1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(cpu_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 109 */ 110 static int get_a64_user_mem_index(DisasContext *s) 111 { 112 /* 113 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 114 * which is the usual mmu_idx for this cpu state. 115 */ 116 ARMMMUIdx useridx = s->mmu_idx; 117 118 if (s->unpriv) { 119 /* 120 * We have pre-computed the condition for AccType_UNPRIV. 121 * Therefore we should never get here with a mmu_idx for 122 * which we do not know the corresponding user mmu_idx. 123 */ 124 switch (useridx) { 125 case ARMMMUIdx_E10_1: 126 case ARMMMUIdx_E10_1_PAN: 127 useridx = ARMMMUIdx_E10_0; 128 break; 129 case ARMMMUIdx_E20_2: 130 case ARMMMUIdx_E20_2_PAN: 131 useridx = ARMMMUIdx_E20_0; 132 break; 133 default: 134 g_assert_not_reached(); 135 } 136 } 137 return arm_to_core_mmu_idx(useridx); 138 } 139 140 static void set_btype_raw(int val) 141 { 142 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 143 offsetof(CPUARMState, btype)); 144 } 145 146 static void set_btype(DisasContext *s, int val) 147 { 148 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 149 tcg_debug_assert(val >= 1 && val <= 3); 150 set_btype_raw(val); 151 s->btype = -1; 152 } 153 154 static void reset_btype(DisasContext *s) 155 { 156 if (s->btype != 0) { 157 set_btype_raw(0); 158 s->btype = 0; 159 } 160 } 161 162 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 163 { 164 assert(s->pc_save != -1); 165 if (tb_cflags(s->base.tb) & CF_PCREL) { 166 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 167 } else { 168 tcg_gen_movi_i64(dest, s->pc_curr + diff); 169 } 170 } 171 172 void gen_a64_update_pc(DisasContext *s, target_long diff) 173 { 174 gen_pc_plus_diff(s, cpu_pc, diff); 175 s->pc_save = s->pc_curr + diff; 176 } 177 178 /* 179 * Handle Top Byte Ignore (TBI) bits. 180 * 181 * If address tagging is enabled via the TCR TBI bits: 182 * + for EL2 and EL3 there is only one TBI bit, and if it is set 183 * then the address is zero-extended, clearing bits [63:56] 184 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 185 * and TBI1 controls addressses with bit 55 == 1. 186 * If the appropriate TBI bit is set for the address then 187 * the address is sign-extended from bit 55 into bits [63:56] 188 * 189 * Here We have concatenated TBI{1,0} into tbi. 190 */ 191 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 192 TCGv_i64 src, int tbi) 193 { 194 if (tbi == 0) { 195 /* Load unmodified address */ 196 tcg_gen_mov_i64(dst, src); 197 } else if (!regime_has_2_ranges(s->mmu_idx)) { 198 /* Force tag byte to all zero */ 199 tcg_gen_extract_i64(dst, src, 0, 56); 200 } else { 201 /* Sign-extend from bit 55. */ 202 tcg_gen_sextract_i64(dst, src, 0, 56); 203 204 switch (tbi) { 205 case 1: 206 /* tbi0 but !tbi1: only use the extension if positive */ 207 tcg_gen_and_i64(dst, dst, src); 208 break; 209 case 2: 210 /* !tbi0 but tbi1: only use the extension if negative */ 211 tcg_gen_or_i64(dst, dst, src); 212 break; 213 case 3: 214 /* tbi0 and tbi1: always use the extension */ 215 break; 216 default: 217 g_assert_not_reached(); 218 } 219 } 220 } 221 222 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 223 { 224 /* 225 * If address tagging is enabled for instructions via the TCR TBI bits, 226 * then loading an address into the PC will clear out any tag. 227 */ 228 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 229 s->pc_save = -1; 230 } 231 232 /* 233 * Handle MTE and/or TBI. 234 * 235 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 236 * for the tag to be present in the FAR_ELx register. But for user-only 237 * mode we do not have a TLB with which to implement this, so we must 238 * remove the top byte now. 239 * 240 * Always return a fresh temporary that we can increment independently 241 * of the write-back address. 242 */ 243 244 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 245 { 246 TCGv_i64 clean = tcg_temp_new_i64(); 247 #ifdef CONFIG_USER_ONLY 248 gen_top_byte_ignore(s, clean, addr, s->tbid); 249 #else 250 tcg_gen_mov_i64(clean, addr); 251 #endif 252 return clean; 253 } 254 255 /* Insert a zero tag into src, with the result at dst. */ 256 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 257 { 258 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 259 } 260 261 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 262 MMUAccessType acc, int log2_size) 263 { 264 gen_helper_probe_access(cpu_env, ptr, 265 tcg_constant_i32(acc), 266 tcg_constant_i32(get_mem_index(s)), 267 tcg_constant_i32(1 << log2_size)); 268 } 269 270 /* 271 * For MTE, check a single logical or atomic access. This probes a single 272 * address, the exact one specified. The size and alignment of the access 273 * is not relevant to MTE, per se, but watchpoints do require the size, 274 * and we want to recognize those before making any other changes to state. 275 */ 276 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 277 bool is_write, bool tag_checked, 278 MemOp memop, bool is_unpriv, 279 int core_idx) 280 { 281 if (tag_checked && s->mte_active[is_unpriv]) { 282 TCGv_i64 ret; 283 int desc = 0; 284 285 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 286 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 287 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 288 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 289 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 290 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 291 292 ret = tcg_temp_new_i64(); 293 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 294 295 return ret; 296 } 297 return clean_data_tbi(s, addr); 298 } 299 300 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 301 bool tag_checked, MemOp memop) 302 { 303 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 304 false, get_mem_index(s)); 305 } 306 307 /* 308 * For MTE, check multiple logical sequential accesses. 309 */ 310 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 311 bool tag_checked, int total_size, MemOp single_mop) 312 { 313 if (tag_checked && s->mte_active[0]) { 314 TCGv_i64 ret; 315 int desc = 0; 316 317 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 318 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 319 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 320 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 321 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 322 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 323 324 ret = tcg_temp_new_i64(); 325 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 326 327 return ret; 328 } 329 return clean_data_tbi(s, addr); 330 } 331 332 /* 333 * Generate the special alignment check that applies to AccType_ATOMIC 334 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 335 * naturally aligned, but it must not cross a 16-byte boundary. 336 * See AArch64.CheckAlignment(). 337 */ 338 static void check_lse2_align(DisasContext *s, int rn, int imm, 339 bool is_write, MemOp mop) 340 { 341 TCGv_i32 tmp; 342 TCGv_i64 addr; 343 TCGLabel *over_label; 344 MMUAccessType type; 345 int mmu_idx; 346 347 tmp = tcg_temp_new_i32(); 348 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 349 tcg_gen_addi_i32(tmp, tmp, imm & 15); 350 tcg_gen_andi_i32(tmp, tmp, 15); 351 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 352 353 over_label = gen_new_label(); 354 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 355 356 addr = tcg_temp_new_i64(); 357 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 358 359 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 360 mmu_idx = get_mem_index(s); 361 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 362 tcg_constant_i32(mmu_idx)); 363 364 gen_set_label(over_label); 365 366 } 367 368 /* Handle the alignment check for AccType_ATOMIC instructions. */ 369 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 370 { 371 MemOp size = mop & MO_SIZE; 372 373 if (size == MO_8) { 374 return mop; 375 } 376 377 /* 378 * If size == MO_128, this is a LDXP, and the operation is single-copy 379 * atomic for each doubleword, not the entire quadword; it still must 380 * be quadword aligned. 381 */ 382 if (size == MO_128) { 383 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 384 MO_ATOM_IFALIGN_PAIR); 385 } 386 if (dc_isar_feature(aa64_lse2, s)) { 387 check_lse2_align(s, rn, 0, true, mop); 388 } else { 389 mop |= MO_ALIGN; 390 } 391 return finalize_memop(s, mop); 392 } 393 394 /* Handle the alignment check for AccType_ORDERED instructions. */ 395 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 396 bool is_write, MemOp mop) 397 { 398 MemOp size = mop & MO_SIZE; 399 400 if (size == MO_8) { 401 return mop; 402 } 403 if (size == MO_128) { 404 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 405 MO_ATOM_IFALIGN_PAIR); 406 } 407 if (!dc_isar_feature(aa64_lse2, s)) { 408 mop |= MO_ALIGN; 409 } else if (!s->naa) { 410 check_lse2_align(s, rn, imm, is_write, mop); 411 } 412 return finalize_memop(s, mop); 413 } 414 415 typedef struct DisasCompare64 { 416 TCGCond cond; 417 TCGv_i64 value; 418 } DisasCompare64; 419 420 static void a64_test_cc(DisasCompare64 *c64, int cc) 421 { 422 DisasCompare c32; 423 424 arm_test_cc(&c32, cc); 425 426 /* 427 * Sign-extend the 32-bit value so that the GE/LT comparisons work 428 * properly. The NE/EQ comparisons are also fine with this choice. 429 */ 430 c64->cond = c32.cond; 431 c64->value = tcg_temp_new_i64(); 432 tcg_gen_ext_i32_i64(c64->value, c32.value); 433 } 434 435 static void gen_rebuild_hflags(DisasContext *s) 436 { 437 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 438 } 439 440 static void gen_exception_internal(int excp) 441 { 442 assert(excp_is_internal(excp)); 443 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 444 } 445 446 static void gen_exception_internal_insn(DisasContext *s, int excp) 447 { 448 gen_a64_update_pc(s, 0); 449 gen_exception_internal(excp); 450 s->base.is_jmp = DISAS_NORETURN; 451 } 452 453 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 454 { 455 gen_a64_update_pc(s, 0); 456 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 457 s->base.is_jmp = DISAS_NORETURN; 458 } 459 460 static void gen_step_complete_exception(DisasContext *s) 461 { 462 /* We just completed step of an insn. Move from Active-not-pending 463 * to Active-pending, and then also take the swstep exception. 464 * This corresponds to making the (IMPDEF) choice to prioritize 465 * swstep exceptions over asynchronous exceptions taken to an exception 466 * level where debug is disabled. This choice has the advantage that 467 * we do not need to maintain internal state corresponding to the 468 * ISV/EX syndrome bits between completion of the step and generation 469 * of the exception, and our syndrome information is always correct. 470 */ 471 gen_ss_advance(s); 472 gen_swstep_exception(s, 1, s->is_ldex); 473 s->base.is_jmp = DISAS_NORETURN; 474 } 475 476 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 477 { 478 if (s->ss_active) { 479 return false; 480 } 481 return translator_use_goto_tb(&s->base, dest); 482 } 483 484 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 485 { 486 if (use_goto_tb(s, s->pc_curr + diff)) { 487 /* 488 * For pcrel, the pc must always be up-to-date on entry to 489 * the linked TB, so that it can use simple additions for all 490 * further adjustments. For !pcrel, the linked TB is compiled 491 * to know its full virtual address, so we can delay the 492 * update to pc to the unlinked path. A long chain of links 493 * can thus avoid many updates to the PC. 494 */ 495 if (tb_cflags(s->base.tb) & CF_PCREL) { 496 gen_a64_update_pc(s, diff); 497 tcg_gen_goto_tb(n); 498 } else { 499 tcg_gen_goto_tb(n); 500 gen_a64_update_pc(s, diff); 501 } 502 tcg_gen_exit_tb(s->base.tb, n); 503 s->base.is_jmp = DISAS_NORETURN; 504 } else { 505 gen_a64_update_pc(s, diff); 506 if (s->ss_active) { 507 gen_step_complete_exception(s); 508 } else { 509 tcg_gen_lookup_and_goto_ptr(); 510 s->base.is_jmp = DISAS_NORETURN; 511 } 512 } 513 } 514 515 /* 516 * Register access functions 517 * 518 * These functions are used for directly accessing a register in where 519 * changes to the final register value are likely to be made. If you 520 * need to use a register for temporary calculation (e.g. index type 521 * operations) use the read_* form. 522 * 523 * B1.2.1 Register mappings 524 * 525 * In instruction register encoding 31 can refer to ZR (zero register) or 526 * the SP (stack pointer) depending on context. In QEMU's case we map SP 527 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 528 * This is the point of the _sp forms. 529 */ 530 TCGv_i64 cpu_reg(DisasContext *s, int reg) 531 { 532 if (reg == 31) { 533 TCGv_i64 t = tcg_temp_new_i64(); 534 tcg_gen_movi_i64(t, 0); 535 return t; 536 } else { 537 return cpu_X[reg]; 538 } 539 } 540 541 /* register access for when 31 == SP */ 542 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 543 { 544 return cpu_X[reg]; 545 } 546 547 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 548 * representing the register contents. This TCGv is an auto-freed 549 * temporary so it need not be explicitly freed, and may be modified. 550 */ 551 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 552 { 553 TCGv_i64 v = tcg_temp_new_i64(); 554 if (reg != 31) { 555 if (sf) { 556 tcg_gen_mov_i64(v, cpu_X[reg]); 557 } else { 558 tcg_gen_ext32u_i64(v, cpu_X[reg]); 559 } 560 } else { 561 tcg_gen_movi_i64(v, 0); 562 } 563 return v; 564 } 565 566 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 567 { 568 TCGv_i64 v = tcg_temp_new_i64(); 569 if (sf) { 570 tcg_gen_mov_i64(v, cpu_X[reg]); 571 } else { 572 tcg_gen_ext32u_i64(v, cpu_X[reg]); 573 } 574 return v; 575 } 576 577 /* Return the offset into CPUARMState of a slice (from 578 * the least significant end) of FP register Qn (ie 579 * Dn, Sn, Hn or Bn). 580 * (Note that this is not the same mapping as for A32; see cpu.h) 581 */ 582 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 583 { 584 return vec_reg_offset(s, regno, 0, size); 585 } 586 587 /* Offset of the high half of the 128 bit vector Qn */ 588 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 589 { 590 return vec_reg_offset(s, regno, 1, MO_64); 591 } 592 593 /* Convenience accessors for reading and writing single and double 594 * FP registers. Writing clears the upper parts of the associated 595 * 128 bit vector register, as required by the architecture. 596 * Note that unlike the GP register accessors, the values returned 597 * by the read functions must be manually freed. 598 */ 599 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 600 { 601 TCGv_i64 v = tcg_temp_new_i64(); 602 603 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 604 return v; 605 } 606 607 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 608 { 609 TCGv_i32 v = tcg_temp_new_i32(); 610 611 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 620 return v; 621 } 622 623 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 624 * If SVE is not enabled, then there are only 128 bits in the vector. 625 */ 626 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 627 { 628 unsigned ofs = fp_reg_offset(s, rd, MO_64); 629 unsigned vsz = vec_full_reg_size(s); 630 631 /* Nop move, with side effect of clearing the tail. */ 632 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 633 } 634 635 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 636 { 637 unsigned ofs = fp_reg_offset(s, reg, MO_64); 638 639 tcg_gen_st_i64(v, cpu_env, ofs); 640 clear_vec_high(s, false, reg); 641 } 642 643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 644 { 645 TCGv_i64 tmp = tcg_temp_new_i64(); 646 647 tcg_gen_extu_i32_i64(tmp, v); 648 write_fp_dreg(s, reg, tmp); 649 } 650 651 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 652 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 653 GVecGen2Fn *gvec_fn, int vece) 654 { 655 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 656 is_q ? 16 : 8, vec_full_reg_size(s)); 657 } 658 659 /* Expand a 2-operand + immediate AdvSIMD vector operation using 660 * an expander function. 661 */ 662 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 663 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 664 { 665 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 666 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 667 } 668 669 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 670 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 671 GVecGen3Fn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 int rx, GVecGen4Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 683 is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 2-operand operation using an out-of-line helper. */ 687 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 688 int rn, int data, gen_helper_gvec_2 *fn) 689 { 690 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 691 vec_full_reg_offset(s, rn), 692 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 693 } 694 695 /* Expand a 3-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int rm, int data, gen_helper_gvec_3 *fn) 698 { 699 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 vec_full_reg_offset(s, rm), 702 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 703 } 704 705 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 706 * an out-of-line helper. 707 */ 708 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 709 int rm, bool is_fp16, int data, 710 gen_helper_gvec_3_ptr *fn) 711 { 712 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 713 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 714 vec_full_reg_offset(s, rn), 715 vec_full_reg_offset(s, rm), fpst, 716 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 717 } 718 719 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 720 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 721 int rm, gen_helper_gvec_3_ptr *fn) 722 { 723 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 724 725 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 726 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 727 vec_full_reg_offset(s, rn), 728 vec_full_reg_offset(s, rm), qc_ptr, 729 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 730 } 731 732 /* Expand a 4-operand operation using an out-of-line helper. */ 733 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 734 int rm, int ra, int data, gen_helper_gvec_4 *fn) 735 { 736 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 737 vec_full_reg_offset(s, rn), 738 vec_full_reg_offset(s, rm), 739 vec_full_reg_offset(s, ra), 740 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 741 } 742 743 /* 744 * Expand a 4-operand + fpstatus pointer + simd data value operation using 745 * an out-of-line helper. 746 */ 747 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 748 int rm, int ra, bool is_fp16, int data, 749 gen_helper_gvec_4_ptr *fn) 750 { 751 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 752 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 753 vec_full_reg_offset(s, rn), 754 vec_full_reg_offset(s, rm), 755 vec_full_reg_offset(s, ra), fpst, 756 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 757 } 758 759 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 760 * than the 32 bit equivalent. 761 */ 762 static inline void gen_set_NZ64(TCGv_i64 result) 763 { 764 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 765 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 766 } 767 768 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 769 static inline void gen_logic_CC(int sf, TCGv_i64 result) 770 { 771 if (sf) { 772 gen_set_NZ64(result); 773 } else { 774 tcg_gen_extrl_i64_i32(cpu_ZF, result); 775 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 776 } 777 tcg_gen_movi_i32(cpu_CF, 0); 778 tcg_gen_movi_i32(cpu_VF, 0); 779 } 780 781 /* dest = T0 + T1; compute C, N, V and Z flags */ 782 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i64 result, flag, tmp; 785 result = tcg_temp_new_i64(); 786 flag = tcg_temp_new_i64(); 787 tmp = tcg_temp_new_i64(); 788 789 tcg_gen_movi_i64(tmp, 0); 790 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 791 792 tcg_gen_extrl_i64_i32(cpu_CF, flag); 793 794 gen_set_NZ64(result); 795 796 tcg_gen_xor_i64(flag, result, t0); 797 tcg_gen_xor_i64(tmp, t0, t1); 798 tcg_gen_andc_i64(flag, flag, tmp); 799 tcg_gen_extrh_i64_i32(cpu_VF, flag); 800 801 tcg_gen_mov_i64(dest, result); 802 } 803 804 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 805 { 806 TCGv_i32 t0_32 = tcg_temp_new_i32(); 807 TCGv_i32 t1_32 = tcg_temp_new_i32(); 808 TCGv_i32 tmp = tcg_temp_new_i32(); 809 810 tcg_gen_movi_i32(tmp, 0); 811 tcg_gen_extrl_i64_i32(t0_32, t0); 812 tcg_gen_extrl_i64_i32(t1_32, t1); 813 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 814 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 815 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 816 tcg_gen_xor_i32(tmp, t0_32, t1_32); 817 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 818 tcg_gen_extu_i32_i64(dest, cpu_NF); 819 } 820 821 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 822 { 823 if (sf) { 824 gen_add64_CC(dest, t0, t1); 825 } else { 826 gen_add32_CC(dest, t0, t1); 827 } 828 } 829 830 /* dest = T0 - T1; compute C, N, V and Z flags */ 831 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 64 bit arithmetic */ 834 TCGv_i64 result, flag, tmp; 835 836 result = tcg_temp_new_i64(); 837 flag = tcg_temp_new_i64(); 838 tcg_gen_sub_i64(result, t0, t1); 839 840 gen_set_NZ64(result); 841 842 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 843 tcg_gen_extrl_i64_i32(cpu_CF, flag); 844 845 tcg_gen_xor_i64(flag, result, t0); 846 tmp = tcg_temp_new_i64(); 847 tcg_gen_xor_i64(tmp, t0, t1); 848 tcg_gen_and_i64(flag, flag, tmp); 849 tcg_gen_extrh_i64_i32(cpu_VF, flag); 850 tcg_gen_mov_i64(dest, result); 851 } 852 853 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 854 { 855 /* 32 bit arithmetic */ 856 TCGv_i32 t0_32 = tcg_temp_new_i32(); 857 TCGv_i32 t1_32 = tcg_temp_new_i32(); 858 TCGv_i32 tmp; 859 860 tcg_gen_extrl_i64_i32(t0_32, t0); 861 tcg_gen_extrl_i64_i32(t1_32, t1); 862 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 863 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 864 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 865 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 866 tmp = tcg_temp_new_i32(); 867 tcg_gen_xor_i32(tmp, t0_32, t1_32); 868 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 869 tcg_gen_extu_i32_i64(dest, cpu_NF); 870 } 871 872 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 873 { 874 if (sf) { 875 gen_sub64_CC(dest, t0, t1); 876 } else { 877 gen_sub32_CC(dest, t0, t1); 878 } 879 } 880 881 /* dest = T0 + T1 + CF; do not compute flags. */ 882 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 883 { 884 TCGv_i64 flag = tcg_temp_new_i64(); 885 tcg_gen_extu_i32_i64(flag, cpu_CF); 886 tcg_gen_add_i64(dest, t0, t1); 887 tcg_gen_add_i64(dest, dest, flag); 888 889 if (!sf) { 890 tcg_gen_ext32u_i64(dest, dest); 891 } 892 } 893 894 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 895 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 896 { 897 if (sf) { 898 TCGv_i64 result = tcg_temp_new_i64(); 899 TCGv_i64 cf_64 = tcg_temp_new_i64(); 900 TCGv_i64 vf_64 = tcg_temp_new_i64(); 901 TCGv_i64 tmp = tcg_temp_new_i64(); 902 TCGv_i64 zero = tcg_constant_i64(0); 903 904 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 905 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 906 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 907 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 908 gen_set_NZ64(result); 909 910 tcg_gen_xor_i64(vf_64, result, t0); 911 tcg_gen_xor_i64(tmp, t0, t1); 912 tcg_gen_andc_i64(vf_64, vf_64, tmp); 913 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 914 915 tcg_gen_mov_i64(dest, result); 916 } else { 917 TCGv_i32 t0_32 = tcg_temp_new_i32(); 918 TCGv_i32 t1_32 = tcg_temp_new_i32(); 919 TCGv_i32 tmp = tcg_temp_new_i32(); 920 TCGv_i32 zero = tcg_constant_i32(0); 921 922 tcg_gen_extrl_i64_i32(t0_32, t0); 923 tcg_gen_extrl_i64_i32(t1_32, t1); 924 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 925 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 926 927 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 928 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 929 tcg_gen_xor_i32(tmp, t0_32, t1_32); 930 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 931 tcg_gen_extu_i32_i64(dest, cpu_NF); 932 } 933 } 934 935 /* 936 * Load/Store generators 937 */ 938 939 /* 940 * Store from GPR register to memory. 941 */ 942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, int memidx, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 949 950 if (iss_valid) { 951 uint32_t syn; 952 953 syn = syn_data_abort_with_iss(0, 954 (memop & MO_SIZE), 955 false, 956 iss_srt, 957 iss_sf, 958 iss_ar, 959 0, 0, 0, 0, 0, false); 960 disas_set_insn_syndrome(s, syn); 961 } 962 } 963 964 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 965 TCGv_i64 tcg_addr, MemOp memop, 966 bool iss_valid, 967 unsigned int iss_srt, 968 bool iss_sf, bool iss_ar) 969 { 970 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 971 iss_valid, iss_srt, iss_sf, iss_ar); 972 } 973 974 /* 975 * Load from memory to GPR register 976 */ 977 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 978 MemOp memop, bool extend, int memidx, 979 bool iss_valid, unsigned int iss_srt, 980 bool iss_sf, bool iss_ar) 981 { 982 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 983 984 if (extend && (memop & MO_SIGN)) { 985 g_assert((memop & MO_SIZE) <= MO_32); 986 tcg_gen_ext32u_i64(dest, dest); 987 } 988 989 if (iss_valid) { 990 uint32_t syn; 991 992 syn = syn_data_abort_with_iss(0, 993 (memop & MO_SIZE), 994 (memop & MO_SIGN) != 0, 995 iss_srt, 996 iss_sf, 997 iss_ar, 998 0, 0, 0, 0, 0, false); 999 disas_set_insn_syndrome(s, syn); 1000 } 1001 } 1002 1003 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1004 MemOp memop, bool extend, 1005 bool iss_valid, unsigned int iss_srt, 1006 bool iss_sf, bool iss_ar) 1007 { 1008 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1009 iss_valid, iss_srt, iss_sf, iss_ar); 1010 } 1011 1012 /* 1013 * Store from FP register to memory 1014 */ 1015 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1016 { 1017 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1018 TCGv_i64 tmplo = tcg_temp_new_i64(); 1019 1020 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i64 tmphi = tcg_temp_new_i64(); 1026 TCGv_i128 t16 = tcg_temp_new_i128(); 1027 1028 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1029 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1030 1031 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1032 } 1033 } 1034 1035 /* 1036 * Load from memory to FP register 1037 */ 1038 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1039 { 1040 /* This always zero-extends and writes to a full 128 bit wide vector */ 1041 TCGv_i64 tmplo = tcg_temp_new_i64(); 1042 TCGv_i64 tmphi = NULL; 1043 1044 if ((mop & MO_SIZE) < MO_128) { 1045 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1046 } else { 1047 TCGv_i128 t16 = tcg_temp_new_i128(); 1048 1049 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1050 1051 tmphi = tcg_temp_new_i64(); 1052 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1053 } 1054 1055 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1056 1057 if (tmphi) { 1058 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1059 } 1060 clear_vec_high(s, tmphi != NULL, destidx); 1061 } 1062 1063 /* 1064 * Vector load/store helpers. 1065 * 1066 * The principal difference between this and a FP load is that we don't 1067 * zero extend as we are filling a partial chunk of the vector register. 1068 * These functions don't support 128 bit loads/stores, which would be 1069 * normal load/store operations. 1070 * 1071 * The _i32 versions are useful when operating on 32 bit quantities 1072 * (eg for floating point single or using Neon helper functions). 1073 */ 1074 1075 /* Get value of an element within a vector register */ 1076 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1077 int element, MemOp memop) 1078 { 1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1080 switch ((unsigned)memop) { 1081 case MO_8: 1082 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1083 break; 1084 case MO_16: 1085 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1086 break; 1087 case MO_32: 1088 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1089 break; 1090 case MO_8|MO_SIGN: 1091 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1092 break; 1093 case MO_16|MO_SIGN: 1094 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1095 break; 1096 case MO_32|MO_SIGN: 1097 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1098 break; 1099 case MO_64: 1100 case MO_64|MO_SIGN: 1101 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 } 1107 1108 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1109 int element, MemOp memop) 1110 { 1111 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1112 switch (memop) { 1113 case MO_8: 1114 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1115 break; 1116 case MO_16: 1117 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1118 break; 1119 case MO_8|MO_SIGN: 1120 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1121 break; 1122 case MO_16|MO_SIGN: 1123 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1124 break; 1125 case MO_32: 1126 case MO_32|MO_SIGN: 1127 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1128 break; 1129 default: 1130 g_assert_not_reached(); 1131 } 1132 } 1133 1134 /* Set value of an element within a vector register */ 1135 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1136 int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1148 break; 1149 case MO_64: 1150 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1151 break; 1152 default: 1153 g_assert_not_reached(); 1154 } 1155 } 1156 1157 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1158 int destidx, int element, MemOp memop) 1159 { 1160 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1161 switch (memop) { 1162 case MO_8: 1163 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1164 break; 1165 case MO_16: 1166 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1167 break; 1168 case MO_32: 1169 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1170 break; 1171 default: 1172 g_assert_not_reached(); 1173 } 1174 } 1175 1176 /* Store from vector register to memory */ 1177 static void do_vec_st(DisasContext *s, int srcidx, int element, 1178 TCGv_i64 tcg_addr, MemOp mop) 1179 { 1180 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1181 1182 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1183 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1184 } 1185 1186 /* Load from memory to vector register */ 1187 static void do_vec_ld(DisasContext *s, int destidx, int element, 1188 TCGv_i64 tcg_addr, MemOp mop) 1189 { 1190 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1191 1192 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1194 } 1195 1196 /* Check that FP/Neon access is enabled. If it is, return 1197 * true. If not, emit code to generate an appropriate exception, 1198 * and return false; the caller should not emit any code for 1199 * the instruction. Note that this check must happen after all 1200 * unallocated-encoding checks (otherwise the syndrome information 1201 * for the resulting exception will be incorrect). 1202 */ 1203 static bool fp_access_check_only(DisasContext *s) 1204 { 1205 if (s->fp_excp_el) { 1206 assert(!s->fp_access_checked); 1207 s->fp_access_checked = true; 1208 1209 gen_exception_insn_el(s, 0, EXCP_UDEF, 1210 syn_fp_access_trap(1, 0xe, false, 0), 1211 s->fp_excp_el); 1212 return false; 1213 } 1214 s->fp_access_checked = true; 1215 return true; 1216 } 1217 1218 static bool fp_access_check(DisasContext *s) 1219 { 1220 if (!fp_access_check_only(s)) { 1221 return false; 1222 } 1223 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1224 gen_exception_insn(s, 0, EXCP_UDEF, 1225 syn_smetrap(SME_ET_Streaming, false)); 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 /* 1232 * Check that SVE access is enabled. If it is, return true. 1233 * If not, emit code to generate an appropriate exception and return false. 1234 * This function corresponds to CheckSVEEnabled(). 1235 */ 1236 bool sve_access_check(DisasContext *s) 1237 { 1238 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1239 assert(dc_isar_feature(aa64_sme, s)); 1240 if (!sme_sm_enabled_check(s)) { 1241 goto fail_exit; 1242 } 1243 } else if (s->sve_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_sve_access_trap(), s->sve_excp_el); 1246 goto fail_exit; 1247 } 1248 s->sve_access_checked = true; 1249 return fp_access_check(s); 1250 1251 fail_exit: 1252 /* Assert that we only raise one exception per instruction. */ 1253 assert(!s->sve_access_checked); 1254 s->sve_access_checked = true; 1255 return false; 1256 } 1257 1258 /* 1259 * Check that SME access is enabled, raise an exception if not. 1260 * Note that this function corresponds to CheckSMEAccess and is 1261 * only used directly for cpregs. 1262 */ 1263 static bool sme_access_check(DisasContext *s) 1264 { 1265 if (s->sme_excp_el) { 1266 gen_exception_insn_el(s, 0, EXCP_UDEF, 1267 syn_smetrap(SME_ET_AccessTrap, false), 1268 s->sme_excp_el); 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /* This function corresponds to CheckSMEEnabled. */ 1275 bool sme_enabled_check(DisasContext *s) 1276 { 1277 /* 1278 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1279 * to be zero when fp_excp_el has priority. This is because we need 1280 * sme_excp_el by itself for cpregs access checks. 1281 */ 1282 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1283 s->fp_access_checked = true; 1284 return sme_access_check(s); 1285 } 1286 return fp_access_check_only(s); 1287 } 1288 1289 /* Common subroutine for CheckSMEAnd*Enabled. */ 1290 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1291 { 1292 if (!sme_enabled_check(s)) { 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_NotStreaming, false)); 1298 return false; 1299 } 1300 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1301 gen_exception_insn(s, 0, EXCP_UDEF, 1302 syn_smetrap(SME_ET_InactiveZA, false)); 1303 return false; 1304 } 1305 return true; 1306 } 1307 1308 /* 1309 * This utility function is for doing register extension with an 1310 * optional shift. You will likely want to pass a temporary for the 1311 * destination register. See DecodeRegExtend() in the ARM ARM. 1312 */ 1313 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1314 int option, unsigned int shift) 1315 { 1316 int extsize = extract32(option, 0, 2); 1317 bool is_signed = extract32(option, 2, 1); 1318 1319 if (is_signed) { 1320 switch (extsize) { 1321 case 0: 1322 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1323 break; 1324 case 1: 1325 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1326 break; 1327 case 2: 1328 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1329 break; 1330 case 3: 1331 tcg_gen_mov_i64(tcg_out, tcg_in); 1332 break; 1333 } 1334 } else { 1335 switch (extsize) { 1336 case 0: 1337 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1338 break; 1339 case 1: 1340 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1341 break; 1342 case 2: 1343 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1344 break; 1345 case 3: 1346 tcg_gen_mov_i64(tcg_out, tcg_in); 1347 break; 1348 } 1349 } 1350 1351 if (shift) { 1352 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1353 } 1354 } 1355 1356 static inline void gen_check_sp_alignment(DisasContext *s) 1357 { 1358 /* The AArch64 architecture mandates that (if enabled via PSTATE 1359 * or SCTLR bits) there is a check that SP is 16-aligned on every 1360 * SP-relative load or store (with an exception generated if it is not). 1361 * In line with general QEMU practice regarding misaligned accesses, 1362 * we omit these checks for the sake of guest program performance. 1363 * This function is provided as a hook so we can more easily add these 1364 * checks in future (possibly as a "favour catching guest program bugs 1365 * over speed" user selectable option). 1366 */ 1367 } 1368 1369 /* 1370 * This provides a simple table based table lookup decoder. It is 1371 * intended to be used when the relevant bits for decode are too 1372 * awkwardly placed and switch/if based logic would be confusing and 1373 * deeply nested. Since it's a linear search through the table, tables 1374 * should be kept small. 1375 * 1376 * It returns the first handler where insn & mask == pattern, or 1377 * NULL if there is no match. 1378 * The table is terminated by an empty mask (i.e. 0) 1379 */ 1380 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1381 uint32_t insn) 1382 { 1383 const AArch64DecodeTable *tptr = table; 1384 1385 while (tptr->mask) { 1386 if ((insn & tptr->mask) == tptr->pattern) { 1387 return tptr->disas_fn; 1388 } 1389 tptr++; 1390 } 1391 return NULL; 1392 } 1393 1394 /* 1395 * The instruction disassembly implemented here matches 1396 * the instruction encoding classifications in chapter C4 1397 * of the ARM Architecture Reference Manual (DDI0487B_a); 1398 * classification names and decode diagrams here should generally 1399 * match up with those in the manual. 1400 */ 1401 1402 static bool trans_B(DisasContext *s, arg_i *a) 1403 { 1404 reset_btype(s); 1405 gen_goto_tb(s, 0, a->imm); 1406 return true; 1407 } 1408 1409 static bool trans_BL(DisasContext *s, arg_i *a) 1410 { 1411 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1412 reset_btype(s); 1413 gen_goto_tb(s, 0, a->imm); 1414 return true; 1415 } 1416 1417 1418 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1419 { 1420 DisasLabel match; 1421 TCGv_i64 tcg_cmp; 1422 1423 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1424 reset_btype(s); 1425 1426 match = gen_disas_label(s); 1427 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1428 tcg_cmp, 0, match.label); 1429 gen_goto_tb(s, 0, 4); 1430 set_disas_label(s, match); 1431 gen_goto_tb(s, 1, a->imm); 1432 return true; 1433 } 1434 1435 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1436 { 1437 DisasLabel match; 1438 TCGv_i64 tcg_cmp; 1439 1440 tcg_cmp = tcg_temp_new_i64(); 1441 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1442 1443 reset_btype(s); 1444 1445 match = gen_disas_label(s); 1446 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1447 tcg_cmp, 0, match.label); 1448 gen_goto_tb(s, 0, 4); 1449 set_disas_label(s, match); 1450 gen_goto_tb(s, 1, a->imm); 1451 return true; 1452 } 1453 1454 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1455 { 1456 reset_btype(s); 1457 if (a->cond < 0x0e) { 1458 /* genuinely conditional branches */ 1459 DisasLabel match = gen_disas_label(s); 1460 arm_gen_test_cc(a->cond, match.label); 1461 gen_goto_tb(s, 0, 4); 1462 set_disas_label(s, match); 1463 gen_goto_tb(s, 1, a->imm); 1464 } else { 1465 /* 0xe and 0xf are both "always" conditions */ 1466 gen_goto_tb(s, 0, a->imm); 1467 } 1468 return true; 1469 } 1470 1471 static void set_btype_for_br(DisasContext *s, int rn) 1472 { 1473 if (dc_isar_feature(aa64_bti, s)) { 1474 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1475 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1476 } 1477 } 1478 1479 static void set_btype_for_blr(DisasContext *s) 1480 { 1481 if (dc_isar_feature(aa64_bti, s)) { 1482 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1483 set_btype(s, 2); 1484 } 1485 } 1486 1487 static bool trans_BR(DisasContext *s, arg_r *a) 1488 { 1489 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1490 set_btype_for_br(s, a->rn); 1491 s->base.is_jmp = DISAS_JUMP; 1492 return true; 1493 } 1494 1495 static bool trans_BLR(DisasContext *s, arg_r *a) 1496 { 1497 TCGv_i64 dst = cpu_reg(s, a->rn); 1498 TCGv_i64 lr = cpu_reg(s, 30); 1499 if (dst == lr) { 1500 TCGv_i64 tmp = tcg_temp_new_i64(); 1501 tcg_gen_mov_i64(tmp, dst); 1502 dst = tmp; 1503 } 1504 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1505 gen_a64_set_pc(s, dst); 1506 set_btype_for_blr(s); 1507 s->base.is_jmp = DISAS_JUMP; 1508 return true; 1509 } 1510 1511 static bool trans_RET(DisasContext *s, arg_r *a) 1512 { 1513 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1514 s->base.is_jmp = DISAS_JUMP; 1515 return true; 1516 } 1517 1518 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1519 TCGv_i64 modifier, bool use_key_a) 1520 { 1521 TCGv_i64 truedst; 1522 /* 1523 * Return the branch target for a BRAA/RETA/etc, which is either 1524 * just the destination dst, or that value with the pauth check 1525 * done and the code removed from the high bits. 1526 */ 1527 if (!s->pauth_active) { 1528 return dst; 1529 } 1530 1531 truedst = tcg_temp_new_i64(); 1532 if (use_key_a) { 1533 gen_helper_autia(truedst, cpu_env, dst, modifier); 1534 } else { 1535 gen_helper_autib(truedst, cpu_env, dst, modifier); 1536 } 1537 return truedst; 1538 } 1539 1540 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 1548 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_br(s, a->rn); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1556 { 1557 TCGv_i64 dst, lr; 1558 1559 if (!dc_isar_feature(aa64_pauth, s)) { 1560 return false; 1561 } 1562 1563 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1564 lr = cpu_reg(s, 30); 1565 if (dst == lr) { 1566 TCGv_i64 tmp = tcg_temp_new_i64(); 1567 tcg_gen_mov_i64(tmp, dst); 1568 dst = tmp; 1569 } 1570 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1571 gen_a64_set_pc(s, dst); 1572 set_btype_for_blr(s); 1573 s->base.is_jmp = DISAS_JUMP; 1574 return true; 1575 } 1576 1577 static bool trans_RETA(DisasContext *s, arg_reta *a) 1578 { 1579 TCGv_i64 dst; 1580 1581 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1582 gen_a64_set_pc(s, dst); 1583 s->base.is_jmp = DISAS_JUMP; 1584 return true; 1585 } 1586 1587 static bool trans_BRA(DisasContext *s, arg_bra *a) 1588 { 1589 TCGv_i64 dst; 1590 1591 if (!dc_isar_feature(aa64_pauth, s)) { 1592 return false; 1593 } 1594 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_br(s, a->rn); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1602 { 1603 TCGv_i64 dst, lr; 1604 1605 if (!dc_isar_feature(aa64_pauth, s)) { 1606 return false; 1607 } 1608 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1609 lr = cpu_reg(s, 30); 1610 if (dst == lr) { 1611 TCGv_i64 tmp = tcg_temp_new_i64(); 1612 tcg_gen_mov_i64(tmp, dst); 1613 dst = tmp; 1614 } 1615 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1616 gen_a64_set_pc(s, dst); 1617 set_btype_for_blr(s); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (s->current_el == 0) { 1627 return false; 1628 } 1629 if (s->fgt_eret) { 1630 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1631 return true; 1632 } 1633 dst = tcg_temp_new_i64(); 1634 tcg_gen_ld_i64(dst, cpu_env, 1635 offsetof(CPUARMState, elr_el[s->current_el])); 1636 1637 translator_io_start(&s->base); 1638 1639 gen_helper_exception_return(cpu_env, dst); 1640 /* Must exit loop to check un-masked IRQs */ 1641 s->base.is_jmp = DISAS_EXIT; 1642 return true; 1643 } 1644 1645 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1646 { 1647 TCGv_i64 dst; 1648 1649 if (!dc_isar_feature(aa64_pauth, s)) { 1650 return false; 1651 } 1652 if (s->current_el == 0) { 1653 return false; 1654 } 1655 /* The FGT trap takes precedence over an auth trap. */ 1656 if (s->fgt_eret) { 1657 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1658 return true; 1659 } 1660 dst = tcg_temp_new_i64(); 1661 tcg_gen_ld_i64(dst, cpu_env, 1662 offsetof(CPUARMState, elr_el[s->current_el])); 1663 1664 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(cpu_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1675 { 1676 return true; 1677 } 1678 1679 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_YIELD; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1694 { 1695 s->base.is_jmp = DISAS_WFI; 1696 return true; 1697 } 1698 1699 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1700 { 1701 /* 1702 * When running in MTTCG we don't generate jumps to the yield and 1703 * WFE helpers as it won't affect the scheduling of other vCPUs. 1704 * If we wanted to more completely model WFE/SEV so we don't busy 1705 * spin unnecessarily we would need to do something more involved. 1706 */ 1707 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1708 s->base.is_jmp = DISAS_WFE; 1709 } 1710 return true; 1711 } 1712 1713 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1714 { 1715 if (s->pauth_active) { 1716 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1717 } 1718 return true; 1719 } 1720 1721 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1722 { 1723 if (s->pauth_active) { 1724 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1725 } 1726 return true; 1727 } 1728 1729 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1730 { 1731 if (s->pauth_active) { 1732 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1733 } 1734 return true; 1735 } 1736 1737 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1738 { 1739 if (s->pauth_active) { 1740 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1741 } 1742 return true; 1743 } 1744 1745 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1746 { 1747 if (s->pauth_active) { 1748 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1754 { 1755 /* Without RAS, we must implement this as NOP. */ 1756 if (dc_isar_feature(aa64_ras, s)) { 1757 /* 1758 * QEMU does not have a source of physical SErrors, 1759 * so we are only concerned with virtual SErrors. 1760 * The pseudocode in the ARM for this case is 1761 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1762 * AArch64.vESBOperation(); 1763 * Most of the condition can be evaluated at translation time. 1764 * Test for EL2 present, and defer test for SEL2 to runtime. 1765 */ 1766 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1767 gen_helper_vesb(cpu_env); 1768 } 1769 } 1770 return true; 1771 } 1772 1773 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1774 { 1775 if (s->pauth_active) { 1776 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1777 } 1778 return true; 1779 } 1780 1781 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1782 { 1783 if (s->pauth_active) { 1784 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1838 { 1839 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1840 return true; 1841 } 1842 1843 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1844 { 1845 /* We handle DSB and DMB the same way */ 1846 TCGBar bar; 1847 1848 switch (a->types) { 1849 case 1: /* MBReqTypes_Reads */ 1850 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1851 break; 1852 case 2: /* MBReqTypes_Writes */ 1853 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1854 break; 1855 default: /* MBReqTypes_All */ 1856 bar = TCG_BAR_SC | TCG_MO_ALL; 1857 break; 1858 } 1859 tcg_gen_mb(bar); 1860 return true; 1861 } 1862 1863 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1864 { 1865 /* 1866 * We need to break the TB after this insn to execute 1867 * self-modifying code correctly and also to take 1868 * any pending interrupts immediately. 1869 */ 1870 reset_btype(s); 1871 gen_goto_tb(s, 0, 4); 1872 return true; 1873 } 1874 1875 static bool trans_SB(DisasContext *s, arg_SB *a) 1876 { 1877 if (!dc_isar_feature(aa64_sb, s)) { 1878 return false; 1879 } 1880 /* 1881 * TODO: There is no speculation barrier opcode for TCG; 1882 * MB and end the TB instead. 1883 */ 1884 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1885 gen_goto_tb(s, 0, 4); 1886 return true; 1887 } 1888 1889 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1890 { 1891 if (!dc_isar_feature(aa64_condm_4, s)) { 1892 return false; 1893 } 1894 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1895 return true; 1896 } 1897 1898 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1899 { 1900 TCGv_i32 z; 1901 1902 if (!dc_isar_feature(aa64_condm_5, s)) { 1903 return false; 1904 } 1905 1906 z = tcg_temp_new_i32(); 1907 1908 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1909 1910 /* 1911 * (!C & !Z) << 31 1912 * (!(C | Z)) << 31 1913 * ~((C | Z) << 31) 1914 * ~-(C | Z) 1915 * (C | Z) - 1 1916 */ 1917 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1918 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1919 1920 /* !(Z & C) */ 1921 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1922 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1923 1924 /* (!C & Z) << 31 -> -(Z & ~C) */ 1925 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1926 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1927 1928 /* C | Z */ 1929 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1930 1931 return true; 1932 } 1933 1934 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1935 { 1936 if (!dc_isar_feature(aa64_condm_5, s)) { 1937 return false; 1938 } 1939 1940 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1941 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1942 1943 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1944 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1945 1946 tcg_gen_movi_i32(cpu_NF, 0); 1947 tcg_gen_movi_i32(cpu_VF, 0); 1948 1949 return true; 1950 } 1951 1952 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1953 { 1954 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1955 return false; 1956 } 1957 if (a->imm & 1) { 1958 set_pstate_bits(PSTATE_UAO); 1959 } else { 1960 clear_pstate_bits(PSTATE_UAO); 1961 } 1962 gen_rebuild_hflags(s); 1963 s->base.is_jmp = DISAS_TOO_MANY; 1964 return true; 1965 } 1966 1967 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1968 { 1969 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1970 return false; 1971 } 1972 if (a->imm & 1) { 1973 set_pstate_bits(PSTATE_PAN); 1974 } else { 1975 clear_pstate_bits(PSTATE_PAN); 1976 } 1977 gen_rebuild_hflags(s); 1978 s->base.is_jmp = DISAS_TOO_MANY; 1979 return true; 1980 } 1981 1982 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1983 { 1984 if (s->current_el == 0) { 1985 return false; 1986 } 1987 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1988 s->base.is_jmp = DISAS_TOO_MANY; 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_ssbs, s)) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_SSBS); 1999 } else { 2000 clear_pstate_bits(PSTATE_SSBS); 2001 } 2002 /* Don't need to rebuild hflags since SSBS is a nop */ 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_dit, s)) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_DIT); 2014 } else { 2015 clear_pstate_bits(PSTATE_DIT); 2016 } 2017 /* There's no need to rebuild hflags because DIT is a nop */ 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2023 { 2024 if (dc_isar_feature(aa64_mte, s)) { 2025 /* Full MTE is enabled -- set the TCO bit as directed. */ 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_TCO); 2028 } else { 2029 clear_pstate_bits(PSTATE_TCO); 2030 } 2031 gen_rebuild_hflags(s); 2032 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2033 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2034 return true; 2035 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2036 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2037 return true; 2038 } else { 2039 /* Insn not present */ 2040 return false; 2041 } 2042 } 2043 2044 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2045 { 2046 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2052 { 2053 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2054 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2055 s->base.is_jmp = DISAS_UPDATE_EXIT; 2056 return true; 2057 } 2058 2059 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2060 { 2061 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2062 return false; 2063 } 2064 if (sme_access_check(s)) { 2065 int old = s->pstate_sm | (s->pstate_za << 1); 2066 int new = a->imm * 3; 2067 2068 if ((old ^ new) & a->mask) { 2069 /* At least one bit changes. */ 2070 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2071 tcg_constant_i32(a->mask)); 2072 s->base.is_jmp = DISAS_TOO_MANY; 2073 } 2074 } 2075 return true; 2076 } 2077 2078 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2079 { 2080 TCGv_i32 tmp = tcg_temp_new_i32(); 2081 TCGv_i32 nzcv = tcg_temp_new_i32(); 2082 2083 /* build bit 31, N */ 2084 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2085 /* build bit 30, Z */ 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2087 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2088 /* build bit 29, C */ 2089 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2090 /* build bit 28, V */ 2091 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2092 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2093 /* generate result */ 2094 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2095 } 2096 2097 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2098 { 2099 TCGv_i32 nzcv = tcg_temp_new_i32(); 2100 2101 /* take NZCV from R[t] */ 2102 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2103 2104 /* bit 31, N */ 2105 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2106 /* bit 30, Z */ 2107 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2108 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2109 /* bit 29, C */ 2110 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2111 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2112 /* bit 28, V */ 2113 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2114 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2115 } 2116 2117 static void gen_sysreg_undef(DisasContext *s, bool isread, 2118 uint8_t op0, uint8_t op1, uint8_t op2, 2119 uint8_t crn, uint8_t crm, uint8_t rt) 2120 { 2121 /* 2122 * Generate code to emit an UNDEF with correct syndrome 2123 * information for a failed system register access. 2124 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2125 * but if FEAT_IDST is implemented then read accesses to registers 2126 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2127 * syndrome. 2128 */ 2129 uint32_t syndrome; 2130 2131 if (isread && dc_isar_feature(aa64_ids, s) && 2132 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2133 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2134 } else { 2135 syndrome = syn_uncategorized(); 2136 } 2137 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2138 } 2139 2140 /* MRS - move from system register 2141 * MSR (register) - move to system register 2142 * SYS 2143 * SYSL 2144 * These are all essentially the same insn in 'read' and 'write' 2145 * versions, with varying op0 fields. 2146 */ 2147 static void handle_sys(DisasContext *s, bool isread, 2148 unsigned int op0, unsigned int op1, unsigned int op2, 2149 unsigned int crn, unsigned int crm, unsigned int rt) 2150 { 2151 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2152 crn, crm, op0, op1, op2); 2153 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2154 bool need_exit_tb = false; 2155 TCGv_ptr tcg_ri = NULL; 2156 TCGv_i64 tcg_rt; 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2172 return; 2173 } 2174 2175 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2176 /* Emit code to perform further access permissions checks at 2177 * runtime; this may result in an exception. 2178 */ 2179 uint32_t syndrome; 2180 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 gen_a64_update_pc(s, 0); 2183 tcg_ri = tcg_temp_new_ptr(); 2184 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2185 tcg_constant_i32(key), 2186 tcg_constant_i32(syndrome), 2187 tcg_constant_i32(isread)); 2188 } else if (ri->type & ARM_CP_RAISES_EXC) { 2189 /* 2190 * The readfn or writefn might raise an exception; 2191 * synchronize the CPU state in case it does. 2192 */ 2193 gen_a64_update_pc(s, 0); 2194 } 2195 2196 /* Handle special cases first */ 2197 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2198 case 0: 2199 break; 2200 case ARM_CP_NOP: 2201 return; 2202 case ARM_CP_NZCV: 2203 tcg_rt = cpu_reg(s, rt); 2204 if (isread) { 2205 gen_get_nzcv(tcg_rt); 2206 } else { 2207 gen_set_nzcv(tcg_rt); 2208 } 2209 return; 2210 case ARM_CP_CURRENTEL: 2211 /* Reads as current EL value from pstate, which is 2212 * guaranteed to be constant by the tb flags. 2213 */ 2214 tcg_rt = cpu_reg(s, rt); 2215 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2216 return; 2217 case ARM_CP_DC_ZVA: 2218 /* Writes clear the aligned block of memory which rt points into. */ 2219 if (s->mte_active[0]) { 2220 int desc = 0; 2221 2222 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2223 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2224 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2225 2226 tcg_rt = tcg_temp_new_i64(); 2227 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2228 tcg_constant_i32(desc), cpu_reg(s, rt)); 2229 } else { 2230 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2231 } 2232 gen_helper_dc_zva(cpu_env, tcg_rt); 2233 return; 2234 case ARM_CP_DC_GVA: 2235 { 2236 TCGv_i64 clean_addr, tag; 2237 2238 /* 2239 * DC_GVA, like DC_ZVA, requires that we supply the original 2240 * pointer for an invalid page. Probe that address first. 2241 */ 2242 tcg_rt = cpu_reg(s, rt); 2243 clean_addr = clean_data_tbi(s, tcg_rt); 2244 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2245 2246 if (s->ata) { 2247 /* Extract the tag from the register to match STZGM. */ 2248 tag = tcg_temp_new_i64(); 2249 tcg_gen_shri_i64(tag, tcg_rt, 56); 2250 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2251 } 2252 } 2253 return; 2254 case ARM_CP_DC_GZVA: 2255 { 2256 TCGv_i64 clean_addr, tag; 2257 2258 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2259 tcg_rt = cpu_reg(s, rt); 2260 clean_addr = clean_data_tbi(s, tcg_rt); 2261 gen_helper_dc_zva(cpu_env, clean_addr); 2262 2263 if (s->ata) { 2264 /* Extract the tag from the register to match STZGM. */ 2265 tag = tcg_temp_new_i64(); 2266 tcg_gen_shri_i64(tag, tcg_rt, 56); 2267 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2268 } 2269 } 2270 return; 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2275 return; 2276 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2277 return; 2278 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2279 return; 2280 } 2281 2282 if (ri->type & ARM_CP_IO) { 2283 /* I/O operations must end the TB here (whether read or write) */ 2284 need_exit_tb = translator_io_start(&s->base); 2285 } 2286 2287 tcg_rt = cpu_reg(s, rt); 2288 2289 if (isread) { 2290 if (ri->type & ARM_CP_CONST) { 2291 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2292 } else if (ri->readfn) { 2293 if (!tcg_ri) { 2294 tcg_ri = gen_lookup_cp_reg(key); 2295 } 2296 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2297 } else { 2298 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2299 } 2300 } else { 2301 if (ri->type & ARM_CP_CONST) { 2302 /* If not forbidden by access permissions, treat as WI */ 2303 return; 2304 } else if (ri->writefn) { 2305 if (!tcg_ri) { 2306 tcg_ri = gen_lookup_cp_reg(key); 2307 } 2308 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2309 } else { 2310 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2311 } 2312 } 2313 2314 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2315 /* 2316 * A write to any coprocessor regiser that ends a TB 2317 * must rebuild the hflags for the next TB. 2318 */ 2319 gen_rebuild_hflags(s); 2320 /* 2321 * We default to ending the TB on a coprocessor register write, 2322 * but allow this to be suppressed by the register definition 2323 * (usually only necessary to work around guest bugs). 2324 */ 2325 need_exit_tb = true; 2326 } 2327 if (need_exit_tb) { 2328 s->base.is_jmp = DISAS_UPDATE_EXIT; 2329 } 2330 } 2331 2332 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2333 { 2334 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2335 return true; 2336 } 2337 2338 static bool trans_SVC(DisasContext *s, arg_i *a) 2339 { 2340 /* 2341 * For SVC, HVC and SMC we advance the single-step state 2342 * machine before taking the exception. This is architecturally 2343 * mandated, to ensure that single-stepping a system call 2344 * instruction works properly. 2345 */ 2346 uint32_t syndrome = syn_aa64_svc(a->imm); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 return true; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 return true; 2354 } 2355 2356 static bool trans_HVC(DisasContext *s, arg_i *a) 2357 { 2358 if (s->current_el == 0) { 2359 unallocated_encoding(s); 2360 return true; 2361 } 2362 /* 2363 * The pre HVC helper handles cases when HVC gets trapped 2364 * as an undefined insn by runtime configuration. 2365 */ 2366 gen_a64_update_pc(s, 0); 2367 gen_helper_pre_hvc(cpu_env); 2368 /* Architecture requires ss advance before we do the actual work */ 2369 gen_ss_advance(s); 2370 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2371 return true; 2372 } 2373 2374 static bool trans_SMC(DisasContext *s, arg_i *a) 2375 { 2376 if (s->current_el == 0) { 2377 unallocated_encoding(s); 2378 return true; 2379 } 2380 gen_a64_update_pc(s, 0); 2381 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2382 /* Architecture requires ss advance before we do the actual work */ 2383 gen_ss_advance(s); 2384 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2385 return true; 2386 } 2387 2388 static bool trans_BRK(DisasContext *s, arg_i *a) 2389 { 2390 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2391 return true; 2392 } 2393 2394 static bool trans_HLT(DisasContext *s, arg_i *a) 2395 { 2396 /* 2397 * HLT. This has two purposes. 2398 * Architecturally, it is an external halting debug instruction. 2399 * Since QEMU doesn't implement external debug, we treat this as 2400 * it is required for halting debug disabled: it will UNDEF. 2401 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2402 */ 2403 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2404 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2405 } else { 2406 unallocated_encoding(s); 2407 } 2408 return true; 2409 } 2410 2411 /* 2412 * Load/Store exclusive instructions are implemented by remembering 2413 * the value/address loaded, and seeing if these are the same 2414 * when the store is performed. This is not actually the architecturally 2415 * mandated semantics, but it works for typical guest code sequences 2416 * and avoids having to monitor regular stores. 2417 * 2418 * The store exclusive uses the atomic cmpxchg primitives to avoid 2419 * races in multi-threaded linux-user and when MTTCG softmmu is 2420 * enabled. 2421 */ 2422 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2423 int size, bool is_pair) 2424 { 2425 int idx = get_mem_index(s); 2426 TCGv_i64 dirty_addr, clean_addr; 2427 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2428 2429 s->is_ldex = true; 2430 dirty_addr = cpu_reg_sp(s, rn); 2431 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2432 2433 g_assert(size <= 3); 2434 if (is_pair) { 2435 g_assert(size >= 2); 2436 if (size == 2) { 2437 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2438 if (s->be_data == MO_LE) { 2439 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2440 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2441 } else { 2442 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2443 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2444 } 2445 } else { 2446 TCGv_i128 t16 = tcg_temp_new_i128(); 2447 2448 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2449 2450 if (s->be_data == MO_LE) { 2451 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2452 cpu_exclusive_high, t16); 2453 } else { 2454 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2455 cpu_exclusive_val, t16); 2456 } 2457 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2458 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2459 } 2460 } else { 2461 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2462 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2463 } 2464 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2465 } 2466 2467 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2468 int rn, int size, int is_pair) 2469 { 2470 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2471 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2472 * [addr] = {Rt}; 2473 * if (is_pair) { 2474 * [addr + datasize] = {Rt2}; 2475 * } 2476 * {Rd} = 0; 2477 * } else { 2478 * {Rd} = 1; 2479 * } 2480 * env->exclusive_addr = -1; 2481 */ 2482 TCGLabel *fail_label = gen_new_label(); 2483 TCGLabel *done_label = gen_new_label(); 2484 TCGv_i64 tmp, clean_addr; 2485 MemOp memop; 2486 2487 /* 2488 * FIXME: We are out of spec here. We have recorded only the address 2489 * from load_exclusive, not the entire range, and we assume that the 2490 * size of the access on both sides match. The architecture allows the 2491 * store to be smaller than the load, so long as the stored bytes are 2492 * within the range recorded by the load. 2493 */ 2494 2495 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2496 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2497 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2498 2499 /* 2500 * The write, and any associated faults, only happen if the virtual 2501 * and physical addresses pass the exclusive monitor check. These 2502 * faults are exceedingly unlikely, because normally the guest uses 2503 * the exact same address register for the load_exclusive, and we 2504 * would have recognized these faults there. 2505 * 2506 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2507 * unaligned 4-byte write within the range of an aligned 8-byte load. 2508 * With LSE2, the store would need to cross a 16-byte boundary when the 2509 * load did not, which would mean the store is outside the range 2510 * recorded for the monitor, which would have failed a corrected monitor 2511 * check above. For now, we assume no size change and retain the 2512 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2513 * 2514 * It is possible to trigger an MTE fault, by performing the load with 2515 * a virtual address with a valid tag and performing the store with the 2516 * same virtual address and a different invalid tag. 2517 */ 2518 memop = size + is_pair; 2519 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2520 memop |= MO_ALIGN; 2521 } 2522 memop = finalize_memop(s, memop); 2523 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2524 2525 tmp = tcg_temp_new_i64(); 2526 if (is_pair) { 2527 if (size == 2) { 2528 if (s->be_data == MO_LE) { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2530 } else { 2531 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2532 } 2533 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2534 cpu_exclusive_val, tmp, 2535 get_mem_index(s), memop); 2536 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2537 } else { 2538 TCGv_i128 t16 = tcg_temp_new_i128(); 2539 TCGv_i128 c16 = tcg_temp_new_i128(); 2540 TCGv_i64 a, b; 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2544 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2545 cpu_exclusive_high); 2546 } else { 2547 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2548 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2549 cpu_exclusive_val); 2550 } 2551 2552 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2553 get_mem_index(s), memop); 2554 2555 a = tcg_temp_new_i64(); 2556 b = tcg_temp_new_i64(); 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr_i128_i64(a, b, t16); 2559 } else { 2560 tcg_gen_extr_i128_i64(b, a, t16); 2561 } 2562 2563 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2564 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2565 tcg_gen_or_i64(tmp, a, b); 2566 2567 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2568 } 2569 } else { 2570 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2571 cpu_reg(s, rt), get_mem_index(s), memop); 2572 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2573 } 2574 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2575 tcg_gen_br(done_label); 2576 2577 gen_set_label(fail_label); 2578 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2579 gen_set_label(done_label); 2580 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2581 } 2582 2583 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2584 int rn, int size) 2585 { 2586 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2587 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2588 int memidx = get_mem_index(s); 2589 TCGv_i64 clean_addr; 2590 MemOp memop; 2591 2592 if (rn == 31) { 2593 gen_check_sp_alignment(s); 2594 } 2595 memop = check_atomic_align(s, rn, size); 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2597 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2598 memidx, memop); 2599 } 2600 2601 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2602 int rn, int size) 2603 { 2604 TCGv_i64 s1 = cpu_reg(s, rs); 2605 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2606 TCGv_i64 t1 = cpu_reg(s, rt); 2607 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2608 TCGv_i64 clean_addr; 2609 int memidx = get_mem_index(s); 2610 MemOp memop; 2611 2612 if (rn == 31) { 2613 gen_check_sp_alignment(s); 2614 } 2615 2616 /* This is a single atomic access, despite the "pair". */ 2617 memop = check_atomic_align(s, rn, size + 1); 2618 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2619 2620 if (size == 2) { 2621 TCGv_i64 cmp = tcg_temp_new_i64(); 2622 TCGv_i64 val = tcg_temp_new_i64(); 2623 2624 if (s->be_data == MO_LE) { 2625 tcg_gen_concat32_i64(val, t1, t2); 2626 tcg_gen_concat32_i64(cmp, s1, s2); 2627 } else { 2628 tcg_gen_concat32_i64(val, t2, t1); 2629 tcg_gen_concat32_i64(cmp, s2, s1); 2630 } 2631 2632 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2633 2634 if (s->be_data == MO_LE) { 2635 tcg_gen_extr32_i64(s1, s2, cmp); 2636 } else { 2637 tcg_gen_extr32_i64(s2, s1, cmp); 2638 } 2639 } else { 2640 TCGv_i128 cmp = tcg_temp_new_i128(); 2641 TCGv_i128 val = tcg_temp_new_i128(); 2642 2643 if (s->be_data == MO_LE) { 2644 tcg_gen_concat_i64_i128(val, t1, t2); 2645 tcg_gen_concat_i64_i128(cmp, s1, s2); 2646 } else { 2647 tcg_gen_concat_i64_i128(val, t2, t1); 2648 tcg_gen_concat_i64_i128(cmp, s2, s1); 2649 } 2650 2651 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2652 2653 if (s->be_data == MO_LE) { 2654 tcg_gen_extr_i128_i64(s1, s2, cmp); 2655 } else { 2656 tcg_gen_extr_i128_i64(s2, s1, cmp); 2657 } 2658 } 2659 } 2660 2661 /* 2662 * Compute the ISS.SF bit for syndrome information if an exception 2663 * is taken on a load or store. This indicates whether the instruction 2664 * is accessing a 32-bit or 64-bit register. This logic is derived 2665 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2666 */ 2667 static bool ldst_iss_sf(int size, bool sign, bool ext) 2668 { 2669 2670 if (sign) { 2671 /* 2672 * Signed loads are 64 bit results if we are not going to 2673 * do a zero-extend from 32 to 64 after the load. 2674 * (For a store, sign and ext are always false.) 2675 */ 2676 return !ext; 2677 } else { 2678 /* Unsigned loads/stores work at the specified size */ 2679 return size == MO_64; 2680 } 2681 } 2682 2683 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2684 { 2685 if (a->rn == 31) { 2686 gen_check_sp_alignment(s); 2687 } 2688 if (a->lasr) { 2689 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2690 } 2691 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2692 return true; 2693 } 2694 2695 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2696 { 2697 if (a->rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2701 if (a->lasr) { 2702 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2703 } 2704 return true; 2705 } 2706 2707 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2708 { 2709 TCGv_i64 clean_addr; 2710 MemOp memop; 2711 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2712 2713 /* 2714 * StoreLORelease is the same as Store-Release for QEMU, but 2715 * needs the feature-test. 2716 */ 2717 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2718 return false; 2719 } 2720 /* Generate ISS for non-exclusive accesses including LASR. */ 2721 if (a->rn == 31) { 2722 gen_check_sp_alignment(s); 2723 } 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2725 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2726 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2727 true, a->rn != 31, memop); 2728 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2729 iss_sf, a->lasr); 2730 return true; 2731 } 2732 2733 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2734 { 2735 TCGv_i64 clean_addr; 2736 MemOp memop; 2737 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2738 2739 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2740 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2741 return false; 2742 } 2743 /* Generate ISS for non-exclusive accesses including LASR. */ 2744 if (a->rn == 31) { 2745 gen_check_sp_alignment(s); 2746 } 2747 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2749 false, a->rn != 31, memop); 2750 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2751 a->rt, iss_sf, a->lasr); 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 return true; 2754 } 2755 2756 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2757 { 2758 if (a->rn == 31) { 2759 gen_check_sp_alignment(s); 2760 } 2761 if (a->lasr) { 2762 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2763 } 2764 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2765 return true; 2766 } 2767 2768 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2769 { 2770 if (a->rn == 31) { 2771 gen_check_sp_alignment(s); 2772 } 2773 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2774 if (a->lasr) { 2775 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2776 } 2777 return true; 2778 } 2779 2780 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2781 { 2782 if (!dc_isar_feature(aa64_atomics, s)) { 2783 return false; 2784 } 2785 if (((a->rt | a->rs) & 1) != 0) { 2786 return false; 2787 } 2788 2789 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2790 return true; 2791 } 2792 2793 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2794 { 2795 if (!dc_isar_feature(aa64_atomics, s)) { 2796 return false; 2797 } 2798 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2799 return true; 2800 } 2801 2802 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2803 { 2804 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2805 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2806 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2807 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2808 2809 gen_pc_plus_diff(s, clean_addr, a->imm); 2810 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2811 false, true, a->rt, iss_sf, false); 2812 return true; 2813 } 2814 2815 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2816 { 2817 /* Load register (literal), vector version */ 2818 TCGv_i64 clean_addr; 2819 MemOp memop; 2820 2821 if (!fp_access_check(s)) { 2822 return true; 2823 } 2824 memop = finalize_memop_asimd(s, a->sz); 2825 clean_addr = tcg_temp_new_i64(); 2826 gen_pc_plus_diff(s, clean_addr, a->imm); 2827 do_fp_ld(s, a->rt, clean_addr, memop); 2828 return true; 2829 } 2830 2831 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2832 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2833 uint64_t offset, bool is_store, MemOp mop) 2834 { 2835 if (a->rn == 31) { 2836 gen_check_sp_alignment(s); 2837 } 2838 2839 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2840 if (!a->p) { 2841 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2842 } 2843 2844 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2845 (a->w || a->rn != 31), 2 << a->sz, mop); 2846 } 2847 2848 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2849 TCGv_i64 dirty_addr, uint64_t offset) 2850 { 2851 if (a->w) { 2852 if (a->p) { 2853 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2854 } 2855 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2856 } 2857 } 2858 2859 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2860 { 2861 uint64_t offset = a->imm << a->sz; 2862 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2863 MemOp mop = finalize_memop(s, a->sz); 2864 2865 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2866 tcg_rt = cpu_reg(s, a->rt); 2867 tcg_rt2 = cpu_reg(s, a->rt2); 2868 /* 2869 * We built mop above for the single logical access -- rebuild it 2870 * now for the paired operation. 2871 * 2872 * With LSE2, non-sign-extending pairs are treated atomically if 2873 * aligned, and if unaligned one of the pair will be completely 2874 * within a 16-byte block and that element will be atomic. 2875 * Otherwise each element is separately atomic. 2876 * In all cases, issue one operation with the correct atomicity. 2877 */ 2878 mop = a->sz + 1; 2879 if (s->align_mem) { 2880 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2881 } 2882 mop = finalize_memop_pair(s, mop); 2883 if (a->sz == 2) { 2884 TCGv_i64 tmp = tcg_temp_new_i64(); 2885 2886 if (s->be_data == MO_LE) { 2887 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2888 } else { 2889 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2890 } 2891 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2892 } else { 2893 TCGv_i128 tmp = tcg_temp_new_i128(); 2894 2895 if (s->be_data == MO_LE) { 2896 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2897 } else { 2898 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2899 } 2900 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2901 } 2902 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2903 return true; 2904 } 2905 2906 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2907 { 2908 uint64_t offset = a->imm << a->sz; 2909 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2910 MemOp mop = finalize_memop(s, a->sz); 2911 2912 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2913 tcg_rt = cpu_reg(s, a->rt); 2914 tcg_rt2 = cpu_reg(s, a->rt2); 2915 2916 /* 2917 * We built mop above for the single logical access -- rebuild it 2918 * now for the paired operation. 2919 * 2920 * With LSE2, non-sign-extending pairs are treated atomically if 2921 * aligned, and if unaligned one of the pair will be completely 2922 * within a 16-byte block and that element will be atomic. 2923 * Otherwise each element is separately atomic. 2924 * In all cases, issue one operation with the correct atomicity. 2925 * 2926 * This treats sign-extending loads like zero-extending loads, 2927 * since that reuses the most code below. 2928 */ 2929 mop = a->sz + 1; 2930 if (s->align_mem) { 2931 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2932 } 2933 mop = finalize_memop_pair(s, mop); 2934 if (a->sz == 2) { 2935 int o2 = s->be_data == MO_LE ? 32 : 0; 2936 int o1 = o2 ^ 32; 2937 2938 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2939 if (a->sign) { 2940 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2941 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2942 } else { 2943 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2944 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2945 } 2946 } else { 2947 TCGv_i128 tmp = tcg_temp_new_i128(); 2948 2949 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2950 if (s->be_data == MO_LE) { 2951 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2952 } else { 2953 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2954 } 2955 } 2956 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2957 return true; 2958 } 2959 2960 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2961 { 2962 uint64_t offset = a->imm << a->sz; 2963 TCGv_i64 clean_addr, dirty_addr; 2964 MemOp mop; 2965 2966 if (!fp_access_check(s)) { 2967 return true; 2968 } 2969 2970 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2971 mop = finalize_memop_asimd(s, a->sz); 2972 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2973 do_fp_st(s, a->rt, clean_addr, mop); 2974 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2975 do_fp_st(s, a->rt2, clean_addr, mop); 2976 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2977 return true; 2978 } 2979 2980 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2981 { 2982 uint64_t offset = a->imm << a->sz; 2983 TCGv_i64 clean_addr, dirty_addr; 2984 MemOp mop; 2985 2986 if (!fp_access_check(s)) { 2987 return true; 2988 } 2989 2990 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2991 mop = finalize_memop_asimd(s, a->sz); 2992 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2993 do_fp_ld(s, a->rt, clean_addr, mop); 2994 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2995 do_fp_ld(s, a->rt2, clean_addr, mop); 2996 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2997 return true; 2998 } 2999 3000 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3001 { 3002 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3003 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3004 MemOp mop; 3005 TCGv_i128 tmp; 3006 3007 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3008 return false; 3009 } 3010 3011 if (a->rn == 31) { 3012 gen_check_sp_alignment(s); 3013 } 3014 3015 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3016 if (!a->p) { 3017 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3018 } 3019 3020 if (!s->ata) { 3021 /* 3022 * TODO: We could rely on the stores below, at least for 3023 * system mode, if we arrange to add MO_ALIGN_16. 3024 */ 3025 gen_helper_stg_stub(cpu_env, dirty_addr); 3026 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3027 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3028 } else { 3029 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3030 } 3031 3032 mop = finalize_memop(s, a->sz); 3033 clean_addr = gen_mte_checkN(s, dirty_addr, true, false, 2 << a->sz, mop); 3034 3035 tcg_rt = cpu_reg(s, a->rt); 3036 tcg_rt2 = cpu_reg(s, a->rt2); 3037 3038 assert(a->sz == 3); 3039 3040 tmp = tcg_temp_new_i128(); 3041 if (s->be_data == MO_LE) { 3042 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3043 } else { 3044 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3045 } 3046 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3047 3048 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3049 return true; 3050 } 3051 3052 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3053 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3054 uint64_t offset, bool is_store, MemOp mop) 3055 { 3056 int memidx; 3057 3058 if (a->rn == 31) { 3059 gen_check_sp_alignment(s); 3060 } 3061 3062 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3063 if (!a->p) { 3064 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3065 } 3066 memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3067 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3068 a->w || a->rn != 31, 3069 mop, a->unpriv, memidx); 3070 } 3071 3072 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3073 TCGv_i64 dirty_addr, uint64_t offset) 3074 { 3075 if (a->w) { 3076 if (a->p) { 3077 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3078 } 3079 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3080 } 3081 } 3082 3083 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3084 { 3085 bool iss_sf, iss_valid = !a->w; 3086 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3087 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3088 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3089 3090 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3091 3092 tcg_rt = cpu_reg(s, a->rt); 3093 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3094 3095 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3096 iss_valid, a->rt, iss_sf, false); 3097 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3098 return true; 3099 } 3100 3101 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3102 { 3103 bool iss_sf, iss_valid = !a->w; 3104 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3105 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3106 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3107 3108 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3109 3110 tcg_rt = cpu_reg(s, a->rt); 3111 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3112 3113 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3114 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3115 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3116 return true; 3117 } 3118 3119 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3120 { 3121 TCGv_i64 clean_addr, dirty_addr; 3122 MemOp mop; 3123 3124 if (!fp_access_check(s)) { 3125 return true; 3126 } 3127 mop = finalize_memop_asimd(s, a->sz); 3128 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3129 do_fp_st(s, a->rt, clean_addr, mop); 3130 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3131 return true; 3132 } 3133 3134 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3135 { 3136 TCGv_i64 clean_addr, dirty_addr; 3137 MemOp mop; 3138 3139 if (!fp_access_check(s)) { 3140 return true; 3141 } 3142 mop = finalize_memop_asimd(s, a->sz); 3143 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3144 do_fp_ld(s, a->rt, clean_addr, mop); 3145 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3146 return true; 3147 } 3148 3149 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3150 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3151 bool is_store, MemOp memop) 3152 { 3153 TCGv_i64 tcg_rm; 3154 3155 if (a->rn == 31) { 3156 gen_check_sp_alignment(s); 3157 } 3158 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3159 3160 tcg_rm = read_cpu_reg(s, a->rm, 1); 3161 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3162 3163 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3164 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3165 } 3166 3167 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3168 { 3169 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3170 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3171 MemOp memop; 3172 3173 if (extract32(a->opt, 1, 1) == 0) { 3174 return false; 3175 } 3176 3177 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3178 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3179 tcg_rt = cpu_reg(s, a->rt); 3180 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3181 a->ext, true, a->rt, iss_sf, false); 3182 return true; 3183 } 3184 3185 static bool trans_STR(DisasContext *s, arg_ldst *a) 3186 { 3187 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3188 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3189 MemOp memop; 3190 3191 if (extract32(a->opt, 1, 1) == 0) { 3192 return false; 3193 } 3194 3195 memop = finalize_memop(s, a->sz); 3196 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3197 tcg_rt = cpu_reg(s, a->rt); 3198 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3199 return true; 3200 } 3201 3202 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3203 { 3204 TCGv_i64 clean_addr, dirty_addr; 3205 MemOp memop; 3206 3207 if (extract32(a->opt, 1, 1) == 0) { 3208 return false; 3209 } 3210 3211 if (!fp_access_check(s)) { 3212 return true; 3213 } 3214 3215 memop = finalize_memop_asimd(s, a->sz); 3216 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3217 do_fp_ld(s, a->rt, clean_addr, memop); 3218 return true; 3219 } 3220 3221 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3222 { 3223 TCGv_i64 clean_addr, dirty_addr; 3224 MemOp memop; 3225 3226 if (extract32(a->opt, 1, 1) == 0) { 3227 return false; 3228 } 3229 3230 if (!fp_access_check(s)) { 3231 return true; 3232 } 3233 3234 memop = finalize_memop_asimd(s, a->sz); 3235 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3236 do_fp_st(s, a->rt, clean_addr, memop); 3237 return true; 3238 } 3239 3240 3241 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3242 int sign, bool invert) 3243 { 3244 MemOp mop = a->sz | sign; 3245 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3246 3247 if (a->rn == 31) { 3248 gen_check_sp_alignment(s); 3249 } 3250 mop = check_atomic_align(s, a->rn, mop); 3251 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3252 a->rn != 31, mop); 3253 tcg_rs = read_cpu_reg(s, a->rs, true); 3254 tcg_rt = cpu_reg(s, a->rt); 3255 if (invert) { 3256 tcg_gen_not_i64(tcg_rs, tcg_rs); 3257 } 3258 /* 3259 * The tcg atomic primitives are all full barriers. Therefore we 3260 * can ignore the Acquire and Release bits of this instruction. 3261 */ 3262 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3263 3264 if (mop & MO_SIGN) { 3265 switch (a->sz) { 3266 case MO_8: 3267 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3268 break; 3269 case MO_16: 3270 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3271 break; 3272 case MO_32: 3273 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3274 break; 3275 case MO_64: 3276 break; 3277 default: 3278 g_assert_not_reached(); 3279 } 3280 } 3281 return true; 3282 } 3283 3284 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3285 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3286 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3287 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3288 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3289 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3290 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3291 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3292 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3293 3294 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3295 { 3296 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3297 TCGv_i64 clean_addr; 3298 MemOp mop; 3299 3300 if (!dc_isar_feature(aa64_atomics, s) || 3301 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3302 return false; 3303 } 3304 if (a->rn == 31) { 3305 gen_check_sp_alignment(s); 3306 } 3307 mop = check_atomic_align(s, a->rn, a->sz); 3308 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3309 a->rn != 31, mop); 3310 /* 3311 * LDAPR* are a special case because they are a simple load, not a 3312 * fetch-and-do-something op. 3313 * The architectural consistency requirements here are weaker than 3314 * full load-acquire (we only need "load-acquire processor consistent"), 3315 * but we choose to implement them as full LDAQ. 3316 */ 3317 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3318 true, a->rt, iss_sf, true); 3319 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3320 return true; 3321 } 3322 3323 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3324 { 3325 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3326 MemOp memop; 3327 3328 /* Load with pointer authentication */ 3329 if (!dc_isar_feature(aa64_pauth, s)) { 3330 return false; 3331 } 3332 3333 if (a->rn == 31) { 3334 gen_check_sp_alignment(s); 3335 } 3336 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3337 3338 if (s->pauth_active) { 3339 if (!a->m) { 3340 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3341 tcg_constant_i64(0)); 3342 } else { 3343 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3344 tcg_constant_i64(0)); 3345 } 3346 } 3347 3348 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3349 3350 memop = finalize_memop(s, MO_64); 3351 3352 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3353 clean_addr = gen_mte_check1(s, dirty_addr, false, 3354 a->w || a->rn != 31, memop); 3355 3356 tcg_rt = cpu_reg(s, a->rt); 3357 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3358 /* extend */ false, /* iss_valid */ !a->w, 3359 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3360 3361 if (a->w) { 3362 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3363 } 3364 return true; 3365 } 3366 3367 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3368 { 3369 TCGv_i64 clean_addr, dirty_addr; 3370 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3371 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3372 3373 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3374 return false; 3375 } 3376 3377 if (a->rn == 31) { 3378 gen_check_sp_alignment(s); 3379 } 3380 3381 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3382 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3383 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3384 clean_addr = clean_data_tbi(s, dirty_addr); 3385 3386 /* 3387 * Load-AcquirePC semantics; we implement as the slightly more 3388 * restrictive Load-Acquire. 3389 */ 3390 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3391 a->rt, iss_sf, true); 3392 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3393 return true; 3394 } 3395 3396 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3397 { 3398 TCGv_i64 clean_addr, dirty_addr; 3399 MemOp mop = a->sz; 3400 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3401 3402 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3403 return false; 3404 } 3405 3406 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3407 3408 if (a->rn == 31) { 3409 gen_check_sp_alignment(s); 3410 } 3411 3412 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3413 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3414 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3415 clean_addr = clean_data_tbi(s, dirty_addr); 3416 3417 /* Store-Release semantics */ 3418 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3419 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3420 return true; 3421 } 3422 3423 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3424 { 3425 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3426 MemOp endian, align, mop; 3427 3428 int total; /* total bytes */ 3429 int elements; /* elements per vector */ 3430 int r; 3431 int size = a->sz; 3432 3433 if (!a->p && a->rm != 0) { 3434 /* For non-postindexed accesses the Rm field must be 0 */ 3435 return false; 3436 } 3437 if (size == 3 && !a->q && a->selem != 1) { 3438 return false; 3439 } 3440 if (!fp_access_check(s)) { 3441 return true; 3442 } 3443 3444 if (a->rn == 31) { 3445 gen_check_sp_alignment(s); 3446 } 3447 3448 /* For our purposes, bytes are always little-endian. */ 3449 endian = s->be_data; 3450 if (size == 0) { 3451 endian = MO_LE; 3452 } 3453 3454 total = a->rpt * a->selem * (a->q ? 16 : 8); 3455 tcg_rn = cpu_reg_sp(s, a->rn); 3456 3457 /* 3458 * Issue the MTE check vs the logical repeat count, before we 3459 * promote consecutive little-endian elements below. 3460 */ 3461 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3462 finalize_memop_asimd(s, size)); 3463 3464 /* 3465 * Consecutive little-endian elements from a single register 3466 * can be promoted to a larger little-endian operation. 3467 */ 3468 align = MO_ALIGN; 3469 if (a->selem == 1 && endian == MO_LE) { 3470 align = pow2_align(size); 3471 size = 3; 3472 } 3473 if (!s->align_mem) { 3474 align = 0; 3475 } 3476 mop = endian | size | align; 3477 3478 elements = (a->q ? 16 : 8) >> size; 3479 tcg_ebytes = tcg_constant_i64(1 << size); 3480 for (r = 0; r < a->rpt; r++) { 3481 int e; 3482 for (e = 0; e < elements; e++) { 3483 int xs; 3484 for (xs = 0; xs < a->selem; xs++) { 3485 int tt = (a->rt + r + xs) % 32; 3486 do_vec_ld(s, tt, e, clean_addr, mop); 3487 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3488 } 3489 } 3490 } 3491 3492 /* 3493 * For non-quad operations, setting a slice of the low 64 bits of 3494 * the register clears the high 64 bits (in the ARM ARM pseudocode 3495 * this is implicit in the fact that 'rval' is a 64 bit wide 3496 * variable). For quad operations, we might still need to zero 3497 * the high bits of SVE. 3498 */ 3499 for (r = 0; r < a->rpt * a->selem; r++) { 3500 int tt = (a->rt + r) % 32; 3501 clear_vec_high(s, a->q, tt); 3502 } 3503 3504 if (a->p) { 3505 if (a->rm == 31) { 3506 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3507 } else { 3508 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3509 } 3510 } 3511 return true; 3512 } 3513 3514 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3515 { 3516 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3517 MemOp endian, align, mop; 3518 3519 int total; /* total bytes */ 3520 int elements; /* elements per vector */ 3521 int r; 3522 int size = a->sz; 3523 3524 if (!a->p && a->rm != 0) { 3525 /* For non-postindexed accesses the Rm field must be 0 */ 3526 return false; 3527 } 3528 if (size == 3 && !a->q && a->selem != 1) { 3529 return false; 3530 } 3531 if (!fp_access_check(s)) { 3532 return true; 3533 } 3534 3535 if (a->rn == 31) { 3536 gen_check_sp_alignment(s); 3537 } 3538 3539 /* For our purposes, bytes are always little-endian. */ 3540 endian = s->be_data; 3541 if (size == 0) { 3542 endian = MO_LE; 3543 } 3544 3545 total = a->rpt * a->selem * (a->q ? 16 : 8); 3546 tcg_rn = cpu_reg_sp(s, a->rn); 3547 3548 /* 3549 * Issue the MTE check vs the logical repeat count, before we 3550 * promote consecutive little-endian elements below. 3551 */ 3552 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3553 finalize_memop_asimd(s, size)); 3554 3555 /* 3556 * Consecutive little-endian elements from a single register 3557 * can be promoted to a larger little-endian operation. 3558 */ 3559 align = MO_ALIGN; 3560 if (a->selem == 1 && endian == MO_LE) { 3561 align = pow2_align(size); 3562 size = 3; 3563 } 3564 if (!s->align_mem) { 3565 align = 0; 3566 } 3567 mop = endian | size | align; 3568 3569 elements = (a->q ? 16 : 8) >> size; 3570 tcg_ebytes = tcg_constant_i64(1 << size); 3571 for (r = 0; r < a->rpt; r++) { 3572 int e; 3573 for (e = 0; e < elements; e++) { 3574 int xs; 3575 for (xs = 0; xs < a->selem; xs++) { 3576 int tt = (a->rt + r + xs) % 32; 3577 do_vec_st(s, tt, e, clean_addr, mop); 3578 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3579 } 3580 } 3581 } 3582 3583 if (a->p) { 3584 if (a->rm == 31) { 3585 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3586 } else { 3587 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3588 } 3589 } 3590 return true; 3591 } 3592 3593 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3594 { 3595 int xs, total, rt; 3596 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3597 MemOp mop; 3598 3599 if (!a->p && a->rm != 0) { 3600 return false; 3601 } 3602 if (!fp_access_check(s)) { 3603 return true; 3604 } 3605 3606 if (a->rn == 31) { 3607 gen_check_sp_alignment(s); 3608 } 3609 3610 total = a->selem << a->scale; 3611 tcg_rn = cpu_reg_sp(s, a->rn); 3612 3613 mop = finalize_memop_asimd(s, a->scale); 3614 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3615 total, mop); 3616 3617 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3618 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3619 do_vec_st(s, rt, a->index, clean_addr, mop); 3620 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3621 } 3622 3623 if (a->p) { 3624 if (a->rm == 31) { 3625 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3626 } else { 3627 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3628 } 3629 } 3630 return true; 3631 } 3632 3633 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3634 { 3635 int xs, total, rt; 3636 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3637 MemOp mop; 3638 3639 if (!a->p && a->rm != 0) { 3640 return false; 3641 } 3642 if (!fp_access_check(s)) { 3643 return true; 3644 } 3645 3646 if (a->rn == 31) { 3647 gen_check_sp_alignment(s); 3648 } 3649 3650 total = a->selem << a->scale; 3651 tcg_rn = cpu_reg_sp(s, a->rn); 3652 3653 mop = finalize_memop_asimd(s, a->scale); 3654 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3655 total, mop); 3656 3657 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3658 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3659 do_vec_ld(s, rt, a->index, clean_addr, mop); 3660 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3661 } 3662 3663 if (a->p) { 3664 if (a->rm == 31) { 3665 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3666 } else { 3667 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3668 } 3669 } 3670 return true; 3671 } 3672 3673 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3674 { 3675 int xs, total, rt; 3676 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3677 MemOp mop; 3678 3679 if (!a->p && a->rm != 0) { 3680 return false; 3681 } 3682 if (!fp_access_check(s)) { 3683 return true; 3684 } 3685 3686 if (a->rn == 31) { 3687 gen_check_sp_alignment(s); 3688 } 3689 3690 total = a->selem << a->scale; 3691 tcg_rn = cpu_reg_sp(s, a->rn); 3692 3693 mop = finalize_memop_asimd(s, a->scale); 3694 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3695 total, mop); 3696 3697 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3698 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3699 /* Load and replicate to all elements */ 3700 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3701 3702 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3703 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3704 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3705 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3706 } 3707 3708 if (a->p) { 3709 if (a->rm == 31) { 3710 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3711 } else { 3712 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3713 } 3714 } 3715 return true; 3716 } 3717 3718 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3719 { 3720 TCGv_i64 addr, clean_addr, tcg_rt; 3721 int size = 4 << s->dcz_blocksize; 3722 3723 if (!dc_isar_feature(aa64_mte, s)) { 3724 return false; 3725 } 3726 if (s->current_el == 0) { 3727 return false; 3728 } 3729 3730 if (a->rn == 31) { 3731 gen_check_sp_alignment(s); 3732 } 3733 3734 addr = read_cpu_reg_sp(s, a->rn, true); 3735 tcg_gen_addi_i64(addr, addr, a->imm); 3736 tcg_rt = cpu_reg(s, a->rt); 3737 3738 if (s->ata) { 3739 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3740 } 3741 /* 3742 * The non-tags portion of STZGM is mostly like DC_ZVA, 3743 * except the alignment happens before the access. 3744 */ 3745 clean_addr = clean_data_tbi(s, addr); 3746 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3747 gen_helper_dc_zva(cpu_env, clean_addr); 3748 return true; 3749 } 3750 3751 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3752 { 3753 TCGv_i64 addr, clean_addr, tcg_rt; 3754 3755 if (!dc_isar_feature(aa64_mte, s)) { 3756 return false; 3757 } 3758 if (s->current_el == 0) { 3759 return false; 3760 } 3761 3762 if (a->rn == 31) { 3763 gen_check_sp_alignment(s); 3764 } 3765 3766 addr = read_cpu_reg_sp(s, a->rn, true); 3767 tcg_gen_addi_i64(addr, addr, a->imm); 3768 tcg_rt = cpu_reg(s, a->rt); 3769 3770 if (s->ata) { 3771 gen_helper_stgm(cpu_env, addr, tcg_rt); 3772 } else { 3773 MMUAccessType acc = MMU_DATA_STORE; 3774 int size = 4 << GMID_EL1_BS; 3775 3776 clean_addr = clean_data_tbi(s, addr); 3777 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3778 gen_probe_access(s, clean_addr, acc, size); 3779 } 3780 return true; 3781 } 3782 3783 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3784 { 3785 TCGv_i64 addr, clean_addr, tcg_rt; 3786 3787 if (!dc_isar_feature(aa64_mte, s)) { 3788 return false; 3789 } 3790 if (s->current_el == 0) { 3791 return false; 3792 } 3793 3794 if (a->rn == 31) { 3795 gen_check_sp_alignment(s); 3796 } 3797 3798 addr = read_cpu_reg_sp(s, a->rn, true); 3799 tcg_gen_addi_i64(addr, addr, a->imm); 3800 tcg_rt = cpu_reg(s, a->rt); 3801 3802 if (s->ata) { 3803 gen_helper_ldgm(tcg_rt, cpu_env, addr); 3804 } else { 3805 MMUAccessType acc = MMU_DATA_LOAD; 3806 int size = 4 << GMID_EL1_BS; 3807 3808 clean_addr = clean_data_tbi(s, addr); 3809 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3810 gen_probe_access(s, clean_addr, acc, size); 3811 /* The result tags are zeros. */ 3812 tcg_gen_movi_i64(tcg_rt, 0); 3813 } 3814 return true; 3815 } 3816 3817 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3818 { 3819 TCGv_i64 addr, clean_addr, tcg_rt; 3820 3821 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3822 return false; 3823 } 3824 3825 if (a->rn == 31) { 3826 gen_check_sp_alignment(s); 3827 } 3828 3829 addr = read_cpu_reg_sp(s, a->rn, true); 3830 if (!a->p) { 3831 /* pre-index or signed offset */ 3832 tcg_gen_addi_i64(addr, addr, a->imm); 3833 } 3834 3835 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3836 tcg_rt = cpu_reg(s, a->rt); 3837 if (s->ata) { 3838 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 3839 } else { 3840 /* 3841 * Tag access disabled: we must check for aborts on the load 3842 * load from [rn+offset], and then insert a 0 tag into rt. 3843 */ 3844 clean_addr = clean_data_tbi(s, addr); 3845 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3846 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3847 } 3848 3849 if (a->w) { 3850 /* pre-index or post-index */ 3851 if (a->p) { 3852 /* post-index */ 3853 tcg_gen_addi_i64(addr, addr, a->imm); 3854 } 3855 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3856 } 3857 return true; 3858 } 3859 3860 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3861 { 3862 TCGv_i64 addr, tcg_rt; 3863 3864 if (a->rn == 31) { 3865 gen_check_sp_alignment(s); 3866 } 3867 3868 addr = read_cpu_reg_sp(s, a->rn, true); 3869 if (!a->p) { 3870 /* pre-index or signed offset */ 3871 tcg_gen_addi_i64(addr, addr, a->imm); 3872 } 3873 tcg_rt = cpu_reg_sp(s, a->rt); 3874 if (!s->ata) { 3875 /* 3876 * For STG and ST2G, we need to check alignment and probe memory. 3877 * TODO: For STZG and STZ2G, we could rely on the stores below, 3878 * at least for system mode; user-only won't enforce alignment. 3879 */ 3880 if (is_pair) { 3881 gen_helper_st2g_stub(cpu_env, addr); 3882 } else { 3883 gen_helper_stg_stub(cpu_env, addr); 3884 } 3885 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3886 if (is_pair) { 3887 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 3888 } else { 3889 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 3890 } 3891 } else { 3892 if (is_pair) { 3893 gen_helper_st2g(cpu_env, addr, tcg_rt); 3894 } else { 3895 gen_helper_stg(cpu_env, addr, tcg_rt); 3896 } 3897 } 3898 3899 if (is_zero) { 3900 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3901 TCGv_i64 zero64 = tcg_constant_i64(0); 3902 TCGv_i128 zero128 = tcg_temp_new_i128(); 3903 int mem_index = get_mem_index(s); 3904 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3905 3906 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3907 3908 /* This is 1 or 2 atomic 16-byte operations. */ 3909 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3910 if (is_pair) { 3911 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3912 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3913 } 3914 } 3915 3916 if (a->w) { 3917 /* pre-index or post-index */ 3918 if (a->p) { 3919 /* post-index */ 3920 tcg_gen_addi_i64(addr, addr, a->imm); 3921 } 3922 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3923 } 3924 return true; 3925 } 3926 3927 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3928 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3929 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3930 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3931 3932 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 3933 3934 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 3935 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 3936 { 3937 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 3938 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 3939 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 3940 3941 fn(tcg_rd, tcg_rn, tcg_imm); 3942 if (!a->sf) { 3943 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 3944 } 3945 return true; 3946 } 3947 3948 /* 3949 * PC-rel. addressing 3950 */ 3951 3952 static bool trans_ADR(DisasContext *s, arg_ri *a) 3953 { 3954 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 3955 return true; 3956 } 3957 3958 static bool trans_ADRP(DisasContext *s, arg_ri *a) 3959 { 3960 int64_t offset = (int64_t)a->imm << 12; 3961 3962 /* The page offset is ok for CF_PCREL. */ 3963 offset -= s->pc_curr & 0xfff; 3964 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 3965 return true; 3966 } 3967 3968 /* 3969 * Add/subtract (immediate) 3970 */ 3971 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 3972 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 3973 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 3974 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 3975 3976 /* 3977 * Add/subtract (immediate, with tags) 3978 */ 3979 3980 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 3981 bool sub_op) 3982 { 3983 TCGv_i64 tcg_rn, tcg_rd; 3984 int imm; 3985 3986 imm = a->uimm6 << LOG2_TAG_GRANULE; 3987 if (sub_op) { 3988 imm = -imm; 3989 } 3990 3991 tcg_rn = cpu_reg_sp(s, a->rn); 3992 tcg_rd = cpu_reg_sp(s, a->rd); 3993 3994 if (s->ata) { 3995 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 3996 tcg_constant_i32(imm), 3997 tcg_constant_i32(a->uimm4)); 3998 } else { 3999 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4000 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4001 } 4002 return true; 4003 } 4004 4005 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4006 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4007 4008 /* The input should be a value in the bottom e bits (with higher 4009 * bits zero); returns that value replicated into every element 4010 * of size e in a 64 bit integer. 4011 */ 4012 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4013 { 4014 assert(e != 0); 4015 while (e < 64) { 4016 mask |= mask << e; 4017 e *= 2; 4018 } 4019 return mask; 4020 } 4021 4022 /* 4023 * Logical (immediate) 4024 */ 4025 4026 /* 4027 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4028 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4029 * value (ie should cause a guest UNDEF exception), and true if they are 4030 * valid, in which case the decoded bit pattern is written to result. 4031 */ 4032 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4033 unsigned int imms, unsigned int immr) 4034 { 4035 uint64_t mask; 4036 unsigned e, levels, s, r; 4037 int len; 4038 4039 assert(immn < 2 && imms < 64 && immr < 64); 4040 4041 /* The bit patterns we create here are 64 bit patterns which 4042 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4043 * 64 bits each. Each element contains the same value: a run 4044 * of between 1 and e-1 non-zero bits, rotated within the 4045 * element by between 0 and e-1 bits. 4046 * 4047 * The element size and run length are encoded into immn (1 bit) 4048 * and imms (6 bits) as follows: 4049 * 64 bit elements: immn = 1, imms = <length of run - 1> 4050 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4051 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4052 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4053 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4054 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4055 * Notice that immn = 0, imms = 11111x is the only combination 4056 * not covered by one of the above options; this is reserved. 4057 * Further, <length of run - 1> all-ones is a reserved pattern. 4058 * 4059 * In all cases the rotation is by immr % e (and immr is 6 bits). 4060 */ 4061 4062 /* First determine the element size */ 4063 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4064 if (len < 1) { 4065 /* This is the immn == 0, imms == 0x11111x case */ 4066 return false; 4067 } 4068 e = 1 << len; 4069 4070 levels = e - 1; 4071 s = imms & levels; 4072 r = immr & levels; 4073 4074 if (s == levels) { 4075 /* <length of run - 1> mustn't be all-ones. */ 4076 return false; 4077 } 4078 4079 /* Create the value of one element: s+1 set bits rotated 4080 * by r within the element (which is e bits wide)... 4081 */ 4082 mask = MAKE_64BIT_MASK(0, s + 1); 4083 if (r) { 4084 mask = (mask >> r) | (mask << (e - r)); 4085 mask &= MAKE_64BIT_MASK(0, e); 4086 } 4087 /* ...then replicate the element over the whole 64 bit value */ 4088 mask = bitfield_replicate(mask, e); 4089 *result = mask; 4090 return true; 4091 } 4092 4093 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4094 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4095 { 4096 TCGv_i64 tcg_rd, tcg_rn; 4097 uint64_t imm; 4098 4099 /* Some immediate field values are reserved. */ 4100 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4101 extract32(a->dbm, 0, 6), 4102 extract32(a->dbm, 6, 6))) { 4103 return false; 4104 } 4105 if (!a->sf) { 4106 imm &= 0xffffffffull; 4107 } 4108 4109 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4110 tcg_rn = cpu_reg(s, a->rn); 4111 4112 fn(tcg_rd, tcg_rn, imm); 4113 if (set_cc) { 4114 gen_logic_CC(a->sf, tcg_rd); 4115 } 4116 if (!a->sf) { 4117 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4118 } 4119 return true; 4120 } 4121 4122 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4123 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4124 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4125 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4126 4127 /* 4128 * Move wide (immediate) 4129 */ 4130 4131 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4132 { 4133 int pos = a->hw << 4; 4134 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4135 return true; 4136 } 4137 4138 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4139 { 4140 int pos = a->hw << 4; 4141 uint64_t imm = a->imm; 4142 4143 imm = ~(imm << pos); 4144 if (!a->sf) { 4145 imm = (uint32_t)imm; 4146 } 4147 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4148 return true; 4149 } 4150 4151 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4152 { 4153 int pos = a->hw << 4; 4154 TCGv_i64 tcg_rd, tcg_im; 4155 4156 tcg_rd = cpu_reg(s, a->rd); 4157 tcg_im = tcg_constant_i64(a->imm); 4158 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4159 if (!a->sf) { 4160 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4161 } 4162 return true; 4163 } 4164 4165 /* 4166 * Bitfield 4167 */ 4168 4169 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4170 { 4171 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4172 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4173 unsigned int bitsize = a->sf ? 64 : 32; 4174 unsigned int ri = a->immr; 4175 unsigned int si = a->imms; 4176 unsigned int pos, len; 4177 4178 if (si >= ri) { 4179 /* Wd<s-r:0> = Wn<s:r> */ 4180 len = (si - ri) + 1; 4181 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4182 if (!a->sf) { 4183 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4184 } 4185 } else { 4186 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4187 len = si + 1; 4188 pos = (bitsize - ri) & (bitsize - 1); 4189 4190 if (len < ri) { 4191 /* 4192 * Sign extend the destination field from len to fill the 4193 * balance of the word. Let the deposit below insert all 4194 * of those sign bits. 4195 */ 4196 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4197 len = ri; 4198 } 4199 4200 /* 4201 * We start with zero, and we haven't modified any bits outside 4202 * bitsize, therefore no final zero-extension is unneeded for !sf. 4203 */ 4204 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4205 } 4206 return true; 4207 } 4208 4209 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4210 { 4211 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4212 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4213 unsigned int bitsize = a->sf ? 64 : 32; 4214 unsigned int ri = a->immr; 4215 unsigned int si = a->imms; 4216 unsigned int pos, len; 4217 4218 tcg_rd = cpu_reg(s, a->rd); 4219 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4220 4221 if (si >= ri) { 4222 /* Wd<s-r:0> = Wn<s:r> */ 4223 len = (si - ri) + 1; 4224 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4225 } else { 4226 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4227 len = si + 1; 4228 pos = (bitsize - ri) & (bitsize - 1); 4229 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4230 } 4231 return true; 4232 } 4233 4234 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4235 { 4236 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4237 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4238 unsigned int bitsize = a->sf ? 64 : 32; 4239 unsigned int ri = a->immr; 4240 unsigned int si = a->imms; 4241 unsigned int pos, len; 4242 4243 tcg_rd = cpu_reg(s, a->rd); 4244 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4245 4246 if (si >= ri) { 4247 /* Wd<s-r:0> = Wn<s:r> */ 4248 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4249 len = (si - ri) + 1; 4250 pos = 0; 4251 } else { 4252 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4253 len = si + 1; 4254 pos = (bitsize - ri) & (bitsize - 1); 4255 } 4256 4257 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4258 if (!a->sf) { 4259 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4260 } 4261 return true; 4262 } 4263 4264 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4265 { 4266 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4267 4268 tcg_rd = cpu_reg(s, a->rd); 4269 4270 if (unlikely(a->imm == 0)) { 4271 /* 4272 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4273 * so an extract from bit 0 is a special case. 4274 */ 4275 if (a->sf) { 4276 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4277 } else { 4278 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4279 } 4280 } else { 4281 tcg_rm = cpu_reg(s, a->rm); 4282 tcg_rn = cpu_reg(s, a->rn); 4283 4284 if (a->sf) { 4285 /* Specialization to ROR happens in EXTRACT2. */ 4286 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4287 } else { 4288 TCGv_i32 t0 = tcg_temp_new_i32(); 4289 4290 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4291 if (a->rm == a->rn) { 4292 tcg_gen_rotri_i32(t0, t0, a->imm); 4293 } else { 4294 TCGv_i32 t1 = tcg_temp_new_i32(); 4295 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4296 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4297 } 4298 tcg_gen_extu_i32_i64(tcg_rd, t0); 4299 } 4300 } 4301 return true; 4302 } 4303 4304 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4305 * Note that it is the caller's responsibility to ensure that the 4306 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4307 * mandated semantics for out of range shifts. 4308 */ 4309 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4310 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4311 { 4312 switch (shift_type) { 4313 case A64_SHIFT_TYPE_LSL: 4314 tcg_gen_shl_i64(dst, src, shift_amount); 4315 break; 4316 case A64_SHIFT_TYPE_LSR: 4317 tcg_gen_shr_i64(dst, src, shift_amount); 4318 break; 4319 case A64_SHIFT_TYPE_ASR: 4320 if (!sf) { 4321 tcg_gen_ext32s_i64(dst, src); 4322 } 4323 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4324 break; 4325 case A64_SHIFT_TYPE_ROR: 4326 if (sf) { 4327 tcg_gen_rotr_i64(dst, src, shift_amount); 4328 } else { 4329 TCGv_i32 t0, t1; 4330 t0 = tcg_temp_new_i32(); 4331 t1 = tcg_temp_new_i32(); 4332 tcg_gen_extrl_i64_i32(t0, src); 4333 tcg_gen_extrl_i64_i32(t1, shift_amount); 4334 tcg_gen_rotr_i32(t0, t0, t1); 4335 tcg_gen_extu_i32_i64(dst, t0); 4336 } 4337 break; 4338 default: 4339 assert(FALSE); /* all shift types should be handled */ 4340 break; 4341 } 4342 4343 if (!sf) { /* zero extend final result */ 4344 tcg_gen_ext32u_i64(dst, dst); 4345 } 4346 } 4347 4348 /* Shift a TCGv src by immediate, put result in dst. 4349 * The shift amount must be in range (this should always be true as the 4350 * relevant instructions will UNDEF on bad shift immediates). 4351 */ 4352 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4353 enum a64_shift_type shift_type, unsigned int shift_i) 4354 { 4355 assert(shift_i < (sf ? 64 : 32)); 4356 4357 if (shift_i == 0) { 4358 tcg_gen_mov_i64(dst, src); 4359 } else { 4360 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4361 } 4362 } 4363 4364 /* Logical (shifted register) 4365 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4366 * +----+-----+-----------+-------+---+------+--------+------+------+ 4367 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4368 * +----+-----+-----------+-------+---+------+--------+------+------+ 4369 */ 4370 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4371 { 4372 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4373 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4374 4375 sf = extract32(insn, 31, 1); 4376 opc = extract32(insn, 29, 2); 4377 shift_type = extract32(insn, 22, 2); 4378 invert = extract32(insn, 21, 1); 4379 rm = extract32(insn, 16, 5); 4380 shift_amount = extract32(insn, 10, 6); 4381 rn = extract32(insn, 5, 5); 4382 rd = extract32(insn, 0, 5); 4383 4384 if (!sf && (shift_amount & (1 << 5))) { 4385 unallocated_encoding(s); 4386 return; 4387 } 4388 4389 tcg_rd = cpu_reg(s, rd); 4390 4391 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4392 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4393 * register-register MOV and MVN, so it is worth special casing. 4394 */ 4395 tcg_rm = cpu_reg(s, rm); 4396 if (invert) { 4397 tcg_gen_not_i64(tcg_rd, tcg_rm); 4398 if (!sf) { 4399 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4400 } 4401 } else { 4402 if (sf) { 4403 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4404 } else { 4405 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4406 } 4407 } 4408 return; 4409 } 4410 4411 tcg_rm = read_cpu_reg(s, rm, sf); 4412 4413 if (shift_amount) { 4414 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4415 } 4416 4417 tcg_rn = cpu_reg(s, rn); 4418 4419 switch (opc | (invert << 2)) { 4420 case 0: /* AND */ 4421 case 3: /* ANDS */ 4422 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4423 break; 4424 case 1: /* ORR */ 4425 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4426 break; 4427 case 2: /* EOR */ 4428 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4429 break; 4430 case 4: /* BIC */ 4431 case 7: /* BICS */ 4432 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4433 break; 4434 case 5: /* ORN */ 4435 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4436 break; 4437 case 6: /* EON */ 4438 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4439 break; 4440 default: 4441 assert(FALSE); 4442 break; 4443 } 4444 4445 if (!sf) { 4446 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4447 } 4448 4449 if (opc == 3) { 4450 gen_logic_CC(sf, tcg_rd); 4451 } 4452 } 4453 4454 /* 4455 * Add/subtract (extended register) 4456 * 4457 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4458 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4459 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4460 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4461 * 4462 * sf: 0 -> 32bit, 1 -> 64bit 4463 * op: 0 -> add , 1 -> sub 4464 * S: 1 -> set flags 4465 * opt: 00 4466 * option: extension type (see DecodeRegExtend) 4467 * imm3: optional shift to Rm 4468 * 4469 * Rd = Rn + LSL(extend(Rm), amount) 4470 */ 4471 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4472 { 4473 int rd = extract32(insn, 0, 5); 4474 int rn = extract32(insn, 5, 5); 4475 int imm3 = extract32(insn, 10, 3); 4476 int option = extract32(insn, 13, 3); 4477 int rm = extract32(insn, 16, 5); 4478 int opt = extract32(insn, 22, 2); 4479 bool setflags = extract32(insn, 29, 1); 4480 bool sub_op = extract32(insn, 30, 1); 4481 bool sf = extract32(insn, 31, 1); 4482 4483 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4484 TCGv_i64 tcg_rd; 4485 TCGv_i64 tcg_result; 4486 4487 if (imm3 > 4 || opt != 0) { 4488 unallocated_encoding(s); 4489 return; 4490 } 4491 4492 /* non-flag setting ops may use SP */ 4493 if (!setflags) { 4494 tcg_rd = cpu_reg_sp(s, rd); 4495 } else { 4496 tcg_rd = cpu_reg(s, rd); 4497 } 4498 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4499 4500 tcg_rm = read_cpu_reg(s, rm, sf); 4501 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4502 4503 tcg_result = tcg_temp_new_i64(); 4504 4505 if (!setflags) { 4506 if (sub_op) { 4507 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4508 } else { 4509 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4510 } 4511 } else { 4512 if (sub_op) { 4513 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4514 } else { 4515 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4516 } 4517 } 4518 4519 if (sf) { 4520 tcg_gen_mov_i64(tcg_rd, tcg_result); 4521 } else { 4522 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4523 } 4524 } 4525 4526 /* 4527 * Add/subtract (shifted register) 4528 * 4529 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4530 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4531 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4532 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4533 * 4534 * sf: 0 -> 32bit, 1 -> 64bit 4535 * op: 0 -> add , 1 -> sub 4536 * S: 1 -> set flags 4537 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4538 * imm6: Shift amount to apply to Rm before the add/sub 4539 */ 4540 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4541 { 4542 int rd = extract32(insn, 0, 5); 4543 int rn = extract32(insn, 5, 5); 4544 int imm6 = extract32(insn, 10, 6); 4545 int rm = extract32(insn, 16, 5); 4546 int shift_type = extract32(insn, 22, 2); 4547 bool setflags = extract32(insn, 29, 1); 4548 bool sub_op = extract32(insn, 30, 1); 4549 bool sf = extract32(insn, 31, 1); 4550 4551 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4552 TCGv_i64 tcg_rn, tcg_rm; 4553 TCGv_i64 tcg_result; 4554 4555 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4556 unallocated_encoding(s); 4557 return; 4558 } 4559 4560 tcg_rn = read_cpu_reg(s, rn, sf); 4561 tcg_rm = read_cpu_reg(s, rm, sf); 4562 4563 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4564 4565 tcg_result = tcg_temp_new_i64(); 4566 4567 if (!setflags) { 4568 if (sub_op) { 4569 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4570 } else { 4571 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4572 } 4573 } else { 4574 if (sub_op) { 4575 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4576 } else { 4577 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4578 } 4579 } 4580 4581 if (sf) { 4582 tcg_gen_mov_i64(tcg_rd, tcg_result); 4583 } else { 4584 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4585 } 4586 } 4587 4588 /* Data-processing (3 source) 4589 * 4590 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4591 * +--+------+-----------+------+------+----+------+------+------+ 4592 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4593 * +--+------+-----------+------+------+----+------+------+------+ 4594 */ 4595 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4596 { 4597 int rd = extract32(insn, 0, 5); 4598 int rn = extract32(insn, 5, 5); 4599 int ra = extract32(insn, 10, 5); 4600 int rm = extract32(insn, 16, 5); 4601 int op_id = (extract32(insn, 29, 3) << 4) | 4602 (extract32(insn, 21, 3) << 1) | 4603 extract32(insn, 15, 1); 4604 bool sf = extract32(insn, 31, 1); 4605 bool is_sub = extract32(op_id, 0, 1); 4606 bool is_high = extract32(op_id, 2, 1); 4607 bool is_signed = false; 4608 TCGv_i64 tcg_op1; 4609 TCGv_i64 tcg_op2; 4610 TCGv_i64 tcg_tmp; 4611 4612 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4613 switch (op_id) { 4614 case 0x42: /* SMADDL */ 4615 case 0x43: /* SMSUBL */ 4616 case 0x44: /* SMULH */ 4617 is_signed = true; 4618 break; 4619 case 0x0: /* MADD (32bit) */ 4620 case 0x1: /* MSUB (32bit) */ 4621 case 0x40: /* MADD (64bit) */ 4622 case 0x41: /* MSUB (64bit) */ 4623 case 0x4a: /* UMADDL */ 4624 case 0x4b: /* UMSUBL */ 4625 case 0x4c: /* UMULH */ 4626 break; 4627 default: 4628 unallocated_encoding(s); 4629 return; 4630 } 4631 4632 if (is_high) { 4633 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4634 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4635 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4636 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4637 4638 if (is_signed) { 4639 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4640 } else { 4641 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4642 } 4643 return; 4644 } 4645 4646 tcg_op1 = tcg_temp_new_i64(); 4647 tcg_op2 = tcg_temp_new_i64(); 4648 tcg_tmp = tcg_temp_new_i64(); 4649 4650 if (op_id < 0x42) { 4651 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4652 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4653 } else { 4654 if (is_signed) { 4655 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4656 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4657 } else { 4658 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4659 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4660 } 4661 } 4662 4663 if (ra == 31 && !is_sub) { 4664 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4665 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4666 } else { 4667 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4668 if (is_sub) { 4669 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4670 } else { 4671 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4672 } 4673 } 4674 4675 if (!sf) { 4676 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4677 } 4678 } 4679 4680 /* Add/subtract (with carry) 4681 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4682 * +--+--+--+------------------------+------+-------------+------+-----+ 4683 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4684 * +--+--+--+------------------------+------+-------------+------+-----+ 4685 */ 4686 4687 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4688 { 4689 unsigned int sf, op, setflags, rm, rn, rd; 4690 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4691 4692 sf = extract32(insn, 31, 1); 4693 op = extract32(insn, 30, 1); 4694 setflags = extract32(insn, 29, 1); 4695 rm = extract32(insn, 16, 5); 4696 rn = extract32(insn, 5, 5); 4697 rd = extract32(insn, 0, 5); 4698 4699 tcg_rd = cpu_reg(s, rd); 4700 tcg_rn = cpu_reg(s, rn); 4701 4702 if (op) { 4703 tcg_y = tcg_temp_new_i64(); 4704 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4705 } else { 4706 tcg_y = cpu_reg(s, rm); 4707 } 4708 4709 if (setflags) { 4710 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4711 } else { 4712 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4713 } 4714 } 4715 4716 /* 4717 * Rotate right into flags 4718 * 31 30 29 21 15 10 5 4 0 4719 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4720 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4721 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4722 */ 4723 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4724 { 4725 int mask = extract32(insn, 0, 4); 4726 int o2 = extract32(insn, 4, 1); 4727 int rn = extract32(insn, 5, 5); 4728 int imm6 = extract32(insn, 15, 6); 4729 int sf_op_s = extract32(insn, 29, 3); 4730 TCGv_i64 tcg_rn; 4731 TCGv_i32 nzcv; 4732 4733 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4734 unallocated_encoding(s); 4735 return; 4736 } 4737 4738 tcg_rn = read_cpu_reg(s, rn, 1); 4739 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4740 4741 nzcv = tcg_temp_new_i32(); 4742 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4743 4744 if (mask & 8) { /* N */ 4745 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4746 } 4747 if (mask & 4) { /* Z */ 4748 tcg_gen_not_i32(cpu_ZF, nzcv); 4749 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4750 } 4751 if (mask & 2) { /* C */ 4752 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4753 } 4754 if (mask & 1) { /* V */ 4755 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4756 } 4757 } 4758 4759 /* 4760 * Evaluate into flags 4761 * 31 30 29 21 15 14 10 5 4 0 4762 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4763 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4764 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4765 */ 4766 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4767 { 4768 int o3_mask = extract32(insn, 0, 5); 4769 int rn = extract32(insn, 5, 5); 4770 int o2 = extract32(insn, 15, 6); 4771 int sz = extract32(insn, 14, 1); 4772 int sf_op_s = extract32(insn, 29, 3); 4773 TCGv_i32 tmp; 4774 int shift; 4775 4776 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4777 !dc_isar_feature(aa64_condm_4, s)) { 4778 unallocated_encoding(s); 4779 return; 4780 } 4781 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4782 4783 tmp = tcg_temp_new_i32(); 4784 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4785 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4786 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4787 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4788 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4789 } 4790 4791 /* Conditional compare (immediate / register) 4792 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4793 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4794 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4795 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4796 * [1] y [0] [0] 4797 */ 4798 static void disas_cc(DisasContext *s, uint32_t insn) 4799 { 4800 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4801 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4802 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4803 DisasCompare c; 4804 4805 if (!extract32(insn, 29, 1)) { 4806 unallocated_encoding(s); 4807 return; 4808 } 4809 if (insn & (1 << 10 | 1 << 4)) { 4810 unallocated_encoding(s); 4811 return; 4812 } 4813 sf = extract32(insn, 31, 1); 4814 op = extract32(insn, 30, 1); 4815 is_imm = extract32(insn, 11, 1); 4816 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4817 cond = extract32(insn, 12, 4); 4818 rn = extract32(insn, 5, 5); 4819 nzcv = extract32(insn, 0, 4); 4820 4821 /* Set T0 = !COND. */ 4822 tcg_t0 = tcg_temp_new_i32(); 4823 arm_test_cc(&c, cond); 4824 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4825 4826 /* Load the arguments for the new comparison. */ 4827 if (is_imm) { 4828 tcg_y = tcg_temp_new_i64(); 4829 tcg_gen_movi_i64(tcg_y, y); 4830 } else { 4831 tcg_y = cpu_reg(s, y); 4832 } 4833 tcg_rn = cpu_reg(s, rn); 4834 4835 /* Set the flags for the new comparison. */ 4836 tcg_tmp = tcg_temp_new_i64(); 4837 if (op) { 4838 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4839 } else { 4840 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4841 } 4842 4843 /* If COND was false, force the flags to #nzcv. Compute two masks 4844 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4845 * For tcg hosts that support ANDC, we can make do with just T1. 4846 * In either case, allow the tcg optimizer to delete any unused mask. 4847 */ 4848 tcg_t1 = tcg_temp_new_i32(); 4849 tcg_t2 = tcg_temp_new_i32(); 4850 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4851 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4852 4853 if (nzcv & 8) { /* N */ 4854 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4855 } else { 4856 if (TCG_TARGET_HAS_andc_i32) { 4857 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4858 } else { 4859 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4860 } 4861 } 4862 if (nzcv & 4) { /* Z */ 4863 if (TCG_TARGET_HAS_andc_i32) { 4864 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4865 } else { 4866 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4867 } 4868 } else { 4869 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4870 } 4871 if (nzcv & 2) { /* C */ 4872 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4873 } else { 4874 if (TCG_TARGET_HAS_andc_i32) { 4875 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4876 } else { 4877 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4878 } 4879 } 4880 if (nzcv & 1) { /* V */ 4881 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 4882 } else { 4883 if (TCG_TARGET_HAS_andc_i32) { 4884 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 4885 } else { 4886 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 4887 } 4888 } 4889 } 4890 4891 /* Conditional select 4892 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 4893 * +----+----+---+-----------------+------+------+-----+------+------+ 4894 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 4895 * +----+----+---+-----------------+------+------+-----+------+------+ 4896 */ 4897 static void disas_cond_select(DisasContext *s, uint32_t insn) 4898 { 4899 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 4900 TCGv_i64 tcg_rd, zero; 4901 DisasCompare64 c; 4902 4903 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 4904 /* S == 1 or op2<1> == 1 */ 4905 unallocated_encoding(s); 4906 return; 4907 } 4908 sf = extract32(insn, 31, 1); 4909 else_inv = extract32(insn, 30, 1); 4910 rm = extract32(insn, 16, 5); 4911 cond = extract32(insn, 12, 4); 4912 else_inc = extract32(insn, 10, 1); 4913 rn = extract32(insn, 5, 5); 4914 rd = extract32(insn, 0, 5); 4915 4916 tcg_rd = cpu_reg(s, rd); 4917 4918 a64_test_cc(&c, cond); 4919 zero = tcg_constant_i64(0); 4920 4921 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 4922 /* CSET & CSETM. */ 4923 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 4924 if (else_inv) { 4925 tcg_gen_neg_i64(tcg_rd, tcg_rd); 4926 } 4927 } else { 4928 TCGv_i64 t_true = cpu_reg(s, rn); 4929 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 4930 if (else_inv && else_inc) { 4931 tcg_gen_neg_i64(t_false, t_false); 4932 } else if (else_inv) { 4933 tcg_gen_not_i64(t_false, t_false); 4934 } else if (else_inc) { 4935 tcg_gen_addi_i64(t_false, t_false, 1); 4936 } 4937 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 4938 } 4939 4940 if (!sf) { 4941 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4942 } 4943 } 4944 4945 static void handle_clz(DisasContext *s, unsigned int sf, 4946 unsigned int rn, unsigned int rd) 4947 { 4948 TCGv_i64 tcg_rd, tcg_rn; 4949 tcg_rd = cpu_reg(s, rd); 4950 tcg_rn = cpu_reg(s, rn); 4951 4952 if (sf) { 4953 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 4954 } else { 4955 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4956 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4957 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 4958 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4959 } 4960 } 4961 4962 static void handle_cls(DisasContext *s, unsigned int sf, 4963 unsigned int rn, unsigned int rd) 4964 { 4965 TCGv_i64 tcg_rd, tcg_rn; 4966 tcg_rd = cpu_reg(s, rd); 4967 tcg_rn = cpu_reg(s, rn); 4968 4969 if (sf) { 4970 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 4971 } else { 4972 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4973 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4974 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 4975 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4976 } 4977 } 4978 4979 static void handle_rbit(DisasContext *s, unsigned int sf, 4980 unsigned int rn, unsigned int rd) 4981 { 4982 TCGv_i64 tcg_rd, tcg_rn; 4983 tcg_rd = cpu_reg(s, rd); 4984 tcg_rn = cpu_reg(s, rn); 4985 4986 if (sf) { 4987 gen_helper_rbit64(tcg_rd, tcg_rn); 4988 } else { 4989 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4990 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4991 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 4992 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4993 } 4994 } 4995 4996 /* REV with sf==1, opcode==3 ("REV64") */ 4997 static void handle_rev64(DisasContext *s, unsigned int sf, 4998 unsigned int rn, unsigned int rd) 4999 { 5000 if (!sf) { 5001 unallocated_encoding(s); 5002 return; 5003 } 5004 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5005 } 5006 5007 /* REV with sf==0, opcode==2 5008 * REV32 (sf==1, opcode==2) 5009 */ 5010 static void handle_rev32(DisasContext *s, unsigned int sf, 5011 unsigned int rn, unsigned int rd) 5012 { 5013 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5014 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5015 5016 if (sf) { 5017 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5018 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5019 } else { 5020 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5021 } 5022 } 5023 5024 /* REV16 (opcode==1) */ 5025 static void handle_rev16(DisasContext *s, unsigned int sf, 5026 unsigned int rn, unsigned int rd) 5027 { 5028 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5029 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5030 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5031 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5032 5033 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5034 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5035 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5036 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5037 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5038 } 5039 5040 /* Data-processing (1 source) 5041 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5042 * +----+---+---+-----------------+---------+--------+------+------+ 5043 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5044 * +----+---+---+-----------------+---------+--------+------+------+ 5045 */ 5046 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5047 { 5048 unsigned int sf, opcode, opcode2, rn, rd; 5049 TCGv_i64 tcg_rd; 5050 5051 if (extract32(insn, 29, 1)) { 5052 unallocated_encoding(s); 5053 return; 5054 } 5055 5056 sf = extract32(insn, 31, 1); 5057 opcode = extract32(insn, 10, 6); 5058 opcode2 = extract32(insn, 16, 5); 5059 rn = extract32(insn, 5, 5); 5060 rd = extract32(insn, 0, 5); 5061 5062 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5063 5064 switch (MAP(sf, opcode2, opcode)) { 5065 case MAP(0, 0x00, 0x00): /* RBIT */ 5066 case MAP(1, 0x00, 0x00): 5067 handle_rbit(s, sf, rn, rd); 5068 break; 5069 case MAP(0, 0x00, 0x01): /* REV16 */ 5070 case MAP(1, 0x00, 0x01): 5071 handle_rev16(s, sf, rn, rd); 5072 break; 5073 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5074 case MAP(1, 0x00, 0x02): 5075 handle_rev32(s, sf, rn, rd); 5076 break; 5077 case MAP(1, 0x00, 0x03): /* REV64 */ 5078 handle_rev64(s, sf, rn, rd); 5079 break; 5080 case MAP(0, 0x00, 0x04): /* CLZ */ 5081 case MAP(1, 0x00, 0x04): 5082 handle_clz(s, sf, rn, rd); 5083 break; 5084 case MAP(0, 0x00, 0x05): /* CLS */ 5085 case MAP(1, 0x00, 0x05): 5086 handle_cls(s, sf, rn, rd); 5087 break; 5088 case MAP(1, 0x01, 0x00): /* PACIA */ 5089 if (s->pauth_active) { 5090 tcg_rd = cpu_reg(s, rd); 5091 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5092 } else if (!dc_isar_feature(aa64_pauth, s)) { 5093 goto do_unallocated; 5094 } 5095 break; 5096 case MAP(1, 0x01, 0x01): /* PACIB */ 5097 if (s->pauth_active) { 5098 tcg_rd = cpu_reg(s, rd); 5099 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5100 } else if (!dc_isar_feature(aa64_pauth, s)) { 5101 goto do_unallocated; 5102 } 5103 break; 5104 case MAP(1, 0x01, 0x02): /* PACDA */ 5105 if (s->pauth_active) { 5106 tcg_rd = cpu_reg(s, rd); 5107 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5108 } else if (!dc_isar_feature(aa64_pauth, s)) { 5109 goto do_unallocated; 5110 } 5111 break; 5112 case MAP(1, 0x01, 0x03): /* PACDB */ 5113 if (s->pauth_active) { 5114 tcg_rd = cpu_reg(s, rd); 5115 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5116 } else if (!dc_isar_feature(aa64_pauth, s)) { 5117 goto do_unallocated; 5118 } 5119 break; 5120 case MAP(1, 0x01, 0x04): /* AUTIA */ 5121 if (s->pauth_active) { 5122 tcg_rd = cpu_reg(s, rd); 5123 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5124 } else if (!dc_isar_feature(aa64_pauth, s)) { 5125 goto do_unallocated; 5126 } 5127 break; 5128 case MAP(1, 0x01, 0x05): /* AUTIB */ 5129 if (s->pauth_active) { 5130 tcg_rd = cpu_reg(s, rd); 5131 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5132 } else if (!dc_isar_feature(aa64_pauth, s)) { 5133 goto do_unallocated; 5134 } 5135 break; 5136 case MAP(1, 0x01, 0x06): /* AUTDA */ 5137 if (s->pauth_active) { 5138 tcg_rd = cpu_reg(s, rd); 5139 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5140 } else if (!dc_isar_feature(aa64_pauth, s)) { 5141 goto do_unallocated; 5142 } 5143 break; 5144 case MAP(1, 0x01, 0x07): /* AUTDB */ 5145 if (s->pauth_active) { 5146 tcg_rd = cpu_reg(s, rd); 5147 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5148 } else if (!dc_isar_feature(aa64_pauth, s)) { 5149 goto do_unallocated; 5150 } 5151 break; 5152 case MAP(1, 0x01, 0x08): /* PACIZA */ 5153 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5154 goto do_unallocated; 5155 } else if (s->pauth_active) { 5156 tcg_rd = cpu_reg(s, rd); 5157 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5158 } 5159 break; 5160 case MAP(1, 0x01, 0x09): /* PACIZB */ 5161 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5162 goto do_unallocated; 5163 } else if (s->pauth_active) { 5164 tcg_rd = cpu_reg(s, rd); 5165 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5166 } 5167 break; 5168 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5169 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5170 goto do_unallocated; 5171 } else if (s->pauth_active) { 5172 tcg_rd = cpu_reg(s, rd); 5173 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5174 } 5175 break; 5176 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5177 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5178 goto do_unallocated; 5179 } else if (s->pauth_active) { 5180 tcg_rd = cpu_reg(s, rd); 5181 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5182 } 5183 break; 5184 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5185 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5186 goto do_unallocated; 5187 } else if (s->pauth_active) { 5188 tcg_rd = cpu_reg(s, rd); 5189 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5190 } 5191 break; 5192 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5193 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5194 goto do_unallocated; 5195 } else if (s->pauth_active) { 5196 tcg_rd = cpu_reg(s, rd); 5197 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5198 } 5199 break; 5200 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5201 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5202 goto do_unallocated; 5203 } else if (s->pauth_active) { 5204 tcg_rd = cpu_reg(s, rd); 5205 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5206 } 5207 break; 5208 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5209 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5210 goto do_unallocated; 5211 } else if (s->pauth_active) { 5212 tcg_rd = cpu_reg(s, rd); 5213 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5214 } 5215 break; 5216 case MAP(1, 0x01, 0x10): /* XPACI */ 5217 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5218 goto do_unallocated; 5219 } else if (s->pauth_active) { 5220 tcg_rd = cpu_reg(s, rd); 5221 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5222 } 5223 break; 5224 case MAP(1, 0x01, 0x11): /* XPACD */ 5225 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5226 goto do_unallocated; 5227 } else if (s->pauth_active) { 5228 tcg_rd = cpu_reg(s, rd); 5229 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5230 } 5231 break; 5232 default: 5233 do_unallocated: 5234 unallocated_encoding(s); 5235 break; 5236 } 5237 5238 #undef MAP 5239 } 5240 5241 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5242 unsigned int rm, unsigned int rn, unsigned int rd) 5243 { 5244 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5245 tcg_rd = cpu_reg(s, rd); 5246 5247 if (!sf && is_signed) { 5248 tcg_n = tcg_temp_new_i64(); 5249 tcg_m = tcg_temp_new_i64(); 5250 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5251 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5252 } else { 5253 tcg_n = read_cpu_reg(s, rn, sf); 5254 tcg_m = read_cpu_reg(s, rm, sf); 5255 } 5256 5257 if (is_signed) { 5258 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5259 } else { 5260 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5261 } 5262 5263 if (!sf) { /* zero extend final result */ 5264 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5265 } 5266 } 5267 5268 /* LSLV, LSRV, ASRV, RORV */ 5269 static void handle_shift_reg(DisasContext *s, 5270 enum a64_shift_type shift_type, unsigned int sf, 5271 unsigned int rm, unsigned int rn, unsigned int rd) 5272 { 5273 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5274 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5275 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5276 5277 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5278 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5279 } 5280 5281 /* CRC32[BHWX], CRC32C[BHWX] */ 5282 static void handle_crc32(DisasContext *s, 5283 unsigned int sf, unsigned int sz, bool crc32c, 5284 unsigned int rm, unsigned int rn, unsigned int rd) 5285 { 5286 TCGv_i64 tcg_acc, tcg_val; 5287 TCGv_i32 tcg_bytes; 5288 5289 if (!dc_isar_feature(aa64_crc32, s) 5290 || (sf == 1 && sz != 3) 5291 || (sf == 0 && sz == 3)) { 5292 unallocated_encoding(s); 5293 return; 5294 } 5295 5296 if (sz == 3) { 5297 tcg_val = cpu_reg(s, rm); 5298 } else { 5299 uint64_t mask; 5300 switch (sz) { 5301 case 0: 5302 mask = 0xFF; 5303 break; 5304 case 1: 5305 mask = 0xFFFF; 5306 break; 5307 case 2: 5308 mask = 0xFFFFFFFF; 5309 break; 5310 default: 5311 g_assert_not_reached(); 5312 } 5313 tcg_val = tcg_temp_new_i64(); 5314 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5315 } 5316 5317 tcg_acc = cpu_reg(s, rn); 5318 tcg_bytes = tcg_constant_i32(1 << sz); 5319 5320 if (crc32c) { 5321 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5322 } else { 5323 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5324 } 5325 } 5326 5327 /* Data-processing (2 source) 5328 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5329 * +----+---+---+-----------------+------+--------+------+------+ 5330 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5331 * +----+---+---+-----------------+------+--------+------+------+ 5332 */ 5333 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5334 { 5335 unsigned int sf, rm, opcode, rn, rd, setflag; 5336 sf = extract32(insn, 31, 1); 5337 setflag = extract32(insn, 29, 1); 5338 rm = extract32(insn, 16, 5); 5339 opcode = extract32(insn, 10, 6); 5340 rn = extract32(insn, 5, 5); 5341 rd = extract32(insn, 0, 5); 5342 5343 if (setflag && opcode != 0) { 5344 unallocated_encoding(s); 5345 return; 5346 } 5347 5348 switch (opcode) { 5349 case 0: /* SUBP(S) */ 5350 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5351 goto do_unallocated; 5352 } else { 5353 TCGv_i64 tcg_n, tcg_m, tcg_d; 5354 5355 tcg_n = read_cpu_reg_sp(s, rn, true); 5356 tcg_m = read_cpu_reg_sp(s, rm, true); 5357 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5358 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5359 tcg_d = cpu_reg(s, rd); 5360 5361 if (setflag) { 5362 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5363 } else { 5364 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5365 } 5366 } 5367 break; 5368 case 2: /* UDIV */ 5369 handle_div(s, false, sf, rm, rn, rd); 5370 break; 5371 case 3: /* SDIV */ 5372 handle_div(s, true, sf, rm, rn, rd); 5373 break; 5374 case 4: /* IRG */ 5375 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5376 goto do_unallocated; 5377 } 5378 if (s->ata) { 5379 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5380 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5381 } else { 5382 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5383 cpu_reg_sp(s, rn)); 5384 } 5385 break; 5386 case 5: /* GMI */ 5387 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5388 goto do_unallocated; 5389 } else { 5390 TCGv_i64 t = tcg_temp_new_i64(); 5391 5392 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5393 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5394 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5395 } 5396 break; 5397 case 8: /* LSLV */ 5398 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5399 break; 5400 case 9: /* LSRV */ 5401 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5402 break; 5403 case 10: /* ASRV */ 5404 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5405 break; 5406 case 11: /* RORV */ 5407 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5408 break; 5409 case 12: /* PACGA */ 5410 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5411 goto do_unallocated; 5412 } 5413 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5414 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5415 break; 5416 case 16: 5417 case 17: 5418 case 18: 5419 case 19: 5420 case 20: 5421 case 21: 5422 case 22: 5423 case 23: /* CRC32 */ 5424 { 5425 int sz = extract32(opcode, 0, 2); 5426 bool crc32c = extract32(opcode, 2, 1); 5427 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5428 break; 5429 } 5430 default: 5431 do_unallocated: 5432 unallocated_encoding(s); 5433 break; 5434 } 5435 } 5436 5437 /* 5438 * Data processing - register 5439 * 31 30 29 28 25 21 20 16 10 0 5440 * +--+---+--+---+-------+-----+-------+-------+---------+ 5441 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5442 * +--+---+--+---+-------+-----+-------+-------+---------+ 5443 */ 5444 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5445 { 5446 int op0 = extract32(insn, 30, 1); 5447 int op1 = extract32(insn, 28, 1); 5448 int op2 = extract32(insn, 21, 4); 5449 int op3 = extract32(insn, 10, 6); 5450 5451 if (!op1) { 5452 if (op2 & 8) { 5453 if (op2 & 1) { 5454 /* Add/sub (extended register) */ 5455 disas_add_sub_ext_reg(s, insn); 5456 } else { 5457 /* Add/sub (shifted register) */ 5458 disas_add_sub_reg(s, insn); 5459 } 5460 } else { 5461 /* Logical (shifted register) */ 5462 disas_logic_reg(s, insn); 5463 } 5464 return; 5465 } 5466 5467 switch (op2) { 5468 case 0x0: 5469 switch (op3) { 5470 case 0x00: /* Add/subtract (with carry) */ 5471 disas_adc_sbc(s, insn); 5472 break; 5473 5474 case 0x01: /* Rotate right into flags */ 5475 case 0x21: 5476 disas_rotate_right_into_flags(s, insn); 5477 break; 5478 5479 case 0x02: /* Evaluate into flags */ 5480 case 0x12: 5481 case 0x22: 5482 case 0x32: 5483 disas_evaluate_into_flags(s, insn); 5484 break; 5485 5486 default: 5487 goto do_unallocated; 5488 } 5489 break; 5490 5491 case 0x2: /* Conditional compare */ 5492 disas_cc(s, insn); /* both imm and reg forms */ 5493 break; 5494 5495 case 0x4: /* Conditional select */ 5496 disas_cond_select(s, insn); 5497 break; 5498 5499 case 0x6: /* Data-processing */ 5500 if (op0) { /* (1 source) */ 5501 disas_data_proc_1src(s, insn); 5502 } else { /* (2 source) */ 5503 disas_data_proc_2src(s, insn); 5504 } 5505 break; 5506 case 0x8 ... 0xf: /* (3 source) */ 5507 disas_data_proc_3src(s, insn); 5508 break; 5509 5510 default: 5511 do_unallocated: 5512 unallocated_encoding(s); 5513 break; 5514 } 5515 } 5516 5517 static void handle_fp_compare(DisasContext *s, int size, 5518 unsigned int rn, unsigned int rm, 5519 bool cmp_with_zero, bool signal_all_nans) 5520 { 5521 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5522 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5523 5524 if (size == MO_64) { 5525 TCGv_i64 tcg_vn, tcg_vm; 5526 5527 tcg_vn = read_fp_dreg(s, rn); 5528 if (cmp_with_zero) { 5529 tcg_vm = tcg_constant_i64(0); 5530 } else { 5531 tcg_vm = read_fp_dreg(s, rm); 5532 } 5533 if (signal_all_nans) { 5534 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5535 } else { 5536 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5537 } 5538 } else { 5539 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5540 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5541 5542 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5543 if (cmp_with_zero) { 5544 tcg_gen_movi_i32(tcg_vm, 0); 5545 } else { 5546 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5547 } 5548 5549 switch (size) { 5550 case MO_32: 5551 if (signal_all_nans) { 5552 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5553 } else { 5554 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5555 } 5556 break; 5557 case MO_16: 5558 if (signal_all_nans) { 5559 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5560 } else { 5561 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5562 } 5563 break; 5564 default: 5565 g_assert_not_reached(); 5566 } 5567 } 5568 5569 gen_set_nzcv(tcg_flags); 5570 } 5571 5572 /* Floating point compare 5573 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5574 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5575 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5576 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5577 */ 5578 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5579 { 5580 unsigned int mos, type, rm, op, rn, opc, op2r; 5581 int size; 5582 5583 mos = extract32(insn, 29, 3); 5584 type = extract32(insn, 22, 2); 5585 rm = extract32(insn, 16, 5); 5586 op = extract32(insn, 14, 2); 5587 rn = extract32(insn, 5, 5); 5588 opc = extract32(insn, 3, 2); 5589 op2r = extract32(insn, 0, 3); 5590 5591 if (mos || op || op2r) { 5592 unallocated_encoding(s); 5593 return; 5594 } 5595 5596 switch (type) { 5597 case 0: 5598 size = MO_32; 5599 break; 5600 case 1: 5601 size = MO_64; 5602 break; 5603 case 3: 5604 size = MO_16; 5605 if (dc_isar_feature(aa64_fp16, s)) { 5606 break; 5607 } 5608 /* fallthru */ 5609 default: 5610 unallocated_encoding(s); 5611 return; 5612 } 5613 5614 if (!fp_access_check(s)) { 5615 return; 5616 } 5617 5618 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5619 } 5620 5621 /* Floating point conditional compare 5622 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5623 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5624 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5625 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5626 */ 5627 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5628 { 5629 unsigned int mos, type, rm, cond, rn, op, nzcv; 5630 TCGLabel *label_continue = NULL; 5631 int size; 5632 5633 mos = extract32(insn, 29, 3); 5634 type = extract32(insn, 22, 2); 5635 rm = extract32(insn, 16, 5); 5636 cond = extract32(insn, 12, 4); 5637 rn = extract32(insn, 5, 5); 5638 op = extract32(insn, 4, 1); 5639 nzcv = extract32(insn, 0, 4); 5640 5641 if (mos) { 5642 unallocated_encoding(s); 5643 return; 5644 } 5645 5646 switch (type) { 5647 case 0: 5648 size = MO_32; 5649 break; 5650 case 1: 5651 size = MO_64; 5652 break; 5653 case 3: 5654 size = MO_16; 5655 if (dc_isar_feature(aa64_fp16, s)) { 5656 break; 5657 } 5658 /* fallthru */ 5659 default: 5660 unallocated_encoding(s); 5661 return; 5662 } 5663 5664 if (!fp_access_check(s)) { 5665 return; 5666 } 5667 5668 if (cond < 0x0e) { /* not always */ 5669 TCGLabel *label_match = gen_new_label(); 5670 label_continue = gen_new_label(); 5671 arm_gen_test_cc(cond, label_match); 5672 /* nomatch: */ 5673 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5674 tcg_gen_br(label_continue); 5675 gen_set_label(label_match); 5676 } 5677 5678 handle_fp_compare(s, size, rn, rm, false, op); 5679 5680 if (cond < 0x0e) { 5681 gen_set_label(label_continue); 5682 } 5683 } 5684 5685 /* Floating point conditional select 5686 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5687 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5688 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5689 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5690 */ 5691 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5692 { 5693 unsigned int mos, type, rm, cond, rn, rd; 5694 TCGv_i64 t_true, t_false; 5695 DisasCompare64 c; 5696 MemOp sz; 5697 5698 mos = extract32(insn, 29, 3); 5699 type = extract32(insn, 22, 2); 5700 rm = extract32(insn, 16, 5); 5701 cond = extract32(insn, 12, 4); 5702 rn = extract32(insn, 5, 5); 5703 rd = extract32(insn, 0, 5); 5704 5705 if (mos) { 5706 unallocated_encoding(s); 5707 return; 5708 } 5709 5710 switch (type) { 5711 case 0: 5712 sz = MO_32; 5713 break; 5714 case 1: 5715 sz = MO_64; 5716 break; 5717 case 3: 5718 sz = MO_16; 5719 if (dc_isar_feature(aa64_fp16, s)) { 5720 break; 5721 } 5722 /* fallthru */ 5723 default: 5724 unallocated_encoding(s); 5725 return; 5726 } 5727 5728 if (!fp_access_check(s)) { 5729 return; 5730 } 5731 5732 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5733 t_true = tcg_temp_new_i64(); 5734 t_false = tcg_temp_new_i64(); 5735 read_vec_element(s, t_true, rn, 0, sz); 5736 read_vec_element(s, t_false, rm, 0, sz); 5737 5738 a64_test_cc(&c, cond); 5739 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5740 t_true, t_false); 5741 5742 /* Note that sregs & hregs write back zeros to the high bits, 5743 and we've already done the zero-extension. */ 5744 write_fp_dreg(s, rd, t_true); 5745 } 5746 5747 /* Floating-point data-processing (1 source) - half precision */ 5748 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5749 { 5750 TCGv_ptr fpst = NULL; 5751 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5752 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5753 5754 switch (opcode) { 5755 case 0x0: /* FMOV */ 5756 tcg_gen_mov_i32(tcg_res, tcg_op); 5757 break; 5758 case 0x1: /* FABS */ 5759 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5760 break; 5761 case 0x2: /* FNEG */ 5762 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5763 break; 5764 case 0x3: /* FSQRT */ 5765 fpst = fpstatus_ptr(FPST_FPCR_F16); 5766 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5767 break; 5768 case 0x8: /* FRINTN */ 5769 case 0x9: /* FRINTP */ 5770 case 0xa: /* FRINTM */ 5771 case 0xb: /* FRINTZ */ 5772 case 0xc: /* FRINTA */ 5773 { 5774 TCGv_i32 tcg_rmode; 5775 5776 fpst = fpstatus_ptr(FPST_FPCR_F16); 5777 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5778 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5779 gen_restore_rmode(tcg_rmode, fpst); 5780 break; 5781 } 5782 case 0xe: /* FRINTX */ 5783 fpst = fpstatus_ptr(FPST_FPCR_F16); 5784 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5785 break; 5786 case 0xf: /* FRINTI */ 5787 fpst = fpstatus_ptr(FPST_FPCR_F16); 5788 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5789 break; 5790 default: 5791 g_assert_not_reached(); 5792 } 5793 5794 write_fp_sreg(s, rd, tcg_res); 5795 } 5796 5797 /* Floating-point data-processing (1 source) - single precision */ 5798 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5799 { 5800 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5801 TCGv_i32 tcg_op, tcg_res; 5802 TCGv_ptr fpst; 5803 int rmode = -1; 5804 5805 tcg_op = read_fp_sreg(s, rn); 5806 tcg_res = tcg_temp_new_i32(); 5807 5808 switch (opcode) { 5809 case 0x0: /* FMOV */ 5810 tcg_gen_mov_i32(tcg_res, tcg_op); 5811 goto done; 5812 case 0x1: /* FABS */ 5813 gen_helper_vfp_abss(tcg_res, tcg_op); 5814 goto done; 5815 case 0x2: /* FNEG */ 5816 gen_helper_vfp_negs(tcg_res, tcg_op); 5817 goto done; 5818 case 0x3: /* FSQRT */ 5819 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 5820 goto done; 5821 case 0x6: /* BFCVT */ 5822 gen_fpst = gen_helper_bfcvt; 5823 break; 5824 case 0x8: /* FRINTN */ 5825 case 0x9: /* FRINTP */ 5826 case 0xa: /* FRINTM */ 5827 case 0xb: /* FRINTZ */ 5828 case 0xc: /* FRINTA */ 5829 rmode = opcode & 7; 5830 gen_fpst = gen_helper_rints; 5831 break; 5832 case 0xe: /* FRINTX */ 5833 gen_fpst = gen_helper_rints_exact; 5834 break; 5835 case 0xf: /* FRINTI */ 5836 gen_fpst = gen_helper_rints; 5837 break; 5838 case 0x10: /* FRINT32Z */ 5839 rmode = FPROUNDING_ZERO; 5840 gen_fpst = gen_helper_frint32_s; 5841 break; 5842 case 0x11: /* FRINT32X */ 5843 gen_fpst = gen_helper_frint32_s; 5844 break; 5845 case 0x12: /* FRINT64Z */ 5846 rmode = FPROUNDING_ZERO; 5847 gen_fpst = gen_helper_frint64_s; 5848 break; 5849 case 0x13: /* FRINT64X */ 5850 gen_fpst = gen_helper_frint64_s; 5851 break; 5852 default: 5853 g_assert_not_reached(); 5854 } 5855 5856 fpst = fpstatus_ptr(FPST_FPCR); 5857 if (rmode >= 0) { 5858 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5859 gen_fpst(tcg_res, tcg_op, fpst); 5860 gen_restore_rmode(tcg_rmode, fpst); 5861 } else { 5862 gen_fpst(tcg_res, tcg_op, fpst); 5863 } 5864 5865 done: 5866 write_fp_sreg(s, rd, tcg_res); 5867 } 5868 5869 /* Floating-point data-processing (1 source) - double precision */ 5870 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5871 { 5872 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5873 TCGv_i64 tcg_op, tcg_res; 5874 TCGv_ptr fpst; 5875 int rmode = -1; 5876 5877 switch (opcode) { 5878 case 0x0: /* FMOV */ 5879 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 5880 return; 5881 } 5882 5883 tcg_op = read_fp_dreg(s, rn); 5884 tcg_res = tcg_temp_new_i64(); 5885 5886 switch (opcode) { 5887 case 0x1: /* FABS */ 5888 gen_helper_vfp_absd(tcg_res, tcg_op); 5889 goto done; 5890 case 0x2: /* FNEG */ 5891 gen_helper_vfp_negd(tcg_res, tcg_op); 5892 goto done; 5893 case 0x3: /* FSQRT */ 5894 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 5895 goto done; 5896 case 0x8: /* FRINTN */ 5897 case 0x9: /* FRINTP */ 5898 case 0xa: /* FRINTM */ 5899 case 0xb: /* FRINTZ */ 5900 case 0xc: /* FRINTA */ 5901 rmode = opcode & 7; 5902 gen_fpst = gen_helper_rintd; 5903 break; 5904 case 0xe: /* FRINTX */ 5905 gen_fpst = gen_helper_rintd_exact; 5906 break; 5907 case 0xf: /* FRINTI */ 5908 gen_fpst = gen_helper_rintd; 5909 break; 5910 case 0x10: /* FRINT32Z */ 5911 rmode = FPROUNDING_ZERO; 5912 gen_fpst = gen_helper_frint32_d; 5913 break; 5914 case 0x11: /* FRINT32X */ 5915 gen_fpst = gen_helper_frint32_d; 5916 break; 5917 case 0x12: /* FRINT64Z */ 5918 rmode = FPROUNDING_ZERO; 5919 gen_fpst = gen_helper_frint64_d; 5920 break; 5921 case 0x13: /* FRINT64X */ 5922 gen_fpst = gen_helper_frint64_d; 5923 break; 5924 default: 5925 g_assert_not_reached(); 5926 } 5927 5928 fpst = fpstatus_ptr(FPST_FPCR); 5929 if (rmode >= 0) { 5930 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5931 gen_fpst(tcg_res, tcg_op, fpst); 5932 gen_restore_rmode(tcg_rmode, fpst); 5933 } else { 5934 gen_fpst(tcg_res, tcg_op, fpst); 5935 } 5936 5937 done: 5938 write_fp_dreg(s, rd, tcg_res); 5939 } 5940 5941 static void handle_fp_fcvt(DisasContext *s, int opcode, 5942 int rd, int rn, int dtype, int ntype) 5943 { 5944 switch (ntype) { 5945 case 0x0: 5946 { 5947 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5948 if (dtype == 1) { 5949 /* Single to double */ 5950 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 5951 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 5952 write_fp_dreg(s, rd, tcg_rd); 5953 } else { 5954 /* Single to half */ 5955 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5956 TCGv_i32 ahp = get_ahp_flag(); 5957 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5958 5959 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5960 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5961 write_fp_sreg(s, rd, tcg_rd); 5962 } 5963 break; 5964 } 5965 case 0x1: 5966 { 5967 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 5968 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5969 if (dtype == 0) { 5970 /* Double to single */ 5971 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 5972 } else { 5973 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5974 TCGv_i32 ahp = get_ahp_flag(); 5975 /* Double to half */ 5976 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5977 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5978 } 5979 write_fp_sreg(s, rd, tcg_rd); 5980 break; 5981 } 5982 case 0x3: 5983 { 5984 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5985 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 5986 TCGv_i32 tcg_ahp = get_ahp_flag(); 5987 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 5988 if (dtype == 0) { 5989 /* Half to single */ 5990 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5991 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 5992 write_fp_sreg(s, rd, tcg_rd); 5993 } else { 5994 /* Half to double */ 5995 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 5996 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 5997 write_fp_dreg(s, rd, tcg_rd); 5998 } 5999 break; 6000 } 6001 default: 6002 g_assert_not_reached(); 6003 } 6004 } 6005 6006 /* Floating point data-processing (1 source) 6007 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6008 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6009 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6010 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6011 */ 6012 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6013 { 6014 int mos = extract32(insn, 29, 3); 6015 int type = extract32(insn, 22, 2); 6016 int opcode = extract32(insn, 15, 6); 6017 int rn = extract32(insn, 5, 5); 6018 int rd = extract32(insn, 0, 5); 6019 6020 if (mos) { 6021 goto do_unallocated; 6022 } 6023 6024 switch (opcode) { 6025 case 0x4: case 0x5: case 0x7: 6026 { 6027 /* FCVT between half, single and double precision */ 6028 int dtype = extract32(opcode, 0, 2); 6029 if (type == 2 || dtype == type) { 6030 goto do_unallocated; 6031 } 6032 if (!fp_access_check(s)) { 6033 return; 6034 } 6035 6036 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6037 break; 6038 } 6039 6040 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6041 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6042 goto do_unallocated; 6043 } 6044 /* fall through */ 6045 case 0x0 ... 0x3: 6046 case 0x8 ... 0xc: 6047 case 0xe ... 0xf: 6048 /* 32-to-32 and 64-to-64 ops */ 6049 switch (type) { 6050 case 0: 6051 if (!fp_access_check(s)) { 6052 return; 6053 } 6054 handle_fp_1src_single(s, opcode, rd, rn); 6055 break; 6056 case 1: 6057 if (!fp_access_check(s)) { 6058 return; 6059 } 6060 handle_fp_1src_double(s, opcode, rd, rn); 6061 break; 6062 case 3: 6063 if (!dc_isar_feature(aa64_fp16, s)) { 6064 goto do_unallocated; 6065 } 6066 6067 if (!fp_access_check(s)) { 6068 return; 6069 } 6070 handle_fp_1src_half(s, opcode, rd, rn); 6071 break; 6072 default: 6073 goto do_unallocated; 6074 } 6075 break; 6076 6077 case 0x6: 6078 switch (type) { 6079 case 1: /* BFCVT */ 6080 if (!dc_isar_feature(aa64_bf16, s)) { 6081 goto do_unallocated; 6082 } 6083 if (!fp_access_check(s)) { 6084 return; 6085 } 6086 handle_fp_1src_single(s, opcode, rd, rn); 6087 break; 6088 default: 6089 goto do_unallocated; 6090 } 6091 break; 6092 6093 default: 6094 do_unallocated: 6095 unallocated_encoding(s); 6096 break; 6097 } 6098 } 6099 6100 /* Floating-point data-processing (2 source) - single precision */ 6101 static void handle_fp_2src_single(DisasContext *s, int opcode, 6102 int rd, int rn, int rm) 6103 { 6104 TCGv_i32 tcg_op1; 6105 TCGv_i32 tcg_op2; 6106 TCGv_i32 tcg_res; 6107 TCGv_ptr fpst; 6108 6109 tcg_res = tcg_temp_new_i32(); 6110 fpst = fpstatus_ptr(FPST_FPCR); 6111 tcg_op1 = read_fp_sreg(s, rn); 6112 tcg_op2 = read_fp_sreg(s, rm); 6113 6114 switch (opcode) { 6115 case 0x0: /* FMUL */ 6116 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6117 break; 6118 case 0x1: /* FDIV */ 6119 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6120 break; 6121 case 0x2: /* FADD */ 6122 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6123 break; 6124 case 0x3: /* FSUB */ 6125 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6126 break; 6127 case 0x4: /* FMAX */ 6128 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6129 break; 6130 case 0x5: /* FMIN */ 6131 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6132 break; 6133 case 0x6: /* FMAXNM */ 6134 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6135 break; 6136 case 0x7: /* FMINNM */ 6137 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6138 break; 6139 case 0x8: /* FNMUL */ 6140 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6141 gen_helper_vfp_negs(tcg_res, tcg_res); 6142 break; 6143 } 6144 6145 write_fp_sreg(s, rd, tcg_res); 6146 } 6147 6148 /* Floating-point data-processing (2 source) - double precision */ 6149 static void handle_fp_2src_double(DisasContext *s, int opcode, 6150 int rd, int rn, int rm) 6151 { 6152 TCGv_i64 tcg_op1; 6153 TCGv_i64 tcg_op2; 6154 TCGv_i64 tcg_res; 6155 TCGv_ptr fpst; 6156 6157 tcg_res = tcg_temp_new_i64(); 6158 fpst = fpstatus_ptr(FPST_FPCR); 6159 tcg_op1 = read_fp_dreg(s, rn); 6160 tcg_op2 = read_fp_dreg(s, rm); 6161 6162 switch (opcode) { 6163 case 0x0: /* FMUL */ 6164 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6165 break; 6166 case 0x1: /* FDIV */ 6167 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6168 break; 6169 case 0x2: /* FADD */ 6170 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6171 break; 6172 case 0x3: /* FSUB */ 6173 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6174 break; 6175 case 0x4: /* FMAX */ 6176 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6177 break; 6178 case 0x5: /* FMIN */ 6179 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6180 break; 6181 case 0x6: /* FMAXNM */ 6182 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6183 break; 6184 case 0x7: /* FMINNM */ 6185 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6186 break; 6187 case 0x8: /* FNMUL */ 6188 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6189 gen_helper_vfp_negd(tcg_res, tcg_res); 6190 break; 6191 } 6192 6193 write_fp_dreg(s, rd, tcg_res); 6194 } 6195 6196 /* Floating-point data-processing (2 source) - half precision */ 6197 static void handle_fp_2src_half(DisasContext *s, int opcode, 6198 int rd, int rn, int rm) 6199 { 6200 TCGv_i32 tcg_op1; 6201 TCGv_i32 tcg_op2; 6202 TCGv_i32 tcg_res; 6203 TCGv_ptr fpst; 6204 6205 tcg_res = tcg_temp_new_i32(); 6206 fpst = fpstatus_ptr(FPST_FPCR_F16); 6207 tcg_op1 = read_fp_hreg(s, rn); 6208 tcg_op2 = read_fp_hreg(s, rm); 6209 6210 switch (opcode) { 6211 case 0x0: /* FMUL */ 6212 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6213 break; 6214 case 0x1: /* FDIV */ 6215 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6216 break; 6217 case 0x2: /* FADD */ 6218 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6219 break; 6220 case 0x3: /* FSUB */ 6221 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6222 break; 6223 case 0x4: /* FMAX */ 6224 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6225 break; 6226 case 0x5: /* FMIN */ 6227 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6228 break; 6229 case 0x6: /* FMAXNM */ 6230 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6231 break; 6232 case 0x7: /* FMINNM */ 6233 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6234 break; 6235 case 0x8: /* FNMUL */ 6236 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6237 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6238 break; 6239 default: 6240 g_assert_not_reached(); 6241 } 6242 6243 write_fp_sreg(s, rd, tcg_res); 6244 } 6245 6246 /* Floating point data-processing (2 source) 6247 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6248 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6249 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6250 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6251 */ 6252 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6253 { 6254 int mos = extract32(insn, 29, 3); 6255 int type = extract32(insn, 22, 2); 6256 int rd = extract32(insn, 0, 5); 6257 int rn = extract32(insn, 5, 5); 6258 int rm = extract32(insn, 16, 5); 6259 int opcode = extract32(insn, 12, 4); 6260 6261 if (opcode > 8 || mos) { 6262 unallocated_encoding(s); 6263 return; 6264 } 6265 6266 switch (type) { 6267 case 0: 6268 if (!fp_access_check(s)) { 6269 return; 6270 } 6271 handle_fp_2src_single(s, opcode, rd, rn, rm); 6272 break; 6273 case 1: 6274 if (!fp_access_check(s)) { 6275 return; 6276 } 6277 handle_fp_2src_double(s, opcode, rd, rn, rm); 6278 break; 6279 case 3: 6280 if (!dc_isar_feature(aa64_fp16, s)) { 6281 unallocated_encoding(s); 6282 return; 6283 } 6284 if (!fp_access_check(s)) { 6285 return; 6286 } 6287 handle_fp_2src_half(s, opcode, rd, rn, rm); 6288 break; 6289 default: 6290 unallocated_encoding(s); 6291 } 6292 } 6293 6294 /* Floating-point data-processing (3 source) - single precision */ 6295 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6296 int rd, int rn, int rm, int ra) 6297 { 6298 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6299 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6300 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6301 6302 tcg_op1 = read_fp_sreg(s, rn); 6303 tcg_op2 = read_fp_sreg(s, rm); 6304 tcg_op3 = read_fp_sreg(s, ra); 6305 6306 /* These are fused multiply-add, and must be done as one 6307 * floating point operation with no rounding between the 6308 * multiplication and addition steps. 6309 * NB that doing the negations here as separate steps is 6310 * correct : an input NaN should come out with its sign bit 6311 * flipped if it is a negated-input. 6312 */ 6313 if (o1 == true) { 6314 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6315 } 6316 6317 if (o0 != o1) { 6318 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6319 } 6320 6321 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6322 6323 write_fp_sreg(s, rd, tcg_res); 6324 } 6325 6326 /* Floating-point data-processing (3 source) - double precision */ 6327 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6328 int rd, int rn, int rm, int ra) 6329 { 6330 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6331 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6332 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6333 6334 tcg_op1 = read_fp_dreg(s, rn); 6335 tcg_op2 = read_fp_dreg(s, rm); 6336 tcg_op3 = read_fp_dreg(s, ra); 6337 6338 /* These are fused multiply-add, and must be done as one 6339 * floating point operation with no rounding between the 6340 * multiplication and addition steps. 6341 * NB that doing the negations here as separate steps is 6342 * correct : an input NaN should come out with its sign bit 6343 * flipped if it is a negated-input. 6344 */ 6345 if (o1 == true) { 6346 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6347 } 6348 6349 if (o0 != o1) { 6350 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6351 } 6352 6353 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6354 6355 write_fp_dreg(s, rd, tcg_res); 6356 } 6357 6358 /* Floating-point data-processing (3 source) - half precision */ 6359 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6360 int rd, int rn, int rm, int ra) 6361 { 6362 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6363 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6364 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6365 6366 tcg_op1 = read_fp_hreg(s, rn); 6367 tcg_op2 = read_fp_hreg(s, rm); 6368 tcg_op3 = read_fp_hreg(s, ra); 6369 6370 /* These are fused multiply-add, and must be done as one 6371 * floating point operation with no rounding between the 6372 * multiplication and addition steps. 6373 * NB that doing the negations here as separate steps is 6374 * correct : an input NaN should come out with its sign bit 6375 * flipped if it is a negated-input. 6376 */ 6377 if (o1 == true) { 6378 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6379 } 6380 6381 if (o0 != o1) { 6382 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6383 } 6384 6385 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6386 6387 write_fp_sreg(s, rd, tcg_res); 6388 } 6389 6390 /* Floating point data-processing (3 source) 6391 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6392 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6393 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6394 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6395 */ 6396 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6397 { 6398 int mos = extract32(insn, 29, 3); 6399 int type = extract32(insn, 22, 2); 6400 int rd = extract32(insn, 0, 5); 6401 int rn = extract32(insn, 5, 5); 6402 int ra = extract32(insn, 10, 5); 6403 int rm = extract32(insn, 16, 5); 6404 bool o0 = extract32(insn, 15, 1); 6405 bool o1 = extract32(insn, 21, 1); 6406 6407 if (mos) { 6408 unallocated_encoding(s); 6409 return; 6410 } 6411 6412 switch (type) { 6413 case 0: 6414 if (!fp_access_check(s)) { 6415 return; 6416 } 6417 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6418 break; 6419 case 1: 6420 if (!fp_access_check(s)) { 6421 return; 6422 } 6423 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6424 break; 6425 case 3: 6426 if (!dc_isar_feature(aa64_fp16, s)) { 6427 unallocated_encoding(s); 6428 return; 6429 } 6430 if (!fp_access_check(s)) { 6431 return; 6432 } 6433 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6434 break; 6435 default: 6436 unallocated_encoding(s); 6437 } 6438 } 6439 6440 /* Floating point immediate 6441 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6442 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6443 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6444 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6445 */ 6446 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6447 { 6448 int rd = extract32(insn, 0, 5); 6449 int imm5 = extract32(insn, 5, 5); 6450 int imm8 = extract32(insn, 13, 8); 6451 int type = extract32(insn, 22, 2); 6452 int mos = extract32(insn, 29, 3); 6453 uint64_t imm; 6454 MemOp sz; 6455 6456 if (mos || imm5) { 6457 unallocated_encoding(s); 6458 return; 6459 } 6460 6461 switch (type) { 6462 case 0: 6463 sz = MO_32; 6464 break; 6465 case 1: 6466 sz = MO_64; 6467 break; 6468 case 3: 6469 sz = MO_16; 6470 if (dc_isar_feature(aa64_fp16, s)) { 6471 break; 6472 } 6473 /* fallthru */ 6474 default: 6475 unallocated_encoding(s); 6476 return; 6477 } 6478 6479 if (!fp_access_check(s)) { 6480 return; 6481 } 6482 6483 imm = vfp_expand_imm(sz, imm8); 6484 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6485 } 6486 6487 /* Handle floating point <=> fixed point conversions. Note that we can 6488 * also deal with fp <=> integer conversions as a special case (scale == 64) 6489 * OPTME: consider handling that special case specially or at least skipping 6490 * the call to scalbn in the helpers for zero shifts. 6491 */ 6492 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6493 bool itof, int rmode, int scale, int sf, int type) 6494 { 6495 bool is_signed = !(opcode & 1); 6496 TCGv_ptr tcg_fpstatus; 6497 TCGv_i32 tcg_shift, tcg_single; 6498 TCGv_i64 tcg_double; 6499 6500 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6501 6502 tcg_shift = tcg_constant_i32(64 - scale); 6503 6504 if (itof) { 6505 TCGv_i64 tcg_int = cpu_reg(s, rn); 6506 if (!sf) { 6507 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6508 6509 if (is_signed) { 6510 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6511 } else { 6512 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6513 } 6514 6515 tcg_int = tcg_extend; 6516 } 6517 6518 switch (type) { 6519 case 1: /* float64 */ 6520 tcg_double = tcg_temp_new_i64(); 6521 if (is_signed) { 6522 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6523 tcg_shift, tcg_fpstatus); 6524 } else { 6525 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6526 tcg_shift, tcg_fpstatus); 6527 } 6528 write_fp_dreg(s, rd, tcg_double); 6529 break; 6530 6531 case 0: /* float32 */ 6532 tcg_single = tcg_temp_new_i32(); 6533 if (is_signed) { 6534 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6535 tcg_shift, tcg_fpstatus); 6536 } else { 6537 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6538 tcg_shift, tcg_fpstatus); 6539 } 6540 write_fp_sreg(s, rd, tcg_single); 6541 break; 6542 6543 case 3: /* float16 */ 6544 tcg_single = tcg_temp_new_i32(); 6545 if (is_signed) { 6546 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6547 tcg_shift, tcg_fpstatus); 6548 } else { 6549 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6550 tcg_shift, tcg_fpstatus); 6551 } 6552 write_fp_sreg(s, rd, tcg_single); 6553 break; 6554 6555 default: 6556 g_assert_not_reached(); 6557 } 6558 } else { 6559 TCGv_i64 tcg_int = cpu_reg(s, rd); 6560 TCGv_i32 tcg_rmode; 6561 6562 if (extract32(opcode, 2, 1)) { 6563 /* There are too many rounding modes to all fit into rmode, 6564 * so FCVTA[US] is a special case. 6565 */ 6566 rmode = FPROUNDING_TIEAWAY; 6567 } 6568 6569 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6570 6571 switch (type) { 6572 case 1: /* float64 */ 6573 tcg_double = read_fp_dreg(s, rn); 6574 if (is_signed) { 6575 if (!sf) { 6576 gen_helper_vfp_tosld(tcg_int, tcg_double, 6577 tcg_shift, tcg_fpstatus); 6578 } else { 6579 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6580 tcg_shift, tcg_fpstatus); 6581 } 6582 } else { 6583 if (!sf) { 6584 gen_helper_vfp_tould(tcg_int, tcg_double, 6585 tcg_shift, tcg_fpstatus); 6586 } else { 6587 gen_helper_vfp_touqd(tcg_int, tcg_double, 6588 tcg_shift, tcg_fpstatus); 6589 } 6590 } 6591 if (!sf) { 6592 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6593 } 6594 break; 6595 6596 case 0: /* float32 */ 6597 tcg_single = read_fp_sreg(s, rn); 6598 if (sf) { 6599 if (is_signed) { 6600 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6601 tcg_shift, tcg_fpstatus); 6602 } else { 6603 gen_helper_vfp_touqs(tcg_int, tcg_single, 6604 tcg_shift, tcg_fpstatus); 6605 } 6606 } else { 6607 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6608 if (is_signed) { 6609 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6610 tcg_shift, tcg_fpstatus); 6611 } else { 6612 gen_helper_vfp_touls(tcg_dest, tcg_single, 6613 tcg_shift, tcg_fpstatus); 6614 } 6615 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6616 } 6617 break; 6618 6619 case 3: /* float16 */ 6620 tcg_single = read_fp_sreg(s, rn); 6621 if (sf) { 6622 if (is_signed) { 6623 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6624 tcg_shift, tcg_fpstatus); 6625 } else { 6626 gen_helper_vfp_touqh(tcg_int, tcg_single, 6627 tcg_shift, tcg_fpstatus); 6628 } 6629 } else { 6630 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6631 if (is_signed) { 6632 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6633 tcg_shift, tcg_fpstatus); 6634 } else { 6635 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6636 tcg_shift, tcg_fpstatus); 6637 } 6638 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6639 } 6640 break; 6641 6642 default: 6643 g_assert_not_reached(); 6644 } 6645 6646 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6647 } 6648 } 6649 6650 /* Floating point <-> fixed point conversions 6651 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6652 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6653 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6654 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6655 */ 6656 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6657 { 6658 int rd = extract32(insn, 0, 5); 6659 int rn = extract32(insn, 5, 5); 6660 int scale = extract32(insn, 10, 6); 6661 int opcode = extract32(insn, 16, 3); 6662 int rmode = extract32(insn, 19, 2); 6663 int type = extract32(insn, 22, 2); 6664 bool sbit = extract32(insn, 29, 1); 6665 bool sf = extract32(insn, 31, 1); 6666 bool itof; 6667 6668 if (sbit || (!sf && scale < 32)) { 6669 unallocated_encoding(s); 6670 return; 6671 } 6672 6673 switch (type) { 6674 case 0: /* float32 */ 6675 case 1: /* float64 */ 6676 break; 6677 case 3: /* float16 */ 6678 if (dc_isar_feature(aa64_fp16, s)) { 6679 break; 6680 } 6681 /* fallthru */ 6682 default: 6683 unallocated_encoding(s); 6684 return; 6685 } 6686 6687 switch ((rmode << 3) | opcode) { 6688 case 0x2: /* SCVTF */ 6689 case 0x3: /* UCVTF */ 6690 itof = true; 6691 break; 6692 case 0x18: /* FCVTZS */ 6693 case 0x19: /* FCVTZU */ 6694 itof = false; 6695 break; 6696 default: 6697 unallocated_encoding(s); 6698 return; 6699 } 6700 6701 if (!fp_access_check(s)) { 6702 return; 6703 } 6704 6705 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6706 } 6707 6708 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6709 { 6710 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6711 * without conversion. 6712 */ 6713 6714 if (itof) { 6715 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6716 TCGv_i64 tmp; 6717 6718 switch (type) { 6719 case 0: 6720 /* 32 bit */ 6721 tmp = tcg_temp_new_i64(); 6722 tcg_gen_ext32u_i64(tmp, tcg_rn); 6723 write_fp_dreg(s, rd, tmp); 6724 break; 6725 case 1: 6726 /* 64 bit */ 6727 write_fp_dreg(s, rd, tcg_rn); 6728 break; 6729 case 2: 6730 /* 64 bit to top half. */ 6731 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6732 clear_vec_high(s, true, rd); 6733 break; 6734 case 3: 6735 /* 16 bit */ 6736 tmp = tcg_temp_new_i64(); 6737 tcg_gen_ext16u_i64(tmp, tcg_rn); 6738 write_fp_dreg(s, rd, tmp); 6739 break; 6740 default: 6741 g_assert_not_reached(); 6742 } 6743 } else { 6744 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6745 6746 switch (type) { 6747 case 0: 6748 /* 32 bit */ 6749 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6750 break; 6751 case 1: 6752 /* 64 bit */ 6753 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6754 break; 6755 case 2: 6756 /* 64 bits from top half */ 6757 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6758 break; 6759 case 3: 6760 /* 16 bit */ 6761 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6762 break; 6763 default: 6764 g_assert_not_reached(); 6765 } 6766 } 6767 } 6768 6769 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6770 { 6771 TCGv_i64 t = read_fp_dreg(s, rn); 6772 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6773 6774 gen_helper_fjcvtzs(t, t, fpstatus); 6775 6776 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6777 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6778 tcg_gen_movi_i32(cpu_CF, 0); 6779 tcg_gen_movi_i32(cpu_NF, 0); 6780 tcg_gen_movi_i32(cpu_VF, 0); 6781 } 6782 6783 /* Floating point <-> integer conversions 6784 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6785 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6786 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6787 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6788 */ 6789 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6790 { 6791 int rd = extract32(insn, 0, 5); 6792 int rn = extract32(insn, 5, 5); 6793 int opcode = extract32(insn, 16, 3); 6794 int rmode = extract32(insn, 19, 2); 6795 int type = extract32(insn, 22, 2); 6796 bool sbit = extract32(insn, 29, 1); 6797 bool sf = extract32(insn, 31, 1); 6798 bool itof = false; 6799 6800 if (sbit) { 6801 goto do_unallocated; 6802 } 6803 6804 switch (opcode) { 6805 case 2: /* SCVTF */ 6806 case 3: /* UCVTF */ 6807 itof = true; 6808 /* fallthru */ 6809 case 4: /* FCVTAS */ 6810 case 5: /* FCVTAU */ 6811 if (rmode != 0) { 6812 goto do_unallocated; 6813 } 6814 /* fallthru */ 6815 case 0: /* FCVT[NPMZ]S */ 6816 case 1: /* FCVT[NPMZ]U */ 6817 switch (type) { 6818 case 0: /* float32 */ 6819 case 1: /* float64 */ 6820 break; 6821 case 3: /* float16 */ 6822 if (!dc_isar_feature(aa64_fp16, s)) { 6823 goto do_unallocated; 6824 } 6825 break; 6826 default: 6827 goto do_unallocated; 6828 } 6829 if (!fp_access_check(s)) { 6830 return; 6831 } 6832 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6833 break; 6834 6835 default: 6836 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6837 case 0b01100110: /* FMOV half <-> 32-bit int */ 6838 case 0b01100111: 6839 case 0b11100110: /* FMOV half <-> 64-bit int */ 6840 case 0b11100111: 6841 if (!dc_isar_feature(aa64_fp16, s)) { 6842 goto do_unallocated; 6843 } 6844 /* fallthru */ 6845 case 0b00000110: /* FMOV 32-bit */ 6846 case 0b00000111: 6847 case 0b10100110: /* FMOV 64-bit */ 6848 case 0b10100111: 6849 case 0b11001110: /* FMOV top half of 128-bit */ 6850 case 0b11001111: 6851 if (!fp_access_check(s)) { 6852 return; 6853 } 6854 itof = opcode & 1; 6855 handle_fmov(s, rd, rn, type, itof); 6856 break; 6857 6858 case 0b00111110: /* FJCVTZS */ 6859 if (!dc_isar_feature(aa64_jscvt, s)) { 6860 goto do_unallocated; 6861 } else if (fp_access_check(s)) { 6862 handle_fjcvtzs(s, rd, rn); 6863 } 6864 break; 6865 6866 default: 6867 do_unallocated: 6868 unallocated_encoding(s); 6869 return; 6870 } 6871 break; 6872 } 6873 } 6874 6875 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6876 * 31 30 29 28 25 24 0 6877 * +---+---+---+---------+-----------------------------+ 6878 * | | 0 | | 1 1 1 1 | | 6879 * +---+---+---+---------+-----------------------------+ 6880 */ 6881 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 6882 { 6883 if (extract32(insn, 24, 1)) { 6884 /* Floating point data-processing (3 source) */ 6885 disas_fp_3src(s, insn); 6886 } else if (extract32(insn, 21, 1) == 0) { 6887 /* Floating point to fixed point conversions */ 6888 disas_fp_fixed_conv(s, insn); 6889 } else { 6890 switch (extract32(insn, 10, 2)) { 6891 case 1: 6892 /* Floating point conditional compare */ 6893 disas_fp_ccomp(s, insn); 6894 break; 6895 case 2: 6896 /* Floating point data-processing (2 source) */ 6897 disas_fp_2src(s, insn); 6898 break; 6899 case 3: 6900 /* Floating point conditional select */ 6901 disas_fp_csel(s, insn); 6902 break; 6903 case 0: 6904 switch (ctz32(extract32(insn, 12, 4))) { 6905 case 0: /* [15:12] == xxx1 */ 6906 /* Floating point immediate */ 6907 disas_fp_imm(s, insn); 6908 break; 6909 case 1: /* [15:12] == xx10 */ 6910 /* Floating point compare */ 6911 disas_fp_compare(s, insn); 6912 break; 6913 case 2: /* [15:12] == x100 */ 6914 /* Floating point data-processing (1 source) */ 6915 disas_fp_1src(s, insn); 6916 break; 6917 case 3: /* [15:12] == 1000 */ 6918 unallocated_encoding(s); 6919 break; 6920 default: /* [15:12] == 0000 */ 6921 /* Floating point <-> integer conversions */ 6922 disas_fp_int_conv(s, insn); 6923 break; 6924 } 6925 break; 6926 } 6927 } 6928 } 6929 6930 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 6931 int pos) 6932 { 6933 /* Extract 64 bits from the middle of two concatenated 64 bit 6934 * vector register slices left:right. The extracted bits start 6935 * at 'pos' bits into the right (least significant) side. 6936 * We return the result in tcg_right, and guarantee not to 6937 * trash tcg_left. 6938 */ 6939 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6940 assert(pos > 0 && pos < 64); 6941 6942 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 6943 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 6944 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 6945 } 6946 6947 /* EXT 6948 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 6949 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6950 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 6951 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6952 */ 6953 static void disas_simd_ext(DisasContext *s, uint32_t insn) 6954 { 6955 int is_q = extract32(insn, 30, 1); 6956 int op2 = extract32(insn, 22, 2); 6957 int imm4 = extract32(insn, 11, 4); 6958 int rm = extract32(insn, 16, 5); 6959 int rn = extract32(insn, 5, 5); 6960 int rd = extract32(insn, 0, 5); 6961 int pos = imm4 << 3; 6962 TCGv_i64 tcg_resl, tcg_resh; 6963 6964 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 6965 unallocated_encoding(s); 6966 return; 6967 } 6968 6969 if (!fp_access_check(s)) { 6970 return; 6971 } 6972 6973 tcg_resh = tcg_temp_new_i64(); 6974 tcg_resl = tcg_temp_new_i64(); 6975 6976 /* Vd gets bits starting at pos bits into Vm:Vn. This is 6977 * either extracting 128 bits from a 128:128 concatenation, or 6978 * extracting 64 bits from a 64:64 concatenation. 6979 */ 6980 if (!is_q) { 6981 read_vec_element(s, tcg_resl, rn, 0, MO_64); 6982 if (pos != 0) { 6983 read_vec_element(s, tcg_resh, rm, 0, MO_64); 6984 do_ext64(s, tcg_resh, tcg_resl, pos); 6985 } 6986 } else { 6987 TCGv_i64 tcg_hh; 6988 typedef struct { 6989 int reg; 6990 int elt; 6991 } EltPosns; 6992 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 6993 EltPosns *elt = eltposns; 6994 6995 if (pos >= 64) { 6996 elt++; 6997 pos -= 64; 6998 } 6999 7000 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7001 elt++; 7002 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7003 elt++; 7004 if (pos != 0) { 7005 do_ext64(s, tcg_resh, tcg_resl, pos); 7006 tcg_hh = tcg_temp_new_i64(); 7007 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7008 do_ext64(s, tcg_hh, tcg_resh, pos); 7009 } 7010 } 7011 7012 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7013 if (is_q) { 7014 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7015 } 7016 clear_vec_high(s, is_q, rd); 7017 } 7018 7019 /* TBL/TBX 7020 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7021 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7022 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7023 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7024 */ 7025 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7026 { 7027 int op2 = extract32(insn, 22, 2); 7028 int is_q = extract32(insn, 30, 1); 7029 int rm = extract32(insn, 16, 5); 7030 int rn = extract32(insn, 5, 5); 7031 int rd = extract32(insn, 0, 5); 7032 int is_tbx = extract32(insn, 12, 1); 7033 int len = (extract32(insn, 13, 2) + 1) * 16; 7034 7035 if (op2 != 0) { 7036 unallocated_encoding(s); 7037 return; 7038 } 7039 7040 if (!fp_access_check(s)) { 7041 return; 7042 } 7043 7044 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7045 vec_full_reg_offset(s, rm), cpu_env, 7046 is_q ? 16 : 8, vec_full_reg_size(s), 7047 (len << 6) | (is_tbx << 5) | rn, 7048 gen_helper_simd_tblx); 7049 } 7050 7051 /* ZIP/UZP/TRN 7052 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7053 * +---+---+-------------+------+---+------+---+------------------+------+ 7054 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7055 * +---+---+-------------+------+---+------+---+------------------+------+ 7056 */ 7057 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7058 { 7059 int rd = extract32(insn, 0, 5); 7060 int rn = extract32(insn, 5, 5); 7061 int rm = extract32(insn, 16, 5); 7062 int size = extract32(insn, 22, 2); 7063 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7064 * bit 2 indicates 1 vs 2 variant of the insn. 7065 */ 7066 int opcode = extract32(insn, 12, 2); 7067 bool part = extract32(insn, 14, 1); 7068 bool is_q = extract32(insn, 30, 1); 7069 int esize = 8 << size; 7070 int i; 7071 int datasize = is_q ? 128 : 64; 7072 int elements = datasize / esize; 7073 TCGv_i64 tcg_res[2], tcg_ele; 7074 7075 if (opcode == 0 || (size == 3 && !is_q)) { 7076 unallocated_encoding(s); 7077 return; 7078 } 7079 7080 if (!fp_access_check(s)) { 7081 return; 7082 } 7083 7084 tcg_res[0] = tcg_temp_new_i64(); 7085 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7086 tcg_ele = tcg_temp_new_i64(); 7087 7088 for (i = 0; i < elements; i++) { 7089 int o, w; 7090 7091 switch (opcode) { 7092 case 1: /* UZP1/2 */ 7093 { 7094 int midpoint = elements / 2; 7095 if (i < midpoint) { 7096 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7097 } else { 7098 read_vec_element(s, tcg_ele, rm, 7099 2 * (i - midpoint) + part, size); 7100 } 7101 break; 7102 } 7103 case 2: /* TRN1/2 */ 7104 if (i & 1) { 7105 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7106 } else { 7107 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7108 } 7109 break; 7110 case 3: /* ZIP1/2 */ 7111 { 7112 int base = part * elements / 2; 7113 if (i & 1) { 7114 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7115 } else { 7116 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7117 } 7118 break; 7119 } 7120 default: 7121 g_assert_not_reached(); 7122 } 7123 7124 w = (i * esize) / 64; 7125 o = (i * esize) % 64; 7126 if (o == 0) { 7127 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7128 } else { 7129 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7130 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7131 } 7132 } 7133 7134 for (i = 0; i <= is_q; ++i) { 7135 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7136 } 7137 clear_vec_high(s, is_q, rd); 7138 } 7139 7140 /* 7141 * do_reduction_op helper 7142 * 7143 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7144 * important for correct NaN propagation that we do these 7145 * operations in exactly the order specified by the pseudocode. 7146 * 7147 * This is a recursive function, TCG temps should be freed by the 7148 * calling function once it is done with the values. 7149 */ 7150 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7151 int esize, int size, int vmap, TCGv_ptr fpst) 7152 { 7153 if (esize == size) { 7154 int element; 7155 MemOp msize = esize == 16 ? MO_16 : MO_32; 7156 TCGv_i32 tcg_elem; 7157 7158 /* We should have one register left here */ 7159 assert(ctpop8(vmap) == 1); 7160 element = ctz32(vmap); 7161 assert(element < 8); 7162 7163 tcg_elem = tcg_temp_new_i32(); 7164 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7165 return tcg_elem; 7166 } else { 7167 int bits = size / 2; 7168 int shift = ctpop8(vmap) / 2; 7169 int vmap_lo = (vmap >> shift) & vmap; 7170 int vmap_hi = (vmap & ~vmap_lo); 7171 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7172 7173 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7174 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7175 tcg_res = tcg_temp_new_i32(); 7176 7177 switch (fpopcode) { 7178 case 0x0c: /* fmaxnmv half-precision */ 7179 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7180 break; 7181 case 0x0f: /* fmaxv half-precision */ 7182 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7183 break; 7184 case 0x1c: /* fminnmv half-precision */ 7185 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7186 break; 7187 case 0x1f: /* fminv half-precision */ 7188 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7189 break; 7190 case 0x2c: /* fmaxnmv */ 7191 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7192 break; 7193 case 0x2f: /* fmaxv */ 7194 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7195 break; 7196 case 0x3c: /* fminnmv */ 7197 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7198 break; 7199 case 0x3f: /* fminv */ 7200 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7201 break; 7202 default: 7203 g_assert_not_reached(); 7204 } 7205 return tcg_res; 7206 } 7207 } 7208 7209 /* AdvSIMD across lanes 7210 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7211 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7212 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7213 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7214 */ 7215 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7216 { 7217 int rd = extract32(insn, 0, 5); 7218 int rn = extract32(insn, 5, 5); 7219 int size = extract32(insn, 22, 2); 7220 int opcode = extract32(insn, 12, 5); 7221 bool is_q = extract32(insn, 30, 1); 7222 bool is_u = extract32(insn, 29, 1); 7223 bool is_fp = false; 7224 bool is_min = false; 7225 int esize; 7226 int elements; 7227 int i; 7228 TCGv_i64 tcg_res, tcg_elt; 7229 7230 switch (opcode) { 7231 case 0x1b: /* ADDV */ 7232 if (is_u) { 7233 unallocated_encoding(s); 7234 return; 7235 } 7236 /* fall through */ 7237 case 0x3: /* SADDLV, UADDLV */ 7238 case 0xa: /* SMAXV, UMAXV */ 7239 case 0x1a: /* SMINV, UMINV */ 7240 if (size == 3 || (size == 2 && !is_q)) { 7241 unallocated_encoding(s); 7242 return; 7243 } 7244 break; 7245 case 0xc: /* FMAXNMV, FMINNMV */ 7246 case 0xf: /* FMAXV, FMINV */ 7247 /* Bit 1 of size field encodes min vs max and the actual size 7248 * depends on the encoding of the U bit. If not set (and FP16 7249 * enabled) then we do half-precision float instead of single 7250 * precision. 7251 */ 7252 is_min = extract32(size, 1, 1); 7253 is_fp = true; 7254 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7255 size = 1; 7256 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7257 unallocated_encoding(s); 7258 return; 7259 } else { 7260 size = 2; 7261 } 7262 break; 7263 default: 7264 unallocated_encoding(s); 7265 return; 7266 } 7267 7268 if (!fp_access_check(s)) { 7269 return; 7270 } 7271 7272 esize = 8 << size; 7273 elements = (is_q ? 128 : 64) / esize; 7274 7275 tcg_res = tcg_temp_new_i64(); 7276 tcg_elt = tcg_temp_new_i64(); 7277 7278 /* These instructions operate across all lanes of a vector 7279 * to produce a single result. We can guarantee that a 64 7280 * bit intermediate is sufficient: 7281 * + for [US]ADDLV the maximum element size is 32 bits, and 7282 * the result type is 64 bits 7283 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7284 * same as the element size, which is 32 bits at most 7285 * For the integer operations we can choose to work at 64 7286 * or 32 bits and truncate at the end; for simplicity 7287 * we use 64 bits always. The floating point 7288 * ops do require 32 bit intermediates, though. 7289 */ 7290 if (!is_fp) { 7291 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7292 7293 for (i = 1; i < elements; i++) { 7294 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7295 7296 switch (opcode) { 7297 case 0x03: /* SADDLV / UADDLV */ 7298 case 0x1b: /* ADDV */ 7299 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7300 break; 7301 case 0x0a: /* SMAXV / UMAXV */ 7302 if (is_u) { 7303 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7304 } else { 7305 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7306 } 7307 break; 7308 case 0x1a: /* SMINV / UMINV */ 7309 if (is_u) { 7310 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7311 } else { 7312 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7313 } 7314 break; 7315 default: 7316 g_assert_not_reached(); 7317 } 7318 7319 } 7320 } else { 7321 /* Floating point vector reduction ops which work across 32 7322 * bit (single) or 16 bit (half-precision) intermediates. 7323 * Note that correct NaN propagation requires that we do these 7324 * operations in exactly the order specified by the pseudocode. 7325 */ 7326 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7327 int fpopcode = opcode | is_min << 4 | is_u << 5; 7328 int vmap = (1 << elements) - 1; 7329 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7330 (is_q ? 128 : 64), vmap, fpst); 7331 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7332 } 7333 7334 /* Now truncate the result to the width required for the final output */ 7335 if (opcode == 0x03) { 7336 /* SADDLV, UADDLV: result is 2*esize */ 7337 size++; 7338 } 7339 7340 switch (size) { 7341 case 0: 7342 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7343 break; 7344 case 1: 7345 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7346 break; 7347 case 2: 7348 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7349 break; 7350 case 3: 7351 break; 7352 default: 7353 g_assert_not_reached(); 7354 } 7355 7356 write_fp_dreg(s, rd, tcg_res); 7357 } 7358 7359 /* DUP (Element, Vector) 7360 * 7361 * 31 30 29 21 20 16 15 10 9 5 4 0 7362 * +---+---+-------------------+--------+-------------+------+------+ 7363 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7364 * +---+---+-------------------+--------+-------------+------+------+ 7365 * 7366 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7367 */ 7368 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7369 int imm5) 7370 { 7371 int size = ctz32(imm5); 7372 int index; 7373 7374 if (size > 3 || (size == 3 && !is_q)) { 7375 unallocated_encoding(s); 7376 return; 7377 } 7378 7379 if (!fp_access_check(s)) { 7380 return; 7381 } 7382 7383 index = imm5 >> (size + 1); 7384 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7385 vec_reg_offset(s, rn, index, size), 7386 is_q ? 16 : 8, vec_full_reg_size(s)); 7387 } 7388 7389 /* DUP (element, scalar) 7390 * 31 21 20 16 15 10 9 5 4 0 7391 * +-----------------------+--------+-------------+------+------+ 7392 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7393 * +-----------------------+--------+-------------+------+------+ 7394 */ 7395 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7396 int imm5) 7397 { 7398 int size = ctz32(imm5); 7399 int index; 7400 TCGv_i64 tmp; 7401 7402 if (size > 3) { 7403 unallocated_encoding(s); 7404 return; 7405 } 7406 7407 if (!fp_access_check(s)) { 7408 return; 7409 } 7410 7411 index = imm5 >> (size + 1); 7412 7413 /* This instruction just extracts the specified element and 7414 * zero-extends it into the bottom of the destination register. 7415 */ 7416 tmp = tcg_temp_new_i64(); 7417 read_vec_element(s, tmp, rn, index, size); 7418 write_fp_dreg(s, rd, tmp); 7419 } 7420 7421 /* DUP (General) 7422 * 7423 * 31 30 29 21 20 16 15 10 9 5 4 0 7424 * +---+---+-------------------+--------+-------------+------+------+ 7425 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7426 * +---+---+-------------------+--------+-------------+------+------+ 7427 * 7428 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7429 */ 7430 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7431 int imm5) 7432 { 7433 int size = ctz32(imm5); 7434 uint32_t dofs, oprsz, maxsz; 7435 7436 if (size > 3 || ((size == 3) && !is_q)) { 7437 unallocated_encoding(s); 7438 return; 7439 } 7440 7441 if (!fp_access_check(s)) { 7442 return; 7443 } 7444 7445 dofs = vec_full_reg_offset(s, rd); 7446 oprsz = is_q ? 16 : 8; 7447 maxsz = vec_full_reg_size(s); 7448 7449 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7450 } 7451 7452 /* INS (Element) 7453 * 7454 * 31 21 20 16 15 14 11 10 9 5 4 0 7455 * +-----------------------+--------+------------+---+------+------+ 7456 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7457 * +-----------------------+--------+------------+---+------+------+ 7458 * 7459 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7460 * index: encoded in imm5<4:size+1> 7461 */ 7462 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7463 int imm4, int imm5) 7464 { 7465 int size = ctz32(imm5); 7466 int src_index, dst_index; 7467 TCGv_i64 tmp; 7468 7469 if (size > 3) { 7470 unallocated_encoding(s); 7471 return; 7472 } 7473 7474 if (!fp_access_check(s)) { 7475 return; 7476 } 7477 7478 dst_index = extract32(imm5, 1+size, 5); 7479 src_index = extract32(imm4, size, 4); 7480 7481 tmp = tcg_temp_new_i64(); 7482 7483 read_vec_element(s, tmp, rn, src_index, size); 7484 write_vec_element(s, tmp, rd, dst_index, size); 7485 7486 /* INS is considered a 128-bit write for SVE. */ 7487 clear_vec_high(s, true, rd); 7488 } 7489 7490 7491 /* INS (General) 7492 * 7493 * 31 21 20 16 15 10 9 5 4 0 7494 * +-----------------------+--------+-------------+------+------+ 7495 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7496 * +-----------------------+--------+-------------+------+------+ 7497 * 7498 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7499 * index: encoded in imm5<4:size+1> 7500 */ 7501 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7502 { 7503 int size = ctz32(imm5); 7504 int idx; 7505 7506 if (size > 3) { 7507 unallocated_encoding(s); 7508 return; 7509 } 7510 7511 if (!fp_access_check(s)) { 7512 return; 7513 } 7514 7515 idx = extract32(imm5, 1 + size, 4 - size); 7516 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7517 7518 /* INS is considered a 128-bit write for SVE. */ 7519 clear_vec_high(s, true, rd); 7520 } 7521 7522 /* 7523 * UMOV (General) 7524 * SMOV (General) 7525 * 7526 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7527 * +---+---+-------------------+--------+-------------+------+------+ 7528 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7529 * +---+---+-------------------+--------+-------------+------+------+ 7530 * 7531 * U: unsigned when set 7532 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7533 */ 7534 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7535 int rn, int rd, int imm5) 7536 { 7537 int size = ctz32(imm5); 7538 int element; 7539 TCGv_i64 tcg_rd; 7540 7541 /* Check for UnallocatedEncodings */ 7542 if (is_signed) { 7543 if (size > 2 || (size == 2 && !is_q)) { 7544 unallocated_encoding(s); 7545 return; 7546 } 7547 } else { 7548 if (size > 3 7549 || (size < 3 && is_q) 7550 || (size == 3 && !is_q)) { 7551 unallocated_encoding(s); 7552 return; 7553 } 7554 } 7555 7556 if (!fp_access_check(s)) { 7557 return; 7558 } 7559 7560 element = extract32(imm5, 1+size, 4); 7561 7562 tcg_rd = cpu_reg(s, rd); 7563 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7564 if (is_signed && !is_q) { 7565 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7566 } 7567 } 7568 7569 /* AdvSIMD copy 7570 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7571 * +---+---+----+-----------------+------+---+------+---+------+------+ 7572 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7573 * +---+---+----+-----------------+------+---+------+---+------+------+ 7574 */ 7575 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7576 { 7577 int rd = extract32(insn, 0, 5); 7578 int rn = extract32(insn, 5, 5); 7579 int imm4 = extract32(insn, 11, 4); 7580 int op = extract32(insn, 29, 1); 7581 int is_q = extract32(insn, 30, 1); 7582 int imm5 = extract32(insn, 16, 5); 7583 7584 if (op) { 7585 if (is_q) { 7586 /* INS (element) */ 7587 handle_simd_inse(s, rd, rn, imm4, imm5); 7588 } else { 7589 unallocated_encoding(s); 7590 } 7591 } else { 7592 switch (imm4) { 7593 case 0: 7594 /* DUP (element - vector) */ 7595 handle_simd_dupe(s, is_q, rd, rn, imm5); 7596 break; 7597 case 1: 7598 /* DUP (general) */ 7599 handle_simd_dupg(s, is_q, rd, rn, imm5); 7600 break; 7601 case 3: 7602 if (is_q) { 7603 /* INS (general) */ 7604 handle_simd_insg(s, rd, rn, imm5); 7605 } else { 7606 unallocated_encoding(s); 7607 } 7608 break; 7609 case 5: 7610 case 7: 7611 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7612 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7613 break; 7614 default: 7615 unallocated_encoding(s); 7616 break; 7617 } 7618 } 7619 } 7620 7621 /* AdvSIMD modified immediate 7622 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7623 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7624 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7625 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7626 * 7627 * There are a number of operations that can be carried out here: 7628 * MOVI - move (shifted) imm into register 7629 * MVNI - move inverted (shifted) imm into register 7630 * ORR - bitwise OR of (shifted) imm with register 7631 * BIC - bitwise clear of (shifted) imm with register 7632 * With ARMv8.2 we also have: 7633 * FMOV half-precision 7634 */ 7635 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7636 { 7637 int rd = extract32(insn, 0, 5); 7638 int cmode = extract32(insn, 12, 4); 7639 int o2 = extract32(insn, 11, 1); 7640 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7641 bool is_neg = extract32(insn, 29, 1); 7642 bool is_q = extract32(insn, 30, 1); 7643 uint64_t imm = 0; 7644 7645 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7646 /* Check for FMOV (vector, immediate) - half-precision */ 7647 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7648 unallocated_encoding(s); 7649 return; 7650 } 7651 } 7652 7653 if (!fp_access_check(s)) { 7654 return; 7655 } 7656 7657 if (cmode == 15 && o2 && !is_neg) { 7658 /* FMOV (vector, immediate) - half-precision */ 7659 imm = vfp_expand_imm(MO_16, abcdefgh); 7660 /* now duplicate across the lanes */ 7661 imm = dup_const(MO_16, imm); 7662 } else { 7663 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7664 } 7665 7666 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7667 /* MOVI or MVNI, with MVNI negation handled above. */ 7668 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7669 vec_full_reg_size(s), imm); 7670 } else { 7671 /* ORR or BIC, with BIC negation to AND handled above. */ 7672 if (is_neg) { 7673 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7674 } else { 7675 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7676 } 7677 } 7678 } 7679 7680 /* AdvSIMD scalar copy 7681 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7682 * +-----+----+-----------------+------+---+------+---+------+------+ 7683 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7684 * +-----+----+-----------------+------+---+------+---+------+------+ 7685 */ 7686 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7687 { 7688 int rd = extract32(insn, 0, 5); 7689 int rn = extract32(insn, 5, 5); 7690 int imm4 = extract32(insn, 11, 4); 7691 int imm5 = extract32(insn, 16, 5); 7692 int op = extract32(insn, 29, 1); 7693 7694 if (op != 0 || imm4 != 0) { 7695 unallocated_encoding(s); 7696 return; 7697 } 7698 7699 /* DUP (element, scalar) */ 7700 handle_simd_dupes(s, rd, rn, imm5); 7701 } 7702 7703 /* AdvSIMD scalar pairwise 7704 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7705 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7706 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7707 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7708 */ 7709 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7710 { 7711 int u = extract32(insn, 29, 1); 7712 int size = extract32(insn, 22, 2); 7713 int opcode = extract32(insn, 12, 5); 7714 int rn = extract32(insn, 5, 5); 7715 int rd = extract32(insn, 0, 5); 7716 TCGv_ptr fpst; 7717 7718 /* For some ops (the FP ones), size[1] is part of the encoding. 7719 * For ADDP strictly it is not but size[1] is always 1 for valid 7720 * encodings. 7721 */ 7722 opcode |= (extract32(size, 1, 1) << 5); 7723 7724 switch (opcode) { 7725 case 0x3b: /* ADDP */ 7726 if (u || size != 3) { 7727 unallocated_encoding(s); 7728 return; 7729 } 7730 if (!fp_access_check(s)) { 7731 return; 7732 } 7733 7734 fpst = NULL; 7735 break; 7736 case 0xc: /* FMAXNMP */ 7737 case 0xd: /* FADDP */ 7738 case 0xf: /* FMAXP */ 7739 case 0x2c: /* FMINNMP */ 7740 case 0x2f: /* FMINP */ 7741 /* FP op, size[0] is 32 or 64 bit*/ 7742 if (!u) { 7743 if (!dc_isar_feature(aa64_fp16, s)) { 7744 unallocated_encoding(s); 7745 return; 7746 } else { 7747 size = MO_16; 7748 } 7749 } else { 7750 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7751 } 7752 7753 if (!fp_access_check(s)) { 7754 return; 7755 } 7756 7757 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7758 break; 7759 default: 7760 unallocated_encoding(s); 7761 return; 7762 } 7763 7764 if (size == MO_64) { 7765 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7766 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7767 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7768 7769 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7770 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7771 7772 switch (opcode) { 7773 case 0x3b: /* ADDP */ 7774 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7775 break; 7776 case 0xc: /* FMAXNMP */ 7777 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7778 break; 7779 case 0xd: /* FADDP */ 7780 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7781 break; 7782 case 0xf: /* FMAXP */ 7783 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7784 break; 7785 case 0x2c: /* FMINNMP */ 7786 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7787 break; 7788 case 0x2f: /* FMINP */ 7789 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7790 break; 7791 default: 7792 g_assert_not_reached(); 7793 } 7794 7795 write_fp_dreg(s, rd, tcg_res); 7796 } else { 7797 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7798 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7799 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7800 7801 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7802 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7803 7804 if (size == MO_16) { 7805 switch (opcode) { 7806 case 0xc: /* FMAXNMP */ 7807 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7808 break; 7809 case 0xd: /* FADDP */ 7810 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7811 break; 7812 case 0xf: /* FMAXP */ 7813 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7814 break; 7815 case 0x2c: /* FMINNMP */ 7816 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7817 break; 7818 case 0x2f: /* FMINP */ 7819 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7820 break; 7821 default: 7822 g_assert_not_reached(); 7823 } 7824 } else { 7825 switch (opcode) { 7826 case 0xc: /* FMAXNMP */ 7827 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7828 break; 7829 case 0xd: /* FADDP */ 7830 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7831 break; 7832 case 0xf: /* FMAXP */ 7833 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7834 break; 7835 case 0x2c: /* FMINNMP */ 7836 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7837 break; 7838 case 0x2f: /* FMINP */ 7839 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7840 break; 7841 default: 7842 g_assert_not_reached(); 7843 } 7844 } 7845 7846 write_fp_sreg(s, rd, tcg_res); 7847 } 7848 } 7849 7850 /* 7851 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7852 * 7853 * This code is handles the common shifting code and is used by both 7854 * the vector and scalar code. 7855 */ 7856 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7857 TCGv_i64 tcg_rnd, bool accumulate, 7858 bool is_u, int size, int shift) 7859 { 7860 bool extended_result = false; 7861 bool round = tcg_rnd != NULL; 7862 int ext_lshift = 0; 7863 TCGv_i64 tcg_src_hi; 7864 7865 if (round && size == 3) { 7866 extended_result = true; 7867 ext_lshift = 64 - shift; 7868 tcg_src_hi = tcg_temp_new_i64(); 7869 } else if (shift == 64) { 7870 if (!accumulate && is_u) { 7871 /* result is zero */ 7872 tcg_gen_movi_i64(tcg_res, 0); 7873 return; 7874 } 7875 } 7876 7877 /* Deal with the rounding step */ 7878 if (round) { 7879 if (extended_result) { 7880 TCGv_i64 tcg_zero = tcg_constant_i64(0); 7881 if (!is_u) { 7882 /* take care of sign extending tcg_res */ 7883 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 7884 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7885 tcg_src, tcg_src_hi, 7886 tcg_rnd, tcg_zero); 7887 } else { 7888 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7889 tcg_src, tcg_zero, 7890 tcg_rnd, tcg_zero); 7891 } 7892 } else { 7893 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 7894 } 7895 } 7896 7897 /* Now do the shift right */ 7898 if (round && extended_result) { 7899 /* extended case, >64 bit precision required */ 7900 if (ext_lshift == 0) { 7901 /* special case, only high bits matter */ 7902 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 7903 } else { 7904 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7905 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 7906 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 7907 } 7908 } else { 7909 if (is_u) { 7910 if (shift == 64) { 7911 /* essentially shifting in 64 zeros */ 7912 tcg_gen_movi_i64(tcg_src, 0); 7913 } else { 7914 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7915 } 7916 } else { 7917 if (shift == 64) { 7918 /* effectively extending the sign-bit */ 7919 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 7920 } else { 7921 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 7922 } 7923 } 7924 } 7925 7926 if (accumulate) { 7927 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 7928 } else { 7929 tcg_gen_mov_i64(tcg_res, tcg_src); 7930 } 7931 } 7932 7933 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 7934 static void handle_scalar_simd_shri(DisasContext *s, 7935 bool is_u, int immh, int immb, 7936 int opcode, int rn, int rd) 7937 { 7938 const int size = 3; 7939 int immhb = immh << 3 | immb; 7940 int shift = 2 * (8 << size) - immhb; 7941 bool accumulate = false; 7942 bool round = false; 7943 bool insert = false; 7944 TCGv_i64 tcg_rn; 7945 TCGv_i64 tcg_rd; 7946 TCGv_i64 tcg_round; 7947 7948 if (!extract32(immh, 3, 1)) { 7949 unallocated_encoding(s); 7950 return; 7951 } 7952 7953 if (!fp_access_check(s)) { 7954 return; 7955 } 7956 7957 switch (opcode) { 7958 case 0x02: /* SSRA / USRA (accumulate) */ 7959 accumulate = true; 7960 break; 7961 case 0x04: /* SRSHR / URSHR (rounding) */ 7962 round = true; 7963 break; 7964 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 7965 accumulate = round = true; 7966 break; 7967 case 0x08: /* SRI */ 7968 insert = true; 7969 break; 7970 } 7971 7972 if (round) { 7973 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 7974 } else { 7975 tcg_round = NULL; 7976 } 7977 7978 tcg_rn = read_fp_dreg(s, rn); 7979 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 7980 7981 if (insert) { 7982 /* shift count same as element size is valid but does nothing; 7983 * special case to avoid potential shift by 64. 7984 */ 7985 int esize = 8 << size; 7986 if (shift != esize) { 7987 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 7988 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 7989 } 7990 } else { 7991 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 7992 accumulate, is_u, size, shift); 7993 } 7994 7995 write_fp_dreg(s, rd, tcg_rd); 7996 } 7997 7998 /* SHL/SLI - Scalar shift left */ 7999 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8000 int immh, int immb, int opcode, 8001 int rn, int rd) 8002 { 8003 int size = 32 - clz32(immh) - 1; 8004 int immhb = immh << 3 | immb; 8005 int shift = immhb - (8 << size); 8006 TCGv_i64 tcg_rn; 8007 TCGv_i64 tcg_rd; 8008 8009 if (!extract32(immh, 3, 1)) { 8010 unallocated_encoding(s); 8011 return; 8012 } 8013 8014 if (!fp_access_check(s)) { 8015 return; 8016 } 8017 8018 tcg_rn = read_fp_dreg(s, rn); 8019 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8020 8021 if (insert) { 8022 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8023 } else { 8024 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8025 } 8026 8027 write_fp_dreg(s, rd, tcg_rd); 8028 } 8029 8030 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8031 * (signed/unsigned) narrowing */ 8032 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8033 bool is_u_shift, bool is_u_narrow, 8034 int immh, int immb, int opcode, 8035 int rn, int rd) 8036 { 8037 int immhb = immh << 3 | immb; 8038 int size = 32 - clz32(immh) - 1; 8039 int esize = 8 << size; 8040 int shift = (2 * esize) - immhb; 8041 int elements = is_scalar ? 1 : (64 / esize); 8042 bool round = extract32(opcode, 0, 1); 8043 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8044 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8045 TCGv_i32 tcg_rd_narrowed; 8046 TCGv_i64 tcg_final; 8047 8048 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8049 { gen_helper_neon_narrow_sat_s8, 8050 gen_helper_neon_unarrow_sat8 }, 8051 { gen_helper_neon_narrow_sat_s16, 8052 gen_helper_neon_unarrow_sat16 }, 8053 { gen_helper_neon_narrow_sat_s32, 8054 gen_helper_neon_unarrow_sat32 }, 8055 { NULL, NULL }, 8056 }; 8057 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8058 gen_helper_neon_narrow_sat_u8, 8059 gen_helper_neon_narrow_sat_u16, 8060 gen_helper_neon_narrow_sat_u32, 8061 NULL 8062 }; 8063 NeonGenNarrowEnvFn *narrowfn; 8064 8065 int i; 8066 8067 assert(size < 4); 8068 8069 if (extract32(immh, 3, 1)) { 8070 unallocated_encoding(s); 8071 return; 8072 } 8073 8074 if (!fp_access_check(s)) { 8075 return; 8076 } 8077 8078 if (is_u_shift) { 8079 narrowfn = unsigned_narrow_fns[size]; 8080 } else { 8081 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8082 } 8083 8084 tcg_rn = tcg_temp_new_i64(); 8085 tcg_rd = tcg_temp_new_i64(); 8086 tcg_rd_narrowed = tcg_temp_new_i32(); 8087 tcg_final = tcg_temp_new_i64(); 8088 8089 if (round) { 8090 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8091 } else { 8092 tcg_round = NULL; 8093 } 8094 8095 for (i = 0; i < elements; i++) { 8096 read_vec_element(s, tcg_rn, rn, i, ldop); 8097 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8098 false, is_u_shift, size+1, shift); 8099 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8100 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8101 if (i == 0) { 8102 tcg_gen_mov_i64(tcg_final, tcg_rd); 8103 } else { 8104 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8105 } 8106 } 8107 8108 if (!is_q) { 8109 write_vec_element(s, tcg_final, rd, 0, MO_64); 8110 } else { 8111 write_vec_element(s, tcg_final, rd, 1, MO_64); 8112 } 8113 clear_vec_high(s, is_q, rd); 8114 } 8115 8116 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8117 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8118 bool src_unsigned, bool dst_unsigned, 8119 int immh, int immb, int rn, int rd) 8120 { 8121 int immhb = immh << 3 | immb; 8122 int size = 32 - clz32(immh) - 1; 8123 int shift = immhb - (8 << size); 8124 int pass; 8125 8126 assert(immh != 0); 8127 assert(!(scalar && is_q)); 8128 8129 if (!scalar) { 8130 if (!is_q && extract32(immh, 3, 1)) { 8131 unallocated_encoding(s); 8132 return; 8133 } 8134 8135 /* Since we use the variable-shift helpers we must 8136 * replicate the shift count into each element of 8137 * the tcg_shift value. 8138 */ 8139 switch (size) { 8140 case 0: 8141 shift |= shift << 8; 8142 /* fall through */ 8143 case 1: 8144 shift |= shift << 16; 8145 break; 8146 case 2: 8147 case 3: 8148 break; 8149 default: 8150 g_assert_not_reached(); 8151 } 8152 } 8153 8154 if (!fp_access_check(s)) { 8155 return; 8156 } 8157 8158 if (size == 3) { 8159 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8160 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8161 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8162 { NULL, gen_helper_neon_qshl_u64 }, 8163 }; 8164 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8165 int maxpass = is_q ? 2 : 1; 8166 8167 for (pass = 0; pass < maxpass; pass++) { 8168 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8169 8170 read_vec_element(s, tcg_op, rn, pass, MO_64); 8171 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8172 write_vec_element(s, tcg_op, rd, pass, MO_64); 8173 } 8174 clear_vec_high(s, is_q, rd); 8175 } else { 8176 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8177 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8178 { 8179 { gen_helper_neon_qshl_s8, 8180 gen_helper_neon_qshl_s16, 8181 gen_helper_neon_qshl_s32 }, 8182 { gen_helper_neon_qshlu_s8, 8183 gen_helper_neon_qshlu_s16, 8184 gen_helper_neon_qshlu_s32 } 8185 }, { 8186 { NULL, NULL, NULL }, 8187 { gen_helper_neon_qshl_u8, 8188 gen_helper_neon_qshl_u16, 8189 gen_helper_neon_qshl_u32 } 8190 } 8191 }; 8192 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8193 MemOp memop = scalar ? size : MO_32; 8194 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8195 8196 for (pass = 0; pass < maxpass; pass++) { 8197 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8198 8199 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8200 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8201 if (scalar) { 8202 switch (size) { 8203 case 0: 8204 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8205 break; 8206 case 1: 8207 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8208 break; 8209 case 2: 8210 break; 8211 default: 8212 g_assert_not_reached(); 8213 } 8214 write_fp_sreg(s, rd, tcg_op); 8215 } else { 8216 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8217 } 8218 } 8219 8220 if (!scalar) { 8221 clear_vec_high(s, is_q, rd); 8222 } 8223 } 8224 } 8225 8226 /* Common vector code for handling integer to FP conversion */ 8227 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8228 int elements, int is_signed, 8229 int fracbits, int size) 8230 { 8231 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8232 TCGv_i32 tcg_shift = NULL; 8233 8234 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8235 int pass; 8236 8237 if (fracbits || size == MO_64) { 8238 tcg_shift = tcg_constant_i32(fracbits); 8239 } 8240 8241 if (size == MO_64) { 8242 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8243 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8244 8245 for (pass = 0; pass < elements; pass++) { 8246 read_vec_element(s, tcg_int64, rn, pass, mop); 8247 8248 if (is_signed) { 8249 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8250 tcg_shift, tcg_fpst); 8251 } else { 8252 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8253 tcg_shift, tcg_fpst); 8254 } 8255 if (elements == 1) { 8256 write_fp_dreg(s, rd, tcg_double); 8257 } else { 8258 write_vec_element(s, tcg_double, rd, pass, MO_64); 8259 } 8260 } 8261 } else { 8262 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8263 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8264 8265 for (pass = 0; pass < elements; pass++) { 8266 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8267 8268 switch (size) { 8269 case MO_32: 8270 if (fracbits) { 8271 if (is_signed) { 8272 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8273 tcg_shift, tcg_fpst); 8274 } else { 8275 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8276 tcg_shift, tcg_fpst); 8277 } 8278 } else { 8279 if (is_signed) { 8280 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8281 } else { 8282 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8283 } 8284 } 8285 break; 8286 case MO_16: 8287 if (fracbits) { 8288 if (is_signed) { 8289 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8290 tcg_shift, tcg_fpst); 8291 } else { 8292 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8293 tcg_shift, tcg_fpst); 8294 } 8295 } else { 8296 if (is_signed) { 8297 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8298 } else { 8299 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8300 } 8301 } 8302 break; 8303 default: 8304 g_assert_not_reached(); 8305 } 8306 8307 if (elements == 1) { 8308 write_fp_sreg(s, rd, tcg_float); 8309 } else { 8310 write_vec_element_i32(s, tcg_float, rd, pass, size); 8311 } 8312 } 8313 } 8314 8315 clear_vec_high(s, elements << size == 16, rd); 8316 } 8317 8318 /* UCVTF/SCVTF - Integer to FP conversion */ 8319 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8320 bool is_q, bool is_u, 8321 int immh, int immb, int opcode, 8322 int rn, int rd) 8323 { 8324 int size, elements, fracbits; 8325 int immhb = immh << 3 | immb; 8326 8327 if (immh & 8) { 8328 size = MO_64; 8329 if (!is_scalar && !is_q) { 8330 unallocated_encoding(s); 8331 return; 8332 } 8333 } else if (immh & 4) { 8334 size = MO_32; 8335 } else if (immh & 2) { 8336 size = MO_16; 8337 if (!dc_isar_feature(aa64_fp16, s)) { 8338 unallocated_encoding(s); 8339 return; 8340 } 8341 } else { 8342 /* immh == 0 would be a failure of the decode logic */ 8343 g_assert(immh == 1); 8344 unallocated_encoding(s); 8345 return; 8346 } 8347 8348 if (is_scalar) { 8349 elements = 1; 8350 } else { 8351 elements = (8 << is_q) >> size; 8352 } 8353 fracbits = (16 << size) - immhb; 8354 8355 if (!fp_access_check(s)) { 8356 return; 8357 } 8358 8359 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8360 } 8361 8362 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8363 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8364 bool is_q, bool is_u, 8365 int immh, int immb, int rn, int rd) 8366 { 8367 int immhb = immh << 3 | immb; 8368 int pass, size, fracbits; 8369 TCGv_ptr tcg_fpstatus; 8370 TCGv_i32 tcg_rmode, tcg_shift; 8371 8372 if (immh & 0x8) { 8373 size = MO_64; 8374 if (!is_scalar && !is_q) { 8375 unallocated_encoding(s); 8376 return; 8377 } 8378 } else if (immh & 0x4) { 8379 size = MO_32; 8380 } else if (immh & 0x2) { 8381 size = MO_16; 8382 if (!dc_isar_feature(aa64_fp16, s)) { 8383 unallocated_encoding(s); 8384 return; 8385 } 8386 } else { 8387 /* Should have split out AdvSIMD modified immediate earlier. */ 8388 assert(immh == 1); 8389 unallocated_encoding(s); 8390 return; 8391 } 8392 8393 if (!fp_access_check(s)) { 8394 return; 8395 } 8396 8397 assert(!(is_scalar && is_q)); 8398 8399 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8400 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8401 fracbits = (16 << size) - immhb; 8402 tcg_shift = tcg_constant_i32(fracbits); 8403 8404 if (size == MO_64) { 8405 int maxpass = is_scalar ? 1 : 2; 8406 8407 for (pass = 0; pass < maxpass; pass++) { 8408 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8409 8410 read_vec_element(s, tcg_op, rn, pass, MO_64); 8411 if (is_u) { 8412 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8413 } else { 8414 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8415 } 8416 write_vec_element(s, tcg_op, rd, pass, MO_64); 8417 } 8418 clear_vec_high(s, is_q, rd); 8419 } else { 8420 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8421 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8422 8423 switch (size) { 8424 case MO_16: 8425 if (is_u) { 8426 fn = gen_helper_vfp_touhh; 8427 } else { 8428 fn = gen_helper_vfp_toshh; 8429 } 8430 break; 8431 case MO_32: 8432 if (is_u) { 8433 fn = gen_helper_vfp_touls; 8434 } else { 8435 fn = gen_helper_vfp_tosls; 8436 } 8437 break; 8438 default: 8439 g_assert_not_reached(); 8440 } 8441 8442 for (pass = 0; pass < maxpass; pass++) { 8443 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8444 8445 read_vec_element_i32(s, tcg_op, rn, pass, size); 8446 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8447 if (is_scalar) { 8448 write_fp_sreg(s, rd, tcg_op); 8449 } else { 8450 write_vec_element_i32(s, tcg_op, rd, pass, size); 8451 } 8452 } 8453 if (!is_scalar) { 8454 clear_vec_high(s, is_q, rd); 8455 } 8456 } 8457 8458 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8459 } 8460 8461 /* AdvSIMD scalar shift by immediate 8462 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8463 * +-----+---+-------------+------+------+--------+---+------+------+ 8464 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8465 * +-----+---+-------------+------+------+--------+---+------+------+ 8466 * 8467 * This is the scalar version so it works on a fixed sized registers 8468 */ 8469 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8470 { 8471 int rd = extract32(insn, 0, 5); 8472 int rn = extract32(insn, 5, 5); 8473 int opcode = extract32(insn, 11, 5); 8474 int immb = extract32(insn, 16, 3); 8475 int immh = extract32(insn, 19, 4); 8476 bool is_u = extract32(insn, 29, 1); 8477 8478 if (immh == 0) { 8479 unallocated_encoding(s); 8480 return; 8481 } 8482 8483 switch (opcode) { 8484 case 0x08: /* SRI */ 8485 if (!is_u) { 8486 unallocated_encoding(s); 8487 return; 8488 } 8489 /* fall through */ 8490 case 0x00: /* SSHR / USHR */ 8491 case 0x02: /* SSRA / USRA */ 8492 case 0x04: /* SRSHR / URSHR */ 8493 case 0x06: /* SRSRA / URSRA */ 8494 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8495 break; 8496 case 0x0a: /* SHL / SLI */ 8497 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8498 break; 8499 case 0x1c: /* SCVTF, UCVTF */ 8500 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8501 opcode, rn, rd); 8502 break; 8503 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8504 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8505 if (!is_u) { 8506 unallocated_encoding(s); 8507 return; 8508 } 8509 handle_vec_simd_sqshrn(s, true, false, false, true, 8510 immh, immb, opcode, rn, rd); 8511 break; 8512 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8513 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8514 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8515 immh, immb, opcode, rn, rd); 8516 break; 8517 case 0xc: /* SQSHLU */ 8518 if (!is_u) { 8519 unallocated_encoding(s); 8520 return; 8521 } 8522 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8523 break; 8524 case 0xe: /* SQSHL, UQSHL */ 8525 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8526 break; 8527 case 0x1f: /* FCVTZS, FCVTZU */ 8528 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8529 break; 8530 default: 8531 unallocated_encoding(s); 8532 break; 8533 } 8534 } 8535 8536 /* AdvSIMD scalar three different 8537 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8538 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8539 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8540 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8541 */ 8542 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8543 { 8544 bool is_u = extract32(insn, 29, 1); 8545 int size = extract32(insn, 22, 2); 8546 int opcode = extract32(insn, 12, 4); 8547 int rm = extract32(insn, 16, 5); 8548 int rn = extract32(insn, 5, 5); 8549 int rd = extract32(insn, 0, 5); 8550 8551 if (is_u) { 8552 unallocated_encoding(s); 8553 return; 8554 } 8555 8556 switch (opcode) { 8557 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8558 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8559 case 0xd: /* SQDMULL, SQDMULL2 */ 8560 if (size == 0 || size == 3) { 8561 unallocated_encoding(s); 8562 return; 8563 } 8564 break; 8565 default: 8566 unallocated_encoding(s); 8567 return; 8568 } 8569 8570 if (!fp_access_check(s)) { 8571 return; 8572 } 8573 8574 if (size == 2) { 8575 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8576 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8577 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8578 8579 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8580 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8581 8582 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8583 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8584 8585 switch (opcode) { 8586 case 0xd: /* SQDMULL, SQDMULL2 */ 8587 break; 8588 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8589 tcg_gen_neg_i64(tcg_res, tcg_res); 8590 /* fall through */ 8591 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8592 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8593 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8594 tcg_res, tcg_op1); 8595 break; 8596 default: 8597 g_assert_not_reached(); 8598 } 8599 8600 write_fp_dreg(s, rd, tcg_res); 8601 } else { 8602 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8603 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8604 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8605 8606 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8607 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8608 8609 switch (opcode) { 8610 case 0xd: /* SQDMULL, SQDMULL2 */ 8611 break; 8612 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8613 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8614 /* fall through */ 8615 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8616 { 8617 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8618 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8619 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8620 tcg_res, tcg_op3); 8621 break; 8622 } 8623 default: 8624 g_assert_not_reached(); 8625 } 8626 8627 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8628 write_fp_dreg(s, rd, tcg_res); 8629 } 8630 } 8631 8632 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8633 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8634 { 8635 /* Handle 64x64->64 opcodes which are shared between the scalar 8636 * and vector 3-same groups. We cover every opcode where size == 3 8637 * is valid in either the three-reg-same (integer, not pairwise) 8638 * or scalar-three-reg-same groups. 8639 */ 8640 TCGCond cond; 8641 8642 switch (opcode) { 8643 case 0x1: /* SQADD */ 8644 if (u) { 8645 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8646 } else { 8647 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8648 } 8649 break; 8650 case 0x5: /* SQSUB */ 8651 if (u) { 8652 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8653 } else { 8654 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8655 } 8656 break; 8657 case 0x6: /* CMGT, CMHI */ 8658 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8659 * We implement this using setcond (test) and then negating. 8660 */ 8661 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8662 do_cmop: 8663 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8664 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8665 break; 8666 case 0x7: /* CMGE, CMHS */ 8667 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8668 goto do_cmop; 8669 case 0x11: /* CMTST, CMEQ */ 8670 if (u) { 8671 cond = TCG_COND_EQ; 8672 goto do_cmop; 8673 } 8674 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8675 break; 8676 case 0x8: /* SSHL, USHL */ 8677 if (u) { 8678 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8679 } else { 8680 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8681 } 8682 break; 8683 case 0x9: /* SQSHL, UQSHL */ 8684 if (u) { 8685 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8686 } else { 8687 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8688 } 8689 break; 8690 case 0xa: /* SRSHL, URSHL */ 8691 if (u) { 8692 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8693 } else { 8694 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8695 } 8696 break; 8697 case 0xb: /* SQRSHL, UQRSHL */ 8698 if (u) { 8699 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8700 } else { 8701 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8702 } 8703 break; 8704 case 0x10: /* ADD, SUB */ 8705 if (u) { 8706 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8707 } else { 8708 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8709 } 8710 break; 8711 default: 8712 g_assert_not_reached(); 8713 } 8714 } 8715 8716 /* Handle the 3-same-operands float operations; shared by the scalar 8717 * and vector encodings. The caller must filter out any encodings 8718 * not allocated for the encoding it is dealing with. 8719 */ 8720 static void handle_3same_float(DisasContext *s, int size, int elements, 8721 int fpopcode, int rd, int rn, int rm) 8722 { 8723 int pass; 8724 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8725 8726 for (pass = 0; pass < elements; pass++) { 8727 if (size) { 8728 /* Double */ 8729 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8730 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8731 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8732 8733 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8734 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8735 8736 switch (fpopcode) { 8737 case 0x39: /* FMLS */ 8738 /* As usual for ARM, separate negation for fused multiply-add */ 8739 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8740 /* fall through */ 8741 case 0x19: /* FMLA */ 8742 read_vec_element(s, tcg_res, rd, pass, MO_64); 8743 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8744 tcg_res, fpst); 8745 break; 8746 case 0x18: /* FMAXNM */ 8747 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8748 break; 8749 case 0x1a: /* FADD */ 8750 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8751 break; 8752 case 0x1b: /* FMULX */ 8753 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8754 break; 8755 case 0x1c: /* FCMEQ */ 8756 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8757 break; 8758 case 0x1e: /* FMAX */ 8759 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8760 break; 8761 case 0x1f: /* FRECPS */ 8762 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8763 break; 8764 case 0x38: /* FMINNM */ 8765 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8766 break; 8767 case 0x3a: /* FSUB */ 8768 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8769 break; 8770 case 0x3e: /* FMIN */ 8771 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8772 break; 8773 case 0x3f: /* FRSQRTS */ 8774 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8775 break; 8776 case 0x5b: /* FMUL */ 8777 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8778 break; 8779 case 0x5c: /* FCMGE */ 8780 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8781 break; 8782 case 0x5d: /* FACGE */ 8783 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8784 break; 8785 case 0x5f: /* FDIV */ 8786 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8787 break; 8788 case 0x7a: /* FABD */ 8789 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8790 gen_helper_vfp_absd(tcg_res, tcg_res); 8791 break; 8792 case 0x7c: /* FCMGT */ 8793 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8794 break; 8795 case 0x7d: /* FACGT */ 8796 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8797 break; 8798 default: 8799 g_assert_not_reached(); 8800 } 8801 8802 write_vec_element(s, tcg_res, rd, pass, MO_64); 8803 } else { 8804 /* Single */ 8805 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8806 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8807 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8808 8809 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8810 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8811 8812 switch (fpopcode) { 8813 case 0x39: /* FMLS */ 8814 /* As usual for ARM, separate negation for fused multiply-add */ 8815 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8816 /* fall through */ 8817 case 0x19: /* FMLA */ 8818 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8819 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8820 tcg_res, fpst); 8821 break; 8822 case 0x1a: /* FADD */ 8823 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8824 break; 8825 case 0x1b: /* FMULX */ 8826 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8827 break; 8828 case 0x1c: /* FCMEQ */ 8829 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8830 break; 8831 case 0x1e: /* FMAX */ 8832 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8833 break; 8834 case 0x1f: /* FRECPS */ 8835 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8836 break; 8837 case 0x18: /* FMAXNM */ 8838 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8839 break; 8840 case 0x38: /* FMINNM */ 8841 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8842 break; 8843 case 0x3a: /* FSUB */ 8844 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8845 break; 8846 case 0x3e: /* FMIN */ 8847 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8848 break; 8849 case 0x3f: /* FRSQRTS */ 8850 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8851 break; 8852 case 0x5b: /* FMUL */ 8853 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8854 break; 8855 case 0x5c: /* FCMGE */ 8856 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8857 break; 8858 case 0x5d: /* FACGE */ 8859 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8860 break; 8861 case 0x5f: /* FDIV */ 8862 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8863 break; 8864 case 0x7a: /* FABD */ 8865 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8866 gen_helper_vfp_abss(tcg_res, tcg_res); 8867 break; 8868 case 0x7c: /* FCMGT */ 8869 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8870 break; 8871 case 0x7d: /* FACGT */ 8872 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8873 break; 8874 default: 8875 g_assert_not_reached(); 8876 } 8877 8878 if (elements == 1) { 8879 /* scalar single so clear high part */ 8880 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8881 8882 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 8883 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 8884 } else { 8885 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8886 } 8887 } 8888 } 8889 8890 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 8891 } 8892 8893 /* AdvSIMD scalar three same 8894 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 8895 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8896 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 8897 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8898 */ 8899 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 8900 { 8901 int rd = extract32(insn, 0, 5); 8902 int rn = extract32(insn, 5, 5); 8903 int opcode = extract32(insn, 11, 5); 8904 int rm = extract32(insn, 16, 5); 8905 int size = extract32(insn, 22, 2); 8906 bool u = extract32(insn, 29, 1); 8907 TCGv_i64 tcg_rd; 8908 8909 if (opcode >= 0x18) { 8910 /* Floating point: U, size[1] and opcode indicate operation */ 8911 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 8912 switch (fpopcode) { 8913 case 0x1b: /* FMULX */ 8914 case 0x1f: /* FRECPS */ 8915 case 0x3f: /* FRSQRTS */ 8916 case 0x5d: /* FACGE */ 8917 case 0x7d: /* FACGT */ 8918 case 0x1c: /* FCMEQ */ 8919 case 0x5c: /* FCMGE */ 8920 case 0x7c: /* FCMGT */ 8921 case 0x7a: /* FABD */ 8922 break; 8923 default: 8924 unallocated_encoding(s); 8925 return; 8926 } 8927 8928 if (!fp_access_check(s)) { 8929 return; 8930 } 8931 8932 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 8933 return; 8934 } 8935 8936 switch (opcode) { 8937 case 0x1: /* SQADD, UQADD */ 8938 case 0x5: /* SQSUB, UQSUB */ 8939 case 0x9: /* SQSHL, UQSHL */ 8940 case 0xb: /* SQRSHL, UQRSHL */ 8941 break; 8942 case 0x8: /* SSHL, USHL */ 8943 case 0xa: /* SRSHL, URSHL */ 8944 case 0x6: /* CMGT, CMHI */ 8945 case 0x7: /* CMGE, CMHS */ 8946 case 0x11: /* CMTST, CMEQ */ 8947 case 0x10: /* ADD, SUB (vector) */ 8948 if (size != 3) { 8949 unallocated_encoding(s); 8950 return; 8951 } 8952 break; 8953 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 8954 if (size != 1 && size != 2) { 8955 unallocated_encoding(s); 8956 return; 8957 } 8958 break; 8959 default: 8960 unallocated_encoding(s); 8961 return; 8962 } 8963 8964 if (!fp_access_check(s)) { 8965 return; 8966 } 8967 8968 tcg_rd = tcg_temp_new_i64(); 8969 8970 if (size == 3) { 8971 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8972 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 8973 8974 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 8975 } else { 8976 /* Do a single operation on the lowest element in the vector. 8977 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 8978 * no side effects for all these operations. 8979 * OPTME: special-purpose helpers would avoid doing some 8980 * unnecessary work in the helper for the 8 and 16 bit cases. 8981 */ 8982 NeonGenTwoOpEnvFn *genenvfn; 8983 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 8984 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 8985 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 8986 8987 read_vec_element_i32(s, tcg_rn, rn, 0, size); 8988 read_vec_element_i32(s, tcg_rm, rm, 0, size); 8989 8990 switch (opcode) { 8991 case 0x1: /* SQADD, UQADD */ 8992 { 8993 static NeonGenTwoOpEnvFn * const fns[3][2] = { 8994 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 8995 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 8996 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 8997 }; 8998 genenvfn = fns[size][u]; 8999 break; 9000 } 9001 case 0x5: /* SQSUB, UQSUB */ 9002 { 9003 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9004 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9005 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9006 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9007 }; 9008 genenvfn = fns[size][u]; 9009 break; 9010 } 9011 case 0x9: /* SQSHL, UQSHL */ 9012 { 9013 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9014 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9015 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9016 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9017 }; 9018 genenvfn = fns[size][u]; 9019 break; 9020 } 9021 case 0xb: /* SQRSHL, UQRSHL */ 9022 { 9023 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9024 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9025 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9026 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9027 }; 9028 genenvfn = fns[size][u]; 9029 break; 9030 } 9031 case 0x16: /* SQDMULH, SQRDMULH */ 9032 { 9033 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9034 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9035 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9036 }; 9037 assert(size == 1 || size == 2); 9038 genenvfn = fns[size - 1][u]; 9039 break; 9040 } 9041 default: 9042 g_assert_not_reached(); 9043 } 9044 9045 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9046 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9047 } 9048 9049 write_fp_dreg(s, rd, tcg_rd); 9050 } 9051 9052 /* AdvSIMD scalar three same FP16 9053 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9054 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9055 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9056 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9057 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9058 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9059 */ 9060 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9061 uint32_t insn) 9062 { 9063 int rd = extract32(insn, 0, 5); 9064 int rn = extract32(insn, 5, 5); 9065 int opcode = extract32(insn, 11, 3); 9066 int rm = extract32(insn, 16, 5); 9067 bool u = extract32(insn, 29, 1); 9068 bool a = extract32(insn, 23, 1); 9069 int fpopcode = opcode | (a << 3) | (u << 4); 9070 TCGv_ptr fpst; 9071 TCGv_i32 tcg_op1; 9072 TCGv_i32 tcg_op2; 9073 TCGv_i32 tcg_res; 9074 9075 switch (fpopcode) { 9076 case 0x03: /* FMULX */ 9077 case 0x04: /* FCMEQ (reg) */ 9078 case 0x07: /* FRECPS */ 9079 case 0x0f: /* FRSQRTS */ 9080 case 0x14: /* FCMGE (reg) */ 9081 case 0x15: /* FACGE */ 9082 case 0x1a: /* FABD */ 9083 case 0x1c: /* FCMGT (reg) */ 9084 case 0x1d: /* FACGT */ 9085 break; 9086 default: 9087 unallocated_encoding(s); 9088 return; 9089 } 9090 9091 if (!dc_isar_feature(aa64_fp16, s)) { 9092 unallocated_encoding(s); 9093 } 9094 9095 if (!fp_access_check(s)) { 9096 return; 9097 } 9098 9099 fpst = fpstatus_ptr(FPST_FPCR_F16); 9100 9101 tcg_op1 = read_fp_hreg(s, rn); 9102 tcg_op2 = read_fp_hreg(s, rm); 9103 tcg_res = tcg_temp_new_i32(); 9104 9105 switch (fpopcode) { 9106 case 0x03: /* FMULX */ 9107 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9108 break; 9109 case 0x04: /* FCMEQ (reg) */ 9110 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9111 break; 9112 case 0x07: /* FRECPS */ 9113 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9114 break; 9115 case 0x0f: /* FRSQRTS */ 9116 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9117 break; 9118 case 0x14: /* FCMGE (reg) */ 9119 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9120 break; 9121 case 0x15: /* FACGE */ 9122 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x1a: /* FABD */ 9125 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9126 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9127 break; 9128 case 0x1c: /* FCMGT (reg) */ 9129 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9130 break; 9131 case 0x1d: /* FACGT */ 9132 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 default: 9135 g_assert_not_reached(); 9136 } 9137 9138 write_fp_sreg(s, rd, tcg_res); 9139 } 9140 9141 /* AdvSIMD scalar three same extra 9142 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9143 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9144 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9145 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9146 */ 9147 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9148 uint32_t insn) 9149 { 9150 int rd = extract32(insn, 0, 5); 9151 int rn = extract32(insn, 5, 5); 9152 int opcode = extract32(insn, 11, 4); 9153 int rm = extract32(insn, 16, 5); 9154 int size = extract32(insn, 22, 2); 9155 bool u = extract32(insn, 29, 1); 9156 TCGv_i32 ele1, ele2, ele3; 9157 TCGv_i64 res; 9158 bool feature; 9159 9160 switch (u * 16 + opcode) { 9161 case 0x10: /* SQRDMLAH (vector) */ 9162 case 0x11: /* SQRDMLSH (vector) */ 9163 if (size != 1 && size != 2) { 9164 unallocated_encoding(s); 9165 return; 9166 } 9167 feature = dc_isar_feature(aa64_rdm, s); 9168 break; 9169 default: 9170 unallocated_encoding(s); 9171 return; 9172 } 9173 if (!feature) { 9174 unallocated_encoding(s); 9175 return; 9176 } 9177 if (!fp_access_check(s)) { 9178 return; 9179 } 9180 9181 /* Do a single operation on the lowest element in the vector. 9182 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9183 * with no side effects for all these operations. 9184 * OPTME: special-purpose helpers would avoid doing some 9185 * unnecessary work in the helper for the 16 bit cases. 9186 */ 9187 ele1 = tcg_temp_new_i32(); 9188 ele2 = tcg_temp_new_i32(); 9189 ele3 = tcg_temp_new_i32(); 9190 9191 read_vec_element_i32(s, ele1, rn, 0, size); 9192 read_vec_element_i32(s, ele2, rm, 0, size); 9193 read_vec_element_i32(s, ele3, rd, 0, size); 9194 9195 switch (opcode) { 9196 case 0x0: /* SQRDMLAH */ 9197 if (size == 1) { 9198 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9199 } else { 9200 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9201 } 9202 break; 9203 case 0x1: /* SQRDMLSH */ 9204 if (size == 1) { 9205 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9206 } else { 9207 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9208 } 9209 break; 9210 default: 9211 g_assert_not_reached(); 9212 } 9213 9214 res = tcg_temp_new_i64(); 9215 tcg_gen_extu_i32_i64(res, ele3); 9216 write_fp_dreg(s, rd, res); 9217 } 9218 9219 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9220 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9221 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9222 { 9223 /* Handle 64->64 opcodes which are shared between the scalar and 9224 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9225 * is valid in either group and also the double-precision fp ops. 9226 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9227 * requires them. 9228 */ 9229 TCGCond cond; 9230 9231 switch (opcode) { 9232 case 0x4: /* CLS, CLZ */ 9233 if (u) { 9234 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9235 } else { 9236 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9237 } 9238 break; 9239 case 0x5: /* NOT */ 9240 /* This opcode is shared with CNT and RBIT but we have earlier 9241 * enforced that size == 3 if and only if this is the NOT insn. 9242 */ 9243 tcg_gen_not_i64(tcg_rd, tcg_rn); 9244 break; 9245 case 0x7: /* SQABS, SQNEG */ 9246 if (u) { 9247 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9248 } else { 9249 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9250 } 9251 break; 9252 case 0xa: /* CMLT */ 9253 /* 64 bit integer comparison against zero, result is 9254 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9255 * subtracting 1. 9256 */ 9257 cond = TCG_COND_LT; 9258 do_cmop: 9259 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9260 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9261 break; 9262 case 0x8: /* CMGT, CMGE */ 9263 cond = u ? TCG_COND_GE : TCG_COND_GT; 9264 goto do_cmop; 9265 case 0x9: /* CMEQ, CMLE */ 9266 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9267 goto do_cmop; 9268 case 0xb: /* ABS, NEG */ 9269 if (u) { 9270 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9271 } else { 9272 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9273 } 9274 break; 9275 case 0x2f: /* FABS */ 9276 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9277 break; 9278 case 0x6f: /* FNEG */ 9279 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9280 break; 9281 case 0x7f: /* FSQRT */ 9282 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9283 break; 9284 case 0x1a: /* FCVTNS */ 9285 case 0x1b: /* FCVTMS */ 9286 case 0x1c: /* FCVTAS */ 9287 case 0x3a: /* FCVTPS */ 9288 case 0x3b: /* FCVTZS */ 9289 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9290 break; 9291 case 0x5a: /* FCVTNU */ 9292 case 0x5b: /* FCVTMU */ 9293 case 0x5c: /* FCVTAU */ 9294 case 0x7a: /* FCVTPU */ 9295 case 0x7b: /* FCVTZU */ 9296 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9297 break; 9298 case 0x18: /* FRINTN */ 9299 case 0x19: /* FRINTM */ 9300 case 0x38: /* FRINTP */ 9301 case 0x39: /* FRINTZ */ 9302 case 0x58: /* FRINTA */ 9303 case 0x79: /* FRINTI */ 9304 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9305 break; 9306 case 0x59: /* FRINTX */ 9307 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9308 break; 9309 case 0x1e: /* FRINT32Z */ 9310 case 0x5e: /* FRINT32X */ 9311 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9312 break; 9313 case 0x1f: /* FRINT64Z */ 9314 case 0x5f: /* FRINT64X */ 9315 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9316 break; 9317 default: 9318 g_assert_not_reached(); 9319 } 9320 } 9321 9322 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9323 bool is_scalar, bool is_u, bool is_q, 9324 int size, int rn, int rd) 9325 { 9326 bool is_double = (size == MO_64); 9327 TCGv_ptr fpst; 9328 9329 if (!fp_access_check(s)) { 9330 return; 9331 } 9332 9333 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9334 9335 if (is_double) { 9336 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9337 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9338 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9339 NeonGenTwoDoubleOpFn *genfn; 9340 bool swap = false; 9341 int pass; 9342 9343 switch (opcode) { 9344 case 0x2e: /* FCMLT (zero) */ 9345 swap = true; 9346 /* fallthrough */ 9347 case 0x2c: /* FCMGT (zero) */ 9348 genfn = gen_helper_neon_cgt_f64; 9349 break; 9350 case 0x2d: /* FCMEQ (zero) */ 9351 genfn = gen_helper_neon_ceq_f64; 9352 break; 9353 case 0x6d: /* FCMLE (zero) */ 9354 swap = true; 9355 /* fall through */ 9356 case 0x6c: /* FCMGE (zero) */ 9357 genfn = gen_helper_neon_cge_f64; 9358 break; 9359 default: 9360 g_assert_not_reached(); 9361 } 9362 9363 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9364 read_vec_element(s, tcg_op, rn, pass, MO_64); 9365 if (swap) { 9366 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9367 } else { 9368 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9369 } 9370 write_vec_element(s, tcg_res, rd, pass, MO_64); 9371 } 9372 9373 clear_vec_high(s, !is_scalar, rd); 9374 } else { 9375 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9376 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9377 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9378 NeonGenTwoSingleOpFn *genfn; 9379 bool swap = false; 9380 int pass, maxpasses; 9381 9382 if (size == MO_16) { 9383 switch (opcode) { 9384 case 0x2e: /* FCMLT (zero) */ 9385 swap = true; 9386 /* fall through */ 9387 case 0x2c: /* FCMGT (zero) */ 9388 genfn = gen_helper_advsimd_cgt_f16; 9389 break; 9390 case 0x2d: /* FCMEQ (zero) */ 9391 genfn = gen_helper_advsimd_ceq_f16; 9392 break; 9393 case 0x6d: /* FCMLE (zero) */ 9394 swap = true; 9395 /* fall through */ 9396 case 0x6c: /* FCMGE (zero) */ 9397 genfn = gen_helper_advsimd_cge_f16; 9398 break; 9399 default: 9400 g_assert_not_reached(); 9401 } 9402 } else { 9403 switch (opcode) { 9404 case 0x2e: /* FCMLT (zero) */ 9405 swap = true; 9406 /* fall through */ 9407 case 0x2c: /* FCMGT (zero) */ 9408 genfn = gen_helper_neon_cgt_f32; 9409 break; 9410 case 0x2d: /* FCMEQ (zero) */ 9411 genfn = gen_helper_neon_ceq_f32; 9412 break; 9413 case 0x6d: /* FCMLE (zero) */ 9414 swap = true; 9415 /* fall through */ 9416 case 0x6c: /* FCMGE (zero) */ 9417 genfn = gen_helper_neon_cge_f32; 9418 break; 9419 default: 9420 g_assert_not_reached(); 9421 } 9422 } 9423 9424 if (is_scalar) { 9425 maxpasses = 1; 9426 } else { 9427 int vector_size = 8 << is_q; 9428 maxpasses = vector_size >> size; 9429 } 9430 9431 for (pass = 0; pass < maxpasses; pass++) { 9432 read_vec_element_i32(s, tcg_op, rn, pass, size); 9433 if (swap) { 9434 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9435 } else { 9436 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9437 } 9438 if (is_scalar) { 9439 write_fp_sreg(s, rd, tcg_res); 9440 } else { 9441 write_vec_element_i32(s, tcg_res, rd, pass, size); 9442 } 9443 } 9444 9445 if (!is_scalar) { 9446 clear_vec_high(s, is_q, rd); 9447 } 9448 } 9449 } 9450 9451 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9452 bool is_scalar, bool is_u, bool is_q, 9453 int size, int rn, int rd) 9454 { 9455 bool is_double = (size == 3); 9456 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9457 9458 if (is_double) { 9459 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9460 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9461 int pass; 9462 9463 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9464 read_vec_element(s, tcg_op, rn, pass, MO_64); 9465 switch (opcode) { 9466 case 0x3d: /* FRECPE */ 9467 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9468 break; 9469 case 0x3f: /* FRECPX */ 9470 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9471 break; 9472 case 0x7d: /* FRSQRTE */ 9473 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9474 break; 9475 default: 9476 g_assert_not_reached(); 9477 } 9478 write_vec_element(s, tcg_res, rd, pass, MO_64); 9479 } 9480 clear_vec_high(s, !is_scalar, rd); 9481 } else { 9482 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9483 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9484 int pass, maxpasses; 9485 9486 if (is_scalar) { 9487 maxpasses = 1; 9488 } else { 9489 maxpasses = is_q ? 4 : 2; 9490 } 9491 9492 for (pass = 0; pass < maxpasses; pass++) { 9493 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9494 9495 switch (opcode) { 9496 case 0x3c: /* URECPE */ 9497 gen_helper_recpe_u32(tcg_res, tcg_op); 9498 break; 9499 case 0x3d: /* FRECPE */ 9500 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9501 break; 9502 case 0x3f: /* FRECPX */ 9503 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9504 break; 9505 case 0x7d: /* FRSQRTE */ 9506 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9507 break; 9508 default: 9509 g_assert_not_reached(); 9510 } 9511 9512 if (is_scalar) { 9513 write_fp_sreg(s, rd, tcg_res); 9514 } else { 9515 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9516 } 9517 } 9518 if (!is_scalar) { 9519 clear_vec_high(s, is_q, rd); 9520 } 9521 } 9522 } 9523 9524 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9525 int opcode, bool u, bool is_q, 9526 int size, int rn, int rd) 9527 { 9528 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9529 * in the source becomes a size element in the destination). 9530 */ 9531 int pass; 9532 TCGv_i32 tcg_res[2]; 9533 int destelt = is_q ? 2 : 0; 9534 int passes = scalar ? 1 : 2; 9535 9536 if (scalar) { 9537 tcg_res[1] = tcg_constant_i32(0); 9538 } 9539 9540 for (pass = 0; pass < passes; pass++) { 9541 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9542 NeonGenNarrowFn *genfn = NULL; 9543 NeonGenNarrowEnvFn *genenvfn = NULL; 9544 9545 if (scalar) { 9546 read_vec_element(s, tcg_op, rn, pass, size + 1); 9547 } else { 9548 read_vec_element(s, tcg_op, rn, pass, MO_64); 9549 } 9550 tcg_res[pass] = tcg_temp_new_i32(); 9551 9552 switch (opcode) { 9553 case 0x12: /* XTN, SQXTUN */ 9554 { 9555 static NeonGenNarrowFn * const xtnfns[3] = { 9556 gen_helper_neon_narrow_u8, 9557 gen_helper_neon_narrow_u16, 9558 tcg_gen_extrl_i64_i32, 9559 }; 9560 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9561 gen_helper_neon_unarrow_sat8, 9562 gen_helper_neon_unarrow_sat16, 9563 gen_helper_neon_unarrow_sat32, 9564 }; 9565 if (u) { 9566 genenvfn = sqxtunfns[size]; 9567 } else { 9568 genfn = xtnfns[size]; 9569 } 9570 break; 9571 } 9572 case 0x14: /* SQXTN, UQXTN */ 9573 { 9574 static NeonGenNarrowEnvFn * const fns[3][2] = { 9575 { gen_helper_neon_narrow_sat_s8, 9576 gen_helper_neon_narrow_sat_u8 }, 9577 { gen_helper_neon_narrow_sat_s16, 9578 gen_helper_neon_narrow_sat_u16 }, 9579 { gen_helper_neon_narrow_sat_s32, 9580 gen_helper_neon_narrow_sat_u32 }, 9581 }; 9582 genenvfn = fns[size][u]; 9583 break; 9584 } 9585 case 0x16: /* FCVTN, FCVTN2 */ 9586 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9587 if (size == 2) { 9588 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9589 } else { 9590 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9591 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9592 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9593 TCGv_i32 ahp = get_ahp_flag(); 9594 9595 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9596 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9597 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9598 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9599 } 9600 break; 9601 case 0x36: /* BFCVTN, BFCVTN2 */ 9602 { 9603 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9604 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9605 } 9606 break; 9607 case 0x56: /* FCVTXN, FCVTXN2 */ 9608 /* 64 bit to 32 bit float conversion 9609 * with von Neumann rounding (round to odd) 9610 */ 9611 assert(size == 2); 9612 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9613 break; 9614 default: 9615 g_assert_not_reached(); 9616 } 9617 9618 if (genfn) { 9619 genfn(tcg_res[pass], tcg_op); 9620 } else if (genenvfn) { 9621 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9622 } 9623 } 9624 9625 for (pass = 0; pass < 2; pass++) { 9626 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9627 } 9628 clear_vec_high(s, is_q, rd); 9629 } 9630 9631 /* Remaining saturating accumulating ops */ 9632 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9633 bool is_q, int size, int rn, int rd) 9634 { 9635 bool is_double = (size == 3); 9636 9637 if (is_double) { 9638 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9639 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9640 int pass; 9641 9642 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9643 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9644 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9645 9646 if (is_u) { /* USQADD */ 9647 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9648 } else { /* SUQADD */ 9649 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9650 } 9651 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9652 } 9653 clear_vec_high(s, !is_scalar, rd); 9654 } else { 9655 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9656 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9657 int pass, maxpasses; 9658 9659 if (is_scalar) { 9660 maxpasses = 1; 9661 } else { 9662 maxpasses = is_q ? 4 : 2; 9663 } 9664 9665 for (pass = 0; pass < maxpasses; pass++) { 9666 if (is_scalar) { 9667 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9668 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9669 } else { 9670 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9671 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9672 } 9673 9674 if (is_u) { /* USQADD */ 9675 switch (size) { 9676 case 0: 9677 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9678 break; 9679 case 1: 9680 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9681 break; 9682 case 2: 9683 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9684 break; 9685 default: 9686 g_assert_not_reached(); 9687 } 9688 } else { /* SUQADD */ 9689 switch (size) { 9690 case 0: 9691 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9692 break; 9693 case 1: 9694 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9695 break; 9696 case 2: 9697 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9698 break; 9699 default: 9700 g_assert_not_reached(); 9701 } 9702 } 9703 9704 if (is_scalar) { 9705 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9706 } 9707 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9708 } 9709 clear_vec_high(s, is_q, rd); 9710 } 9711 } 9712 9713 /* AdvSIMD scalar two reg misc 9714 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9715 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9716 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9717 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9718 */ 9719 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9720 { 9721 int rd = extract32(insn, 0, 5); 9722 int rn = extract32(insn, 5, 5); 9723 int opcode = extract32(insn, 12, 5); 9724 int size = extract32(insn, 22, 2); 9725 bool u = extract32(insn, 29, 1); 9726 bool is_fcvt = false; 9727 int rmode; 9728 TCGv_i32 tcg_rmode; 9729 TCGv_ptr tcg_fpstatus; 9730 9731 switch (opcode) { 9732 case 0x3: /* USQADD / SUQADD*/ 9733 if (!fp_access_check(s)) { 9734 return; 9735 } 9736 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9737 return; 9738 case 0x7: /* SQABS / SQNEG */ 9739 break; 9740 case 0xa: /* CMLT */ 9741 if (u) { 9742 unallocated_encoding(s); 9743 return; 9744 } 9745 /* fall through */ 9746 case 0x8: /* CMGT, CMGE */ 9747 case 0x9: /* CMEQ, CMLE */ 9748 case 0xb: /* ABS, NEG */ 9749 if (size != 3) { 9750 unallocated_encoding(s); 9751 return; 9752 } 9753 break; 9754 case 0x12: /* SQXTUN */ 9755 if (!u) { 9756 unallocated_encoding(s); 9757 return; 9758 } 9759 /* fall through */ 9760 case 0x14: /* SQXTN, UQXTN */ 9761 if (size == 3) { 9762 unallocated_encoding(s); 9763 return; 9764 } 9765 if (!fp_access_check(s)) { 9766 return; 9767 } 9768 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9769 return; 9770 case 0xc ... 0xf: 9771 case 0x16 ... 0x1d: 9772 case 0x1f: 9773 /* Floating point: U, size[1] and opcode indicate operation; 9774 * size[0] indicates single or double precision. 9775 */ 9776 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9777 size = extract32(size, 0, 1) ? 3 : 2; 9778 switch (opcode) { 9779 case 0x2c: /* FCMGT (zero) */ 9780 case 0x2d: /* FCMEQ (zero) */ 9781 case 0x2e: /* FCMLT (zero) */ 9782 case 0x6c: /* FCMGE (zero) */ 9783 case 0x6d: /* FCMLE (zero) */ 9784 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9785 return; 9786 case 0x1d: /* SCVTF */ 9787 case 0x5d: /* UCVTF */ 9788 { 9789 bool is_signed = (opcode == 0x1d); 9790 if (!fp_access_check(s)) { 9791 return; 9792 } 9793 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9794 return; 9795 } 9796 case 0x3d: /* FRECPE */ 9797 case 0x3f: /* FRECPX */ 9798 case 0x7d: /* FRSQRTE */ 9799 if (!fp_access_check(s)) { 9800 return; 9801 } 9802 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9803 return; 9804 case 0x1a: /* FCVTNS */ 9805 case 0x1b: /* FCVTMS */ 9806 case 0x3a: /* FCVTPS */ 9807 case 0x3b: /* FCVTZS */ 9808 case 0x5a: /* FCVTNU */ 9809 case 0x5b: /* FCVTMU */ 9810 case 0x7a: /* FCVTPU */ 9811 case 0x7b: /* FCVTZU */ 9812 is_fcvt = true; 9813 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9814 break; 9815 case 0x1c: /* FCVTAS */ 9816 case 0x5c: /* FCVTAU */ 9817 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9818 is_fcvt = true; 9819 rmode = FPROUNDING_TIEAWAY; 9820 break; 9821 case 0x56: /* FCVTXN, FCVTXN2 */ 9822 if (size == 2) { 9823 unallocated_encoding(s); 9824 return; 9825 } 9826 if (!fp_access_check(s)) { 9827 return; 9828 } 9829 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9830 return; 9831 default: 9832 unallocated_encoding(s); 9833 return; 9834 } 9835 break; 9836 default: 9837 unallocated_encoding(s); 9838 return; 9839 } 9840 9841 if (!fp_access_check(s)) { 9842 return; 9843 } 9844 9845 if (is_fcvt) { 9846 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9847 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9848 } else { 9849 tcg_fpstatus = NULL; 9850 tcg_rmode = NULL; 9851 } 9852 9853 if (size == 3) { 9854 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9855 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9856 9857 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9858 write_fp_dreg(s, rd, tcg_rd); 9859 } else { 9860 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9861 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9862 9863 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9864 9865 switch (opcode) { 9866 case 0x7: /* SQABS, SQNEG */ 9867 { 9868 NeonGenOneOpEnvFn *genfn; 9869 static NeonGenOneOpEnvFn * const fns[3][2] = { 9870 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9871 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9872 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9873 }; 9874 genfn = fns[size][u]; 9875 genfn(tcg_rd, cpu_env, tcg_rn); 9876 break; 9877 } 9878 case 0x1a: /* FCVTNS */ 9879 case 0x1b: /* FCVTMS */ 9880 case 0x1c: /* FCVTAS */ 9881 case 0x3a: /* FCVTPS */ 9882 case 0x3b: /* FCVTZS */ 9883 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9884 tcg_fpstatus); 9885 break; 9886 case 0x5a: /* FCVTNU */ 9887 case 0x5b: /* FCVTMU */ 9888 case 0x5c: /* FCVTAU */ 9889 case 0x7a: /* FCVTPU */ 9890 case 0x7b: /* FCVTZU */ 9891 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9892 tcg_fpstatus); 9893 break; 9894 default: 9895 g_assert_not_reached(); 9896 } 9897 9898 write_fp_sreg(s, rd, tcg_rd); 9899 } 9900 9901 if (is_fcvt) { 9902 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9903 } 9904 } 9905 9906 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 9907 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 9908 int immh, int immb, int opcode, int rn, int rd) 9909 { 9910 int size = 32 - clz32(immh) - 1; 9911 int immhb = immh << 3 | immb; 9912 int shift = 2 * (8 << size) - immhb; 9913 GVecGen2iFn *gvec_fn; 9914 9915 if (extract32(immh, 3, 1) && !is_q) { 9916 unallocated_encoding(s); 9917 return; 9918 } 9919 tcg_debug_assert(size <= 3); 9920 9921 if (!fp_access_check(s)) { 9922 return; 9923 } 9924 9925 switch (opcode) { 9926 case 0x02: /* SSRA / USRA (accumulate) */ 9927 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 9928 break; 9929 9930 case 0x08: /* SRI */ 9931 gvec_fn = gen_gvec_sri; 9932 break; 9933 9934 case 0x00: /* SSHR / USHR */ 9935 if (is_u) { 9936 if (shift == 8 << size) { 9937 /* Shift count the same size as element size produces zero. */ 9938 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 9939 is_q ? 16 : 8, vec_full_reg_size(s), 0); 9940 return; 9941 } 9942 gvec_fn = tcg_gen_gvec_shri; 9943 } else { 9944 /* Shift count the same size as element size produces all sign. */ 9945 if (shift == 8 << size) { 9946 shift -= 1; 9947 } 9948 gvec_fn = tcg_gen_gvec_sari; 9949 } 9950 break; 9951 9952 case 0x04: /* SRSHR / URSHR (rounding) */ 9953 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 9954 break; 9955 9956 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9957 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 9958 break; 9959 9960 default: 9961 g_assert_not_reached(); 9962 } 9963 9964 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 9965 } 9966 9967 /* SHL/SLI - Vector shift left */ 9968 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 9969 int immh, int immb, int opcode, int rn, int rd) 9970 { 9971 int size = 32 - clz32(immh) - 1; 9972 int immhb = immh << 3 | immb; 9973 int shift = immhb - (8 << size); 9974 9975 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 9976 assert(size >= 0 && size <= 3); 9977 9978 if (extract32(immh, 3, 1) && !is_q) { 9979 unallocated_encoding(s); 9980 return; 9981 } 9982 9983 if (!fp_access_check(s)) { 9984 return; 9985 } 9986 9987 if (insert) { 9988 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 9989 } else { 9990 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 9991 } 9992 } 9993 9994 /* USHLL/SHLL - Vector shift left with widening */ 9995 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 9996 int immh, int immb, int opcode, int rn, int rd) 9997 { 9998 int size = 32 - clz32(immh) - 1; 9999 int immhb = immh << 3 | immb; 10000 int shift = immhb - (8 << size); 10001 int dsize = 64; 10002 int esize = 8 << size; 10003 int elements = dsize/esize; 10004 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10005 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10006 int i; 10007 10008 if (size >= 3) { 10009 unallocated_encoding(s); 10010 return; 10011 } 10012 10013 if (!fp_access_check(s)) { 10014 return; 10015 } 10016 10017 /* For the LL variants the store is larger than the load, 10018 * so if rd == rn we would overwrite parts of our input. 10019 * So load everything right now and use shifts in the main loop. 10020 */ 10021 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10022 10023 for (i = 0; i < elements; i++) { 10024 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10025 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10026 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10027 write_vec_element(s, tcg_rd, rd, i, size + 1); 10028 } 10029 } 10030 10031 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10032 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10033 int immh, int immb, int opcode, int rn, int rd) 10034 { 10035 int immhb = immh << 3 | immb; 10036 int size = 32 - clz32(immh) - 1; 10037 int dsize = 64; 10038 int esize = 8 << size; 10039 int elements = dsize/esize; 10040 int shift = (2 * esize) - immhb; 10041 bool round = extract32(opcode, 0, 1); 10042 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10043 TCGv_i64 tcg_round; 10044 int i; 10045 10046 if (extract32(immh, 3, 1)) { 10047 unallocated_encoding(s); 10048 return; 10049 } 10050 10051 if (!fp_access_check(s)) { 10052 return; 10053 } 10054 10055 tcg_rn = tcg_temp_new_i64(); 10056 tcg_rd = tcg_temp_new_i64(); 10057 tcg_final = tcg_temp_new_i64(); 10058 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10059 10060 if (round) { 10061 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10062 } else { 10063 tcg_round = NULL; 10064 } 10065 10066 for (i = 0; i < elements; i++) { 10067 read_vec_element(s, tcg_rn, rn, i, size+1); 10068 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10069 false, true, size+1, shift); 10070 10071 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10072 } 10073 10074 if (!is_q) { 10075 write_vec_element(s, tcg_final, rd, 0, MO_64); 10076 } else { 10077 write_vec_element(s, tcg_final, rd, 1, MO_64); 10078 } 10079 10080 clear_vec_high(s, is_q, rd); 10081 } 10082 10083 10084 /* AdvSIMD shift by immediate 10085 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10086 * +---+---+---+-------------+------+------+--------+---+------+------+ 10087 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10088 * +---+---+---+-------------+------+------+--------+---+------+------+ 10089 */ 10090 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10091 { 10092 int rd = extract32(insn, 0, 5); 10093 int rn = extract32(insn, 5, 5); 10094 int opcode = extract32(insn, 11, 5); 10095 int immb = extract32(insn, 16, 3); 10096 int immh = extract32(insn, 19, 4); 10097 bool is_u = extract32(insn, 29, 1); 10098 bool is_q = extract32(insn, 30, 1); 10099 10100 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10101 assert(immh != 0); 10102 10103 switch (opcode) { 10104 case 0x08: /* SRI */ 10105 if (!is_u) { 10106 unallocated_encoding(s); 10107 return; 10108 } 10109 /* fall through */ 10110 case 0x00: /* SSHR / USHR */ 10111 case 0x02: /* SSRA / USRA (accumulate) */ 10112 case 0x04: /* SRSHR / URSHR (rounding) */ 10113 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10114 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10115 break; 10116 case 0x0a: /* SHL / SLI */ 10117 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10118 break; 10119 case 0x10: /* SHRN */ 10120 case 0x11: /* RSHRN / SQRSHRUN */ 10121 if (is_u) { 10122 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10123 opcode, rn, rd); 10124 } else { 10125 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10126 } 10127 break; 10128 case 0x12: /* SQSHRN / UQSHRN */ 10129 case 0x13: /* SQRSHRN / UQRSHRN */ 10130 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10131 opcode, rn, rd); 10132 break; 10133 case 0x14: /* SSHLL / USHLL */ 10134 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10135 break; 10136 case 0x1c: /* SCVTF / UCVTF */ 10137 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10138 opcode, rn, rd); 10139 break; 10140 case 0xc: /* SQSHLU */ 10141 if (!is_u) { 10142 unallocated_encoding(s); 10143 return; 10144 } 10145 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10146 break; 10147 case 0xe: /* SQSHL, UQSHL */ 10148 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10149 break; 10150 case 0x1f: /* FCVTZS/ FCVTZU */ 10151 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10152 return; 10153 default: 10154 unallocated_encoding(s); 10155 return; 10156 } 10157 } 10158 10159 /* Generate code to do a "long" addition or subtraction, ie one done in 10160 * TCGv_i64 on vector lanes twice the width specified by size. 10161 */ 10162 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10163 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10164 { 10165 static NeonGenTwo64OpFn * const fns[3][2] = { 10166 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10167 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10168 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10169 }; 10170 NeonGenTwo64OpFn *genfn; 10171 assert(size < 3); 10172 10173 genfn = fns[size][is_sub]; 10174 genfn(tcg_res, tcg_op1, tcg_op2); 10175 } 10176 10177 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10178 int opcode, int rd, int rn, int rm) 10179 { 10180 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10181 TCGv_i64 tcg_res[2]; 10182 int pass, accop; 10183 10184 tcg_res[0] = tcg_temp_new_i64(); 10185 tcg_res[1] = tcg_temp_new_i64(); 10186 10187 /* Does this op do an adding accumulate, a subtracting accumulate, 10188 * or no accumulate at all? 10189 */ 10190 switch (opcode) { 10191 case 5: 10192 case 8: 10193 case 9: 10194 accop = 1; 10195 break; 10196 case 10: 10197 case 11: 10198 accop = -1; 10199 break; 10200 default: 10201 accop = 0; 10202 break; 10203 } 10204 10205 if (accop != 0) { 10206 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10207 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10208 } 10209 10210 /* size == 2 means two 32x32->64 operations; this is worth special 10211 * casing because we can generally handle it inline. 10212 */ 10213 if (size == 2) { 10214 for (pass = 0; pass < 2; pass++) { 10215 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10216 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10217 TCGv_i64 tcg_passres; 10218 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10219 10220 int elt = pass + is_q * 2; 10221 10222 read_vec_element(s, tcg_op1, rn, elt, memop); 10223 read_vec_element(s, tcg_op2, rm, elt, memop); 10224 10225 if (accop == 0) { 10226 tcg_passres = tcg_res[pass]; 10227 } else { 10228 tcg_passres = tcg_temp_new_i64(); 10229 } 10230 10231 switch (opcode) { 10232 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10233 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10234 break; 10235 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10236 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10237 break; 10238 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10239 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10240 { 10241 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10242 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10243 10244 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10245 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10246 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10247 tcg_passres, 10248 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10249 break; 10250 } 10251 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10252 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10253 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10254 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10255 break; 10256 case 9: /* SQDMLAL, SQDMLAL2 */ 10257 case 11: /* SQDMLSL, SQDMLSL2 */ 10258 case 13: /* SQDMULL, SQDMULL2 */ 10259 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10260 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10261 tcg_passres, tcg_passres); 10262 break; 10263 default: 10264 g_assert_not_reached(); 10265 } 10266 10267 if (opcode == 9 || opcode == 11) { 10268 /* saturating accumulate ops */ 10269 if (accop < 0) { 10270 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10271 } 10272 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10273 tcg_res[pass], tcg_passres); 10274 } else if (accop > 0) { 10275 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10276 } else if (accop < 0) { 10277 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10278 } 10279 } 10280 } else { 10281 /* size 0 or 1, generally helper functions */ 10282 for (pass = 0; pass < 2; pass++) { 10283 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10284 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10285 TCGv_i64 tcg_passres; 10286 int elt = pass + is_q * 2; 10287 10288 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10289 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10290 10291 if (accop == 0) { 10292 tcg_passres = tcg_res[pass]; 10293 } else { 10294 tcg_passres = tcg_temp_new_i64(); 10295 } 10296 10297 switch (opcode) { 10298 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10299 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10300 { 10301 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10302 static NeonGenWidenFn * const widenfns[2][2] = { 10303 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10304 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10305 }; 10306 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10307 10308 widenfn(tcg_op2_64, tcg_op2); 10309 widenfn(tcg_passres, tcg_op1); 10310 gen_neon_addl(size, (opcode == 2), tcg_passres, 10311 tcg_passres, tcg_op2_64); 10312 break; 10313 } 10314 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10315 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10316 if (size == 0) { 10317 if (is_u) { 10318 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10319 } else { 10320 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10321 } 10322 } else { 10323 if (is_u) { 10324 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10325 } else { 10326 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10327 } 10328 } 10329 break; 10330 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10331 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10332 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10333 if (size == 0) { 10334 if (is_u) { 10335 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10336 } else { 10337 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10338 } 10339 } else { 10340 if (is_u) { 10341 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10342 } else { 10343 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10344 } 10345 } 10346 break; 10347 case 9: /* SQDMLAL, SQDMLAL2 */ 10348 case 11: /* SQDMLSL, SQDMLSL2 */ 10349 case 13: /* SQDMULL, SQDMULL2 */ 10350 assert(size == 1); 10351 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10352 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10353 tcg_passres, tcg_passres); 10354 break; 10355 default: 10356 g_assert_not_reached(); 10357 } 10358 10359 if (accop != 0) { 10360 if (opcode == 9 || opcode == 11) { 10361 /* saturating accumulate ops */ 10362 if (accop < 0) { 10363 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10364 } 10365 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10366 tcg_res[pass], 10367 tcg_passres); 10368 } else { 10369 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10370 tcg_res[pass], tcg_passres); 10371 } 10372 } 10373 } 10374 } 10375 10376 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10377 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10378 } 10379 10380 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10381 int opcode, int rd, int rn, int rm) 10382 { 10383 TCGv_i64 tcg_res[2]; 10384 int part = is_q ? 2 : 0; 10385 int pass; 10386 10387 for (pass = 0; pass < 2; pass++) { 10388 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10389 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10390 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10391 static NeonGenWidenFn * const widenfns[3][2] = { 10392 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10393 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10394 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10395 }; 10396 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10397 10398 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10399 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10400 widenfn(tcg_op2_wide, tcg_op2); 10401 tcg_res[pass] = tcg_temp_new_i64(); 10402 gen_neon_addl(size, (opcode == 3), 10403 tcg_res[pass], tcg_op1, tcg_op2_wide); 10404 } 10405 10406 for (pass = 0; pass < 2; pass++) { 10407 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10408 } 10409 } 10410 10411 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10412 { 10413 tcg_gen_addi_i64(in, in, 1U << 31); 10414 tcg_gen_extrh_i64_i32(res, in); 10415 } 10416 10417 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10418 int opcode, int rd, int rn, int rm) 10419 { 10420 TCGv_i32 tcg_res[2]; 10421 int part = is_q ? 2 : 0; 10422 int pass; 10423 10424 for (pass = 0; pass < 2; pass++) { 10425 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10426 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10427 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10428 static NeonGenNarrowFn * const narrowfns[3][2] = { 10429 { gen_helper_neon_narrow_high_u8, 10430 gen_helper_neon_narrow_round_high_u8 }, 10431 { gen_helper_neon_narrow_high_u16, 10432 gen_helper_neon_narrow_round_high_u16 }, 10433 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10434 }; 10435 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10436 10437 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10438 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10439 10440 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10441 10442 tcg_res[pass] = tcg_temp_new_i32(); 10443 gennarrow(tcg_res[pass], tcg_wideres); 10444 } 10445 10446 for (pass = 0; pass < 2; pass++) { 10447 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10448 } 10449 clear_vec_high(s, is_q, rd); 10450 } 10451 10452 /* AdvSIMD three different 10453 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10454 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10455 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10456 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10457 */ 10458 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10459 { 10460 /* Instructions in this group fall into three basic classes 10461 * (in each case with the operation working on each element in 10462 * the input vectors): 10463 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10464 * 128 bit input) 10465 * (2) wide 64 x 128 -> 128 10466 * (3) narrowing 128 x 128 -> 64 10467 * Here we do initial decode, catch unallocated cases and 10468 * dispatch to separate functions for each class. 10469 */ 10470 int is_q = extract32(insn, 30, 1); 10471 int is_u = extract32(insn, 29, 1); 10472 int size = extract32(insn, 22, 2); 10473 int opcode = extract32(insn, 12, 4); 10474 int rm = extract32(insn, 16, 5); 10475 int rn = extract32(insn, 5, 5); 10476 int rd = extract32(insn, 0, 5); 10477 10478 switch (opcode) { 10479 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10480 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10481 /* 64 x 128 -> 128 */ 10482 if (size == 3) { 10483 unallocated_encoding(s); 10484 return; 10485 } 10486 if (!fp_access_check(s)) { 10487 return; 10488 } 10489 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10490 break; 10491 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10492 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10493 /* 128 x 128 -> 64 */ 10494 if (size == 3) { 10495 unallocated_encoding(s); 10496 return; 10497 } 10498 if (!fp_access_check(s)) { 10499 return; 10500 } 10501 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10502 break; 10503 case 14: /* PMULL, PMULL2 */ 10504 if (is_u) { 10505 unallocated_encoding(s); 10506 return; 10507 } 10508 switch (size) { 10509 case 0: /* PMULL.P8 */ 10510 if (!fp_access_check(s)) { 10511 return; 10512 } 10513 /* The Q field specifies lo/hi half input for this insn. */ 10514 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10515 gen_helper_neon_pmull_h); 10516 break; 10517 10518 case 3: /* PMULL.P64 */ 10519 if (!dc_isar_feature(aa64_pmull, s)) { 10520 unallocated_encoding(s); 10521 return; 10522 } 10523 if (!fp_access_check(s)) { 10524 return; 10525 } 10526 /* The Q field specifies lo/hi half input for this insn. */ 10527 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10528 gen_helper_gvec_pmull_q); 10529 break; 10530 10531 default: 10532 unallocated_encoding(s); 10533 break; 10534 } 10535 return; 10536 case 9: /* SQDMLAL, SQDMLAL2 */ 10537 case 11: /* SQDMLSL, SQDMLSL2 */ 10538 case 13: /* SQDMULL, SQDMULL2 */ 10539 if (is_u || size == 0) { 10540 unallocated_encoding(s); 10541 return; 10542 } 10543 /* fall through */ 10544 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10545 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10546 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10547 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10548 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10549 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10550 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10551 /* 64 x 64 -> 128 */ 10552 if (size == 3) { 10553 unallocated_encoding(s); 10554 return; 10555 } 10556 if (!fp_access_check(s)) { 10557 return; 10558 } 10559 10560 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10561 break; 10562 default: 10563 /* opcode 15 not allocated */ 10564 unallocated_encoding(s); 10565 break; 10566 } 10567 } 10568 10569 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10570 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10571 { 10572 int rd = extract32(insn, 0, 5); 10573 int rn = extract32(insn, 5, 5); 10574 int rm = extract32(insn, 16, 5); 10575 int size = extract32(insn, 22, 2); 10576 bool is_u = extract32(insn, 29, 1); 10577 bool is_q = extract32(insn, 30, 1); 10578 10579 if (!fp_access_check(s)) { 10580 return; 10581 } 10582 10583 switch (size + 4 * is_u) { 10584 case 0: /* AND */ 10585 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10586 return; 10587 case 1: /* BIC */ 10588 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10589 return; 10590 case 2: /* ORR */ 10591 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10592 return; 10593 case 3: /* ORN */ 10594 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10595 return; 10596 case 4: /* EOR */ 10597 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10598 return; 10599 10600 case 5: /* BSL bitwise select */ 10601 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10602 return; 10603 case 6: /* BIT, bitwise insert if true */ 10604 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10605 return; 10606 case 7: /* BIF, bitwise insert if false */ 10607 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10608 return; 10609 10610 default: 10611 g_assert_not_reached(); 10612 } 10613 } 10614 10615 /* Pairwise op subgroup of C3.6.16. 10616 * 10617 * This is called directly or via the handle_3same_float for float pairwise 10618 * operations where the opcode and size are calculated differently. 10619 */ 10620 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10621 int size, int rn, int rm, int rd) 10622 { 10623 TCGv_ptr fpst; 10624 int pass; 10625 10626 /* Floating point operations need fpst */ 10627 if (opcode >= 0x58) { 10628 fpst = fpstatus_ptr(FPST_FPCR); 10629 } else { 10630 fpst = NULL; 10631 } 10632 10633 if (!fp_access_check(s)) { 10634 return; 10635 } 10636 10637 /* These operations work on the concatenated rm:rn, with each pair of 10638 * adjacent elements being operated on to produce an element in the result. 10639 */ 10640 if (size == 3) { 10641 TCGv_i64 tcg_res[2]; 10642 10643 for (pass = 0; pass < 2; pass++) { 10644 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10645 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10646 int passreg = (pass == 0) ? rn : rm; 10647 10648 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10649 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10650 tcg_res[pass] = tcg_temp_new_i64(); 10651 10652 switch (opcode) { 10653 case 0x17: /* ADDP */ 10654 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10655 break; 10656 case 0x58: /* FMAXNMP */ 10657 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10658 break; 10659 case 0x5a: /* FADDP */ 10660 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10661 break; 10662 case 0x5e: /* FMAXP */ 10663 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10664 break; 10665 case 0x78: /* FMINNMP */ 10666 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10667 break; 10668 case 0x7e: /* FMINP */ 10669 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10670 break; 10671 default: 10672 g_assert_not_reached(); 10673 } 10674 } 10675 10676 for (pass = 0; pass < 2; pass++) { 10677 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10678 } 10679 } else { 10680 int maxpass = is_q ? 4 : 2; 10681 TCGv_i32 tcg_res[4]; 10682 10683 for (pass = 0; pass < maxpass; pass++) { 10684 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10685 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10686 NeonGenTwoOpFn *genfn = NULL; 10687 int passreg = pass < (maxpass / 2) ? rn : rm; 10688 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10689 10690 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10691 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10692 tcg_res[pass] = tcg_temp_new_i32(); 10693 10694 switch (opcode) { 10695 case 0x17: /* ADDP */ 10696 { 10697 static NeonGenTwoOpFn * const fns[3] = { 10698 gen_helper_neon_padd_u8, 10699 gen_helper_neon_padd_u16, 10700 tcg_gen_add_i32, 10701 }; 10702 genfn = fns[size]; 10703 break; 10704 } 10705 case 0x14: /* SMAXP, UMAXP */ 10706 { 10707 static NeonGenTwoOpFn * const fns[3][2] = { 10708 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10709 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10710 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10711 }; 10712 genfn = fns[size][u]; 10713 break; 10714 } 10715 case 0x15: /* SMINP, UMINP */ 10716 { 10717 static NeonGenTwoOpFn * const fns[3][2] = { 10718 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10719 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10720 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10721 }; 10722 genfn = fns[size][u]; 10723 break; 10724 } 10725 /* The FP operations are all on single floats (32 bit) */ 10726 case 0x58: /* FMAXNMP */ 10727 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10728 break; 10729 case 0x5a: /* FADDP */ 10730 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10731 break; 10732 case 0x5e: /* FMAXP */ 10733 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10734 break; 10735 case 0x78: /* FMINNMP */ 10736 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10737 break; 10738 case 0x7e: /* FMINP */ 10739 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10740 break; 10741 default: 10742 g_assert_not_reached(); 10743 } 10744 10745 /* FP ops called directly, otherwise call now */ 10746 if (genfn) { 10747 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10748 } 10749 } 10750 10751 for (pass = 0; pass < maxpass; pass++) { 10752 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10753 } 10754 clear_vec_high(s, is_q, rd); 10755 } 10756 } 10757 10758 /* Floating point op subgroup of C3.6.16. */ 10759 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10760 { 10761 /* For floating point ops, the U, size[1] and opcode bits 10762 * together indicate the operation. size[0] indicates single 10763 * or double. 10764 */ 10765 int fpopcode = extract32(insn, 11, 5) 10766 | (extract32(insn, 23, 1) << 5) 10767 | (extract32(insn, 29, 1) << 6); 10768 int is_q = extract32(insn, 30, 1); 10769 int size = extract32(insn, 22, 1); 10770 int rm = extract32(insn, 16, 5); 10771 int rn = extract32(insn, 5, 5); 10772 int rd = extract32(insn, 0, 5); 10773 10774 int datasize = is_q ? 128 : 64; 10775 int esize = 32 << size; 10776 int elements = datasize / esize; 10777 10778 if (size == 1 && !is_q) { 10779 unallocated_encoding(s); 10780 return; 10781 } 10782 10783 switch (fpopcode) { 10784 case 0x58: /* FMAXNMP */ 10785 case 0x5a: /* FADDP */ 10786 case 0x5e: /* FMAXP */ 10787 case 0x78: /* FMINNMP */ 10788 case 0x7e: /* FMINP */ 10789 if (size && !is_q) { 10790 unallocated_encoding(s); 10791 return; 10792 } 10793 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10794 rn, rm, rd); 10795 return; 10796 case 0x1b: /* FMULX */ 10797 case 0x1f: /* FRECPS */ 10798 case 0x3f: /* FRSQRTS */ 10799 case 0x5d: /* FACGE */ 10800 case 0x7d: /* FACGT */ 10801 case 0x19: /* FMLA */ 10802 case 0x39: /* FMLS */ 10803 case 0x18: /* FMAXNM */ 10804 case 0x1a: /* FADD */ 10805 case 0x1c: /* FCMEQ */ 10806 case 0x1e: /* FMAX */ 10807 case 0x38: /* FMINNM */ 10808 case 0x3a: /* FSUB */ 10809 case 0x3e: /* FMIN */ 10810 case 0x5b: /* FMUL */ 10811 case 0x5c: /* FCMGE */ 10812 case 0x5f: /* FDIV */ 10813 case 0x7a: /* FABD */ 10814 case 0x7c: /* FCMGT */ 10815 if (!fp_access_check(s)) { 10816 return; 10817 } 10818 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10819 return; 10820 10821 case 0x1d: /* FMLAL */ 10822 case 0x3d: /* FMLSL */ 10823 case 0x59: /* FMLAL2 */ 10824 case 0x79: /* FMLSL2 */ 10825 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10826 unallocated_encoding(s); 10827 return; 10828 } 10829 if (fp_access_check(s)) { 10830 int is_s = extract32(insn, 23, 1); 10831 int is_2 = extract32(insn, 29, 1); 10832 int data = (is_2 << 1) | is_s; 10833 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10834 vec_full_reg_offset(s, rn), 10835 vec_full_reg_offset(s, rm), cpu_env, 10836 is_q ? 16 : 8, vec_full_reg_size(s), 10837 data, gen_helper_gvec_fmlal_a64); 10838 } 10839 return; 10840 10841 default: 10842 unallocated_encoding(s); 10843 return; 10844 } 10845 } 10846 10847 /* Integer op subgroup of C3.6.16. */ 10848 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10849 { 10850 int is_q = extract32(insn, 30, 1); 10851 int u = extract32(insn, 29, 1); 10852 int size = extract32(insn, 22, 2); 10853 int opcode = extract32(insn, 11, 5); 10854 int rm = extract32(insn, 16, 5); 10855 int rn = extract32(insn, 5, 5); 10856 int rd = extract32(insn, 0, 5); 10857 int pass; 10858 TCGCond cond; 10859 10860 switch (opcode) { 10861 case 0x13: /* MUL, PMUL */ 10862 if (u && size != 0) { 10863 unallocated_encoding(s); 10864 return; 10865 } 10866 /* fall through */ 10867 case 0x0: /* SHADD, UHADD */ 10868 case 0x2: /* SRHADD, URHADD */ 10869 case 0x4: /* SHSUB, UHSUB */ 10870 case 0xc: /* SMAX, UMAX */ 10871 case 0xd: /* SMIN, UMIN */ 10872 case 0xe: /* SABD, UABD */ 10873 case 0xf: /* SABA, UABA */ 10874 case 0x12: /* MLA, MLS */ 10875 if (size == 3) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 break; 10880 case 0x16: /* SQDMULH, SQRDMULH */ 10881 if (size == 0 || size == 3) { 10882 unallocated_encoding(s); 10883 return; 10884 } 10885 break; 10886 default: 10887 if (size == 3 && !is_q) { 10888 unallocated_encoding(s); 10889 return; 10890 } 10891 break; 10892 } 10893 10894 if (!fp_access_check(s)) { 10895 return; 10896 } 10897 10898 switch (opcode) { 10899 case 0x01: /* SQADD, UQADD */ 10900 if (u) { 10901 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 10902 } else { 10903 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 10904 } 10905 return; 10906 case 0x05: /* SQSUB, UQSUB */ 10907 if (u) { 10908 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 10909 } else { 10910 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 10911 } 10912 return; 10913 case 0x08: /* SSHL, USHL */ 10914 if (u) { 10915 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 10916 } else { 10917 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 10918 } 10919 return; 10920 case 0x0c: /* SMAX, UMAX */ 10921 if (u) { 10922 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 10923 } else { 10924 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 10925 } 10926 return; 10927 case 0x0d: /* SMIN, UMIN */ 10928 if (u) { 10929 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 10930 } else { 10931 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 10932 } 10933 return; 10934 case 0xe: /* SABD, UABD */ 10935 if (u) { 10936 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 10937 } else { 10938 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 10939 } 10940 return; 10941 case 0xf: /* SABA, UABA */ 10942 if (u) { 10943 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 10944 } else { 10945 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 10946 } 10947 return; 10948 case 0x10: /* ADD, SUB */ 10949 if (u) { 10950 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 10951 } else { 10952 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 10953 } 10954 return; 10955 case 0x13: /* MUL, PMUL */ 10956 if (!u) { /* MUL */ 10957 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 10958 } else { /* PMUL */ 10959 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 10960 } 10961 return; 10962 case 0x12: /* MLA, MLS */ 10963 if (u) { 10964 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 10965 } else { 10966 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 10967 } 10968 return; 10969 case 0x16: /* SQDMULH, SQRDMULH */ 10970 { 10971 static gen_helper_gvec_3_ptr * const fns[2][2] = { 10972 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 10973 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 10974 }; 10975 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 10976 } 10977 return; 10978 case 0x11: 10979 if (!u) { /* CMTST */ 10980 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 10981 return; 10982 } 10983 /* else CMEQ */ 10984 cond = TCG_COND_EQ; 10985 goto do_gvec_cmp; 10986 case 0x06: /* CMGT, CMHI */ 10987 cond = u ? TCG_COND_GTU : TCG_COND_GT; 10988 goto do_gvec_cmp; 10989 case 0x07: /* CMGE, CMHS */ 10990 cond = u ? TCG_COND_GEU : TCG_COND_GE; 10991 do_gvec_cmp: 10992 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 10993 vec_full_reg_offset(s, rn), 10994 vec_full_reg_offset(s, rm), 10995 is_q ? 16 : 8, vec_full_reg_size(s)); 10996 return; 10997 } 10998 10999 if (size == 3) { 11000 assert(is_q); 11001 for (pass = 0; pass < 2; pass++) { 11002 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11003 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11004 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11005 11006 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11007 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11008 11009 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11010 11011 write_vec_element(s, tcg_res, rd, pass, MO_64); 11012 } 11013 } else { 11014 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11015 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11016 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11017 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11018 NeonGenTwoOpFn *genfn = NULL; 11019 NeonGenTwoOpEnvFn *genenvfn = NULL; 11020 11021 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11022 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11023 11024 switch (opcode) { 11025 case 0x0: /* SHADD, UHADD */ 11026 { 11027 static NeonGenTwoOpFn * const fns[3][2] = { 11028 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11029 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11030 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11031 }; 11032 genfn = fns[size][u]; 11033 break; 11034 } 11035 case 0x2: /* SRHADD, URHADD */ 11036 { 11037 static NeonGenTwoOpFn * const fns[3][2] = { 11038 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11039 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11040 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11041 }; 11042 genfn = fns[size][u]; 11043 break; 11044 } 11045 case 0x4: /* SHSUB, UHSUB */ 11046 { 11047 static NeonGenTwoOpFn * const fns[3][2] = { 11048 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11049 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11050 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11051 }; 11052 genfn = fns[size][u]; 11053 break; 11054 } 11055 case 0x9: /* SQSHL, UQSHL */ 11056 { 11057 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11058 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11059 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11060 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11061 }; 11062 genenvfn = fns[size][u]; 11063 break; 11064 } 11065 case 0xa: /* SRSHL, URSHL */ 11066 { 11067 static NeonGenTwoOpFn * const fns[3][2] = { 11068 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11069 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11070 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11071 }; 11072 genfn = fns[size][u]; 11073 break; 11074 } 11075 case 0xb: /* SQRSHL, UQRSHL */ 11076 { 11077 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11078 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11079 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11080 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11081 }; 11082 genenvfn = fns[size][u]; 11083 break; 11084 } 11085 default: 11086 g_assert_not_reached(); 11087 } 11088 11089 if (genenvfn) { 11090 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11091 } else { 11092 genfn(tcg_res, tcg_op1, tcg_op2); 11093 } 11094 11095 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11096 } 11097 } 11098 clear_vec_high(s, is_q, rd); 11099 } 11100 11101 /* AdvSIMD three same 11102 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11103 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11104 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11105 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11106 */ 11107 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11108 { 11109 int opcode = extract32(insn, 11, 5); 11110 11111 switch (opcode) { 11112 case 0x3: /* logic ops */ 11113 disas_simd_3same_logic(s, insn); 11114 break; 11115 case 0x17: /* ADDP */ 11116 case 0x14: /* SMAXP, UMAXP */ 11117 case 0x15: /* SMINP, UMINP */ 11118 { 11119 /* Pairwise operations */ 11120 int is_q = extract32(insn, 30, 1); 11121 int u = extract32(insn, 29, 1); 11122 int size = extract32(insn, 22, 2); 11123 int rm = extract32(insn, 16, 5); 11124 int rn = extract32(insn, 5, 5); 11125 int rd = extract32(insn, 0, 5); 11126 if (opcode == 0x17) { 11127 if (u || (size == 3 && !is_q)) { 11128 unallocated_encoding(s); 11129 return; 11130 } 11131 } else { 11132 if (size == 3) { 11133 unallocated_encoding(s); 11134 return; 11135 } 11136 } 11137 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11138 break; 11139 } 11140 case 0x18 ... 0x31: 11141 /* floating point ops, sz[1] and U are part of opcode */ 11142 disas_simd_3same_float(s, insn); 11143 break; 11144 default: 11145 disas_simd_3same_int(s, insn); 11146 break; 11147 } 11148 } 11149 11150 /* 11151 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11152 * 11153 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11154 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11155 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11156 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11157 * 11158 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11159 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11160 * 11161 */ 11162 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11163 { 11164 int opcode = extract32(insn, 11, 3); 11165 int u = extract32(insn, 29, 1); 11166 int a = extract32(insn, 23, 1); 11167 int is_q = extract32(insn, 30, 1); 11168 int rm = extract32(insn, 16, 5); 11169 int rn = extract32(insn, 5, 5); 11170 int rd = extract32(insn, 0, 5); 11171 /* 11172 * For these floating point ops, the U, a and opcode bits 11173 * together indicate the operation. 11174 */ 11175 int fpopcode = opcode | (a << 3) | (u << 4); 11176 int datasize = is_q ? 128 : 64; 11177 int elements = datasize / 16; 11178 bool pairwise; 11179 TCGv_ptr fpst; 11180 int pass; 11181 11182 switch (fpopcode) { 11183 case 0x0: /* FMAXNM */ 11184 case 0x1: /* FMLA */ 11185 case 0x2: /* FADD */ 11186 case 0x3: /* FMULX */ 11187 case 0x4: /* FCMEQ */ 11188 case 0x6: /* FMAX */ 11189 case 0x7: /* FRECPS */ 11190 case 0x8: /* FMINNM */ 11191 case 0x9: /* FMLS */ 11192 case 0xa: /* FSUB */ 11193 case 0xe: /* FMIN */ 11194 case 0xf: /* FRSQRTS */ 11195 case 0x13: /* FMUL */ 11196 case 0x14: /* FCMGE */ 11197 case 0x15: /* FACGE */ 11198 case 0x17: /* FDIV */ 11199 case 0x1a: /* FABD */ 11200 case 0x1c: /* FCMGT */ 11201 case 0x1d: /* FACGT */ 11202 pairwise = false; 11203 break; 11204 case 0x10: /* FMAXNMP */ 11205 case 0x12: /* FADDP */ 11206 case 0x16: /* FMAXP */ 11207 case 0x18: /* FMINNMP */ 11208 case 0x1e: /* FMINP */ 11209 pairwise = true; 11210 break; 11211 default: 11212 unallocated_encoding(s); 11213 return; 11214 } 11215 11216 if (!dc_isar_feature(aa64_fp16, s)) { 11217 unallocated_encoding(s); 11218 return; 11219 } 11220 11221 if (!fp_access_check(s)) { 11222 return; 11223 } 11224 11225 fpst = fpstatus_ptr(FPST_FPCR_F16); 11226 11227 if (pairwise) { 11228 int maxpass = is_q ? 8 : 4; 11229 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11230 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11231 TCGv_i32 tcg_res[8]; 11232 11233 for (pass = 0; pass < maxpass; pass++) { 11234 int passreg = pass < (maxpass / 2) ? rn : rm; 11235 int passelt = (pass << 1) & (maxpass - 1); 11236 11237 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11238 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11239 tcg_res[pass] = tcg_temp_new_i32(); 11240 11241 switch (fpopcode) { 11242 case 0x10: /* FMAXNMP */ 11243 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11244 fpst); 11245 break; 11246 case 0x12: /* FADDP */ 11247 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11248 break; 11249 case 0x16: /* FMAXP */ 11250 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11251 break; 11252 case 0x18: /* FMINNMP */ 11253 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11254 fpst); 11255 break; 11256 case 0x1e: /* FMINP */ 11257 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11258 break; 11259 default: 11260 g_assert_not_reached(); 11261 } 11262 } 11263 11264 for (pass = 0; pass < maxpass; pass++) { 11265 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11266 } 11267 } else { 11268 for (pass = 0; pass < elements; pass++) { 11269 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11270 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11271 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11272 11273 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11274 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11275 11276 switch (fpopcode) { 11277 case 0x0: /* FMAXNM */ 11278 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11279 break; 11280 case 0x1: /* FMLA */ 11281 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11282 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11283 fpst); 11284 break; 11285 case 0x2: /* FADD */ 11286 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11287 break; 11288 case 0x3: /* FMULX */ 11289 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11290 break; 11291 case 0x4: /* FCMEQ */ 11292 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11293 break; 11294 case 0x6: /* FMAX */ 11295 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11296 break; 11297 case 0x7: /* FRECPS */ 11298 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11299 break; 11300 case 0x8: /* FMINNM */ 11301 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11302 break; 11303 case 0x9: /* FMLS */ 11304 /* As usual for ARM, separate negation for fused multiply-add */ 11305 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11306 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11307 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11308 fpst); 11309 break; 11310 case 0xa: /* FSUB */ 11311 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11312 break; 11313 case 0xe: /* FMIN */ 11314 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11315 break; 11316 case 0xf: /* FRSQRTS */ 11317 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11318 break; 11319 case 0x13: /* FMUL */ 11320 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11321 break; 11322 case 0x14: /* FCMGE */ 11323 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11324 break; 11325 case 0x15: /* FACGE */ 11326 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11327 break; 11328 case 0x17: /* FDIV */ 11329 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11330 break; 11331 case 0x1a: /* FABD */ 11332 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11333 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11334 break; 11335 case 0x1c: /* FCMGT */ 11336 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11337 break; 11338 case 0x1d: /* FACGT */ 11339 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11340 break; 11341 default: 11342 g_assert_not_reached(); 11343 } 11344 11345 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11346 } 11347 } 11348 11349 clear_vec_high(s, is_q, rd); 11350 } 11351 11352 /* AdvSIMD three same extra 11353 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11354 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11355 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11356 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11357 */ 11358 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11359 { 11360 int rd = extract32(insn, 0, 5); 11361 int rn = extract32(insn, 5, 5); 11362 int opcode = extract32(insn, 11, 4); 11363 int rm = extract32(insn, 16, 5); 11364 int size = extract32(insn, 22, 2); 11365 bool u = extract32(insn, 29, 1); 11366 bool is_q = extract32(insn, 30, 1); 11367 bool feature; 11368 int rot; 11369 11370 switch (u * 16 + opcode) { 11371 case 0x10: /* SQRDMLAH (vector) */ 11372 case 0x11: /* SQRDMLSH (vector) */ 11373 if (size != 1 && size != 2) { 11374 unallocated_encoding(s); 11375 return; 11376 } 11377 feature = dc_isar_feature(aa64_rdm, s); 11378 break; 11379 case 0x02: /* SDOT (vector) */ 11380 case 0x12: /* UDOT (vector) */ 11381 if (size != MO_32) { 11382 unallocated_encoding(s); 11383 return; 11384 } 11385 feature = dc_isar_feature(aa64_dp, s); 11386 break; 11387 case 0x03: /* USDOT */ 11388 if (size != MO_32) { 11389 unallocated_encoding(s); 11390 return; 11391 } 11392 feature = dc_isar_feature(aa64_i8mm, s); 11393 break; 11394 case 0x04: /* SMMLA */ 11395 case 0x14: /* UMMLA */ 11396 case 0x05: /* USMMLA */ 11397 if (!is_q || size != MO_32) { 11398 unallocated_encoding(s); 11399 return; 11400 } 11401 feature = dc_isar_feature(aa64_i8mm, s); 11402 break; 11403 case 0x18: /* FCMLA, #0 */ 11404 case 0x19: /* FCMLA, #90 */ 11405 case 0x1a: /* FCMLA, #180 */ 11406 case 0x1b: /* FCMLA, #270 */ 11407 case 0x1c: /* FCADD, #90 */ 11408 case 0x1e: /* FCADD, #270 */ 11409 if (size == 0 11410 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11411 || (size == 3 && !is_q)) { 11412 unallocated_encoding(s); 11413 return; 11414 } 11415 feature = dc_isar_feature(aa64_fcma, s); 11416 break; 11417 case 0x1d: /* BFMMLA */ 11418 if (size != MO_16 || !is_q) { 11419 unallocated_encoding(s); 11420 return; 11421 } 11422 feature = dc_isar_feature(aa64_bf16, s); 11423 break; 11424 case 0x1f: 11425 switch (size) { 11426 case 1: /* BFDOT */ 11427 case 3: /* BFMLAL{B,T} */ 11428 feature = dc_isar_feature(aa64_bf16, s); 11429 break; 11430 default: 11431 unallocated_encoding(s); 11432 return; 11433 } 11434 break; 11435 default: 11436 unallocated_encoding(s); 11437 return; 11438 } 11439 if (!feature) { 11440 unallocated_encoding(s); 11441 return; 11442 } 11443 if (!fp_access_check(s)) { 11444 return; 11445 } 11446 11447 switch (opcode) { 11448 case 0x0: /* SQRDMLAH (vector) */ 11449 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11450 return; 11451 11452 case 0x1: /* SQRDMLSH (vector) */ 11453 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11454 return; 11455 11456 case 0x2: /* SDOT / UDOT */ 11457 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11458 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11459 return; 11460 11461 case 0x3: /* USDOT */ 11462 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11463 return; 11464 11465 case 0x04: /* SMMLA, UMMLA */ 11466 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11467 u ? gen_helper_gvec_ummla_b 11468 : gen_helper_gvec_smmla_b); 11469 return; 11470 case 0x05: /* USMMLA */ 11471 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11472 return; 11473 11474 case 0x8: /* FCMLA, #0 */ 11475 case 0x9: /* FCMLA, #90 */ 11476 case 0xa: /* FCMLA, #180 */ 11477 case 0xb: /* FCMLA, #270 */ 11478 rot = extract32(opcode, 0, 2); 11479 switch (size) { 11480 case 1: 11481 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11482 gen_helper_gvec_fcmlah); 11483 break; 11484 case 2: 11485 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11486 gen_helper_gvec_fcmlas); 11487 break; 11488 case 3: 11489 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11490 gen_helper_gvec_fcmlad); 11491 break; 11492 default: 11493 g_assert_not_reached(); 11494 } 11495 return; 11496 11497 case 0xc: /* FCADD, #90 */ 11498 case 0xe: /* FCADD, #270 */ 11499 rot = extract32(opcode, 1, 1); 11500 switch (size) { 11501 case 1: 11502 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11503 gen_helper_gvec_fcaddh); 11504 break; 11505 case 2: 11506 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11507 gen_helper_gvec_fcadds); 11508 break; 11509 case 3: 11510 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11511 gen_helper_gvec_fcaddd); 11512 break; 11513 default: 11514 g_assert_not_reached(); 11515 } 11516 return; 11517 11518 case 0xd: /* BFMMLA */ 11519 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11520 return; 11521 case 0xf: 11522 switch (size) { 11523 case 1: /* BFDOT */ 11524 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11525 break; 11526 case 3: /* BFMLAL{B,T} */ 11527 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11528 gen_helper_gvec_bfmlal); 11529 break; 11530 default: 11531 g_assert_not_reached(); 11532 } 11533 return; 11534 11535 default: 11536 g_assert_not_reached(); 11537 } 11538 } 11539 11540 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11541 int size, int rn, int rd) 11542 { 11543 /* Handle 2-reg-misc ops which are widening (so each size element 11544 * in the source becomes a 2*size element in the destination. 11545 * The only instruction like this is FCVTL. 11546 */ 11547 int pass; 11548 11549 if (size == 3) { 11550 /* 32 -> 64 bit fp conversion */ 11551 TCGv_i64 tcg_res[2]; 11552 int srcelt = is_q ? 2 : 0; 11553 11554 for (pass = 0; pass < 2; pass++) { 11555 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11556 tcg_res[pass] = tcg_temp_new_i64(); 11557 11558 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11559 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11560 } 11561 for (pass = 0; pass < 2; pass++) { 11562 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11563 } 11564 } else { 11565 /* 16 -> 32 bit fp conversion */ 11566 int srcelt = is_q ? 4 : 0; 11567 TCGv_i32 tcg_res[4]; 11568 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11569 TCGv_i32 ahp = get_ahp_flag(); 11570 11571 for (pass = 0; pass < 4; pass++) { 11572 tcg_res[pass] = tcg_temp_new_i32(); 11573 11574 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11575 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11576 fpst, ahp); 11577 } 11578 for (pass = 0; pass < 4; pass++) { 11579 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11580 } 11581 } 11582 } 11583 11584 static void handle_rev(DisasContext *s, int opcode, bool u, 11585 bool is_q, int size, int rn, int rd) 11586 { 11587 int op = (opcode << 1) | u; 11588 int opsz = op + size; 11589 int grp_size = 3 - opsz; 11590 int dsize = is_q ? 128 : 64; 11591 int i; 11592 11593 if (opsz >= 3) { 11594 unallocated_encoding(s); 11595 return; 11596 } 11597 11598 if (!fp_access_check(s)) { 11599 return; 11600 } 11601 11602 if (size == 0) { 11603 /* Special case bytes, use bswap op on each group of elements */ 11604 int groups = dsize / (8 << grp_size); 11605 11606 for (i = 0; i < groups; i++) { 11607 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11608 11609 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11610 switch (grp_size) { 11611 case MO_16: 11612 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11613 break; 11614 case MO_32: 11615 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11616 break; 11617 case MO_64: 11618 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11619 break; 11620 default: 11621 g_assert_not_reached(); 11622 } 11623 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11624 } 11625 clear_vec_high(s, is_q, rd); 11626 } else { 11627 int revmask = (1 << grp_size) - 1; 11628 int esize = 8 << size; 11629 int elements = dsize / esize; 11630 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11631 TCGv_i64 tcg_rd[2]; 11632 11633 for (i = 0; i < 2; i++) { 11634 tcg_rd[i] = tcg_temp_new_i64(); 11635 tcg_gen_movi_i64(tcg_rd[i], 0); 11636 } 11637 11638 for (i = 0; i < elements; i++) { 11639 int e_rev = (i & 0xf) ^ revmask; 11640 int w = (e_rev * esize) / 64; 11641 int o = (e_rev * esize) % 64; 11642 11643 read_vec_element(s, tcg_rn, rn, i, size); 11644 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11645 } 11646 11647 for (i = 0; i < 2; i++) { 11648 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11649 } 11650 clear_vec_high(s, true, rd); 11651 } 11652 } 11653 11654 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11655 bool is_q, int size, int rn, int rd) 11656 { 11657 /* Implement the pairwise operations from 2-misc: 11658 * SADDLP, UADDLP, SADALP, UADALP. 11659 * These all add pairs of elements in the input to produce a 11660 * double-width result element in the output (possibly accumulating). 11661 */ 11662 bool accum = (opcode == 0x6); 11663 int maxpass = is_q ? 2 : 1; 11664 int pass; 11665 TCGv_i64 tcg_res[2]; 11666 11667 if (size == 2) { 11668 /* 32 + 32 -> 64 op */ 11669 MemOp memop = size + (u ? 0 : MO_SIGN); 11670 11671 for (pass = 0; pass < maxpass; pass++) { 11672 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11673 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11674 11675 tcg_res[pass] = tcg_temp_new_i64(); 11676 11677 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11678 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11679 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11680 if (accum) { 11681 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11682 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11683 } 11684 } 11685 } else { 11686 for (pass = 0; pass < maxpass; pass++) { 11687 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11688 NeonGenOne64OpFn *genfn; 11689 static NeonGenOne64OpFn * const fns[2][2] = { 11690 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11691 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11692 }; 11693 11694 genfn = fns[size][u]; 11695 11696 tcg_res[pass] = tcg_temp_new_i64(); 11697 11698 read_vec_element(s, tcg_op, rn, pass, MO_64); 11699 genfn(tcg_res[pass], tcg_op); 11700 11701 if (accum) { 11702 read_vec_element(s, tcg_op, rd, pass, MO_64); 11703 if (size == 0) { 11704 gen_helper_neon_addl_u16(tcg_res[pass], 11705 tcg_res[pass], tcg_op); 11706 } else { 11707 gen_helper_neon_addl_u32(tcg_res[pass], 11708 tcg_res[pass], tcg_op); 11709 } 11710 } 11711 } 11712 } 11713 if (!is_q) { 11714 tcg_res[1] = tcg_constant_i64(0); 11715 } 11716 for (pass = 0; pass < 2; pass++) { 11717 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11718 } 11719 } 11720 11721 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11722 { 11723 /* Implement SHLL and SHLL2 */ 11724 int pass; 11725 int part = is_q ? 2 : 0; 11726 TCGv_i64 tcg_res[2]; 11727 11728 for (pass = 0; pass < 2; pass++) { 11729 static NeonGenWidenFn * const widenfns[3] = { 11730 gen_helper_neon_widen_u8, 11731 gen_helper_neon_widen_u16, 11732 tcg_gen_extu_i32_i64, 11733 }; 11734 NeonGenWidenFn *widenfn = widenfns[size]; 11735 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11736 11737 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11738 tcg_res[pass] = tcg_temp_new_i64(); 11739 widenfn(tcg_res[pass], tcg_op); 11740 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11741 } 11742 11743 for (pass = 0; pass < 2; pass++) { 11744 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11745 } 11746 } 11747 11748 /* AdvSIMD two reg misc 11749 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11750 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11751 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11752 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11753 */ 11754 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11755 { 11756 int size = extract32(insn, 22, 2); 11757 int opcode = extract32(insn, 12, 5); 11758 bool u = extract32(insn, 29, 1); 11759 bool is_q = extract32(insn, 30, 1); 11760 int rn = extract32(insn, 5, 5); 11761 int rd = extract32(insn, 0, 5); 11762 bool need_fpstatus = false; 11763 int rmode = -1; 11764 TCGv_i32 tcg_rmode; 11765 TCGv_ptr tcg_fpstatus; 11766 11767 switch (opcode) { 11768 case 0x0: /* REV64, REV32 */ 11769 case 0x1: /* REV16 */ 11770 handle_rev(s, opcode, u, is_q, size, rn, rd); 11771 return; 11772 case 0x5: /* CNT, NOT, RBIT */ 11773 if (u && size == 0) { 11774 /* NOT */ 11775 break; 11776 } else if (u && size == 1) { 11777 /* RBIT */ 11778 break; 11779 } else if (!u && size == 0) { 11780 /* CNT */ 11781 break; 11782 } 11783 unallocated_encoding(s); 11784 return; 11785 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11786 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11787 if (size == 3) { 11788 unallocated_encoding(s); 11789 return; 11790 } 11791 if (!fp_access_check(s)) { 11792 return; 11793 } 11794 11795 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11796 return; 11797 case 0x4: /* CLS, CLZ */ 11798 if (size == 3) { 11799 unallocated_encoding(s); 11800 return; 11801 } 11802 break; 11803 case 0x2: /* SADDLP, UADDLP */ 11804 case 0x6: /* SADALP, UADALP */ 11805 if (size == 3) { 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 if (!fp_access_check(s)) { 11810 return; 11811 } 11812 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11813 return; 11814 case 0x13: /* SHLL, SHLL2 */ 11815 if (u == 0 || size == 3) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 if (!fp_access_check(s)) { 11820 return; 11821 } 11822 handle_shll(s, is_q, size, rn, rd); 11823 return; 11824 case 0xa: /* CMLT */ 11825 if (u == 1) { 11826 unallocated_encoding(s); 11827 return; 11828 } 11829 /* fall through */ 11830 case 0x8: /* CMGT, CMGE */ 11831 case 0x9: /* CMEQ, CMLE */ 11832 case 0xb: /* ABS, NEG */ 11833 if (size == 3 && !is_q) { 11834 unallocated_encoding(s); 11835 return; 11836 } 11837 break; 11838 case 0x3: /* SUQADD, USQADD */ 11839 if (size == 3 && !is_q) { 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 if (!fp_access_check(s)) { 11844 return; 11845 } 11846 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11847 return; 11848 case 0x7: /* SQABS, SQNEG */ 11849 if (size == 3 && !is_q) { 11850 unallocated_encoding(s); 11851 return; 11852 } 11853 break; 11854 case 0xc ... 0xf: 11855 case 0x16 ... 0x1f: 11856 { 11857 /* Floating point: U, size[1] and opcode indicate operation; 11858 * size[0] indicates single or double precision. 11859 */ 11860 int is_double = extract32(size, 0, 1); 11861 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11862 size = is_double ? 3 : 2; 11863 switch (opcode) { 11864 case 0x2f: /* FABS */ 11865 case 0x6f: /* FNEG */ 11866 if (size == 3 && !is_q) { 11867 unallocated_encoding(s); 11868 return; 11869 } 11870 break; 11871 case 0x1d: /* SCVTF */ 11872 case 0x5d: /* UCVTF */ 11873 { 11874 bool is_signed = (opcode == 0x1d) ? true : false; 11875 int elements = is_double ? 2 : is_q ? 4 : 2; 11876 if (is_double && !is_q) { 11877 unallocated_encoding(s); 11878 return; 11879 } 11880 if (!fp_access_check(s)) { 11881 return; 11882 } 11883 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11884 return; 11885 } 11886 case 0x2c: /* FCMGT (zero) */ 11887 case 0x2d: /* FCMEQ (zero) */ 11888 case 0x2e: /* FCMLT (zero) */ 11889 case 0x6c: /* FCMGE (zero) */ 11890 case 0x6d: /* FCMLE (zero) */ 11891 if (size == 3 && !is_q) { 11892 unallocated_encoding(s); 11893 return; 11894 } 11895 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11896 return; 11897 case 0x7f: /* FSQRT */ 11898 if (size == 3 && !is_q) { 11899 unallocated_encoding(s); 11900 return; 11901 } 11902 break; 11903 case 0x1a: /* FCVTNS */ 11904 case 0x1b: /* FCVTMS */ 11905 case 0x3a: /* FCVTPS */ 11906 case 0x3b: /* FCVTZS */ 11907 case 0x5a: /* FCVTNU */ 11908 case 0x5b: /* FCVTMU */ 11909 case 0x7a: /* FCVTPU */ 11910 case 0x7b: /* FCVTZU */ 11911 need_fpstatus = true; 11912 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11913 if (size == 3 && !is_q) { 11914 unallocated_encoding(s); 11915 return; 11916 } 11917 break; 11918 case 0x5c: /* FCVTAU */ 11919 case 0x1c: /* FCVTAS */ 11920 need_fpstatus = true; 11921 rmode = FPROUNDING_TIEAWAY; 11922 if (size == 3 && !is_q) { 11923 unallocated_encoding(s); 11924 return; 11925 } 11926 break; 11927 case 0x3c: /* URECPE */ 11928 if (size == 3) { 11929 unallocated_encoding(s); 11930 return; 11931 } 11932 /* fall through */ 11933 case 0x3d: /* FRECPE */ 11934 case 0x7d: /* FRSQRTE */ 11935 if (size == 3 && !is_q) { 11936 unallocated_encoding(s); 11937 return; 11938 } 11939 if (!fp_access_check(s)) { 11940 return; 11941 } 11942 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11943 return; 11944 case 0x56: /* FCVTXN, FCVTXN2 */ 11945 if (size == 2) { 11946 unallocated_encoding(s); 11947 return; 11948 } 11949 /* fall through */ 11950 case 0x16: /* FCVTN, FCVTN2 */ 11951 /* handle_2misc_narrow does a 2*size -> size operation, but these 11952 * instructions encode the source size rather than dest size. 11953 */ 11954 if (!fp_access_check(s)) { 11955 return; 11956 } 11957 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11958 return; 11959 case 0x36: /* BFCVTN, BFCVTN2 */ 11960 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11961 unallocated_encoding(s); 11962 return; 11963 } 11964 if (!fp_access_check(s)) { 11965 return; 11966 } 11967 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11968 return; 11969 case 0x17: /* FCVTL, FCVTL2 */ 11970 if (!fp_access_check(s)) { 11971 return; 11972 } 11973 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11974 return; 11975 case 0x18: /* FRINTN */ 11976 case 0x19: /* FRINTM */ 11977 case 0x38: /* FRINTP */ 11978 case 0x39: /* FRINTZ */ 11979 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11980 /* fall through */ 11981 case 0x59: /* FRINTX */ 11982 case 0x79: /* FRINTI */ 11983 need_fpstatus = true; 11984 if (size == 3 && !is_q) { 11985 unallocated_encoding(s); 11986 return; 11987 } 11988 break; 11989 case 0x58: /* FRINTA */ 11990 rmode = FPROUNDING_TIEAWAY; 11991 need_fpstatus = true; 11992 if (size == 3 && !is_q) { 11993 unallocated_encoding(s); 11994 return; 11995 } 11996 break; 11997 case 0x7c: /* URSQRTE */ 11998 if (size == 3) { 11999 unallocated_encoding(s); 12000 return; 12001 } 12002 break; 12003 case 0x1e: /* FRINT32Z */ 12004 case 0x1f: /* FRINT64Z */ 12005 rmode = FPROUNDING_ZERO; 12006 /* fall through */ 12007 case 0x5e: /* FRINT32X */ 12008 case 0x5f: /* FRINT64X */ 12009 need_fpstatus = true; 12010 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12011 unallocated_encoding(s); 12012 return; 12013 } 12014 break; 12015 default: 12016 unallocated_encoding(s); 12017 return; 12018 } 12019 break; 12020 } 12021 default: 12022 unallocated_encoding(s); 12023 return; 12024 } 12025 12026 if (!fp_access_check(s)) { 12027 return; 12028 } 12029 12030 if (need_fpstatus || rmode >= 0) { 12031 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12032 } else { 12033 tcg_fpstatus = NULL; 12034 } 12035 if (rmode >= 0) { 12036 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12037 } else { 12038 tcg_rmode = NULL; 12039 } 12040 12041 switch (opcode) { 12042 case 0x5: 12043 if (u && size == 0) { /* NOT */ 12044 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12045 return; 12046 } 12047 break; 12048 case 0x8: /* CMGT, CMGE */ 12049 if (u) { 12050 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12051 } else { 12052 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12053 } 12054 return; 12055 case 0x9: /* CMEQ, CMLE */ 12056 if (u) { 12057 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12058 } else { 12059 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12060 } 12061 return; 12062 case 0xa: /* CMLT */ 12063 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12064 return; 12065 case 0xb: 12066 if (u) { /* ABS, NEG */ 12067 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12068 } else { 12069 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12070 } 12071 return; 12072 } 12073 12074 if (size == 3) { 12075 /* All 64-bit element operations can be shared with scalar 2misc */ 12076 int pass; 12077 12078 /* Coverity claims (size == 3 && !is_q) has been eliminated 12079 * from all paths leading to here. 12080 */ 12081 tcg_debug_assert(is_q); 12082 for (pass = 0; pass < 2; pass++) { 12083 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12084 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12085 12086 read_vec_element(s, tcg_op, rn, pass, MO_64); 12087 12088 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12089 tcg_rmode, tcg_fpstatus); 12090 12091 write_vec_element(s, tcg_res, rd, pass, MO_64); 12092 } 12093 } else { 12094 int pass; 12095 12096 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12097 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12098 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12099 12100 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12101 12102 if (size == 2) { 12103 /* Special cases for 32 bit elements */ 12104 switch (opcode) { 12105 case 0x4: /* CLS */ 12106 if (u) { 12107 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12108 } else { 12109 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12110 } 12111 break; 12112 case 0x7: /* SQABS, SQNEG */ 12113 if (u) { 12114 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12115 } else { 12116 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12117 } 12118 break; 12119 case 0x2f: /* FABS */ 12120 gen_helper_vfp_abss(tcg_res, tcg_op); 12121 break; 12122 case 0x6f: /* FNEG */ 12123 gen_helper_vfp_negs(tcg_res, tcg_op); 12124 break; 12125 case 0x7f: /* FSQRT */ 12126 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12127 break; 12128 case 0x1a: /* FCVTNS */ 12129 case 0x1b: /* FCVTMS */ 12130 case 0x1c: /* FCVTAS */ 12131 case 0x3a: /* FCVTPS */ 12132 case 0x3b: /* FCVTZS */ 12133 gen_helper_vfp_tosls(tcg_res, tcg_op, 12134 tcg_constant_i32(0), tcg_fpstatus); 12135 break; 12136 case 0x5a: /* FCVTNU */ 12137 case 0x5b: /* FCVTMU */ 12138 case 0x5c: /* FCVTAU */ 12139 case 0x7a: /* FCVTPU */ 12140 case 0x7b: /* FCVTZU */ 12141 gen_helper_vfp_touls(tcg_res, tcg_op, 12142 tcg_constant_i32(0), tcg_fpstatus); 12143 break; 12144 case 0x18: /* FRINTN */ 12145 case 0x19: /* FRINTM */ 12146 case 0x38: /* FRINTP */ 12147 case 0x39: /* FRINTZ */ 12148 case 0x58: /* FRINTA */ 12149 case 0x79: /* FRINTI */ 12150 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12151 break; 12152 case 0x59: /* FRINTX */ 12153 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12154 break; 12155 case 0x7c: /* URSQRTE */ 12156 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12157 break; 12158 case 0x1e: /* FRINT32Z */ 12159 case 0x5e: /* FRINT32X */ 12160 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12161 break; 12162 case 0x1f: /* FRINT64Z */ 12163 case 0x5f: /* FRINT64X */ 12164 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12165 break; 12166 default: 12167 g_assert_not_reached(); 12168 } 12169 } else { 12170 /* Use helpers for 8 and 16 bit elements */ 12171 switch (opcode) { 12172 case 0x5: /* CNT, RBIT */ 12173 /* For these two insns size is part of the opcode specifier 12174 * (handled earlier); they always operate on byte elements. 12175 */ 12176 if (u) { 12177 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12178 } else { 12179 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12180 } 12181 break; 12182 case 0x7: /* SQABS, SQNEG */ 12183 { 12184 NeonGenOneOpEnvFn *genfn; 12185 static NeonGenOneOpEnvFn * const fns[2][2] = { 12186 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12187 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12188 }; 12189 genfn = fns[size][u]; 12190 genfn(tcg_res, cpu_env, tcg_op); 12191 break; 12192 } 12193 case 0x4: /* CLS, CLZ */ 12194 if (u) { 12195 if (size == 0) { 12196 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12197 } else { 12198 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12199 } 12200 } else { 12201 if (size == 0) { 12202 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12203 } else { 12204 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12205 } 12206 } 12207 break; 12208 default: 12209 g_assert_not_reached(); 12210 } 12211 } 12212 12213 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12214 } 12215 } 12216 clear_vec_high(s, is_q, rd); 12217 12218 if (tcg_rmode) { 12219 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12220 } 12221 } 12222 12223 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12224 * 12225 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12226 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12227 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12228 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12229 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12230 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12231 * 12232 * This actually covers two groups where scalar access is governed by 12233 * bit 28. A bunch of the instructions (float to integral) only exist 12234 * in the vector form and are un-allocated for the scalar decode. Also 12235 * in the scalar decode Q is always 1. 12236 */ 12237 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12238 { 12239 int fpop, opcode, a, u; 12240 int rn, rd; 12241 bool is_q; 12242 bool is_scalar; 12243 bool only_in_vector = false; 12244 12245 int pass; 12246 TCGv_i32 tcg_rmode = NULL; 12247 TCGv_ptr tcg_fpstatus = NULL; 12248 bool need_fpst = true; 12249 int rmode = -1; 12250 12251 if (!dc_isar_feature(aa64_fp16, s)) { 12252 unallocated_encoding(s); 12253 return; 12254 } 12255 12256 rd = extract32(insn, 0, 5); 12257 rn = extract32(insn, 5, 5); 12258 12259 a = extract32(insn, 23, 1); 12260 u = extract32(insn, 29, 1); 12261 is_scalar = extract32(insn, 28, 1); 12262 is_q = extract32(insn, 30, 1); 12263 12264 opcode = extract32(insn, 12, 5); 12265 fpop = deposit32(opcode, 5, 1, a); 12266 fpop = deposit32(fpop, 6, 1, u); 12267 12268 switch (fpop) { 12269 case 0x1d: /* SCVTF */ 12270 case 0x5d: /* UCVTF */ 12271 { 12272 int elements; 12273 12274 if (is_scalar) { 12275 elements = 1; 12276 } else { 12277 elements = (is_q ? 8 : 4); 12278 } 12279 12280 if (!fp_access_check(s)) { 12281 return; 12282 } 12283 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12284 return; 12285 } 12286 break; 12287 case 0x2c: /* FCMGT (zero) */ 12288 case 0x2d: /* FCMEQ (zero) */ 12289 case 0x2e: /* FCMLT (zero) */ 12290 case 0x6c: /* FCMGE (zero) */ 12291 case 0x6d: /* FCMLE (zero) */ 12292 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12293 return; 12294 case 0x3d: /* FRECPE */ 12295 case 0x3f: /* FRECPX */ 12296 break; 12297 case 0x18: /* FRINTN */ 12298 only_in_vector = true; 12299 rmode = FPROUNDING_TIEEVEN; 12300 break; 12301 case 0x19: /* FRINTM */ 12302 only_in_vector = true; 12303 rmode = FPROUNDING_NEGINF; 12304 break; 12305 case 0x38: /* FRINTP */ 12306 only_in_vector = true; 12307 rmode = FPROUNDING_POSINF; 12308 break; 12309 case 0x39: /* FRINTZ */ 12310 only_in_vector = true; 12311 rmode = FPROUNDING_ZERO; 12312 break; 12313 case 0x58: /* FRINTA */ 12314 only_in_vector = true; 12315 rmode = FPROUNDING_TIEAWAY; 12316 break; 12317 case 0x59: /* FRINTX */ 12318 case 0x79: /* FRINTI */ 12319 only_in_vector = true; 12320 /* current rounding mode */ 12321 break; 12322 case 0x1a: /* FCVTNS */ 12323 rmode = FPROUNDING_TIEEVEN; 12324 break; 12325 case 0x1b: /* FCVTMS */ 12326 rmode = FPROUNDING_NEGINF; 12327 break; 12328 case 0x1c: /* FCVTAS */ 12329 rmode = FPROUNDING_TIEAWAY; 12330 break; 12331 case 0x3a: /* FCVTPS */ 12332 rmode = FPROUNDING_POSINF; 12333 break; 12334 case 0x3b: /* FCVTZS */ 12335 rmode = FPROUNDING_ZERO; 12336 break; 12337 case 0x5a: /* FCVTNU */ 12338 rmode = FPROUNDING_TIEEVEN; 12339 break; 12340 case 0x5b: /* FCVTMU */ 12341 rmode = FPROUNDING_NEGINF; 12342 break; 12343 case 0x5c: /* FCVTAU */ 12344 rmode = FPROUNDING_TIEAWAY; 12345 break; 12346 case 0x7a: /* FCVTPU */ 12347 rmode = FPROUNDING_POSINF; 12348 break; 12349 case 0x7b: /* FCVTZU */ 12350 rmode = FPROUNDING_ZERO; 12351 break; 12352 case 0x2f: /* FABS */ 12353 case 0x6f: /* FNEG */ 12354 need_fpst = false; 12355 break; 12356 case 0x7d: /* FRSQRTE */ 12357 case 0x7f: /* FSQRT (vector) */ 12358 break; 12359 default: 12360 unallocated_encoding(s); 12361 return; 12362 } 12363 12364 12365 /* Check additional constraints for the scalar encoding */ 12366 if (is_scalar) { 12367 if (!is_q) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 /* FRINTxx is only in the vector form */ 12372 if (only_in_vector) { 12373 unallocated_encoding(s); 12374 return; 12375 } 12376 } 12377 12378 if (!fp_access_check(s)) { 12379 return; 12380 } 12381 12382 if (rmode >= 0 || need_fpst) { 12383 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12384 } 12385 12386 if (rmode >= 0) { 12387 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12388 } 12389 12390 if (is_scalar) { 12391 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12392 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12393 12394 switch (fpop) { 12395 case 0x1a: /* FCVTNS */ 12396 case 0x1b: /* FCVTMS */ 12397 case 0x1c: /* FCVTAS */ 12398 case 0x3a: /* FCVTPS */ 12399 case 0x3b: /* FCVTZS */ 12400 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12401 break; 12402 case 0x3d: /* FRECPE */ 12403 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12404 break; 12405 case 0x3f: /* FRECPX */ 12406 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12407 break; 12408 case 0x5a: /* FCVTNU */ 12409 case 0x5b: /* FCVTMU */ 12410 case 0x5c: /* FCVTAU */ 12411 case 0x7a: /* FCVTPU */ 12412 case 0x7b: /* FCVTZU */ 12413 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12414 break; 12415 case 0x6f: /* FNEG */ 12416 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12417 break; 12418 case 0x7d: /* FRSQRTE */ 12419 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12420 break; 12421 default: 12422 g_assert_not_reached(); 12423 } 12424 12425 /* limit any sign extension going on */ 12426 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12427 write_fp_sreg(s, rd, tcg_res); 12428 } else { 12429 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12430 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12431 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12432 12433 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12434 12435 switch (fpop) { 12436 case 0x1a: /* FCVTNS */ 12437 case 0x1b: /* FCVTMS */ 12438 case 0x1c: /* FCVTAS */ 12439 case 0x3a: /* FCVTPS */ 12440 case 0x3b: /* FCVTZS */ 12441 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12442 break; 12443 case 0x3d: /* FRECPE */ 12444 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12445 break; 12446 case 0x5a: /* FCVTNU */ 12447 case 0x5b: /* FCVTMU */ 12448 case 0x5c: /* FCVTAU */ 12449 case 0x7a: /* FCVTPU */ 12450 case 0x7b: /* FCVTZU */ 12451 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12452 break; 12453 case 0x18: /* FRINTN */ 12454 case 0x19: /* FRINTM */ 12455 case 0x38: /* FRINTP */ 12456 case 0x39: /* FRINTZ */ 12457 case 0x58: /* FRINTA */ 12458 case 0x79: /* FRINTI */ 12459 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12460 break; 12461 case 0x59: /* FRINTX */ 12462 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12463 break; 12464 case 0x2f: /* FABS */ 12465 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12466 break; 12467 case 0x6f: /* FNEG */ 12468 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12469 break; 12470 case 0x7d: /* FRSQRTE */ 12471 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12472 break; 12473 case 0x7f: /* FSQRT */ 12474 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12475 break; 12476 default: 12477 g_assert_not_reached(); 12478 } 12479 12480 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12481 } 12482 12483 clear_vec_high(s, is_q, rd); 12484 } 12485 12486 if (tcg_rmode) { 12487 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12488 } 12489 } 12490 12491 /* AdvSIMD scalar x indexed element 12492 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12493 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12494 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12495 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12496 * AdvSIMD vector x indexed element 12497 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12498 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12499 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12500 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12501 */ 12502 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12503 { 12504 /* This encoding has two kinds of instruction: 12505 * normal, where we perform elt x idxelt => elt for each 12506 * element in the vector 12507 * long, where we perform elt x idxelt and generate a result of 12508 * double the width of the input element 12509 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12510 */ 12511 bool is_scalar = extract32(insn, 28, 1); 12512 bool is_q = extract32(insn, 30, 1); 12513 bool u = extract32(insn, 29, 1); 12514 int size = extract32(insn, 22, 2); 12515 int l = extract32(insn, 21, 1); 12516 int m = extract32(insn, 20, 1); 12517 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12518 int rm = extract32(insn, 16, 4); 12519 int opcode = extract32(insn, 12, 4); 12520 int h = extract32(insn, 11, 1); 12521 int rn = extract32(insn, 5, 5); 12522 int rd = extract32(insn, 0, 5); 12523 bool is_long = false; 12524 int is_fp = 0; 12525 bool is_fp16 = false; 12526 int index; 12527 TCGv_ptr fpst; 12528 12529 switch (16 * u + opcode) { 12530 case 0x08: /* MUL */ 12531 case 0x10: /* MLA */ 12532 case 0x14: /* MLS */ 12533 if (is_scalar) { 12534 unallocated_encoding(s); 12535 return; 12536 } 12537 break; 12538 case 0x02: /* SMLAL, SMLAL2 */ 12539 case 0x12: /* UMLAL, UMLAL2 */ 12540 case 0x06: /* SMLSL, SMLSL2 */ 12541 case 0x16: /* UMLSL, UMLSL2 */ 12542 case 0x0a: /* SMULL, SMULL2 */ 12543 case 0x1a: /* UMULL, UMULL2 */ 12544 if (is_scalar) { 12545 unallocated_encoding(s); 12546 return; 12547 } 12548 is_long = true; 12549 break; 12550 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12551 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12552 case 0x0b: /* SQDMULL, SQDMULL2 */ 12553 is_long = true; 12554 break; 12555 case 0x0c: /* SQDMULH */ 12556 case 0x0d: /* SQRDMULH */ 12557 break; 12558 case 0x01: /* FMLA */ 12559 case 0x05: /* FMLS */ 12560 case 0x09: /* FMUL */ 12561 case 0x19: /* FMULX */ 12562 is_fp = 1; 12563 break; 12564 case 0x1d: /* SQRDMLAH */ 12565 case 0x1f: /* SQRDMLSH */ 12566 if (!dc_isar_feature(aa64_rdm, s)) { 12567 unallocated_encoding(s); 12568 return; 12569 } 12570 break; 12571 case 0x0e: /* SDOT */ 12572 case 0x1e: /* UDOT */ 12573 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12574 unallocated_encoding(s); 12575 return; 12576 } 12577 break; 12578 case 0x0f: 12579 switch (size) { 12580 case 0: /* SUDOT */ 12581 case 2: /* USDOT */ 12582 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12583 unallocated_encoding(s); 12584 return; 12585 } 12586 size = MO_32; 12587 break; 12588 case 1: /* BFDOT */ 12589 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12590 unallocated_encoding(s); 12591 return; 12592 } 12593 size = MO_32; 12594 break; 12595 case 3: /* BFMLAL{B,T} */ 12596 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12597 unallocated_encoding(s); 12598 return; 12599 } 12600 /* can't set is_fp without other incorrect size checks */ 12601 size = MO_16; 12602 break; 12603 default: 12604 unallocated_encoding(s); 12605 return; 12606 } 12607 break; 12608 case 0x11: /* FCMLA #0 */ 12609 case 0x13: /* FCMLA #90 */ 12610 case 0x15: /* FCMLA #180 */ 12611 case 0x17: /* FCMLA #270 */ 12612 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12613 unallocated_encoding(s); 12614 return; 12615 } 12616 is_fp = 2; 12617 break; 12618 case 0x00: /* FMLAL */ 12619 case 0x04: /* FMLSL */ 12620 case 0x18: /* FMLAL2 */ 12621 case 0x1c: /* FMLSL2 */ 12622 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12623 unallocated_encoding(s); 12624 return; 12625 } 12626 size = MO_16; 12627 /* is_fp, but we pass cpu_env not fp_status. */ 12628 break; 12629 default: 12630 unallocated_encoding(s); 12631 return; 12632 } 12633 12634 switch (is_fp) { 12635 case 1: /* normal fp */ 12636 /* convert insn encoded size to MemOp size */ 12637 switch (size) { 12638 case 0: /* half-precision */ 12639 size = MO_16; 12640 is_fp16 = true; 12641 break; 12642 case MO_32: /* single precision */ 12643 case MO_64: /* double precision */ 12644 break; 12645 default: 12646 unallocated_encoding(s); 12647 return; 12648 } 12649 break; 12650 12651 case 2: /* complex fp */ 12652 /* Each indexable element is a complex pair. */ 12653 size += 1; 12654 switch (size) { 12655 case MO_32: 12656 if (h && !is_q) { 12657 unallocated_encoding(s); 12658 return; 12659 } 12660 is_fp16 = true; 12661 break; 12662 case MO_64: 12663 break; 12664 default: 12665 unallocated_encoding(s); 12666 return; 12667 } 12668 break; 12669 12670 default: /* integer */ 12671 switch (size) { 12672 case MO_8: 12673 case MO_64: 12674 unallocated_encoding(s); 12675 return; 12676 } 12677 break; 12678 } 12679 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12680 unallocated_encoding(s); 12681 return; 12682 } 12683 12684 /* Given MemOp size, adjust register and indexing. */ 12685 switch (size) { 12686 case MO_16: 12687 index = h << 2 | l << 1 | m; 12688 break; 12689 case MO_32: 12690 index = h << 1 | l; 12691 rm |= m << 4; 12692 break; 12693 case MO_64: 12694 if (l || !is_q) { 12695 unallocated_encoding(s); 12696 return; 12697 } 12698 index = h; 12699 rm |= m << 4; 12700 break; 12701 default: 12702 g_assert_not_reached(); 12703 } 12704 12705 if (!fp_access_check(s)) { 12706 return; 12707 } 12708 12709 if (is_fp) { 12710 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12711 } else { 12712 fpst = NULL; 12713 } 12714 12715 switch (16 * u + opcode) { 12716 case 0x0e: /* SDOT */ 12717 case 0x1e: /* UDOT */ 12718 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12719 u ? gen_helper_gvec_udot_idx_b 12720 : gen_helper_gvec_sdot_idx_b); 12721 return; 12722 case 0x0f: 12723 switch (extract32(insn, 22, 2)) { 12724 case 0: /* SUDOT */ 12725 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12726 gen_helper_gvec_sudot_idx_b); 12727 return; 12728 case 1: /* BFDOT */ 12729 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12730 gen_helper_gvec_bfdot_idx); 12731 return; 12732 case 2: /* USDOT */ 12733 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12734 gen_helper_gvec_usdot_idx_b); 12735 return; 12736 case 3: /* BFMLAL{B,T} */ 12737 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12738 gen_helper_gvec_bfmlal_idx); 12739 return; 12740 } 12741 g_assert_not_reached(); 12742 case 0x11: /* FCMLA #0 */ 12743 case 0x13: /* FCMLA #90 */ 12744 case 0x15: /* FCMLA #180 */ 12745 case 0x17: /* FCMLA #270 */ 12746 { 12747 int rot = extract32(insn, 13, 2); 12748 int data = (index << 2) | rot; 12749 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12750 vec_full_reg_offset(s, rn), 12751 vec_full_reg_offset(s, rm), 12752 vec_full_reg_offset(s, rd), fpst, 12753 is_q ? 16 : 8, vec_full_reg_size(s), data, 12754 size == MO_64 12755 ? gen_helper_gvec_fcmlas_idx 12756 : gen_helper_gvec_fcmlah_idx); 12757 } 12758 return; 12759 12760 case 0x00: /* FMLAL */ 12761 case 0x04: /* FMLSL */ 12762 case 0x18: /* FMLAL2 */ 12763 case 0x1c: /* FMLSL2 */ 12764 { 12765 int is_s = extract32(opcode, 2, 1); 12766 int is_2 = u; 12767 int data = (index << 2) | (is_2 << 1) | is_s; 12768 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12769 vec_full_reg_offset(s, rn), 12770 vec_full_reg_offset(s, rm), cpu_env, 12771 is_q ? 16 : 8, vec_full_reg_size(s), 12772 data, gen_helper_gvec_fmlal_idx_a64); 12773 } 12774 return; 12775 12776 case 0x08: /* MUL */ 12777 if (!is_long && !is_scalar) { 12778 static gen_helper_gvec_3 * const fns[3] = { 12779 gen_helper_gvec_mul_idx_h, 12780 gen_helper_gvec_mul_idx_s, 12781 gen_helper_gvec_mul_idx_d, 12782 }; 12783 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12784 vec_full_reg_offset(s, rn), 12785 vec_full_reg_offset(s, rm), 12786 is_q ? 16 : 8, vec_full_reg_size(s), 12787 index, fns[size - 1]); 12788 return; 12789 } 12790 break; 12791 12792 case 0x10: /* MLA */ 12793 if (!is_long && !is_scalar) { 12794 static gen_helper_gvec_4 * const fns[3] = { 12795 gen_helper_gvec_mla_idx_h, 12796 gen_helper_gvec_mla_idx_s, 12797 gen_helper_gvec_mla_idx_d, 12798 }; 12799 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12800 vec_full_reg_offset(s, rn), 12801 vec_full_reg_offset(s, rm), 12802 vec_full_reg_offset(s, rd), 12803 is_q ? 16 : 8, vec_full_reg_size(s), 12804 index, fns[size - 1]); 12805 return; 12806 } 12807 break; 12808 12809 case 0x14: /* MLS */ 12810 if (!is_long && !is_scalar) { 12811 static gen_helper_gvec_4 * const fns[3] = { 12812 gen_helper_gvec_mls_idx_h, 12813 gen_helper_gvec_mls_idx_s, 12814 gen_helper_gvec_mls_idx_d, 12815 }; 12816 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12817 vec_full_reg_offset(s, rn), 12818 vec_full_reg_offset(s, rm), 12819 vec_full_reg_offset(s, rd), 12820 is_q ? 16 : 8, vec_full_reg_size(s), 12821 index, fns[size - 1]); 12822 return; 12823 } 12824 break; 12825 } 12826 12827 if (size == 3) { 12828 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12829 int pass; 12830 12831 assert(is_fp && is_q && !is_long); 12832 12833 read_vec_element(s, tcg_idx, rm, index, MO_64); 12834 12835 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12836 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12837 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12838 12839 read_vec_element(s, tcg_op, rn, pass, MO_64); 12840 12841 switch (16 * u + opcode) { 12842 case 0x05: /* FMLS */ 12843 /* As usual for ARM, separate negation for fused multiply-add */ 12844 gen_helper_vfp_negd(tcg_op, tcg_op); 12845 /* fall through */ 12846 case 0x01: /* FMLA */ 12847 read_vec_element(s, tcg_res, rd, pass, MO_64); 12848 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12849 break; 12850 case 0x09: /* FMUL */ 12851 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12852 break; 12853 case 0x19: /* FMULX */ 12854 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12855 break; 12856 default: 12857 g_assert_not_reached(); 12858 } 12859 12860 write_vec_element(s, tcg_res, rd, pass, MO_64); 12861 } 12862 12863 clear_vec_high(s, !is_scalar, rd); 12864 } else if (!is_long) { 12865 /* 32 bit floating point, or 16 or 32 bit integer. 12866 * For the 16 bit scalar case we use the usual Neon helpers and 12867 * rely on the fact that 0 op 0 == 0 with no side effects. 12868 */ 12869 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12870 int pass, maxpasses; 12871 12872 if (is_scalar) { 12873 maxpasses = 1; 12874 } else { 12875 maxpasses = is_q ? 4 : 2; 12876 } 12877 12878 read_vec_element_i32(s, tcg_idx, rm, index, size); 12879 12880 if (size == 1 && !is_scalar) { 12881 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12882 * the index into both halves of the 32 bit tcg_idx and then use 12883 * the usual Neon helpers. 12884 */ 12885 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12886 } 12887 12888 for (pass = 0; pass < maxpasses; pass++) { 12889 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12890 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12891 12892 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12893 12894 switch (16 * u + opcode) { 12895 case 0x08: /* MUL */ 12896 case 0x10: /* MLA */ 12897 case 0x14: /* MLS */ 12898 { 12899 static NeonGenTwoOpFn * const fns[2][2] = { 12900 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12901 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12902 }; 12903 NeonGenTwoOpFn *genfn; 12904 bool is_sub = opcode == 0x4; 12905 12906 if (size == 1) { 12907 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12908 } else { 12909 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12910 } 12911 if (opcode == 0x8) { 12912 break; 12913 } 12914 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12915 genfn = fns[size - 1][is_sub]; 12916 genfn(tcg_res, tcg_op, tcg_res); 12917 break; 12918 } 12919 case 0x05: /* FMLS */ 12920 case 0x01: /* FMLA */ 12921 read_vec_element_i32(s, tcg_res, rd, pass, 12922 is_scalar ? size : MO_32); 12923 switch (size) { 12924 case 1: 12925 if (opcode == 0x5) { 12926 /* As usual for ARM, separate negation for fused 12927 * multiply-add */ 12928 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 12929 } 12930 if (is_scalar) { 12931 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 12932 tcg_res, fpst); 12933 } else { 12934 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 12935 tcg_res, fpst); 12936 } 12937 break; 12938 case 2: 12939 if (opcode == 0x5) { 12940 /* As usual for ARM, separate negation for 12941 * fused multiply-add */ 12942 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 12943 } 12944 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 12945 tcg_res, fpst); 12946 break; 12947 default: 12948 g_assert_not_reached(); 12949 } 12950 break; 12951 case 0x09: /* FMUL */ 12952 switch (size) { 12953 case 1: 12954 if (is_scalar) { 12955 gen_helper_advsimd_mulh(tcg_res, tcg_op, 12956 tcg_idx, fpst); 12957 } else { 12958 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 12959 tcg_idx, fpst); 12960 } 12961 break; 12962 case 2: 12963 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 12964 break; 12965 default: 12966 g_assert_not_reached(); 12967 } 12968 break; 12969 case 0x19: /* FMULX */ 12970 switch (size) { 12971 case 1: 12972 if (is_scalar) { 12973 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 12974 tcg_idx, fpst); 12975 } else { 12976 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 12977 tcg_idx, fpst); 12978 } 12979 break; 12980 case 2: 12981 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 12982 break; 12983 default: 12984 g_assert_not_reached(); 12985 } 12986 break; 12987 case 0x0c: /* SQDMULH */ 12988 if (size == 1) { 12989 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 12990 tcg_op, tcg_idx); 12991 } else { 12992 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 12993 tcg_op, tcg_idx); 12994 } 12995 break; 12996 case 0x0d: /* SQRDMULH */ 12997 if (size == 1) { 12998 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 12999 tcg_op, tcg_idx); 13000 } else { 13001 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13002 tcg_op, tcg_idx); 13003 } 13004 break; 13005 case 0x1d: /* SQRDMLAH */ 13006 read_vec_element_i32(s, tcg_res, rd, pass, 13007 is_scalar ? size : MO_32); 13008 if (size == 1) { 13009 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13010 tcg_op, tcg_idx, tcg_res); 13011 } else { 13012 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13013 tcg_op, tcg_idx, tcg_res); 13014 } 13015 break; 13016 case 0x1f: /* SQRDMLSH */ 13017 read_vec_element_i32(s, tcg_res, rd, pass, 13018 is_scalar ? size : MO_32); 13019 if (size == 1) { 13020 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13021 tcg_op, tcg_idx, tcg_res); 13022 } else { 13023 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13024 tcg_op, tcg_idx, tcg_res); 13025 } 13026 break; 13027 default: 13028 g_assert_not_reached(); 13029 } 13030 13031 if (is_scalar) { 13032 write_fp_sreg(s, rd, tcg_res); 13033 } else { 13034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13035 } 13036 } 13037 13038 clear_vec_high(s, is_q, rd); 13039 } else { 13040 /* long ops: 16x16->32 or 32x32->64 */ 13041 TCGv_i64 tcg_res[2]; 13042 int pass; 13043 bool satop = extract32(opcode, 0, 1); 13044 MemOp memop = MO_32; 13045 13046 if (satop || !u) { 13047 memop |= MO_SIGN; 13048 } 13049 13050 if (size == 2) { 13051 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13052 13053 read_vec_element(s, tcg_idx, rm, index, memop); 13054 13055 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13056 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13057 TCGv_i64 tcg_passres; 13058 int passelt; 13059 13060 if (is_scalar) { 13061 passelt = 0; 13062 } else { 13063 passelt = pass + (is_q * 2); 13064 } 13065 13066 read_vec_element(s, tcg_op, rn, passelt, memop); 13067 13068 tcg_res[pass] = tcg_temp_new_i64(); 13069 13070 if (opcode == 0xa || opcode == 0xb) { 13071 /* Non-accumulating ops */ 13072 tcg_passres = tcg_res[pass]; 13073 } else { 13074 tcg_passres = tcg_temp_new_i64(); 13075 } 13076 13077 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13078 13079 if (satop) { 13080 /* saturating, doubling */ 13081 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13082 tcg_passres, tcg_passres); 13083 } 13084 13085 if (opcode == 0xa || opcode == 0xb) { 13086 continue; 13087 } 13088 13089 /* Accumulating op: handle accumulate step */ 13090 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13091 13092 switch (opcode) { 13093 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13094 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13095 break; 13096 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13097 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13098 break; 13099 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13100 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13101 /* fall through */ 13102 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13103 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13104 tcg_res[pass], 13105 tcg_passres); 13106 break; 13107 default: 13108 g_assert_not_reached(); 13109 } 13110 } 13111 13112 clear_vec_high(s, !is_scalar, rd); 13113 } else { 13114 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13115 13116 assert(size == 1); 13117 read_vec_element_i32(s, tcg_idx, rm, index, size); 13118 13119 if (!is_scalar) { 13120 /* The simplest way to handle the 16x16 indexed ops is to 13121 * duplicate the index into both halves of the 32 bit tcg_idx 13122 * and then use the usual Neon helpers. 13123 */ 13124 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13125 } 13126 13127 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13128 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13129 TCGv_i64 tcg_passres; 13130 13131 if (is_scalar) { 13132 read_vec_element_i32(s, tcg_op, rn, pass, size); 13133 } else { 13134 read_vec_element_i32(s, tcg_op, rn, 13135 pass + (is_q * 2), MO_32); 13136 } 13137 13138 tcg_res[pass] = tcg_temp_new_i64(); 13139 13140 if (opcode == 0xa || opcode == 0xb) { 13141 /* Non-accumulating ops */ 13142 tcg_passres = tcg_res[pass]; 13143 } else { 13144 tcg_passres = tcg_temp_new_i64(); 13145 } 13146 13147 if (memop & MO_SIGN) { 13148 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13149 } else { 13150 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13151 } 13152 if (satop) { 13153 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13154 tcg_passres, tcg_passres); 13155 } 13156 13157 if (opcode == 0xa || opcode == 0xb) { 13158 continue; 13159 } 13160 13161 /* Accumulating op: handle accumulate step */ 13162 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13163 13164 switch (opcode) { 13165 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13166 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13167 tcg_passres); 13168 break; 13169 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13170 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13171 tcg_passres); 13172 break; 13173 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13174 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13175 /* fall through */ 13176 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13177 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13178 tcg_res[pass], 13179 tcg_passres); 13180 break; 13181 default: 13182 g_assert_not_reached(); 13183 } 13184 } 13185 13186 if (is_scalar) { 13187 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13188 } 13189 } 13190 13191 if (is_scalar) { 13192 tcg_res[1] = tcg_constant_i64(0); 13193 } 13194 13195 for (pass = 0; pass < 2; pass++) { 13196 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13197 } 13198 } 13199 } 13200 13201 /* Crypto AES 13202 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13203 * +-----------------+------+-----------+--------+-----+------+------+ 13204 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13205 * +-----------------+------+-----------+--------+-----+------+------+ 13206 */ 13207 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13208 { 13209 int size = extract32(insn, 22, 2); 13210 int opcode = extract32(insn, 12, 5); 13211 int rn = extract32(insn, 5, 5); 13212 int rd = extract32(insn, 0, 5); 13213 gen_helper_gvec_2 *genfn2 = NULL; 13214 gen_helper_gvec_3 *genfn3 = NULL; 13215 13216 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13217 unallocated_encoding(s); 13218 return; 13219 } 13220 13221 switch (opcode) { 13222 case 0x4: /* AESE */ 13223 genfn3 = gen_helper_crypto_aese; 13224 break; 13225 case 0x6: /* AESMC */ 13226 genfn2 = gen_helper_crypto_aesmc; 13227 break; 13228 case 0x5: /* AESD */ 13229 genfn3 = gen_helper_crypto_aesd; 13230 break; 13231 case 0x7: /* AESIMC */ 13232 genfn2 = gen_helper_crypto_aesimc; 13233 break; 13234 default: 13235 unallocated_encoding(s); 13236 return; 13237 } 13238 13239 if (!fp_access_check(s)) { 13240 return; 13241 } 13242 if (genfn2) { 13243 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13244 } else { 13245 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13246 } 13247 } 13248 13249 /* Crypto three-reg SHA 13250 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13251 * +-----------------+------+---+------+---+--------+-----+------+------+ 13252 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13253 * +-----------------+------+---+------+---+--------+-----+------+------+ 13254 */ 13255 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13256 { 13257 int size = extract32(insn, 22, 2); 13258 int opcode = extract32(insn, 12, 3); 13259 int rm = extract32(insn, 16, 5); 13260 int rn = extract32(insn, 5, 5); 13261 int rd = extract32(insn, 0, 5); 13262 gen_helper_gvec_3 *genfn; 13263 bool feature; 13264 13265 if (size != 0) { 13266 unallocated_encoding(s); 13267 return; 13268 } 13269 13270 switch (opcode) { 13271 case 0: /* SHA1C */ 13272 genfn = gen_helper_crypto_sha1c; 13273 feature = dc_isar_feature(aa64_sha1, s); 13274 break; 13275 case 1: /* SHA1P */ 13276 genfn = gen_helper_crypto_sha1p; 13277 feature = dc_isar_feature(aa64_sha1, s); 13278 break; 13279 case 2: /* SHA1M */ 13280 genfn = gen_helper_crypto_sha1m; 13281 feature = dc_isar_feature(aa64_sha1, s); 13282 break; 13283 case 3: /* SHA1SU0 */ 13284 genfn = gen_helper_crypto_sha1su0; 13285 feature = dc_isar_feature(aa64_sha1, s); 13286 break; 13287 case 4: /* SHA256H */ 13288 genfn = gen_helper_crypto_sha256h; 13289 feature = dc_isar_feature(aa64_sha256, s); 13290 break; 13291 case 5: /* SHA256H2 */ 13292 genfn = gen_helper_crypto_sha256h2; 13293 feature = dc_isar_feature(aa64_sha256, s); 13294 break; 13295 case 6: /* SHA256SU1 */ 13296 genfn = gen_helper_crypto_sha256su1; 13297 feature = dc_isar_feature(aa64_sha256, s); 13298 break; 13299 default: 13300 unallocated_encoding(s); 13301 return; 13302 } 13303 13304 if (!feature) { 13305 unallocated_encoding(s); 13306 return; 13307 } 13308 13309 if (!fp_access_check(s)) { 13310 return; 13311 } 13312 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13313 } 13314 13315 /* Crypto two-reg SHA 13316 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13317 * +-----------------+------+-----------+--------+-----+------+------+ 13318 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13319 * +-----------------+------+-----------+--------+-----+------+------+ 13320 */ 13321 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13322 { 13323 int size = extract32(insn, 22, 2); 13324 int opcode = extract32(insn, 12, 5); 13325 int rn = extract32(insn, 5, 5); 13326 int rd = extract32(insn, 0, 5); 13327 gen_helper_gvec_2 *genfn; 13328 bool feature; 13329 13330 if (size != 0) { 13331 unallocated_encoding(s); 13332 return; 13333 } 13334 13335 switch (opcode) { 13336 case 0: /* SHA1H */ 13337 feature = dc_isar_feature(aa64_sha1, s); 13338 genfn = gen_helper_crypto_sha1h; 13339 break; 13340 case 1: /* SHA1SU1 */ 13341 feature = dc_isar_feature(aa64_sha1, s); 13342 genfn = gen_helper_crypto_sha1su1; 13343 break; 13344 case 2: /* SHA256SU0 */ 13345 feature = dc_isar_feature(aa64_sha256, s); 13346 genfn = gen_helper_crypto_sha256su0; 13347 break; 13348 default: 13349 unallocated_encoding(s); 13350 return; 13351 } 13352 13353 if (!feature) { 13354 unallocated_encoding(s); 13355 return; 13356 } 13357 13358 if (!fp_access_check(s)) { 13359 return; 13360 } 13361 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13362 } 13363 13364 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13365 { 13366 tcg_gen_rotli_i64(d, m, 1); 13367 tcg_gen_xor_i64(d, d, n); 13368 } 13369 13370 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13371 { 13372 tcg_gen_rotli_vec(vece, d, m, 1); 13373 tcg_gen_xor_vec(vece, d, d, n); 13374 } 13375 13376 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13377 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13378 { 13379 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13380 static const GVecGen3 op = { 13381 .fni8 = gen_rax1_i64, 13382 .fniv = gen_rax1_vec, 13383 .opt_opc = vecop_list, 13384 .fno = gen_helper_crypto_rax1, 13385 .vece = MO_64, 13386 }; 13387 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13388 } 13389 13390 /* Crypto three-reg SHA512 13391 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13392 * +-----------------------+------+---+---+-----+--------+------+------+ 13393 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13394 * +-----------------------+------+---+---+-----+--------+------+------+ 13395 */ 13396 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13397 { 13398 int opcode = extract32(insn, 10, 2); 13399 int o = extract32(insn, 14, 1); 13400 int rm = extract32(insn, 16, 5); 13401 int rn = extract32(insn, 5, 5); 13402 int rd = extract32(insn, 0, 5); 13403 bool feature; 13404 gen_helper_gvec_3 *oolfn = NULL; 13405 GVecGen3Fn *gvecfn = NULL; 13406 13407 if (o == 0) { 13408 switch (opcode) { 13409 case 0: /* SHA512H */ 13410 feature = dc_isar_feature(aa64_sha512, s); 13411 oolfn = gen_helper_crypto_sha512h; 13412 break; 13413 case 1: /* SHA512H2 */ 13414 feature = dc_isar_feature(aa64_sha512, s); 13415 oolfn = gen_helper_crypto_sha512h2; 13416 break; 13417 case 2: /* SHA512SU1 */ 13418 feature = dc_isar_feature(aa64_sha512, s); 13419 oolfn = gen_helper_crypto_sha512su1; 13420 break; 13421 case 3: /* RAX1 */ 13422 feature = dc_isar_feature(aa64_sha3, s); 13423 gvecfn = gen_gvec_rax1; 13424 break; 13425 default: 13426 g_assert_not_reached(); 13427 } 13428 } else { 13429 switch (opcode) { 13430 case 0: /* SM3PARTW1 */ 13431 feature = dc_isar_feature(aa64_sm3, s); 13432 oolfn = gen_helper_crypto_sm3partw1; 13433 break; 13434 case 1: /* SM3PARTW2 */ 13435 feature = dc_isar_feature(aa64_sm3, s); 13436 oolfn = gen_helper_crypto_sm3partw2; 13437 break; 13438 case 2: /* SM4EKEY */ 13439 feature = dc_isar_feature(aa64_sm4, s); 13440 oolfn = gen_helper_crypto_sm4ekey; 13441 break; 13442 default: 13443 unallocated_encoding(s); 13444 return; 13445 } 13446 } 13447 13448 if (!feature) { 13449 unallocated_encoding(s); 13450 return; 13451 } 13452 13453 if (!fp_access_check(s)) { 13454 return; 13455 } 13456 13457 if (oolfn) { 13458 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13459 } else { 13460 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13461 } 13462 } 13463 13464 /* Crypto two-reg SHA512 13465 * 31 12 11 10 9 5 4 0 13466 * +-----------------------------------------+--------+------+------+ 13467 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13468 * +-----------------------------------------+--------+------+------+ 13469 */ 13470 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13471 { 13472 int opcode = extract32(insn, 10, 2); 13473 int rn = extract32(insn, 5, 5); 13474 int rd = extract32(insn, 0, 5); 13475 bool feature; 13476 13477 switch (opcode) { 13478 case 0: /* SHA512SU0 */ 13479 feature = dc_isar_feature(aa64_sha512, s); 13480 break; 13481 case 1: /* SM4E */ 13482 feature = dc_isar_feature(aa64_sm4, s); 13483 break; 13484 default: 13485 unallocated_encoding(s); 13486 return; 13487 } 13488 13489 if (!feature) { 13490 unallocated_encoding(s); 13491 return; 13492 } 13493 13494 if (!fp_access_check(s)) { 13495 return; 13496 } 13497 13498 switch (opcode) { 13499 case 0: /* SHA512SU0 */ 13500 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13501 break; 13502 case 1: /* SM4E */ 13503 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13504 break; 13505 default: 13506 g_assert_not_reached(); 13507 } 13508 } 13509 13510 /* Crypto four-register 13511 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13512 * +-------------------+-----+------+---+------+------+------+ 13513 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13514 * +-------------------+-----+------+---+------+------+------+ 13515 */ 13516 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13517 { 13518 int op0 = extract32(insn, 21, 2); 13519 int rm = extract32(insn, 16, 5); 13520 int ra = extract32(insn, 10, 5); 13521 int rn = extract32(insn, 5, 5); 13522 int rd = extract32(insn, 0, 5); 13523 bool feature; 13524 13525 switch (op0) { 13526 case 0: /* EOR3 */ 13527 case 1: /* BCAX */ 13528 feature = dc_isar_feature(aa64_sha3, s); 13529 break; 13530 case 2: /* SM3SS1 */ 13531 feature = dc_isar_feature(aa64_sm3, s); 13532 break; 13533 default: 13534 unallocated_encoding(s); 13535 return; 13536 } 13537 13538 if (!feature) { 13539 unallocated_encoding(s); 13540 return; 13541 } 13542 13543 if (!fp_access_check(s)) { 13544 return; 13545 } 13546 13547 if (op0 < 2) { 13548 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13549 int pass; 13550 13551 tcg_op1 = tcg_temp_new_i64(); 13552 tcg_op2 = tcg_temp_new_i64(); 13553 tcg_op3 = tcg_temp_new_i64(); 13554 tcg_res[0] = tcg_temp_new_i64(); 13555 tcg_res[1] = tcg_temp_new_i64(); 13556 13557 for (pass = 0; pass < 2; pass++) { 13558 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13559 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13560 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13561 13562 if (op0 == 0) { 13563 /* EOR3 */ 13564 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13565 } else { 13566 /* BCAX */ 13567 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13568 } 13569 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13570 } 13571 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13572 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13573 } else { 13574 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13575 13576 tcg_op1 = tcg_temp_new_i32(); 13577 tcg_op2 = tcg_temp_new_i32(); 13578 tcg_op3 = tcg_temp_new_i32(); 13579 tcg_res = tcg_temp_new_i32(); 13580 tcg_zero = tcg_constant_i32(0); 13581 13582 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13583 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13584 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13585 13586 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13587 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13588 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13589 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13590 13591 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13592 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13593 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13594 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13595 } 13596 } 13597 13598 /* Crypto XAR 13599 * 31 21 20 16 15 10 9 5 4 0 13600 * +-----------------------+------+--------+------+------+ 13601 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13602 * +-----------------------+------+--------+------+------+ 13603 */ 13604 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13605 { 13606 int rm = extract32(insn, 16, 5); 13607 int imm6 = extract32(insn, 10, 6); 13608 int rn = extract32(insn, 5, 5); 13609 int rd = extract32(insn, 0, 5); 13610 13611 if (!dc_isar_feature(aa64_sha3, s)) { 13612 unallocated_encoding(s); 13613 return; 13614 } 13615 13616 if (!fp_access_check(s)) { 13617 return; 13618 } 13619 13620 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13621 vec_full_reg_offset(s, rn), 13622 vec_full_reg_offset(s, rm), imm6, 16, 13623 vec_full_reg_size(s)); 13624 } 13625 13626 /* Crypto three-reg imm2 13627 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13628 * +-----------------------+------+-----+------+--------+------+------+ 13629 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13630 * +-----------------------+------+-----+------+--------+------+------+ 13631 */ 13632 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13633 { 13634 static gen_helper_gvec_3 * const fns[4] = { 13635 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13636 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13637 }; 13638 int opcode = extract32(insn, 10, 2); 13639 int imm2 = extract32(insn, 12, 2); 13640 int rm = extract32(insn, 16, 5); 13641 int rn = extract32(insn, 5, 5); 13642 int rd = extract32(insn, 0, 5); 13643 13644 if (!dc_isar_feature(aa64_sm3, s)) { 13645 unallocated_encoding(s); 13646 return; 13647 } 13648 13649 if (!fp_access_check(s)) { 13650 return; 13651 } 13652 13653 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13654 } 13655 13656 /* C3.6 Data processing - SIMD, inc Crypto 13657 * 13658 * As the decode gets a little complex we are using a table based 13659 * approach for this part of the decode. 13660 */ 13661 static const AArch64DecodeTable data_proc_simd[] = { 13662 /* pattern , mask , fn */ 13663 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13664 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13665 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13666 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13667 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13668 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13669 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13670 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13671 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13672 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13673 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13674 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13675 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13676 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13677 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13678 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13679 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13680 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13681 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13682 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13683 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13684 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13685 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13686 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13687 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13688 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13689 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13690 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13691 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13692 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13693 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13694 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13695 { 0x00000000, 0x00000000, NULL } 13696 }; 13697 13698 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13699 { 13700 /* Note that this is called with all non-FP cases from 13701 * table C3-6 so it must UNDEF for entries not specifically 13702 * allocated to instructions in that table. 13703 */ 13704 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13705 if (fn) { 13706 fn(s, insn); 13707 } else { 13708 unallocated_encoding(s); 13709 } 13710 } 13711 13712 /* C3.6 Data processing - SIMD and floating point */ 13713 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13714 { 13715 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13716 disas_data_proc_fp(s, insn); 13717 } else { 13718 /* SIMD, including crypto */ 13719 disas_data_proc_simd(s, insn); 13720 } 13721 } 13722 13723 static bool trans_OK(DisasContext *s, arg_OK *a) 13724 { 13725 return true; 13726 } 13727 13728 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13729 { 13730 s->is_nonstreaming = true; 13731 return true; 13732 } 13733 13734 /** 13735 * is_guarded_page: 13736 * @env: The cpu environment 13737 * @s: The DisasContext 13738 * 13739 * Return true if the page is guarded. 13740 */ 13741 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13742 { 13743 uint64_t addr = s->base.pc_first; 13744 #ifdef CONFIG_USER_ONLY 13745 return page_get_flags(addr) & PAGE_BTI; 13746 #else 13747 CPUTLBEntryFull *full; 13748 void *host; 13749 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13750 int flags; 13751 13752 /* 13753 * We test this immediately after reading an insn, which means 13754 * that the TLB entry must be present and valid, and thus this 13755 * access will never raise an exception. 13756 */ 13757 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13758 false, &host, &full, 0); 13759 assert(!(flags & TLB_INVALID_MASK)); 13760 13761 return full->guarded; 13762 #endif 13763 } 13764 13765 /** 13766 * btype_destination_ok: 13767 * @insn: The instruction at the branch destination 13768 * @bt: SCTLR_ELx.BT 13769 * @btype: PSTATE.BTYPE, and is non-zero 13770 * 13771 * On a guarded page, there are a limited number of insns 13772 * that may be present at the branch target: 13773 * - branch target identifiers, 13774 * - paciasp, pacibsp, 13775 * - BRK insn 13776 * - HLT insn 13777 * Anything else causes a Branch Target Exception. 13778 * 13779 * Return true if the branch is compatible, false to raise BTITRAP. 13780 */ 13781 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13782 { 13783 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13784 /* HINT space */ 13785 switch (extract32(insn, 5, 7)) { 13786 case 0b011001: /* PACIASP */ 13787 case 0b011011: /* PACIBSP */ 13788 /* 13789 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13790 * with btype == 3. Otherwise all btype are ok. 13791 */ 13792 return !bt || btype != 3; 13793 case 0b100000: /* BTI */ 13794 /* Not compatible with any btype. */ 13795 return false; 13796 case 0b100010: /* BTI c */ 13797 /* Not compatible with btype == 3 */ 13798 return btype != 3; 13799 case 0b100100: /* BTI j */ 13800 /* Not compatible with btype == 2 */ 13801 return btype != 2; 13802 case 0b100110: /* BTI jc */ 13803 /* Compatible with any btype. */ 13804 return true; 13805 } 13806 } else { 13807 switch (insn & 0xffe0001fu) { 13808 case 0xd4200000u: /* BRK */ 13809 case 0xd4400000u: /* HLT */ 13810 /* Give priority to the breakpoint exception. */ 13811 return true; 13812 } 13813 } 13814 return false; 13815 } 13816 13817 /* C3.1 A64 instruction index by encoding */ 13818 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13819 { 13820 switch (extract32(insn, 25, 4)) { 13821 case 0x5: 13822 case 0xd: /* Data processing - register */ 13823 disas_data_proc_reg(s, insn); 13824 break; 13825 case 0x7: 13826 case 0xf: /* Data processing - SIMD and floating point */ 13827 disas_data_proc_simd_fp(s, insn); 13828 break; 13829 default: 13830 unallocated_encoding(s); 13831 break; 13832 } 13833 } 13834 13835 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13836 CPUState *cpu) 13837 { 13838 DisasContext *dc = container_of(dcbase, DisasContext, base); 13839 CPUARMState *env = cpu->env_ptr; 13840 ARMCPU *arm_cpu = env_archcpu(env); 13841 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13842 int bound, core_mmu_idx; 13843 13844 dc->isar = &arm_cpu->isar; 13845 dc->condjmp = 0; 13846 dc->pc_save = dc->base.pc_first; 13847 dc->aarch64 = true; 13848 dc->thumb = false; 13849 dc->sctlr_b = 0; 13850 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13851 dc->condexec_mask = 0; 13852 dc->condexec_cond = 0; 13853 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13854 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13855 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13856 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13857 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13858 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13859 #if !defined(CONFIG_USER_ONLY) 13860 dc->user = (dc->current_el == 0); 13861 #endif 13862 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13863 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13864 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13865 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13866 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13867 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13868 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13869 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13870 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13871 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13872 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13873 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13874 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13875 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13876 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 13877 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13878 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13879 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13880 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13881 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13882 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13883 dc->vec_len = 0; 13884 dc->vec_stride = 0; 13885 dc->cp_regs = arm_cpu->cp_regs; 13886 dc->features = env->features; 13887 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13888 13889 #ifdef CONFIG_USER_ONLY 13890 /* In sve_probe_page, we assume TBI is enabled. */ 13891 tcg_debug_assert(dc->tbid & 1); 13892 #endif 13893 13894 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13895 13896 /* Single step state. The code-generation logic here is: 13897 * SS_ACTIVE == 0: 13898 * generate code with no special handling for single-stepping (except 13899 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13900 * this happens anyway because those changes are all system register or 13901 * PSTATE writes). 13902 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13903 * emit code for one insn 13904 * emit code to clear PSTATE.SS 13905 * emit code to generate software step exception for completed step 13906 * end TB (as usual for having generated an exception) 13907 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13908 * emit code to generate a software step exception 13909 * end the TB 13910 */ 13911 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13912 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13913 dc->is_ldex = false; 13914 13915 /* Bound the number of insns to execute to those left on the page. */ 13916 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13917 13918 /* If architectural single step active, limit to 1. */ 13919 if (dc->ss_active) { 13920 bound = 1; 13921 } 13922 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13923 } 13924 13925 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13926 { 13927 } 13928 13929 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13930 { 13931 DisasContext *dc = container_of(dcbase, DisasContext, base); 13932 target_ulong pc_arg = dc->base.pc_next; 13933 13934 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13935 pc_arg &= ~TARGET_PAGE_MASK; 13936 } 13937 tcg_gen_insn_start(pc_arg, 0, 0); 13938 dc->insn_start = tcg_last_op(); 13939 } 13940 13941 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13942 { 13943 DisasContext *s = container_of(dcbase, DisasContext, base); 13944 CPUARMState *env = cpu->env_ptr; 13945 uint64_t pc = s->base.pc_next; 13946 uint32_t insn; 13947 13948 /* Singlestep exceptions have the highest priority. */ 13949 if (s->ss_active && !s->pstate_ss) { 13950 /* Singlestep state is Active-pending. 13951 * If we're in this state at the start of a TB then either 13952 * a) we just took an exception to an EL which is being debugged 13953 * and this is the first insn in the exception handler 13954 * b) debug exceptions were masked and we just unmasked them 13955 * without changing EL (eg by clearing PSTATE.D) 13956 * In either case we're going to take a swstep exception in the 13957 * "did not step an insn" case, and so the syndrome ISV and EX 13958 * bits should be zero. 13959 */ 13960 assert(s->base.num_insns == 1); 13961 gen_swstep_exception(s, 0, 0); 13962 s->base.is_jmp = DISAS_NORETURN; 13963 s->base.pc_next = pc + 4; 13964 return; 13965 } 13966 13967 if (pc & 3) { 13968 /* 13969 * PC alignment fault. This has priority over the instruction abort 13970 * that we would receive from a translation fault via arm_ldl_code. 13971 * This should only be possible after an indirect branch, at the 13972 * start of the TB. 13973 */ 13974 assert(s->base.num_insns == 1); 13975 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 13976 s->base.is_jmp = DISAS_NORETURN; 13977 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13978 return; 13979 } 13980 13981 s->pc_curr = pc; 13982 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13983 s->insn = insn; 13984 s->base.pc_next = pc + 4; 13985 13986 s->fp_access_checked = false; 13987 s->sve_access_checked = false; 13988 13989 if (s->pstate_il) { 13990 /* 13991 * Illegal execution state. This has priority over BTI 13992 * exceptions, but comes after instruction abort exceptions. 13993 */ 13994 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13995 return; 13996 } 13997 13998 if (dc_isar_feature(aa64_bti, s)) { 13999 if (s->base.num_insns == 1) { 14000 /* 14001 * At the first insn of the TB, compute s->guarded_page. 14002 * We delayed computing this until successfully reading 14003 * the first insn of the TB, above. This (mostly) ensures 14004 * that the softmmu tlb entry has been populated, and the 14005 * page table GP bit is available. 14006 * 14007 * Note that we need to compute this even if btype == 0, 14008 * because this value is used for BR instructions later 14009 * where ENV is not available. 14010 */ 14011 s->guarded_page = is_guarded_page(env, s); 14012 14013 /* First insn can have btype set to non-zero. */ 14014 tcg_debug_assert(s->btype >= 0); 14015 14016 /* 14017 * Note that the Branch Target Exception has fairly high 14018 * priority -- below debugging exceptions but above most 14019 * everything else. This allows us to handle this now 14020 * instead of waiting until the insn is otherwise decoded. 14021 */ 14022 if (s->btype != 0 14023 && s->guarded_page 14024 && !btype_destination_ok(insn, s->bt, s->btype)) { 14025 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14026 return; 14027 } 14028 } else { 14029 /* Not the first insn: btype must be 0. */ 14030 tcg_debug_assert(s->btype == 0); 14031 } 14032 } 14033 14034 s->is_nonstreaming = false; 14035 if (s->sme_trap_nonstreaming) { 14036 disas_sme_fa64(s, insn); 14037 } 14038 14039 if (!disas_a64(s, insn) && 14040 !disas_sme(s, insn) && 14041 !disas_sve(s, insn)) { 14042 disas_a64_legacy(s, insn); 14043 } 14044 14045 /* 14046 * After execution of most insns, btype is reset to 0. 14047 * Note that we set btype == -1 when the insn sets btype. 14048 */ 14049 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14050 reset_btype(s); 14051 } 14052 } 14053 14054 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14055 { 14056 DisasContext *dc = container_of(dcbase, DisasContext, base); 14057 14058 if (unlikely(dc->ss_active)) { 14059 /* Note that this means single stepping WFI doesn't halt the CPU. 14060 * For conditional branch insns this is harmless unreachable code as 14061 * gen_goto_tb() has already handled emitting the debug exception 14062 * (and thus a tb-jump is not possible when singlestepping). 14063 */ 14064 switch (dc->base.is_jmp) { 14065 default: 14066 gen_a64_update_pc(dc, 4); 14067 /* fall through */ 14068 case DISAS_EXIT: 14069 case DISAS_JUMP: 14070 gen_step_complete_exception(dc); 14071 break; 14072 case DISAS_NORETURN: 14073 break; 14074 } 14075 } else { 14076 switch (dc->base.is_jmp) { 14077 case DISAS_NEXT: 14078 case DISAS_TOO_MANY: 14079 gen_goto_tb(dc, 1, 4); 14080 break; 14081 default: 14082 case DISAS_UPDATE_EXIT: 14083 gen_a64_update_pc(dc, 4); 14084 /* fall through */ 14085 case DISAS_EXIT: 14086 tcg_gen_exit_tb(NULL, 0); 14087 break; 14088 case DISAS_UPDATE_NOCHAIN: 14089 gen_a64_update_pc(dc, 4); 14090 /* fall through */ 14091 case DISAS_JUMP: 14092 tcg_gen_lookup_and_goto_ptr(); 14093 break; 14094 case DISAS_NORETURN: 14095 case DISAS_SWI: 14096 break; 14097 case DISAS_WFE: 14098 gen_a64_update_pc(dc, 4); 14099 gen_helper_wfe(cpu_env); 14100 break; 14101 case DISAS_YIELD: 14102 gen_a64_update_pc(dc, 4); 14103 gen_helper_yield(cpu_env); 14104 break; 14105 case DISAS_WFI: 14106 /* 14107 * This is a special case because we don't want to just halt 14108 * the CPU if trying to debug across a WFI. 14109 */ 14110 gen_a64_update_pc(dc, 4); 14111 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14112 /* 14113 * The helper doesn't necessarily throw an exception, but we 14114 * must go back to the main loop to check for interrupts anyway. 14115 */ 14116 tcg_gen_exit_tb(NULL, 0); 14117 break; 14118 } 14119 } 14120 } 14121 14122 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14123 CPUState *cpu, FILE *logfile) 14124 { 14125 DisasContext *dc = container_of(dcbase, DisasContext, base); 14126 14127 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14128 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14129 } 14130 14131 const TranslatorOps aarch64_translator_ops = { 14132 .init_disas_context = aarch64_tr_init_disas_context, 14133 .tb_start = aarch64_tr_tb_start, 14134 .insn_start = aarch64_tr_insn_start, 14135 .translate_insn = aarch64_tr_translate_insn, 14136 .tb_stop = aarch64_tr_tb_stop, 14137 .disas_log = aarch64_tr_disas_log, 14138 }; 14139