 5789 switch (type) { 5790 case 0: 5791 size = MO_32; 5792 break; 5793 case 1: 5794 size = MO_64; 5795 break; 5796 case 3: 5797 size = MO_16; 5798 if (dc_isar_feature(aa64_fp16, s)) { 5799 break; 5800 } 5801 /* fallthru */ 5802 default: 5803 unallocated_encoding(s); 5804 return; 5805 } 5806 5807 if (!fp_access_check(s)) { 5808 return; 5809 } 5810 5811 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5812 } 5813 5814 /* Floating point conditional compare 5815 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5816 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5817 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5818 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5819 */ 5820 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5821 { 5822 unsigned int mos, type, rm, cond, rn, op, nzcv; 5823 TCGLabel *label_continue = NULL; 5824 int size; 5825 5826 mos = extract32(insn, 29, 3); 5827 type = extract32(insn, 22, 2); 5828 rm = extract32(insn, 16, 5); 5829 cond = extract32(insn, 12, 4); 5830 rn = extract32(insn, 5, 5); 5831 op = extract32(insn, 4, 1); 5832 nzcv = extract32(insn, 0, 4); 5833 5834 if (mos) { 5835 unallocated_encoding(s); 5836 return; 5837 } 5838 5839 switch (type) { 5840 case 0: 5841 size = MO_32; 5842 break; 5843 case 1: 5844 size = MO_64; 5845 break; 5846 case 3: 5847 size = MO_16; 5848 if (dc_isar_feature(aa64_fp16, s)) { 5849 break; 5850 } 5851 /* fallthru */ 5852 default: 5853 unallocated_encoding(s); 5854 return; 5855 } 5856 5857 if (!fp_access_check(s)) { 5858 return; 5859 } 5860 5861 if (cond < 0x0e) { /* not always */ 5862 TCGLabel *label_match = gen_new_label(); 5863 label_continue = gen_new_label(); 5864 arm_gen_test_cc(cond, label_match); 5865 /* nomatch: */ 5866 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5867 tcg_gen_br(label_continue); 5868 gen_set_label(label_match); 5869 } 5870 5871 handle_fp_compare(s, size, rn, rm, false, op); 5872 5873 if (cond < 0x0e) { 5874 gen_set_label(label_continue); 5875 } 5876 } 5877 5878 /* Floating point conditional select 5879 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5880 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5881 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5882 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5883 */ 5884 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5885 { 5886 unsigned int mos, type, rm, cond, rn, rd; 5887 TCGv_i64 t_true, t_false; 5888 DisasCompare64 c; 5889 MemOp sz; 5890 5891 mos = extract32(insn, 29, 3); 5892 type = extract32(insn, 22, 2); 5893 rm = extract32(insn, 16, 5); 5894 cond = extract32(insn, 12, 4); 5895 rn = extract32(insn, 5, 5); 5896 rd = extract32(insn, 0, 5); 5897 5898 if (mos) { 5899 unallocated_encoding(s); 5900 return; 5901 } 5902 5903 switch (type) { 5904 case 0: 5905 sz = MO_32; 5906 break; 5907 case 1: 5908 sz = MO_64; 5909 break; 5910 case 3: 5911 sz = MO_16; 5912 if (dc_isar_feature(aa64_fp16, s)) { 5913 break; 5914 } 5915 /* fallthru */ 5916 default: 5917 unallocated_encoding(s); 5918 return; 5919 } 5920 5921 if (!fp_access_check(s)) { 5922 return; 5923 } 5924 5925 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5926 t_true = tcg_temp_new_i64(); 5927 t_false = tcg_temp_new_i64(); 5928 read_vec_element(s, t_true, rn, 0, sz); 5929 read_vec_element(s, t_false, rm, 0, sz); 5930 5931 a64_test_cc(&c, cond); 5932 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5933 t_true, t_false); 5934 5935 /* Note that sregs & hregs write back zeros to the high bits, 5936 and we've already done the zero-extension. */ 5937 write_fp_dreg(s, rd, t_true); 5938 } 5939 5940 /* Floating-point data-processing (1 source) - half precision */ 5941 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5942 { 5943 TCGv_ptr fpst = NULL; 5944 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5945 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5946 5947 switch (opcode) { 5948 case 0x0: /* FMOV */ 5949 tcg_gen_mov_i32(tcg_res, tcg_op); 5950 break; 5951 case 0x1: /* FABS */ 5952 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5953 break; 5954 case 0x2: /* FNEG */ 5955 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5956 break; 5957 case 0x3: /* FSQRT */ 5958 fpst = fpstatus_ptr(FPST_FPCR_F16); 5959 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5960 break; 5961 case 0x8: /* FRINTN */ 5962 case 0x9: /* FRINTP */ 5963 case 0xa: /* FRINTM */ 5964 case 0xb: /* FRINTZ */ 5965 case 0xc: /* FRINTA */ 5966 { 5967 TCGv_i32 tcg_rmode; 5968 5969 fpst = fpstatus_ptr(FPST_FPCR_F16); 5970 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5971 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5972 gen_restore_rmode(tcg_rmode, fpst); 5973 break; 5974 } 5975 case 0xe: /* FRINTX */ 5976 fpst = fpstatus_ptr(FPST_FPCR_F16); 5977 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5978 break; 5979 case 0xf: /* FRINTI */ 5980 fpst = fpstatus_ptr(FPST_FPCR_F16); 5981 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5982 break; 5983 default: 5984 g_assert_not_reached(); 5985 } 5986 5987 write_fp_sreg(s, rd, tcg_res); 5988 } 5989 5990 /* Floating-point data-processing (1 source) - single precision */ 5991 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5992 { 5993 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5994 TCGv_i32 tcg_op, tcg_res; 5995 TCGv_ptr fpst; 5996 int rmode = -1; 5997 5998 tcg_op = read_fp_sreg(s, rn); 5999 tcg_res = tcg_temp_new_i32(); 6000 6001 switch (opcode) { 6002 case 0x0: /* FMOV */ 6003 tcg_gen_mov_i32(tcg_res, tcg_op); 6004 goto done; 6005 case 0x1: /* FABS */ 6006 gen_helper_vfp_abss(tcg_res, tcg_op); 6007 goto done; 6008 case 0x2: /* FNEG */ 6009 gen_helper_vfp_negs(tcg_res, tcg_op); 6010 goto done; 6011 case 0x3: /* FSQRT */ 6012 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6013 goto done; 6014 case 0x6: /* BFCVT */ 6015 gen_fpst = gen_helper_bfcvt; 6016 break; 6017 case 0x8: /* FRINTN */ 6018 case 0x9: /* FRINTP */ 6019 case 0xa: /* FRINTM */ 6020 case 0xb: /* FRINTZ */ 6021 case 0xc: /* FRINTA */ 6022 rmode = opcode & 7; 6023 gen_fpst = gen_helper_rints; 6024 break; 6025 case 0xe: /* FRINTX */ 6026 gen_fpst = gen_helper_rints_exact; 6027 break; 6028 case 0xf: /* FRINTI */ 6029 gen_fpst = gen_helper_rints; 6030 break; 6031 case 0x10: /* FRINT32Z */ 6032 rmode = FPROUNDING_ZERO; 6033 gen_fpst = gen_helper_frint32_s; 6034 break; 6035 case 0x11: /* FRINT32X */ 6036 gen_fpst = gen_helper_frint32_s; 6037 break; 6038 case 0x12: /* FRINT64Z */ 6039 rmode = FPROUNDING_ZERO; 6040 gen_fpst = gen_helper_frint64_s; 6041 break; 6042 case 0x13: /* FRINT64X */ 6043 gen_fpst = gen_helper_frint64_s; 6044 break; 6045 default: 6046 g_assert_not_reached(); 6047 } 6048 6049 fpst = fpstatus_ptr(FPST_FPCR); 6050 if (rmode >= 0) { 6051 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6052 gen_fpst(tcg_res, tcg_op, fpst); 6053 gen_restore_rmode(tcg_rmode, fpst); 6054 } else { 6055 gen_fpst(tcg_res, tcg_op, fpst); 6056 } 6057 6058 done: 6059 write_fp_sreg(s, rd, tcg_res); 6060 } 6061 6062 /* Floating-point data-processing (1 source) - double precision */ 6063 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6064 { 6065 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6066 TCGv_i64 tcg_op, tcg_res; 6067 TCGv_ptr fpst; 6068 int rmode = -1; 6069 6070 switch (opcode) { 6071 case 0x0: /* FMOV */ 6072 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6073 return; 6074 } 6075 6076 tcg_op = read_fp_dreg(s, rn); 6077 tcg_res = tcg_temp_new_i64(); 6078 6079 switch (opcode) { 6080 case 0x1: /* FABS */ 6081 gen_helper_vfp_absd(tcg_res, tcg_op); 6082 goto done; 6083 case 0x2: /* FNEG */ 6084 gen_helper_vfp_negd(tcg_res, tcg_op); 6085 goto done; 6086 case 0x3: /* FSQRT */ 6087 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6088 goto done; 6089 case 0x8: /* FRINTN */ 6090 case 0x9: /* FRINTP */ 6091 case 0xa: /* FRINTM */ 6092 case 0xb: /* FRINTZ */ 6093 case 0xc: /* FRINTA */ 6094 rmode = opcode & 7; 6095 gen_fpst = gen_helper_rintd; 6096 break; 6097 case 0xe: /* FRINTX */ 6098 gen_fpst = gen_helper_rintd_exact; 6099 break; 6100 case 0xf: /* FRINTI */ 6101 gen_fpst = gen_helper_rintd; 6102 break; 6103 case 0x10: /* FRINT32Z */ 6104 rmode = FPROUNDING_ZERO; 6105 gen_fpst = gen_helper_frint32_d; 6106 break; 6107 case 0x11: /* FRINT32X */ 6108 gen_fpst = gen_helper_frint32_d; 6109 break; 6110 case 0x12: /* FRINT64Z */ 6111 rmode = FPROUNDING_ZERO; 6112 gen_fpst = gen_helper_frint64_d; 6113 break; 6114 case 0x13: /* FRINT64X */ 6115 gen_fpst = gen_helper_frint64_d; 6116 break; 6117 default: 6118 g_assert_not_reached(); 6119 } 6120 6121 fpst = fpstatus_ptr(FPST_FPCR); 6122 if (rmode >= 0) { 6123 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6124 gen_fpst(tcg_res, tcg_op, fpst); 6125 gen_restore_rmode(tcg_rmode, fpst); 6126 } else { 6127 gen_fpst(tcg_res, tcg_op, fpst); 6128 } 6129 6130 done: 6131 write_fp_dreg(s, rd, tcg_res); 6132 } 6133 6134 static void handle_fp_fcvt(DisasContext *s, int opcode, 6135 int rd, int rn, int dtype, int ntype) 6136 { 6137 switch (ntype) { 6138 case 0x0: 6139 { 6140 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6141 if (dtype == 1) { 6142 /* Single to double */ 6143 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6144 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6145 write_fp_dreg(s, rd, tcg_rd); 6146 } else { 6147 /* Single to half */ 6148 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6149 TCGv_i32 ahp = get_ahp_flag(); 6150 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6151 6152 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6153 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6154 write_fp_sreg(s, rd, tcg_rd); 6155 } 6156 break; 6157 } 6158 case 0x1: 6159 { 6160 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6161 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6162 if (dtype == 0) { 6163 /* Double to single */ 6164 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6165 } else { 6166 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6167 TCGv_i32 ahp = get_ahp_flag(); 6168 /* Double to half */ 6169 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6170 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6171 } 6172 write_fp_sreg(s, rd, tcg_rd); 6173 break; 6174 } 6175 case 0x3: 6176 { 6177 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6178 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6179 TCGv_i32 tcg_ahp = get_ahp_flag(); 6180 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6181 if (dtype == 0) { 6182 /* Half to single */ 6183 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6184 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6185 write_fp_sreg(s, rd, tcg_rd); 6186 } else { 6187 /* Half to double */ 6188 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6189 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6190 write_fp_dreg(s, rd, tcg_rd); 6191 } 6192 break; 6193 } 6194 default: 6195 g_assert_not_reached(); 6196 } 6197 } 6198 6199 /* Floating point data-processing (1 source) 6200 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6201 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6202 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6203 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6204 */ 6205 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6206 { 6207 int mos = extract32(insn, 29, 3); 6208 int type = extract32(insn, 22, 2); 6209 int opcode = extract32(insn, 15, 6); 6210 int rn = extract32(insn, 5, 5); 6211 int rd = extract32(insn, 0, 5); 6212 6213 if (mos) { 6214 goto do_unallocated; 6215 } 6216 6217 switch (opcode) { 6218 case 0x4: case 0x5: case 0x7: 6219 { 6220 /* FCVT between half, single and double precision */ 6221 int dtype = extract32(opcode, 0, 2); 6222 if (type == 2 || dtype == type) { 6223 goto do_unallocated; 6224 } 6225 if (!fp_access_check(s)) { 6226 return; 6227 } 6228 6229 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6230 break; 6231 } 6232 6233 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6234 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6235 goto do_unallocated; 6236 } 6237 /* fall through */ 6238 case 0x0 ... 0x3: 6239 case 0x8 ... 0xc: 6240 case 0xe ... 0xf: 6241 /* 32-to-32 and 64-to-64 ops */ 6242 switch (type) { 6243 case 0: 6244 if (!fp_access_check(s)) { 6245 return; 6246 } 6247 handle_fp_1src_single(s, opcode, rd, rn); 6248 break; 6249 case 1: 6250 if (!fp_access_check(s)) { 6251 return; 6252 } 6253 handle_fp_1src_double(s, opcode, rd, rn); 6254 break; 6255 case 3: 6256 if (!dc_isar_feature(aa64_fp16, s)) { 6257 goto do_unallocated; 6258 } 6259 6260 if (!fp_access_check(s)) { 6261 return; 6262 } 6263 handle_fp_1src_half(s, opcode, rd, rn); 6264 break; 6265 default: 6266 goto do_unallocated; 6267 } 6268 break; 6269 6270 case 0x6: 6271 switch (type) { 6272 case 1: /* BFCVT */ 6273 if (!dc_isar_feature(aa64_bf16, s)) { 6274 goto do_unallocated; 6275 } 6276 if (!fp_access_check(s)) { 6277 return; 6278 } 6279 handle_fp_1src_single(s, opcode, rd, rn); 6280 break; 6281 default: 6282 goto do_unallocated; 6283 } 6284 break; 6285 6286 default: 6287 do_unallocated: 6288 unallocated_encoding(s); 6289 break; 6290 } 6291 } 6292 6293 /* Floating-point data-processing (2 source) - single precision */ 6294 static void handle_fp_2src_single(DisasContext *s, int opcode, 6295 int rd, int rn, int rm) 6296 { 6297 TCGv_i32 tcg_op1; 6298 TCGv_i32 tcg_op2; 6299 TCGv_i32 tcg_res; 6300 TCGv_ptr fpst; 6301 6302 tcg_res = tcg_temp_new_i32(); 6303 fpst = fpstatus_ptr(FPST_FPCR); 6304 tcg_op1 = read_fp_sreg(s, rn); 6305 tcg_op2 = read_fp_sreg(s, rm); 6306 6307 switch (opcode) { 6308 case 0x0: /* FMUL */ 6309 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6310 break; 6311 case 0x1: /* FDIV */ 6312 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6313 break; 6314 case 0x2: /* FADD */ 6315 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6316 break; 6317 case 0x3: /* FSUB */ 6318 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6319 break; 6320 case 0x4: /* FMAX */ 6321 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6322 break; 6323 case 0x5: /* FMIN */ 6324 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6325 break; 6326 case 0x6: /* FMAXNM */ 6327 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6328 break; 6329 case 0x7: /* FMINNM */ 6330 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6331 break; 6332 case 0x8: /* FNMUL */ 6333 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6334 gen_helper_vfp_negs(tcg_res, tcg_res); 6335 break; 6336 } 6337 6338 write_fp_sreg(s, rd, tcg_res); 6339 } 6340 6341 /* Floating-point data-processing (2 source) - double precision */ 6342 static void handle_fp_2src_double(DisasContext *s, int opcode, 6343 int rd, int rn, int rm) 6344 { 6345 TCGv_i64 tcg_op1; 6346 TCGv_i64 tcg_op2; 6347 TCGv_i64 tcg_res; 6348 TCGv_ptr fpst; 6349 6350 tcg_res = tcg_temp_new_i64(); 6351 fpst = fpstatus_ptr(FPST_FPCR); 6352 tcg_op1 = read_fp_dreg(s, rn); 6353 tcg_op2 = read_fp_dreg(s, rm); 6354 6355 switch (opcode) { 6356 case 0x0: /* FMUL */ 6357 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6358 break; 6359 case 0x1: /* FDIV */ 6360 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6361 break; 6362 case 0x2: /* FADD */ 6363 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6364 break; 6365 case 0x3: /* FSUB */ 6366 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6367 break; 6368 case 0x4: /* FMAX */ 6369 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6370 break; 6371 case 0x5: /* FMIN */ 6372 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6373 break; 6374 case 0x6: /* FMAXNM */ 6375 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6376 break; 6377 case 0x7: /* FMINNM */ 6378 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6379 break; 6380 case 0x8: /* FNMUL */ 6381 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6382 gen_helper_vfp_negd(tcg_res, tcg_res); 6383 break; 6384 } 6385 6386 write_fp_dreg(s, rd, tcg_res); 6387 } 6388 6389 /* Floating-point data-processing (2 source) - half precision */ 6390 static void handle_fp_2src_half(DisasContext *s, int opcode, 6391 int rd, int rn, int rm) 6392 { 6393 TCGv_i32 tcg_op1; 6394 TCGv_i32 tcg_op2; 6395 TCGv_i32 tcg_res; 6396 TCGv_ptr fpst; 6397 6398 tcg_res = tcg_temp_new_i32(); 6399 fpst = fpstatus_ptr(FPST_FPCR_F16); 6400 tcg_op1 = read_fp_hreg(s, rn); 6401 tcg_op2 = read_fp_hreg(s, rm); 6402 6403 switch (opcode) { 6404 case 0x0: /* FMUL */ 6405 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6406 break; 6407 case 0x1: /* FDIV */ 6408 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6409 break; 6410 case 0x2: /* FADD */ 6411 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6412 break; 6413 case 0x3: /* FSUB */ 6414 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6415 break; 6416 case 0x4: /* FMAX */ 6417 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6418 break; 6419 case 0x5: /* FMIN */ 6420 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6421 break; 6422 case 0x6: /* FMAXNM */ 6423 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6424 break; 6425 case 0x7: /* FMINNM */ 6426 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6427 break; 6428 case 0x8: /* FNMUL */ 6429 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6430 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6431 break; 6432 default: 6433 g_assert_not_reached(); 6434 } 6435 6436 write_fp_sreg(s, rd, tcg_res); 6437 } 6438 6439 /* Floating point data-processing (2 source) 6440 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6441 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6442 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6443 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6444 */ 6445 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6446 { 6447 int mos = extract32(insn, 29, 3); 6448 int type = extract32(insn, 22, 2); 6449 int rd = extract32(insn, 0, 5); 6450 int rn = extract32(insn, 5, 5); 6451 int rm = extract32(insn, 16, 5); 6452 int opcode = extract32(insn, 12, 4); 6453 6454 if (opcode > 8 || mos) { 6455 unallocated_encoding(s); 6456 return; 6457 } 6458 6459 switch (type) { 6460 case 0: 6461 if (!fp_access_check(s)) { 6462 return; 6463 } 6464 handle_fp_2src_single(s, opcode, rd, rn, rm); 6465 break; 6466 case 1: 6467 if (!fp_access_check(s)) { 6468 return; 6469 } 6470 handle_fp_2src_double(s, opcode, rd, rn, rm); 6471 break; 6472 case 3: 6473 if (!dc_isar_feature(aa64_fp16, s)) { 6474 unallocated_encoding(s); 6475 return; 6476 } 6477 if (!fp_access_check(s)) { 6478 return; 6479 } 6480 handle_fp_2src_half(s, opcode, rd, rn, rm); 6481 break; 6482 default: 6483 unallocated_encoding(s); 6484 } 6485 } 6486 6487 /* Floating-point data-processing (3 source) - single precision */ 6488 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6489 int rd, int rn, int rm, int ra) 6490 { 6491 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6492 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6493 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6494 6495 tcg_op1 = read_fp_sreg(s, rn); 6496 tcg_op2 = read_fp_sreg(s, rm); 6497 tcg_op3 = read_fp_sreg(s, ra); 6498 6499 /* These are fused multiply-add, and must be done as one 6500 * floating point operation with no rounding between the 6501 * multiplication and addition steps. 6502 * NB that doing the negations here as separate steps is 6503 * correct : an input NaN should come out with its sign bit 6504 * flipped if it is a negated-input. 6505 */ 6506 if (o1 == true) { 6507 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6508 } 6509 6510 if (o0 != o1) { 6511 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6512 } 6513 6514 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6515 6516 write_fp_sreg(s, rd, tcg_res); 6517 } 6518 6519 /* Floating-point data-processing (3 source) - double precision */ 6520 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6521 int rd, int rn, int rm, int ra) 6522 { 6523 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6524 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6525 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6526 6527 tcg_op1 = read_fp_dreg(s, rn); 6528 tcg_op2 = read_fp_dreg(s, rm); 6529 tcg_op3 = read_fp_dreg(s, ra); 6530 6531 /* These are fused multiply-add, and must be done as one 6532 * floating point operation with no rounding between the 6533 * multiplication and addition steps. 6534 * NB that doing the negations here as separate steps is 6535 * correct : an input NaN should come out with its sign bit 6536 * flipped if it is a negated-input. 6537 */ 6538 if (o1 == true) { 6539 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6540 } 6541 6542 if (o0 != o1) { 6543 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6544 } 6545 6546 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6547 6548 write_fp_dreg(s, rd, tcg_res); 6549 } 6550 6551 /* Floating-point data-processing (3 source) - half precision */ 6552 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6553 int rd, int rn, int rm, int ra) 6554 { 6555 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6556 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6557 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6558 6559 tcg_op1 = read_fp_hreg(s, rn); 6560 tcg_op2 = read_fp_hreg(s, rm); 6561 tcg_op3 = read_fp_hreg(s, ra); 6562 6563 /* These are fused multiply-add, and must be done as one 6564 * floating point operation with no rounding between the 6565 * multiplication and addition steps. 6566 * NB that doing the negations here as separate steps is 6567 * correct : an input NaN should come out with its sign bit 6568 * flipped if it is a negated-input. 6569 */ 6570 if (o1 == true) { 6571 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6572 } 6573 6574 if (o0 != o1) { 6575 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6576 } 6577 6578 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6579 6580 write_fp_sreg(s, rd, tcg_res); 6581 } 6582 6583 /* Floating point data-processing (3 source) 6584 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6585 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6586 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6587 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6588 */ 6589 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6590 { 6591 int mos = extract32(insn, 29, 3); 6592 int type = extract32(insn, 22, 2); 6593 int rd = extract32(insn, 0, 5); 6594 int rn = extract32(insn, 5, 5); 6595 int ra = extract32(insn, 10, 5); 6596 int rm = extract32(insn, 16, 5); 6597 bool o0 = extract32(insn, 15, 1); 6598 bool o1 = extract32(insn, 21, 1); 6599 6600 if (mos) { 6601 unallocated_encoding(s); 6602 return; 6603 } 6604 6605 switch (type) { 6606 case 0: 6607 if (!fp_access_check(s)) { 6608 return; 6609 } 6610 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6611 break; 6612 case 1: 6613 if (!fp_access_check(s)) { 6614 return; 6615 } 6616 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6617 break; 6618 case 3: 6619 if (!dc_isar_feature(aa64_fp16, s)) { 6620 unallocated_encoding(s); 6621 return; 6622 } 6623 if (!fp_access_check(s)) { 6624 return; 6625 } 6626 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6627 break; 6628 default: 6629 unallocated_encoding(s); 6630 } 6631 } 6632 6633 /* Floating point immediate 6634 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6635 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6636 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6637 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6638 */ 6639 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6640 { 6641 int rd = extract32(insn, 0, 5); 6642 int imm5 = extract32(insn, 5, 5); 6643 int imm8 = extract32(insn, 13, 8); 6644 int type = extract32(insn, 22, 2); 6645 int mos = extract32(insn, 29, 3); 6646 uint64_t imm; 6647 MemOp sz; 6648 6649 if (mos || imm5) { 6650 unallocated_encoding(s); 6651 return; 6652 } 6653 6654 switch (type) { 6655 case 0: 6656 sz = MO_32; 6657 break; 6658 case 1: 6659 sz = MO_64; 6660 break; 6661 case 3: 6662 sz = MO_16; 6663 if (dc_isar_feature(aa64_fp16, s)) { 6664 break; 6665 } 6666 /* fallthru */ 6667 default: 6668 unallocated_encoding(s); 6669 return; 6670 } 6671 6672 if (!fp_access_check(s)) { 6673 return; 6674 } 6675 6676 imm = vfp_expand_imm(sz, imm8); 6677 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6678 } 6679 6680 /* Handle floating point <=> fixed point conversions. Note that we can 6681 * also deal with fp <=> integer conversions as a special case (scale == 64) 6682 * OPTME: consider handling that special case specially or at least skipping 6683 * the call to scalbn in the helpers for zero shifts. 6684 */ 6685 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6686 bool itof, int rmode, int scale, int sf, int type) 6687 { 6688 bool is_signed = !(opcode & 1); 6689 TCGv_ptr tcg_fpstatus; 6690 TCGv_i32 tcg_shift, tcg_single; 6691 TCGv_i64 tcg_double; 6692 6693 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6694 6695 tcg_shift = tcg_constant_i32(64 - scale); 6696 6697 if (itof) { 6698 TCGv_i64 tcg_int = cpu_reg(s, rn); 6699 if (!sf) { 6700 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6701 6702 if (is_signed) { 6703 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6704 } else { 6705 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6706 } 6707 6708 tcg_int = tcg_extend; 6709 } 6710 6711 switch (type) { 6712 case 1: /* float64 */ 6713 tcg_double = tcg_temp_new_i64(); 6714 if (is_signed) { 6715 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6716 tcg_shift, tcg_fpstatus); 6717 } else { 6718 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6719 tcg_shift, tcg_fpstatus); 6720 } 6721 write_fp_dreg(s, rd, tcg_double); 6722 break; 6723 6724 case 0: /* float32 */ 6725 tcg_single = tcg_temp_new_i32(); 6726 if (is_signed) { 6727 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6728 tcg_shift, tcg_fpstatus); 6729 } else { 6730 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6731 tcg_shift, tcg_fpstatus); 6732 } 6733 write_fp_sreg(s, rd, tcg_single); 6734 break; 6735 6736 case 3: /* float16 */ 6737 tcg_single = tcg_temp_new_i32(); 6738 if (is_signed) { 6739 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6740 tcg_shift, tcg_fpstatus); 6741 } else { 6742 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6743 tcg_shift, tcg_fpstatus); 6744 } 6745 write_fp_sreg(s, rd, tcg_single); 6746 break; 6747 6748 default: 6749 g_assert_not_reached(); 6750 } 6751 } else { 6752 TCGv_i64 tcg_int = cpu_reg(s, rd); 6753 TCGv_i32 tcg_rmode; 6754 6755 if (extract32(opcode, 2, 1)) { 6756 /* There are too many rounding modes to all fit into rmode, 6757 * so FCVTA[US] is a special case. 6758 */ 6759 rmode = FPROUNDING_TIEAWAY; 6760 } 6761 6762 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6763 6764 switch (type) { 6765 case 1: /* float64 */ 6766 tcg_double = read_fp_dreg(s, rn); 6767 if (is_signed) { 6768 if (!sf) { 6769 gen_helper_vfp_tosld(tcg_int, tcg_double, 6770 tcg_shift, tcg_fpstatus); 6771 } else { 6772 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6773 tcg_shift, tcg_fpstatus); 6774 } 6775 } else { 6776 if (!sf) { 6777 gen_helper_vfp_tould(tcg_int, tcg_double, 6778 tcg_shift, tcg_fpstatus); 6779 } else { 6780 gen_helper_vfp_touqd(tcg_int, tcg_double, 6781 tcg_shift, tcg_fpstatus); 6782 } 6783 } 6784 if (!sf) { 6785 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6786 } 6787 break; 6788 6789 case 0: /* float32 */ 6790 tcg_single = read_fp_sreg(s, rn); 6791 if (sf) { 6792 if (is_signed) { 6793 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6794 tcg_shift, tcg_fpstatus); 6795 } else { 6796 gen_helper_vfp_touqs(tcg_int, tcg_single, 6797 tcg_shift, tcg_fpstatus); 6798 } 6799 } else { 6800 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6801 if (is_signed) { 6802 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6803 tcg_shift, tcg_fpstatus); 6804 } else { 6805 gen_helper_vfp_touls(tcg_dest, tcg_single, 6806 tcg_shift, tcg_fpstatus); 6807 } 6808 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6809 } 6810 break; 6811 6812 case 3: /* float16 */ 6813 tcg_single = read_fp_sreg(s, rn); 6814 if (sf) { 6815 if (is_signed) { 6816 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6817 tcg_shift, tcg_fpstatus); 6818 } else { 6819 gen_helper_vfp_touqh(tcg_int, tcg_single, 6820 tcg_shift, tcg_fpstatus); 6821 } 6822 } else { 6823 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6824 if (is_signed) { 6825 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6826 tcg_shift, tcg_fpstatus); 6827 } else { 6828 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6829 tcg_shift, tcg_fpstatus); 6830 } 6831 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6832 } 6833 break; 6834 6835 default: 6836 g_assert_not_reached(); 6837 } 6838 6839 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6840 } 6841 } 6842 6843 /* Floating point <-> fixed point conversions 6844 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6845 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6846 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6847 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6848 */ 6849 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6850 { 6851 int rd = extract32(insn, 0, 5); 6852 int rn = extract32(insn, 5, 5); 6853 int scale = extract32(insn, 10, 6); 6854 int opcode = extract32(insn, 16, 3); 6855 int rmode = extract32(insn, 19, 2); 6856 int type = extract32(insn, 22, 2); 6857 bool sbit = extract32(insn, 29, 1); 6858 bool sf = extract32(insn, 31, 1); 6859 bool itof; 6860 6861 if (sbit || (!sf && scale < 32)) { 6862 unallocated_encoding(s); 6863 return; 6864 } 6865 6866 switch (type) { 6867 case 0: /* float32 */ 6868 case 1: /* float64 */ 6869 break; 6870 case 3: /* float16 */ 6871 if (dc_isar_feature(aa64_fp16, s)) { 6872 break; 6873 } 6874 /* fallthru */ 6875 default: 6876 unallocated_encoding(s); 6877 return; 6878 } 6879 6880 switch ((rmode << 3) | opcode) { 6881 case 0x2: /* SCVTF */ 6882 case 0x3: /* UCVTF */ 6883 itof = true; 6884 break; 6885 case 0x18: /* FCVTZS */ 6886 case 0x19: /* FCVTZU */ 6887 itof = false; 6888 break; 6889 default: 6890 unallocated_encoding(s); 6891 return; 6892 } 6893 6894 if (!fp_access_check(s)) { 6895 return; 6896 } 6897 6898 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6899 } 6900 6901 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6902 { 6903 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6904 * without conversion. 6905 */ 6906 6907 if (itof) { 6908 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6909 TCGv_i64 tmp; 6910 6911 switch (type) { 6912 case 0: 6913 /* 32 bit */ 6914 tmp = tcg_temp_new_i64(); 6915 tcg_gen_ext32u_i64(tmp, tcg_rn); 6916 write_fp_dreg(s, rd, tmp); 6917 break; 6918 case 1: 6919 /* 64 bit */ 6920 write_fp_dreg(s, rd, tcg_rn); 6921 break; 6922 case 2: 6923 /* 64 bit to top half. */ 6924 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6925 clear_vec_high(s, true, rd); 6926 break; 6927 case 3: 6928 /* 16 bit */ 6929 tmp = tcg_temp_new_i64(); 6930 tcg_gen_ext16u_i64(tmp, tcg_rn); 6931 write_fp_dreg(s, rd, tmp); 6932 break; 6933 default: 6934 g_assert_not_reached(); 6935 } 6936 } else { 6937 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6938 6939 switch (type) { 6940 case 0: 6941 /* 32 bit */ 6942 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6943 break; 6944 case 1: 6945 /* 64 bit */ 6946 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6947 break; 6948 case 2: 6949 /* 64 bits from top half */ 6950 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6951 break; 6952 case 3: 6953 /* 16 bit */ 6954 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6955 break; 6956 default: 6957 g_assert_not_reached(); 6958 } 6959 } 6960 } 6961 6962 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6963 { 6964 TCGv_i64 t = read_fp_dreg(s, rn); 6965 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6966 6967 gen_helper_fjcvtzs(t, t, fpstatus); 6968 6969 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6970 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6971 tcg_gen_movi_i32(cpu_CF, 0); 6972 tcg_gen_movi_i32(cpu_NF, 0); 6973 tcg_gen_movi_i32(cpu_VF, 0); 6974 } 6975 6976 /* Floating point <-> integer conversions 6977 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6978 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6979 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6980 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6981 */ 6982 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6983 { 6984 int rd = extract32(insn, 0, 5); 6985 int rn = extract32(insn, 5, 5); 6986 int opcode = extract32(insn, 16, 3); 6987 int rmode = extract32(insn, 19, 2); 6988 int type = extract32(insn, 22, 2); 6989 bool sbit = extract32(insn, 29, 1); 6990 bool sf = extract32(insn, 31, 1); 6991 bool itof = false; 6992 6993 if (sbit) { 6994 goto do_unallocated; 6995 } 6996 6997 switch (opcode) { 6998 case 2: /* SCVTF */ 6999 case 3: /* UCVTF */ 7000 itof = true; 7001 /* fallthru */ 7002 case 4: /* FCVTAS */ 7003 case 5: /* FCVTAU */ 7004 if (rmode != 0) { 7005 goto do_unallocated; 7006 } 7007 /* fallthru */ 7008 case 0: /* FCVT[NPMZ]S */ 7009 case 1: /* FCVT[NPMZ]U */ 7010 switch (type) { 7011 case 0: /* float32 */ 7012 case 1: /* float64 */ 7013 break; 7014 case 3: /* float16 */ 7015 if (!dc_isar_feature(aa64_fp16, s)) { 7016 goto do_unallocated; 7017 } 7018 break; 7019 default: 7020 goto do_unallocated; 7021 } 7022 if (!fp_access_check(s)) { 7023 return; 7024 } 7025 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7026 break; 7027 7028 default: 7029 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7030 case 0b01100110: /* FMOV half <-> 32-bit int */ 7031 case 0b01100111: 7032 case 0b11100110: /* FMOV half <-> 64-bit int */ 7033 case 0b11100111: 7034 if (!dc_isar_feature(aa64_fp16, s)) { 7035 goto do_unallocated; 7036 } 7037 /* fallthru */ 7038 case 0b00000110: /* FMOV 32-bit */ 7039 case 0b00000111: 7040 case 0b10100110: /* FMOV 64-bit */ 7041 case 0b10100111: 7042 case 0b11001110: /* FMOV top half of 128-bit */ 7043 case 0b11001111: 7044 if (!fp_access_check(s)) { 7045 return; 7046 } 7047 itof = opcode & 1; 7048 handle_fmov(s, rd, rn, type, itof); 7049 break; 7050 7051 case 0b00111110: /* FJCVTZS */ 7052 if (!dc_isar_feature(aa64_jscvt, s)) { 7053 goto do_unallocated; 7054 } else if (fp_access_check(s)) { 7055 handle_fjcvtzs(s, rd, rn); 7056 } 7057 break; 7058 7059 default: 7060 do_unallocated: 7061 unallocated_encoding(s); 7062 return; 7063 } 7064 break; 7065 } 7066 } 7067 7068 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7069 * 31 30 29 28 25 24 0 7070 * +---+---+---+---------+-----------------------------+ 7071 * | | 0 | | 1 1 1 1 | | 7072 * +---+---+---+---------+-----------------------------+ 7073 */ 7074 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7075 { 7076 if (extract32(insn, 24, 1)) { 7077 /* Floating point data-processing (3 source) */ 7078 disas_fp_3src(s, insn); 7079 } else if (extract32(insn, 21, 1) == 0) { 7080 /* Floating point to fixed point conversions */ 7081 disas_fp_fixed_conv(s, insn); 7082 } else { 7083 switch (extract32(insn, 10, 2)) { 7084 case 1: 7085 /* Floating point conditional compare */ 7086 disas_fp_ccomp(s, insn); 7087 break; 7088 case 2: 7089 /* Floating point data-processing (2 source) */ 7090 disas_fp_2src(s, insn); 7091 break; 7092 case 3: 7093 /* Floating point conditional select */ 7094 disas_fp_csel(s, insn); 7095 break; 7096 case 0: 7097 switch (ctz32(extract32(insn, 12, 4))) { 7098 case 0: /* [15:12] == xxx1 */ 7099 /* Floating point immediate */ 7100 disas_fp_imm(s, insn); 7101 break; 7102 case 1: /* [15:12] == xx10 */ 7103 /* Floating point compare */ 7104 disas_fp_compare(s, insn); 7105 break; 7106 case 2: /* [15:12] == x100 */ 7107 /* Floating point data-processing (1 source) */ 7108 disas_fp_1src(s, insn); 7109 break; 7110 case 3: /* [15:12] == 1000 */ 7111 unallocated_encoding(s); 7112 break; 7113 default: /* [15:12] == 0000 */ 7114 /* Floating point <-> integer conversions */ 7115 disas_fp_int_conv(s, insn); 7116 break; 7117 } 7118 break; 7119 } 7120 } 7121 } 7122 7123 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7124 int pos) 7125 { 7126 /* Extract 64 bits from the middle of two concatenated 64 bit 7127 * vector register slices left:right. The extracted bits start 7128 * at 'pos' bits into the right (least significant) side. 7129 * We return the result in tcg_right, and guarantee not to 7130 * trash tcg_left. 7131 */ 7132 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7133 assert(pos > 0 && pos < 64); 7134 7135 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7136 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7137 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7138 } 7139 7140 /* EXT 7141 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7142 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7143 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7144 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7145 */ 7146 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7147 { 7148 int is_q = extract32(insn, 30, 1); 7149 int op2 = extract32(insn, 22, 2); 7150 int imm4 = extract32(insn, 11, 4); 7151 int rm = extract32(insn, 16, 5); 7152 int rn = extract32(insn, 5, 5); 7153 int rd = extract32(insn, 0, 5); 7154 int pos = imm4 << 3; 7155 TCGv_i64 tcg_resl, tcg_resh; 7156 7157 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7158 unallocated_encoding(s); 7159 return; 7160 } 7161 7162 if (!fp_access_check(s)) { 7163 return; 7164 } 7165 7166 tcg_resh = tcg_temp_new_i64(); 7167 tcg_resl = tcg_temp_new_i64(); 7168 7169 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7170 * either extracting 128 bits from a 128:128 concatenation, or 7171 * extracting 64 bits from a 64:64 concatenation. 7172 */ 7173 if (!is_q) { 7174 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7175 if (pos != 0) { 7176 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7177 do_ext64(s, tcg_resh, tcg_resl, pos); 7178 } 7179 } else { 7180 TCGv_i64 tcg_hh; 7181 typedef struct { 7182 int reg; 7183 int elt; 7184 } EltPosns; 7185 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7186 EltPosns *elt = eltposns; 7187 7188 if (pos >= 64) { 7189 elt++; 7190 pos -= 64; 7191 } 7192 7193 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7194 elt++; 7195 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7196 elt++; 7197 if (pos != 0) { 7198 do_ext64(s, tcg_resh, tcg_resl, pos); 7199 tcg_hh = tcg_temp_new_i64(); 7200 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7201 do_ext64(s, tcg_hh, tcg_resh, pos); 7202 } 7203 } 7204 7205 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7206 if (is_q) { 7207 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7208 } 7209 clear_vec_high(s, is_q, rd); 7210 } 7211 7212 /* TBL/TBX 7213 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7214 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7215 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7216 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7217 */ 7218 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7219 { 7220 int op2 = extract32(insn, 22, 2); 7221 int is_q = extract32(insn, 30, 1); 7222 int rm = extract32(insn, 16, 5); 7223 int rn = extract32(insn, 5, 5); 7224 int rd = extract32(insn, 0, 5); 7225 int is_tbx = extract32(insn, 12, 1); 7226 int len = (extract32(insn, 13, 2) + 1) * 16; 7227 7228 if (op2 != 0) { 7229 unallocated_encoding(s); 7230 return; 7231 } 7232 7233 if (!fp_access_check(s)) { 7234 return; 7235 } 7236 7237 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7238 vec_full_reg_offset(s, rm), cpu_env, 7239 is_q ? 16 : 8, vec_full_reg_size(s), 7240 (len << 6) | (is_tbx << 5) | rn, 7241 gen_helper_simd_tblx); 7242 } 7243 7244 /* ZIP/UZP/TRN 7245 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7246 * +---+---+-------------+------+---+------+---+------------------+------+ 7247 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7248 * +---+---+-------------+------+---+------+---+------------------+------+ 7249 */ 7250 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7251 { 7252 int rd = extract32(insn, 0, 5); 7253 int rn = extract32(insn, 5, 5); 7254 int rm = extract32(insn, 16, 5); 7255 int size = extract32(insn, 22, 2); 7256 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7257 * bit 2 indicates 1 vs 2 variant of the insn. 7258 */ 7259 int opcode = extract32(insn, 12, 2); 7260 bool part = extract32(insn, 14, 1); 7261 bool is_q = extract32(insn, 30, 1); 7262 int esize = 8 << size; 7263 int i; 7264 int datasize = is_q ? 128 : 64; 7265 int elements = datasize / esize; 7266 TCGv_i64 tcg_res[2], tcg_ele; 7267 7268 if (opcode == 0 || (size == 3 && !is_q)) { 7269 unallocated_encoding(s); 7270 return; 7271 } 7272 7273 if (!fp_access_check(s)) { 7274 return; 7275 } 7276 7277 tcg_res[0] = tcg_temp_new_i64(); 7278 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7279 tcg_ele = tcg_temp_new_i64(); 7280 7281 for (i = 0; i < elements; i++) { 7282 int o, w; 7283 7284 switch (opcode) { 7285 case 1: /* UZP1/2 */ 7286 { 7287 int midpoint = elements / 2; 7288 if (i < midpoint) { 7289 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7290 } else { 7291 read_vec_element(s, tcg_ele, rm, 7292 2 * (i - midpoint) + part, size); 7293 } 7294 break; 7295 } 7296 case 2: /* TRN1/2 */ 7297 if (i & 1) { 7298 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7299 } else { 7300 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7301 } 7302 break; 7303 case 3: /* ZIP1/2 */ 7304 { 7305 int base = part * elements / 2; 7306 if (i & 1) { 7307 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7308 } else { 7309 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7310 } 7311 break; 7312 } 7313 default: 7314 g_assert_not_reached(); 7315 } 7316 7317 w = (i * esize) / 64; 7318 o = (i * esize) % 64; 7319 if (o == 0) { 7320 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7321 } else { 7322 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7323 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7324 } 7325 } 7326 7327 for (i = 0; i <= is_q; ++i) { 7328 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7329 } 7330 clear_vec_high(s, is_q, rd); 7331 } 7332 7333 /* 7334 * do_reduction_op helper 7335 * 7336 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7337 * important for correct NaN propagation that we do these 7338 * operations in exactly the order specified by the pseudocode. 7339 * 7340 * This is a recursive function, TCG temps should be freed by the 7341 * calling function once it is done with the values. 7342 */ 7343 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7344 int esize, int size, int vmap, TCGv_ptr fpst) 7345 { 7346 if (esize == size) { 7347 int element; 7348 MemOp msize = esize == 16 ? MO_16 : MO_32; 7349 TCGv_i32 tcg_elem; 7350 7351 /* We should have one register left here */ 7352 assert(ctpop8(vmap) == 1); 7353 element = ctz32(vmap); 7354 assert(element < 8); 7355 7356 tcg_elem = tcg_temp_new_i32(); 7357 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7358 return tcg_elem; 7359 } else { 7360 int bits = size / 2; 7361 int shift = ctpop8(vmap) / 2; 7362 int vmap_lo = (vmap >> shift) & vmap; 7363 int vmap_hi = (vmap & ~vmap_lo); 7364 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7365 7366 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7367 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7368 tcg_res = tcg_temp_new_i32(); 7369 7370 switch (fpopcode) { 7371 case 0x0c: /* fmaxnmv half-precision */ 7372 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7373 break; 7374 case 0x0f: /* fmaxv half-precision */ 7375 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7376 break; 7377 case 0x1c: /* fminnmv half-precision */ 7378 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7379 break; 7380 case 0x1f: /* fminv half-precision */ 7381 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7382 break; 7383 case 0x2c: /* fmaxnmv */ 7384 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7385 break; 7386 case 0x2f: /* fmaxv */ 7387 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7388 break; 7389 case 0x3c: /* fminnmv */ 7390 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7391 break; 7392 case 0x3f: /* fminv */ 7393 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7394 break; 7395 default: 7396 g_assert_not_reached(); 7397 } 7398 return tcg_res; 7399 } 7400 } 7401 7402 /* AdvSIMD across lanes 7403 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7404 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7405 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7406 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7407 */ 7408 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7409 { 7410 int rd = extract32(insn, 0, 5); 7411 int rn = extract32(insn, 5, 5); 7412 int size = extract32(insn, 22, 2); 7413 int opcode = extract32(insn, 12, 5); 7414 bool is_q = extract32(insn, 30, 1); 7415 bool is_u = extract32(insn, 29, 1); 7416 bool is_fp = false; 7417 bool is_min = false; 7418 int esize; 7419 int elements; 7420 int i; 7421 TCGv_i64 tcg_res, tcg_elt; 7422 7423 switch (opcode) { 7424 case 0x1b: /* ADDV */ 7425 if (is_u) { 7426 unallocated_encoding(s); 7427 return; 7428 } 7429 /* fall through */ 7430 case 0x3: /* SADDLV, UADDLV */ 7431 case 0xa: /* SMAXV, UMAXV */ 7432 case 0x1a: /* SMINV, UMINV */ 7433 if (size == 3 || (size == 2 && !is_q)) { 7434 unallocated_encoding(s); 7435 return; 7436 } 7437 break; 7438 case 0xc: /* FMAXNMV, FMINNMV */ 7439 case 0xf: /* FMAXV, FMINV */ 7440 /* Bit 1 of size field encodes min vs max and the actual size 7441 * depends on the encoding of the U bit. If not set (and FP16 7442 * enabled) then we do half-precision float instead of single 7443 * precision. 7444 */ 7445 is_min = extract32(size, 1, 1); 7446 is_fp = true; 7447 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7448 size = 1; 7449 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7450 unallocated_encoding(s); 7451 return; 7452 } else { 7453 size = 2; 7454 } 7455 break; 7456 default: 7457 unallocated_encoding(s); 7458 return; 7459 } 7460 7461 if (!fp_access_check(s)) { 7462 return; 7463 } 7464 7465 esize = 8 << size; 7466 elements = (is_q ? 128 : 64) / esize; 7467 7468 tcg_res = tcg_temp_new_i64(); 7469 tcg_elt = tcg_temp_new_i64(); 7470 7471 /* These instructions operate across all lanes of a vector 7472 * to produce a single result. We can guarantee that a 64 7473 * bit intermediate is sufficient: 7474 * + for [US]ADDLV the maximum element size is 32 bits, and 7475 * the result type is 64 bits 7476 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7477 * same as the element size, which is 32 bits at most 7478 * For the integer operations we can choose to work at 64 7479 * or 32 bits and truncate at the end; for simplicity 7480 * we use 64 bits always. The floating point 7481 * ops do require 32 bit intermediates, though. 7482 */ 7483 if (!is_fp) { 7484 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7485 7486 for (i = 1; i < elements; i++) { 7487 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7488 7489 switch (opcode) { 7490 case 0x03: /* SADDLV / UADDLV */ 7491 case 0x1b: /* ADDV */ 7492 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7493 break; 7494 case 0x0a: /* SMAXV / UMAXV */ 7495 if (is_u) { 7496 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7497 } else { 7498 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7499 } 7500 break; 7501 case 0x1a: /* SMINV / UMINV */ 7502 if (is_u) { 7503 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7504 } else { 7505 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7506 } 7507 break; 7508 default: 7509 g_assert_not_reached(); 7510 } 7511 7512 } 7513 } else { 7514 /* Floating point vector reduction ops which work across 32 7515 * bit (single) or 16 bit (half-precision) intermediates. 7516 * Note that correct NaN propagation requires that we do these 7517 * operations in exactly the order specified by the pseudocode. 7518 */ 7519 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7520 int fpopcode = opcode | is_min << 4 | is_u << 5; 7521 int vmap = (1 << elements) - 1; 7522 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7523 (is_q ? 128 : 64), vmap, fpst); 7524 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7525 } 7526 7527 /* Now truncate the result to the width required for the final output */ 7528 if (opcode == 0x03) { 7529 /* SADDLV, UADDLV: result is 2*esize */ 7530 size++; 7531 } 7532 7533 switch (size) { 7534 case 0: 7535 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7536 break; 7537 case 1: 7538 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7539 break; 7540 case 2: 7541 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7542 break; 7543 case 3: 7544 break; 7545 default: 7546 g_assert_not_reached(); 7547 } 7548 7549 write_fp_dreg(s, rd, tcg_res); 7550 } 7551 7552 /* DUP (Element, Vector) 7553 * 7554 * 31 30 29 21 20 16 15 10 9 5 4 0 7555 * +---+---+-------------------+--------+-------------+------+------+ 7556 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7557 * +---+---+-------------------+--------+-------------+------+------+ 7558 * 7559 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7560 */ 7561 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7562 int imm5) 7563 { 7564 int size = ctz32(imm5); 7565 int index; 7566 7567 if (size > 3 || (size == 3 && !is_q)) { 7568 unallocated_encoding(s); 7569 return; 7570 } 7571 7572 if (!fp_access_check(s)) { 7573 return; 7574 } 7575 7576 index = imm5 >> (size + 1); 7577 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7578 vec_reg_offset(s, rn, index, size), 7579 is_q ? 16 : 8, vec_full_reg_size(s)); 7580 } 7581 7582 /* DUP (element, scalar) 7583 * 31 21 20 16 15 10 9 5 4 0 7584 * +-----------------------+--------+-------------+------+------+ 7585 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7586 * +-----------------------+--------+-------------+------+------+ 7587 */ 7588 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7589 int imm5) 7590 { 7591 int size = ctz32(imm5); 7592 int index; 7593 TCGv_i64 tmp; 7594 7595 if (size > 3) { 7596 unallocated_encoding(s); 7597 return; 7598 } 7599 7600 if (!fp_access_check(s)) { 7601 return; 7602 } 7603 7604 index = imm5 >> (size + 1); 7605 7606 /* This instruction just extracts the specified element and 7607 * zero-extends it into the bottom of the destination register. 7608 */ 7609 tmp = tcg_temp_new_i64(); 7610 read_vec_element(s, tmp, rn, index, size); 7611 write_fp_dreg(s, rd, tmp); 7612 } 7613 7614 /* DUP (General) 7615 * 7616 * 31 30 29 21 20 16 15 10 9 5 4 0 7617 * +---+---+-------------------+--------+-------------+------+------+ 7618 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7619 * +---+---+-------------------+--------+-------------+------+------+ 7620 * 7621 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7622 */ 7623 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7624 int imm5) 7625 { 7626 int size = ctz32(imm5); 7627 uint32_t dofs, oprsz, maxsz; 7628 7629 if (size > 3 || ((size == 3) && !is_q)) { 7630 unallocated_encoding(s); 7631 return; 7632 } 7633 7634 if (!fp_access_check(s)) { 7635 return; 7636 } 7637 7638 dofs = vec_full_reg_offset(s, rd); 7639 oprsz = is_q ? 16 : 8; 7640 maxsz = vec_full_reg_size(s); 7641 7642 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7643 } 7644 7645 /* INS (Element) 7646 * 7647 * 31 21 20 16 15 14 11 10 9 5 4 0 7648 * +-----------------------+--------+------------+---+------+------+ 7649 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7650 * +-----------------------+--------+------------+---+------+------+ 7651 * 7652 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7653 * index: encoded in imm5<4:size+1> 7654 */ 7655 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7656 int imm4, int imm5) 7657 { 7658 int size = ctz32(imm5); 7659 int src_index, dst_index; 7660 TCGv_i64 tmp; 7661 7662 if (size > 3) { 7663 unallocated_encoding(s); 7664 return; 7665 } 7666 7667 if (!fp_access_check(s)) { 7668 return; 7669 } 7670 7671 dst_index = extract32(imm5, 1+size, 5); 7672 src_index = extract32(imm4, size, 4); 7673 7674 tmp = tcg_temp_new_i64(); 7675 7676 read_vec_element(s, tmp, rn, src_index, size); 7677 write_vec_element(s, tmp, rd, dst_index, size); 7678 7679 /* INS is considered a 128-bit write for SVE. */ 7680 clear_vec_high(s, true, rd); 7681 } 7682 7683 7684 /* INS (General) 7685 * 7686 * 31 21 20 16 15 10 9 5 4 0 7687 * +-----------------------+--------+-------------+------+------+ 7688 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7689 * +-----------------------+--------+-------------+------+------+ 7690 * 7691 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7692 * index: encoded in imm5<4:size+1> 7693 */ 7694 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7695 { 7696 int size = ctz32(imm5); 7697 int idx; 7698 7699 if (size > 3) { 7700 unallocated_encoding(s); 7701 return; 7702 } 7703 7704 if (!fp_access_check(s)) { 7705 return; 7706 } 7707 7708 idx = extract32(imm5, 1 + size, 4 - size); 7709 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7710 7711 /* INS is considered a 128-bit write for SVE. */ 7712 clear_vec_high(s, true, rd); 7713 } 7714 7715 /* 7716 * UMOV (General) 7717 * SMOV (General) 7718 * 7719 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7720 * +---+---+-------------------+--------+-------------+------+------+ 7721 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7722 * +---+---+-------------------+--------+-------------+------+------+ 7723 * 7724 * U: unsigned when set 7725 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7726 */ 7727 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7728 int rn, int rd, int imm5) 7729 { 7730 int size = ctz32(imm5); 7731 int element; 7732 TCGv_i64 tcg_rd; 7733 7734 /* Check for UnallocatedEncodings */ 7735 if (is_signed) { 7736 if (size > 2 || (size == 2 && !is_q)) { 7737 unallocated_encoding(s); 7738 return; 7739 } 7740 } else { 7741 if (size > 3 7742 || (size < 3 && is_q) 7743 || (size == 3 && !is_q)) { 7744 unallocated_encoding(s); 7745 return; 7746 } 7747 } 7748 7749 if (!fp_access_check(s)) { 7750 return; 7751 } 7752 7753 element = extract32(imm5, 1+size, 4); 7754 7755 tcg_rd = cpu_reg(s, rd); 7756 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7757 if (is_signed && !is_q) { 7758 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7759 } 7760 } 7761 7762 /* AdvSIMD copy 7763 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7764 * +---+---+----+-----------------+------+---+------+---+------+------+ 7765 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7766 * +---+---+----+-----------------+------+---+------+---+------+------+ 7767 */ 7768 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7769 { 7770 int rd = extract32(insn, 0, 5); 7771 int rn = extract32(insn, 5, 5); 7772 int imm4 = extract32(insn, 11, 4); 7773 int op = extract32(insn, 29, 1); 7774 int is_q = extract32(insn, 30, 1); 7775 int imm5 = extract32(insn, 16, 5); 7776 7777 if (op) { 7778 if (is_q) { 7779 /* INS (element) */ 7780 handle_simd_inse(s, rd, rn, imm4, imm5); 7781 } else { 7782 unallocated_encoding(s); 7783 } 7784 } else { 7785 switch (imm4) { 7786 case 0: 7787 /* DUP (element - vector) */ 7788 handle_simd_dupe(s, is_q, rd, rn, imm5); 7789 break; 7790 case 1: 7791 /* DUP (general) */ 7792 handle_simd_dupg(s, is_q, rd, rn, imm5); 7793 break; 7794 case 3: 7795 if (is_q) { 7796 /* INS (general) */ 7797 handle_simd_insg(s, rd, rn, imm5); 7798 } else { 7799 unallocated_encoding(s); 7800 } 7801 break; 7802 case 5: 7803 case 7: 7804 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7805 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7806 break; 7807 default: 7808 unallocated_encoding(s); 7809 break; 7810 } 7811 } 7812 } 7813 7814 /* AdvSIMD modified immediate 7815 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7816 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7817 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7818 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7819 * 7820 * There are a number of operations that can be carried out here: 7821 * MOVI - move (shifted) imm into register 7822 * MVNI - move inverted (shifted) imm into register 7823 * ORR - bitwise OR of (shifted) imm with register 7824 * BIC - bitwise clear of (shifted) imm with register 7825 * With ARMv8.2 we also have: 7826 * FMOV half-precision 7827 */ 7828 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7829 { 7830 int rd = extract32(insn, 0, 5); 7831 int cmode = extract32(insn, 12, 4); 7832 int o2 = extract32(insn, 11, 1); 7833 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7834 bool is_neg = extract32(insn, 29, 1); 7835 bool is_q = extract32(insn, 30, 1); 7836 uint64_t imm = 0; 7837 7838 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7839 /* Check for FMOV (vector, immediate) - half-precision */ 7840 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7841 unallocated_encoding(s); 7842 return; 7843 } 7844 } 7845 7846 if (!fp_access_check(s)) { 7847 return; 7848 } 7849 7850 if (cmode == 15 && o2 && !is_neg) { 7851 /* FMOV (vector, immediate) - half-precision */ 7852 imm = vfp_expand_imm(MO_16, abcdefgh); 7853 /* now duplicate across the lanes */ 7854 imm = dup_const(MO_16, imm); 7855 } else { 7856 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7857 } 7858 7859 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7860 /* MOVI or MVNI, with MVNI negation handled above. */ 7861 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7862 vec_full_reg_size(s), imm); 7863 } else { 7864 /* ORR or BIC, with BIC negation to AND handled above. */ 7865 if (is_neg) { 7866 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7867 } else { 7868 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7869 } 7870 } 7871 } 7872 7873 /* AdvSIMD scalar copy 7874 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7875 * +-----+----+-----------------+------+---+------+---+------+------+ 7876 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7877 * +-----+----+-----------------+------+---+------+---+------+------+ 7878 */ 7879 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7880 { 7881 int rd = extract32(insn, 0, 5); 7882 int rn = extract32(insn, 5, 5); 7883 int imm4 = extract32(insn, 11, 4); 7884 int imm5 = extract32(insn, 16, 5); 7885 int op = extract32(insn, 29, 1); 7886 7887 if (op != 0 || imm4 != 0) { 7888 unallocated_encoding(s); 7889 return; 7890 } 7891 7892 /* DUP (element, scalar) */ 7893 handle_simd_dupes(s, rd, rn, imm5); 7894 } 7895 7896 /* AdvSIMD scalar pairwise 7897 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7898 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7899 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7900 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7901 */ 7902 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7903 { 7904 int u = extract32(insn, 29, 1); 7905 int size = extract32(insn, 22, 2); 7906 int opcode = extract32(insn, 12, 5); 7907 int rn = extract32(insn, 5, 5); 7908 int rd = extract32(insn, 0, 5); 7909 TCGv_ptr fpst; 7910 7911 /* For some ops (the FP ones), size[1] is part of the encoding. 7912 * For ADDP strictly it is not but size[1] is always 1 for valid 7913 * encodings. 7914 */ 7915 opcode |= (extract32(size, 1, 1) << 5); 7916 7917 switch (opcode) { 7918 case 0x3b: /* ADDP */ 7919 if (u || size != 3) { 7920 unallocated_encoding(s); 7921 return; 7922 } 7923 if (!fp_access_check(s)) { 7924 return; 7925 } 7926 7927 fpst = NULL; 7928 break; 7929 case 0xc: /* FMAXNMP */ 7930 case 0xd: /* FADDP */ 7931 case 0xf: /* FMAXP */ 7932 case 0x2c: /* FMINNMP */ 7933 case 0x2f: /* FMINP */ 7934 /* FP op, size[0] is 32 or 64 bit*/ 7935 if (!u) { 7936 if (!dc_isar_feature(aa64_fp16, s)) { 7937 unallocated_encoding(s); 7938 return; 7939 } else { 7940 size = MO_16; 7941 } 7942 } else { 7943 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7944 } 7945 7946 if (!fp_access_check(s)) { 7947 return; 7948 } 7949 7950 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7951 break; 7952 default: 7953 unallocated_encoding(s); 7954 return; 7955 } 7956 7957 if (size == MO_64) { 7958 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7959 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7960 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7961 7962 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7963 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7964 7965 switch (opcode) { 7966 case 0x3b: /* ADDP */ 7967 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7968 break; 7969 case 0xc: /* FMAXNMP */ 7970 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7971 break; 7972 case 0xd: /* FADDP */ 7973 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7974 break; 7975 case 0xf: /* FMAXP */ 7976 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7977 break; 7978 case 0x2c: /* FMINNMP */ 7979 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7980 break; 7981 case 0x2f: /* FMINP */ 7982 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7983 break; 7984 default: 7985 g_assert_not_reached(); 7986 } 7987 7988 write_fp_dreg(s, rd, tcg_res); 7989 } else { 7990 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7991 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7992 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7993 7994 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7995 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7996 7997 if (size == MO_16) { 7998 switch (opcode) { 7999 case 0xc: /* FMAXNMP */ 8000 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8001 break; 8002 case 0xd: /* FADDP */ 8003 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8004 break; 8005 case 0xf: /* FMAXP */ 8006 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8007 break; 8008 case 0x2c: /* FMINNMP */ 8009 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8010 break; 8011 case 0x2f: /* FMINP */ 8012 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8013 break; 8014 default: 8015 g_assert_not_reached(); 8016 } 8017 } else { 8018 switch (opcode) { 8019 case 0xc: /* FMAXNMP */ 8020 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 case 0xd: /* FADDP */ 8023 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8024 break; 8025 case 0xf: /* FMAXP */ 8026 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0x2c: /* FMINNMP */ 8029 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 case 0x2f: /* FMINP */ 8032 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8033 break; 8034 default: 8035 g_assert_not_reached(); 8036 } 8037 } 8038 8039 write_fp_sreg(s, rd, tcg_res); 8040 } 8041 } 8042 8043 /* 8044 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8045 * 8046 * This code is handles the common shifting code and is used by both 8047 * the vector and scalar code. 8048 */ 8049 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8050 TCGv_i64 tcg_rnd, bool accumulate, 8051 bool is_u, int size, int shift) 8052 { 8053 bool extended_result = false; 8054 bool round = tcg_rnd != NULL; 8055 int ext_lshift = 0; 8056 TCGv_i64 tcg_src_hi; 8057 8058 if (round && size == 3) { 8059 extended_result = true; 8060 ext_lshift = 64 - shift; 8061 tcg_src_hi = tcg_temp_new_i64(); 8062 } else if (shift == 64) { 8063 if (!accumulate && is_u) { 8064 /* result is zero */ 8065 tcg_gen_movi_i64(tcg_res, 0); 8066 return; 8067 } 8068 } 8069 8070 /* Deal with the rounding step */ 8071 if (round) { 8072 if (extended_result) { 8073 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8074 if (!is_u) { 8075 /* take care of sign extending tcg_res */ 8076 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8077 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8078 tcg_src, tcg_src_hi, 8079 tcg_rnd, tcg_zero); 8080 } else { 8081 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8082 tcg_src, tcg_zero, 8083 tcg_rnd, tcg_zero); 8084 } 8085 } else { 8086 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8087 } 8088 } 8089 8090 /* Now do the shift right */ 8091 if (round && extended_result) { 8092 /* extended case, >64 bit precision required */ 8093 if (ext_lshift == 0) { 8094 /* special case, only high bits matter */ 8095 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8096 } else { 8097 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8098 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8099 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8100 } 8101 } else { 8102 if (is_u) { 8103 if (shift == 64) { 8104 /* essentially shifting in 64 zeros */ 8105 tcg_gen_movi_i64(tcg_src, 0); 8106 } else { 8107 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8108 } 8109 } else { 8110 if (shift == 64) { 8111 /* effectively extending the sign-bit */ 8112 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8113 } else { 8114 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8115 } 8116 } 8117 } 8118 8119 if (accumulate) { 8120 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8121 } else { 8122 tcg_gen_mov_i64(tcg_res, tcg_src); 8123 } 8124 } 8125 8126 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8127 static void handle_scalar_simd_shri(DisasContext *s, 8128 bool is_u, int immh, int immb, 8129 int opcode, int rn, int rd) 8130 { 8131 const int size = 3; 8132 int immhb = immh << 3 | immb; 8133 int shift = 2 * (8 << size) - immhb; 8134 bool accumulate = false; 8135 bool round = false; 8136 bool insert = false; 8137 TCGv_i64 tcg_rn; 8138 TCGv_i64 tcg_rd; 8139 TCGv_i64 tcg_round; 8140 8141 if (!extract32(immh, 3, 1)) { 8142 unallocated_encoding(s); 8143 return; 8144 } 8145 8146 if (!fp_access_check(s)) { 8147 return; 8148 } 8149 8150 switch (opcode) { 8151 case 0x02: /* SSRA / USRA (accumulate) */ 8152 accumulate = true; 8153 break; 8154 case 0x04: /* SRSHR / URSHR (rounding) */ 8155 round = true; 8156 break; 8157 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8158 accumulate = round = true; 8159 break; 8160 case 0x08: /* SRI */ 8161 insert = true; 8162 break; 8163 } 8164 8165 if (round) { 8166 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8167 } else { 8168 tcg_round = NULL; 8169 } 8170 8171 tcg_rn = read_fp_dreg(s, rn); 8172 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8173 8174 if (insert) { 8175 /* shift count same as element size is valid but does nothing; 8176 * special case to avoid potential shift by 64. 8177 */ 8178 int esize = 8 << size; 8179 if (shift != esize) { 8180 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8181 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8182 } 8183 } else { 8184 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8185 accumulate, is_u, size, shift); 8186 } 8187 8188 write_fp_dreg(s, rd, tcg_rd); 8189 } 8190 8191 /* SHL/SLI - Scalar shift left */ 8192 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8193 int immh, int immb, int opcode, 8194 int rn, int rd) 8195 { 8196 int size = 32 - clz32(immh) - 1; 8197 int immhb = immh << 3 | immb; 8198 int shift = immhb - (8 << size); 8199 TCGv_i64 tcg_rn; 8200 TCGv_i64 tcg_rd; 8201 8202 if (!extract32(immh, 3, 1)) { 8203 unallocated_encoding(s); 8204 return; 8205 } 8206 8207 if (!fp_access_check(s)) { 8208 return; 8209 } 8210 8211 tcg_rn = read_fp_dreg(s, rn); 8212 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8213 8214 if (insert) { 8215 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8216 } else { 8217 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8218 } 8219 8220 write_fp_dreg(s, rd, tcg_rd); 8221 } 8222 8223 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8224 * (signed/unsigned) narrowing */ 8225 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8226 bool is_u_shift, bool is_u_narrow, 8227 int immh, int immb, int opcode, 8228 int rn, int rd) 8229 { 8230 int immhb = immh << 3 | immb; 8231 int size = 32 - clz32(immh) - 1; 8232 int esize = 8 << size; 8233 int shift = (2 * esize) - immhb; 8234 int elements = is_scalar ? 1 : (64 / esize); 8235 bool round = extract32(opcode, 0, 1); 8236 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8237 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8238 TCGv_i32 tcg_rd_narrowed; 8239 TCGv_i64 tcg_final; 8240 8241 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8242 { gen_helper_neon_narrow_sat_s8, 8243 gen_helper_neon_unarrow_sat8 }, 8244 { gen_helper_neon_narrow_sat_s16, 8245 gen_helper_neon_unarrow_sat16 }, 8246 { gen_helper_neon_narrow_sat_s32, 8247 gen_helper_neon_unarrow_sat32 }, 8248 { NULL, NULL }, 8249 }; 8250 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8251 gen_helper_neon_narrow_sat_u8, 8252 gen_helper_neon_narrow_sat_u16, 8253 gen_helper_neon_narrow_sat_u32, 8254 NULL 8255 }; 8256 NeonGenNarrowEnvFn *narrowfn; 8257 8258 int i; 8259 8260 assert(size < 4); 8261 8262 if (extract32(immh, 3, 1)) { 8263 unallocated_encoding(s); 8264 return; 8265 } 8266 8267 if (!fp_access_check(s)) { 8268 return; 8269 } 8270 8271 if (is_u_shift) { 8272 narrowfn = unsigned_narrow_fns[size]; 8273 } else { 8274 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8275 } 8276 8277 tcg_rn = tcg_temp_new_i64(); 8278 tcg_rd = tcg_temp_new_i64(); 8279 tcg_rd_narrowed = tcg_temp_new_i32(); 8280 tcg_final = tcg_temp_new_i64(); 8281 8282 if (round) { 8283 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8284 } else { 8285 tcg_round = NULL; 8286 } 8287 8288 for (i = 0; i < elements; i++) { 8289 read_vec_element(s, tcg_rn, rn, i, ldop); 8290 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8291 false, is_u_shift, size+1, shift); 8292 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8293 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8294 if (i == 0) { 8295 tcg_gen_mov_i64(tcg_final, tcg_rd); 8296 } else { 8297 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8298 } 8299 } 8300 8301 if (!is_q) { 8302 write_vec_element(s, tcg_final, rd, 0, MO_64); 8303 } else { 8304 write_vec_element(s, tcg_final, rd, 1, MO_64); 8305 } 8306 clear_vec_high(s, is_q, rd); 8307 } 8308 8309 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8310 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8311 bool src_unsigned, bool dst_unsigned, 8312 int immh, int immb, int rn, int rd) 8313 { 8314 int immhb = immh << 3 | immb; 8315 int size = 32 - clz32(immh) - 1; 8316 int shift = immhb - (8 << size); 8317 int pass; 8318 8319 assert(immh != 0); 8320 assert(!(scalar && is_q)); 8321 8322 if (!scalar) { 8323 if (!is_q && extract32(immh, 3, 1)) { 8324 unallocated_encoding(s); 8325 return; 8326 } 8327 8328 /* Since we use the variable-shift helpers we must 8329 * replicate the shift count into each element of 8330 * the tcg_shift value. 8331 */ 8332 switch (size) { 8333 case 0: 8334 shift |= shift << 8; 8335 /* fall through */ 8336 case 1: 8337 shift |= shift << 16; 8338 break; 8339 case 2: 8340 case 3: 8341 break; 8342 default: 8343 g_assert_not_reached(); 8344 } 8345 } 8346 8347 if (!fp_access_check(s)) { 8348 return; 8349 } 8350 8351 if (size == 3) { 8352 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8353 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8354 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8355 { NULL, gen_helper_neon_qshl_u64 }, 8356 }; 8357 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8358 int maxpass = is_q ? 2 : 1; 8359 8360 for (pass = 0; pass < maxpass; pass++) { 8361 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8362 8363 read_vec_element(s, tcg_op, rn, pass, MO_64); 8364 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8365 write_vec_element(s, tcg_op, rd, pass, MO_64); 8366 } 8367 clear_vec_high(s, is_q, rd); 8368 } else { 8369 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8370 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8371 { 8372 { gen_helper_neon_qshl_s8, 8373 gen_helper_neon_qshl_s16, 8374 gen_helper_neon_qshl_s32 }, 8375 { gen_helper_neon_qshlu_s8, 8376 gen_helper_neon_qshlu_s16, 8377 gen_helper_neon_qshlu_s32 } 8378 }, { 8379 { NULL, NULL, NULL }, 8380 { gen_helper_neon_qshl_u8, 8381 gen_helper_neon_qshl_u16, 8382 gen_helper_neon_qshl_u32 } 8383 } 8384 }; 8385 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8386 MemOp memop = scalar ? size : MO_32; 8387 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8388 8389 for (pass = 0; pass < maxpass; pass++) { 8390 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8391 8392 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8393 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8394 if (scalar) { 8395 switch (size) { 8396 case 0: 8397 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8398 break; 8399 case 1: 8400 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8401 break; 8402 case 2: 8403 break; 8404 default: 8405 g_assert_not_reached(); 8406 } 8407 write_fp_sreg(s, rd, tcg_op); 8408 } else { 8409 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8410 } 8411 } 8412 8413 if (!scalar) { 8414 clear_vec_high(s, is_q, rd); 8415 } 8416 } 8417 } 8418 8419 /* Common vector code for handling integer to FP conversion */ 8420 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8421 int elements, int is_signed, 8422 int fracbits, int size) 8423 { 8424 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8425 TCGv_i32 tcg_shift = NULL; 8426 8427 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8428 int pass; 8429 8430 if (fracbits || size == MO_64) { 8431 tcg_shift = tcg_constant_i32(fracbits); 8432 } 8433 8434 if (size == MO_64) { 8435 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8436 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8437 8438 for (pass = 0; pass < elements; pass++) { 8439 read_vec_element(s, tcg_int64, rn, pass, mop); 8440 8441 if (is_signed) { 8442 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8443 tcg_shift, tcg_fpst); 8444 } else { 8445 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8446 tcg_shift, tcg_fpst); 8447 } 8448 if (elements == 1) { 8449 write_fp_dreg(s, rd, tcg_double); 8450 } else { 8451 write_vec_element(s, tcg_double, rd, pass, MO_64); 8452 } 8453 } 8454 } else { 8455 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8456 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8457 8458 for (pass = 0; pass < elements; pass++) { 8459 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8460 8461 switch (size) { 8462 case MO_32: 8463 if (fracbits) { 8464 if (is_signed) { 8465 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8466 tcg_shift, tcg_fpst); 8467 } else { 8468 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8469 tcg_shift, tcg_fpst); 8470 } 8471 } else { 8472 if (is_signed) { 8473 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8474 } else { 8475 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8476 } 8477 } 8478 break; 8479 case MO_16: 8480 if (fracbits) { 8481 if (is_signed) { 8482 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8483 tcg_shift, tcg_fpst); 8484 } else { 8485 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8486 tcg_shift, tcg_fpst); 8487 } 8488 } else { 8489 if (is_signed) { 8490 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8491 } else { 8492 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8493 } 8494 } 8495 break; 8496 default: 8497 g_assert_not_reached(); 8498 } 8499 8500 if (elements == 1) { 8501 write_fp_sreg(s, rd, tcg_float); 8502 } else { 8503 write_vec_element_i32(s, tcg_float, rd, pass, size); 8504 } 8505 } 8506 } 8507 8508 clear_vec_high(s, elements << size == 16, rd); 8509 } 8510 8511 /* UCVTF/SCVTF - Integer to FP conversion */ 8512 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8513 bool is_q, bool is_u, 8514 int immh, int immb, int opcode, 8515 int rn, int rd) 8516 { 8517 int size, elements, fracbits; 8518 int immhb = immh << 3 | immb; 8519 8520 if (immh & 8) { 8521 size = MO_64; 8522 if (!is_scalar && !is_q) { 8523 unallocated_encoding(s); 8524 return; 8525 } 8526 } else if (immh & 4) { 8527 size = MO_32; 8528 } else if (immh & 2) { 8529 size = MO_16; 8530 if (!dc_isar_feature(aa64_fp16, s)) { 8531 unallocated_encoding(s); 8532 return; 8533 } 8534 } else { 8535 /* immh == 0 would be a failure of the decode logic */ 8536 g_assert(immh == 1); 8537 unallocated_encoding(s); 8538 return; 8539 } 8540 8541 if (is_scalar) { 8542 elements = 1; 8543 } else { 8544 elements = (8 << is_q) >> size; 8545 } 8546 fracbits = (16 << size) - immhb; 8547 8548 if (!fp_access_check(s)) { 8549 return; 8550 } 8551 8552 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8553 } 8554 8555 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8556 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8557 bool is_q, bool is_u, 8558 int immh, int immb, int rn, int rd) 8559 { 8560 int immhb = immh << 3 | immb; 8561 int pass, size, fracbits; 8562 TCGv_ptr tcg_fpstatus; 8563 TCGv_i32 tcg_rmode, tcg_shift; 8564 8565 if (immh & 0x8) { 8566 size = MO_64; 8567 if (!is_scalar && !is_q) { 8568 unallocated_encoding(s); 8569 return; 8570 } 8571 } else if (immh & 0x4) { 8572 size = MO_32; 8573 } else if (immh & 0x2) { 8574 size = MO_16; 8575 if (!dc_isar_feature(aa64_fp16, s)) { 8576 unallocated_encoding(s); 8577 return; 8578 } 8579 } else { 8580 /* Should have split out AdvSIMD modified immediate earlier. */ 8581 assert(immh == 1); 8582 unallocated_encoding(s); 8583 return; 8584 } 8585 8586 if (!fp_access_check(s)) { 8587 return; 8588 } 8589 8590 assert(!(is_scalar && is_q)); 8591 8592 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8593 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8594 fracbits = (16 << size) - immhb; 8595 tcg_shift = tcg_constant_i32(fracbits); 8596 8597 if (size == MO_64) { 8598 int maxpass = is_scalar ? 1 : 2; 8599 8600 for (pass = 0; pass < maxpass; pass++) { 8601 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8602 8603 read_vec_element(s, tcg_op, rn, pass, MO_64); 8604 if (is_u) { 8605 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8606 } else { 8607 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8608 } 8609 write_vec_element(s, tcg_op, rd, pass, MO_64); 8610 } 8611 clear_vec_high(s, is_q, rd); 8612 } else { 8613 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8614 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8615 8616 switch (size) { 8617 case MO_16: 8618 if (is_u) { 8619 fn = gen_helper_vfp_touhh; 8620 } else { 8621 fn = gen_helper_vfp_toshh; 8622 } 8623 break; 8624 case MO_32: 8625 if (is_u) { 8626 fn = gen_helper_vfp_touls; 8627 } else { 8628 fn = gen_helper_vfp_tosls; 8629 } 8630 break; 8631 default: 8632 g_assert_not_reached(); 8633 } 8634 8635 for (pass = 0; pass < maxpass; pass++) { 8636 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8637 8638 read_vec_element_i32(s, tcg_op, rn, pass, size); 8639 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8640 if (is_scalar) { 8641 write_fp_sreg(s, rd, tcg_op); 8642 } else { 8643 write_vec_element_i32(s, tcg_op, rd, pass, size); 8644 } 8645 } 8646 if (!is_scalar) { 8647 clear_vec_high(s, is_q, rd); 8648 } 8649 } 8650 8651 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8652 } 8653 8654 /* AdvSIMD scalar shift by immediate 8655 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8656 * +-----+---+-------------+------+------+--------+---+------+------+ 8657 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8658 * +-----+---+-------------+------+------+--------+---+------+------+ 8659 * 8660 * This is the scalar version so it works on a fixed sized registers 8661 */ 8662 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8663 { 8664 int rd = extract32(insn, 0, 5); 8665 int rn = extract32(insn, 5, 5); 8666 int opcode = extract32(insn, 11, 5); 8667 int immb = extract32(insn, 16, 3); 8668 int immh = extract32(insn, 19, 4); 8669 bool is_u = extract32(insn, 29, 1); 8670 8671 if (immh == 0) { 8672 unallocated_encoding(s); 8673 return; 8674 } 8675 8676 switch (opcode) { 8677 case 0x08: /* SRI */ 8678 if (!is_u) { 8679 unallocated_encoding(s); 8680 return; 8681 } 8682 /* fall through */ 8683 case 0x00: /* SSHR / USHR */ 8684 case 0x02: /* SSRA / USRA */ 8685 case 0x04: /* SRSHR / URSHR */ 8686 case 0x06: /* SRSRA / URSRA */ 8687 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8688 break; 8689 case 0x0a: /* SHL / SLI */ 8690 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8691 break; 8692 case 0x1c: /* SCVTF, UCVTF */ 8693 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8694 opcode, rn, rd); 8695 break; 8696 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8697 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8698 if (!is_u) { 8699 unallocated_encoding(s); 8700 return; 8701 } 8702 handle_vec_simd_sqshrn(s, true, false, false, true, 8703 immh, immb, opcode, rn, rd); 8704 break; 8705 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8706 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8707 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8708 immh, immb, opcode, rn, rd); 8709 break; 8710 case 0xc: /* SQSHLU */ 8711 if (!is_u) { 8712 unallocated_encoding(s); 8713 return; 8714 } 8715 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8716 break; 8717 case 0xe: /* SQSHL, UQSHL */ 8718 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8719 break; 8720 case 0x1f: /* FCVTZS, FCVTZU */ 8721 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8722 break; 8723 default: 8724 unallocated_encoding(s); 8725 break; 8726 } 8727 } 8728 8729 /* AdvSIMD scalar three different 8730 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8731 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8732 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8733 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8734 */ 8735 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8736 { 8737 bool is_u = extract32(insn, 29, 1); 8738 int size = extract32(insn, 22, 2); 8739 int opcode = extract32(insn, 12, 4); 8740 int rm = extract32(insn, 16, 5); 8741 int rn = extract32(insn, 5, 5); 8742 int rd = extract32(insn, 0, 5); 8743 8744 if (is_u) { 8745 unallocated_encoding(s); 8746 return; 8747 } 8748 8749 switch (opcode) { 8750 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8751 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8752 case 0xd: /* SQDMULL, SQDMULL2 */ 8753 if (size == 0 || size == 3) { 8754 unallocated_encoding(s); 8755 return; 8756 } 8757 break; 8758 default: 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 8763 if (!fp_access_check(s)) { 8764 return; 8765 } 8766 8767 if (size == 2) { 8768 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8769 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8770 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8771 8772 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8773 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8774 8775 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8776 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8777 8778 switch (opcode) { 8779 case 0xd: /* SQDMULL, SQDMULL2 */ 8780 break; 8781 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8782 tcg_gen_neg_i64(tcg_res, tcg_res); 8783 /* fall through */ 8784 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8785 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8786 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8787 tcg_res, tcg_op1); 8788 break; 8789 default: 8790 g_assert_not_reached(); 8791 } 8792 8793 write_fp_dreg(s, rd, tcg_res); 8794 } else { 8795 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8796 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8797 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8798 8799 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8800 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8801 8802 switch (opcode) { 8803 case 0xd: /* SQDMULL, SQDMULL2 */ 8804 break; 8805 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8806 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8807 /* fall through */ 8808 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8809 { 8810 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8811 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8812 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8813 tcg_res, tcg_op3); 8814 break; 8815 } 8816 default: 8817 g_assert_not_reached(); 8818 } 8819 8820 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8821 write_fp_dreg(s, rd, tcg_res); 8822 } 8823 } 8824 8825 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8826 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8827 { 8828 /* Handle 64x64->64 opcodes which are shared between the scalar 8829 * and vector 3-same groups. We cover every opcode where size == 3 8830 * is valid in either the three-reg-same (integer, not pairwise) 8831 * or scalar-three-reg-same groups. 8832 */ 8833 TCGCond cond; 8834 8835 switch (opcode) { 8836 case 0x1: /* SQADD */ 8837 if (u) { 8838 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8839 } else { 8840 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8841 } 8842 break; 8843 case 0x5: /* SQSUB */ 8844 if (u) { 8845 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8846 } else { 8847 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8848 } 8849 break; 8850 case 0x6: /* CMGT, CMHI */ 8851 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8852 * We implement this using setcond (test) and then negating. 8853 */ 8854 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8855 do_cmop: 8856 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8857 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8858 break; 8859 case 0x7: /* CMGE, CMHS */ 8860 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8861 goto do_cmop; 8862 case 0x11: /* CMTST, CMEQ */ 8863 if (u) { 8864 cond = TCG_COND_EQ; 8865 goto do_cmop; 8866 } 8867 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8868 break; 8869 case 0x8: /* SSHL, USHL */ 8870 if (u) { 8871 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8872 } else { 8873 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8874 } 8875 break; 8876 case 0x9: /* SQSHL, UQSHL */ 8877 if (u) { 8878 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8879 } else { 8880 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8881 } 8882 break; 8883 case 0xa: /* SRSHL, URSHL */ 8884 if (u) { 8885 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8886 } else { 8887 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8888 } 8889 break; 8890 case 0xb: /* SQRSHL, UQRSHL */ 8891 if (u) { 8892 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8893 } else { 8894 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8895 } 8896 break; 8897 case 0x10: /* ADD, SUB */ 8898 if (u) { 8899 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8900 } else { 8901 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8902 } 8903 break; 8904 default: 8905 g_assert_not_reached(); 8906 } 8907 } 8908 8909 /* Handle the 3-same-operands float operations; shared by the scalar 8910 * and vector encodings. The caller must filter out any encodings 8911 * not allocated for the encoding it is dealing with. 8912 */ 8913 static void handle_3same_float(DisasContext *s, int size, int elements, 8914 int fpopcode, int rd, int rn, int rm) 8915 { 8916 int pass; 8917 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8918 8919 for (pass = 0; pass < elements; pass++) { 8920 if (size) { 8921 /* Double */ 8922 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8923 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8924 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8925 8926 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8927 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8928 8929 switch (fpopcode) { 8930 case 0x39: /* FMLS */ 8931 /* As usual for ARM, separate negation for fused multiply-add */ 8932 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8933 /* fall through */ 8934 case 0x19: /* FMLA */ 8935 read_vec_element(s, tcg_res, rd, pass, MO_64); 8936 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8937 tcg_res, fpst); 8938 break; 8939 case 0x18: /* FMAXNM */ 8940 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8941 break; 8942 case 0x1a: /* FADD */ 8943 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8944 break; 8945 case 0x1b: /* FMULX */ 8946 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8947 break; 8948 case 0x1c: /* FCMEQ */ 8949 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8950 break; 8951 case 0x1e: /* FMAX */ 8952 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8953 break; 8954 case 0x1f: /* FRECPS */ 8955 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8956 break; 8957 case 0x38: /* FMINNM */ 8958 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8959 break; 8960 case 0x3a: /* FSUB */ 8961 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8962 break; 8963 case 0x3e: /* FMIN */ 8964 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8965 break; 8966 case 0x3f: /* FRSQRTS */ 8967 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8968 break; 8969 case 0x5b: /* FMUL */ 8970 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8971 break; 8972 case 0x5c: /* FCMGE */ 8973 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8974 break; 8975 case 0x5d: /* FACGE */ 8976 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8977 break; 8978 case 0x5f: /* FDIV */ 8979 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8980 break; 8981 case 0x7a: /* FABD */ 8982 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8983 gen_helper_vfp_absd(tcg_res, tcg_res); 8984 break; 8985 case 0x7c: /* FCMGT */ 8986 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8987 break; 8988 case 0x7d: /* FACGT */ 8989 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8990 break; 8991 default: 8992 g_assert_not_reached(); 8993 } 8994 8995 write_vec_element(s, tcg_res, rd, pass, MO_64); 8996 } else { 8997 /* Single */ 8998 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8999 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9000 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9001 9002 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9003 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9004 9005 switch (fpopcode) { 9006 case 0x39: /* FMLS */ 9007 /* As usual for ARM, separate negation for fused multiply-add */ 9008 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9009 /* fall through */ 9010 case 0x19: /* FMLA */ 9011 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9012 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9013 tcg_res, fpst); 9014 break; 9015 case 0x1a: /* FADD */ 9016 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9017 break; 9018 case 0x1b: /* FMULX */ 9019 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9020 break; 9021 case 0x1c: /* FCMEQ */ 9022 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9023 break; 9024 case 0x1e: /* FMAX */ 9025 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9026 break; 9027 case 0x1f: /* FRECPS */ 9028 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9029 break; 9030 case 0x18: /* FMAXNM */ 9031 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9032 break; 9033 case 0x38: /* FMINNM */ 9034 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9035 break; 9036 case 0x3a: /* FSUB */ 9037 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9038 break; 9039 case 0x3e: /* FMIN */ 9040 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9041 break; 9042 case 0x3f: /* FRSQRTS */ 9043 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9044 break; 9045 case 0x5b: /* FMUL */ 9046 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9047 break; 9048 case 0x5c: /* FCMGE */ 9049 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9050 break; 9051 case 0x5d: /* FACGE */ 9052 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9053 break; 9054 case 0x5f: /* FDIV */ 9055 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9056 break; 9057 case 0x7a: /* FABD */ 9058 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9059 gen_helper_vfp_abss(tcg_res, tcg_res); 9060 break; 9061 case 0x7c: /* FCMGT */ 9062 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9063 break; 9064 case 0x7d: /* FACGT */ 9065 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9066 break; 9067 default: 9068 g_assert_not_reached(); 9069 } 9070 9071 if (elements == 1) { 9072 /* scalar single so clear high part */ 9073 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9074 9075 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9076 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9077 } else { 9078 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9079 } 9080 } 9081 } 9082 9083 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9084 } 9085 9086 /* AdvSIMD scalar three same 9087 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9088 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9089 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9090 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9091 */ 9092 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9093 { 9094 int rd = extract32(insn, 0, 5); 9095 int rn = extract32(insn, 5, 5); 9096 int opcode = extract32(insn, 11, 5); 9097 int rm = extract32(insn, 16, 5); 9098 int size = extract32(insn, 22, 2); 9099 bool u = extract32(insn, 29, 1); 9100 TCGv_i64 tcg_rd; 9101 9102 if (opcode >= 0x18) { 9103 /* Floating point: U, size[1] and opcode indicate operation */ 9104 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9105 switch (fpopcode) { 9106 case 0x1b: /* FMULX */ 9107 case 0x1f: /* FRECPS */ 9108 case 0x3f: /* FRSQRTS */ 9109 case 0x5d: /* FACGE */ 9110 case 0x7d: /* FACGT */ 9111 case 0x1c: /* FCMEQ */ 9112 case 0x5c: /* FCMGE */ 9113 case 0x7c: /* FCMGT */ 9114 case 0x7a: /* FABD */ 9115 break; 9116 default: 9117 unallocated_encoding(s); 9118 return; 9119 } 9120 9121 if (!fp_access_check(s)) { 9122 return; 9123 } 9124 9125 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9126 return; 9127 } 9128 9129 switch (opcode) { 9130 case 0x1: /* SQADD, UQADD */ 9131 case 0x5: /* SQSUB, UQSUB */ 9132 case 0x9: /* SQSHL, UQSHL */ 9133 case 0xb: /* SQRSHL, UQRSHL */ 9134 break; 9135 case 0x8: /* SSHL, USHL */ 9136 case 0xa: /* SRSHL, URSHL */ 9137 case 0x6: /* CMGT, CMHI */ 9138 case 0x7: /* CMGE, CMHS */ 9139 case 0x11: /* CMTST, CMEQ */ 9140 case 0x10: /* ADD, SUB (vector) */ 9141 if (size != 3) { 9142 unallocated_encoding(s); 9143 return; 9144 } 9145 break; 9146 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9147 if (size != 1 && size != 2) { 9148 unallocated_encoding(s); 9149 return; 9150 } 9151 break; 9152 default: 9153 unallocated_encoding(s); 9154 return; 9155 } 9156 9157 if (!fp_access_check(s)) { 9158 return; 9159 } 9160 9161 tcg_rd = tcg_temp_new_i64(); 9162 9163 if (size == 3) { 9164 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9165 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9166 9167 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9168 } else { 9169 /* Do a single operation on the lowest element in the vector. 9170 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9171 * no side effects for all these operations. 9172 * OPTME: special-purpose helpers would avoid doing some 9173 * unnecessary work in the helper for the 8 and 16 bit cases. 9174 */ 9175 NeonGenTwoOpEnvFn *genenvfn; 9176 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9177 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9178 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9179 9180 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9181 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9182 9183 switch (opcode) { 9184 case 0x1: /* SQADD, UQADD */ 9185 { 9186 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9187 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9188 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9189 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9190 }; 9191 genenvfn = fns[size][u]; 9192 break; 9193 } 9194 case 0x5: /* SQSUB, UQSUB */ 9195 { 9196 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9197 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9198 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9199 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9200 }; 9201 genenvfn = fns[size][u]; 9202 break; 9203 } 9204 case 0x9: /* SQSHL, UQSHL */ 9205 { 9206 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9207 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9208 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9209 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9210 }; 9211 genenvfn = fns[size][u]; 9212 break; 9213 } 9214 case 0xb: /* SQRSHL, UQRSHL */ 9215 { 9216 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9217 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9218 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9219 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9220 }; 9221 genenvfn = fns[size][u]; 9222 break; 9223 } 9224 case 0x16: /* SQDMULH, SQRDMULH */ 9225 { 9226 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9227 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9228 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9229 }; 9230 assert(size == 1 || size == 2); 9231 genenvfn = fns[size - 1][u]; 9232 break; 9233 } 9234 default: 9235 g_assert_not_reached(); 9236 } 9237 9238 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9239 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9240 } 9241 9242 write_fp_dreg(s, rd, tcg_rd); 9243 } 9244 9245 /* AdvSIMD scalar three same FP16 9246 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9247 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9248 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9249 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9250 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9251 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9252 */ 9253 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9254 uint32_t insn) 9255 { 9256 int rd = extract32(insn, 0, 5); 9257 int rn = extract32(insn, 5, 5); 9258 int opcode = extract32(insn, 11, 3); 9259 int rm = extract32(insn, 16, 5); 9260 bool u = extract32(insn, 29, 1); 9261 bool a = extract32(insn, 23, 1); 9262 int fpopcode = opcode | (a << 3) | (u << 4); 9263 TCGv_ptr fpst; 9264 TCGv_i32 tcg_op1; 9265 TCGv_i32 tcg_op2; 9266 TCGv_i32 tcg_res; 9267 9268 switch (fpopcode) { 9269 case 0x03: /* FMULX */ 9270 case 0x04: /* FCMEQ (reg) */ 9271 case 0x07: /* FRECPS */ 9272 case 0x0f: /* FRSQRTS */ 9273 case 0x14: /* FCMGE (reg) */ 9274 case 0x15: /* FACGE */ 9275 case 0x1a: /* FABD */ 9276 case 0x1c: /* FCMGT (reg) */ 9277 case 0x1d: /* FACGT */ 9278 break; 9279 default: 9280 unallocated_encoding(s); 9281 return; 9282 } 9283 9284 if (!dc_isar_feature(aa64_fp16, s)) { 9285 unallocated_encoding(s); 9286 } 9287 9288 if (!fp_access_check(s)) { 9289 return; 9290 } 9291 9292 fpst = fpstatus_ptr(FPST_FPCR_F16); 9293 9294 tcg_op1 = read_fp_hreg(s, rn); 9295 tcg_op2 = read_fp_hreg(s, rm); 9296 tcg_res = tcg_temp_new_i32(); 9297 9298 switch (fpopcode) { 9299 case 0x03: /* FMULX */ 9300 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9301 break; 9302 case 0x04: /* FCMEQ (reg) */ 9303 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9304 break; 9305 case 0x07: /* FRECPS */ 9306 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9307 break; 9308 case 0x0f: /* FRSQRTS */ 9309 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9310 break; 9311 case 0x14: /* FCMGE (reg) */ 9312 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9313 break; 9314 case 0x15: /* FACGE */ 9315 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9316 break; 9317 case 0x1a: /* FABD */ 9318 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9319 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9320 break; 9321 case 0x1c: /* FCMGT (reg) */ 9322 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9323 break; 9324 case 0x1d: /* FACGT */ 9325 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9326 break; 9327 default: 9328 g_assert_not_reached(); 9329 } 9330 9331 write_fp_sreg(s, rd, tcg_res); 9332 } 9333 9334 /* AdvSIMD scalar three same extra 9335 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9336 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9337 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9338 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9339 */ 9340 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9341 uint32_t insn) 9342 { 9343 int rd = extract32(insn, 0, 5); 9344 int rn = extract32(insn, 5, 5); 9345 int opcode = extract32(insn, 11, 4); 9346 int rm = extract32(insn, 16, 5); 9347 int size = extract32(insn, 22, 2); 9348 bool u = extract32(insn, 29, 1); 9349 TCGv_i32 ele1, ele2, ele3; 9350 TCGv_i64 res; 9351 bool feature; 9352 9353 switch (u * 16 + opcode) { 9354 case 0x10: /* SQRDMLAH (vector) */ 9355 case 0x11: /* SQRDMLSH (vector) */ 9356 if (size != 1 && size != 2) { 9357 unallocated_encoding(s); 9358 return; 9359 } 9360 feature = dc_isar_feature(aa64_rdm, s); 9361 break; 9362 default: 9363 unallocated_encoding(s); 9364 return; 9365 } 9366 if (!feature) { 9367 unallocated_encoding(s); 9368 return; 9369 } 9370 if (!fp_access_check(s)) { 9371 return; 9372 } 9373 9374 /* Do a single operation on the lowest element in the vector. 9375 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9376 * with no side effects for all these operations. 9377 * OPTME: special-purpose helpers would avoid doing some 9378 * unnecessary work in the helper for the 16 bit cases. 9379 */ 9380 ele1 = tcg_temp_new_i32(); 9381 ele2 = tcg_temp_new_i32(); 9382 ele3 = tcg_temp_new_i32(); 9383 9384 read_vec_element_i32(s, ele1, rn, 0, size); 9385 read_vec_element_i32(s, ele2, rm, 0, size); 9386 read_vec_element_i32(s, ele3, rd, 0, size); 9387 9388 switch (opcode) { 9389 case 0x0: /* SQRDMLAH */ 9390 if (size == 1) { 9391 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9392 } else { 9393 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9394 } 9395 break; 9396 case 0x1: /* SQRDMLSH */ 9397 if (size == 1) { 9398 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9399 } else { 9400 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9401 } 9402 break; 9403 default: 9404 g_assert_not_reached(); 9405 } 9406 9407 res = tcg_temp_new_i64(); 9408 tcg_gen_extu_i32_i64(res, ele3); 9409 write_fp_dreg(s, rd, res); 9410 } 9411 9412 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9413 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9414 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9415 { 9416 /* Handle 64->64 opcodes which are shared between the scalar and 9417 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9418 * is valid in either group and also the double-precision fp ops. 9419 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9420 * requires them. 9421 */ 9422 TCGCond cond; 9423 9424 switch (opcode) { 9425 case 0x4: /* CLS, CLZ */ 9426 if (u) { 9427 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9428 } else { 9429 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9430 } 9431 break; 9432 case 0x5: /* NOT */ 9433 /* This opcode is shared with CNT and RBIT but we have earlier 9434 * enforced that size == 3 if and only if this is the NOT insn. 9435 */ 9436 tcg_gen_not_i64(tcg_rd, tcg_rn); 9437 break; 9438 case 0x7: /* SQABS, SQNEG */ 9439 if (u) { 9440 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9441 } else { 9442 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9443 } 9444 break; 9445 case 0xa: /* CMLT */ 9446 /* 64 bit integer comparison against zero, result is 9447 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9448 * subtracting 1. 9449 */ 9450 cond = TCG_COND_LT; 9451 do_cmop: 9452 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9453 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9454 break; 9455 case 0x8: /* CMGT, CMGE */ 9456 cond = u ? TCG_COND_GE : TCG_COND_GT; 9457 goto do_cmop; 9458 case 0x9: /* CMEQ, CMLE */ 9459 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9460 goto do_cmop; 9461 case 0xb: /* ABS, NEG */ 9462 if (u) { 9463 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9464 } else { 9465 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9466 } 9467 break; 9468 case 0x2f: /* FABS */ 9469 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9470 break; 9471 case 0x6f: /* FNEG */ 9472 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9473 break; 9474 case 0x7f: /* FSQRT */ 9475 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9476 break; 9477 case 0x1a: /* FCVTNS */ 9478 case 0x1b: /* FCVTMS */ 9479 case 0x1c: /* FCVTAS */ 9480 case 0x3a: /* FCVTPS */ 9481 case 0x3b: /* FCVTZS */ 9482 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9483 break; 9484 case 0x5a: /* FCVTNU */ 9485 case 0x5b: /* FCVTMU */ 9486 case 0x5c: /* FCVTAU */ 9487 case 0x7a: /* FCVTPU */ 9488 case 0x7b: /* FCVTZU */ 9489 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9490 break; 9491 case 0x18: /* FRINTN */ 9492 case 0x19: /* FRINTM */ 9493 case 0x38: /* FRINTP */ 9494 case 0x39: /* FRINTZ */ 9495 case 0x58: /* FRINTA */ 9496 case 0x79: /* FRINTI */ 9497 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9498 break; 9499 case 0x59: /* FRINTX */ 9500 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9501 break; 9502 case 0x1e: /* FRINT32Z */ 9503 case 0x5e: /* FRINT32X */ 9504 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9505 break; 9506 case 0x1f: /* FRINT64Z */ 9507 case 0x5f: /* FRINT64X */ 9508 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9509 break; 9510 default: 9511 g_assert_not_reached(); 9512 } 9513 } 9514 9515 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9516 bool is_scalar, bool is_u, bool is_q, 9517 int size, int rn, int rd) 9518 { 9519 bool is_double = (size == MO_64); 9520 TCGv_ptr fpst; 9521 9522 if (!fp_access_check(s)) { 9523 return; 9524 } 9525 9526 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9527 9528 if (is_double) { 9529 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9530 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9531 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9532 NeonGenTwoDoubleOpFn *genfn; 9533 bool swap = false; 9534 int pass; 9535 9536 switch (opcode) { 9537 case 0x2e: /* FCMLT (zero) */ 9538 swap = true; 9539 /* fallthrough */ 9540 case 0x2c: /* FCMGT (zero) */ 9541 genfn = gen_helper_neon_cgt_f64; 9542 break; 9543 case 0x2d: /* FCMEQ (zero) */ 9544 genfn = gen_helper_neon_ceq_f64; 9545 break; 9546 case 0x6d: /* FCMLE (zero) */ 9547 swap = true; 9548 /* fall through */ 9549 case 0x6c: /* FCMGE (zero) */ 9550 genfn = gen_helper_neon_cge_f64; 9551 break; 9552 default: 9553 g_assert_not_reached(); 9554 } 9555 9556 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9557 read_vec_element(s, tcg_op, rn, pass, MO_64); 9558 if (swap) { 9559 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9560 } else { 9561 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9562 } 9563 write_vec_element(s, tcg_res, rd, pass, MO_64); 9564 } 9565 9566 clear_vec_high(s, !is_scalar, rd); 9567 } else { 9568 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9569 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9570 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9571 NeonGenTwoSingleOpFn *genfn; 9572 bool swap = false; 9573 int pass, maxpasses; 9574 9575 if (size == MO_16) { 9576 switch (opcode) { 9577 case 0x2e: /* FCMLT (zero) */ 9578 swap = true; 9579 /* fall through */ 9580 case 0x2c: /* FCMGT (zero) */ 9581 genfn = gen_helper_advsimd_cgt_f16; 9582 break; 9583 case 0x2d: /* FCMEQ (zero) */ 9584 genfn = gen_helper_advsimd_ceq_f16; 9585 break; 9586 case 0x6d: /* FCMLE (zero) */ 9587 swap = true; 9588 /* fall through */ 9589 case 0x6c: /* FCMGE (zero) */ 9590 genfn = gen_helper_advsimd_cge_f16; 9591 break; 9592 default: 9593 g_assert_not_reached(); 9594 } 9595 } else { 9596 switch (opcode) { 9597 case 0x2e: /* FCMLT (zero) */ 9598 swap = true; 9599 /* fall through */ 9600 case 0x2c: /* FCMGT (zero) */ 9601 genfn = gen_helper_neon_cgt_f32; 9602 break; 9603 case 0x2d: /* FCMEQ (zero) */ 9604 genfn = gen_helper_neon_ceq_f32; 9605 break; 9606 case 0x6d: /* FCMLE (zero) */ 9607 swap = true; 9608 /* fall through */ 9609 case 0x6c: /* FCMGE (zero) */ 9610 genfn = gen_helper_neon_cge_f32; 9611 break; 9612 default: 9613 g_assert_not_reached(); 9614 } 9615 } 9616 9617 if (is_scalar) { 9618 maxpasses = 1; 9619 } else { 9620 int vector_size = 8 << is_q; 9621 maxpasses = vector_size >> size; 9622 } 9623 9624 for (pass = 0; pass < maxpasses; pass++) { 9625 read_vec_element_i32(s, tcg_op, rn, pass, size); 9626 if (swap) { 9627 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9628 } else { 9629 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9630 } 9631 if (is_scalar) { 9632 write_fp_sreg(s, rd, tcg_res); 9633 } else { 9634 write_vec_element_i32(s, tcg_res, rd, pass, size); 9635 } 9636 } 9637 9638 if (!is_scalar) { 9639 clear_vec_high(s, is_q, rd); 9640 } 9641 } 9642 } 9643 9644 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9645 bool is_scalar, bool is_u, bool is_q, 9646 int size, int rn, int rd) 9647 { 9648 bool is_double = (size == 3); 9649 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9650 9651 if (is_double) { 9652 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9653 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9654 int pass; 9655 9656 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9657 read_vec_element(s, tcg_op, rn, pass, MO_64); 9658 switch (opcode) { 9659 case 0x3d: /* FRECPE */ 9660 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9661 break; 9662 case 0x3f: /* FRECPX */ 9663 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9664 break; 9665 case 0x7d: /* FRSQRTE */ 9666 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9667 break; 9668 default: 9669 g_assert_not_reached(); 9670 } 9671 write_vec_element(s, tcg_res, rd, pass, MO_64); 9672 } 9673 clear_vec_high(s, !is_scalar, rd); 9674 } else { 9675 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9676 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9677 int pass, maxpasses; 9678 9679 if (is_scalar) { 9680 maxpasses = 1; 9681 } else { 9682 maxpasses = is_q ? 4 : 2; 9683 } 9684 9685 for (pass = 0; pass < maxpasses; pass++) { 9686 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9687 9688 switch (opcode) { 9689 case 0x3c: /* URECPE */ 9690 gen_helper_recpe_u32(tcg_res, tcg_op); 9691 break; 9692 case 0x3d: /* FRECPE */ 9693 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9694 break; 9695 case 0x3f: /* FRECPX */ 9696 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9697 break; 9698 case 0x7d: /* FRSQRTE */ 9699 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9700 break; 9701 default: 9702 g_assert_not_reached(); 9703 } 9704 9705 if (is_scalar) { 9706 write_fp_sreg(s, rd, tcg_res); 9707 } else { 9708 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9709 } 9710 } 9711 if (!is_scalar) { 9712 clear_vec_high(s, is_q, rd); 9713 } 9714 } 9715 } 9716 9717 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9718 int opcode, bool u, bool is_q, 9719 int size, int rn, int rd) 9720 { 9721 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9722 * in the source becomes a size element in the destination). 9723 */ 9724 int pass; 9725 TCGv_i32 tcg_res[2]; 9726 int destelt = is_q ? 2 : 0; 9727 int passes = scalar ? 1 : 2; 9728 9729 if (scalar) { 9730 tcg_res[1] = tcg_constant_i32(0); 9731 } 9732 9733 for (pass = 0; pass < passes; pass++) { 9734 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9735 NeonGenNarrowFn *genfn = NULL; 9736 NeonGenNarrowEnvFn *genenvfn = NULL; 9737 9738 if (scalar) { 9739 read_vec_element(s, tcg_op, rn, pass, size + 1); 9740 } else { 9741 read_vec_element(s, tcg_op, rn, pass, MO_64); 9742 } 9743 tcg_res[pass] = tcg_temp_new_i32(); 9744 9745 switch (opcode) { 9746 case 0x12: /* XTN, SQXTUN */ 9747 { 9748 static NeonGenNarrowFn * const xtnfns[3] = { 9749 gen_helper_neon_narrow_u8, 9750 gen_helper_neon_narrow_u16, 9751 tcg_gen_extrl_i64_i32, 9752 }; 9753 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9754 gen_helper_neon_unarrow_sat8, 9755 gen_helper_neon_unarrow_sat16, 9756 gen_helper_neon_unarrow_sat32, 9757 }; 9758 if (u) { 9759 genenvfn = sqxtunfns[size]; 9760 } else { 9761 genfn = xtnfns[size]; 9762 } 9763 break; 9764 } 9765 case 0x14: /* SQXTN, UQXTN */ 9766 { 9767 static NeonGenNarrowEnvFn * const fns[3][2] = { 9768 { gen_helper_neon_narrow_sat_s8, 9769 gen_helper_neon_narrow_sat_u8 }, 9770 { gen_helper_neon_narrow_sat_s16, 9771 gen_helper_neon_narrow_sat_u16 }, 9772 { gen_helper_neon_narrow_sat_s32, 9773 gen_helper_neon_narrow_sat_u32 }, 9774 }; 9775 genenvfn = fns[size][u]; 9776 break; 9777 } 9778 case 0x16: /* FCVTN, FCVTN2 */ 9779 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9780 if (size == 2) { 9781 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9782 } else { 9783 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9784 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9785 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9786 TCGv_i32 ahp = get_ahp_flag(); 9787 9788 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9789 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9790 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9791 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9792 } 9793 break; 9794 case 0x36: /* BFCVTN, BFCVTN2 */ 9795 { 9796 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9797 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9798 } 9799 break; 9800 case 0x56: /* FCVTXN, FCVTXN2 */ 9801 /* 64 bit to 32 bit float conversion 9802 * with von Neumann rounding (round to odd) 9803 */ 9804 assert(size == 2); 9805 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9806 break; 9807 default: 9808 g_assert_not_reached(); 9809 } 9810 9811 if (genfn) { 9812 genfn(tcg_res[pass], tcg_op); 9813 } else if (genenvfn) { 9814 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9815 } 9816 } 9817 9818 for (pass = 0; pass < 2; pass++) { 9819 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9820 } 9821 clear_vec_high(s, is_q, rd); 9822 } 9823 9824 /* Remaining saturating accumulating ops */ 9825 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9826 bool is_q, int size, int rn, int rd) 9827 { 9828 bool is_double = (size == 3); 9829 9830 if (is_double) { 9831 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9832 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9833 int pass; 9834 9835 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9836 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9837 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9838 9839 if (is_u) { /* USQADD */ 9840 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9841 } else { /* SUQADD */ 9842 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9843 } 9844 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9845 } 9846 clear_vec_high(s, !is_scalar, rd); 9847 } else { 9848 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9849 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9850 int pass, maxpasses; 9851 9852 if (is_scalar) { 9853 maxpasses = 1; 9854 } else { 9855 maxpasses = is_q ? 4 : 2; 9856 } 9857 9858 for (pass = 0; pass < maxpasses; pass++) { 9859 if (is_scalar) { 9860 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9861 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9862 } else { 9863 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9864 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9865 } 9866 9867 if (is_u) { /* USQADD */ 9868 switch (size) { 9869 case 0: 9870 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9871 break; 9872 case 1: 9873 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9874 break; 9875 case 2: 9876 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9877 break; 9878 default: 9879 g_assert_not_reached(); 9880 } 9881 } else { /* SUQADD */ 9882 switch (size) { 9883 case 0: 9884 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9885 break; 9886 case 1: 9887 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9888 break; 9889 case 2: 9890 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9891 break; 9892 default: 9893 g_assert_not_reached(); 9894 } 9895 } 9896 9897 if (is_scalar) { 9898 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9899 } 9900 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9901 } 9902 clear_vec_high(s, is_q, rd); 9903 } 9904 } 9905 9906 /* AdvSIMD scalar two reg misc 9907 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9908 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9909 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9910 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9911 */ 9912 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9913 { 9914 int rd = extract32(insn, 0, 5); 9915 int rn = extract32(insn, 5, 5); 9916 int opcode = extract32(insn, 12, 5); 9917 int size = extract32(insn, 22, 2); 9918 bool u = extract32(insn, 29, 1); 9919 bool is_fcvt = false; 9920 int rmode; 9921 TCGv_i32 tcg_rmode; 9922 TCGv_ptr tcg_fpstatus; 9923 9924 switch (opcode) { 9925 case 0x3: /* USQADD / SUQADD*/ 9926 if (!fp_access_check(s)) { 9927 return; 9928 } 9929 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9930 return; 9931 case 0x7: /* SQABS / SQNEG */ 9932 break; 9933 case 0xa: /* CMLT */ 9934 if (u) { 9935 unallocated_encoding(s); 9936 return; 9937 } 9938 /* fall through */ 9939 case 0x8: /* CMGT, CMGE */ 9940 case 0x9: /* CMEQ, CMLE */ 9941 case 0xb: /* ABS, NEG */ 9942 if (size != 3) { 9943 unallocated_encoding(s); 9944 return; 9945 } 9946 break; 9947 case 0x12: /* SQXTUN */ 9948 if (!u) { 9949 unallocated_encoding(s); 9950 return; 9951 } 9952 /* fall through */ 9953 case 0x14: /* SQXTN, UQXTN */ 9954 if (size == 3) { 9955 unallocated_encoding(s); 9956 return; 9957 } 9958 if (!fp_access_check(s)) { 9959 return; 9960 } 9961 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9962 return; 9963 case 0xc ... 0xf: 9964 case 0x16 ... 0x1d: 9965 case 0x1f: 9966 /* Floating point: U, size[1] and opcode indicate operation; 9967 * size[0] indicates single or double precision. 9968 */ 9969 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9970 size = extract32(size, 0, 1) ? 3 : 2; 9971 switch (opcode) { 9972 case 0x2c: /* FCMGT (zero) */ 9973 case 0x2d: /* FCMEQ (zero) */ 9974 case 0x2e: /* FCMLT (zero) */ 9975 case 0x6c: /* FCMGE (zero) */ 9976 case 0x6d: /* FCMLE (zero) */ 9977 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9978 return; 9979 case 0x1d: /* SCVTF */ 9980 case 0x5d: /* UCVTF */ 9981 { 9982 bool is_signed = (opcode == 0x1d); 9983 if (!fp_access_check(s)) { 9984 return; 9985 } 9986 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9987 return; 9988 } 9989 case 0x3d: /* FRECPE */ 9990 case 0x3f: /* FRECPX */ 9991 case 0x7d: /* FRSQRTE */ 9992 if (!fp_access_check(s)) { 9993 return; 9994 } 9995 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9996 return; 9997 case 0x1a: /* FCVTNS */ 9998 case 0x1b: /* FCVTMS */ 9999 case 0x3a: /* FCVTPS */ 10000 case 0x3b: /* FCVTZS */ 10001 case 0x5a: /* FCVTNU */ 10002 case 0x5b: /* FCVTMU */ 10003 case 0x7a: /* FCVTPU */ 10004 case 0x7b: /* FCVTZU */ 10005 is_fcvt = true; 10006 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10007 break; 10008 case 0x1c: /* FCVTAS */ 10009 case 0x5c: /* FCVTAU */ 10010 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10011 is_fcvt = true; 10012 rmode = FPROUNDING_TIEAWAY; 10013 break; 10014 case 0x56: /* FCVTXN, FCVTXN2 */ 10015 if (size == 2) { 10016 unallocated_encoding(s); 10017 return; 10018 } 10019 if (!fp_access_check(s)) { 10020 return; 10021 } 10022 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10023 return; 10024 default: 10025 unallocated_encoding(s); 10026 return; 10027 } 10028 break; 10029 default: 10030 unallocated_encoding(s); 10031 return; 10032 } 10033 10034 if (!fp_access_check(s)) { 10035 return; 10036 } 10037 10038 if (is_fcvt) { 10039 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10040 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10041 } else { 10042 tcg_fpstatus = NULL; 10043 tcg_rmode = NULL; 10044 } 10045 10046 if (size == 3) { 10047 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10048 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10049 10050 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10051 write_fp_dreg(s, rd, tcg_rd); 10052 } else { 10053 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10054 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10055 10056 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10057 10058 switch (opcode) { 10059 case 0x7: /* SQABS, SQNEG */ 10060 { 10061 NeonGenOneOpEnvFn *genfn; 10062 static NeonGenOneOpEnvFn * const fns[3][2] = { 10063 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10064 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10065 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10066 }; 10067 genfn = fns[size][u]; 10068 genfn(tcg_rd, cpu_env, tcg_rn); 10069 break; 10070 } 10071 case 0x1a: /* FCVTNS */ 10072 case 0x1b: /* FCVTMS */ 10073 case 0x1c: /* FCVTAS */ 10074 case 0x3a: /* FCVTPS */ 10075 case 0x3b: /* FCVTZS */ 10076 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10077 tcg_fpstatus); 10078 break; 10079 case 0x5a: /* FCVTNU */ 10080 case 0x5b: /* FCVTMU */ 10081 case 0x5c: /* FCVTAU */ 10082 case 0x7a: /* FCVTPU */ 10083 case 0x7b: /* FCVTZU */ 10084 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10085 tcg_fpstatus); 10086 break; 10087 default: 10088 g_assert_not_reached(); 10089 } 10090 10091 write_fp_sreg(s, rd, tcg_rd); 10092 } 10093 10094 if (is_fcvt) { 10095 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10096 } 10097 } 10098 10099 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10100 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10101 int immh, int immb, int opcode, int rn, int rd) 10102 { 10103 int size = 32 - clz32(immh) - 1; 10104 int immhb = immh << 3 | immb; 10105 int shift = 2 * (8 << size) - immhb; 10106 GVecGen2iFn *gvec_fn; 10107 10108 if (extract32(immh, 3, 1) && !is_q) { 10109 unallocated_encoding(s); 10110 return; 10111 } 10112 tcg_debug_assert(size <= 3); 10113 10114 if (!fp_access_check(s)) { 10115 return; 10116 } 10117 10118 switch (opcode) { 10119 case 0x02: /* SSRA / USRA (accumulate) */ 10120 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10121 break; 10122 10123 case 0x08: /* SRI */ 10124 gvec_fn = gen_gvec_sri; 10125 break; 10126 10127 case 0x00: /* SSHR / USHR */ 10128 if (is_u) { 10129 if (shift == 8 << size) { 10130 /* Shift count the same size as element size produces zero. */ 10131 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10132 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10133 return; 10134 } 10135 gvec_fn = tcg_gen_gvec_shri; 10136 } else { 10137 /* Shift count the same size as element size produces all sign. */ 10138 if (shift == 8 << size) { 10139 shift -= 1; 10140 } 10141 gvec_fn = tcg_gen_gvec_sari; 10142 } 10143 break; 10144 10145 case 0x04: /* SRSHR / URSHR (rounding) */ 10146 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10147 break; 10148 10149 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10150 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10151 break; 10152 10153 default: 10154 g_assert_not_reached(); 10155 } 10156 10157 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10158 } 10159 10160 /* SHL/SLI - Vector shift left */ 10161 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10162 int immh, int immb, int opcode, int rn, int rd) 10163 { 10164 int size = 32 - clz32(immh) - 1; 10165 int immhb = immh << 3 | immb; 10166 int shift = immhb - (8 << size); 10167 10168 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10169 assert(size >= 0 && size <= 3); 10170 10171 if (extract32(immh, 3, 1) && !is_q) { 10172 unallocated_encoding(s); 10173 return; 10174 } 10175 10176 if (!fp_access_check(s)) { 10177 return; 10178 } 10179 10180 if (insert) { 10181 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10182 } else { 10183 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10184 } 10185 } 10186 10187 /* USHLL/SHLL - Vector shift left with widening */ 10188 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10189 int immh, int immb, int opcode, int rn, int rd) 10190 { 10191 int size = 32 - clz32(immh) - 1; 10192 int immhb = immh << 3 | immb; 10193 int shift = immhb - (8 << size); 10194 int dsize = 64; 10195 int esize = 8 << size; 10196 int elements = dsize/esize; 10197 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10198 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10199 int i; 10200 10201 if (size >= 3) { 10202 unallocated_encoding(s); 10203 return; 10204 } 10205 10206 if (!fp_access_check(s)) { 10207 return; 10208 } 10209 10210 /* For the LL variants the store is larger than the load, 10211 * so if rd == rn we would overwrite parts of our input. 10212 * So load everything right now and use shifts in the main loop. 10213 */ 10214 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10215 10216 for (i = 0; i < elements; i++) { 10217 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10218 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10219 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10220 write_vec_element(s, tcg_rd, rd, i, size + 1); 10221 } 10222 } 10223 10224 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10225 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10226 int immh, int immb, int opcode, int rn, int rd) 10227 { 10228 int immhb = immh << 3 | immb; 10229 int size = 32 - clz32(immh) - 1; 10230 int dsize = 64; 10231 int esize = 8 << size; 10232 int elements = dsize/esize; 10233 int shift = (2 * esize) - immhb; 10234 bool round = extract32(opcode, 0, 1); 10235 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10236 TCGv_i64 tcg_round; 10237 int i; 10238 10239 if (extract32(immh, 3, 1)) { 10240 unallocated_encoding(s); 10241 return; 10242 } 10243 10244 if (!fp_access_check(s)) { 10245 return; 10246 } 10247 10248 tcg_rn = tcg_temp_new_i64(); 10249 tcg_rd = tcg_temp_new_i64(); 10250 tcg_final = tcg_temp_new_i64(); 10251 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10252 10253 if (round) { 10254 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10255 } else { 10256 tcg_round = NULL; 10257 } 10258 10259 for (i = 0; i < elements; i++) { 10260 read_vec_element(s, tcg_rn, rn, i, size+1); 10261 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10262 false, true, size+1, shift); 10263 10264 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10265 } 10266 10267 if (!is_q) { 10268 write_vec_element(s, tcg_final, rd, 0, MO_64); 10269 } else { 10270 write_vec_element(s, tcg_final, rd, 1, MO_64); 10271 } 10272 10273 clear_vec_high(s, is_q, rd); 10274 } 10275 10276 10277 /* AdvSIMD shift by immediate 10278 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10279 * +---+---+---+-------------+------+------+--------+---+------+------+ 10280 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10281 * +---+---+---+-------------+------+------+--------+---+------+------+ 10282 */ 10283 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10284 { 10285 int rd = extract32(insn, 0, 5); 10286 int rn = extract32(insn, 5, 5); 10287 int opcode = extract32(insn, 11, 5); 10288 int immb = extract32(insn, 16, 3); 10289 int immh = extract32(insn, 19, 4); 10290 bool is_u = extract32(insn, 29, 1); 10291 bool is_q = extract32(insn, 30, 1); 10292 10293 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10294 assert(immh != 0); 10295 10296 switch (opcode) { 10297 case 0x08: /* SRI */ 10298 if (!is_u) { 10299 unallocated_encoding(s); 10300 return; 10301 } 10302 /* fall through */ 10303 case 0x00: /* SSHR / USHR */ 10304 case 0x02: /* SSRA / USRA (accumulate) */ 10305 case 0x04: /* SRSHR / URSHR (rounding) */ 10306 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10307 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10308 break; 10309 case 0x0a: /* SHL / SLI */ 10310 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10311 break; 10312 case 0x10: /* SHRN */ 10313 case 0x11: /* RSHRN / SQRSHRUN */ 10314 if (is_u) { 10315 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10316 opcode, rn, rd); 10317 } else { 10318 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10319 } 10320 break; 10321 case 0x12: /* SQSHRN / UQSHRN */ 10322 case 0x13: /* SQRSHRN / UQRSHRN */ 10323 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10324 opcode, rn, rd); 10325 break; 10326 case 0x14: /* SSHLL / USHLL */ 10327 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10328 break; 10329 case 0x1c: /* SCVTF / UCVTF */ 10330 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10331 opcode, rn, rd); 10332 break; 10333 case 0xc: /* SQSHLU */ 10334 if (!is_u) { 10335 unallocated_encoding(s); 10336 return; 10337 } 10338 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10339 break; 10340 case 0xe: /* SQSHL, UQSHL */ 10341 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10342 break; 10343 case 0x1f: /* FCVTZS/ FCVTZU */ 10344 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10345 return; 10346 default: 10347 unallocated_encoding(s); 10348 return; 10349 } 10350 } 10351 10352 /* Generate code to do a "long" addition or subtraction, ie one done in 10353 * TCGv_i64 on vector lanes twice the width specified by size. 10354 */ 10355 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10356 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10357 { 10358 static NeonGenTwo64OpFn * const fns[3][2] = { 10359 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10360 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10361 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10362 }; 10363 NeonGenTwo64OpFn *genfn; 10364 assert(size < 3); 10365 10366 genfn = fns[size][is_sub]; 10367 genfn(tcg_res, tcg_op1, tcg_op2); 10368 } 10369 10370 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10371 int opcode, int rd, int rn, int rm) 10372 { 10373 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10374 TCGv_i64 tcg_res[2]; 10375 int pass, accop; 10376 10377 tcg_res[0] = tcg_temp_new_i64(); 10378 tcg_res[1] = tcg_temp_new_i64(); 10379 10380 /* Does this op do an adding accumulate, a subtracting accumulate, 10381 * or no accumulate at all? 10382 */ 10383 switch (opcode) { 10384 case 5: 10385 case 8: 10386 case 9: 10387 accop = 1; 10388 break; 10389 case 10: 10390 case 11: 10391 accop = -1; 10392 break; 10393 default: 10394 accop = 0; 10395 break; 10396 } 10397 10398 if (accop != 0) { 10399 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10400 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10401 } 10402 10403 /* size == 2 means two 32x32->64 operations; this is worth special 10404 * casing because we can generally handle it inline. 10405 */ 10406 if (size == 2) { 10407 for (pass = 0; pass < 2; pass++) { 10408 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10409 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10410 TCGv_i64 tcg_passres; 10411 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10412 10413 int elt = pass + is_q * 2; 10414 10415 read_vec_element(s, tcg_op1, rn, elt, memop); 10416 read_vec_element(s, tcg_op2, rm, elt, memop); 10417 10418 if (accop == 0) { 10419 tcg_passres = tcg_res[pass]; 10420 } else { 10421 tcg_passres = tcg_temp_new_i64(); 10422 } 10423 10424 switch (opcode) { 10425 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10426 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10427 break; 10428 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10429 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10430 break; 10431 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10432 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10433 { 10434 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10435 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10436 10437 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10438 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10439 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10440 tcg_passres, 10441 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10442 break; 10443 } 10444 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10445 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10446 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10447 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10448 break; 10449 case 9: /* SQDMLAL, SQDMLAL2 */ 10450 case 11: /* SQDMLSL, SQDMLSL2 */ 10451 case 13: /* SQDMULL, SQDMULL2 */ 10452 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10453 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10454 tcg_passres, tcg_passres); 10455 break; 10456 default: 10457 g_assert_not_reached(); 10458 } 10459 10460 if (opcode == 9 || opcode == 11) { 10461 /* saturating accumulate ops */ 10462 if (accop < 0) { 10463 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10464 } 10465 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10466 tcg_res[pass], tcg_passres); 10467 } else if (accop > 0) { 10468 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10469 } else if (accop < 0) { 10470 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10471 } 10472 } 10473 } else { 10474 /* size 0 or 1, generally helper functions */ 10475 for (pass = 0; pass < 2; pass++) { 10476 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10477 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10478 TCGv_i64 tcg_passres; 10479 int elt = pass + is_q * 2; 10480 10481 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10482 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10483 10484 if (accop == 0) { 10485 tcg_passres = tcg_res[pass]; 10486 } else { 10487 tcg_passres = tcg_temp_new_i64(); 10488 } 10489 10490 switch (opcode) { 10491 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10492 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10493 { 10494 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10495 static NeonGenWidenFn * const widenfns[2][2] = { 10496 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10497 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10498 }; 10499 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10500 10501 widenfn(tcg_op2_64, tcg_op2); 10502 widenfn(tcg_passres, tcg_op1); 10503 gen_neon_addl(size, (opcode == 2), tcg_passres, 10504 tcg_passres, tcg_op2_64); 10505 break; 10506 } 10507 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10508 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10509 if (size == 0) { 10510 if (is_u) { 10511 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10512 } else { 10513 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10514 } 10515 } else { 10516 if (is_u) { 10517 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10518 } else { 10519 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10520 } 10521 } 10522 break; 10523 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10524 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10525 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10526 if (size == 0) { 10527 if (is_u) { 10528 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10529 } else { 10530 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10531 } 10532 } else { 10533 if (is_u) { 10534 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10535 } else { 10536 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10537 } 10538 } 10539 break; 10540 case 9: /* SQDMLAL, SQDMLAL2 */ 10541 case 11: /* SQDMLSL, SQDMLSL2 */ 10542 case 13: /* SQDMULL, SQDMULL2 */ 10543 assert(size == 1); 10544 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10545 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10546 tcg_passres, tcg_passres); 10547 break; 10548 default: 10549 g_assert_not_reached(); 10550 } 10551 10552 if (accop != 0) { 10553 if (opcode == 9 || opcode == 11) { 10554 /* saturating accumulate ops */ 10555 if (accop < 0) { 10556 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10557 } 10558 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10559 tcg_res[pass], 10560 tcg_passres); 10561 } else { 10562 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10563 tcg_res[pass], tcg_passres); 10564 } 10565 } 10566 } 10567 } 10568 10569 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10570 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10571 } 10572 10573 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10574 int opcode, int rd, int rn, int rm) 10575 { 10576 TCGv_i64 tcg_res[2]; 10577 int part = is_q ? 2 : 0; 10578 int pass; 10579 10580 for (pass = 0; pass < 2; pass++) { 10581 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10582 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10583 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10584 static NeonGenWidenFn * const widenfns[3][2] = { 10585 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10586 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10587 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10588 }; 10589 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10590 10591 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10592 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10593 widenfn(tcg_op2_wide, tcg_op2); 10594 tcg_res[pass] = tcg_temp_new_i64(); 10595 gen_neon_addl(size, (opcode == 3), 10596 tcg_res[pass], tcg_op1, tcg_op2_wide); 10597 } 10598 10599 for (pass = 0; pass < 2; pass++) { 10600 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10601 } 10602 } 10603 10604 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10605 { 10606 tcg_gen_addi_i64(in, in, 1U << 31); 10607 tcg_gen_extrh_i64_i32(res, in); 10608 } 10609 10610 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10611 int opcode, int rd, int rn, int rm) 10612 { 10613 TCGv_i32 tcg_res[2]; 10614 int part = is_q ? 2 : 0; 10615 int pass; 10616 10617 for (pass = 0; pass < 2; pass++) { 10618 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10619 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10620 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10621 static NeonGenNarrowFn * const narrowfns[3][2] = { 10622 { gen_helper_neon_narrow_high_u8, 10623 gen_helper_neon_narrow_round_high_u8 }, 10624 { gen_helper_neon_narrow_high_u16, 10625 gen_helper_neon_narrow_round_high_u16 }, 10626 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10627 }; 10628 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10629 10630 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10631 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10632 10633 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10634 10635 tcg_res[pass] = tcg_temp_new_i32(); 10636 gennarrow(tcg_res[pass], tcg_wideres); 10637 } 10638 10639 for (pass = 0; pass < 2; pass++) { 10640 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10641 } 10642 clear_vec_high(s, is_q, rd); 10643 } 10644 10645 /* AdvSIMD three different 10646 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10647 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10648 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10649 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10650 */ 10651 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10652 { 10653 /* Instructions in this group fall into three basic classes 10654 * (in each case with the operation working on each element in 10655 * the input vectors): 10656 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10657 * 128 bit input) 10658 * (2) wide 64 x 128 -> 128 10659 * (3) narrowing 128 x 128 -> 64 10660 * Here we do initial decode, catch unallocated cases and 10661 * dispatch to separate functions for each class. 10662 */ 10663 int is_q = extract32(insn, 30, 1); 10664 int is_u = extract32(insn, 29, 1); 10665 int size = extract32(insn, 22, 2); 10666 int opcode = extract32(insn, 12, 4); 10667 int rm = extract32(insn, 16, 5); 10668 int rn = extract32(insn, 5, 5); 10669 int rd = extract32(insn, 0, 5); 10670 10671 switch (opcode) { 10672 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10673 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10674 /* 64 x 128 -> 128 */ 10675 if (size == 3) { 10676 unallocated_encoding(s); 10677 return; 10678 } 10679 if (!fp_access_check(s)) { 10680 return; 10681 } 10682 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10683 break; 10684 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10685 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10686 /* 128 x 128 -> 64 */ 10687 if (size == 3) { 10688 unallocated_encoding(s); 10689 return; 10690 } 10691 if (!fp_access_check(s)) { 10692 return; 10693 } 10694 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10695 break; 10696 case 14: /* PMULL, PMULL2 */ 10697 if (is_u) { 10698 unallocated_encoding(s); 10699 return; 10700 } 10701 switch (size) { 10702 case 0: /* PMULL.P8 */ 10703 if (!fp_access_check(s)) { 10704 return; 10705 } 10706 /* The Q field specifies lo/hi half input for this insn. */ 10707 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10708 gen_helper_neon_pmull_h); 10709 break; 10710 10711 case 3: /* PMULL.P64 */ 10712 if (!dc_isar_feature(aa64_pmull, s)) { 10713 unallocated_encoding(s); 10714 return; 10715 } 10716 if (!fp_access_check(s)) { 10717 return; 10718 } 10719 /* The Q field specifies lo/hi half input for this insn. */ 10720 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10721 gen_helper_gvec_pmull_q); 10722 break; 10723 10724 default: 10725 unallocated_encoding(s); 10726 break; 10727 } 10728 return; 10729 case 9: /* SQDMLAL, SQDMLAL2 */ 10730 case 11: /* SQDMLSL, SQDMLSL2 */ 10731 case 13: /* SQDMULL, SQDMULL2 */ 10732 if (is_u || size == 0) { 10733 unallocated_encoding(s); 10734 return; 10735 } 10736 /* fall through */ 10737 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10738 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10739 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10740 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10741 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10742 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10743 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10744 /* 64 x 64 -> 128 */ 10745 if (size == 3) { 10746 unallocated_encoding(s); 10747 return; 10748 } 10749 if (!fp_access_check(s)) { 10750 return; 10751 } 10752 10753 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10754 break; 10755 default: 10756 /* opcode 15 not allocated */ 10757 unallocated_encoding(s); 10758 break; 10759 } 10760 } 10761 10762 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10763 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10764 { 10765 int rd = extract32(insn, 0, 5); 10766 int rn = extract32(insn, 5, 5); 10767 int rm = extract32(insn, 16, 5); 10768 int size = extract32(insn, 22, 2); 10769 bool is_u = extract32(insn, 29, 1); 10770 bool is_q = extract32(insn, 30, 1); 10771 10772 if (!fp_access_check(s)) { 10773 return; 10774 } 10775 10776 switch (size + 4 * is_u) { 10777 case 0: /* AND */ 10778 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10779 return; 10780 case 1: /* BIC */ 10781 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10782 return; 10783 case 2: /* ORR */ 10784 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10785 return; 10786 case 3: /* ORN */ 10787 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10788 return; 10789 case 4: /* EOR */ 10790 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10791 return; 10792 10793 case 5: /* BSL bitwise select */ 10794 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10795 return; 10796 case 6: /* BIT, bitwise insert if true */ 10797 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10798 return; 10799 case 7: /* BIF, bitwise insert if false */ 10800 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10801 return; 10802 10803 default: 10804 g_assert_not_reached(); 10805 } 10806 } 10807 10808 /* Pairwise op subgroup of C3.6.16. 10809 * 10810 * This is called directly or via the handle_3same_float for float pairwise 10811 * operations where the opcode and size are calculated differently. 10812 */ 10813 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10814 int size, int rn, int rm, int rd) 10815 { 10816 TCGv_ptr fpst; 10817 int pass; 10818 10819 /* Floating point operations need fpst */ 10820 if (opcode >= 0x58) { 10821 fpst = fpstatus_ptr(FPST_FPCR); 10822 } else { 10823 fpst = NULL; 10824 } 10825 10826 if (!fp_access_check(s)) { 10827 return; 10828 } 10829 10830 /* These operations work on the concatenated rm:rn, with each pair of 10831 * adjacent elements being operated on to produce an element in the result. 10832 */ 10833 if (size == 3) { 10834 TCGv_i64 tcg_res[2]; 10835 10836 for (pass = 0; pass < 2; pass++) { 10837 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10838 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10839 int passreg = (pass == 0) ? rn : rm; 10840 10841 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10842 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10843 tcg_res[pass] = tcg_temp_new_i64(); 10844 10845 switch (opcode) { 10846 case 0x17: /* ADDP */ 10847 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10848 break; 10849 case 0x58: /* FMAXNMP */ 10850 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10851 break; 10852 case 0x5a: /* FADDP */ 10853 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10854 break; 10855 case 0x5e: /* FMAXP */ 10856 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10857 break; 10858 case 0x78: /* FMINNMP */ 10859 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10860 break; 10861 case 0x7e: /* FMINP */ 10862 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10863 break; 10864 default: 10865 g_assert_not_reached(); 10866 } 10867 } 10868 10869 for (pass = 0; pass < 2; pass++) { 10870 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10871 } 10872 } else { 10873 int maxpass = is_q ? 4 : 2; 10874 TCGv_i32 tcg_res[4]; 10875 10876 for (pass = 0; pass < maxpass; pass++) { 10877 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10878 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10879 NeonGenTwoOpFn *genfn = NULL; 10880 int passreg = pass < (maxpass / 2) ? rn : rm; 10881 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10882 10883 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10884 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10885 tcg_res[pass] = tcg_temp_new_i32(); 10886 10887 switch (opcode) { 10888 case 0x17: /* ADDP */ 10889 { 10890 static NeonGenTwoOpFn * const fns[3] = { 10891 gen_helper_neon_padd_u8, 10892 gen_helper_neon_padd_u16, 10893 tcg_gen_add_i32, 10894 }; 10895 genfn = fns[size]; 10896 break; 10897 } 10898 case 0x14: /* SMAXP, UMAXP */ 10899 { 10900 static NeonGenTwoOpFn * const fns[3][2] = { 10901 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10902 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10903 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10904 }; 10905 genfn = fns[size][u]; 10906 break; 10907 } 10908 case 0x15: /* SMINP, UMINP */ 10909 { 10910 static NeonGenTwoOpFn * const fns[3][2] = { 10911 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10912 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10913 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10914 }; 10915 genfn = fns[size][u]; 10916 break; 10917 } 10918 /* The FP operations are all on single floats (32 bit) */ 10919 case 0x58: /* FMAXNMP */ 10920 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10921 break; 10922 case 0x5a: /* FADDP */ 10923 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10924 break; 10925 case 0x5e: /* FMAXP */ 10926 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10927 break; 10928 case 0x78: /* FMINNMP */ 10929 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10930 break; 10931 case 0x7e: /* FMINP */ 10932 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10933 break; 10934 default: 10935 g_assert_not_reached(); 10936 } 10937 10938 /* FP ops called directly, otherwise call now */ 10939 if (genfn) { 10940 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10941 } 10942 } 10943 10944 for (pass = 0; pass < maxpass; pass++) { 10945 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10946 } 10947 clear_vec_high(s, is_q, rd); 10948 } 10949 } 10950 10951 /* Floating point op subgroup of C3.6.16. */ 10952 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10953 { 10954 /* For floating point ops, the U, size[1] and opcode bits 10955 * together indicate the operation. size[0] indicates single 10956 * or double. 10957 */ 10958 int fpopcode = extract32(insn, 11, 5) 10959 | (extract32(insn, 23, 1) << 5) 10960 | (extract32(insn, 29, 1) << 6); 10961 int is_q = extract32(insn, 30, 1); 10962 int size = extract32(insn, 22, 1); 10963 int rm = extract32(insn, 16, 5); 10964 int rn = extract32(insn, 5, 5); 10965 int rd = extract32(insn, 0, 5); 10966 10967 int datasize = is_q ? 128 : 64; 10968 int esize = 32 << size; 10969 int elements = datasize / esize; 10970 10971 if (size == 1 && !is_q) { 10972 unallocated_encoding(s); 10973 return; 10974 } 10975 10976 switch (fpopcode) { 10977 case 0x58: /* FMAXNMP */ 10978 case 0x5a: /* FADDP */ 10979 case 0x5e: /* FMAXP */ 10980 case 0x78: /* FMINNMP */ 10981 case 0x7e: /* FMINP */ 10982 if (size && !is_q) { 10983 unallocated_encoding(s); 10984 return; 10985 } 10986 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10987 rn, rm, rd); 10988 return; 10989 case 0x1b: /* FMULX */ 10990 case 0x1f: /* FRECPS */ 10991 case 0x3f: /* FRSQRTS */ 10992 case 0x5d: /* FACGE */ 10993 case 0x7d: /* FACGT */ 10994 case 0x19: /* FMLA */ 10995 case 0x39: /* FMLS */ 10996 case 0x18: /* FMAXNM */ 10997 case 0x1a: /* FADD */ 10998 case 0x1c: /* FCMEQ */ 10999 case 0x1e: /* FMAX */ 11000 case 0x38: /* FMINNM */ 11001 case 0x3a: /* FSUB */ 11002 case 0x3e: /* FMIN */ 11003 case 0x5b: /* FMUL */ 11004 case 0x5c: /* FCMGE */ 11005 case 0x5f: /* FDIV */ 11006 case 0x7a: /* FABD */ 11007 case 0x7c: /* FCMGT */ 11008 if (!fp_access_check(s)) { 11009 return; 11010 } 11011 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11012 return; 11013 11014 case 0x1d: /* FMLAL */ 11015 case 0x3d: /* FMLSL */ 11016 case 0x59: /* FMLAL2 */ 11017 case 0x79: /* FMLSL2 */ 11018 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11019 unallocated_encoding(s); 11020 return; 11021 } 11022 if (fp_access_check(s)) { 11023 int is_s = extract32(insn, 23, 1); 11024 int is_2 = extract32(insn, 29, 1); 11025 int data = (is_2 << 1) | is_s; 11026 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11027 vec_full_reg_offset(s, rn), 11028 vec_full_reg_offset(s, rm), cpu_env, 11029 is_q ? 16 : 8, vec_full_reg_size(s), 11030 data, gen_helper_gvec_fmlal_a64); 11031 } 11032 return; 11033 11034 default: 11035 unallocated_encoding(s); 11036 return; 11037 } 11038 } 11039 11040 /* Integer op subgroup of C3.6.16. */ 11041 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11042 { 11043 int is_q = extract32(insn, 30, 1); 11044 int u = extract32(insn, 29, 1); 11045 int size = extract32(insn, 22, 2); 11046 int opcode = extract32(insn, 11, 5); 11047 int rm = extract32(insn, 16, 5); 11048 int rn = extract32(insn, 5, 5); 11049 int rd = extract32(insn, 0, 5); 11050 int pass; 11051 TCGCond cond; 11052 11053 switch (opcode) { 11054 case 0x13: /* MUL, PMUL */ 11055 if (u && size != 0) { 11056 unallocated_encoding(s); 11057 return; 11058 } 11059 /* fall through */ 11060 case 0x0: /* SHADD, UHADD */ 11061 case 0x2: /* SRHADD, URHADD */ 11062 case 0x4: /* SHSUB, UHSUB */ 11063 case 0xc: /* SMAX, UMAX */ 11064 case 0xd: /* SMIN, UMIN */ 11065 case 0xe: /* SABD, UABD */ 11066 case 0xf: /* SABA, UABA */ 11067 case 0x12: /* MLA, MLS */ 11068 if (size == 3) { 11069 unallocated_encoding(s); 11070 return; 11071 } 11072 break; 11073 case 0x16: /* SQDMULH, SQRDMULH */ 11074 if (size == 0 || size == 3) { 11075 unallocated_encoding(s); 11076 return; 11077 } 11078 break; 11079 default: 11080 if (size == 3 && !is_q) { 11081 unallocated_encoding(s); 11082 return; 11083 } 11084 break; 11085 } 11086 11087 if (!fp_access_check(s)) { 11088 return; 11089 } 11090 11091 switch (opcode) { 11092 case 0x01: /* SQADD, UQADD */ 11093 if (u) { 11094 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11095 } else { 11096 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11097 } 11098 return; 11099 case 0x05: /* SQSUB, UQSUB */ 11100 if (u) { 11101 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11102 } else { 11103 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11104 } 11105 return; 11106 case 0x08: /* SSHL, USHL */ 11107 if (u) { 11108 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11109 } else { 11110 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11111 } 11112 return; 11113 case 0x0c: /* SMAX, UMAX */ 11114 if (u) { 11115 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11116 } else { 11117 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11118 } 11119 return; 11120 case 0x0d: /* SMIN, UMIN */ 11121 if (u) { 11122 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11123 } else { 11124 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11125 } 11126 return; 11127 case 0xe: /* SABD, UABD */ 11128 if (u) { 11129 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11130 } else { 11131 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11132 } 11133 return; 11134 case 0xf: /* SABA, UABA */ 11135 if (u) { 11136 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11137 } else { 11138 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11139 } 11140 return; 11141 case 0x10: /* ADD, SUB */ 11142 if (u) { 11143 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11144 } else { 11145 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11146 } 11147 return; 11148 case 0x13: /* MUL, PMUL */ 11149 if (!u) { /* MUL */ 11150 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11151 } else { /* PMUL */ 11152 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11153 } 11154 return; 11155 case 0x12: /* MLA, MLS */ 11156 if (u) { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11158 } else { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11160 } 11161 return; 11162 case 0x16: /* SQDMULH, SQRDMULH */ 11163 { 11164 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11165 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11166 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11167 }; 11168 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11169 } 11170 return; 11171 case 0x11: 11172 if (!u) { /* CMTST */ 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11174 return; 11175 } 11176 /* else CMEQ */ 11177 cond = TCG_COND_EQ; 11178 goto do_gvec_cmp; 11179 case 0x06: /* CMGT, CMHI */ 11180 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11181 goto do_gvec_cmp; 11182 case 0x07: /* CMGE, CMHS */ 11183 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11184 do_gvec_cmp: 11185 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11186 vec_full_reg_offset(s, rn), 11187 vec_full_reg_offset(s, rm), 11188 is_q ? 16 : 8, vec_full_reg_size(s)); 11189 return; 11190 } 11191 11192 if (size == 3) { 11193 assert(is_q); 11194 for (pass = 0; pass < 2; pass++) { 11195 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11196 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11197 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11198 11199 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11200 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11201 11202 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11203 11204 write_vec_element(s, tcg_res, rd, pass, MO_64); 11205 } 11206 } else { 11207 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11208 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11209 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11210 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11211 NeonGenTwoOpFn *genfn = NULL; 11212 NeonGenTwoOpEnvFn *genenvfn = NULL; 11213 11214 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11215 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11216 11217 switch (opcode) { 11218 case 0x0: /* SHADD, UHADD */ 11219 { 11220 static NeonGenTwoOpFn * const fns[3][2] = { 11221 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11222 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11223 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11224 }; 11225 genfn = fns[size][u]; 11226 break; 11227 } 11228 case 0x2: /* SRHADD, URHADD */ 11229 { 11230 static NeonGenTwoOpFn * const fns[3][2] = { 11231 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11232 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11233 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11234 }; 11235 genfn = fns[size][u]; 11236 break; 11237 } 11238 case 0x4: /* SHSUB, UHSUB */ 11239 { 11240 static NeonGenTwoOpFn * const fns[3][2] = { 11241 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11242 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11243 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11244 }; 11245 genfn = fns[size][u]; 11246 break; 11247 } 11248 case 0x9: /* SQSHL, UQSHL */ 11249 { 11250 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11251 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11252 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11253 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11254 }; 11255 genenvfn = fns[size][u]; 11256 break; 11257 } 11258 case 0xa: /* SRSHL, URSHL */ 11259 { 11260 static NeonGenTwoOpFn * const fns[3][2] = { 11261 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11262 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11263 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11264 }; 11265 genfn = fns[size][u]; 11266 break; 11267 } 11268 case 0xb: /* SQRSHL, UQRSHL */ 11269 { 11270 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11271 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11272 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11273 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11274 }; 11275 genenvfn = fns[size][u]; 11276 break; 11277 } 11278 default: 11279 g_assert_not_reached(); 11280 } 11281 11282 if (genenvfn) { 11283 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11284 } else { 11285 genfn(tcg_res, tcg_op1, tcg_op2); 11286 } 11287 11288 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11289 } 11290 } 11291 clear_vec_high(s, is_q, rd); 11292 } 11293 11294 /* AdvSIMD three same 11295 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11296 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11297 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11298 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11299 */ 11300 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11301 { 11302 int opcode = extract32(insn, 11, 5); 11303 11304 switch (opcode) { 11305 case 0x3: /* logic ops */ 11306 disas_simd_3same_logic(s, insn); 11307 break; 11308 case 0x17: /* ADDP */ 11309 case 0x14: /* SMAXP, UMAXP */ 11310 case 0x15: /* SMINP, UMINP */ 11311 { 11312 /* Pairwise operations */ 11313 int is_q = extract32(insn, 30, 1); 11314 int u = extract32(insn, 29, 1); 11315 int size = extract32(insn, 22, 2); 11316 int rm = extract32(insn, 16, 5); 11317 int rn = extract32(insn, 5, 5); 11318 int rd = extract32(insn, 0, 5); 11319 if (opcode == 0x17) { 11320 if (u || (size == 3 && !is_q)) { 11321 unallocated_encoding(s); 11322 return; 11323 } 11324 } else { 11325 if (size == 3) { 11326 unallocated_encoding(s); 11327 return; 11328 } 11329 } 11330 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11331 break; 11332 } 11333 case 0x18 ... 0x31: 11334 /* floating point ops, sz[1] and U are part of opcode */ 11335 disas_simd_3same_float(s, insn); 11336 break; 11337 default: 11338 disas_simd_3same_int(s, insn); 11339 break; 11340 } 11341 } 11342 11343 /* 11344 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11345 * 11346 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11347 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11348 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11349 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11350 * 11351 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11352 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11353 * 11354 */ 11355 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11356 { 11357 int opcode = extract32(insn, 11, 3); 11358 int u = extract32(insn, 29, 1); 11359 int a = extract32(insn, 23, 1); 11360 int is_q = extract32(insn, 30, 1); 11361 int rm = extract32(insn, 16, 5); 11362 int rn = extract32(insn, 5, 5); 11363 int rd = extract32(insn, 0, 5); 11364 /* 11365 * For these floating point ops, the U, a and opcode bits 11366 * together indicate the operation. 11367 */ 11368 int fpopcode = opcode | (a << 3) | (u << 4); 11369 int datasize = is_q ? 128 : 64; 11370 int elements = datasize / 16; 11371 bool pairwise; 11372 TCGv_ptr fpst; 11373 int pass; 11374 11375 switch (fpopcode) { 11376 case 0x0: /* FMAXNM */ 11377 case 0x1: /* FMLA */ 11378 case 0x2: /* FADD */ 11379 case 0x3: /* FMULX */ 11380 case 0x4: /* FCMEQ */ 11381 case 0x6: /* FMAX */ 11382 case 0x7: /* FRECPS */ 11383 case 0x8: /* FMINNM */ 11384 case 0x9: /* FMLS */ 11385 case 0xa: /* FSUB */ 11386 case 0xe: /* FMIN */ 11387 case 0xf: /* FRSQRTS */ 11388 case 0x13: /* FMUL */ 11389 case 0x14: /* FCMGE */ 11390 case 0x15: /* FACGE */ 11391 case 0x17: /* FDIV */ 11392 case 0x1a: /* FABD */ 11393 case 0x1c: /* FCMGT */ 11394 case 0x1d: /* FACGT */ 11395 pairwise = false; 11396 break; 11397 case 0x10: /* FMAXNMP */ 11398 case 0x12: /* FADDP */ 11399 case 0x16: /* FMAXP */ 11400 case 0x18: /* FMINNMP */ 11401 case 0x1e: /* FMINP */ 11402 pairwise = true; 11403 break; 11404 default: 11405 unallocated_encoding(s); 11406 return; 11407 } 11408 11409 if (!dc_isar_feature(aa64_fp16, s)) { 11410 unallocated_encoding(s); 11411 return; 11412 } 11413 11414 if (!fp_access_check(s)) { 11415 return; 11416 } 11417 11418 fpst = fpstatus_ptr(FPST_FPCR_F16); 11419 11420 if (pairwise) { 11421 int maxpass = is_q ? 8 : 4; 11422 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11423 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11424 TCGv_i32 tcg_res[8]; 11425 11426 for (pass = 0; pass < maxpass; pass++) { 11427 int passreg = pass < (maxpass / 2) ? rn : rm; 11428 int passelt = (pass << 1) & (maxpass - 1); 11429 11430 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11431 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11432 tcg_res[pass] = tcg_temp_new_i32(); 11433 11434 switch (fpopcode) { 11435 case 0x10: /* FMAXNMP */ 11436 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11437 fpst); 11438 break; 11439 case 0x12: /* FADDP */ 11440 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11441 break; 11442 case 0x16: /* FMAXP */ 11443 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11444 break; 11445 case 0x18: /* FMINNMP */ 11446 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11447 fpst); 11448 break; 11449 case 0x1e: /* FMINP */ 11450 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11451 break; 11452 default: 11453 g_assert_not_reached(); 11454 } 11455 } 11456 11457 for (pass = 0; pass < maxpass; pass++) { 11458 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11459 } 11460 } else { 11461 for (pass = 0; pass < elements; pass++) { 11462 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11463 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11464 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11465 11466 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11467 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11468 11469 switch (fpopcode) { 11470 case 0x0: /* FMAXNM */ 11471 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11472 break; 11473 case 0x1: /* FMLA */ 11474 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11475 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11476 fpst); 11477 break; 11478 case 0x2: /* FADD */ 11479 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11480 break; 11481 case 0x3: /* FMULX */ 11482 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11483 break; 11484 case 0x4: /* FCMEQ */ 11485 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11486 break; 11487 case 0x6: /* FMAX */ 11488 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11489 break; 11490 case 0x7: /* FRECPS */ 11491 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11492 break; 11493 case 0x8: /* FMINNM */ 11494 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11495 break; 11496 case 0x9: /* FMLS */ 11497 /* As usual for ARM, separate negation for fused multiply-add */ 11498 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11499 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11500 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11501 fpst); 11502 break; 11503 case 0xa: /* FSUB */ 11504 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11505 break; 11506 case 0xe: /* FMIN */ 11507 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11508 break; 11509 case 0xf: /* FRSQRTS */ 11510 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11511 break; 11512 case 0x13: /* FMUL */ 11513 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11514 break; 11515 case 0x14: /* FCMGE */ 11516 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11517 break; 11518 case 0x15: /* FACGE */ 11519 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11520 break; 11521 case 0x17: /* FDIV */ 11522 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11523 break; 11524 case 0x1a: /* FABD */ 11525 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11526 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11527 break; 11528 case 0x1c: /* FCMGT */ 11529 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x1d: /* FACGT */ 11532 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 default: 11535 g_assert_not_reached(); 11536 } 11537 11538 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11539 } 11540 } 11541 11542 clear_vec_high(s, is_q, rd); 11543 } 11544 11545 /* AdvSIMD three same extra 11546 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11547 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11548 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11549 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11550 */ 11551 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11552 { 11553 int rd = extract32(insn, 0, 5); 11554 int rn = extract32(insn, 5, 5); 11555 int opcode = extract32(insn, 11, 4); 11556 int rm = extract32(insn, 16, 5); 11557 int size = extract32(insn, 22, 2); 11558 bool u = extract32(insn, 29, 1); 11559 bool is_q = extract32(insn, 30, 1); 11560 bool feature; 11561 int rot; 11562 11563 switch (u * 16 + opcode) { 11564 case 0x10: /* SQRDMLAH (vector) */ 11565 case 0x11: /* SQRDMLSH (vector) */ 11566 if (size != 1 && size != 2) { 11567 unallocated_encoding(s); 11568 return; 11569 } 11570 feature = dc_isar_feature(aa64_rdm, s); 11571 break; 11572 case 0x02: /* SDOT (vector) */ 11573 case 0x12: /* UDOT (vector) */ 11574 if (size != MO_32) { 11575 unallocated_encoding(s); 11576 return; 11577 } 11578 feature = dc_isar_feature(aa64_dp, s); 11579 break; 11580 case 0x03: /* USDOT */ 11581 if (size != MO_32) { 11582 unallocated_encoding(s); 11583 return; 11584 } 11585 feature = dc_isar_feature(aa64_i8mm, s); 11586 break; 11587 case 0x04: /* SMMLA */ 11588 case 0x14: /* UMMLA */ 11589 case 0x05: /* USMMLA */ 11590 if (!is_q || size != MO_32) { 11591 unallocated_encoding(s); 11592 return; 11593 } 11594 feature = dc_isar_feature(aa64_i8mm, s); 11595 break; 11596 case 0x18: /* FCMLA, #0 */ 11597 case 0x19: /* FCMLA, #90 */ 11598 case 0x1a: /* FCMLA, #180 */ 11599 case 0x1b: /* FCMLA, #270 */ 11600 case 0x1c: /* FCADD, #90 */ 11601 case 0x1e: /* FCADD, #270 */ 11602 if (size == 0 11603 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11604 || (size == 3 && !is_q)) { 11605 unallocated_encoding(s); 11606 return; 11607 } 11608 feature = dc_isar_feature(aa64_fcma, s); 11609 break; 11610 case 0x1d: /* BFMMLA */ 11611 if (size != MO_16 || !is_q) { 11612 unallocated_encoding(s); 11613 return; 11614 } 11615 feature = dc_isar_feature(aa64_bf16, s); 11616 break; 11617 case 0x1f: 11618 switch (size) { 11619 case 1: /* BFDOT */ 11620 case 3: /* BFMLAL{B,T} */ 11621 feature = dc_isar_feature(aa64_bf16, s); 11622 break; 11623 default: 11624 unallocated_encoding(s); 11625 return; 11626 } 11627 break; 11628 default: 11629 unallocated_encoding(s); 11630 return; 11631 } 11632 if (!feature) { 11633 unallocated_encoding(s); 11634 return; 11635 } 11636 if (!fp_access_check(s)) { 11637 return; 11638 } 11639 11640 switch (opcode) { 11641 case 0x0: /* SQRDMLAH (vector) */ 11642 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11643 return; 11644 11645 case 0x1: /* SQRDMLSH (vector) */ 11646 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11647 return; 11648 11649 case 0x2: /* SDOT / UDOT */ 11650 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11651 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11652 return; 11653 11654 case 0x3: /* USDOT */ 11655 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11656 return; 11657 11658 case 0x04: /* SMMLA, UMMLA */ 11659 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11660 u ? gen_helper_gvec_ummla_b 11661 : gen_helper_gvec_smmla_b); 11662 return; 11663 case 0x05: /* USMMLA */ 11664 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11665 return; 11666 11667 case 0x8: /* FCMLA, #0 */ 11668 case 0x9: /* FCMLA, #90 */ 11669 case 0xa: /* FCMLA, #180 */ 11670 case 0xb: /* FCMLA, #270 */ 11671 rot = extract32(opcode, 0, 2); 11672 switch (size) { 11673 case 1: 11674 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11675 gen_helper_gvec_fcmlah); 11676 break; 11677 case 2: 11678 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11679 gen_helper_gvec_fcmlas); 11680 break; 11681 case 3: 11682 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11683 gen_helper_gvec_fcmlad); 11684 break; 11685 default: 11686 g_assert_not_reached(); 11687 } 11688 return; 11689 11690 case 0xc: /* FCADD, #90 */ 11691 case 0xe: /* FCADD, #270 */ 11692 rot = extract32(opcode, 1, 1); 11693 switch (size) { 11694 case 1: 11695 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11696 gen_helper_gvec_fcaddh); 11697 break; 11698 case 2: 11699 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11700 gen_helper_gvec_fcadds); 11701 break; 11702 case 3: 11703 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11704 gen_helper_gvec_fcaddd); 11705 break; 11706 default: 11707 g_assert_not_reached(); 11708 } 11709 return; 11710 11711 case 0xd: /* BFMMLA */ 11712 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11713 return; 11714 case 0xf: 11715 switch (size) { 11716 case 1: /* BFDOT */ 11717 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11718 break; 11719 case 3: /* BFMLAL{B,T} */ 11720 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11721 gen_helper_gvec_bfmlal); 11722 break; 11723 default: 11724 g_assert_not_reached(); 11725 } 11726 return; 11727 11728 default: 11729 g_assert_not_reached(); 11730 } 11731 } 11732 11733 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11734 int size, int rn, int rd) 11735 { 11736 /* Handle 2-reg-misc ops which are widening (so each size element 11737 * in the source becomes a 2*size element in the destination. 11738 * The only instruction like this is FCVTL. 11739 */ 11740 int pass; 11741 11742 if (size == 3) { 11743 /* 32 -> 64 bit fp conversion */ 11744 TCGv_i64 tcg_res[2]; 11745 int srcelt = is_q ? 2 : 0; 11746 11747 for (pass = 0; pass < 2; pass++) { 11748 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11749 tcg_res[pass] = tcg_temp_new_i64(); 11750 11751 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11752 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11753 } 11754 for (pass = 0; pass < 2; pass++) { 11755 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11756 } 11757 } else { 11758 /* 16 -> 32 bit fp conversion */ 11759 int srcelt = is_q ? 4 : 0; 11760 TCGv_i32 tcg_res[4]; 11761 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11762 TCGv_i32 ahp = get_ahp_flag(); 11763 11764 for (pass = 0; pass < 4; pass++) { 11765 tcg_res[pass] = tcg_temp_new_i32(); 11766 11767 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11768 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11769 fpst, ahp); 11770 } 11771 for (pass = 0; pass < 4; pass++) { 11772 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11773 } 11774 } 11775 } 11776 11777 static void handle_rev(DisasContext *s, int opcode, bool u, 11778 bool is_q, int size, int rn, int rd) 11779 { 11780 int op = (opcode << 1) | u; 11781 int opsz = op + size; 11782 int grp_size = 3 - opsz; 11783 int dsize = is_q ? 128 : 64; 11784 int i; 11785 11786 if (opsz >= 3) { 11787 unallocated_encoding(s); 11788 return; 11789 } 11790 11791 if (!fp_access_check(s)) { 11792 return; 11793 } 11794 11795 if (size == 0) { 11796 /* Special case bytes, use bswap op on each group of elements */ 11797 int groups = dsize / (8 << grp_size); 11798 11799 for (i = 0; i < groups; i++) { 11800 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11801 11802 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11803 switch (grp_size) { 11804 case MO_16: 11805 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11806 break; 11807 case MO_32: 11808 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11809 break; 11810 case MO_64: 11811 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11812 break; 11813 default: 11814 g_assert_not_reached(); 11815 } 11816 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11817 } 11818 clear_vec_high(s, is_q, rd); 11819 } else { 11820 int revmask = (1 << grp_size) - 1; 11821 int esize = 8 << size; 11822 int elements = dsize / esize; 11823 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11824 TCGv_i64 tcg_rd[2]; 11825 11826 for (i = 0; i < 2; i++) { 11827 tcg_rd[i] = tcg_temp_new_i64(); 11828 tcg_gen_movi_i64(tcg_rd[i], 0); 11829 } 11830 11831 for (i = 0; i < elements; i++) { 11832 int e_rev = (i & 0xf) ^ revmask; 11833 int w = (e_rev * esize) / 64; 11834 int o = (e_rev * esize) % 64; 11835 11836 read_vec_element(s, tcg_rn, rn, i, size); 11837 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11838 } 11839 11840 for (i = 0; i < 2; i++) { 11841 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11842 } 11843 clear_vec_high(s, true, rd); 11844 } 11845 } 11846 11847 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11848 bool is_q, int size, int rn, int rd) 11849 { 11850 /* Implement the pairwise operations from 2-misc: 11851 * SADDLP, UADDLP, SADALP, UADALP. 11852 * These all add pairs of elements in the input to produce a 11853 * double-width result element in the output (possibly accumulating). 11854 */ 11855 bool accum = (opcode == 0x6); 11856 int maxpass = is_q ? 2 : 1; 11857 int pass; 11858 TCGv_i64 tcg_res[2]; 11859 11860 if (size == 2) { 11861 /* 32 + 32 -> 64 op */ 11862 MemOp memop = size + (u ? 0 : MO_SIGN); 11863 11864 for (pass = 0; pass < maxpass; pass++) { 11865 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11866 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11867 11868 tcg_res[pass] = tcg_temp_new_i64(); 11869 11870 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11871 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11872 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11873 if (accum) { 11874 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11875 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11876 } 11877 } 11878 } else { 11879 for (pass = 0; pass < maxpass; pass++) { 11880 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11881 NeonGenOne64OpFn *genfn; 11882 static NeonGenOne64OpFn * const fns[2][2] = { 11883 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11884 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11885 }; 11886 11887 genfn = fns[size][u]; 11888 11889 tcg_res[pass] = tcg_temp_new_i64(); 11890 11891 read_vec_element(s, tcg_op, rn, pass, MO_64); 11892 genfn(tcg_res[pass], tcg_op); 11893 11894 if (accum) { 11895 read_vec_element(s, tcg_op, rd, pass, MO_64); 11896 if (size == 0) { 11897 gen_helper_neon_addl_u16(tcg_res[pass], 11898 tcg_res[pass], tcg_op); 11899 } else { 11900 gen_helper_neon_addl_u32(tcg_res[pass], 11901 tcg_res[pass], tcg_op); 11902 } 11903 } 11904 } 11905 } 11906 if (!is_q) { 11907 tcg_res[1] = tcg_constant_i64(0); 11908 } 11909 for (pass = 0; pass < 2; pass++) { 11910 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11911 } 11912 } 11913 11914 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11915 { 11916 /* Implement SHLL and SHLL2 */ 11917 int pass; 11918 int part = is_q ? 2 : 0; 11919 TCGv_i64 tcg_res[2]; 11920 11921 for (pass = 0; pass < 2; pass++) { 11922 static NeonGenWidenFn * const widenfns[3] = { 11923 gen_helper_neon_widen_u8, 11924 gen_helper_neon_widen_u16, 11925 tcg_gen_extu_i32_i64, 11926 }; 11927 NeonGenWidenFn *widenfn = widenfns[size]; 11928 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11929 11930 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11931 tcg_res[pass] = tcg_temp_new_i64(); 11932 widenfn(tcg_res[pass], tcg_op); 11933 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11934 } 11935 11936 for (pass = 0; pass < 2; pass++) { 11937 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11938 } 11939 } 11940 11941 /* AdvSIMD two reg misc 11942 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11943 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11944 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11945 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11946 */ 11947 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11948 { 11949 int size = extract32(insn, 22, 2); 11950 int opcode = extract32(insn, 12, 5); 11951 bool u = extract32(insn, 29, 1); 11952 bool is_q = extract32(insn, 30, 1); 11953 int rn = extract32(insn, 5, 5); 11954 int rd = extract32(insn, 0, 5); 11955 bool need_fpstatus = false; 11956 int rmode = -1; 11957 TCGv_i32 tcg_rmode; 11958 TCGv_ptr tcg_fpstatus; 11959 11960 switch (opcode) { 11961 case 0x0: /* REV64, REV32 */ 11962 case 0x1: /* REV16 */ 11963 handle_rev(s, opcode, u, is_q, size, rn, rd); 11964 return; 11965 case 0x5: /* CNT, NOT, RBIT */ 11966 if (u && size == 0) { 11967 /* NOT */ 11968 break; 11969 } else if (u && size == 1) { 11970 /* RBIT */ 11971 break; 11972 } else if (!u && size == 0) { 11973 /* CNT */ 11974 break; 11975 } 11976 unallocated_encoding(s); 11977 return; 11978 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11979 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11980 if (size == 3) { 11981 unallocated_encoding(s); 11982 return; 11983 } 11984 if (!fp_access_check(s)) { 11985 return; 11986 } 11987 11988 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11989 return; 11990 case 0x4: /* CLS, CLZ */ 11991 if (size == 3) { 11992 unallocated_encoding(s); 11993 return; 11994 } 11995 break; 11996 case 0x2: /* SADDLP, UADDLP */ 11997 case 0x6: /* SADALP, UADALP */ 11998 if (size == 3) { 11999 unallocated_encoding(s); 12000 return; 12001 } 12002 if (!fp_access_check(s)) { 12003 return; 12004 } 12005 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12006 return; 12007 case 0x13: /* SHLL, SHLL2 */ 12008 if (u == 0 || size == 3) { 12009 unallocated_encoding(s); 12010 return; 12011 } 12012 if (!fp_access_check(s)) { 12013 return; 12014 } 12015 handle_shll(s, is_q, size, rn, rd); 12016 return; 12017 case 0xa: /* CMLT */ 12018 if (u == 1) { 12019 unallocated_encoding(s); 12020 return; 12021 } 12022 /* fall through */ 12023 case 0x8: /* CMGT, CMGE */ 12024 case 0x9: /* CMEQ, CMLE */ 12025 case 0xb: /* ABS, NEG */ 12026 if (size == 3 && !is_q) { 12027 unallocated_encoding(s); 12028 return; 12029 } 12030 break; 12031 case 0x3: /* SUQADD, USQADD */ 12032 if (size == 3 && !is_q) { 12033 unallocated_encoding(s); 12034 return; 12035 } 12036 if (!fp_access_check(s)) { 12037 return; 12038 } 12039 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12040 return; 12041 case 0x7: /* SQABS, SQNEG */ 12042 if (size == 3 && !is_q) { 12043 unallocated_encoding(s); 12044 return; 12045 } 12046 break; 12047 case 0xc ... 0xf: 12048 case 0x16 ... 0x1f: 12049 { 12050 /* Floating point: U, size[1] and opcode indicate operation; 12051 * size[0] indicates single or double precision. 12052 */ 12053 int is_double = extract32(size, 0, 1); 12054 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12055 size = is_double ? 3 : 2; 12056 switch (opcode) { 12057 case 0x2f: /* FABS */ 12058 case 0x6f: /* FNEG */ 12059 if (size == 3 && !is_q) { 12060 unallocated_encoding(s); 12061 return; 12062 } 12063 break; 12064 case 0x1d: /* SCVTF */ 12065 case 0x5d: /* UCVTF */ 12066 { 12067 bool is_signed = (opcode == 0x1d) ? true : false; 12068 int elements = is_double ? 2 : is_q ? 4 : 2; 12069 if (is_double && !is_q) { 12070 unallocated_encoding(s); 12071 return; 12072 } 12073 if (!fp_access_check(s)) { 12074 return; 12075 } 12076 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12077 return; 12078 } 12079 case 0x2c: /* FCMGT (zero) */ 12080 case 0x2d: /* FCMEQ (zero) */ 12081 case 0x2e: /* FCMLT (zero) */ 12082 case 0x6c: /* FCMGE (zero) */ 12083 case 0x6d: /* FCMLE (zero) */ 12084 if (size == 3 && !is_q) { 12085 unallocated_encoding(s); 12086 return; 12087 } 12088 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12089 return; 12090 case 0x7f: /* FSQRT */ 12091 if (size == 3 && !is_q) { 12092 unallocated_encoding(s); 12093 return; 12094 } 12095 break; 12096 case 0x1a: /* FCVTNS */ 12097 case 0x1b: /* FCVTMS */ 12098 case 0x3a: /* FCVTPS */ 12099 case 0x3b: /* FCVTZS */ 12100 case 0x5a: /* FCVTNU */ 12101 case 0x5b: /* FCVTMU */ 12102 case 0x7a: /* FCVTPU */ 12103 case 0x7b: /* FCVTZU */ 12104 need_fpstatus = true; 12105 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12106 if (size == 3 && !is_q) { 12107 unallocated_encoding(s); 12108 return; 12109 } 12110 break; 12111 case 0x5c: /* FCVTAU */ 12112 case 0x1c: /* FCVTAS */ 12113 need_fpstatus = true; 12114 rmode = FPROUNDING_TIEAWAY; 12115 if (size == 3 && !is_q) { 12116 unallocated_encoding(s); 12117 return; 12118 } 12119 break; 12120 case 0x3c: /* URECPE */ 12121 if (size == 3) { 12122 unallocated_encoding(s); 12123 return; 12124 } 12125 /* fall through */ 12126 case 0x3d: /* FRECPE */ 12127 case 0x7d: /* FRSQRTE */ 12128 if (size == 3 && !is_q) { 12129 unallocated_encoding(s); 12130 return; 12131 } 12132 if (!fp_access_check(s)) { 12133 return; 12134 } 12135 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12136 return; 12137 case 0x56: /* FCVTXN, FCVTXN2 */ 12138 if (size == 2) { 12139 unallocated_encoding(s); 12140 return; 12141 } 12142 /* fall through */ 12143 case 0x16: /* FCVTN, FCVTN2 */ 12144 /* handle_2misc_narrow does a 2*size -> size operation, but these 12145 * instructions encode the source size rather than dest size. 12146 */ 12147 if (!fp_access_check(s)) { 12148 return; 12149 } 12150 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12151 return; 12152 case 0x36: /* BFCVTN, BFCVTN2 */ 12153 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12154 unallocated_encoding(s); 12155 return; 12156 } 12157 if (!fp_access_check(s)) { 12158 return; 12159 } 12160 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12161 return; 12162 case 0x17: /* FCVTL, FCVTL2 */ 12163 if (!fp_access_check(s)) { 12164 return; 12165 } 12166 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12167 return; 12168 case 0x18: /* FRINTN */ 12169 case 0x19: /* FRINTM */ 12170 case 0x38: /* FRINTP */ 12171 case 0x39: /* FRINTZ */ 12172 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12173 /* fall through */ 12174 case 0x59: /* FRINTX */ 12175 case 0x79: /* FRINTI */ 12176 need_fpstatus = true; 12177 if (size == 3 && !is_q) { 12178 unallocated_encoding(s); 12179 return; 12180 } 12181 break; 12182 case 0x58: /* FRINTA */ 12183 rmode = FPROUNDING_TIEAWAY; 12184 need_fpstatus = true; 12185 if (size == 3 && !is_q) { 12186 unallocated_encoding(s); 12187 return; 12188 } 12189 break; 12190 case 0x7c: /* URSQRTE */ 12191 if (size == 3) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 break; 12196 case 0x1e: /* FRINT32Z */ 12197 case 0x1f: /* FRINT64Z */ 12198 rmode = FPROUNDING_ZERO; 12199 /* fall through */ 12200 case 0x5e: /* FRINT32X */ 12201 case 0x5f: /* FRINT64X */ 12202 need_fpstatus = true; 12203 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 break; 12208 default: 12209 unallocated_encoding(s); 12210 return; 12211 } 12212 break; 12213 } 12214 default: 12215 unallocated_encoding(s); 12216 return; 12217 } 12218 12219 if (!fp_access_check(s)) { 12220 return; 12221 } 12222 12223 if (need_fpstatus || rmode >= 0) { 12224 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12225 } else { 12226 tcg_fpstatus = NULL; 12227 } 12228 if (rmode >= 0) { 12229 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12230 } else { 12231 tcg_rmode = NULL; 12232 } 12233 12234 switch (opcode) { 12235 case 0x5: 12236 if (u && size == 0) { /* NOT */ 12237 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12238 return; 12239 } 12240 break; 12241 case 0x8: /* CMGT, CMGE */ 12242 if (u) { 12243 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12244 } else { 12245 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12246 } 12247 return; 12248 case 0x9: /* CMEQ, CMLE */ 12249 if (u) { 12250 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12251 } else { 12252 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12253 } 12254 return; 12255 case 0xa: /* CMLT */ 12256 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12257 return; 12258 case 0xb: 12259 if (u) { /* ABS, NEG */ 12260 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12261 } else { 12262 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12263 } 12264 return; 12265 } 12266 12267 if (size == 3) { 12268 /* All 64-bit element operations can be shared with scalar 2misc */ 12269 int pass; 12270 12271 /* Coverity claims (size == 3 && !is_q) has been eliminated 12272 * from all paths leading to here. 12273 */ 12274 tcg_debug_assert(is_q); 12275 for (pass = 0; pass < 2; pass++) { 12276 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12277 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12278 12279 read_vec_element(s, tcg_op, rn, pass, MO_64); 12280 12281 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12282 tcg_rmode, tcg_fpstatus); 12283 12284 write_vec_element(s, tcg_res, rd, pass, MO_64); 12285 } 12286 } else { 12287 int pass; 12288 12289 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12290 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12291 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12292 12293 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12294 12295 if (size == 2) { 12296 /* Special cases for 32 bit elements */ 12297 switch (opcode) { 12298 case 0x4: /* CLS */ 12299 if (u) { 12300 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12301 } else { 12302 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12303 } 12304 break; 12305 case 0x7: /* SQABS, SQNEG */ 12306 if (u) { 12307 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12308 } else { 12309 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12310 } 12311 break; 12312 case 0x2f: /* FABS */ 12313 gen_helper_vfp_abss(tcg_res, tcg_op); 12314 break; 12315 case 0x6f: /* FNEG */ 12316 gen_helper_vfp_negs(tcg_res, tcg_op); 12317 break; 12318 case 0x7f: /* FSQRT */ 12319 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12320 break; 12321 case 0x1a: /* FCVTNS */ 12322 case 0x1b: /* FCVTMS */ 12323 case 0x1c: /* FCVTAS */ 12324 case 0x3a: /* FCVTPS */ 12325 case 0x3b: /* FCVTZS */ 12326 gen_helper_vfp_tosls(tcg_res, tcg_op, 12327 tcg_constant_i32(0), tcg_fpstatus); 12328 break; 12329 case 0x5a: /* FCVTNU */ 12330 case 0x5b: /* FCVTMU */ 12331 case 0x5c: /* FCVTAU */ 12332 case 0x7a: /* FCVTPU */ 12333 case 0x7b: /* FCVTZU */ 12334 gen_helper_vfp_touls(tcg_res, tcg_op, 12335 tcg_constant_i32(0), tcg_fpstatus); 12336 break; 12337 case 0x18: /* FRINTN */ 12338 case 0x19: /* FRINTM */ 12339 case 0x38: /* FRINTP */ 12340 case 0x39: /* FRINTZ */ 12341 case 0x58: /* FRINTA */ 12342 case 0x79: /* FRINTI */ 12343 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12344 break; 12345 case 0x59: /* FRINTX */ 12346 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12347 break; 12348 case 0x7c: /* URSQRTE */ 12349 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12350 break; 12351 case 0x1e: /* FRINT32Z */ 12352 case 0x5e: /* FRINT32X */ 12353 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12354 break; 12355 case 0x1f: /* FRINT64Z */ 12356 case 0x5f: /* FRINT64X */ 12357 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12358 break; 12359 default: 12360 g_assert_not_reached(); 12361 } 12362 } else { 12363 /* Use helpers for 8 and 16 bit elements */ 12364 switch (opcode) { 12365 case 0x5: /* CNT, RBIT */ 12366 /* For these two insns size is part of the opcode specifier 12367 * (handled earlier); they always operate on byte elements. 12368 */ 12369 if (u) { 12370 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12371 } else { 12372 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12373 } 12374 break; 12375 case 0x7: /* SQABS, SQNEG */ 12376 { 12377 NeonGenOneOpEnvFn *genfn; 12378 static NeonGenOneOpEnvFn * const fns[2][2] = { 12379 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12380 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12381 }; 12382 genfn = fns[size][u]; 12383 genfn(tcg_res, cpu_env, tcg_op); 12384 break; 12385 } 12386 case 0x4: /* CLS, CLZ */ 12387 if (u) { 12388 if (size == 0) { 12389 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12390 } else { 12391 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12392 } 12393 } else { 12394 if (size == 0) { 12395 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12396 } else { 12397 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12398 } 12399 } 12400 break; 12401 default: 12402 g_assert_not_reached(); 12403 } 12404 } 12405 12406 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12407 } 12408 } 12409 clear_vec_high(s, is_q, rd); 12410 12411 if (tcg_rmode) { 12412 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12413 } 12414 } 12415 12416 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12417 * 12418 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12419 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12420 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12421 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12422 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12423 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12424 * 12425 * This actually covers two groups where scalar access is governed by 12426 * bit 28. A bunch of the instructions (float to integral) only exist 12427 * in the vector form and are un-allocated for the scalar decode. Also 12428 * in the scalar decode Q is always 1. 12429 */ 12430 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12431 { 12432 int fpop, opcode, a, u; 12433 int rn, rd; 12434 bool is_q; 12435 bool is_scalar; 12436 bool only_in_vector = false; 12437 12438 int pass; 12439 TCGv_i32 tcg_rmode = NULL; 12440 TCGv_ptr tcg_fpstatus = NULL; 12441 bool need_fpst = true; 12442 int rmode = -1; 12443 12444 if (!dc_isar_feature(aa64_fp16, s)) { 12445 unallocated_encoding(s); 12446 return; 12447 } 12448 12449 rd = extract32(insn, 0, 5); 12450 rn = extract32(insn, 5, 5); 12451 12452 a = extract32(insn, 23, 1); 12453 u = extract32(insn, 29, 1); 12454 is_scalar = extract32(insn, 28, 1); 12455 is_q = extract32(insn, 30, 1); 12456 12457 opcode = extract32(insn, 12, 5); 12458 fpop = deposit32(opcode, 5, 1, a); 12459 fpop = deposit32(fpop, 6, 1, u); 12460 12461 switch (fpop) { 12462 case 0x1d: /* SCVTF */ 12463 case 0x5d: /* UCVTF */ 12464 { 12465 int elements; 12466 12467 if (is_scalar) { 12468 elements = 1; 12469 } else { 12470 elements = (is_q ? 8 : 4); 12471 } 12472 12473 if (!fp_access_check(s)) { 12474 return; 12475 } 12476 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12477 return; 12478 } 12479 break; 12480 case 0x2c: /* FCMGT (zero) */ 12481 case 0x2d: /* FCMEQ (zero) */ 12482 case 0x2e: /* FCMLT (zero) */ 12483 case 0x6c: /* FCMGE (zero) */ 12484 case 0x6d: /* FCMLE (zero) */ 12485 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12486 return; 12487 case 0x3d: /* FRECPE */ 12488 case 0x3f: /* FRECPX */ 12489 break; 12490 case 0x18: /* FRINTN */ 12491 only_in_vector = true; 12492 rmode = FPROUNDING_TIEEVEN; 12493 break; 12494 case 0x19: /* FRINTM */ 12495 only_in_vector = true; 12496 rmode = FPROUNDING_NEGINF; 12497 break; 12498 case 0x38: /* FRINTP */ 12499 only_in_vector = true; 12500 rmode = FPROUNDING_POSINF; 12501 break; 12502 case 0x39: /* FRINTZ */ 12503 only_in_vector = true; 12504 rmode = FPROUNDING_ZERO; 12505 break; 12506 case 0x58: /* FRINTA */ 12507 only_in_vector = true; 12508 rmode = FPROUNDING_TIEAWAY; 12509 break; 12510 case 0x59: /* FRINTX */ 12511 case 0x79: /* FRINTI */ 12512 only_in_vector = true; 12513 /* current rounding mode */ 12514 break; 12515 case 0x1a: /* FCVTNS */ 12516 rmode = FPROUNDING_TIEEVEN; 12517 break; 12518 case 0x1b: /* FCVTMS */ 12519 rmode = FPROUNDING_NEGINF; 12520 break; 12521 case 0x1c: /* FCVTAS */ 12522 rmode = FPROUNDING_TIEAWAY; 12523 break; 12524 case 0x3a: /* FCVTPS */ 12525 rmode = FPROUNDING_POSINF; 12526 break; 12527 case 0x3b: /* FCVTZS */ 12528 rmode = FPROUNDING_ZERO; 12529 break; 12530 case 0x5a: /* FCVTNU */ 12531 rmode = FPROUNDING_TIEEVEN; 12532 break; 12533 case 0x5b: /* FCVTMU */ 12534 rmode = FPROUNDING_NEGINF; 12535 break; 12536 case 0x5c: /* FCVTAU */ 12537 rmode = FPROUNDING_TIEAWAY; 12538 break; 12539 case 0x7a: /* FCVTPU */ 12540 rmode = FPROUNDING_POSINF; 12541 break; 12542 case 0x7b: /* FCVTZU */ 12543 rmode = FPROUNDING_ZERO; 12544 break; 12545 case 0x2f: /* FABS */ 12546 case 0x6f: /* FNEG */ 12547 need_fpst = false; 12548 break; 12549 case 0x7d: /* FRSQRTE */ 12550 case 0x7f: /* FSQRT (vector) */ 12551 break; 12552 default: 12553 unallocated_encoding(s); 12554 return; 12555 } 12556 12557 12558 /* Check additional constraints for the scalar encoding */ 12559 if (is_scalar) { 12560 if (!is_q) { 12561 unallocated_encoding(s); 12562 return; 12563 } 12564 /* FRINTxx is only in the vector form */ 12565 if (only_in_vector) { 12566 unallocated_encoding(s); 12567 return; 12568 } 12569 } 12570 12571 if (!fp_access_check(s)) { 12572 return; 12573 } 12574 12575 if (rmode >= 0 || need_fpst) { 12576 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12577 } 12578 12579 if (rmode >= 0) { 12580 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12581 } 12582 12583 if (is_scalar) { 12584 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12585 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12586 12587 switch (fpop) { 12588 case 0x1a: /* FCVTNS */ 12589 case 0x1b: /* FCVTMS */ 12590 case 0x1c: /* FCVTAS */ 12591 case 0x3a: /* FCVTPS */ 12592 case 0x3b: /* FCVTZS */ 12593 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12594 break; 12595 case 0x3d: /* FRECPE */ 12596 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12597 break; 12598 case 0x3f: /* FRECPX */ 12599 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12600 break; 12601 case 0x5a: /* FCVTNU */ 12602 case 0x5b: /* FCVTMU */ 12603 case 0x5c: /* FCVTAU */ 12604 case 0x7a: /* FCVTPU */ 12605 case 0x7b: /* FCVTZU */ 12606 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12607 break; 12608 case 0x6f: /* FNEG */ 12609 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12610 break; 12611 case 0x7d: /* FRSQRTE */ 12612 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12613 break; 12614 default: 12615 g_assert_not_reached(); 12616 } 12617 12618 /* limit any sign extension going on */ 12619 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12620 write_fp_sreg(s, rd, tcg_res); 12621 } else { 12622 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12623 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12624 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12625 12626 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12627 12628 switch (fpop) { 12629 case 0x1a: /* FCVTNS */ 12630 case 0x1b: /* FCVTMS */ 12631 case 0x1c: /* FCVTAS */ 12632 case 0x3a: /* FCVTPS */ 12633 case 0x3b: /* FCVTZS */ 12634 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12635 break; 12636 case 0x3d: /* FRECPE */ 12637 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12638 break; 12639 case 0x5a: /* FCVTNU */ 12640 case 0x5b: /* FCVTMU */ 12641 case 0x5c: /* FCVTAU */ 12642 case 0x7a: /* FCVTPU */ 12643 case 0x7b: /* FCVTZU */ 12644 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12645 break; 12646 case 0x18: /* FRINTN */ 12647 case 0x19: /* FRINTM */ 12648 case 0x38: /* FRINTP */ 12649 case 0x39: /* FRINTZ */ 12650 case 0x58: /* FRINTA */ 12651 case 0x79: /* FRINTI */ 12652 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12653 break; 12654 case 0x59: /* FRINTX */ 12655 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12656 break; 12657 case 0x2f: /* FABS */ 12658 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12659 break; 12660 case 0x6f: /* FNEG */ 12661 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12662 break; 12663 case 0x7d: /* FRSQRTE */ 12664 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12665 break; 12666 case 0x7f: /* FSQRT */ 12667 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12668 break; 12669 default: 12670 g_assert_not_reached(); 12671 } 12672 12673 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12674 } 12675 12676 clear_vec_high(s, is_q, rd); 12677 } 12678 12679 if (tcg_rmode) { 12680 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12681 } 12682 } 12683 12684 /* AdvSIMD scalar x indexed element 12685 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12686 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12687 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12688 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12689 * AdvSIMD vector x indexed element 12690 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12691 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12692 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12693 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12694 */ 12695 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12696 { 12697 /* This encoding has two kinds of instruction: 12698 * normal, where we perform elt x idxelt => elt for each 12699 * element in the vector 12700 * long, where we perform elt x idxelt and generate a result of 12701 * double the width of the input element 12702 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12703 */ 12704 bool is_scalar = extract32(insn, 28, 1); 12705 bool is_q = extract32(insn, 30, 1); 12706 bool u = extract32(insn, 29, 1); 12707 int size = extract32(insn, 22, 2); 12708 int l = extract32(insn, 21, 1); 12709 int m = extract32(insn, 20, 1); 12710 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12711 int rm = extract32(insn, 16, 4); 12712 int opcode = extract32(insn, 12, 4); 12713 int h = extract32(insn, 11, 1); 12714 int rn = extract32(insn, 5, 5); 12715 int rd = extract32(insn, 0, 5); 12716 bool is_long = false; 12717 int is_fp = 0; 12718 bool is_fp16 = false; 12719 int index; 12720 TCGv_ptr fpst; 12721 12722 switch (16 * u + opcode) { 12723 case 0x08: /* MUL */ 12724 case 0x10: /* MLA */ 12725 case 0x14: /* MLS */ 12726 if (is_scalar) { 12727 unallocated_encoding(s); 12728 return; 12729 } 12730 break; 12731 case 0x02: /* SMLAL, SMLAL2 */ 12732 case 0x12: /* UMLAL, UMLAL2 */ 12733 case 0x06: /* SMLSL, SMLSL2 */ 12734 case 0x16: /* UMLSL, UMLSL2 */ 12735 case 0x0a: /* SMULL, SMULL2 */ 12736 case 0x1a: /* UMULL, UMULL2 */ 12737 if (is_scalar) { 12738 unallocated_encoding(s); 12739 return; 12740 } 12741 is_long = true; 12742 break; 12743 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12744 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12745 case 0x0b: /* SQDMULL, SQDMULL2 */ 12746 is_long = true; 12747 break; 12748 case 0x0c: /* SQDMULH */ 12749 case 0x0d: /* SQRDMULH */ 12750 break; 12751 case 0x01: /* FMLA */ 12752 case 0x05: /* FMLS */ 12753 case 0x09: /* FMUL */ 12754 case 0x19: /* FMULX */ 12755 is_fp = 1; 12756 break; 12757 case 0x1d: /* SQRDMLAH */ 12758 case 0x1f: /* SQRDMLSH */ 12759 if (!dc_isar_feature(aa64_rdm, s)) { 12760 unallocated_encoding(s); 12761 return; 12762 } 12763 break; 12764 case 0x0e: /* SDOT */ 12765 case 0x1e: /* UDOT */ 12766 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12767 unallocated_encoding(s); 12768 return; 12769 } 12770 break; 12771 case 0x0f: 12772 switch (size) { 12773 case 0: /* SUDOT */ 12774 case 2: /* USDOT */ 12775 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12776 unallocated_encoding(s); 12777 return; 12778 } 12779 size = MO_32; 12780 break; 12781 case 1: /* BFDOT */ 12782 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12783 unallocated_encoding(s); 12784 return; 12785 } 12786 size = MO_32; 12787 break; 12788 case 3: /* BFMLAL{B,T} */ 12789 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12790 unallocated_encoding(s); 12791 return; 12792 } 12793 /* can't set is_fp without other incorrect size checks */ 12794 size = MO_16; 12795 break; 12796 default: 12797 unallocated_encoding(s); 12798 return; 12799 } 12800 break; 12801 case 0x11: /* FCMLA #0 */ 12802 case 0x13: /* FCMLA #90 */ 12803 case 0x15: /* FCMLA #180 */ 12804 case 0x17: /* FCMLA #270 */ 12805 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12806 unallocated_encoding(s); 12807 return; 12808 } 12809 is_fp = 2; 12810 break; 12811 case 0x00: /* FMLAL */ 12812 case 0x04: /* FMLSL */ 12813 case 0x18: /* FMLAL2 */ 12814 case 0x1c: /* FMLSL2 */ 12815 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12816 unallocated_encoding(s); 12817 return; 12818 } 12819 size = MO_16; 12820 /* is_fp, but we pass cpu_env not fp_status. */ 12821 break; 12822 default: 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 12827 switch (is_fp) { 12828 case 1: /* normal fp */ 12829 /* convert insn encoded size to MemOp size */ 12830 switch (size) { 12831 case 0: /* half-precision */ 12832 size = MO_16; 12833 is_fp16 = true; 12834 break; 12835 case MO_32: /* single precision */ 12836 case MO_64: /* double precision */ 12837 break; 12838 default: 12839 unallocated_encoding(s); 12840 return; 12841 } 12842 break; 12843 12844 case 2: /* complex fp */ 12845 /* Each indexable element is a complex pair. */ 12846 size += 1; 12847 switch (size) { 12848 case MO_32: 12849 if (h && !is_q) { 12850 unallocated_encoding(s); 12851 return; 12852 } 12853 is_fp16 = true; 12854 break; 12855 case MO_64: 12856 break; 12857 default: 12858 unallocated_encoding(s); 12859 return; 12860 } 12861 break; 12862 12863 default: /* integer */ 12864 switch (size) { 12865 case MO_8: 12866 case MO_64: 12867 unallocated_encoding(s); 12868 return; 12869 } 12870 break; 12871 } 12872 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12873 unallocated_encoding(s); 12874 return; 12875 } 12876 12877 /* Given MemOp size, adjust register and indexing. */ 12878 switch (size) { 12879 case MO_16: 12880 index = h << 2 | l << 1 | m; 12881 break; 12882 case MO_32: 12883 index = h << 1 | l; 12884 rm |= m << 4; 12885 break; 12886 case MO_64: 12887 if (l || !is_q) { 12888 unallocated_encoding(s); 12889 return; 12890 } 12891 index = h; 12892 rm |= m << 4; 12893 break; 12894 default: 12895 g_assert_not_reached(); 12896 } 12897 12898 if (!fp_access_check(s)) { 12899 return; 12900 } 12901 12902 if (is_fp) { 12903 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12904 } else { 12905 fpst = NULL; 12906 } 12907 12908 switch (16 * u + opcode) { 12909 case 0x0e: /* SDOT */ 12910 case 0x1e: /* UDOT */ 12911 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12912 u ? gen_helper_gvec_udot_idx_b 12913 : gen_helper_gvec_sdot_idx_b); 12914 return; 12915 case 0x0f: 12916 switch (extract32(insn, 22, 2)) { 12917 case 0: /* SUDOT */ 12918 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12919 gen_helper_gvec_sudot_idx_b); 12920 return; 12921 case 1: /* BFDOT */ 12922 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12923 gen_helper_gvec_bfdot_idx); 12924 return; 12925 case 2: /* USDOT */ 12926 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12927 gen_helper_gvec_usdot_idx_b); 12928 return; 12929 case 3: /* BFMLAL{B,T} */ 12930 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12931 gen_helper_gvec_bfmlal_idx); 12932 return; 12933 } 12934 g_assert_not_reached(); 12935 case 0x11: /* FCMLA #0 */ 12936 case 0x13: /* FCMLA #90 */ 12937 case 0x15: /* FCMLA #180 */ 12938 case 0x17: /* FCMLA #270 */ 12939 { 12940 int rot = extract32(insn, 13, 2); 12941 int data = (index << 2) | rot; 12942 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12943 vec_full_reg_offset(s, rn), 12944 vec_full_reg_offset(s, rm), 12945 vec_full_reg_offset(s, rd), fpst, 12946 is_q ? 16 : 8, vec_full_reg_size(s), data, 12947 size == MO_64 12948 ? gen_helper_gvec_fcmlas_idx 12949 : gen_helper_gvec_fcmlah_idx); 12950 } 12951 return; 12952 12953 case 0x00: /* FMLAL */ 12954 case 0x04: /* FMLSL */ 12955 case 0x18: /* FMLAL2 */ 12956 case 0x1c: /* FMLSL2 */ 12957 { 12958 int is_s = extract32(opcode, 2, 1); 12959 int is_2 = u; 12960 int data = (index << 2) | (is_2 << 1) | is_s; 12961 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12962 vec_full_reg_offset(s, rn), 12963 vec_full_reg_offset(s, rm), cpu_env, 12964 is_q ? 16 : 8, vec_full_reg_size(s), 12965 data, gen_helper_gvec_fmlal_idx_a64); 12966 } 12967 return; 12968 12969 case 0x08: /* MUL */ 12970 if (!is_long && !is_scalar) { 12971 static gen_helper_gvec_3 * const fns[3] = { 12972 gen_helper_gvec_mul_idx_h, 12973 gen_helper_gvec_mul_idx_s, 12974 gen_helper_gvec_mul_idx_d, 12975 }; 12976 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12977 vec_full_reg_offset(s, rn), 12978 vec_full_reg_offset(s, rm), 12979 is_q ? 16 : 8, vec_full_reg_size(s), 12980 index, fns[size - 1]); 12981 return; 12982 } 12983 break; 12984 12985 case 0x10: /* MLA */ 12986 if (!is_long && !is_scalar) { 12987 static gen_helper_gvec_4 * const fns[3] = { 12988 gen_helper_gvec_mla_idx_h, 12989 gen_helper_gvec_mla_idx_s, 12990 gen_helper_gvec_mla_idx_d, 12991 }; 12992 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12993 vec_full_reg_offset(s, rn), 12994 vec_full_reg_offset(s, rm), 12995 vec_full_reg_offset(s, rd), 12996 is_q ? 16 : 8, vec_full_reg_size(s), 12997 index, fns[size - 1]); 12998 return; 12999 } 13000 break; 13001 13002 case 0x14: /* MLS */ 13003 if (!is_long && !is_scalar) { 13004 static gen_helper_gvec_4 * const fns[3] = { 13005 gen_helper_gvec_mls_idx_h, 13006 gen_helper_gvec_mls_idx_s, 13007 gen_helper_gvec_mls_idx_d, 13008 }; 13009 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13010 vec_full_reg_offset(s, rn), 13011 vec_full_reg_offset(s, rm), 13012 vec_full_reg_offset(s, rd), 13013 is_q ? 16 : 8, vec_full_reg_size(s), 13014 index, fns[size - 1]); 13015 return; 13016 } 13017 break; 13018 } 13019 13020 if (size == 3) { 13021 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13022 int pass; 13023 13024 assert(is_fp && is_q && !is_long); 13025 13026 read_vec_element(s, tcg_idx, rm, index, MO_64); 13027 13028 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13029 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13030 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13031 13032 read_vec_element(s, tcg_op, rn, pass, MO_64); 13033 13034 switch (16 * u + opcode) { 13035 case 0x05: /* FMLS */ 13036 /* As usual for ARM, separate negation for fused multiply-add */ 13037 gen_helper_vfp_negd(tcg_op, tcg_op); 13038 /* fall through */ 13039 case 0x01: /* FMLA */ 13040 read_vec_element(s, tcg_res, rd, pass, MO_64); 13041 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13042 break; 13043 case 0x09: /* FMUL */ 13044 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13045 break; 13046 case 0x19: /* FMULX */ 13047 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13048 break; 13049 default: 13050 g_assert_not_reached(); 13051 } 13052 13053 write_vec_element(s, tcg_res, rd, pass, MO_64); 13054 } 13055 13056 clear_vec_high(s, !is_scalar, rd); 13057 } else if (!is_long) { 13058 /* 32 bit floating point, or 16 or 32 bit integer. 13059 * For the 16 bit scalar case we use the usual Neon helpers and 13060 * rely on the fact that 0 op 0 == 0 with no side effects. 13061 */ 13062 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13063 int pass, maxpasses; 13064 13065 if (is_scalar) { 13066 maxpasses = 1; 13067 } else { 13068 maxpasses = is_q ? 4 : 2; 13069 } 13070 13071 read_vec_element_i32(s, tcg_idx, rm, index, size); 13072 13073 if (size == 1 && !is_scalar) { 13074 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13075 * the index into both halves of the 32 bit tcg_idx and then use 13076 * the usual Neon helpers. 13077 */ 13078 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13079 } 13080 13081 for (pass = 0; pass < maxpasses; pass++) { 13082 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13083 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13084 13085 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13086 13087 switch (16 * u + opcode) { 13088 case 0x08: /* MUL */ 13089 case 0x10: /* MLA */ 13090 case 0x14: /* MLS */ 13091 { 13092 static NeonGenTwoOpFn * const fns[2][2] = { 13093 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13094 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13095 }; 13096 NeonGenTwoOpFn *genfn; 13097 bool is_sub = opcode == 0x4; 13098 13099 if (size == 1) { 13100 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13101 } else { 13102 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13103 } 13104 if (opcode == 0x8) { 13105 break; 13106 } 13107 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13108 genfn = fns[size - 1][is_sub]; 13109 genfn(tcg_res, tcg_op, tcg_res); 13110 break; 13111 } 13112 case 0x05: /* FMLS */ 13113 case 0x01: /* FMLA */ 13114 read_vec_element_i32(s, tcg_res, rd, pass, 13115 is_scalar ? size : MO_32); 13116 switch (size) { 13117 case 1: 13118 if (opcode == 0x5) { 13119 /* As usual for ARM, separate negation for fused 13120 * multiply-add */ 13121 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13122 } 13123 if (is_scalar) { 13124 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13125 tcg_res, fpst); 13126 } else { 13127 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13128 tcg_res, fpst); 13129 } 13130 break; 13131 case 2: 13132 if (opcode == 0x5) { 13133 /* As usual for ARM, separate negation for 13134 * fused multiply-add */ 13135 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13136 } 13137 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13138 tcg_res, fpst); 13139 break; 13140 default: 13141 g_assert_not_reached(); 13142 } 13143 break; 13144 case 0x09: /* FMUL */ 13145 switch (size) { 13146 case 1: 13147 if (is_scalar) { 13148 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13149 tcg_idx, fpst); 13150 } else { 13151 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13152 tcg_idx, fpst); 13153 } 13154 break; 13155 case 2: 13156 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13157 break; 13158 default: 13159 g_assert_not_reached(); 13160 } 13161 break; 13162 case 0x19: /* FMULX */ 13163 switch (size) { 13164 case 1: 13165 if (is_scalar) { 13166 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13167 tcg_idx, fpst); 13168 } else { 13169 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13170 tcg_idx, fpst); 13171 } 13172 break; 13173 case 2: 13174 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13175 break; 13176 default: 13177 g_assert_not_reached(); 13178 } 13179 break; 13180 case 0x0c: /* SQDMULH */ 13181 if (size == 1) { 13182 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13183 tcg_op, tcg_idx); 13184 } else { 13185 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13186 tcg_op, tcg_idx); 13187 } 13188 break; 13189 case 0x0d: /* SQRDMULH */ 13190 if (size == 1) { 13191 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13192 tcg_op, tcg_idx); 13193 } else { 13194 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13195 tcg_op, tcg_idx); 13196 } 13197 break; 13198 case 0x1d: /* SQRDMLAH */ 13199 read_vec_element_i32(s, tcg_res, rd, pass, 13200 is_scalar ? size : MO_32); 13201 if (size == 1) { 13202 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13203 tcg_op, tcg_idx, tcg_res); 13204 } else { 13205 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13206 tcg_op, tcg_idx, tcg_res); 13207 } 13208 break; 13209 case 0x1f: /* SQRDMLSH */ 13210 read_vec_element_i32(s, tcg_res, rd, pass, 13211 is_scalar ? size : MO_32); 13212 if (size == 1) { 13213 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13214 tcg_op, tcg_idx, tcg_res); 13215 } else { 13216 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13217 tcg_op, tcg_idx, tcg_res); 13218 } 13219 break; 13220 default: 13221 g_assert_not_reached(); 13222 } 13223 13224 if (is_scalar) { 13225 write_fp_sreg(s, rd, tcg_res); 13226 } else { 13227 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13228 } 13229 } 13230 13231 clear_vec_high(s, is_q, rd); 13232 } else { 13233 /* long ops: 16x16->32 or 32x32->64 */ 13234 TCGv_i64 tcg_res[2]; 13235 int pass; 13236 bool satop = extract32(opcode, 0, 1); 13237 MemOp memop = MO_32; 13238 13239 if (satop || !u) { 13240 memop |= MO_SIGN; 13241 } 13242 13243 if (size == 2) { 13244 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13245 13246 read_vec_element(s, tcg_idx, rm, index, memop); 13247 13248 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13249 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13250 TCGv_i64 tcg_passres; 13251 int passelt; 13252 13253 if (is_scalar) { 13254 passelt = 0; 13255 } else { 13256 passelt = pass + (is_q * 2); 13257 } 13258 13259 read_vec_element(s, tcg_op, rn, passelt, memop); 13260 13261 tcg_res[pass] = tcg_temp_new_i64(); 13262 13263 if (opcode == 0xa || opcode == 0xb) { 13264 /* Non-accumulating ops */ 13265 tcg_passres = tcg_res[pass]; 13266 } else { 13267 tcg_passres = tcg_temp_new_i64(); 13268 } 13269 13270 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13271 13272 if (satop) { 13273 /* saturating, doubling */ 13274 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13275 tcg_passres, tcg_passres); 13276 } 13277 13278 if (opcode == 0xa || opcode == 0xb) { 13279 continue; 13280 } 13281 13282 /* Accumulating op: handle accumulate step */ 13283 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13284 13285 switch (opcode) { 13286 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13287 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13288 break; 13289 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13290 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13291 break; 13292 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13293 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13294 /* fall through */ 13295 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13296 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13297 tcg_res[pass], 13298 tcg_passres); 13299 break; 13300 default: 13301 g_assert_not_reached(); 13302 } 13303 } 13304 13305 clear_vec_high(s, !is_scalar, rd); 13306 } else { 13307 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13308 13309 assert(size == 1); 13310 read_vec_element_i32(s, tcg_idx, rm, index, size); 13311 13312 if (!is_scalar) { 13313 /* The simplest way to handle the 16x16 indexed ops is to 13314 * duplicate the index into both halves of the 32 bit tcg_idx 13315 * and then use the usual Neon helpers. 13316 */ 13317 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13318 } 13319 13320 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13321 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13322 TCGv_i64 tcg_passres; 13323 13324 if (is_scalar) { 13325 read_vec_element_i32(s, tcg_op, rn, pass, size); 13326 } else { 13327 read_vec_element_i32(s, tcg_op, rn, 13328 pass + (is_q * 2), MO_32); 13329 } 13330 13331 tcg_res[pass] = tcg_temp_new_i64(); 13332 13333 if (opcode == 0xa || opcode == 0xb) { 13334 /* Non-accumulating ops */ 13335 tcg_passres = tcg_res[pass]; 13336 } else { 13337 tcg_passres = tcg_temp_new_i64(); 13338 } 13339 13340 if (memop & MO_SIGN) { 13341 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13342 } else { 13343 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13344 } 13345 if (satop) { 13346 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13347 tcg_passres, tcg_passres); 13348 } 13349 13350 if (opcode == 0xa || opcode == 0xb) { 13351 continue; 13352 } 13353 13354 /* Accumulating op: handle accumulate step */ 13355 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13356 13357 switch (opcode) { 13358 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13359 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13360 tcg_passres); 13361 break; 13362 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13363 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13364 tcg_passres); 13365 break; 13366 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13367 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13368 /* fall through */ 13369 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13370 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13371 tcg_res[pass], 13372 tcg_passres); 13373 break; 13374 default: 13375 g_assert_not_reached(); 13376 } 13377 } 13378 13379 if (is_scalar) { 13380 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13381 } 13382 } 13383 13384 if (is_scalar) { 13385 tcg_res[1] = tcg_constant_i64(0); 13386 } 13387 13388 for (pass = 0; pass < 2; pass++) { 13389 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13390 } 13391 } 13392 } 13393 13394 /* Crypto AES 13395 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13396 * +-----------------+------+-----------+--------+-----+------+------+ 13397 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13398 * +-----------------+------+-----------+--------+-----+------+------+ 13399 */ 13400 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13401 { 13402 int size = extract32(insn, 22, 2); 13403 int opcode = extract32(insn, 12, 5); 13404 int rn = extract32(insn, 5, 5); 13405 int rd = extract32(insn, 0, 5); 13406 int decrypt; 13407 gen_helper_gvec_2 *genfn2 = NULL; 13408 gen_helper_gvec_3 *genfn3 = NULL; 13409 13410 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13411 unallocated_encoding(s); 13412 return; 13413 } 13414 13415 switch (opcode) { 13416 case 0x4: /* AESE */ 13417 decrypt = 0; 13418 genfn3 = gen_helper_crypto_aese; 13419 break; 13420 case 0x6: /* AESMC */ 13421 decrypt = 0; 13422 genfn2 = gen_helper_crypto_aesmc; 13423 break; 13424 case 0x5: /* AESD */ 13425 decrypt = 1; 13426 genfn3 = gen_helper_crypto_aese; 13427 break; 13428 case 0x7: /* AESIMC */ 13429 decrypt = 1; 13430 genfn2 = gen_helper_crypto_aesmc; 13431 break; 13432 default: 13433 unallocated_encoding(s); 13434 return; 13435 } 13436 13437 if (!fp_access_check(s)) { 13438 return; 13439 } 13440 if (genfn2) { 13441 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13442 } else { 13443 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13444 } 13445 } 13446 13447 /* Crypto three-reg SHA 13448 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13449 * +-----------------+------+---+------+---+--------+-----+------+------+ 13450 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13451 * +-----------------+------+---+------+---+--------+-----+------+------+ 13452 */ 13453 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13454 { 13455 int size = extract32(insn, 22, 2); 13456 int opcode = extract32(insn, 12, 3); 13457 int rm = extract32(insn, 16, 5); 13458 int rn = extract32(insn, 5, 5); 13459 int rd = extract32(insn, 0, 5); 13460 gen_helper_gvec_3 *genfn; 13461 bool feature; 13462 13463 if (size != 0) { 13464 unallocated_encoding(s); 13465 return; 13466 } 13467 13468 switch (opcode) { 13469 case 0: /* SHA1C */ 13470 genfn = gen_helper_crypto_sha1c; 13471 feature = dc_isar_feature(aa64_sha1, s); 13472 break; 13473 case 1: /* SHA1P */ 13474 genfn = gen_helper_crypto_sha1p; 13475 feature = dc_isar_feature(aa64_sha1, s); 13476 break; 13477 case 2: /* SHA1M */ 13478 genfn = gen_helper_crypto_sha1m; 13479 feature = dc_isar_feature(aa64_sha1, s); 13480 break; 13481 case 3: /* SHA1SU0 */ 13482 genfn = gen_helper_crypto_sha1su0; 13483 feature = dc_isar_feature(aa64_sha1, s); 13484 break; 13485 case 4: /* SHA256H */ 13486 genfn = gen_helper_crypto_sha256h; 13487 feature = dc_isar_feature(aa64_sha256, s); 13488 break; 13489 case 5: /* SHA256H2 */ 13490 genfn = gen_helper_crypto_sha256h2; 13491 feature = dc_isar_feature(aa64_sha256, s); 13492 break; 13493 case 6: /* SHA256SU1 */ 13494 genfn = gen_helper_crypto_sha256su1; 13495 feature = dc_isar_feature(aa64_sha256, s); 13496 break; 13497 default: 13498 unallocated_encoding(s); 13499 return; 13500 } 13501 13502 if (!feature) { 13503 unallocated_encoding(s); 13504 return; 13505 } 13506 13507 if (!fp_access_check(s)) { 13508 return; 13509 } 13510 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13511 } 13512 13513 /* Crypto two-reg SHA 13514 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13515 * +-----------------+------+-----------+--------+-----+------+------+ 13516 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13517 * +-----------------+------+-----------+--------+-----+------+------+ 13518 */ 13519 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13520 { 13521 int size = extract32(insn, 22, 2); 13522 int opcode = extract32(insn, 12, 5); 13523 int rn = extract32(insn, 5, 5); 13524 int rd = extract32(insn, 0, 5); 13525 gen_helper_gvec_2 *genfn; 13526 bool feature; 13527 13528 if (size != 0) { 13529 unallocated_encoding(s); 13530 return; 13531 } 13532 13533 switch (opcode) { 13534 case 0: /* SHA1H */ 13535 feature = dc_isar_feature(aa64_sha1, s); 13536 genfn = gen_helper_crypto_sha1h; 13537 break; 13538 case 1: /* SHA1SU1 */ 13539 feature = dc_isar_feature(aa64_sha1, s); 13540 genfn = gen_helper_crypto_sha1su1; 13541 break; 13542 case 2: /* SHA256SU0 */ 13543 feature = dc_isar_feature(aa64_sha256, s); 13544 genfn = gen_helper_crypto_sha256su0; 13545 break; 13546 default: 13547 unallocated_encoding(s); 13548 return; 13549 } 13550 13551 if (!feature) { 13552 unallocated_encoding(s); 13553 return; 13554 } 13555 13556 if (!fp_access_check(s)) { 13557 return; 13558 } 13559 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13560 } 13561 13562 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13563 { 13564 tcg_gen_rotli_i64(d, m, 1); 13565 tcg_gen_xor_i64(d, d, n); 13566 } 13567 13568 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13569 { 13570 tcg_gen_rotli_vec(vece, d, m, 1); 13571 tcg_gen_xor_vec(vece, d, d, n); 13572 } 13573 13574 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13575 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13576 { 13577 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13578 static const GVecGen3 op = { 13579 .fni8 = gen_rax1_i64, 13580 .fniv = gen_rax1_vec, 13581 .opt_opc = vecop_list, 13582 .fno = gen_helper_crypto_rax1, 13583 .vece = MO_64, 13584 }; 13585 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13586 } 13587 13588 /* Crypto three-reg SHA512 13589 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13590 * +-----------------------+------+---+---+-----+--------+------+------+ 13591 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13592 * +-----------------------+------+---+---+-----+--------+------+------+ 13593 */ 13594 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13595 { 13596 int opcode = extract32(insn, 10, 2); 13597 int o = extract32(insn, 14, 1); 13598 int rm = extract32(insn, 16, 5); 13599 int rn = extract32(insn, 5, 5); 13600 int rd = extract32(insn, 0, 5); 13601 bool feature; 13602 gen_helper_gvec_3 *oolfn = NULL; 13603 GVecGen3Fn *gvecfn = NULL; 13604 13605 if (o == 0) { 13606 switch (opcode) { 13607 case 0: /* SHA512H */ 13608 feature = dc_isar_feature(aa64_sha512, s); 13609 oolfn = gen_helper_crypto_sha512h; 13610 break; 13611 case 1: /* SHA512H2 */ 13612 feature = dc_isar_feature(aa64_sha512, s); 13613 oolfn = gen_helper_crypto_sha512h2; 13614 break; 13615 case 2: /* SHA512SU1 */ 13616 feature = dc_isar_feature(aa64_sha512, s); 13617 oolfn = gen_helper_crypto_sha512su1; 13618 break; 13619 case 3: /* RAX1 */ 13620 feature = dc_isar_feature(aa64_sha3, s); 13621 gvecfn = gen_gvec_rax1; 13622 break; 13623 default: 13624 g_assert_not_reached(); 13625 } 13626 } else { 13627 switch (opcode) { 13628 case 0: /* SM3PARTW1 */ 13629 feature = dc_isar_feature(aa64_sm3, s); 13630 oolfn = gen_helper_crypto_sm3partw1; 13631 break; 13632 case 1: /* SM3PARTW2 */ 13633 feature = dc_isar_feature(aa64_sm3, s); 13634 oolfn = gen_helper_crypto_sm3partw2; 13635 break; 13636 case 2: /* SM4EKEY */ 13637 feature = dc_isar_feature(aa64_sm4, s); 13638 oolfn = gen_helper_crypto_sm4ekey; 13639 break; 13640 default: 13641 unallocated_encoding(s); 13642 return; 13643 } 13644 } 13645 13646 if (!feature) { 13647 unallocated_encoding(s); 13648 return; 13649 } 13650 13651 if (!fp_access_check(s)) { 13652 return; 13653 } 13654 13655 if (oolfn) { 13656 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13657 } else { 13658 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13659 } 13660 } 13661 13662 /* Crypto two-reg SHA512 13663 * 31 12 11 10 9 5 4 0 13664 * +-----------------------------------------+--------+------+------+ 13665 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13666 * +-----------------------------------------+--------+------+------+ 13667 */ 13668 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13669 { 13670 int opcode = extract32(insn, 10, 2); 13671 int rn = extract32(insn, 5, 5); 13672 int rd = extract32(insn, 0, 5); 13673 bool feature; 13674 13675 switch (opcode) { 13676 case 0: /* SHA512SU0 */ 13677 feature = dc_isar_feature(aa64_sha512, s); 13678 break; 13679 case 1: /* SM4E */ 13680 feature = dc_isar_feature(aa64_sm4, s); 13681 break; 13682 default: 13683 unallocated_encoding(s); 13684 return; 13685 } 13686 13687 if (!feature) { 13688 unallocated_encoding(s); 13689 return; 13690 } 13691 13692 if (!fp_access_check(s)) { 13693 return; 13694 } 13695 13696 switch (opcode) { 13697 case 0: /* SHA512SU0 */ 13698 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13699 break; 13700 case 1: /* SM4E */ 13701 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13702 break; 13703 default: 13704 g_assert_not_reached(); 13705 } 13706 } 13707 13708 /* Crypto four-register 13709 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13710 * +-------------------+-----+------+---+------+------+------+ 13711 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13712 * +-------------------+-----+------+---+------+------+------+ 13713 */ 13714 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13715 { 13716 int op0 = extract32(insn, 21, 2); 13717 int rm = extract32(insn, 16, 5); 13718 int ra = extract32(insn, 10, 5); 13719 int rn = extract32(insn, 5, 5); 13720 int rd = extract32(insn, 0, 5); 13721 bool feature; 13722 13723 switch (op0) { 13724 case 0: /* EOR3 */ 13725 case 1: /* BCAX */ 13726 feature = dc_isar_feature(aa64_sha3, s); 13727 break; 13728 case 2: /* SM3SS1 */ 13729 feature = dc_isar_feature(aa64_sm3, s); 13730 break; 13731 default: 13732 unallocated_encoding(s); 13733 return; 13734 } 13735 13736 if (!feature) { 13737 unallocated_encoding(s); 13738 return; 13739 } 13740 13741 if (!fp_access_check(s)) { 13742 return; 13743 } 13744 13745 if (op0 < 2) { 13746 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13747 int pass; 13748 13749 tcg_op1 = tcg_temp_new_i64(); 13750 tcg_op2 = tcg_temp_new_i64(); 13751 tcg_op3 = tcg_temp_new_i64(); 13752 tcg_res[0] = tcg_temp_new_i64(); 13753 tcg_res[1] = tcg_temp_new_i64(); 13754 13755 for (pass = 0; pass < 2; pass++) { 13756 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13757 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13758 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13759 13760 if (op0 == 0) { 13761 /* EOR3 */ 13762 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13763 } else { 13764 /* BCAX */ 13765 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13766 } 13767 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13768 } 13769 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13770 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13771 } else { 13772 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13773 13774 tcg_op1 = tcg_temp_new_i32(); 13775 tcg_op2 = tcg_temp_new_i32(); 13776 tcg_op3 = tcg_temp_new_i32(); 13777 tcg_res = tcg_temp_new_i32(); 13778 tcg_zero = tcg_constant_i32(0); 13779 13780 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13781 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13782 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13783 13784 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13785 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13786 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13787 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13788 13789 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13790 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13791 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13792 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13793 } 13794 } 13795 13796 /* Crypto XAR 13797 * 31 21 20 16 15 10 9 5 4 0 13798 * +-----------------------+------+--------+------+------+ 13799 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13800 * +-----------------------+------+--------+------+------+ 13801 */ 13802 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13803 { 13804 int rm = extract32(insn, 16, 5); 13805 int imm6 = extract32(insn, 10, 6); 13806 int rn = extract32(insn, 5, 5); 13807 int rd = extract32(insn, 0, 5); 13808 13809 if (!dc_isar_feature(aa64_sha3, s)) { 13810 unallocated_encoding(s); 13811 return; 13812 } 13813 13814 if (!fp_access_check(s)) { 13815 return; 13816 } 13817 13818 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13819 vec_full_reg_offset(s, rn), 13820 vec_full_reg_offset(s, rm), imm6, 16, 13821 vec_full_reg_size(s)); 13822 } 13823 13824 /* Crypto three-reg imm2 13825 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13826 * +-----------------------+------+-----+------+--------+------+------+ 13827 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13828 * +-----------------------+------+-----+------+--------+------+------+ 13829 */ 13830 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13831 { 13832 static gen_helper_gvec_3 * const fns[4] = { 13833 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13834 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13835 }; 13836 int opcode = extract32(insn, 10, 2); 13837 int imm2 = extract32(insn, 12, 2); 13838 int rm = extract32(insn, 16, 5); 13839 int rn = extract32(insn, 5, 5); 13840 int rd = extract32(insn, 0, 5); 13841 13842 if (!dc_isar_feature(aa64_sm3, s)) { 13843 unallocated_encoding(s); 13844 return; 13845 } 13846 13847 if (!fp_access_check(s)) { 13848 return; 13849 } 13850 13851 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13852 } 13853 13854 /* C3.6 Data processing - SIMD, inc Crypto 13855 * 13856 * As the decode gets a little complex we are using a table based 13857 * approach for this part of the decode. 13858 */ 13859 static const AArch64DecodeTable data_proc_simd[] = { 13860 /* pattern , mask , fn */ 13861 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13862 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13863 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13864 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13865 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13866 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13867 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13868 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13869 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13870 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13871 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13872 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13873 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13874 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13875 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13876 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13877 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13878 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13879 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13880 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13881 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13882 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13883 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13884 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13885 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13886 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13887 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13888 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13889 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13890 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13891 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13892 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13893 { 0x00000000, 0x00000000, NULL } 13894 }; 13895 13896 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13897 { 13898 /* Note that this is called with all non-FP cases from 13899 * table C3-6 so it must UNDEF for entries not specifically 13900 * allocated to instructions in that table. 13901 */ 13902 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13903 if (fn) { 13904 fn(s, insn); 13905 } else { 13906 unallocated_encoding(s); 13907 } 13908 } 13909 13910 /* C3.6 Data processing - SIMD and floating point */ 13911 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13912 { 13913 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13914 disas_data_proc_fp(s, insn); 13915 } else { 13916 /* SIMD, including crypto */ 13917 disas_data_proc_simd(s, insn); 13918 } 13919 } 13920 13921 static bool trans_OK(DisasContext *s, arg_OK *a) 13922 { 13923 return true; 13924 } 13925 13926 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13927 { 13928 s->is_nonstreaming = true; 13929 return true; 13930 } 13931 13932 /** 13933 * is_guarded_page: 13934 * @env: The cpu environment 13935 * @s: The DisasContext 13936 * 13937 * Return true if the page is guarded. 13938 */ 13939 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13940 { 13941 uint64_t addr = s->base.pc_first; 13942 #ifdef CONFIG_USER_ONLY 13943 return page_get_flags(addr) & PAGE_BTI; 13944 #else 13945 CPUTLBEntryFull *full; 13946 void *host; 13947 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13948 int flags; 13949 13950 /* 13951 * We test this immediately after reading an insn, which means 13952 * that the TLB entry must be present and valid, and thus this 13953 * access will never raise an exception. 13954 */ 13955 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13956 false, &host, &full, 0); 13957 assert(!(flags & TLB_INVALID_MASK)); 13958 13959 return full->guarded; 13960 #endif 13961 } 13962 13963 /** 13964 * btype_destination_ok: 13965 * @insn: The instruction at the branch destination 13966 * @bt: SCTLR_ELx.BT 13967 * @btype: PSTATE.BTYPE, and is non-zero 13968 * 13969 * On a guarded page, there are a limited number of insns 13970 * that may be present at the branch target: 13971 * - branch target identifiers, 13972 * - paciasp, pacibsp, 13973 * - BRK insn 13974 * - HLT insn 13975 * Anything else causes a Branch Target Exception. 13976 * 13977 * Return true if the branch is compatible, false to raise BTITRAP. 13978 */ 13979 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13980 { 13981 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13982 /* HINT space */ 13983 switch (extract32(insn, 5, 7)) { 13984 case 0b011001: /* PACIASP */ 13985 case 0b011011: /* PACIBSP */ 13986 /* 13987 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13988 * with btype == 3. Otherwise all btype are ok. 13989 */ 13990 return !bt || btype != 3; 13991 case 0b100000: /* BTI */ 13992 /* Not compatible with any btype. */ 13993 return false; 13994 case 0b100010: /* BTI c */ 13995 /* Not compatible with btype == 3 */ 13996 return btype != 3; 13997 case 0b100100: /* BTI j */ 13998 /* Not compatible with btype == 2 */ 13999 return btype != 2; 14000 case 0b100110: /* BTI jc */ 14001 /* Compatible with any btype. */ 14002 return true; 14003 } 14004 } else { 14005 switch (insn & 0xffe0001fu) { 14006 case 0xd4200000u: /* BRK */ 14007 case 0xd4400000u: /* HLT */ 14008 /* Give priority to the breakpoint exception. */ 14009 return true; 14010 } 14011 } 14012 return false; 14013 } 14014 14015 /* C3.1 A64 instruction index by encoding */ 14016 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14017 { 14018 switch (extract32(insn, 25, 4)) { 14019 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14020 disas_b_exc_sys(s, insn); 14021 break; 14022 case 0x4: 14023 case 0x6: 14024 case 0xc: 14025 case 0xe: /* Loads and stores */ 14026 disas_ldst(s, insn); 14027 break; 14028 case 0x5: 14029 case 0xd: /* Data processing - register */ 14030 disas_data_proc_reg(s, insn); 14031 break; 14032 case 0x7: 14033 case 0xf: /* Data processing - SIMD and floating point */ 14034 disas_data_proc_simd_fp(s, insn); 14035 break; 14036 default: 14037 unallocated_encoding(s); 14038 break; 14039 } 14040 } 14041 14042 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14043 CPUState *cpu) 14044 { 14045 DisasContext *dc = container_of(dcbase, DisasContext, base); 14046 CPUARMState *env = cpu->env_ptr; 14047 ARMCPU *arm_cpu = env_archcpu(env); 14048 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14049 int bound, core_mmu_idx; 14050 14051 dc->isar = &arm_cpu->isar; 14052 dc->condjmp = 0; 14053 dc->pc_save = dc->base.pc_first; 14054 dc->aarch64 = true; 14055 dc->thumb = false; 14056 dc->sctlr_b = 0; 14057 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14058 dc->condexec_mask = 0; 14059 dc->condexec_cond = 0; 14060 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14061 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14062 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14063 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14064 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14065 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14066 #if !defined(CONFIG_USER_ONLY) 14067 dc->user = (dc->current_el == 0); 14068 #endif 14069 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14070 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14071 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14072 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14073 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14074 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14075 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14076 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14077 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14078 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14079 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14080 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14081 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14082 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14083 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14084 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14085 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14086 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14087 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14088 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14089 dc->vec_len = 0; 14090 dc->vec_stride = 0; 14091 dc->cp_regs = arm_cpu->cp_regs; 14092 dc->features = env->features; 14093 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14094 14095 #ifdef CONFIG_USER_ONLY 14096 /* In sve_probe_page, we assume TBI is enabled. */ 14097 tcg_debug_assert(dc->tbid & 1); 14098 #endif 14099 14100 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14101 14102 /* Single step state. The code-generation logic here is: 14103 * SS_ACTIVE == 0: 14104 * generate code with no special handling for single-stepping (except 14105 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14106 * this happens anyway because those changes are all system register or 14107 * PSTATE writes). 14108 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14109 * emit code for one insn 14110 * emit code to clear PSTATE.SS 14111 * emit code to generate software step exception for completed step 14112 * end TB (as usual for having generated an exception) 14113 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14114 * emit code to generate a software step exception 14115 * end the TB 14116 */ 14117 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14118 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14119 dc->is_ldex = false; 14120 14121 /* Bound the number of insns to execute to those left on the page. */ 14122 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14123 14124 /* If architectural single step active, limit to 1. */ 14125 if (dc->ss_active) { 14126 bound = 1; 14127 } 14128 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14129 } 14130 14131 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14132 { 14133 } 14134 14135 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14136 { 14137 DisasContext *dc = container_of(dcbase, DisasContext, base); 14138 target_ulong pc_arg = dc->base.pc_next; 14139 14140 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14141 pc_arg &= ~TARGET_PAGE_MASK; 14142 } 14143 tcg_gen_insn_start(pc_arg, 0, 0); 14144 dc->insn_start = tcg_last_op(); 14145 } 14146 14147 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14148 { 14149 DisasContext *s = container_of(dcbase, DisasContext, base); 14150 CPUARMState *env = cpu->env_ptr; 14151 uint64_t pc = s->base.pc_next; 14152 uint32_t insn; 14153 14154 /* Singlestep exceptions have the highest priority. */ 14155 if (s->ss_active && !s->pstate_ss) { 14156 /* Singlestep state is Active-pending. 14157 * If we're in this state at the start of a TB then either 14158 * a) we just took an exception to an EL which is being debugged 14159 * and this is the first insn in the exception handler 14160 * b) debug exceptions were masked and we just unmasked them 14161 * without changing EL (eg by clearing PSTATE.D) 14162 * In either case we're going to take a swstep exception in the 14163 * "did not step an insn" case, and so the syndrome ISV and EX 14164 * bits should be zero. 14165 */ 14166 assert(s->base.num_insns == 1); 14167 gen_swstep_exception(s, 0, 0); 14168 s->base.is_jmp = DISAS_NORETURN; 14169 s->base.pc_next = pc + 4; 14170 return; 14171 } 14172 14173 if (pc & 3) { 14174 /* 14175 * PC alignment fault. This has priority over the instruction abort 14176 * that we would receive from a translation fault via arm_ldl_code. 14177 * This should only be possible after an indirect branch, at the 14178 * start of the TB. 14179 */ 14180 assert(s->base.num_insns == 1); 14181 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14182 s->base.is_jmp = DISAS_NORETURN; 14183 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14184 return; 14185 } 14186 14187 s->pc_curr = pc; 14188 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14189 s->insn = insn; 14190 s->base.pc_next = pc + 4; 14191 14192 s->fp_access_checked = false; 14193 s->sve_access_checked = false; 14194 14195 if (s->pstate_il) { 14196 /* 14197 * Illegal execution state. This has priority over BTI 14198 * exceptions, but comes after instruction abort exceptions. 14199 */ 14200 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14201 return; 14202 } 14203 14204 if (dc_isar_feature(aa64_bti, s)) { 14205 if (s->base.num_insns == 1) { 14206 /* 14207 * At the first insn of the TB, compute s->guarded_page. 14208 * We delayed computing this until successfully reading 14209 * the first insn of the TB, above. This (mostly) ensures 14210 * that the softmmu tlb entry has been populated, and the 14211 * page table GP bit is available. 14212 * 14213 * Note that we need to compute this even if btype == 0, 14214 * because this value is used for BR instructions later 14215 * where ENV is not available. 14216 */ 14217 s->guarded_page = is_guarded_page(env, s); 14218 14219 /* First insn can have btype set to non-zero. */ 14220 tcg_debug_assert(s->btype >= 0); 14221 14222 /* 14223 * Note that the Branch Target Exception has fairly high 14224 * priority -- below debugging exceptions but above most 14225 * everything else. This allows us to handle this now 14226 * instead of waiting until the insn is otherwise decoded. 14227 */ 14228 if (s->btype != 0 14229 && s->guarded_page 14230 && !btype_destination_ok(insn, s->bt, s->btype)) { 14231 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14232 return; 14233 } 14234 } else { 14235 /* Not the first insn: btype must be 0. */ 14236 tcg_debug_assert(s->btype == 0); 14237 } 14238 } 14239 14240 s->is_nonstreaming = false; 14241 if (s->sme_trap_nonstreaming) { 14242 disas_sme_fa64(s, insn); 14243 } 14244 14245 if (!disas_a64(s, insn) && 14246 !disas_sme(s, insn) && 14247 !disas_sve(s, insn)) { 14248 disas_a64_legacy(s, insn); 14249 } 14250 14251 /* 14252 * After execution of most insns, btype is reset to 0. 14253 * Note that we set btype == -1 when the insn sets btype. 14254 */ 14255 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14256 reset_btype(s); 14257 } 14258 } 14259 14260 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14261 { 14262 DisasContext *dc = container_of(dcbase, DisasContext, base); 14263 14264 if (unlikely(dc->ss_active)) { 14265 /* Note that this means single stepping WFI doesn't halt the CPU. 14266 * For conditional branch insns this is harmless unreachable code as 14267 * gen_goto_tb() has already handled emitting the debug exception 14268 * (and thus a tb-jump is not possible when singlestepping). 14269 */ 14270 switch (dc->base.is_jmp) { 14271 default: 14272 gen_a64_update_pc(dc, 4); 14273 /* fall through */ 14274 case DISAS_EXIT: 14275 case DISAS_JUMP: 14276 gen_step_complete_exception(dc); 14277 break; 14278 case DISAS_NORETURN: 14279 break; 14280 } 14281 } else { 14282 switch (dc->base.is_jmp) { 14283 case DISAS_NEXT: 14284 case DISAS_TOO_MANY: 14285 gen_goto_tb(dc, 1, 4); 14286 break; 14287 default: 14288 case DISAS_UPDATE_EXIT: 14289 gen_a64_update_pc(dc, 4); 14290 /* fall through */ 14291 case DISAS_EXIT: 14292 tcg_gen_exit_tb(NULL, 0); 14293 break; 14294 case DISAS_UPDATE_NOCHAIN: 14295 gen_a64_update_pc(dc, 4); 14296 /* fall through */ 14297 case DISAS_JUMP: 14298 tcg_gen_lookup_and_goto_ptr(); 14299 break; 14300 case DISAS_NORETURN: 14301 case DISAS_SWI: 14302 break; 14303 case DISAS_WFE: 14304 gen_a64_update_pc(dc, 4); 14305 gen_helper_wfe(cpu_env); 14306 break; 14307 case DISAS_YIELD: 14308 gen_a64_update_pc(dc, 4); 14309 gen_helper_yield(cpu_env); 14310 break; 14311 case DISAS_WFI: 14312 /* 14313 * This is a special case because we don't want to just halt 14314 * the CPU if trying to debug across a WFI. 14315 */ 14316 gen_a64_update_pc(dc, 4); 14317 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14318 /* 14319 * The helper doesn't necessarily throw an exception, but we 14320 * must go back to the main loop to check for interrupts anyway. 14321 */ 14322 tcg_gen_exit_tb(NULL, 0); 14323 break; 14324 } 14325 } 14326 } 14327 14328 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14329 CPUState *cpu, FILE *logfile) 14330 { 14331 DisasContext *dc = container_of(dcbase, DisasContext, base); 14332 14333 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14334 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14335 } 14336 14337 const TranslatorOps aarch64_translator_ops = { 14338 .init_disas_context = aarch64_tr_init_disas_context, 14339 .tb_start = aarch64_tr_tb_start, 14340 .insn_start = aarch64_tr_insn_start, 14341 .translate_insn = aarch64_tr_translate_insn, 14342 .tb_stop = aarch64_tr_tb_stop, 14343 .disas_log = aarch64_tr_disas_log, 14344 }; 14345