1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmulx = { 4919 gen_helper_advsimd_mulxh, 4920 gen_helper_vfp_mulxs, 4921 gen_helper_vfp_mulxd, 4922 }; 4923 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4924 4925 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 4926 gen_helper_gvec_3_ptr * const fns[3]) 4927 { 4928 MemOp esz = a->esz; 4929 4930 switch (esz) { 4931 case MO_64: 4932 if (!a->q) { 4933 return false; 4934 } 4935 break; 4936 case MO_32: 4937 break; 4938 case MO_16: 4939 if (!dc_isar_feature(aa64_fp16, s)) { 4940 return false; 4941 } 4942 break; 4943 default: 4944 return false; 4945 } 4946 if (fp_access_check(s)) { 4947 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 4948 esz == MO_16, 0, fns[esz - 1]); 4949 } 4950 return true; 4951 } 4952 4953 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 4954 gen_helper_gvec_fadd_h, 4955 gen_helper_gvec_fadd_s, 4956 gen_helper_gvec_fadd_d, 4957 }; 4958 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 4959 4960 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 4961 gen_helper_gvec_fsub_h, 4962 gen_helper_gvec_fsub_s, 4963 gen_helper_gvec_fsub_d, 4964 }; 4965 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 4966 4967 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 4968 gen_helper_gvec_fdiv_h, 4969 gen_helper_gvec_fdiv_s, 4970 gen_helper_gvec_fdiv_d, 4971 }; 4972 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 4973 4974 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 4975 gen_helper_gvec_fmul_h, 4976 gen_helper_gvec_fmul_s, 4977 gen_helper_gvec_fmul_d, 4978 }; 4979 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 4980 4981 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 4982 gen_helper_gvec_fmulx_h, 4983 gen_helper_gvec_fmulx_s, 4984 gen_helper_gvec_fmulx_d, 4985 }; 4986 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 4987 4988 /* 4989 * Advanced SIMD scalar/vector x indexed element 4990 */ 4991 4992 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 4993 { 4994 switch (a->esz) { 4995 case MO_64: 4996 if (fp_access_check(s)) { 4997 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4998 TCGv_i64 t1 = tcg_temp_new_i64(); 4999 5000 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5001 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5002 write_fp_dreg(s, a->rd, t0); 5003 } 5004 break; 5005 case MO_32: 5006 if (fp_access_check(s)) { 5007 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5008 TCGv_i32 t1 = tcg_temp_new_i32(); 5009 5010 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5011 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5012 write_fp_sreg(s, a->rd, t0); 5013 } 5014 break; 5015 case MO_16: 5016 if (!dc_isar_feature(aa64_fp16, s)) { 5017 return false; 5018 } 5019 if (fp_access_check(s)) { 5020 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5021 TCGv_i32 t1 = tcg_temp_new_i32(); 5022 5023 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5024 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5025 write_fp_sreg(s, a->rd, t0); 5026 } 5027 break; 5028 default: 5029 g_assert_not_reached(); 5030 } 5031 return true; 5032 } 5033 5034 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5035 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5036 5037 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5038 gen_helper_gvec_3_ptr * const fns[3]) 5039 { 5040 MemOp esz = a->esz; 5041 5042 switch (esz) { 5043 case MO_64: 5044 if (!a->q) { 5045 return false; 5046 } 5047 break; 5048 case MO_32: 5049 break; 5050 case MO_16: 5051 if (!dc_isar_feature(aa64_fp16, s)) { 5052 return false; 5053 } 5054 break; 5055 default: 5056 g_assert_not_reached(); 5057 } 5058 if (fp_access_check(s)) { 5059 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5060 esz == MO_16, a->idx, fns[esz - 1]); 5061 } 5062 return true; 5063 } 5064 5065 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5066 gen_helper_gvec_fmul_idx_h, 5067 gen_helper_gvec_fmul_idx_s, 5068 gen_helper_gvec_fmul_idx_d, 5069 }; 5070 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5071 5072 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5073 gen_helper_gvec_fmulx_idx_h, 5074 gen_helper_gvec_fmulx_idx_s, 5075 gen_helper_gvec_fmulx_idx_d, 5076 }; 5077 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5078 5079 5080 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5081 * Note that it is the caller's responsibility to ensure that the 5082 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5083 * mandated semantics for out of range shifts. 5084 */ 5085 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5086 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5087 { 5088 switch (shift_type) { 5089 case A64_SHIFT_TYPE_LSL: 5090 tcg_gen_shl_i64(dst, src, shift_amount); 5091 break; 5092 case A64_SHIFT_TYPE_LSR: 5093 tcg_gen_shr_i64(dst, src, shift_amount); 5094 break; 5095 case A64_SHIFT_TYPE_ASR: 5096 if (!sf) { 5097 tcg_gen_ext32s_i64(dst, src); 5098 } 5099 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5100 break; 5101 case A64_SHIFT_TYPE_ROR: 5102 if (sf) { 5103 tcg_gen_rotr_i64(dst, src, shift_amount); 5104 } else { 5105 TCGv_i32 t0, t1; 5106 t0 = tcg_temp_new_i32(); 5107 t1 = tcg_temp_new_i32(); 5108 tcg_gen_extrl_i64_i32(t0, src); 5109 tcg_gen_extrl_i64_i32(t1, shift_amount); 5110 tcg_gen_rotr_i32(t0, t0, t1); 5111 tcg_gen_extu_i32_i64(dst, t0); 5112 } 5113 break; 5114 default: 5115 assert(FALSE); /* all shift types should be handled */ 5116 break; 5117 } 5118 5119 if (!sf) { /* zero extend final result */ 5120 tcg_gen_ext32u_i64(dst, dst); 5121 } 5122 } 5123 5124 /* Shift a TCGv src by immediate, put result in dst. 5125 * The shift amount must be in range (this should always be true as the 5126 * relevant instructions will UNDEF on bad shift immediates). 5127 */ 5128 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5129 enum a64_shift_type shift_type, unsigned int shift_i) 5130 { 5131 assert(shift_i < (sf ? 64 : 32)); 5132 5133 if (shift_i == 0) { 5134 tcg_gen_mov_i64(dst, src); 5135 } else { 5136 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5137 } 5138 } 5139 5140 /* Logical (shifted register) 5141 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5142 * +----+-----+-----------+-------+---+------+--------+------+------+ 5143 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5144 * +----+-----+-----------+-------+---+------+--------+------+------+ 5145 */ 5146 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5147 { 5148 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5149 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5150 5151 sf = extract32(insn, 31, 1); 5152 opc = extract32(insn, 29, 2); 5153 shift_type = extract32(insn, 22, 2); 5154 invert = extract32(insn, 21, 1); 5155 rm = extract32(insn, 16, 5); 5156 shift_amount = extract32(insn, 10, 6); 5157 rn = extract32(insn, 5, 5); 5158 rd = extract32(insn, 0, 5); 5159 5160 if (!sf && (shift_amount & (1 << 5))) { 5161 unallocated_encoding(s); 5162 return; 5163 } 5164 5165 tcg_rd = cpu_reg(s, rd); 5166 5167 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5168 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5169 * register-register MOV and MVN, so it is worth special casing. 5170 */ 5171 tcg_rm = cpu_reg(s, rm); 5172 if (invert) { 5173 tcg_gen_not_i64(tcg_rd, tcg_rm); 5174 if (!sf) { 5175 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5176 } 5177 } else { 5178 if (sf) { 5179 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5180 } else { 5181 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5182 } 5183 } 5184 return; 5185 } 5186 5187 tcg_rm = read_cpu_reg(s, rm, sf); 5188 5189 if (shift_amount) { 5190 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5191 } 5192 5193 tcg_rn = cpu_reg(s, rn); 5194 5195 switch (opc | (invert << 2)) { 5196 case 0: /* AND */ 5197 case 3: /* ANDS */ 5198 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5199 break; 5200 case 1: /* ORR */ 5201 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5202 break; 5203 case 2: /* EOR */ 5204 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5205 break; 5206 case 4: /* BIC */ 5207 case 7: /* BICS */ 5208 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5209 break; 5210 case 5: /* ORN */ 5211 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5212 break; 5213 case 6: /* EON */ 5214 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5215 break; 5216 default: 5217 assert(FALSE); 5218 break; 5219 } 5220 5221 if (!sf) { 5222 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5223 } 5224 5225 if (opc == 3) { 5226 gen_logic_CC(sf, tcg_rd); 5227 } 5228 } 5229 5230 /* 5231 * Add/subtract (extended register) 5232 * 5233 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5234 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5235 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5236 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5237 * 5238 * sf: 0 -> 32bit, 1 -> 64bit 5239 * op: 0 -> add , 1 -> sub 5240 * S: 1 -> set flags 5241 * opt: 00 5242 * option: extension type (see DecodeRegExtend) 5243 * imm3: optional shift to Rm 5244 * 5245 * Rd = Rn + LSL(extend(Rm), amount) 5246 */ 5247 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5248 { 5249 int rd = extract32(insn, 0, 5); 5250 int rn = extract32(insn, 5, 5); 5251 int imm3 = extract32(insn, 10, 3); 5252 int option = extract32(insn, 13, 3); 5253 int rm = extract32(insn, 16, 5); 5254 int opt = extract32(insn, 22, 2); 5255 bool setflags = extract32(insn, 29, 1); 5256 bool sub_op = extract32(insn, 30, 1); 5257 bool sf = extract32(insn, 31, 1); 5258 5259 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5260 TCGv_i64 tcg_rd; 5261 TCGv_i64 tcg_result; 5262 5263 if (imm3 > 4 || opt != 0) { 5264 unallocated_encoding(s); 5265 return; 5266 } 5267 5268 /* non-flag setting ops may use SP */ 5269 if (!setflags) { 5270 tcg_rd = cpu_reg_sp(s, rd); 5271 } else { 5272 tcg_rd = cpu_reg(s, rd); 5273 } 5274 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5275 5276 tcg_rm = read_cpu_reg(s, rm, sf); 5277 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5278 5279 tcg_result = tcg_temp_new_i64(); 5280 5281 if (!setflags) { 5282 if (sub_op) { 5283 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5284 } else { 5285 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5286 } 5287 } else { 5288 if (sub_op) { 5289 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5290 } else { 5291 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5292 } 5293 } 5294 5295 if (sf) { 5296 tcg_gen_mov_i64(tcg_rd, tcg_result); 5297 } else { 5298 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5299 } 5300 } 5301 5302 /* 5303 * Add/subtract (shifted register) 5304 * 5305 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5306 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5307 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5308 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5309 * 5310 * sf: 0 -> 32bit, 1 -> 64bit 5311 * op: 0 -> add , 1 -> sub 5312 * S: 1 -> set flags 5313 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5314 * imm6: Shift amount to apply to Rm before the add/sub 5315 */ 5316 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5317 { 5318 int rd = extract32(insn, 0, 5); 5319 int rn = extract32(insn, 5, 5); 5320 int imm6 = extract32(insn, 10, 6); 5321 int rm = extract32(insn, 16, 5); 5322 int shift_type = extract32(insn, 22, 2); 5323 bool setflags = extract32(insn, 29, 1); 5324 bool sub_op = extract32(insn, 30, 1); 5325 bool sf = extract32(insn, 31, 1); 5326 5327 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5328 TCGv_i64 tcg_rn, tcg_rm; 5329 TCGv_i64 tcg_result; 5330 5331 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5332 unallocated_encoding(s); 5333 return; 5334 } 5335 5336 tcg_rn = read_cpu_reg(s, rn, sf); 5337 tcg_rm = read_cpu_reg(s, rm, sf); 5338 5339 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5340 5341 tcg_result = tcg_temp_new_i64(); 5342 5343 if (!setflags) { 5344 if (sub_op) { 5345 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5346 } else { 5347 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5348 } 5349 } else { 5350 if (sub_op) { 5351 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5352 } else { 5353 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5354 } 5355 } 5356 5357 if (sf) { 5358 tcg_gen_mov_i64(tcg_rd, tcg_result); 5359 } else { 5360 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5361 } 5362 } 5363 5364 /* Data-processing (3 source) 5365 * 5366 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5367 * +--+------+-----------+------+------+----+------+------+------+ 5368 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5369 * +--+------+-----------+------+------+----+------+------+------+ 5370 */ 5371 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5372 { 5373 int rd = extract32(insn, 0, 5); 5374 int rn = extract32(insn, 5, 5); 5375 int ra = extract32(insn, 10, 5); 5376 int rm = extract32(insn, 16, 5); 5377 int op_id = (extract32(insn, 29, 3) << 4) | 5378 (extract32(insn, 21, 3) << 1) | 5379 extract32(insn, 15, 1); 5380 bool sf = extract32(insn, 31, 1); 5381 bool is_sub = extract32(op_id, 0, 1); 5382 bool is_high = extract32(op_id, 2, 1); 5383 bool is_signed = false; 5384 TCGv_i64 tcg_op1; 5385 TCGv_i64 tcg_op2; 5386 TCGv_i64 tcg_tmp; 5387 5388 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5389 switch (op_id) { 5390 case 0x42: /* SMADDL */ 5391 case 0x43: /* SMSUBL */ 5392 case 0x44: /* SMULH */ 5393 is_signed = true; 5394 break; 5395 case 0x0: /* MADD (32bit) */ 5396 case 0x1: /* MSUB (32bit) */ 5397 case 0x40: /* MADD (64bit) */ 5398 case 0x41: /* MSUB (64bit) */ 5399 case 0x4a: /* UMADDL */ 5400 case 0x4b: /* UMSUBL */ 5401 case 0x4c: /* UMULH */ 5402 break; 5403 default: 5404 unallocated_encoding(s); 5405 return; 5406 } 5407 5408 if (is_high) { 5409 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5410 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5411 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5412 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5413 5414 if (is_signed) { 5415 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5416 } else { 5417 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5418 } 5419 return; 5420 } 5421 5422 tcg_op1 = tcg_temp_new_i64(); 5423 tcg_op2 = tcg_temp_new_i64(); 5424 tcg_tmp = tcg_temp_new_i64(); 5425 5426 if (op_id < 0x42) { 5427 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5428 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5429 } else { 5430 if (is_signed) { 5431 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5432 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5433 } else { 5434 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5435 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5436 } 5437 } 5438 5439 if (ra == 31 && !is_sub) { 5440 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5441 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5442 } else { 5443 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5444 if (is_sub) { 5445 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5446 } else { 5447 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5448 } 5449 } 5450 5451 if (!sf) { 5452 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5453 } 5454 } 5455 5456 /* Add/subtract (with carry) 5457 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5458 * +--+--+--+------------------------+------+-------------+------+-----+ 5459 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5460 * +--+--+--+------------------------+------+-------------+------+-----+ 5461 */ 5462 5463 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5464 { 5465 unsigned int sf, op, setflags, rm, rn, rd; 5466 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5467 5468 sf = extract32(insn, 31, 1); 5469 op = extract32(insn, 30, 1); 5470 setflags = extract32(insn, 29, 1); 5471 rm = extract32(insn, 16, 5); 5472 rn = extract32(insn, 5, 5); 5473 rd = extract32(insn, 0, 5); 5474 5475 tcg_rd = cpu_reg(s, rd); 5476 tcg_rn = cpu_reg(s, rn); 5477 5478 if (op) { 5479 tcg_y = tcg_temp_new_i64(); 5480 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5481 } else { 5482 tcg_y = cpu_reg(s, rm); 5483 } 5484 5485 if (setflags) { 5486 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5487 } else { 5488 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5489 } 5490 } 5491 5492 /* 5493 * Rotate right into flags 5494 * 31 30 29 21 15 10 5 4 0 5495 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5496 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5497 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5498 */ 5499 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5500 { 5501 int mask = extract32(insn, 0, 4); 5502 int o2 = extract32(insn, 4, 1); 5503 int rn = extract32(insn, 5, 5); 5504 int imm6 = extract32(insn, 15, 6); 5505 int sf_op_s = extract32(insn, 29, 3); 5506 TCGv_i64 tcg_rn; 5507 TCGv_i32 nzcv; 5508 5509 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5510 unallocated_encoding(s); 5511 return; 5512 } 5513 5514 tcg_rn = read_cpu_reg(s, rn, 1); 5515 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5516 5517 nzcv = tcg_temp_new_i32(); 5518 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5519 5520 if (mask & 8) { /* N */ 5521 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5522 } 5523 if (mask & 4) { /* Z */ 5524 tcg_gen_not_i32(cpu_ZF, nzcv); 5525 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5526 } 5527 if (mask & 2) { /* C */ 5528 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5529 } 5530 if (mask & 1) { /* V */ 5531 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5532 } 5533 } 5534 5535 /* 5536 * Evaluate into flags 5537 * 31 30 29 21 15 14 10 5 4 0 5538 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5539 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5540 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5541 */ 5542 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5543 { 5544 int o3_mask = extract32(insn, 0, 5); 5545 int rn = extract32(insn, 5, 5); 5546 int o2 = extract32(insn, 15, 6); 5547 int sz = extract32(insn, 14, 1); 5548 int sf_op_s = extract32(insn, 29, 3); 5549 TCGv_i32 tmp; 5550 int shift; 5551 5552 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5553 !dc_isar_feature(aa64_condm_4, s)) { 5554 unallocated_encoding(s); 5555 return; 5556 } 5557 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5558 5559 tmp = tcg_temp_new_i32(); 5560 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5561 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5562 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5563 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5564 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5565 } 5566 5567 /* Conditional compare (immediate / register) 5568 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5569 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5570 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5571 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5572 * [1] y [0] [0] 5573 */ 5574 static void disas_cc(DisasContext *s, uint32_t insn) 5575 { 5576 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5577 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5578 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5579 DisasCompare c; 5580 5581 if (!extract32(insn, 29, 1)) { 5582 unallocated_encoding(s); 5583 return; 5584 } 5585 if (insn & (1 << 10 | 1 << 4)) { 5586 unallocated_encoding(s); 5587 return; 5588 } 5589 sf = extract32(insn, 31, 1); 5590 op = extract32(insn, 30, 1); 5591 is_imm = extract32(insn, 11, 1); 5592 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5593 cond = extract32(insn, 12, 4); 5594 rn = extract32(insn, 5, 5); 5595 nzcv = extract32(insn, 0, 4); 5596 5597 /* Set T0 = !COND. */ 5598 tcg_t0 = tcg_temp_new_i32(); 5599 arm_test_cc(&c, cond); 5600 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5601 5602 /* Load the arguments for the new comparison. */ 5603 if (is_imm) { 5604 tcg_y = tcg_temp_new_i64(); 5605 tcg_gen_movi_i64(tcg_y, y); 5606 } else { 5607 tcg_y = cpu_reg(s, y); 5608 } 5609 tcg_rn = cpu_reg(s, rn); 5610 5611 /* Set the flags for the new comparison. */ 5612 tcg_tmp = tcg_temp_new_i64(); 5613 if (op) { 5614 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5615 } else { 5616 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5617 } 5618 5619 /* If COND was false, force the flags to #nzcv. Compute two masks 5620 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5621 * For tcg hosts that support ANDC, we can make do with just T1. 5622 * In either case, allow the tcg optimizer to delete any unused mask. 5623 */ 5624 tcg_t1 = tcg_temp_new_i32(); 5625 tcg_t2 = tcg_temp_new_i32(); 5626 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5627 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5628 5629 if (nzcv & 8) { /* N */ 5630 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5631 } else { 5632 if (TCG_TARGET_HAS_andc_i32) { 5633 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5634 } else { 5635 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5636 } 5637 } 5638 if (nzcv & 4) { /* Z */ 5639 if (TCG_TARGET_HAS_andc_i32) { 5640 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5641 } else { 5642 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5643 } 5644 } else { 5645 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5646 } 5647 if (nzcv & 2) { /* C */ 5648 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5649 } else { 5650 if (TCG_TARGET_HAS_andc_i32) { 5651 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5652 } else { 5653 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5654 } 5655 } 5656 if (nzcv & 1) { /* V */ 5657 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5658 } else { 5659 if (TCG_TARGET_HAS_andc_i32) { 5660 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5661 } else { 5662 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5663 } 5664 } 5665 } 5666 5667 /* Conditional select 5668 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5669 * +----+----+---+-----------------+------+------+-----+------+------+ 5670 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5671 * +----+----+---+-----------------+------+------+-----+------+------+ 5672 */ 5673 static void disas_cond_select(DisasContext *s, uint32_t insn) 5674 { 5675 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5676 TCGv_i64 tcg_rd, zero; 5677 DisasCompare64 c; 5678 5679 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5680 /* S == 1 or op2<1> == 1 */ 5681 unallocated_encoding(s); 5682 return; 5683 } 5684 sf = extract32(insn, 31, 1); 5685 else_inv = extract32(insn, 30, 1); 5686 rm = extract32(insn, 16, 5); 5687 cond = extract32(insn, 12, 4); 5688 else_inc = extract32(insn, 10, 1); 5689 rn = extract32(insn, 5, 5); 5690 rd = extract32(insn, 0, 5); 5691 5692 tcg_rd = cpu_reg(s, rd); 5693 5694 a64_test_cc(&c, cond); 5695 zero = tcg_constant_i64(0); 5696 5697 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5698 /* CSET & CSETM. */ 5699 if (else_inv) { 5700 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5701 tcg_rd, c.value, zero); 5702 } else { 5703 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5704 tcg_rd, c.value, zero); 5705 } 5706 } else { 5707 TCGv_i64 t_true = cpu_reg(s, rn); 5708 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5709 if (else_inv && else_inc) { 5710 tcg_gen_neg_i64(t_false, t_false); 5711 } else if (else_inv) { 5712 tcg_gen_not_i64(t_false, t_false); 5713 } else if (else_inc) { 5714 tcg_gen_addi_i64(t_false, t_false, 1); 5715 } 5716 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5717 } 5718 5719 if (!sf) { 5720 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5721 } 5722 } 5723 5724 static void handle_clz(DisasContext *s, unsigned int sf, 5725 unsigned int rn, unsigned int rd) 5726 { 5727 TCGv_i64 tcg_rd, tcg_rn; 5728 tcg_rd = cpu_reg(s, rd); 5729 tcg_rn = cpu_reg(s, rn); 5730 5731 if (sf) { 5732 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5733 } else { 5734 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5735 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5736 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5737 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5738 } 5739 } 5740 5741 static void handle_cls(DisasContext *s, unsigned int sf, 5742 unsigned int rn, unsigned int rd) 5743 { 5744 TCGv_i64 tcg_rd, tcg_rn; 5745 tcg_rd = cpu_reg(s, rd); 5746 tcg_rn = cpu_reg(s, rn); 5747 5748 if (sf) { 5749 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5750 } else { 5751 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5752 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5753 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5754 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5755 } 5756 } 5757 5758 static void handle_rbit(DisasContext *s, unsigned int sf, 5759 unsigned int rn, unsigned int rd) 5760 { 5761 TCGv_i64 tcg_rd, tcg_rn; 5762 tcg_rd = cpu_reg(s, rd); 5763 tcg_rn = cpu_reg(s, rn); 5764 5765 if (sf) { 5766 gen_helper_rbit64(tcg_rd, tcg_rn); 5767 } else { 5768 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5769 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5770 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5771 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5772 } 5773 } 5774 5775 /* REV with sf==1, opcode==3 ("REV64") */ 5776 static void handle_rev64(DisasContext *s, unsigned int sf, 5777 unsigned int rn, unsigned int rd) 5778 { 5779 if (!sf) { 5780 unallocated_encoding(s); 5781 return; 5782 } 5783 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5784 } 5785 5786 /* REV with sf==0, opcode==2 5787 * REV32 (sf==1, opcode==2) 5788 */ 5789 static void handle_rev32(DisasContext *s, unsigned int sf, 5790 unsigned int rn, unsigned int rd) 5791 { 5792 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5793 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5794 5795 if (sf) { 5796 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5797 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5798 } else { 5799 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5800 } 5801 } 5802 5803 /* REV16 (opcode==1) */ 5804 static void handle_rev16(DisasContext *s, unsigned int sf, 5805 unsigned int rn, unsigned int rd) 5806 { 5807 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5808 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5809 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5810 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5811 5812 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5813 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5814 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5815 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5816 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5817 } 5818 5819 /* Data-processing (1 source) 5820 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5821 * +----+---+---+-----------------+---------+--------+------+------+ 5822 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5823 * +----+---+---+-----------------+---------+--------+------+------+ 5824 */ 5825 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5826 { 5827 unsigned int sf, opcode, opcode2, rn, rd; 5828 TCGv_i64 tcg_rd; 5829 5830 if (extract32(insn, 29, 1)) { 5831 unallocated_encoding(s); 5832 return; 5833 } 5834 5835 sf = extract32(insn, 31, 1); 5836 opcode = extract32(insn, 10, 6); 5837 opcode2 = extract32(insn, 16, 5); 5838 rn = extract32(insn, 5, 5); 5839 rd = extract32(insn, 0, 5); 5840 5841 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5842 5843 switch (MAP(sf, opcode2, opcode)) { 5844 case MAP(0, 0x00, 0x00): /* RBIT */ 5845 case MAP(1, 0x00, 0x00): 5846 handle_rbit(s, sf, rn, rd); 5847 break; 5848 case MAP(0, 0x00, 0x01): /* REV16 */ 5849 case MAP(1, 0x00, 0x01): 5850 handle_rev16(s, sf, rn, rd); 5851 break; 5852 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5853 case MAP(1, 0x00, 0x02): 5854 handle_rev32(s, sf, rn, rd); 5855 break; 5856 case MAP(1, 0x00, 0x03): /* REV64 */ 5857 handle_rev64(s, sf, rn, rd); 5858 break; 5859 case MAP(0, 0x00, 0x04): /* CLZ */ 5860 case MAP(1, 0x00, 0x04): 5861 handle_clz(s, sf, rn, rd); 5862 break; 5863 case MAP(0, 0x00, 0x05): /* CLS */ 5864 case MAP(1, 0x00, 0x05): 5865 handle_cls(s, sf, rn, rd); 5866 break; 5867 case MAP(1, 0x01, 0x00): /* PACIA */ 5868 if (s->pauth_active) { 5869 tcg_rd = cpu_reg(s, rd); 5870 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5871 } else if (!dc_isar_feature(aa64_pauth, s)) { 5872 goto do_unallocated; 5873 } 5874 break; 5875 case MAP(1, 0x01, 0x01): /* PACIB */ 5876 if (s->pauth_active) { 5877 tcg_rd = cpu_reg(s, rd); 5878 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5879 } else if (!dc_isar_feature(aa64_pauth, s)) { 5880 goto do_unallocated; 5881 } 5882 break; 5883 case MAP(1, 0x01, 0x02): /* PACDA */ 5884 if (s->pauth_active) { 5885 tcg_rd = cpu_reg(s, rd); 5886 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5887 } else if (!dc_isar_feature(aa64_pauth, s)) { 5888 goto do_unallocated; 5889 } 5890 break; 5891 case MAP(1, 0x01, 0x03): /* PACDB */ 5892 if (s->pauth_active) { 5893 tcg_rd = cpu_reg(s, rd); 5894 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5895 } else if (!dc_isar_feature(aa64_pauth, s)) { 5896 goto do_unallocated; 5897 } 5898 break; 5899 case MAP(1, 0x01, 0x04): /* AUTIA */ 5900 if (s->pauth_active) { 5901 tcg_rd = cpu_reg(s, rd); 5902 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5903 } else if (!dc_isar_feature(aa64_pauth, s)) { 5904 goto do_unallocated; 5905 } 5906 break; 5907 case MAP(1, 0x01, 0x05): /* AUTIB */ 5908 if (s->pauth_active) { 5909 tcg_rd = cpu_reg(s, rd); 5910 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5911 } else if (!dc_isar_feature(aa64_pauth, s)) { 5912 goto do_unallocated; 5913 } 5914 break; 5915 case MAP(1, 0x01, 0x06): /* AUTDA */ 5916 if (s->pauth_active) { 5917 tcg_rd = cpu_reg(s, rd); 5918 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5919 } else if (!dc_isar_feature(aa64_pauth, s)) { 5920 goto do_unallocated; 5921 } 5922 break; 5923 case MAP(1, 0x01, 0x07): /* AUTDB */ 5924 if (s->pauth_active) { 5925 tcg_rd = cpu_reg(s, rd); 5926 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5927 } else if (!dc_isar_feature(aa64_pauth, s)) { 5928 goto do_unallocated; 5929 } 5930 break; 5931 case MAP(1, 0x01, 0x08): /* PACIZA */ 5932 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5933 goto do_unallocated; 5934 } else if (s->pauth_active) { 5935 tcg_rd = cpu_reg(s, rd); 5936 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5937 } 5938 break; 5939 case MAP(1, 0x01, 0x09): /* PACIZB */ 5940 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5941 goto do_unallocated; 5942 } else if (s->pauth_active) { 5943 tcg_rd = cpu_reg(s, rd); 5944 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5945 } 5946 break; 5947 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5948 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5949 goto do_unallocated; 5950 } else if (s->pauth_active) { 5951 tcg_rd = cpu_reg(s, rd); 5952 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5953 } 5954 break; 5955 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5956 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5957 goto do_unallocated; 5958 } else if (s->pauth_active) { 5959 tcg_rd = cpu_reg(s, rd); 5960 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5961 } 5962 break; 5963 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5964 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5965 goto do_unallocated; 5966 } else if (s->pauth_active) { 5967 tcg_rd = cpu_reg(s, rd); 5968 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5969 } 5970 break; 5971 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5972 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5973 goto do_unallocated; 5974 } else if (s->pauth_active) { 5975 tcg_rd = cpu_reg(s, rd); 5976 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5977 } 5978 break; 5979 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5980 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5981 goto do_unallocated; 5982 } else if (s->pauth_active) { 5983 tcg_rd = cpu_reg(s, rd); 5984 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5985 } 5986 break; 5987 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5988 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5989 goto do_unallocated; 5990 } else if (s->pauth_active) { 5991 tcg_rd = cpu_reg(s, rd); 5992 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5993 } 5994 break; 5995 case MAP(1, 0x01, 0x10): /* XPACI */ 5996 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5997 goto do_unallocated; 5998 } else if (s->pauth_active) { 5999 tcg_rd = cpu_reg(s, rd); 6000 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6001 } 6002 break; 6003 case MAP(1, 0x01, 0x11): /* XPACD */ 6004 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6005 goto do_unallocated; 6006 } else if (s->pauth_active) { 6007 tcg_rd = cpu_reg(s, rd); 6008 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6009 } 6010 break; 6011 default: 6012 do_unallocated: 6013 unallocated_encoding(s); 6014 break; 6015 } 6016 6017 #undef MAP 6018 } 6019 6020 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6021 unsigned int rm, unsigned int rn, unsigned int rd) 6022 { 6023 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6024 tcg_rd = cpu_reg(s, rd); 6025 6026 if (!sf && is_signed) { 6027 tcg_n = tcg_temp_new_i64(); 6028 tcg_m = tcg_temp_new_i64(); 6029 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6030 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6031 } else { 6032 tcg_n = read_cpu_reg(s, rn, sf); 6033 tcg_m = read_cpu_reg(s, rm, sf); 6034 } 6035 6036 if (is_signed) { 6037 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6038 } else { 6039 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6040 } 6041 6042 if (!sf) { /* zero extend final result */ 6043 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6044 } 6045 } 6046 6047 /* LSLV, LSRV, ASRV, RORV */ 6048 static void handle_shift_reg(DisasContext *s, 6049 enum a64_shift_type shift_type, unsigned int sf, 6050 unsigned int rm, unsigned int rn, unsigned int rd) 6051 { 6052 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6053 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6054 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6055 6056 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6057 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6058 } 6059 6060 /* CRC32[BHWX], CRC32C[BHWX] */ 6061 static void handle_crc32(DisasContext *s, 6062 unsigned int sf, unsigned int sz, bool crc32c, 6063 unsigned int rm, unsigned int rn, unsigned int rd) 6064 { 6065 TCGv_i64 tcg_acc, tcg_val; 6066 TCGv_i32 tcg_bytes; 6067 6068 if (!dc_isar_feature(aa64_crc32, s) 6069 || (sf == 1 && sz != 3) 6070 || (sf == 0 && sz == 3)) { 6071 unallocated_encoding(s); 6072 return; 6073 } 6074 6075 if (sz == 3) { 6076 tcg_val = cpu_reg(s, rm); 6077 } else { 6078 uint64_t mask; 6079 switch (sz) { 6080 case 0: 6081 mask = 0xFF; 6082 break; 6083 case 1: 6084 mask = 0xFFFF; 6085 break; 6086 case 2: 6087 mask = 0xFFFFFFFF; 6088 break; 6089 default: 6090 g_assert_not_reached(); 6091 } 6092 tcg_val = tcg_temp_new_i64(); 6093 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6094 } 6095 6096 tcg_acc = cpu_reg(s, rn); 6097 tcg_bytes = tcg_constant_i32(1 << sz); 6098 6099 if (crc32c) { 6100 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6101 } else { 6102 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6103 } 6104 } 6105 6106 /* Data-processing (2 source) 6107 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6108 * +----+---+---+-----------------+------+--------+------+------+ 6109 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6110 * +----+---+---+-----------------+------+--------+------+------+ 6111 */ 6112 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6113 { 6114 unsigned int sf, rm, opcode, rn, rd, setflag; 6115 sf = extract32(insn, 31, 1); 6116 setflag = extract32(insn, 29, 1); 6117 rm = extract32(insn, 16, 5); 6118 opcode = extract32(insn, 10, 6); 6119 rn = extract32(insn, 5, 5); 6120 rd = extract32(insn, 0, 5); 6121 6122 if (setflag && opcode != 0) { 6123 unallocated_encoding(s); 6124 return; 6125 } 6126 6127 switch (opcode) { 6128 case 0: /* SUBP(S) */ 6129 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6130 goto do_unallocated; 6131 } else { 6132 TCGv_i64 tcg_n, tcg_m, tcg_d; 6133 6134 tcg_n = read_cpu_reg_sp(s, rn, true); 6135 tcg_m = read_cpu_reg_sp(s, rm, true); 6136 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6137 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6138 tcg_d = cpu_reg(s, rd); 6139 6140 if (setflag) { 6141 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6142 } else { 6143 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6144 } 6145 } 6146 break; 6147 case 2: /* UDIV */ 6148 handle_div(s, false, sf, rm, rn, rd); 6149 break; 6150 case 3: /* SDIV */ 6151 handle_div(s, true, sf, rm, rn, rd); 6152 break; 6153 case 4: /* IRG */ 6154 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6155 goto do_unallocated; 6156 } 6157 if (s->ata[0]) { 6158 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6159 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6160 } else { 6161 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6162 cpu_reg_sp(s, rn)); 6163 } 6164 break; 6165 case 5: /* GMI */ 6166 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6167 goto do_unallocated; 6168 } else { 6169 TCGv_i64 t = tcg_temp_new_i64(); 6170 6171 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6172 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6173 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6174 } 6175 break; 6176 case 8: /* LSLV */ 6177 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6178 break; 6179 case 9: /* LSRV */ 6180 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6181 break; 6182 case 10: /* ASRV */ 6183 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6184 break; 6185 case 11: /* RORV */ 6186 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6187 break; 6188 case 12: /* PACGA */ 6189 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6190 goto do_unallocated; 6191 } 6192 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6193 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6194 break; 6195 case 16: 6196 case 17: 6197 case 18: 6198 case 19: 6199 case 20: 6200 case 21: 6201 case 22: 6202 case 23: /* CRC32 */ 6203 { 6204 int sz = extract32(opcode, 0, 2); 6205 bool crc32c = extract32(opcode, 2, 1); 6206 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6207 break; 6208 } 6209 default: 6210 do_unallocated: 6211 unallocated_encoding(s); 6212 break; 6213 } 6214 } 6215 6216 /* 6217 * Data processing - register 6218 * 31 30 29 28 25 21 20 16 10 0 6219 * +--+---+--+---+-------+-----+-------+-------+---------+ 6220 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6221 * +--+---+--+---+-------+-----+-------+-------+---------+ 6222 */ 6223 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6224 { 6225 int op0 = extract32(insn, 30, 1); 6226 int op1 = extract32(insn, 28, 1); 6227 int op2 = extract32(insn, 21, 4); 6228 int op3 = extract32(insn, 10, 6); 6229 6230 if (!op1) { 6231 if (op2 & 8) { 6232 if (op2 & 1) { 6233 /* Add/sub (extended register) */ 6234 disas_add_sub_ext_reg(s, insn); 6235 } else { 6236 /* Add/sub (shifted register) */ 6237 disas_add_sub_reg(s, insn); 6238 } 6239 } else { 6240 /* Logical (shifted register) */ 6241 disas_logic_reg(s, insn); 6242 } 6243 return; 6244 } 6245 6246 switch (op2) { 6247 case 0x0: 6248 switch (op3) { 6249 case 0x00: /* Add/subtract (with carry) */ 6250 disas_adc_sbc(s, insn); 6251 break; 6252 6253 case 0x01: /* Rotate right into flags */ 6254 case 0x21: 6255 disas_rotate_right_into_flags(s, insn); 6256 break; 6257 6258 case 0x02: /* Evaluate into flags */ 6259 case 0x12: 6260 case 0x22: 6261 case 0x32: 6262 disas_evaluate_into_flags(s, insn); 6263 break; 6264 6265 default: 6266 goto do_unallocated; 6267 } 6268 break; 6269 6270 case 0x2: /* Conditional compare */ 6271 disas_cc(s, insn); /* both imm and reg forms */ 6272 break; 6273 6274 case 0x4: /* Conditional select */ 6275 disas_cond_select(s, insn); 6276 break; 6277 6278 case 0x6: /* Data-processing */ 6279 if (op0) { /* (1 source) */ 6280 disas_data_proc_1src(s, insn); 6281 } else { /* (2 source) */ 6282 disas_data_proc_2src(s, insn); 6283 } 6284 break; 6285 case 0x8 ... 0xf: /* (3 source) */ 6286 disas_data_proc_3src(s, insn); 6287 break; 6288 6289 default: 6290 do_unallocated: 6291 unallocated_encoding(s); 6292 break; 6293 } 6294 } 6295 6296 static void handle_fp_compare(DisasContext *s, int size, 6297 unsigned int rn, unsigned int rm, 6298 bool cmp_with_zero, bool signal_all_nans) 6299 { 6300 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6301 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6302 6303 if (size == MO_64) { 6304 TCGv_i64 tcg_vn, tcg_vm; 6305 6306 tcg_vn = read_fp_dreg(s, rn); 6307 if (cmp_with_zero) { 6308 tcg_vm = tcg_constant_i64(0); 6309 } else { 6310 tcg_vm = read_fp_dreg(s, rm); 6311 } 6312 if (signal_all_nans) { 6313 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6314 } else { 6315 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6316 } 6317 } else { 6318 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6319 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6320 6321 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6322 if (cmp_with_zero) { 6323 tcg_gen_movi_i32(tcg_vm, 0); 6324 } else { 6325 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6326 } 6327 6328 switch (size) { 6329 case MO_32: 6330 if (signal_all_nans) { 6331 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6332 } else { 6333 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6334 } 6335 break; 6336 case MO_16: 6337 if (signal_all_nans) { 6338 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6339 } else { 6340 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6341 } 6342 break; 6343 default: 6344 g_assert_not_reached(); 6345 } 6346 } 6347 6348 gen_set_nzcv(tcg_flags); 6349 } 6350 6351 /* Floating point compare 6352 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6353 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6354 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6355 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6356 */ 6357 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6358 { 6359 unsigned int mos, type, rm, op, rn, opc, op2r; 6360 int size; 6361 6362 mos = extract32(insn, 29, 3); 6363 type = extract32(insn, 22, 2); 6364 rm = extract32(insn, 16, 5); 6365 op = extract32(insn, 14, 2); 6366 rn = extract32(insn, 5, 5); 6367 opc = extract32(insn, 3, 2); 6368 op2r = extract32(insn, 0, 3); 6369 6370 if (mos || op || op2r) { 6371 unallocated_encoding(s); 6372 return; 6373 } 6374 6375 switch (type) { 6376 case 0: 6377 size = MO_32; 6378 break; 6379 case 1: 6380 size = MO_64; 6381 break; 6382 case 3: 6383 size = MO_16; 6384 if (dc_isar_feature(aa64_fp16, s)) { 6385 break; 6386 } 6387 /* fallthru */ 6388 default: 6389 unallocated_encoding(s); 6390 return; 6391 } 6392 6393 if (!fp_access_check(s)) { 6394 return; 6395 } 6396 6397 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6398 } 6399 6400 /* Floating point conditional compare 6401 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6402 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6403 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6404 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6405 */ 6406 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6407 { 6408 unsigned int mos, type, rm, cond, rn, op, nzcv; 6409 TCGLabel *label_continue = NULL; 6410 int size; 6411 6412 mos = extract32(insn, 29, 3); 6413 type = extract32(insn, 22, 2); 6414 rm = extract32(insn, 16, 5); 6415 cond = extract32(insn, 12, 4); 6416 rn = extract32(insn, 5, 5); 6417 op = extract32(insn, 4, 1); 6418 nzcv = extract32(insn, 0, 4); 6419 6420 if (mos) { 6421 unallocated_encoding(s); 6422 return; 6423 } 6424 6425 switch (type) { 6426 case 0: 6427 size = MO_32; 6428 break; 6429 case 1: 6430 size = MO_64; 6431 break; 6432 case 3: 6433 size = MO_16; 6434 if (dc_isar_feature(aa64_fp16, s)) { 6435 break; 6436 } 6437 /* fallthru */ 6438 default: 6439 unallocated_encoding(s); 6440 return; 6441 } 6442 6443 if (!fp_access_check(s)) { 6444 return; 6445 } 6446 6447 if (cond < 0x0e) { /* not always */ 6448 TCGLabel *label_match = gen_new_label(); 6449 label_continue = gen_new_label(); 6450 arm_gen_test_cc(cond, label_match); 6451 /* nomatch: */ 6452 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6453 tcg_gen_br(label_continue); 6454 gen_set_label(label_match); 6455 } 6456 6457 handle_fp_compare(s, size, rn, rm, false, op); 6458 6459 if (cond < 0x0e) { 6460 gen_set_label(label_continue); 6461 } 6462 } 6463 6464 /* Floating point conditional select 6465 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6466 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6467 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6468 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6469 */ 6470 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6471 { 6472 unsigned int mos, type, rm, cond, rn, rd; 6473 TCGv_i64 t_true, t_false; 6474 DisasCompare64 c; 6475 MemOp sz; 6476 6477 mos = extract32(insn, 29, 3); 6478 type = extract32(insn, 22, 2); 6479 rm = extract32(insn, 16, 5); 6480 cond = extract32(insn, 12, 4); 6481 rn = extract32(insn, 5, 5); 6482 rd = extract32(insn, 0, 5); 6483 6484 if (mos) { 6485 unallocated_encoding(s); 6486 return; 6487 } 6488 6489 switch (type) { 6490 case 0: 6491 sz = MO_32; 6492 break; 6493 case 1: 6494 sz = MO_64; 6495 break; 6496 case 3: 6497 sz = MO_16; 6498 if (dc_isar_feature(aa64_fp16, s)) { 6499 break; 6500 } 6501 /* fallthru */ 6502 default: 6503 unallocated_encoding(s); 6504 return; 6505 } 6506 6507 if (!fp_access_check(s)) { 6508 return; 6509 } 6510 6511 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6512 t_true = tcg_temp_new_i64(); 6513 t_false = tcg_temp_new_i64(); 6514 read_vec_element(s, t_true, rn, 0, sz); 6515 read_vec_element(s, t_false, rm, 0, sz); 6516 6517 a64_test_cc(&c, cond); 6518 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6519 t_true, t_false); 6520 6521 /* Note that sregs & hregs write back zeros to the high bits, 6522 and we've already done the zero-extension. */ 6523 write_fp_dreg(s, rd, t_true); 6524 } 6525 6526 /* Floating-point data-processing (1 source) - half precision */ 6527 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6528 { 6529 TCGv_ptr fpst = NULL; 6530 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6531 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6532 6533 switch (opcode) { 6534 case 0x0: /* FMOV */ 6535 tcg_gen_mov_i32(tcg_res, tcg_op); 6536 break; 6537 case 0x1: /* FABS */ 6538 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6539 break; 6540 case 0x2: /* FNEG */ 6541 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6542 break; 6543 case 0x3: /* FSQRT */ 6544 fpst = fpstatus_ptr(FPST_FPCR_F16); 6545 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6546 break; 6547 case 0x8: /* FRINTN */ 6548 case 0x9: /* FRINTP */ 6549 case 0xa: /* FRINTM */ 6550 case 0xb: /* FRINTZ */ 6551 case 0xc: /* FRINTA */ 6552 { 6553 TCGv_i32 tcg_rmode; 6554 6555 fpst = fpstatus_ptr(FPST_FPCR_F16); 6556 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6557 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6558 gen_restore_rmode(tcg_rmode, fpst); 6559 break; 6560 } 6561 case 0xe: /* FRINTX */ 6562 fpst = fpstatus_ptr(FPST_FPCR_F16); 6563 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6564 break; 6565 case 0xf: /* FRINTI */ 6566 fpst = fpstatus_ptr(FPST_FPCR_F16); 6567 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6568 break; 6569 default: 6570 g_assert_not_reached(); 6571 } 6572 6573 write_fp_sreg(s, rd, tcg_res); 6574 } 6575 6576 /* Floating-point data-processing (1 source) - single precision */ 6577 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6578 { 6579 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6580 TCGv_i32 tcg_op, tcg_res; 6581 TCGv_ptr fpst; 6582 int rmode = -1; 6583 6584 tcg_op = read_fp_sreg(s, rn); 6585 tcg_res = tcg_temp_new_i32(); 6586 6587 switch (opcode) { 6588 case 0x0: /* FMOV */ 6589 tcg_gen_mov_i32(tcg_res, tcg_op); 6590 goto done; 6591 case 0x1: /* FABS */ 6592 gen_helper_vfp_abss(tcg_res, tcg_op); 6593 goto done; 6594 case 0x2: /* FNEG */ 6595 gen_helper_vfp_negs(tcg_res, tcg_op); 6596 goto done; 6597 case 0x3: /* FSQRT */ 6598 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6599 goto done; 6600 case 0x6: /* BFCVT */ 6601 gen_fpst = gen_helper_bfcvt; 6602 break; 6603 case 0x8: /* FRINTN */ 6604 case 0x9: /* FRINTP */ 6605 case 0xa: /* FRINTM */ 6606 case 0xb: /* FRINTZ */ 6607 case 0xc: /* FRINTA */ 6608 rmode = opcode & 7; 6609 gen_fpst = gen_helper_rints; 6610 break; 6611 case 0xe: /* FRINTX */ 6612 gen_fpst = gen_helper_rints_exact; 6613 break; 6614 case 0xf: /* FRINTI */ 6615 gen_fpst = gen_helper_rints; 6616 break; 6617 case 0x10: /* FRINT32Z */ 6618 rmode = FPROUNDING_ZERO; 6619 gen_fpst = gen_helper_frint32_s; 6620 break; 6621 case 0x11: /* FRINT32X */ 6622 gen_fpst = gen_helper_frint32_s; 6623 break; 6624 case 0x12: /* FRINT64Z */ 6625 rmode = FPROUNDING_ZERO; 6626 gen_fpst = gen_helper_frint64_s; 6627 break; 6628 case 0x13: /* FRINT64X */ 6629 gen_fpst = gen_helper_frint64_s; 6630 break; 6631 default: 6632 g_assert_not_reached(); 6633 } 6634 6635 fpst = fpstatus_ptr(FPST_FPCR); 6636 if (rmode >= 0) { 6637 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6638 gen_fpst(tcg_res, tcg_op, fpst); 6639 gen_restore_rmode(tcg_rmode, fpst); 6640 } else { 6641 gen_fpst(tcg_res, tcg_op, fpst); 6642 } 6643 6644 done: 6645 write_fp_sreg(s, rd, tcg_res); 6646 } 6647 6648 /* Floating-point data-processing (1 source) - double precision */ 6649 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6650 { 6651 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6652 TCGv_i64 tcg_op, tcg_res; 6653 TCGv_ptr fpst; 6654 int rmode = -1; 6655 6656 switch (opcode) { 6657 case 0x0: /* FMOV */ 6658 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6659 return; 6660 } 6661 6662 tcg_op = read_fp_dreg(s, rn); 6663 tcg_res = tcg_temp_new_i64(); 6664 6665 switch (opcode) { 6666 case 0x1: /* FABS */ 6667 gen_helper_vfp_absd(tcg_res, tcg_op); 6668 goto done; 6669 case 0x2: /* FNEG */ 6670 gen_helper_vfp_negd(tcg_res, tcg_op); 6671 goto done; 6672 case 0x3: /* FSQRT */ 6673 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6674 goto done; 6675 case 0x8: /* FRINTN */ 6676 case 0x9: /* FRINTP */ 6677 case 0xa: /* FRINTM */ 6678 case 0xb: /* FRINTZ */ 6679 case 0xc: /* FRINTA */ 6680 rmode = opcode & 7; 6681 gen_fpst = gen_helper_rintd; 6682 break; 6683 case 0xe: /* FRINTX */ 6684 gen_fpst = gen_helper_rintd_exact; 6685 break; 6686 case 0xf: /* FRINTI */ 6687 gen_fpst = gen_helper_rintd; 6688 break; 6689 case 0x10: /* FRINT32Z */ 6690 rmode = FPROUNDING_ZERO; 6691 gen_fpst = gen_helper_frint32_d; 6692 break; 6693 case 0x11: /* FRINT32X */ 6694 gen_fpst = gen_helper_frint32_d; 6695 break; 6696 case 0x12: /* FRINT64Z */ 6697 rmode = FPROUNDING_ZERO; 6698 gen_fpst = gen_helper_frint64_d; 6699 break; 6700 case 0x13: /* FRINT64X */ 6701 gen_fpst = gen_helper_frint64_d; 6702 break; 6703 default: 6704 g_assert_not_reached(); 6705 } 6706 6707 fpst = fpstatus_ptr(FPST_FPCR); 6708 if (rmode >= 0) { 6709 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6710 gen_fpst(tcg_res, tcg_op, fpst); 6711 gen_restore_rmode(tcg_rmode, fpst); 6712 } else { 6713 gen_fpst(tcg_res, tcg_op, fpst); 6714 } 6715 6716 done: 6717 write_fp_dreg(s, rd, tcg_res); 6718 } 6719 6720 static void handle_fp_fcvt(DisasContext *s, int opcode, 6721 int rd, int rn, int dtype, int ntype) 6722 { 6723 switch (ntype) { 6724 case 0x0: 6725 { 6726 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6727 if (dtype == 1) { 6728 /* Single to double */ 6729 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6730 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6731 write_fp_dreg(s, rd, tcg_rd); 6732 } else { 6733 /* Single to half */ 6734 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6735 TCGv_i32 ahp = get_ahp_flag(); 6736 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6737 6738 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6739 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6740 write_fp_sreg(s, rd, tcg_rd); 6741 } 6742 break; 6743 } 6744 case 0x1: 6745 { 6746 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6747 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6748 if (dtype == 0) { 6749 /* Double to single */ 6750 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6751 } else { 6752 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6753 TCGv_i32 ahp = get_ahp_flag(); 6754 /* Double to half */ 6755 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6756 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6757 } 6758 write_fp_sreg(s, rd, tcg_rd); 6759 break; 6760 } 6761 case 0x3: 6762 { 6763 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6764 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6765 TCGv_i32 tcg_ahp = get_ahp_flag(); 6766 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6767 if (dtype == 0) { 6768 /* Half to single */ 6769 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6770 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6771 write_fp_sreg(s, rd, tcg_rd); 6772 } else { 6773 /* Half to double */ 6774 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6775 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6776 write_fp_dreg(s, rd, tcg_rd); 6777 } 6778 break; 6779 } 6780 default: 6781 g_assert_not_reached(); 6782 } 6783 } 6784 6785 /* Floating point data-processing (1 source) 6786 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6787 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6788 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6789 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6790 */ 6791 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6792 { 6793 int mos = extract32(insn, 29, 3); 6794 int type = extract32(insn, 22, 2); 6795 int opcode = extract32(insn, 15, 6); 6796 int rn = extract32(insn, 5, 5); 6797 int rd = extract32(insn, 0, 5); 6798 6799 if (mos) { 6800 goto do_unallocated; 6801 } 6802 6803 switch (opcode) { 6804 case 0x4: case 0x5: case 0x7: 6805 { 6806 /* FCVT between half, single and double precision */ 6807 int dtype = extract32(opcode, 0, 2); 6808 if (type == 2 || dtype == type) { 6809 goto do_unallocated; 6810 } 6811 if (!fp_access_check(s)) { 6812 return; 6813 } 6814 6815 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6816 break; 6817 } 6818 6819 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6820 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6821 goto do_unallocated; 6822 } 6823 /* fall through */ 6824 case 0x0 ... 0x3: 6825 case 0x8 ... 0xc: 6826 case 0xe ... 0xf: 6827 /* 32-to-32 and 64-to-64 ops */ 6828 switch (type) { 6829 case 0: 6830 if (!fp_access_check(s)) { 6831 return; 6832 } 6833 handle_fp_1src_single(s, opcode, rd, rn); 6834 break; 6835 case 1: 6836 if (!fp_access_check(s)) { 6837 return; 6838 } 6839 handle_fp_1src_double(s, opcode, rd, rn); 6840 break; 6841 case 3: 6842 if (!dc_isar_feature(aa64_fp16, s)) { 6843 goto do_unallocated; 6844 } 6845 6846 if (!fp_access_check(s)) { 6847 return; 6848 } 6849 handle_fp_1src_half(s, opcode, rd, rn); 6850 break; 6851 default: 6852 goto do_unallocated; 6853 } 6854 break; 6855 6856 case 0x6: 6857 switch (type) { 6858 case 1: /* BFCVT */ 6859 if (!dc_isar_feature(aa64_bf16, s)) { 6860 goto do_unallocated; 6861 } 6862 if (!fp_access_check(s)) { 6863 return; 6864 } 6865 handle_fp_1src_single(s, opcode, rd, rn); 6866 break; 6867 default: 6868 goto do_unallocated; 6869 } 6870 break; 6871 6872 default: 6873 do_unallocated: 6874 unallocated_encoding(s); 6875 break; 6876 } 6877 } 6878 6879 /* Floating-point data-processing (2 source) - single precision */ 6880 static void handle_fp_2src_single(DisasContext *s, int opcode, 6881 int rd, int rn, int rm) 6882 { 6883 TCGv_i32 tcg_op1; 6884 TCGv_i32 tcg_op2; 6885 TCGv_i32 tcg_res; 6886 TCGv_ptr fpst; 6887 6888 tcg_res = tcg_temp_new_i32(); 6889 fpst = fpstatus_ptr(FPST_FPCR); 6890 tcg_op1 = read_fp_sreg(s, rn); 6891 tcg_op2 = read_fp_sreg(s, rm); 6892 6893 switch (opcode) { 6894 case 0x4: /* FMAX */ 6895 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6896 break; 6897 case 0x5: /* FMIN */ 6898 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6899 break; 6900 case 0x6: /* FMAXNM */ 6901 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6902 break; 6903 case 0x7: /* FMINNM */ 6904 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6905 break; 6906 case 0x8: /* FNMUL */ 6907 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6908 gen_helper_vfp_negs(tcg_res, tcg_res); 6909 break; 6910 default: 6911 case 0x0: /* FMUL */ 6912 case 0x1: /* FDIV */ 6913 case 0x2: /* FADD */ 6914 case 0x3: /* FSUB */ 6915 g_assert_not_reached(); 6916 } 6917 6918 write_fp_sreg(s, rd, tcg_res); 6919 } 6920 6921 /* Floating-point data-processing (2 source) - double precision */ 6922 static void handle_fp_2src_double(DisasContext *s, int opcode, 6923 int rd, int rn, int rm) 6924 { 6925 TCGv_i64 tcg_op1; 6926 TCGv_i64 tcg_op2; 6927 TCGv_i64 tcg_res; 6928 TCGv_ptr fpst; 6929 6930 tcg_res = tcg_temp_new_i64(); 6931 fpst = fpstatus_ptr(FPST_FPCR); 6932 tcg_op1 = read_fp_dreg(s, rn); 6933 tcg_op2 = read_fp_dreg(s, rm); 6934 6935 switch (opcode) { 6936 case 0x4: /* FMAX */ 6937 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6938 break; 6939 case 0x5: /* FMIN */ 6940 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6941 break; 6942 case 0x6: /* FMAXNM */ 6943 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6944 break; 6945 case 0x7: /* FMINNM */ 6946 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6947 break; 6948 case 0x8: /* FNMUL */ 6949 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6950 gen_helper_vfp_negd(tcg_res, tcg_res); 6951 break; 6952 default: 6953 case 0x0: /* FMUL */ 6954 case 0x1: /* FDIV */ 6955 case 0x2: /* FADD */ 6956 case 0x3: /* FSUB */ 6957 g_assert_not_reached(); 6958 } 6959 6960 write_fp_dreg(s, rd, tcg_res); 6961 } 6962 6963 /* Floating-point data-processing (2 source) - half precision */ 6964 static void handle_fp_2src_half(DisasContext *s, int opcode, 6965 int rd, int rn, int rm) 6966 { 6967 TCGv_i32 tcg_op1; 6968 TCGv_i32 tcg_op2; 6969 TCGv_i32 tcg_res; 6970 TCGv_ptr fpst; 6971 6972 tcg_res = tcg_temp_new_i32(); 6973 fpst = fpstatus_ptr(FPST_FPCR_F16); 6974 tcg_op1 = read_fp_hreg(s, rn); 6975 tcg_op2 = read_fp_hreg(s, rm); 6976 6977 switch (opcode) { 6978 case 0x4: /* FMAX */ 6979 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6980 break; 6981 case 0x5: /* FMIN */ 6982 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6983 break; 6984 case 0x6: /* FMAXNM */ 6985 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6986 break; 6987 case 0x7: /* FMINNM */ 6988 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6989 break; 6990 case 0x8: /* FNMUL */ 6991 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6992 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6993 break; 6994 default: 6995 case 0x0: /* FMUL */ 6996 case 0x1: /* FDIV */ 6997 case 0x2: /* FADD */ 6998 case 0x3: /* FSUB */ 6999 g_assert_not_reached(); 7000 } 7001 7002 write_fp_sreg(s, rd, tcg_res); 7003 } 7004 7005 /* Floating point data-processing (2 source) 7006 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 7007 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 7008 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 7009 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 7010 */ 7011 static void disas_fp_2src(DisasContext *s, uint32_t insn) 7012 { 7013 int mos = extract32(insn, 29, 3); 7014 int type = extract32(insn, 22, 2); 7015 int rd = extract32(insn, 0, 5); 7016 int rn = extract32(insn, 5, 5); 7017 int rm = extract32(insn, 16, 5); 7018 int opcode = extract32(insn, 12, 4); 7019 7020 if (opcode > 8 || mos) { 7021 unallocated_encoding(s); 7022 return; 7023 } 7024 7025 switch (type) { 7026 case 0: 7027 if (!fp_access_check(s)) { 7028 return; 7029 } 7030 handle_fp_2src_single(s, opcode, rd, rn, rm); 7031 break; 7032 case 1: 7033 if (!fp_access_check(s)) { 7034 return; 7035 } 7036 handle_fp_2src_double(s, opcode, rd, rn, rm); 7037 break; 7038 case 3: 7039 if (!dc_isar_feature(aa64_fp16, s)) { 7040 unallocated_encoding(s); 7041 return; 7042 } 7043 if (!fp_access_check(s)) { 7044 return; 7045 } 7046 handle_fp_2src_half(s, opcode, rd, rn, rm); 7047 break; 7048 default: 7049 unallocated_encoding(s); 7050 } 7051 } 7052 7053 /* Floating-point data-processing (3 source) - single precision */ 7054 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7055 int rd, int rn, int rm, int ra) 7056 { 7057 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7058 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7059 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7060 7061 tcg_op1 = read_fp_sreg(s, rn); 7062 tcg_op2 = read_fp_sreg(s, rm); 7063 tcg_op3 = read_fp_sreg(s, ra); 7064 7065 /* These are fused multiply-add, and must be done as one 7066 * floating point operation with no rounding between the 7067 * multiplication and addition steps. 7068 * NB that doing the negations here as separate steps is 7069 * correct : an input NaN should come out with its sign bit 7070 * flipped if it is a negated-input. 7071 */ 7072 if (o1 == true) { 7073 gen_helper_vfp_negs(tcg_op3, tcg_op3); 7074 } 7075 7076 if (o0 != o1) { 7077 gen_helper_vfp_negs(tcg_op1, tcg_op1); 7078 } 7079 7080 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7081 7082 write_fp_sreg(s, rd, tcg_res); 7083 } 7084 7085 /* Floating-point data-processing (3 source) - double precision */ 7086 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7087 int rd, int rn, int rm, int ra) 7088 { 7089 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7090 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7091 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7092 7093 tcg_op1 = read_fp_dreg(s, rn); 7094 tcg_op2 = read_fp_dreg(s, rm); 7095 tcg_op3 = read_fp_dreg(s, ra); 7096 7097 /* These are fused multiply-add, and must be done as one 7098 * floating point operation with no rounding between the 7099 * multiplication and addition steps. 7100 * NB that doing the negations here as separate steps is 7101 * correct : an input NaN should come out with its sign bit 7102 * flipped if it is a negated-input. 7103 */ 7104 if (o1 == true) { 7105 gen_helper_vfp_negd(tcg_op3, tcg_op3); 7106 } 7107 7108 if (o0 != o1) { 7109 gen_helper_vfp_negd(tcg_op1, tcg_op1); 7110 } 7111 7112 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7113 7114 write_fp_dreg(s, rd, tcg_res); 7115 } 7116 7117 /* Floating-point data-processing (3 source) - half precision */ 7118 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7119 int rd, int rn, int rm, int ra) 7120 { 7121 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7122 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7123 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7124 7125 tcg_op1 = read_fp_hreg(s, rn); 7126 tcg_op2 = read_fp_hreg(s, rm); 7127 tcg_op3 = read_fp_hreg(s, ra); 7128 7129 /* These are fused multiply-add, and must be done as one 7130 * floating point operation with no rounding between the 7131 * multiplication and addition steps. 7132 * NB that doing the negations here as separate steps is 7133 * correct : an input NaN should come out with its sign bit 7134 * flipped if it is a negated-input. 7135 */ 7136 if (o1 == true) { 7137 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7138 } 7139 7140 if (o0 != o1) { 7141 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7142 } 7143 7144 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7145 7146 write_fp_sreg(s, rd, tcg_res); 7147 } 7148 7149 /* Floating point data-processing (3 source) 7150 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7151 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7152 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7153 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7154 */ 7155 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7156 { 7157 int mos = extract32(insn, 29, 3); 7158 int type = extract32(insn, 22, 2); 7159 int rd = extract32(insn, 0, 5); 7160 int rn = extract32(insn, 5, 5); 7161 int ra = extract32(insn, 10, 5); 7162 int rm = extract32(insn, 16, 5); 7163 bool o0 = extract32(insn, 15, 1); 7164 bool o1 = extract32(insn, 21, 1); 7165 7166 if (mos) { 7167 unallocated_encoding(s); 7168 return; 7169 } 7170 7171 switch (type) { 7172 case 0: 7173 if (!fp_access_check(s)) { 7174 return; 7175 } 7176 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7177 break; 7178 case 1: 7179 if (!fp_access_check(s)) { 7180 return; 7181 } 7182 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7183 break; 7184 case 3: 7185 if (!dc_isar_feature(aa64_fp16, s)) { 7186 unallocated_encoding(s); 7187 return; 7188 } 7189 if (!fp_access_check(s)) { 7190 return; 7191 } 7192 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7193 break; 7194 default: 7195 unallocated_encoding(s); 7196 } 7197 } 7198 7199 /* Floating point immediate 7200 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7201 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7202 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7203 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7204 */ 7205 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7206 { 7207 int rd = extract32(insn, 0, 5); 7208 int imm5 = extract32(insn, 5, 5); 7209 int imm8 = extract32(insn, 13, 8); 7210 int type = extract32(insn, 22, 2); 7211 int mos = extract32(insn, 29, 3); 7212 uint64_t imm; 7213 MemOp sz; 7214 7215 if (mos || imm5) { 7216 unallocated_encoding(s); 7217 return; 7218 } 7219 7220 switch (type) { 7221 case 0: 7222 sz = MO_32; 7223 break; 7224 case 1: 7225 sz = MO_64; 7226 break; 7227 case 3: 7228 sz = MO_16; 7229 if (dc_isar_feature(aa64_fp16, s)) { 7230 break; 7231 } 7232 /* fallthru */ 7233 default: 7234 unallocated_encoding(s); 7235 return; 7236 } 7237 7238 if (!fp_access_check(s)) { 7239 return; 7240 } 7241 7242 imm = vfp_expand_imm(sz, imm8); 7243 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7244 } 7245 7246 /* Handle floating point <=> fixed point conversions. Note that we can 7247 * also deal with fp <=> integer conversions as a special case (scale == 64) 7248 * OPTME: consider handling that special case specially or at least skipping 7249 * the call to scalbn in the helpers for zero shifts. 7250 */ 7251 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7252 bool itof, int rmode, int scale, int sf, int type) 7253 { 7254 bool is_signed = !(opcode & 1); 7255 TCGv_ptr tcg_fpstatus; 7256 TCGv_i32 tcg_shift, tcg_single; 7257 TCGv_i64 tcg_double; 7258 7259 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7260 7261 tcg_shift = tcg_constant_i32(64 - scale); 7262 7263 if (itof) { 7264 TCGv_i64 tcg_int = cpu_reg(s, rn); 7265 if (!sf) { 7266 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7267 7268 if (is_signed) { 7269 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7270 } else { 7271 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7272 } 7273 7274 tcg_int = tcg_extend; 7275 } 7276 7277 switch (type) { 7278 case 1: /* float64 */ 7279 tcg_double = tcg_temp_new_i64(); 7280 if (is_signed) { 7281 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7282 tcg_shift, tcg_fpstatus); 7283 } else { 7284 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7285 tcg_shift, tcg_fpstatus); 7286 } 7287 write_fp_dreg(s, rd, tcg_double); 7288 break; 7289 7290 case 0: /* float32 */ 7291 tcg_single = tcg_temp_new_i32(); 7292 if (is_signed) { 7293 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7294 tcg_shift, tcg_fpstatus); 7295 } else { 7296 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7297 tcg_shift, tcg_fpstatus); 7298 } 7299 write_fp_sreg(s, rd, tcg_single); 7300 break; 7301 7302 case 3: /* float16 */ 7303 tcg_single = tcg_temp_new_i32(); 7304 if (is_signed) { 7305 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7306 tcg_shift, tcg_fpstatus); 7307 } else { 7308 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7309 tcg_shift, tcg_fpstatus); 7310 } 7311 write_fp_sreg(s, rd, tcg_single); 7312 break; 7313 7314 default: 7315 g_assert_not_reached(); 7316 } 7317 } else { 7318 TCGv_i64 tcg_int = cpu_reg(s, rd); 7319 TCGv_i32 tcg_rmode; 7320 7321 if (extract32(opcode, 2, 1)) { 7322 /* There are too many rounding modes to all fit into rmode, 7323 * so FCVTA[US] is a special case. 7324 */ 7325 rmode = FPROUNDING_TIEAWAY; 7326 } 7327 7328 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7329 7330 switch (type) { 7331 case 1: /* float64 */ 7332 tcg_double = read_fp_dreg(s, rn); 7333 if (is_signed) { 7334 if (!sf) { 7335 gen_helper_vfp_tosld(tcg_int, tcg_double, 7336 tcg_shift, tcg_fpstatus); 7337 } else { 7338 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7339 tcg_shift, tcg_fpstatus); 7340 } 7341 } else { 7342 if (!sf) { 7343 gen_helper_vfp_tould(tcg_int, tcg_double, 7344 tcg_shift, tcg_fpstatus); 7345 } else { 7346 gen_helper_vfp_touqd(tcg_int, tcg_double, 7347 tcg_shift, tcg_fpstatus); 7348 } 7349 } 7350 if (!sf) { 7351 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7352 } 7353 break; 7354 7355 case 0: /* float32 */ 7356 tcg_single = read_fp_sreg(s, rn); 7357 if (sf) { 7358 if (is_signed) { 7359 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7360 tcg_shift, tcg_fpstatus); 7361 } else { 7362 gen_helper_vfp_touqs(tcg_int, tcg_single, 7363 tcg_shift, tcg_fpstatus); 7364 } 7365 } else { 7366 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7367 if (is_signed) { 7368 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7369 tcg_shift, tcg_fpstatus); 7370 } else { 7371 gen_helper_vfp_touls(tcg_dest, tcg_single, 7372 tcg_shift, tcg_fpstatus); 7373 } 7374 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7375 } 7376 break; 7377 7378 case 3: /* float16 */ 7379 tcg_single = read_fp_sreg(s, rn); 7380 if (sf) { 7381 if (is_signed) { 7382 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7383 tcg_shift, tcg_fpstatus); 7384 } else { 7385 gen_helper_vfp_touqh(tcg_int, tcg_single, 7386 tcg_shift, tcg_fpstatus); 7387 } 7388 } else { 7389 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7390 if (is_signed) { 7391 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7392 tcg_shift, tcg_fpstatus); 7393 } else { 7394 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7395 tcg_shift, tcg_fpstatus); 7396 } 7397 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7398 } 7399 break; 7400 7401 default: 7402 g_assert_not_reached(); 7403 } 7404 7405 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7406 } 7407 } 7408 7409 /* Floating point <-> fixed point conversions 7410 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7411 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7412 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7413 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7414 */ 7415 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7416 { 7417 int rd = extract32(insn, 0, 5); 7418 int rn = extract32(insn, 5, 5); 7419 int scale = extract32(insn, 10, 6); 7420 int opcode = extract32(insn, 16, 3); 7421 int rmode = extract32(insn, 19, 2); 7422 int type = extract32(insn, 22, 2); 7423 bool sbit = extract32(insn, 29, 1); 7424 bool sf = extract32(insn, 31, 1); 7425 bool itof; 7426 7427 if (sbit || (!sf && scale < 32)) { 7428 unallocated_encoding(s); 7429 return; 7430 } 7431 7432 switch (type) { 7433 case 0: /* float32 */ 7434 case 1: /* float64 */ 7435 break; 7436 case 3: /* float16 */ 7437 if (dc_isar_feature(aa64_fp16, s)) { 7438 break; 7439 } 7440 /* fallthru */ 7441 default: 7442 unallocated_encoding(s); 7443 return; 7444 } 7445 7446 switch ((rmode << 3) | opcode) { 7447 case 0x2: /* SCVTF */ 7448 case 0x3: /* UCVTF */ 7449 itof = true; 7450 break; 7451 case 0x18: /* FCVTZS */ 7452 case 0x19: /* FCVTZU */ 7453 itof = false; 7454 break; 7455 default: 7456 unallocated_encoding(s); 7457 return; 7458 } 7459 7460 if (!fp_access_check(s)) { 7461 return; 7462 } 7463 7464 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7465 } 7466 7467 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7468 { 7469 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7470 * without conversion. 7471 */ 7472 7473 if (itof) { 7474 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7475 TCGv_i64 tmp; 7476 7477 switch (type) { 7478 case 0: 7479 /* 32 bit */ 7480 tmp = tcg_temp_new_i64(); 7481 tcg_gen_ext32u_i64(tmp, tcg_rn); 7482 write_fp_dreg(s, rd, tmp); 7483 break; 7484 case 1: 7485 /* 64 bit */ 7486 write_fp_dreg(s, rd, tcg_rn); 7487 break; 7488 case 2: 7489 /* 64 bit to top half. */ 7490 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7491 clear_vec_high(s, true, rd); 7492 break; 7493 case 3: 7494 /* 16 bit */ 7495 tmp = tcg_temp_new_i64(); 7496 tcg_gen_ext16u_i64(tmp, tcg_rn); 7497 write_fp_dreg(s, rd, tmp); 7498 break; 7499 default: 7500 g_assert_not_reached(); 7501 } 7502 } else { 7503 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7504 7505 switch (type) { 7506 case 0: 7507 /* 32 bit */ 7508 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7509 break; 7510 case 1: 7511 /* 64 bit */ 7512 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7513 break; 7514 case 2: 7515 /* 64 bits from top half */ 7516 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7517 break; 7518 case 3: 7519 /* 16 bit */ 7520 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7521 break; 7522 default: 7523 g_assert_not_reached(); 7524 } 7525 } 7526 } 7527 7528 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7529 { 7530 TCGv_i64 t = read_fp_dreg(s, rn); 7531 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7532 7533 gen_helper_fjcvtzs(t, t, fpstatus); 7534 7535 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7536 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7537 tcg_gen_movi_i32(cpu_CF, 0); 7538 tcg_gen_movi_i32(cpu_NF, 0); 7539 tcg_gen_movi_i32(cpu_VF, 0); 7540 } 7541 7542 /* Floating point <-> integer conversions 7543 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7544 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7545 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7546 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7547 */ 7548 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7549 { 7550 int rd = extract32(insn, 0, 5); 7551 int rn = extract32(insn, 5, 5); 7552 int opcode = extract32(insn, 16, 3); 7553 int rmode = extract32(insn, 19, 2); 7554 int type = extract32(insn, 22, 2); 7555 bool sbit = extract32(insn, 29, 1); 7556 bool sf = extract32(insn, 31, 1); 7557 bool itof = false; 7558 7559 if (sbit) { 7560 goto do_unallocated; 7561 } 7562 7563 switch (opcode) { 7564 case 2: /* SCVTF */ 7565 case 3: /* UCVTF */ 7566 itof = true; 7567 /* fallthru */ 7568 case 4: /* FCVTAS */ 7569 case 5: /* FCVTAU */ 7570 if (rmode != 0) { 7571 goto do_unallocated; 7572 } 7573 /* fallthru */ 7574 case 0: /* FCVT[NPMZ]S */ 7575 case 1: /* FCVT[NPMZ]U */ 7576 switch (type) { 7577 case 0: /* float32 */ 7578 case 1: /* float64 */ 7579 break; 7580 case 3: /* float16 */ 7581 if (!dc_isar_feature(aa64_fp16, s)) { 7582 goto do_unallocated; 7583 } 7584 break; 7585 default: 7586 goto do_unallocated; 7587 } 7588 if (!fp_access_check(s)) { 7589 return; 7590 } 7591 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7592 break; 7593 7594 default: 7595 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7596 case 0b01100110: /* FMOV half <-> 32-bit int */ 7597 case 0b01100111: 7598 case 0b11100110: /* FMOV half <-> 64-bit int */ 7599 case 0b11100111: 7600 if (!dc_isar_feature(aa64_fp16, s)) { 7601 goto do_unallocated; 7602 } 7603 /* fallthru */ 7604 case 0b00000110: /* FMOV 32-bit */ 7605 case 0b00000111: 7606 case 0b10100110: /* FMOV 64-bit */ 7607 case 0b10100111: 7608 case 0b11001110: /* FMOV top half of 128-bit */ 7609 case 0b11001111: 7610 if (!fp_access_check(s)) { 7611 return; 7612 } 7613 itof = opcode & 1; 7614 handle_fmov(s, rd, rn, type, itof); 7615 break; 7616 7617 case 0b00111110: /* FJCVTZS */ 7618 if (!dc_isar_feature(aa64_jscvt, s)) { 7619 goto do_unallocated; 7620 } else if (fp_access_check(s)) { 7621 handle_fjcvtzs(s, rd, rn); 7622 } 7623 break; 7624 7625 default: 7626 do_unallocated: 7627 unallocated_encoding(s); 7628 return; 7629 } 7630 break; 7631 } 7632 } 7633 7634 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7635 * 31 30 29 28 25 24 0 7636 * +---+---+---+---------+-----------------------------+ 7637 * | | 0 | | 1 1 1 1 | | 7638 * +---+---+---+---------+-----------------------------+ 7639 */ 7640 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7641 { 7642 if (extract32(insn, 24, 1)) { 7643 /* Floating point data-processing (3 source) */ 7644 disas_fp_3src(s, insn); 7645 } else if (extract32(insn, 21, 1) == 0) { 7646 /* Floating point to fixed point conversions */ 7647 disas_fp_fixed_conv(s, insn); 7648 } else { 7649 switch (extract32(insn, 10, 2)) { 7650 case 1: 7651 /* Floating point conditional compare */ 7652 disas_fp_ccomp(s, insn); 7653 break; 7654 case 2: 7655 /* Floating point data-processing (2 source) */ 7656 disas_fp_2src(s, insn); 7657 break; 7658 case 3: 7659 /* Floating point conditional select */ 7660 disas_fp_csel(s, insn); 7661 break; 7662 case 0: 7663 switch (ctz32(extract32(insn, 12, 4))) { 7664 case 0: /* [15:12] == xxx1 */ 7665 /* Floating point immediate */ 7666 disas_fp_imm(s, insn); 7667 break; 7668 case 1: /* [15:12] == xx10 */ 7669 /* Floating point compare */ 7670 disas_fp_compare(s, insn); 7671 break; 7672 case 2: /* [15:12] == x100 */ 7673 /* Floating point data-processing (1 source) */ 7674 disas_fp_1src(s, insn); 7675 break; 7676 case 3: /* [15:12] == 1000 */ 7677 unallocated_encoding(s); 7678 break; 7679 default: /* [15:12] == 0000 */ 7680 /* Floating point <-> integer conversions */ 7681 disas_fp_int_conv(s, insn); 7682 break; 7683 } 7684 break; 7685 } 7686 } 7687 } 7688 7689 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7690 int pos) 7691 { 7692 /* Extract 64 bits from the middle of two concatenated 64 bit 7693 * vector register slices left:right. The extracted bits start 7694 * at 'pos' bits into the right (least significant) side. 7695 * We return the result in tcg_right, and guarantee not to 7696 * trash tcg_left. 7697 */ 7698 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7699 assert(pos > 0 && pos < 64); 7700 7701 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7702 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7703 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7704 } 7705 7706 /* EXT 7707 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7708 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7709 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7710 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7711 */ 7712 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7713 { 7714 int is_q = extract32(insn, 30, 1); 7715 int op2 = extract32(insn, 22, 2); 7716 int imm4 = extract32(insn, 11, 4); 7717 int rm = extract32(insn, 16, 5); 7718 int rn = extract32(insn, 5, 5); 7719 int rd = extract32(insn, 0, 5); 7720 int pos = imm4 << 3; 7721 TCGv_i64 tcg_resl, tcg_resh; 7722 7723 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7724 unallocated_encoding(s); 7725 return; 7726 } 7727 7728 if (!fp_access_check(s)) { 7729 return; 7730 } 7731 7732 tcg_resh = tcg_temp_new_i64(); 7733 tcg_resl = tcg_temp_new_i64(); 7734 7735 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7736 * either extracting 128 bits from a 128:128 concatenation, or 7737 * extracting 64 bits from a 64:64 concatenation. 7738 */ 7739 if (!is_q) { 7740 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7741 if (pos != 0) { 7742 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7743 do_ext64(s, tcg_resh, tcg_resl, pos); 7744 } 7745 } else { 7746 TCGv_i64 tcg_hh; 7747 typedef struct { 7748 int reg; 7749 int elt; 7750 } EltPosns; 7751 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7752 EltPosns *elt = eltposns; 7753 7754 if (pos >= 64) { 7755 elt++; 7756 pos -= 64; 7757 } 7758 7759 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7760 elt++; 7761 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7762 elt++; 7763 if (pos != 0) { 7764 do_ext64(s, tcg_resh, tcg_resl, pos); 7765 tcg_hh = tcg_temp_new_i64(); 7766 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7767 do_ext64(s, tcg_hh, tcg_resh, pos); 7768 } 7769 } 7770 7771 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7772 if (is_q) { 7773 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7774 } 7775 clear_vec_high(s, is_q, rd); 7776 } 7777 7778 /* TBL/TBX 7779 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7780 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7781 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7782 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7783 */ 7784 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7785 { 7786 int op2 = extract32(insn, 22, 2); 7787 int is_q = extract32(insn, 30, 1); 7788 int rm = extract32(insn, 16, 5); 7789 int rn = extract32(insn, 5, 5); 7790 int rd = extract32(insn, 0, 5); 7791 int is_tbx = extract32(insn, 12, 1); 7792 int len = (extract32(insn, 13, 2) + 1) * 16; 7793 7794 if (op2 != 0) { 7795 unallocated_encoding(s); 7796 return; 7797 } 7798 7799 if (!fp_access_check(s)) { 7800 return; 7801 } 7802 7803 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7804 vec_full_reg_offset(s, rm), tcg_env, 7805 is_q ? 16 : 8, vec_full_reg_size(s), 7806 (len << 6) | (is_tbx << 5) | rn, 7807 gen_helper_simd_tblx); 7808 } 7809 7810 /* ZIP/UZP/TRN 7811 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7812 * +---+---+-------------+------+---+------+---+------------------+------+ 7813 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7814 * +---+---+-------------+------+---+------+---+------------------+------+ 7815 */ 7816 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7817 { 7818 int rd = extract32(insn, 0, 5); 7819 int rn = extract32(insn, 5, 5); 7820 int rm = extract32(insn, 16, 5); 7821 int size = extract32(insn, 22, 2); 7822 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7823 * bit 2 indicates 1 vs 2 variant of the insn. 7824 */ 7825 int opcode = extract32(insn, 12, 2); 7826 bool part = extract32(insn, 14, 1); 7827 bool is_q = extract32(insn, 30, 1); 7828 int esize = 8 << size; 7829 int i; 7830 int datasize = is_q ? 128 : 64; 7831 int elements = datasize / esize; 7832 TCGv_i64 tcg_res[2], tcg_ele; 7833 7834 if (opcode == 0 || (size == 3 && !is_q)) { 7835 unallocated_encoding(s); 7836 return; 7837 } 7838 7839 if (!fp_access_check(s)) { 7840 return; 7841 } 7842 7843 tcg_res[0] = tcg_temp_new_i64(); 7844 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7845 tcg_ele = tcg_temp_new_i64(); 7846 7847 for (i = 0; i < elements; i++) { 7848 int o, w; 7849 7850 switch (opcode) { 7851 case 1: /* UZP1/2 */ 7852 { 7853 int midpoint = elements / 2; 7854 if (i < midpoint) { 7855 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7856 } else { 7857 read_vec_element(s, tcg_ele, rm, 7858 2 * (i - midpoint) + part, size); 7859 } 7860 break; 7861 } 7862 case 2: /* TRN1/2 */ 7863 if (i & 1) { 7864 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7865 } else { 7866 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7867 } 7868 break; 7869 case 3: /* ZIP1/2 */ 7870 { 7871 int base = part * elements / 2; 7872 if (i & 1) { 7873 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7874 } else { 7875 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7876 } 7877 break; 7878 } 7879 default: 7880 g_assert_not_reached(); 7881 } 7882 7883 w = (i * esize) / 64; 7884 o = (i * esize) % 64; 7885 if (o == 0) { 7886 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7887 } else { 7888 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7889 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7890 } 7891 } 7892 7893 for (i = 0; i <= is_q; ++i) { 7894 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7895 } 7896 clear_vec_high(s, is_q, rd); 7897 } 7898 7899 /* 7900 * do_reduction_op helper 7901 * 7902 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7903 * important for correct NaN propagation that we do these 7904 * operations in exactly the order specified by the pseudocode. 7905 * 7906 * This is a recursive function, TCG temps should be freed by the 7907 * calling function once it is done with the values. 7908 */ 7909 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7910 int esize, int size, int vmap, TCGv_ptr fpst) 7911 { 7912 if (esize == size) { 7913 int element; 7914 MemOp msize = esize == 16 ? MO_16 : MO_32; 7915 TCGv_i32 tcg_elem; 7916 7917 /* We should have one register left here */ 7918 assert(ctpop8(vmap) == 1); 7919 element = ctz32(vmap); 7920 assert(element < 8); 7921 7922 tcg_elem = tcg_temp_new_i32(); 7923 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7924 return tcg_elem; 7925 } else { 7926 int bits = size / 2; 7927 int shift = ctpop8(vmap) / 2; 7928 int vmap_lo = (vmap >> shift) & vmap; 7929 int vmap_hi = (vmap & ~vmap_lo); 7930 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7931 7932 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7933 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7934 tcg_res = tcg_temp_new_i32(); 7935 7936 switch (fpopcode) { 7937 case 0x0c: /* fmaxnmv half-precision */ 7938 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7939 break; 7940 case 0x0f: /* fmaxv half-precision */ 7941 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7942 break; 7943 case 0x1c: /* fminnmv half-precision */ 7944 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7945 break; 7946 case 0x1f: /* fminv half-precision */ 7947 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7948 break; 7949 case 0x2c: /* fmaxnmv */ 7950 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7951 break; 7952 case 0x2f: /* fmaxv */ 7953 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7954 break; 7955 case 0x3c: /* fminnmv */ 7956 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7957 break; 7958 case 0x3f: /* fminv */ 7959 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7960 break; 7961 default: 7962 g_assert_not_reached(); 7963 } 7964 return tcg_res; 7965 } 7966 } 7967 7968 /* AdvSIMD across lanes 7969 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7970 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7971 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7972 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7973 */ 7974 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7975 { 7976 int rd = extract32(insn, 0, 5); 7977 int rn = extract32(insn, 5, 5); 7978 int size = extract32(insn, 22, 2); 7979 int opcode = extract32(insn, 12, 5); 7980 bool is_q = extract32(insn, 30, 1); 7981 bool is_u = extract32(insn, 29, 1); 7982 bool is_fp = false; 7983 bool is_min = false; 7984 int esize; 7985 int elements; 7986 int i; 7987 TCGv_i64 tcg_res, tcg_elt; 7988 7989 switch (opcode) { 7990 case 0x1b: /* ADDV */ 7991 if (is_u) { 7992 unallocated_encoding(s); 7993 return; 7994 } 7995 /* fall through */ 7996 case 0x3: /* SADDLV, UADDLV */ 7997 case 0xa: /* SMAXV, UMAXV */ 7998 case 0x1a: /* SMINV, UMINV */ 7999 if (size == 3 || (size == 2 && !is_q)) { 8000 unallocated_encoding(s); 8001 return; 8002 } 8003 break; 8004 case 0xc: /* FMAXNMV, FMINNMV */ 8005 case 0xf: /* FMAXV, FMINV */ 8006 /* Bit 1 of size field encodes min vs max and the actual size 8007 * depends on the encoding of the U bit. If not set (and FP16 8008 * enabled) then we do half-precision float instead of single 8009 * precision. 8010 */ 8011 is_min = extract32(size, 1, 1); 8012 is_fp = true; 8013 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8014 size = 1; 8015 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8016 unallocated_encoding(s); 8017 return; 8018 } else { 8019 size = 2; 8020 } 8021 break; 8022 default: 8023 unallocated_encoding(s); 8024 return; 8025 } 8026 8027 if (!fp_access_check(s)) { 8028 return; 8029 } 8030 8031 esize = 8 << size; 8032 elements = (is_q ? 128 : 64) / esize; 8033 8034 tcg_res = tcg_temp_new_i64(); 8035 tcg_elt = tcg_temp_new_i64(); 8036 8037 /* These instructions operate across all lanes of a vector 8038 * to produce a single result. We can guarantee that a 64 8039 * bit intermediate is sufficient: 8040 * + for [US]ADDLV the maximum element size is 32 bits, and 8041 * the result type is 64 bits 8042 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8043 * same as the element size, which is 32 bits at most 8044 * For the integer operations we can choose to work at 64 8045 * or 32 bits and truncate at the end; for simplicity 8046 * we use 64 bits always. The floating point 8047 * ops do require 32 bit intermediates, though. 8048 */ 8049 if (!is_fp) { 8050 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8051 8052 for (i = 1; i < elements; i++) { 8053 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8054 8055 switch (opcode) { 8056 case 0x03: /* SADDLV / UADDLV */ 8057 case 0x1b: /* ADDV */ 8058 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8059 break; 8060 case 0x0a: /* SMAXV / UMAXV */ 8061 if (is_u) { 8062 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8063 } else { 8064 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8065 } 8066 break; 8067 case 0x1a: /* SMINV / UMINV */ 8068 if (is_u) { 8069 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8070 } else { 8071 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8072 } 8073 break; 8074 default: 8075 g_assert_not_reached(); 8076 } 8077 8078 } 8079 } else { 8080 /* Floating point vector reduction ops which work across 32 8081 * bit (single) or 16 bit (half-precision) intermediates. 8082 * Note that correct NaN propagation requires that we do these 8083 * operations in exactly the order specified by the pseudocode. 8084 */ 8085 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8086 int fpopcode = opcode | is_min << 4 | is_u << 5; 8087 int vmap = (1 << elements) - 1; 8088 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8089 (is_q ? 128 : 64), vmap, fpst); 8090 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8091 } 8092 8093 /* Now truncate the result to the width required for the final output */ 8094 if (opcode == 0x03) { 8095 /* SADDLV, UADDLV: result is 2*esize */ 8096 size++; 8097 } 8098 8099 switch (size) { 8100 case 0: 8101 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8102 break; 8103 case 1: 8104 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8105 break; 8106 case 2: 8107 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8108 break; 8109 case 3: 8110 break; 8111 default: 8112 g_assert_not_reached(); 8113 } 8114 8115 write_fp_dreg(s, rd, tcg_res); 8116 } 8117 8118 /* AdvSIMD modified immediate 8119 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8120 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8121 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8122 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8123 * 8124 * There are a number of operations that can be carried out here: 8125 * MOVI - move (shifted) imm into register 8126 * MVNI - move inverted (shifted) imm into register 8127 * ORR - bitwise OR of (shifted) imm with register 8128 * BIC - bitwise clear of (shifted) imm with register 8129 * With ARMv8.2 we also have: 8130 * FMOV half-precision 8131 */ 8132 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8133 { 8134 int rd = extract32(insn, 0, 5); 8135 int cmode = extract32(insn, 12, 4); 8136 int o2 = extract32(insn, 11, 1); 8137 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8138 bool is_neg = extract32(insn, 29, 1); 8139 bool is_q = extract32(insn, 30, 1); 8140 uint64_t imm = 0; 8141 8142 if (o2) { 8143 if (cmode != 0xf || is_neg) { 8144 unallocated_encoding(s); 8145 return; 8146 } 8147 /* FMOV (vector, immediate) - half-precision */ 8148 if (!dc_isar_feature(aa64_fp16, s)) { 8149 unallocated_encoding(s); 8150 return; 8151 } 8152 imm = vfp_expand_imm(MO_16, abcdefgh); 8153 /* now duplicate across the lanes */ 8154 imm = dup_const(MO_16, imm); 8155 } else { 8156 if (cmode == 0xf && is_neg && !is_q) { 8157 unallocated_encoding(s); 8158 return; 8159 } 8160 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8161 } 8162 8163 if (!fp_access_check(s)) { 8164 return; 8165 } 8166 8167 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8168 /* MOVI or MVNI, with MVNI negation handled above. */ 8169 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8170 vec_full_reg_size(s), imm); 8171 } else { 8172 /* ORR or BIC, with BIC negation to AND handled above. */ 8173 if (is_neg) { 8174 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8175 } else { 8176 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8177 } 8178 } 8179 } 8180 8181 /* AdvSIMD scalar pairwise 8182 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8183 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8184 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8185 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8186 */ 8187 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8188 { 8189 int u = extract32(insn, 29, 1); 8190 int size = extract32(insn, 22, 2); 8191 int opcode = extract32(insn, 12, 5); 8192 int rn = extract32(insn, 5, 5); 8193 int rd = extract32(insn, 0, 5); 8194 TCGv_ptr fpst; 8195 8196 /* For some ops (the FP ones), size[1] is part of the encoding. 8197 * For ADDP strictly it is not but size[1] is always 1 for valid 8198 * encodings. 8199 */ 8200 opcode |= (extract32(size, 1, 1) << 5); 8201 8202 switch (opcode) { 8203 case 0x3b: /* ADDP */ 8204 if (u || size != 3) { 8205 unallocated_encoding(s); 8206 return; 8207 } 8208 if (!fp_access_check(s)) { 8209 return; 8210 } 8211 8212 fpst = NULL; 8213 break; 8214 case 0xc: /* FMAXNMP */ 8215 case 0xd: /* FADDP */ 8216 case 0xf: /* FMAXP */ 8217 case 0x2c: /* FMINNMP */ 8218 case 0x2f: /* FMINP */ 8219 /* FP op, size[0] is 32 or 64 bit*/ 8220 if (!u) { 8221 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8222 unallocated_encoding(s); 8223 return; 8224 } else { 8225 size = MO_16; 8226 } 8227 } else { 8228 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8229 } 8230 8231 if (!fp_access_check(s)) { 8232 return; 8233 } 8234 8235 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8236 break; 8237 default: 8238 unallocated_encoding(s); 8239 return; 8240 } 8241 8242 if (size == MO_64) { 8243 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8244 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8245 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8246 8247 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8248 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8249 8250 switch (opcode) { 8251 case 0x3b: /* ADDP */ 8252 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8253 break; 8254 case 0xc: /* FMAXNMP */ 8255 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8256 break; 8257 case 0xd: /* FADDP */ 8258 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8259 break; 8260 case 0xf: /* FMAXP */ 8261 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8262 break; 8263 case 0x2c: /* FMINNMP */ 8264 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8265 break; 8266 case 0x2f: /* FMINP */ 8267 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8268 break; 8269 default: 8270 g_assert_not_reached(); 8271 } 8272 8273 write_fp_dreg(s, rd, tcg_res); 8274 } else { 8275 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8276 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8277 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8278 8279 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8280 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8281 8282 if (size == MO_16) { 8283 switch (opcode) { 8284 case 0xc: /* FMAXNMP */ 8285 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8286 break; 8287 case 0xd: /* FADDP */ 8288 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8289 break; 8290 case 0xf: /* FMAXP */ 8291 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8292 break; 8293 case 0x2c: /* FMINNMP */ 8294 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8295 break; 8296 case 0x2f: /* FMINP */ 8297 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8298 break; 8299 default: 8300 g_assert_not_reached(); 8301 } 8302 } else { 8303 switch (opcode) { 8304 case 0xc: /* FMAXNMP */ 8305 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8306 break; 8307 case 0xd: /* FADDP */ 8308 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8309 break; 8310 case 0xf: /* FMAXP */ 8311 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8312 break; 8313 case 0x2c: /* FMINNMP */ 8314 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8315 break; 8316 case 0x2f: /* FMINP */ 8317 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8318 break; 8319 default: 8320 g_assert_not_reached(); 8321 } 8322 } 8323 8324 write_fp_sreg(s, rd, tcg_res); 8325 } 8326 } 8327 8328 /* 8329 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8330 * 8331 * This code is handles the common shifting code and is used by both 8332 * the vector and scalar code. 8333 */ 8334 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8335 TCGv_i64 tcg_rnd, bool accumulate, 8336 bool is_u, int size, int shift) 8337 { 8338 bool extended_result = false; 8339 bool round = tcg_rnd != NULL; 8340 int ext_lshift = 0; 8341 TCGv_i64 tcg_src_hi; 8342 8343 if (round && size == 3) { 8344 extended_result = true; 8345 ext_lshift = 64 - shift; 8346 tcg_src_hi = tcg_temp_new_i64(); 8347 } else if (shift == 64) { 8348 if (!accumulate && is_u) { 8349 /* result is zero */ 8350 tcg_gen_movi_i64(tcg_res, 0); 8351 return; 8352 } 8353 } 8354 8355 /* Deal with the rounding step */ 8356 if (round) { 8357 if (extended_result) { 8358 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8359 if (!is_u) { 8360 /* take care of sign extending tcg_res */ 8361 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8362 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8363 tcg_src, tcg_src_hi, 8364 tcg_rnd, tcg_zero); 8365 } else { 8366 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8367 tcg_src, tcg_zero, 8368 tcg_rnd, tcg_zero); 8369 } 8370 } else { 8371 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8372 } 8373 } 8374 8375 /* Now do the shift right */ 8376 if (round && extended_result) { 8377 /* extended case, >64 bit precision required */ 8378 if (ext_lshift == 0) { 8379 /* special case, only high bits matter */ 8380 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8381 } else { 8382 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8383 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8384 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8385 } 8386 } else { 8387 if (is_u) { 8388 if (shift == 64) { 8389 /* essentially shifting in 64 zeros */ 8390 tcg_gen_movi_i64(tcg_src, 0); 8391 } else { 8392 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8393 } 8394 } else { 8395 if (shift == 64) { 8396 /* effectively extending the sign-bit */ 8397 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8398 } else { 8399 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8400 } 8401 } 8402 } 8403 8404 if (accumulate) { 8405 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8406 } else { 8407 tcg_gen_mov_i64(tcg_res, tcg_src); 8408 } 8409 } 8410 8411 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8412 static void handle_scalar_simd_shri(DisasContext *s, 8413 bool is_u, int immh, int immb, 8414 int opcode, int rn, int rd) 8415 { 8416 const int size = 3; 8417 int immhb = immh << 3 | immb; 8418 int shift = 2 * (8 << size) - immhb; 8419 bool accumulate = false; 8420 bool round = false; 8421 bool insert = false; 8422 TCGv_i64 tcg_rn; 8423 TCGv_i64 tcg_rd; 8424 TCGv_i64 tcg_round; 8425 8426 if (!extract32(immh, 3, 1)) { 8427 unallocated_encoding(s); 8428 return; 8429 } 8430 8431 if (!fp_access_check(s)) { 8432 return; 8433 } 8434 8435 switch (opcode) { 8436 case 0x02: /* SSRA / USRA (accumulate) */ 8437 accumulate = true; 8438 break; 8439 case 0x04: /* SRSHR / URSHR (rounding) */ 8440 round = true; 8441 break; 8442 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8443 accumulate = round = true; 8444 break; 8445 case 0x08: /* SRI */ 8446 insert = true; 8447 break; 8448 } 8449 8450 if (round) { 8451 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8452 } else { 8453 tcg_round = NULL; 8454 } 8455 8456 tcg_rn = read_fp_dreg(s, rn); 8457 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8458 8459 if (insert) { 8460 /* shift count same as element size is valid but does nothing; 8461 * special case to avoid potential shift by 64. 8462 */ 8463 int esize = 8 << size; 8464 if (shift != esize) { 8465 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8466 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8467 } 8468 } else { 8469 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8470 accumulate, is_u, size, shift); 8471 } 8472 8473 write_fp_dreg(s, rd, tcg_rd); 8474 } 8475 8476 /* SHL/SLI - Scalar shift left */ 8477 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8478 int immh, int immb, int opcode, 8479 int rn, int rd) 8480 { 8481 int size = 32 - clz32(immh) - 1; 8482 int immhb = immh << 3 | immb; 8483 int shift = immhb - (8 << size); 8484 TCGv_i64 tcg_rn; 8485 TCGv_i64 tcg_rd; 8486 8487 if (!extract32(immh, 3, 1)) { 8488 unallocated_encoding(s); 8489 return; 8490 } 8491 8492 if (!fp_access_check(s)) { 8493 return; 8494 } 8495 8496 tcg_rn = read_fp_dreg(s, rn); 8497 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8498 8499 if (insert) { 8500 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8501 } else { 8502 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8503 } 8504 8505 write_fp_dreg(s, rd, tcg_rd); 8506 } 8507 8508 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8509 * (signed/unsigned) narrowing */ 8510 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8511 bool is_u_shift, bool is_u_narrow, 8512 int immh, int immb, int opcode, 8513 int rn, int rd) 8514 { 8515 int immhb = immh << 3 | immb; 8516 int size = 32 - clz32(immh) - 1; 8517 int esize = 8 << size; 8518 int shift = (2 * esize) - immhb; 8519 int elements = is_scalar ? 1 : (64 / esize); 8520 bool round = extract32(opcode, 0, 1); 8521 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8522 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8523 TCGv_i32 tcg_rd_narrowed; 8524 TCGv_i64 tcg_final; 8525 8526 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8527 { gen_helper_neon_narrow_sat_s8, 8528 gen_helper_neon_unarrow_sat8 }, 8529 { gen_helper_neon_narrow_sat_s16, 8530 gen_helper_neon_unarrow_sat16 }, 8531 { gen_helper_neon_narrow_sat_s32, 8532 gen_helper_neon_unarrow_sat32 }, 8533 { NULL, NULL }, 8534 }; 8535 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8536 gen_helper_neon_narrow_sat_u8, 8537 gen_helper_neon_narrow_sat_u16, 8538 gen_helper_neon_narrow_sat_u32, 8539 NULL 8540 }; 8541 NeonGenNarrowEnvFn *narrowfn; 8542 8543 int i; 8544 8545 assert(size < 4); 8546 8547 if (extract32(immh, 3, 1)) { 8548 unallocated_encoding(s); 8549 return; 8550 } 8551 8552 if (!fp_access_check(s)) { 8553 return; 8554 } 8555 8556 if (is_u_shift) { 8557 narrowfn = unsigned_narrow_fns[size]; 8558 } else { 8559 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8560 } 8561 8562 tcg_rn = tcg_temp_new_i64(); 8563 tcg_rd = tcg_temp_new_i64(); 8564 tcg_rd_narrowed = tcg_temp_new_i32(); 8565 tcg_final = tcg_temp_new_i64(); 8566 8567 if (round) { 8568 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8569 } else { 8570 tcg_round = NULL; 8571 } 8572 8573 for (i = 0; i < elements; i++) { 8574 read_vec_element(s, tcg_rn, rn, i, ldop); 8575 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8576 false, is_u_shift, size+1, shift); 8577 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8578 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8579 if (i == 0) { 8580 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8581 } else { 8582 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8583 } 8584 } 8585 8586 if (!is_q) { 8587 write_vec_element(s, tcg_final, rd, 0, MO_64); 8588 } else { 8589 write_vec_element(s, tcg_final, rd, 1, MO_64); 8590 } 8591 clear_vec_high(s, is_q, rd); 8592 } 8593 8594 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8595 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8596 bool src_unsigned, bool dst_unsigned, 8597 int immh, int immb, int rn, int rd) 8598 { 8599 int immhb = immh << 3 | immb; 8600 int size = 32 - clz32(immh) - 1; 8601 int shift = immhb - (8 << size); 8602 int pass; 8603 8604 assert(immh != 0); 8605 assert(!(scalar && is_q)); 8606 8607 if (!scalar) { 8608 if (!is_q && extract32(immh, 3, 1)) { 8609 unallocated_encoding(s); 8610 return; 8611 } 8612 8613 /* Since we use the variable-shift helpers we must 8614 * replicate the shift count into each element of 8615 * the tcg_shift value. 8616 */ 8617 switch (size) { 8618 case 0: 8619 shift |= shift << 8; 8620 /* fall through */ 8621 case 1: 8622 shift |= shift << 16; 8623 break; 8624 case 2: 8625 case 3: 8626 break; 8627 default: 8628 g_assert_not_reached(); 8629 } 8630 } 8631 8632 if (!fp_access_check(s)) { 8633 return; 8634 } 8635 8636 if (size == 3) { 8637 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8638 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8639 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8640 { NULL, gen_helper_neon_qshl_u64 }, 8641 }; 8642 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8643 int maxpass = is_q ? 2 : 1; 8644 8645 for (pass = 0; pass < maxpass; pass++) { 8646 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8647 8648 read_vec_element(s, tcg_op, rn, pass, MO_64); 8649 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8650 write_vec_element(s, tcg_op, rd, pass, MO_64); 8651 } 8652 clear_vec_high(s, is_q, rd); 8653 } else { 8654 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8655 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8656 { 8657 { gen_helper_neon_qshl_s8, 8658 gen_helper_neon_qshl_s16, 8659 gen_helper_neon_qshl_s32 }, 8660 { gen_helper_neon_qshlu_s8, 8661 gen_helper_neon_qshlu_s16, 8662 gen_helper_neon_qshlu_s32 } 8663 }, { 8664 { NULL, NULL, NULL }, 8665 { gen_helper_neon_qshl_u8, 8666 gen_helper_neon_qshl_u16, 8667 gen_helper_neon_qshl_u32 } 8668 } 8669 }; 8670 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8671 MemOp memop = scalar ? size : MO_32; 8672 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8673 8674 for (pass = 0; pass < maxpass; pass++) { 8675 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8676 8677 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8678 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8679 if (scalar) { 8680 switch (size) { 8681 case 0: 8682 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8683 break; 8684 case 1: 8685 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8686 break; 8687 case 2: 8688 break; 8689 default: 8690 g_assert_not_reached(); 8691 } 8692 write_fp_sreg(s, rd, tcg_op); 8693 } else { 8694 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8695 } 8696 } 8697 8698 if (!scalar) { 8699 clear_vec_high(s, is_q, rd); 8700 } 8701 } 8702 } 8703 8704 /* Common vector code for handling integer to FP conversion */ 8705 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8706 int elements, int is_signed, 8707 int fracbits, int size) 8708 { 8709 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8710 TCGv_i32 tcg_shift = NULL; 8711 8712 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8713 int pass; 8714 8715 if (fracbits || size == MO_64) { 8716 tcg_shift = tcg_constant_i32(fracbits); 8717 } 8718 8719 if (size == MO_64) { 8720 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8721 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8722 8723 for (pass = 0; pass < elements; pass++) { 8724 read_vec_element(s, tcg_int64, rn, pass, mop); 8725 8726 if (is_signed) { 8727 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8728 tcg_shift, tcg_fpst); 8729 } else { 8730 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8731 tcg_shift, tcg_fpst); 8732 } 8733 if (elements == 1) { 8734 write_fp_dreg(s, rd, tcg_double); 8735 } else { 8736 write_vec_element(s, tcg_double, rd, pass, MO_64); 8737 } 8738 } 8739 } else { 8740 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8741 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8742 8743 for (pass = 0; pass < elements; pass++) { 8744 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8745 8746 switch (size) { 8747 case MO_32: 8748 if (fracbits) { 8749 if (is_signed) { 8750 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8751 tcg_shift, tcg_fpst); 8752 } else { 8753 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8754 tcg_shift, tcg_fpst); 8755 } 8756 } else { 8757 if (is_signed) { 8758 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8759 } else { 8760 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8761 } 8762 } 8763 break; 8764 case MO_16: 8765 if (fracbits) { 8766 if (is_signed) { 8767 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8768 tcg_shift, tcg_fpst); 8769 } else { 8770 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8771 tcg_shift, tcg_fpst); 8772 } 8773 } else { 8774 if (is_signed) { 8775 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8776 } else { 8777 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8778 } 8779 } 8780 break; 8781 default: 8782 g_assert_not_reached(); 8783 } 8784 8785 if (elements == 1) { 8786 write_fp_sreg(s, rd, tcg_float); 8787 } else { 8788 write_vec_element_i32(s, tcg_float, rd, pass, size); 8789 } 8790 } 8791 } 8792 8793 clear_vec_high(s, elements << size == 16, rd); 8794 } 8795 8796 /* UCVTF/SCVTF - Integer to FP conversion */ 8797 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8798 bool is_q, bool is_u, 8799 int immh, int immb, int opcode, 8800 int rn, int rd) 8801 { 8802 int size, elements, fracbits; 8803 int immhb = immh << 3 | immb; 8804 8805 if (immh & 8) { 8806 size = MO_64; 8807 if (!is_scalar && !is_q) { 8808 unallocated_encoding(s); 8809 return; 8810 } 8811 } else if (immh & 4) { 8812 size = MO_32; 8813 } else if (immh & 2) { 8814 size = MO_16; 8815 if (!dc_isar_feature(aa64_fp16, s)) { 8816 unallocated_encoding(s); 8817 return; 8818 } 8819 } else { 8820 /* immh == 0 would be a failure of the decode logic */ 8821 g_assert(immh == 1); 8822 unallocated_encoding(s); 8823 return; 8824 } 8825 8826 if (is_scalar) { 8827 elements = 1; 8828 } else { 8829 elements = (8 << is_q) >> size; 8830 } 8831 fracbits = (16 << size) - immhb; 8832 8833 if (!fp_access_check(s)) { 8834 return; 8835 } 8836 8837 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8838 } 8839 8840 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8841 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8842 bool is_q, bool is_u, 8843 int immh, int immb, int rn, int rd) 8844 { 8845 int immhb = immh << 3 | immb; 8846 int pass, size, fracbits; 8847 TCGv_ptr tcg_fpstatus; 8848 TCGv_i32 tcg_rmode, tcg_shift; 8849 8850 if (immh & 0x8) { 8851 size = MO_64; 8852 if (!is_scalar && !is_q) { 8853 unallocated_encoding(s); 8854 return; 8855 } 8856 } else if (immh & 0x4) { 8857 size = MO_32; 8858 } else if (immh & 0x2) { 8859 size = MO_16; 8860 if (!dc_isar_feature(aa64_fp16, s)) { 8861 unallocated_encoding(s); 8862 return; 8863 } 8864 } else { 8865 /* Should have split out AdvSIMD modified immediate earlier. */ 8866 assert(immh == 1); 8867 unallocated_encoding(s); 8868 return; 8869 } 8870 8871 if (!fp_access_check(s)) { 8872 return; 8873 } 8874 8875 assert(!(is_scalar && is_q)); 8876 8877 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8878 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8879 fracbits = (16 << size) - immhb; 8880 tcg_shift = tcg_constant_i32(fracbits); 8881 8882 if (size == MO_64) { 8883 int maxpass = is_scalar ? 1 : 2; 8884 8885 for (pass = 0; pass < maxpass; pass++) { 8886 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8887 8888 read_vec_element(s, tcg_op, rn, pass, MO_64); 8889 if (is_u) { 8890 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8891 } else { 8892 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8893 } 8894 write_vec_element(s, tcg_op, rd, pass, MO_64); 8895 } 8896 clear_vec_high(s, is_q, rd); 8897 } else { 8898 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8899 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8900 8901 switch (size) { 8902 case MO_16: 8903 if (is_u) { 8904 fn = gen_helper_vfp_touhh; 8905 } else { 8906 fn = gen_helper_vfp_toshh; 8907 } 8908 break; 8909 case MO_32: 8910 if (is_u) { 8911 fn = gen_helper_vfp_touls; 8912 } else { 8913 fn = gen_helper_vfp_tosls; 8914 } 8915 break; 8916 default: 8917 g_assert_not_reached(); 8918 } 8919 8920 for (pass = 0; pass < maxpass; pass++) { 8921 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8922 8923 read_vec_element_i32(s, tcg_op, rn, pass, size); 8924 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8925 if (is_scalar) { 8926 if (size == MO_16 && !is_u) { 8927 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8928 } 8929 write_fp_sreg(s, rd, tcg_op); 8930 } else { 8931 write_vec_element_i32(s, tcg_op, rd, pass, size); 8932 } 8933 } 8934 if (!is_scalar) { 8935 clear_vec_high(s, is_q, rd); 8936 } 8937 } 8938 8939 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8940 } 8941 8942 /* AdvSIMD scalar shift by immediate 8943 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8944 * +-----+---+-------------+------+------+--------+---+------+------+ 8945 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8946 * +-----+---+-------------+------+------+--------+---+------+------+ 8947 * 8948 * This is the scalar version so it works on a fixed sized registers 8949 */ 8950 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8951 { 8952 int rd = extract32(insn, 0, 5); 8953 int rn = extract32(insn, 5, 5); 8954 int opcode = extract32(insn, 11, 5); 8955 int immb = extract32(insn, 16, 3); 8956 int immh = extract32(insn, 19, 4); 8957 bool is_u = extract32(insn, 29, 1); 8958 8959 if (immh == 0) { 8960 unallocated_encoding(s); 8961 return; 8962 } 8963 8964 switch (opcode) { 8965 case 0x08: /* SRI */ 8966 if (!is_u) { 8967 unallocated_encoding(s); 8968 return; 8969 } 8970 /* fall through */ 8971 case 0x00: /* SSHR / USHR */ 8972 case 0x02: /* SSRA / USRA */ 8973 case 0x04: /* SRSHR / URSHR */ 8974 case 0x06: /* SRSRA / URSRA */ 8975 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8976 break; 8977 case 0x0a: /* SHL / SLI */ 8978 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8979 break; 8980 case 0x1c: /* SCVTF, UCVTF */ 8981 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8982 opcode, rn, rd); 8983 break; 8984 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8985 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8986 if (!is_u) { 8987 unallocated_encoding(s); 8988 return; 8989 } 8990 handle_vec_simd_sqshrn(s, true, false, false, true, 8991 immh, immb, opcode, rn, rd); 8992 break; 8993 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8994 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8995 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8996 immh, immb, opcode, rn, rd); 8997 break; 8998 case 0xc: /* SQSHLU */ 8999 if (!is_u) { 9000 unallocated_encoding(s); 9001 return; 9002 } 9003 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9004 break; 9005 case 0xe: /* SQSHL, UQSHL */ 9006 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9007 break; 9008 case 0x1f: /* FCVTZS, FCVTZU */ 9009 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9010 break; 9011 default: 9012 unallocated_encoding(s); 9013 break; 9014 } 9015 } 9016 9017 /* AdvSIMD scalar three different 9018 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9019 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9020 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9021 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9022 */ 9023 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9024 { 9025 bool is_u = extract32(insn, 29, 1); 9026 int size = extract32(insn, 22, 2); 9027 int opcode = extract32(insn, 12, 4); 9028 int rm = extract32(insn, 16, 5); 9029 int rn = extract32(insn, 5, 5); 9030 int rd = extract32(insn, 0, 5); 9031 9032 if (is_u) { 9033 unallocated_encoding(s); 9034 return; 9035 } 9036 9037 switch (opcode) { 9038 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9039 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9040 case 0xd: /* SQDMULL, SQDMULL2 */ 9041 if (size == 0 || size == 3) { 9042 unallocated_encoding(s); 9043 return; 9044 } 9045 break; 9046 default: 9047 unallocated_encoding(s); 9048 return; 9049 } 9050 9051 if (!fp_access_check(s)) { 9052 return; 9053 } 9054 9055 if (size == 2) { 9056 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9057 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9058 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9059 9060 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9061 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9062 9063 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9064 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9065 9066 switch (opcode) { 9067 case 0xd: /* SQDMULL, SQDMULL2 */ 9068 break; 9069 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9070 tcg_gen_neg_i64(tcg_res, tcg_res); 9071 /* fall through */ 9072 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9073 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9074 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9075 tcg_res, tcg_op1); 9076 break; 9077 default: 9078 g_assert_not_reached(); 9079 } 9080 9081 write_fp_dreg(s, rd, tcg_res); 9082 } else { 9083 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9084 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9085 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9086 9087 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9088 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9089 9090 switch (opcode) { 9091 case 0xd: /* SQDMULL, SQDMULL2 */ 9092 break; 9093 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9094 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9095 /* fall through */ 9096 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9097 { 9098 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9099 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9100 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9101 tcg_res, tcg_op3); 9102 break; 9103 } 9104 default: 9105 g_assert_not_reached(); 9106 } 9107 9108 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9109 write_fp_dreg(s, rd, tcg_res); 9110 } 9111 } 9112 9113 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9114 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9115 { 9116 /* Handle 64x64->64 opcodes which are shared between the scalar 9117 * and vector 3-same groups. We cover every opcode where size == 3 9118 * is valid in either the three-reg-same (integer, not pairwise) 9119 * or scalar-three-reg-same groups. 9120 */ 9121 TCGCond cond; 9122 9123 switch (opcode) { 9124 case 0x1: /* SQADD */ 9125 if (u) { 9126 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9127 } else { 9128 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9129 } 9130 break; 9131 case 0x5: /* SQSUB */ 9132 if (u) { 9133 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9134 } else { 9135 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9136 } 9137 break; 9138 case 0x6: /* CMGT, CMHI */ 9139 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9140 do_cmop: 9141 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9142 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9143 break; 9144 case 0x7: /* CMGE, CMHS */ 9145 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9146 goto do_cmop; 9147 case 0x11: /* CMTST, CMEQ */ 9148 if (u) { 9149 cond = TCG_COND_EQ; 9150 goto do_cmop; 9151 } 9152 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9153 break; 9154 case 0x8: /* SSHL, USHL */ 9155 if (u) { 9156 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9157 } else { 9158 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9159 } 9160 break; 9161 case 0x9: /* SQSHL, UQSHL */ 9162 if (u) { 9163 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9164 } else { 9165 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9166 } 9167 break; 9168 case 0xa: /* SRSHL, URSHL */ 9169 if (u) { 9170 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9171 } else { 9172 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9173 } 9174 break; 9175 case 0xb: /* SQRSHL, UQRSHL */ 9176 if (u) { 9177 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9178 } else { 9179 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9180 } 9181 break; 9182 case 0x10: /* ADD, SUB */ 9183 if (u) { 9184 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9185 } else { 9186 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9187 } 9188 break; 9189 default: 9190 g_assert_not_reached(); 9191 } 9192 } 9193 9194 /* Handle the 3-same-operands float operations; shared by the scalar 9195 * and vector encodings. The caller must filter out any encodings 9196 * not allocated for the encoding it is dealing with. 9197 */ 9198 static void handle_3same_float(DisasContext *s, int size, int elements, 9199 int fpopcode, int rd, int rn, int rm) 9200 { 9201 int pass; 9202 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9203 9204 for (pass = 0; pass < elements; pass++) { 9205 if (size) { 9206 /* Double */ 9207 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9208 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9209 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9210 9211 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9212 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9213 9214 switch (fpopcode) { 9215 case 0x39: /* FMLS */ 9216 /* As usual for ARM, separate negation for fused multiply-add */ 9217 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9218 /* fall through */ 9219 case 0x19: /* FMLA */ 9220 read_vec_element(s, tcg_res, rd, pass, MO_64); 9221 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9222 tcg_res, fpst); 9223 break; 9224 case 0x18: /* FMAXNM */ 9225 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x1c: /* FCMEQ */ 9228 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 case 0x1e: /* FMAX */ 9231 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x1f: /* FRECPS */ 9234 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x38: /* FMINNM */ 9237 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x3e: /* FMIN */ 9240 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x3f: /* FRSQRTS */ 9243 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x5c: /* FCMGE */ 9246 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9247 break; 9248 case 0x5d: /* FACGE */ 9249 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9250 break; 9251 case 0x7a: /* FABD */ 9252 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9253 gen_helper_vfp_absd(tcg_res, tcg_res); 9254 break; 9255 case 0x7c: /* FCMGT */ 9256 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9257 break; 9258 case 0x7d: /* FACGT */ 9259 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9260 break; 9261 default: 9262 case 0x1a: /* FADD */ 9263 case 0x1b: /* FMULX */ 9264 case 0x3a: /* FSUB */ 9265 case 0x5b: /* FMUL */ 9266 case 0x5f: /* FDIV */ 9267 g_assert_not_reached(); 9268 } 9269 9270 write_vec_element(s, tcg_res, rd, pass, MO_64); 9271 } else { 9272 /* Single */ 9273 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9274 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9275 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9276 9277 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9278 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9279 9280 switch (fpopcode) { 9281 case 0x39: /* FMLS */ 9282 /* As usual for ARM, separate negation for fused multiply-add */ 9283 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9284 /* fall through */ 9285 case 0x19: /* FMLA */ 9286 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9287 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9288 tcg_res, fpst); 9289 break; 9290 case 0x1c: /* FCMEQ */ 9291 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9292 break; 9293 case 0x1e: /* FMAX */ 9294 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9295 break; 9296 case 0x1f: /* FRECPS */ 9297 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9298 break; 9299 case 0x18: /* FMAXNM */ 9300 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9301 break; 9302 case 0x38: /* FMINNM */ 9303 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9304 break; 9305 case 0x3e: /* FMIN */ 9306 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9307 break; 9308 case 0x3f: /* FRSQRTS */ 9309 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9310 break; 9311 case 0x5c: /* FCMGE */ 9312 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9313 break; 9314 case 0x5d: /* FACGE */ 9315 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9316 break; 9317 case 0x7a: /* FABD */ 9318 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9319 gen_helper_vfp_abss(tcg_res, tcg_res); 9320 break; 9321 case 0x7c: /* FCMGT */ 9322 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9323 break; 9324 case 0x7d: /* FACGT */ 9325 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9326 break; 9327 default: 9328 case 0x1a: /* FADD */ 9329 case 0x1b: /* FMULX */ 9330 case 0x3a: /* FSUB */ 9331 case 0x5b: /* FMUL */ 9332 case 0x5f: /* FDIV */ 9333 g_assert_not_reached(); 9334 } 9335 9336 if (elements == 1) { 9337 /* scalar single so clear high part */ 9338 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9339 9340 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9341 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9342 } else { 9343 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9344 } 9345 } 9346 } 9347 9348 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9349 } 9350 9351 /* AdvSIMD scalar three same 9352 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9353 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9354 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9355 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9356 */ 9357 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9358 { 9359 int rd = extract32(insn, 0, 5); 9360 int rn = extract32(insn, 5, 5); 9361 int opcode = extract32(insn, 11, 5); 9362 int rm = extract32(insn, 16, 5); 9363 int size = extract32(insn, 22, 2); 9364 bool u = extract32(insn, 29, 1); 9365 TCGv_i64 tcg_rd; 9366 9367 if (opcode >= 0x18) { 9368 /* Floating point: U, size[1] and opcode indicate operation */ 9369 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9370 switch (fpopcode) { 9371 case 0x1f: /* FRECPS */ 9372 case 0x3f: /* FRSQRTS */ 9373 case 0x5d: /* FACGE */ 9374 case 0x7d: /* FACGT */ 9375 case 0x1c: /* FCMEQ */ 9376 case 0x5c: /* FCMGE */ 9377 case 0x7c: /* FCMGT */ 9378 case 0x7a: /* FABD */ 9379 break; 9380 default: 9381 case 0x1b: /* FMULX */ 9382 unallocated_encoding(s); 9383 return; 9384 } 9385 9386 if (!fp_access_check(s)) { 9387 return; 9388 } 9389 9390 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9391 return; 9392 } 9393 9394 switch (opcode) { 9395 case 0x1: /* SQADD, UQADD */ 9396 case 0x5: /* SQSUB, UQSUB */ 9397 case 0x9: /* SQSHL, UQSHL */ 9398 case 0xb: /* SQRSHL, UQRSHL */ 9399 break; 9400 case 0x8: /* SSHL, USHL */ 9401 case 0xa: /* SRSHL, URSHL */ 9402 case 0x6: /* CMGT, CMHI */ 9403 case 0x7: /* CMGE, CMHS */ 9404 case 0x11: /* CMTST, CMEQ */ 9405 case 0x10: /* ADD, SUB (vector) */ 9406 if (size != 3) { 9407 unallocated_encoding(s); 9408 return; 9409 } 9410 break; 9411 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9412 if (size != 1 && size != 2) { 9413 unallocated_encoding(s); 9414 return; 9415 } 9416 break; 9417 default: 9418 unallocated_encoding(s); 9419 return; 9420 } 9421 9422 if (!fp_access_check(s)) { 9423 return; 9424 } 9425 9426 tcg_rd = tcg_temp_new_i64(); 9427 9428 if (size == 3) { 9429 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9430 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9431 9432 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9433 } else { 9434 /* Do a single operation on the lowest element in the vector. 9435 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9436 * no side effects for all these operations. 9437 * OPTME: special-purpose helpers would avoid doing some 9438 * unnecessary work in the helper for the 8 and 16 bit cases. 9439 */ 9440 NeonGenTwoOpEnvFn *genenvfn; 9441 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9442 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9443 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9444 9445 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9446 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9447 9448 switch (opcode) { 9449 case 0x1: /* SQADD, UQADD */ 9450 { 9451 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9452 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9453 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9454 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9455 }; 9456 genenvfn = fns[size][u]; 9457 break; 9458 } 9459 case 0x5: /* SQSUB, UQSUB */ 9460 { 9461 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9462 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9463 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9464 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9465 }; 9466 genenvfn = fns[size][u]; 9467 break; 9468 } 9469 case 0x9: /* SQSHL, UQSHL */ 9470 { 9471 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9472 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9473 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9474 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9475 }; 9476 genenvfn = fns[size][u]; 9477 break; 9478 } 9479 case 0xb: /* SQRSHL, UQRSHL */ 9480 { 9481 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9482 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9483 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9484 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9485 }; 9486 genenvfn = fns[size][u]; 9487 break; 9488 } 9489 case 0x16: /* SQDMULH, SQRDMULH */ 9490 { 9491 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9492 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9493 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9494 }; 9495 assert(size == 1 || size == 2); 9496 genenvfn = fns[size - 1][u]; 9497 break; 9498 } 9499 default: 9500 g_assert_not_reached(); 9501 } 9502 9503 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9504 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9505 } 9506 9507 write_fp_dreg(s, rd, tcg_rd); 9508 } 9509 9510 /* AdvSIMD scalar three same FP16 9511 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9512 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9513 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9514 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9515 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9516 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9517 */ 9518 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9519 uint32_t insn) 9520 { 9521 int rd = extract32(insn, 0, 5); 9522 int rn = extract32(insn, 5, 5); 9523 int opcode = extract32(insn, 11, 3); 9524 int rm = extract32(insn, 16, 5); 9525 bool u = extract32(insn, 29, 1); 9526 bool a = extract32(insn, 23, 1); 9527 int fpopcode = opcode | (a << 3) | (u << 4); 9528 TCGv_ptr fpst; 9529 TCGv_i32 tcg_op1; 9530 TCGv_i32 tcg_op2; 9531 TCGv_i32 tcg_res; 9532 9533 switch (fpopcode) { 9534 case 0x04: /* FCMEQ (reg) */ 9535 case 0x07: /* FRECPS */ 9536 case 0x0f: /* FRSQRTS */ 9537 case 0x14: /* FCMGE (reg) */ 9538 case 0x15: /* FACGE */ 9539 case 0x1a: /* FABD */ 9540 case 0x1c: /* FCMGT (reg) */ 9541 case 0x1d: /* FACGT */ 9542 break; 9543 default: 9544 case 0x03: /* FMULX */ 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 9549 if (!dc_isar_feature(aa64_fp16, s)) { 9550 unallocated_encoding(s); 9551 } 9552 9553 if (!fp_access_check(s)) { 9554 return; 9555 } 9556 9557 fpst = fpstatus_ptr(FPST_FPCR_F16); 9558 9559 tcg_op1 = read_fp_hreg(s, rn); 9560 tcg_op2 = read_fp_hreg(s, rm); 9561 tcg_res = tcg_temp_new_i32(); 9562 9563 switch (fpopcode) { 9564 case 0x04: /* FCMEQ (reg) */ 9565 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9566 break; 9567 case 0x07: /* FRECPS */ 9568 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9569 break; 9570 case 0x0f: /* FRSQRTS */ 9571 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9572 break; 9573 case 0x14: /* FCMGE (reg) */ 9574 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9575 break; 9576 case 0x15: /* FACGE */ 9577 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9578 break; 9579 case 0x1a: /* FABD */ 9580 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9581 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9582 break; 9583 case 0x1c: /* FCMGT (reg) */ 9584 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9585 break; 9586 case 0x1d: /* FACGT */ 9587 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9588 break; 9589 default: 9590 case 0x03: /* FMULX */ 9591 g_assert_not_reached(); 9592 } 9593 9594 write_fp_sreg(s, rd, tcg_res); 9595 } 9596 9597 /* AdvSIMD scalar three same extra 9598 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9599 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9600 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9601 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9602 */ 9603 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9604 uint32_t insn) 9605 { 9606 int rd = extract32(insn, 0, 5); 9607 int rn = extract32(insn, 5, 5); 9608 int opcode = extract32(insn, 11, 4); 9609 int rm = extract32(insn, 16, 5); 9610 int size = extract32(insn, 22, 2); 9611 bool u = extract32(insn, 29, 1); 9612 TCGv_i32 ele1, ele2, ele3; 9613 TCGv_i64 res; 9614 bool feature; 9615 9616 switch (u * 16 + opcode) { 9617 case 0x10: /* SQRDMLAH (vector) */ 9618 case 0x11: /* SQRDMLSH (vector) */ 9619 if (size != 1 && size != 2) { 9620 unallocated_encoding(s); 9621 return; 9622 } 9623 feature = dc_isar_feature(aa64_rdm, s); 9624 break; 9625 default: 9626 unallocated_encoding(s); 9627 return; 9628 } 9629 if (!feature) { 9630 unallocated_encoding(s); 9631 return; 9632 } 9633 if (!fp_access_check(s)) { 9634 return; 9635 } 9636 9637 /* Do a single operation on the lowest element in the vector. 9638 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9639 * with no side effects for all these operations. 9640 * OPTME: special-purpose helpers would avoid doing some 9641 * unnecessary work in the helper for the 16 bit cases. 9642 */ 9643 ele1 = tcg_temp_new_i32(); 9644 ele2 = tcg_temp_new_i32(); 9645 ele3 = tcg_temp_new_i32(); 9646 9647 read_vec_element_i32(s, ele1, rn, 0, size); 9648 read_vec_element_i32(s, ele2, rm, 0, size); 9649 read_vec_element_i32(s, ele3, rd, 0, size); 9650 9651 switch (opcode) { 9652 case 0x0: /* SQRDMLAH */ 9653 if (size == 1) { 9654 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9655 } else { 9656 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9657 } 9658 break; 9659 case 0x1: /* SQRDMLSH */ 9660 if (size == 1) { 9661 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9662 } else { 9663 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9664 } 9665 break; 9666 default: 9667 g_assert_not_reached(); 9668 } 9669 9670 res = tcg_temp_new_i64(); 9671 tcg_gen_extu_i32_i64(res, ele3); 9672 write_fp_dreg(s, rd, res); 9673 } 9674 9675 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9676 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9677 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9678 { 9679 /* Handle 64->64 opcodes which are shared between the scalar and 9680 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9681 * is valid in either group and also the double-precision fp ops. 9682 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9683 * requires them. 9684 */ 9685 TCGCond cond; 9686 9687 switch (opcode) { 9688 case 0x4: /* CLS, CLZ */ 9689 if (u) { 9690 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9691 } else { 9692 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9693 } 9694 break; 9695 case 0x5: /* NOT */ 9696 /* This opcode is shared with CNT and RBIT but we have earlier 9697 * enforced that size == 3 if and only if this is the NOT insn. 9698 */ 9699 tcg_gen_not_i64(tcg_rd, tcg_rn); 9700 break; 9701 case 0x7: /* SQABS, SQNEG */ 9702 if (u) { 9703 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9704 } else { 9705 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9706 } 9707 break; 9708 case 0xa: /* CMLT */ 9709 cond = TCG_COND_LT; 9710 do_cmop: 9711 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9712 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9713 break; 9714 case 0x8: /* CMGT, CMGE */ 9715 cond = u ? TCG_COND_GE : TCG_COND_GT; 9716 goto do_cmop; 9717 case 0x9: /* CMEQ, CMLE */ 9718 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9719 goto do_cmop; 9720 case 0xb: /* ABS, NEG */ 9721 if (u) { 9722 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9723 } else { 9724 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9725 } 9726 break; 9727 case 0x2f: /* FABS */ 9728 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9729 break; 9730 case 0x6f: /* FNEG */ 9731 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9732 break; 9733 case 0x7f: /* FSQRT */ 9734 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9735 break; 9736 case 0x1a: /* FCVTNS */ 9737 case 0x1b: /* FCVTMS */ 9738 case 0x1c: /* FCVTAS */ 9739 case 0x3a: /* FCVTPS */ 9740 case 0x3b: /* FCVTZS */ 9741 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9742 break; 9743 case 0x5a: /* FCVTNU */ 9744 case 0x5b: /* FCVTMU */ 9745 case 0x5c: /* FCVTAU */ 9746 case 0x7a: /* FCVTPU */ 9747 case 0x7b: /* FCVTZU */ 9748 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9749 break; 9750 case 0x18: /* FRINTN */ 9751 case 0x19: /* FRINTM */ 9752 case 0x38: /* FRINTP */ 9753 case 0x39: /* FRINTZ */ 9754 case 0x58: /* FRINTA */ 9755 case 0x79: /* FRINTI */ 9756 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9757 break; 9758 case 0x59: /* FRINTX */ 9759 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9760 break; 9761 case 0x1e: /* FRINT32Z */ 9762 case 0x5e: /* FRINT32X */ 9763 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9764 break; 9765 case 0x1f: /* FRINT64Z */ 9766 case 0x5f: /* FRINT64X */ 9767 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9768 break; 9769 default: 9770 g_assert_not_reached(); 9771 } 9772 } 9773 9774 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9775 bool is_scalar, bool is_u, bool is_q, 9776 int size, int rn, int rd) 9777 { 9778 bool is_double = (size == MO_64); 9779 TCGv_ptr fpst; 9780 9781 if (!fp_access_check(s)) { 9782 return; 9783 } 9784 9785 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9786 9787 if (is_double) { 9788 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9789 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9790 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9791 NeonGenTwoDoubleOpFn *genfn; 9792 bool swap = false; 9793 int pass; 9794 9795 switch (opcode) { 9796 case 0x2e: /* FCMLT (zero) */ 9797 swap = true; 9798 /* fallthrough */ 9799 case 0x2c: /* FCMGT (zero) */ 9800 genfn = gen_helper_neon_cgt_f64; 9801 break; 9802 case 0x2d: /* FCMEQ (zero) */ 9803 genfn = gen_helper_neon_ceq_f64; 9804 break; 9805 case 0x6d: /* FCMLE (zero) */ 9806 swap = true; 9807 /* fall through */ 9808 case 0x6c: /* FCMGE (zero) */ 9809 genfn = gen_helper_neon_cge_f64; 9810 break; 9811 default: 9812 g_assert_not_reached(); 9813 } 9814 9815 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9816 read_vec_element(s, tcg_op, rn, pass, MO_64); 9817 if (swap) { 9818 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9819 } else { 9820 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9821 } 9822 write_vec_element(s, tcg_res, rd, pass, MO_64); 9823 } 9824 9825 clear_vec_high(s, !is_scalar, rd); 9826 } else { 9827 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9828 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9829 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9830 NeonGenTwoSingleOpFn *genfn; 9831 bool swap = false; 9832 int pass, maxpasses; 9833 9834 if (size == MO_16) { 9835 switch (opcode) { 9836 case 0x2e: /* FCMLT (zero) */ 9837 swap = true; 9838 /* fall through */ 9839 case 0x2c: /* FCMGT (zero) */ 9840 genfn = gen_helper_advsimd_cgt_f16; 9841 break; 9842 case 0x2d: /* FCMEQ (zero) */ 9843 genfn = gen_helper_advsimd_ceq_f16; 9844 break; 9845 case 0x6d: /* FCMLE (zero) */ 9846 swap = true; 9847 /* fall through */ 9848 case 0x6c: /* FCMGE (zero) */ 9849 genfn = gen_helper_advsimd_cge_f16; 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 } else { 9855 switch (opcode) { 9856 case 0x2e: /* FCMLT (zero) */ 9857 swap = true; 9858 /* fall through */ 9859 case 0x2c: /* FCMGT (zero) */ 9860 genfn = gen_helper_neon_cgt_f32; 9861 break; 9862 case 0x2d: /* FCMEQ (zero) */ 9863 genfn = gen_helper_neon_ceq_f32; 9864 break; 9865 case 0x6d: /* FCMLE (zero) */ 9866 swap = true; 9867 /* fall through */ 9868 case 0x6c: /* FCMGE (zero) */ 9869 genfn = gen_helper_neon_cge_f32; 9870 break; 9871 default: 9872 g_assert_not_reached(); 9873 } 9874 } 9875 9876 if (is_scalar) { 9877 maxpasses = 1; 9878 } else { 9879 int vector_size = 8 << is_q; 9880 maxpasses = vector_size >> size; 9881 } 9882 9883 for (pass = 0; pass < maxpasses; pass++) { 9884 read_vec_element_i32(s, tcg_op, rn, pass, size); 9885 if (swap) { 9886 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9887 } else { 9888 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9889 } 9890 if (is_scalar) { 9891 write_fp_sreg(s, rd, tcg_res); 9892 } else { 9893 write_vec_element_i32(s, tcg_res, rd, pass, size); 9894 } 9895 } 9896 9897 if (!is_scalar) { 9898 clear_vec_high(s, is_q, rd); 9899 } 9900 } 9901 } 9902 9903 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9904 bool is_scalar, bool is_u, bool is_q, 9905 int size, int rn, int rd) 9906 { 9907 bool is_double = (size == 3); 9908 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9909 9910 if (is_double) { 9911 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9912 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9913 int pass; 9914 9915 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9916 read_vec_element(s, tcg_op, rn, pass, MO_64); 9917 switch (opcode) { 9918 case 0x3d: /* FRECPE */ 9919 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9920 break; 9921 case 0x3f: /* FRECPX */ 9922 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9923 break; 9924 case 0x7d: /* FRSQRTE */ 9925 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9926 break; 9927 default: 9928 g_assert_not_reached(); 9929 } 9930 write_vec_element(s, tcg_res, rd, pass, MO_64); 9931 } 9932 clear_vec_high(s, !is_scalar, rd); 9933 } else { 9934 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9935 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9936 int pass, maxpasses; 9937 9938 if (is_scalar) { 9939 maxpasses = 1; 9940 } else { 9941 maxpasses = is_q ? 4 : 2; 9942 } 9943 9944 for (pass = 0; pass < maxpasses; pass++) { 9945 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9946 9947 switch (opcode) { 9948 case 0x3c: /* URECPE */ 9949 gen_helper_recpe_u32(tcg_res, tcg_op); 9950 break; 9951 case 0x3d: /* FRECPE */ 9952 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9953 break; 9954 case 0x3f: /* FRECPX */ 9955 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9956 break; 9957 case 0x7d: /* FRSQRTE */ 9958 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9959 break; 9960 default: 9961 g_assert_not_reached(); 9962 } 9963 9964 if (is_scalar) { 9965 write_fp_sreg(s, rd, tcg_res); 9966 } else { 9967 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9968 } 9969 } 9970 if (!is_scalar) { 9971 clear_vec_high(s, is_q, rd); 9972 } 9973 } 9974 } 9975 9976 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9977 int opcode, bool u, bool is_q, 9978 int size, int rn, int rd) 9979 { 9980 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9981 * in the source becomes a size element in the destination). 9982 */ 9983 int pass; 9984 TCGv_i32 tcg_res[2]; 9985 int destelt = is_q ? 2 : 0; 9986 int passes = scalar ? 1 : 2; 9987 9988 if (scalar) { 9989 tcg_res[1] = tcg_constant_i32(0); 9990 } 9991 9992 for (pass = 0; pass < passes; pass++) { 9993 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9994 NeonGenNarrowFn *genfn = NULL; 9995 NeonGenNarrowEnvFn *genenvfn = NULL; 9996 9997 if (scalar) { 9998 read_vec_element(s, tcg_op, rn, pass, size + 1); 9999 } else { 10000 read_vec_element(s, tcg_op, rn, pass, MO_64); 10001 } 10002 tcg_res[pass] = tcg_temp_new_i32(); 10003 10004 switch (opcode) { 10005 case 0x12: /* XTN, SQXTUN */ 10006 { 10007 static NeonGenNarrowFn * const xtnfns[3] = { 10008 gen_helper_neon_narrow_u8, 10009 gen_helper_neon_narrow_u16, 10010 tcg_gen_extrl_i64_i32, 10011 }; 10012 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10013 gen_helper_neon_unarrow_sat8, 10014 gen_helper_neon_unarrow_sat16, 10015 gen_helper_neon_unarrow_sat32, 10016 }; 10017 if (u) { 10018 genenvfn = sqxtunfns[size]; 10019 } else { 10020 genfn = xtnfns[size]; 10021 } 10022 break; 10023 } 10024 case 0x14: /* SQXTN, UQXTN */ 10025 { 10026 static NeonGenNarrowEnvFn * const fns[3][2] = { 10027 { gen_helper_neon_narrow_sat_s8, 10028 gen_helper_neon_narrow_sat_u8 }, 10029 { gen_helper_neon_narrow_sat_s16, 10030 gen_helper_neon_narrow_sat_u16 }, 10031 { gen_helper_neon_narrow_sat_s32, 10032 gen_helper_neon_narrow_sat_u32 }, 10033 }; 10034 genenvfn = fns[size][u]; 10035 break; 10036 } 10037 case 0x16: /* FCVTN, FCVTN2 */ 10038 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10039 if (size == 2) { 10040 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10041 } else { 10042 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10043 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10044 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10045 TCGv_i32 ahp = get_ahp_flag(); 10046 10047 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10048 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10049 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10050 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10051 } 10052 break; 10053 case 0x36: /* BFCVTN, BFCVTN2 */ 10054 { 10055 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10056 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10057 } 10058 break; 10059 case 0x56: /* FCVTXN, FCVTXN2 */ 10060 /* 64 bit to 32 bit float conversion 10061 * with von Neumann rounding (round to odd) 10062 */ 10063 assert(size == 2); 10064 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10065 break; 10066 default: 10067 g_assert_not_reached(); 10068 } 10069 10070 if (genfn) { 10071 genfn(tcg_res[pass], tcg_op); 10072 } else if (genenvfn) { 10073 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10074 } 10075 } 10076 10077 for (pass = 0; pass < 2; pass++) { 10078 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10079 } 10080 clear_vec_high(s, is_q, rd); 10081 } 10082 10083 /* Remaining saturating accumulating ops */ 10084 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10085 bool is_q, int size, int rn, int rd) 10086 { 10087 bool is_double = (size == 3); 10088 10089 if (is_double) { 10090 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10091 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10092 int pass; 10093 10094 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10095 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10096 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10097 10098 if (is_u) { /* USQADD */ 10099 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10100 } else { /* SUQADD */ 10101 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10102 } 10103 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10104 } 10105 clear_vec_high(s, !is_scalar, rd); 10106 } else { 10107 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10108 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10109 int pass, maxpasses; 10110 10111 if (is_scalar) { 10112 maxpasses = 1; 10113 } else { 10114 maxpasses = is_q ? 4 : 2; 10115 } 10116 10117 for (pass = 0; pass < maxpasses; pass++) { 10118 if (is_scalar) { 10119 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10120 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10121 } else { 10122 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10123 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10124 } 10125 10126 if (is_u) { /* USQADD */ 10127 switch (size) { 10128 case 0: 10129 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10130 break; 10131 case 1: 10132 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10133 break; 10134 case 2: 10135 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10136 break; 10137 default: 10138 g_assert_not_reached(); 10139 } 10140 } else { /* SUQADD */ 10141 switch (size) { 10142 case 0: 10143 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10144 break; 10145 case 1: 10146 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10147 break; 10148 case 2: 10149 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10150 break; 10151 default: 10152 g_assert_not_reached(); 10153 } 10154 } 10155 10156 if (is_scalar) { 10157 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10158 } 10159 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10160 } 10161 clear_vec_high(s, is_q, rd); 10162 } 10163 } 10164 10165 /* AdvSIMD scalar two reg misc 10166 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10167 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10168 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10169 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10170 */ 10171 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10172 { 10173 int rd = extract32(insn, 0, 5); 10174 int rn = extract32(insn, 5, 5); 10175 int opcode = extract32(insn, 12, 5); 10176 int size = extract32(insn, 22, 2); 10177 bool u = extract32(insn, 29, 1); 10178 bool is_fcvt = false; 10179 int rmode; 10180 TCGv_i32 tcg_rmode; 10181 TCGv_ptr tcg_fpstatus; 10182 10183 switch (opcode) { 10184 case 0x3: /* USQADD / SUQADD*/ 10185 if (!fp_access_check(s)) { 10186 return; 10187 } 10188 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10189 return; 10190 case 0x7: /* SQABS / SQNEG */ 10191 break; 10192 case 0xa: /* CMLT */ 10193 if (u) { 10194 unallocated_encoding(s); 10195 return; 10196 } 10197 /* fall through */ 10198 case 0x8: /* CMGT, CMGE */ 10199 case 0x9: /* CMEQ, CMLE */ 10200 case 0xb: /* ABS, NEG */ 10201 if (size != 3) { 10202 unallocated_encoding(s); 10203 return; 10204 } 10205 break; 10206 case 0x12: /* SQXTUN */ 10207 if (!u) { 10208 unallocated_encoding(s); 10209 return; 10210 } 10211 /* fall through */ 10212 case 0x14: /* SQXTN, UQXTN */ 10213 if (size == 3) { 10214 unallocated_encoding(s); 10215 return; 10216 } 10217 if (!fp_access_check(s)) { 10218 return; 10219 } 10220 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10221 return; 10222 case 0xc ... 0xf: 10223 case 0x16 ... 0x1d: 10224 case 0x1f: 10225 /* Floating point: U, size[1] and opcode indicate operation; 10226 * size[0] indicates single or double precision. 10227 */ 10228 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10229 size = extract32(size, 0, 1) ? 3 : 2; 10230 switch (opcode) { 10231 case 0x2c: /* FCMGT (zero) */ 10232 case 0x2d: /* FCMEQ (zero) */ 10233 case 0x2e: /* FCMLT (zero) */ 10234 case 0x6c: /* FCMGE (zero) */ 10235 case 0x6d: /* FCMLE (zero) */ 10236 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10237 return; 10238 case 0x1d: /* SCVTF */ 10239 case 0x5d: /* UCVTF */ 10240 { 10241 bool is_signed = (opcode == 0x1d); 10242 if (!fp_access_check(s)) { 10243 return; 10244 } 10245 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10246 return; 10247 } 10248 case 0x3d: /* FRECPE */ 10249 case 0x3f: /* FRECPX */ 10250 case 0x7d: /* FRSQRTE */ 10251 if (!fp_access_check(s)) { 10252 return; 10253 } 10254 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10255 return; 10256 case 0x1a: /* FCVTNS */ 10257 case 0x1b: /* FCVTMS */ 10258 case 0x3a: /* FCVTPS */ 10259 case 0x3b: /* FCVTZS */ 10260 case 0x5a: /* FCVTNU */ 10261 case 0x5b: /* FCVTMU */ 10262 case 0x7a: /* FCVTPU */ 10263 case 0x7b: /* FCVTZU */ 10264 is_fcvt = true; 10265 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10266 break; 10267 case 0x1c: /* FCVTAS */ 10268 case 0x5c: /* FCVTAU */ 10269 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10270 is_fcvt = true; 10271 rmode = FPROUNDING_TIEAWAY; 10272 break; 10273 case 0x56: /* FCVTXN, FCVTXN2 */ 10274 if (size == 2) { 10275 unallocated_encoding(s); 10276 return; 10277 } 10278 if (!fp_access_check(s)) { 10279 return; 10280 } 10281 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10282 return; 10283 default: 10284 unallocated_encoding(s); 10285 return; 10286 } 10287 break; 10288 default: 10289 unallocated_encoding(s); 10290 return; 10291 } 10292 10293 if (!fp_access_check(s)) { 10294 return; 10295 } 10296 10297 if (is_fcvt) { 10298 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10299 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10300 } else { 10301 tcg_fpstatus = NULL; 10302 tcg_rmode = NULL; 10303 } 10304 10305 if (size == 3) { 10306 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10307 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10308 10309 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10310 write_fp_dreg(s, rd, tcg_rd); 10311 } else { 10312 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10313 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10314 10315 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10316 10317 switch (opcode) { 10318 case 0x7: /* SQABS, SQNEG */ 10319 { 10320 NeonGenOneOpEnvFn *genfn; 10321 static NeonGenOneOpEnvFn * const fns[3][2] = { 10322 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10323 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10324 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10325 }; 10326 genfn = fns[size][u]; 10327 genfn(tcg_rd, tcg_env, tcg_rn); 10328 break; 10329 } 10330 case 0x1a: /* FCVTNS */ 10331 case 0x1b: /* FCVTMS */ 10332 case 0x1c: /* FCVTAS */ 10333 case 0x3a: /* FCVTPS */ 10334 case 0x3b: /* FCVTZS */ 10335 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10336 tcg_fpstatus); 10337 break; 10338 case 0x5a: /* FCVTNU */ 10339 case 0x5b: /* FCVTMU */ 10340 case 0x5c: /* FCVTAU */ 10341 case 0x7a: /* FCVTPU */ 10342 case 0x7b: /* FCVTZU */ 10343 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10344 tcg_fpstatus); 10345 break; 10346 default: 10347 g_assert_not_reached(); 10348 } 10349 10350 write_fp_sreg(s, rd, tcg_rd); 10351 } 10352 10353 if (is_fcvt) { 10354 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10355 } 10356 } 10357 10358 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10359 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10360 int immh, int immb, int opcode, int rn, int rd) 10361 { 10362 int size = 32 - clz32(immh) - 1; 10363 int immhb = immh << 3 | immb; 10364 int shift = 2 * (8 << size) - immhb; 10365 GVecGen2iFn *gvec_fn; 10366 10367 if (extract32(immh, 3, 1) && !is_q) { 10368 unallocated_encoding(s); 10369 return; 10370 } 10371 tcg_debug_assert(size <= 3); 10372 10373 if (!fp_access_check(s)) { 10374 return; 10375 } 10376 10377 switch (opcode) { 10378 case 0x02: /* SSRA / USRA (accumulate) */ 10379 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10380 break; 10381 10382 case 0x08: /* SRI */ 10383 gvec_fn = gen_gvec_sri; 10384 break; 10385 10386 case 0x00: /* SSHR / USHR */ 10387 if (is_u) { 10388 if (shift == 8 << size) { 10389 /* Shift count the same size as element size produces zero. */ 10390 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10391 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10392 return; 10393 } 10394 gvec_fn = tcg_gen_gvec_shri; 10395 } else { 10396 /* Shift count the same size as element size produces all sign. */ 10397 if (shift == 8 << size) { 10398 shift -= 1; 10399 } 10400 gvec_fn = tcg_gen_gvec_sari; 10401 } 10402 break; 10403 10404 case 0x04: /* SRSHR / URSHR (rounding) */ 10405 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10406 break; 10407 10408 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10409 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10410 break; 10411 10412 default: 10413 g_assert_not_reached(); 10414 } 10415 10416 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10417 } 10418 10419 /* SHL/SLI - Vector shift left */ 10420 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10421 int immh, int immb, int opcode, int rn, int rd) 10422 { 10423 int size = 32 - clz32(immh) - 1; 10424 int immhb = immh << 3 | immb; 10425 int shift = immhb - (8 << size); 10426 10427 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10428 assert(size >= 0 && size <= 3); 10429 10430 if (extract32(immh, 3, 1) && !is_q) { 10431 unallocated_encoding(s); 10432 return; 10433 } 10434 10435 if (!fp_access_check(s)) { 10436 return; 10437 } 10438 10439 if (insert) { 10440 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10441 } else { 10442 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10443 } 10444 } 10445 10446 /* USHLL/SHLL - Vector shift left with widening */ 10447 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10448 int immh, int immb, int opcode, int rn, int rd) 10449 { 10450 int size = 32 - clz32(immh) - 1; 10451 int immhb = immh << 3 | immb; 10452 int shift = immhb - (8 << size); 10453 int dsize = 64; 10454 int esize = 8 << size; 10455 int elements = dsize/esize; 10456 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10457 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10458 int i; 10459 10460 if (size >= 3) { 10461 unallocated_encoding(s); 10462 return; 10463 } 10464 10465 if (!fp_access_check(s)) { 10466 return; 10467 } 10468 10469 /* For the LL variants the store is larger than the load, 10470 * so if rd == rn we would overwrite parts of our input. 10471 * So load everything right now and use shifts in the main loop. 10472 */ 10473 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10474 10475 for (i = 0; i < elements; i++) { 10476 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10477 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10478 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10479 write_vec_element(s, tcg_rd, rd, i, size + 1); 10480 } 10481 } 10482 10483 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10484 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10485 int immh, int immb, int opcode, int rn, int rd) 10486 { 10487 int immhb = immh << 3 | immb; 10488 int size = 32 - clz32(immh) - 1; 10489 int dsize = 64; 10490 int esize = 8 << size; 10491 int elements = dsize/esize; 10492 int shift = (2 * esize) - immhb; 10493 bool round = extract32(opcode, 0, 1); 10494 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10495 TCGv_i64 tcg_round; 10496 int i; 10497 10498 if (extract32(immh, 3, 1)) { 10499 unallocated_encoding(s); 10500 return; 10501 } 10502 10503 if (!fp_access_check(s)) { 10504 return; 10505 } 10506 10507 tcg_rn = tcg_temp_new_i64(); 10508 tcg_rd = tcg_temp_new_i64(); 10509 tcg_final = tcg_temp_new_i64(); 10510 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10511 10512 if (round) { 10513 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10514 } else { 10515 tcg_round = NULL; 10516 } 10517 10518 for (i = 0; i < elements; i++) { 10519 read_vec_element(s, tcg_rn, rn, i, size+1); 10520 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10521 false, true, size+1, shift); 10522 10523 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10524 } 10525 10526 if (!is_q) { 10527 write_vec_element(s, tcg_final, rd, 0, MO_64); 10528 } else { 10529 write_vec_element(s, tcg_final, rd, 1, MO_64); 10530 } 10531 10532 clear_vec_high(s, is_q, rd); 10533 } 10534 10535 10536 /* AdvSIMD shift by immediate 10537 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10538 * +---+---+---+-------------+------+------+--------+---+------+------+ 10539 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10540 * +---+---+---+-------------+------+------+--------+---+------+------+ 10541 */ 10542 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10543 { 10544 int rd = extract32(insn, 0, 5); 10545 int rn = extract32(insn, 5, 5); 10546 int opcode = extract32(insn, 11, 5); 10547 int immb = extract32(insn, 16, 3); 10548 int immh = extract32(insn, 19, 4); 10549 bool is_u = extract32(insn, 29, 1); 10550 bool is_q = extract32(insn, 30, 1); 10551 10552 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10553 assert(immh != 0); 10554 10555 switch (opcode) { 10556 case 0x08: /* SRI */ 10557 if (!is_u) { 10558 unallocated_encoding(s); 10559 return; 10560 } 10561 /* fall through */ 10562 case 0x00: /* SSHR / USHR */ 10563 case 0x02: /* SSRA / USRA (accumulate) */ 10564 case 0x04: /* SRSHR / URSHR (rounding) */ 10565 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10566 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10567 break; 10568 case 0x0a: /* SHL / SLI */ 10569 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10570 break; 10571 case 0x10: /* SHRN */ 10572 case 0x11: /* RSHRN / SQRSHRUN */ 10573 if (is_u) { 10574 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10575 opcode, rn, rd); 10576 } else { 10577 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10578 } 10579 break; 10580 case 0x12: /* SQSHRN / UQSHRN */ 10581 case 0x13: /* SQRSHRN / UQRSHRN */ 10582 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10583 opcode, rn, rd); 10584 break; 10585 case 0x14: /* SSHLL / USHLL */ 10586 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10587 break; 10588 case 0x1c: /* SCVTF / UCVTF */ 10589 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10590 opcode, rn, rd); 10591 break; 10592 case 0xc: /* SQSHLU */ 10593 if (!is_u) { 10594 unallocated_encoding(s); 10595 return; 10596 } 10597 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10598 break; 10599 case 0xe: /* SQSHL, UQSHL */ 10600 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10601 break; 10602 case 0x1f: /* FCVTZS/ FCVTZU */ 10603 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10604 return; 10605 default: 10606 unallocated_encoding(s); 10607 return; 10608 } 10609 } 10610 10611 /* Generate code to do a "long" addition or subtraction, ie one done in 10612 * TCGv_i64 on vector lanes twice the width specified by size. 10613 */ 10614 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10615 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10616 { 10617 static NeonGenTwo64OpFn * const fns[3][2] = { 10618 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10619 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10620 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10621 }; 10622 NeonGenTwo64OpFn *genfn; 10623 assert(size < 3); 10624 10625 genfn = fns[size][is_sub]; 10626 genfn(tcg_res, tcg_op1, tcg_op2); 10627 } 10628 10629 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10630 int opcode, int rd, int rn, int rm) 10631 { 10632 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10633 TCGv_i64 tcg_res[2]; 10634 int pass, accop; 10635 10636 tcg_res[0] = tcg_temp_new_i64(); 10637 tcg_res[1] = tcg_temp_new_i64(); 10638 10639 /* Does this op do an adding accumulate, a subtracting accumulate, 10640 * or no accumulate at all? 10641 */ 10642 switch (opcode) { 10643 case 5: 10644 case 8: 10645 case 9: 10646 accop = 1; 10647 break; 10648 case 10: 10649 case 11: 10650 accop = -1; 10651 break; 10652 default: 10653 accop = 0; 10654 break; 10655 } 10656 10657 if (accop != 0) { 10658 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10659 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10660 } 10661 10662 /* size == 2 means two 32x32->64 operations; this is worth special 10663 * casing because we can generally handle it inline. 10664 */ 10665 if (size == 2) { 10666 for (pass = 0; pass < 2; pass++) { 10667 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10668 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10669 TCGv_i64 tcg_passres; 10670 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10671 10672 int elt = pass + is_q * 2; 10673 10674 read_vec_element(s, tcg_op1, rn, elt, memop); 10675 read_vec_element(s, tcg_op2, rm, elt, memop); 10676 10677 if (accop == 0) { 10678 tcg_passres = tcg_res[pass]; 10679 } else { 10680 tcg_passres = tcg_temp_new_i64(); 10681 } 10682 10683 switch (opcode) { 10684 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10685 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10686 break; 10687 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10688 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10689 break; 10690 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10691 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10692 { 10693 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10694 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10695 10696 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10697 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10698 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10699 tcg_passres, 10700 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10701 break; 10702 } 10703 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10704 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10705 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10706 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10707 break; 10708 case 9: /* SQDMLAL, SQDMLAL2 */ 10709 case 11: /* SQDMLSL, SQDMLSL2 */ 10710 case 13: /* SQDMULL, SQDMULL2 */ 10711 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10712 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10713 tcg_passres, tcg_passres); 10714 break; 10715 default: 10716 g_assert_not_reached(); 10717 } 10718 10719 if (opcode == 9 || opcode == 11) { 10720 /* saturating accumulate ops */ 10721 if (accop < 0) { 10722 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10723 } 10724 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10725 tcg_res[pass], tcg_passres); 10726 } else if (accop > 0) { 10727 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10728 } else if (accop < 0) { 10729 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10730 } 10731 } 10732 } else { 10733 /* size 0 or 1, generally helper functions */ 10734 for (pass = 0; pass < 2; pass++) { 10735 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10736 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10737 TCGv_i64 tcg_passres; 10738 int elt = pass + is_q * 2; 10739 10740 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10741 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10742 10743 if (accop == 0) { 10744 tcg_passres = tcg_res[pass]; 10745 } else { 10746 tcg_passres = tcg_temp_new_i64(); 10747 } 10748 10749 switch (opcode) { 10750 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10751 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10752 { 10753 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10754 static NeonGenWidenFn * const widenfns[2][2] = { 10755 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10756 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10757 }; 10758 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10759 10760 widenfn(tcg_op2_64, tcg_op2); 10761 widenfn(tcg_passres, tcg_op1); 10762 gen_neon_addl(size, (opcode == 2), tcg_passres, 10763 tcg_passres, tcg_op2_64); 10764 break; 10765 } 10766 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10767 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10768 if (size == 0) { 10769 if (is_u) { 10770 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10771 } else { 10772 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10773 } 10774 } else { 10775 if (is_u) { 10776 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10777 } else { 10778 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10779 } 10780 } 10781 break; 10782 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10783 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10784 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10785 if (size == 0) { 10786 if (is_u) { 10787 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10788 } else { 10789 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10790 } 10791 } else { 10792 if (is_u) { 10793 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10794 } else { 10795 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10796 } 10797 } 10798 break; 10799 case 9: /* SQDMLAL, SQDMLAL2 */ 10800 case 11: /* SQDMLSL, SQDMLSL2 */ 10801 case 13: /* SQDMULL, SQDMULL2 */ 10802 assert(size == 1); 10803 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10804 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10805 tcg_passres, tcg_passres); 10806 break; 10807 default: 10808 g_assert_not_reached(); 10809 } 10810 10811 if (accop != 0) { 10812 if (opcode == 9 || opcode == 11) { 10813 /* saturating accumulate ops */ 10814 if (accop < 0) { 10815 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10816 } 10817 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10818 tcg_res[pass], 10819 tcg_passres); 10820 } else { 10821 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10822 tcg_res[pass], tcg_passres); 10823 } 10824 } 10825 } 10826 } 10827 10828 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10829 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10830 } 10831 10832 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10833 int opcode, int rd, int rn, int rm) 10834 { 10835 TCGv_i64 tcg_res[2]; 10836 int part = is_q ? 2 : 0; 10837 int pass; 10838 10839 for (pass = 0; pass < 2; pass++) { 10840 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10841 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10842 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10843 static NeonGenWidenFn * const widenfns[3][2] = { 10844 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10845 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10846 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10847 }; 10848 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10849 10850 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10851 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10852 widenfn(tcg_op2_wide, tcg_op2); 10853 tcg_res[pass] = tcg_temp_new_i64(); 10854 gen_neon_addl(size, (opcode == 3), 10855 tcg_res[pass], tcg_op1, tcg_op2_wide); 10856 } 10857 10858 for (pass = 0; pass < 2; pass++) { 10859 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10860 } 10861 } 10862 10863 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10864 { 10865 tcg_gen_addi_i64(in, in, 1U << 31); 10866 tcg_gen_extrh_i64_i32(res, in); 10867 } 10868 10869 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10870 int opcode, int rd, int rn, int rm) 10871 { 10872 TCGv_i32 tcg_res[2]; 10873 int part = is_q ? 2 : 0; 10874 int pass; 10875 10876 for (pass = 0; pass < 2; pass++) { 10877 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10878 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10879 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10880 static NeonGenNarrowFn * const narrowfns[3][2] = { 10881 { gen_helper_neon_narrow_high_u8, 10882 gen_helper_neon_narrow_round_high_u8 }, 10883 { gen_helper_neon_narrow_high_u16, 10884 gen_helper_neon_narrow_round_high_u16 }, 10885 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10886 }; 10887 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10888 10889 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10890 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10891 10892 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10893 10894 tcg_res[pass] = tcg_temp_new_i32(); 10895 gennarrow(tcg_res[pass], tcg_wideres); 10896 } 10897 10898 for (pass = 0; pass < 2; pass++) { 10899 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10900 } 10901 clear_vec_high(s, is_q, rd); 10902 } 10903 10904 /* AdvSIMD three different 10905 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10906 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10907 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10908 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10909 */ 10910 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10911 { 10912 /* Instructions in this group fall into three basic classes 10913 * (in each case with the operation working on each element in 10914 * the input vectors): 10915 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10916 * 128 bit input) 10917 * (2) wide 64 x 128 -> 128 10918 * (3) narrowing 128 x 128 -> 64 10919 * Here we do initial decode, catch unallocated cases and 10920 * dispatch to separate functions for each class. 10921 */ 10922 int is_q = extract32(insn, 30, 1); 10923 int is_u = extract32(insn, 29, 1); 10924 int size = extract32(insn, 22, 2); 10925 int opcode = extract32(insn, 12, 4); 10926 int rm = extract32(insn, 16, 5); 10927 int rn = extract32(insn, 5, 5); 10928 int rd = extract32(insn, 0, 5); 10929 10930 switch (opcode) { 10931 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10932 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10933 /* 64 x 128 -> 128 */ 10934 if (size == 3) { 10935 unallocated_encoding(s); 10936 return; 10937 } 10938 if (!fp_access_check(s)) { 10939 return; 10940 } 10941 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10942 break; 10943 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10944 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10945 /* 128 x 128 -> 64 */ 10946 if (size == 3) { 10947 unallocated_encoding(s); 10948 return; 10949 } 10950 if (!fp_access_check(s)) { 10951 return; 10952 } 10953 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10954 break; 10955 case 14: /* PMULL, PMULL2 */ 10956 if (is_u) { 10957 unallocated_encoding(s); 10958 return; 10959 } 10960 switch (size) { 10961 case 0: /* PMULL.P8 */ 10962 if (!fp_access_check(s)) { 10963 return; 10964 } 10965 /* The Q field specifies lo/hi half input for this insn. */ 10966 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10967 gen_helper_neon_pmull_h); 10968 break; 10969 10970 case 3: /* PMULL.P64 */ 10971 if (!dc_isar_feature(aa64_pmull, s)) { 10972 unallocated_encoding(s); 10973 return; 10974 } 10975 if (!fp_access_check(s)) { 10976 return; 10977 } 10978 /* The Q field specifies lo/hi half input for this insn. */ 10979 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10980 gen_helper_gvec_pmull_q); 10981 break; 10982 10983 default: 10984 unallocated_encoding(s); 10985 break; 10986 } 10987 return; 10988 case 9: /* SQDMLAL, SQDMLAL2 */ 10989 case 11: /* SQDMLSL, SQDMLSL2 */ 10990 case 13: /* SQDMULL, SQDMULL2 */ 10991 if (is_u || size == 0) { 10992 unallocated_encoding(s); 10993 return; 10994 } 10995 /* fall through */ 10996 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10997 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10998 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10999 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11000 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11001 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11002 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 11003 /* 64 x 64 -> 128 */ 11004 if (size == 3) { 11005 unallocated_encoding(s); 11006 return; 11007 } 11008 if (!fp_access_check(s)) { 11009 return; 11010 } 11011 11012 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 11013 break; 11014 default: 11015 /* opcode 15 not allocated */ 11016 unallocated_encoding(s); 11017 break; 11018 } 11019 } 11020 11021 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11022 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11023 { 11024 int rd = extract32(insn, 0, 5); 11025 int rn = extract32(insn, 5, 5); 11026 int rm = extract32(insn, 16, 5); 11027 int size = extract32(insn, 22, 2); 11028 bool is_u = extract32(insn, 29, 1); 11029 bool is_q = extract32(insn, 30, 1); 11030 11031 if (!fp_access_check(s)) { 11032 return; 11033 } 11034 11035 switch (size + 4 * is_u) { 11036 case 0: /* AND */ 11037 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11038 return; 11039 case 1: /* BIC */ 11040 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11041 return; 11042 case 2: /* ORR */ 11043 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11044 return; 11045 case 3: /* ORN */ 11046 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11047 return; 11048 case 4: /* EOR */ 11049 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11050 return; 11051 11052 case 5: /* BSL bitwise select */ 11053 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11054 return; 11055 case 6: /* BIT, bitwise insert if true */ 11056 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11057 return; 11058 case 7: /* BIF, bitwise insert if false */ 11059 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11060 return; 11061 11062 default: 11063 g_assert_not_reached(); 11064 } 11065 } 11066 11067 /* Pairwise op subgroup of C3.6.16. 11068 * 11069 * This is called directly or via the handle_3same_float for float pairwise 11070 * operations where the opcode and size are calculated differently. 11071 */ 11072 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11073 int size, int rn, int rm, int rd) 11074 { 11075 TCGv_ptr fpst; 11076 int pass; 11077 11078 /* Floating point operations need fpst */ 11079 if (opcode >= 0x58) { 11080 fpst = fpstatus_ptr(FPST_FPCR); 11081 } else { 11082 fpst = NULL; 11083 } 11084 11085 if (!fp_access_check(s)) { 11086 return; 11087 } 11088 11089 /* These operations work on the concatenated rm:rn, with each pair of 11090 * adjacent elements being operated on to produce an element in the result. 11091 */ 11092 if (size == 3) { 11093 TCGv_i64 tcg_res[2]; 11094 11095 for (pass = 0; pass < 2; pass++) { 11096 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11097 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11098 int passreg = (pass == 0) ? rn : rm; 11099 11100 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11101 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11102 tcg_res[pass] = tcg_temp_new_i64(); 11103 11104 switch (opcode) { 11105 case 0x17: /* ADDP */ 11106 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11107 break; 11108 case 0x58: /* FMAXNMP */ 11109 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11110 break; 11111 case 0x5a: /* FADDP */ 11112 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11113 break; 11114 case 0x5e: /* FMAXP */ 11115 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11116 break; 11117 case 0x78: /* FMINNMP */ 11118 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11119 break; 11120 case 0x7e: /* FMINP */ 11121 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11122 break; 11123 default: 11124 g_assert_not_reached(); 11125 } 11126 } 11127 11128 for (pass = 0; pass < 2; pass++) { 11129 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11130 } 11131 } else { 11132 int maxpass = is_q ? 4 : 2; 11133 TCGv_i32 tcg_res[4]; 11134 11135 for (pass = 0; pass < maxpass; pass++) { 11136 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11137 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11138 NeonGenTwoOpFn *genfn = NULL; 11139 int passreg = pass < (maxpass / 2) ? rn : rm; 11140 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11141 11142 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11143 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11144 tcg_res[pass] = tcg_temp_new_i32(); 11145 11146 switch (opcode) { 11147 case 0x17: /* ADDP */ 11148 { 11149 static NeonGenTwoOpFn * const fns[3] = { 11150 gen_helper_neon_padd_u8, 11151 gen_helper_neon_padd_u16, 11152 tcg_gen_add_i32, 11153 }; 11154 genfn = fns[size]; 11155 break; 11156 } 11157 case 0x14: /* SMAXP, UMAXP */ 11158 { 11159 static NeonGenTwoOpFn * const fns[3][2] = { 11160 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11161 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11162 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11163 }; 11164 genfn = fns[size][u]; 11165 break; 11166 } 11167 case 0x15: /* SMINP, UMINP */ 11168 { 11169 static NeonGenTwoOpFn * const fns[3][2] = { 11170 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11171 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11172 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11173 }; 11174 genfn = fns[size][u]; 11175 break; 11176 } 11177 /* The FP operations are all on single floats (32 bit) */ 11178 case 0x58: /* FMAXNMP */ 11179 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11180 break; 11181 case 0x5a: /* FADDP */ 11182 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11183 break; 11184 case 0x5e: /* FMAXP */ 11185 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11186 break; 11187 case 0x78: /* FMINNMP */ 11188 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11189 break; 11190 case 0x7e: /* FMINP */ 11191 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11192 break; 11193 default: 11194 g_assert_not_reached(); 11195 } 11196 11197 /* FP ops called directly, otherwise call now */ 11198 if (genfn) { 11199 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11200 } 11201 } 11202 11203 for (pass = 0; pass < maxpass; pass++) { 11204 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11205 } 11206 clear_vec_high(s, is_q, rd); 11207 } 11208 } 11209 11210 /* Floating point op subgroup of C3.6.16. */ 11211 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11212 { 11213 /* For floating point ops, the U, size[1] and opcode bits 11214 * together indicate the operation. size[0] indicates single 11215 * or double. 11216 */ 11217 int fpopcode = extract32(insn, 11, 5) 11218 | (extract32(insn, 23, 1) << 5) 11219 | (extract32(insn, 29, 1) << 6); 11220 int is_q = extract32(insn, 30, 1); 11221 int size = extract32(insn, 22, 1); 11222 int rm = extract32(insn, 16, 5); 11223 int rn = extract32(insn, 5, 5); 11224 int rd = extract32(insn, 0, 5); 11225 11226 int datasize = is_q ? 128 : 64; 11227 int esize = 32 << size; 11228 int elements = datasize / esize; 11229 11230 if (size == 1 && !is_q) { 11231 unallocated_encoding(s); 11232 return; 11233 } 11234 11235 switch (fpopcode) { 11236 case 0x58: /* FMAXNMP */ 11237 case 0x5a: /* FADDP */ 11238 case 0x5e: /* FMAXP */ 11239 case 0x78: /* FMINNMP */ 11240 case 0x7e: /* FMINP */ 11241 if (size && !is_q) { 11242 unallocated_encoding(s); 11243 return; 11244 } 11245 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11246 rn, rm, rd); 11247 return; 11248 case 0x1f: /* FRECPS */ 11249 case 0x3f: /* FRSQRTS */ 11250 case 0x5d: /* FACGE */ 11251 case 0x7d: /* FACGT */ 11252 case 0x19: /* FMLA */ 11253 case 0x39: /* FMLS */ 11254 case 0x18: /* FMAXNM */ 11255 case 0x1c: /* FCMEQ */ 11256 case 0x1e: /* FMAX */ 11257 case 0x38: /* FMINNM */ 11258 case 0x3e: /* FMIN */ 11259 case 0x5c: /* FCMGE */ 11260 case 0x7a: /* FABD */ 11261 case 0x7c: /* FCMGT */ 11262 if (!fp_access_check(s)) { 11263 return; 11264 } 11265 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11266 return; 11267 11268 case 0x1d: /* FMLAL */ 11269 case 0x3d: /* FMLSL */ 11270 case 0x59: /* FMLAL2 */ 11271 case 0x79: /* FMLSL2 */ 11272 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11273 unallocated_encoding(s); 11274 return; 11275 } 11276 if (fp_access_check(s)) { 11277 int is_s = extract32(insn, 23, 1); 11278 int is_2 = extract32(insn, 29, 1); 11279 int data = (is_2 << 1) | is_s; 11280 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11281 vec_full_reg_offset(s, rn), 11282 vec_full_reg_offset(s, rm), tcg_env, 11283 is_q ? 16 : 8, vec_full_reg_size(s), 11284 data, gen_helper_gvec_fmlal_a64); 11285 } 11286 return; 11287 11288 default: 11289 case 0x1a: /* FADD */ 11290 case 0x1b: /* FMULX */ 11291 case 0x3a: /* FSUB */ 11292 case 0x5b: /* FMUL */ 11293 case 0x5f: /* FDIV */ 11294 unallocated_encoding(s); 11295 return; 11296 } 11297 } 11298 11299 /* Integer op subgroup of C3.6.16. */ 11300 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11301 { 11302 int is_q = extract32(insn, 30, 1); 11303 int u = extract32(insn, 29, 1); 11304 int size = extract32(insn, 22, 2); 11305 int opcode = extract32(insn, 11, 5); 11306 int rm = extract32(insn, 16, 5); 11307 int rn = extract32(insn, 5, 5); 11308 int rd = extract32(insn, 0, 5); 11309 int pass; 11310 TCGCond cond; 11311 11312 switch (opcode) { 11313 case 0x13: /* MUL, PMUL */ 11314 if (u && size != 0) { 11315 unallocated_encoding(s); 11316 return; 11317 } 11318 /* fall through */ 11319 case 0x0: /* SHADD, UHADD */ 11320 case 0x2: /* SRHADD, URHADD */ 11321 case 0x4: /* SHSUB, UHSUB */ 11322 case 0xc: /* SMAX, UMAX */ 11323 case 0xd: /* SMIN, UMIN */ 11324 case 0xe: /* SABD, UABD */ 11325 case 0xf: /* SABA, UABA */ 11326 case 0x12: /* MLA, MLS */ 11327 if (size == 3) { 11328 unallocated_encoding(s); 11329 return; 11330 } 11331 break; 11332 case 0x16: /* SQDMULH, SQRDMULH */ 11333 if (size == 0 || size == 3) { 11334 unallocated_encoding(s); 11335 return; 11336 } 11337 break; 11338 default: 11339 if (size == 3 && !is_q) { 11340 unallocated_encoding(s); 11341 return; 11342 } 11343 break; 11344 } 11345 11346 if (!fp_access_check(s)) { 11347 return; 11348 } 11349 11350 switch (opcode) { 11351 case 0x01: /* SQADD, UQADD */ 11352 if (u) { 11353 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11354 } else { 11355 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11356 } 11357 return; 11358 case 0x05: /* SQSUB, UQSUB */ 11359 if (u) { 11360 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11361 } else { 11362 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11363 } 11364 return; 11365 case 0x08: /* SSHL, USHL */ 11366 if (u) { 11367 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11368 } else { 11369 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11370 } 11371 return; 11372 case 0x0c: /* SMAX, UMAX */ 11373 if (u) { 11374 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11375 } else { 11376 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11377 } 11378 return; 11379 case 0x0d: /* SMIN, UMIN */ 11380 if (u) { 11381 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11382 } else { 11383 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11384 } 11385 return; 11386 case 0xe: /* SABD, UABD */ 11387 if (u) { 11388 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11389 } else { 11390 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11391 } 11392 return; 11393 case 0xf: /* SABA, UABA */ 11394 if (u) { 11395 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11396 } else { 11397 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11398 } 11399 return; 11400 case 0x10: /* ADD, SUB */ 11401 if (u) { 11402 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11403 } else { 11404 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11405 } 11406 return; 11407 case 0x13: /* MUL, PMUL */ 11408 if (!u) { /* MUL */ 11409 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11410 } else { /* PMUL */ 11411 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11412 } 11413 return; 11414 case 0x12: /* MLA, MLS */ 11415 if (u) { 11416 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11417 } else { 11418 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11419 } 11420 return; 11421 case 0x16: /* SQDMULH, SQRDMULH */ 11422 { 11423 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11424 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11425 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11426 }; 11427 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11428 } 11429 return; 11430 case 0x11: 11431 if (!u) { /* CMTST */ 11432 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11433 return; 11434 } 11435 /* else CMEQ */ 11436 cond = TCG_COND_EQ; 11437 goto do_gvec_cmp; 11438 case 0x06: /* CMGT, CMHI */ 11439 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11440 goto do_gvec_cmp; 11441 case 0x07: /* CMGE, CMHS */ 11442 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11443 do_gvec_cmp: 11444 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11445 vec_full_reg_offset(s, rn), 11446 vec_full_reg_offset(s, rm), 11447 is_q ? 16 : 8, vec_full_reg_size(s)); 11448 return; 11449 } 11450 11451 if (size == 3) { 11452 assert(is_q); 11453 for (pass = 0; pass < 2; pass++) { 11454 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11455 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11456 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11457 11458 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11459 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11460 11461 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11462 11463 write_vec_element(s, tcg_res, rd, pass, MO_64); 11464 } 11465 } else { 11466 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11467 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11468 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11469 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11470 NeonGenTwoOpFn *genfn = NULL; 11471 NeonGenTwoOpEnvFn *genenvfn = NULL; 11472 11473 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11474 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11475 11476 switch (opcode) { 11477 case 0x0: /* SHADD, UHADD */ 11478 { 11479 static NeonGenTwoOpFn * const fns[3][2] = { 11480 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11481 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11482 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11483 }; 11484 genfn = fns[size][u]; 11485 break; 11486 } 11487 case 0x2: /* SRHADD, URHADD */ 11488 { 11489 static NeonGenTwoOpFn * const fns[3][2] = { 11490 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11491 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11492 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11493 }; 11494 genfn = fns[size][u]; 11495 break; 11496 } 11497 case 0x4: /* SHSUB, UHSUB */ 11498 { 11499 static NeonGenTwoOpFn * const fns[3][2] = { 11500 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11501 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11502 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11503 }; 11504 genfn = fns[size][u]; 11505 break; 11506 } 11507 case 0x9: /* SQSHL, UQSHL */ 11508 { 11509 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11510 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11511 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11512 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11513 }; 11514 genenvfn = fns[size][u]; 11515 break; 11516 } 11517 case 0xa: /* SRSHL, URSHL */ 11518 { 11519 static NeonGenTwoOpFn * const fns[3][2] = { 11520 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11521 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11522 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11523 }; 11524 genfn = fns[size][u]; 11525 break; 11526 } 11527 case 0xb: /* SQRSHL, UQRSHL */ 11528 { 11529 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11530 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11531 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11532 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11533 }; 11534 genenvfn = fns[size][u]; 11535 break; 11536 } 11537 default: 11538 g_assert_not_reached(); 11539 } 11540 11541 if (genenvfn) { 11542 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11543 } else { 11544 genfn(tcg_res, tcg_op1, tcg_op2); 11545 } 11546 11547 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11548 } 11549 } 11550 clear_vec_high(s, is_q, rd); 11551 } 11552 11553 /* AdvSIMD three same 11554 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11555 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11556 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11557 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11558 */ 11559 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11560 { 11561 int opcode = extract32(insn, 11, 5); 11562 11563 switch (opcode) { 11564 case 0x3: /* logic ops */ 11565 disas_simd_3same_logic(s, insn); 11566 break; 11567 case 0x17: /* ADDP */ 11568 case 0x14: /* SMAXP, UMAXP */ 11569 case 0x15: /* SMINP, UMINP */ 11570 { 11571 /* Pairwise operations */ 11572 int is_q = extract32(insn, 30, 1); 11573 int u = extract32(insn, 29, 1); 11574 int size = extract32(insn, 22, 2); 11575 int rm = extract32(insn, 16, 5); 11576 int rn = extract32(insn, 5, 5); 11577 int rd = extract32(insn, 0, 5); 11578 if (opcode == 0x17) { 11579 if (u || (size == 3 && !is_q)) { 11580 unallocated_encoding(s); 11581 return; 11582 } 11583 } else { 11584 if (size == 3) { 11585 unallocated_encoding(s); 11586 return; 11587 } 11588 } 11589 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11590 break; 11591 } 11592 case 0x18 ... 0x31: 11593 /* floating point ops, sz[1] and U are part of opcode */ 11594 disas_simd_3same_float(s, insn); 11595 break; 11596 default: 11597 disas_simd_3same_int(s, insn); 11598 break; 11599 } 11600 } 11601 11602 /* 11603 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11604 * 11605 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11606 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11607 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11608 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11609 * 11610 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11611 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11612 * 11613 */ 11614 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11615 { 11616 int opcode = extract32(insn, 11, 3); 11617 int u = extract32(insn, 29, 1); 11618 int a = extract32(insn, 23, 1); 11619 int is_q = extract32(insn, 30, 1); 11620 int rm = extract32(insn, 16, 5); 11621 int rn = extract32(insn, 5, 5); 11622 int rd = extract32(insn, 0, 5); 11623 /* 11624 * For these floating point ops, the U, a and opcode bits 11625 * together indicate the operation. 11626 */ 11627 int fpopcode = opcode | (a << 3) | (u << 4); 11628 int datasize = is_q ? 128 : 64; 11629 int elements = datasize / 16; 11630 bool pairwise; 11631 TCGv_ptr fpst; 11632 int pass; 11633 11634 switch (fpopcode) { 11635 case 0x0: /* FMAXNM */ 11636 case 0x1: /* FMLA */ 11637 case 0x4: /* FCMEQ */ 11638 case 0x6: /* FMAX */ 11639 case 0x7: /* FRECPS */ 11640 case 0x8: /* FMINNM */ 11641 case 0x9: /* FMLS */ 11642 case 0xe: /* FMIN */ 11643 case 0xf: /* FRSQRTS */ 11644 case 0x14: /* FCMGE */ 11645 case 0x15: /* FACGE */ 11646 case 0x1a: /* FABD */ 11647 case 0x1c: /* FCMGT */ 11648 case 0x1d: /* FACGT */ 11649 pairwise = false; 11650 break; 11651 case 0x10: /* FMAXNMP */ 11652 case 0x12: /* FADDP */ 11653 case 0x16: /* FMAXP */ 11654 case 0x18: /* FMINNMP */ 11655 case 0x1e: /* FMINP */ 11656 pairwise = true; 11657 break; 11658 default: 11659 case 0x2: /* FADD */ 11660 case 0x3: /* FMULX */ 11661 case 0xa: /* FSUB */ 11662 case 0x13: /* FMUL */ 11663 case 0x17: /* FDIV */ 11664 unallocated_encoding(s); 11665 return; 11666 } 11667 11668 if (!dc_isar_feature(aa64_fp16, s)) { 11669 unallocated_encoding(s); 11670 return; 11671 } 11672 11673 if (!fp_access_check(s)) { 11674 return; 11675 } 11676 11677 fpst = fpstatus_ptr(FPST_FPCR_F16); 11678 11679 if (pairwise) { 11680 int maxpass = is_q ? 8 : 4; 11681 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11682 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11683 TCGv_i32 tcg_res[8]; 11684 11685 for (pass = 0; pass < maxpass; pass++) { 11686 int passreg = pass < (maxpass / 2) ? rn : rm; 11687 int passelt = (pass << 1) & (maxpass - 1); 11688 11689 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11690 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11691 tcg_res[pass] = tcg_temp_new_i32(); 11692 11693 switch (fpopcode) { 11694 case 0x10: /* FMAXNMP */ 11695 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11696 fpst); 11697 break; 11698 case 0x12: /* FADDP */ 11699 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x16: /* FMAXP */ 11702 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11703 break; 11704 case 0x18: /* FMINNMP */ 11705 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11706 fpst); 11707 break; 11708 case 0x1e: /* FMINP */ 11709 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11710 break; 11711 default: 11712 g_assert_not_reached(); 11713 } 11714 } 11715 11716 for (pass = 0; pass < maxpass; pass++) { 11717 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11718 } 11719 } else { 11720 for (pass = 0; pass < elements; pass++) { 11721 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11722 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11723 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11724 11725 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11726 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11727 11728 switch (fpopcode) { 11729 case 0x0: /* FMAXNM */ 11730 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11731 break; 11732 case 0x1: /* FMLA */ 11733 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11734 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11735 fpst); 11736 break; 11737 case 0x4: /* FCMEQ */ 11738 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11739 break; 11740 case 0x6: /* FMAX */ 11741 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11742 break; 11743 case 0x7: /* FRECPS */ 11744 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11745 break; 11746 case 0x8: /* FMINNM */ 11747 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11748 break; 11749 case 0x9: /* FMLS */ 11750 /* As usual for ARM, separate negation for fused multiply-add */ 11751 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11752 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11753 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11754 fpst); 11755 break; 11756 case 0xe: /* FMIN */ 11757 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11758 break; 11759 case 0xf: /* FRSQRTS */ 11760 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11761 break; 11762 case 0x14: /* FCMGE */ 11763 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11764 break; 11765 case 0x15: /* FACGE */ 11766 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11767 break; 11768 case 0x1a: /* FABD */ 11769 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11770 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11771 break; 11772 case 0x1c: /* FCMGT */ 11773 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11774 break; 11775 case 0x1d: /* FACGT */ 11776 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11777 break; 11778 default: 11779 case 0x2: /* FADD */ 11780 case 0x3: /* FMULX */ 11781 case 0xa: /* FSUB */ 11782 case 0x13: /* FMUL */ 11783 case 0x17: /* FDIV */ 11784 g_assert_not_reached(); 11785 } 11786 11787 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11788 } 11789 } 11790 11791 clear_vec_high(s, is_q, rd); 11792 } 11793 11794 /* AdvSIMD three same extra 11795 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11796 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11797 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11798 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11799 */ 11800 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11801 { 11802 int rd = extract32(insn, 0, 5); 11803 int rn = extract32(insn, 5, 5); 11804 int opcode = extract32(insn, 11, 4); 11805 int rm = extract32(insn, 16, 5); 11806 int size = extract32(insn, 22, 2); 11807 bool u = extract32(insn, 29, 1); 11808 bool is_q = extract32(insn, 30, 1); 11809 bool feature; 11810 int rot; 11811 11812 switch (u * 16 + opcode) { 11813 case 0x10: /* SQRDMLAH (vector) */ 11814 case 0x11: /* SQRDMLSH (vector) */ 11815 if (size != 1 && size != 2) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 feature = dc_isar_feature(aa64_rdm, s); 11820 break; 11821 case 0x02: /* SDOT (vector) */ 11822 case 0x12: /* UDOT (vector) */ 11823 if (size != MO_32) { 11824 unallocated_encoding(s); 11825 return; 11826 } 11827 feature = dc_isar_feature(aa64_dp, s); 11828 break; 11829 case 0x03: /* USDOT */ 11830 if (size != MO_32) { 11831 unallocated_encoding(s); 11832 return; 11833 } 11834 feature = dc_isar_feature(aa64_i8mm, s); 11835 break; 11836 case 0x04: /* SMMLA */ 11837 case 0x14: /* UMMLA */ 11838 case 0x05: /* USMMLA */ 11839 if (!is_q || size != MO_32) { 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 feature = dc_isar_feature(aa64_i8mm, s); 11844 break; 11845 case 0x18: /* FCMLA, #0 */ 11846 case 0x19: /* FCMLA, #90 */ 11847 case 0x1a: /* FCMLA, #180 */ 11848 case 0x1b: /* FCMLA, #270 */ 11849 case 0x1c: /* FCADD, #90 */ 11850 case 0x1e: /* FCADD, #270 */ 11851 if (size == 0 11852 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11853 || (size == 3 && !is_q)) { 11854 unallocated_encoding(s); 11855 return; 11856 } 11857 feature = dc_isar_feature(aa64_fcma, s); 11858 break; 11859 case 0x1d: /* BFMMLA */ 11860 if (size != MO_16 || !is_q) { 11861 unallocated_encoding(s); 11862 return; 11863 } 11864 feature = dc_isar_feature(aa64_bf16, s); 11865 break; 11866 case 0x1f: 11867 switch (size) { 11868 case 1: /* BFDOT */ 11869 case 3: /* BFMLAL{B,T} */ 11870 feature = dc_isar_feature(aa64_bf16, s); 11871 break; 11872 default: 11873 unallocated_encoding(s); 11874 return; 11875 } 11876 break; 11877 default: 11878 unallocated_encoding(s); 11879 return; 11880 } 11881 if (!feature) { 11882 unallocated_encoding(s); 11883 return; 11884 } 11885 if (!fp_access_check(s)) { 11886 return; 11887 } 11888 11889 switch (opcode) { 11890 case 0x0: /* SQRDMLAH (vector) */ 11891 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11892 return; 11893 11894 case 0x1: /* SQRDMLSH (vector) */ 11895 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11896 return; 11897 11898 case 0x2: /* SDOT / UDOT */ 11899 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11900 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11901 return; 11902 11903 case 0x3: /* USDOT */ 11904 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11905 return; 11906 11907 case 0x04: /* SMMLA, UMMLA */ 11908 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11909 u ? gen_helper_gvec_ummla_b 11910 : gen_helper_gvec_smmla_b); 11911 return; 11912 case 0x05: /* USMMLA */ 11913 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11914 return; 11915 11916 case 0x8: /* FCMLA, #0 */ 11917 case 0x9: /* FCMLA, #90 */ 11918 case 0xa: /* FCMLA, #180 */ 11919 case 0xb: /* FCMLA, #270 */ 11920 rot = extract32(opcode, 0, 2); 11921 switch (size) { 11922 case 1: 11923 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11924 gen_helper_gvec_fcmlah); 11925 break; 11926 case 2: 11927 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11928 gen_helper_gvec_fcmlas); 11929 break; 11930 case 3: 11931 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11932 gen_helper_gvec_fcmlad); 11933 break; 11934 default: 11935 g_assert_not_reached(); 11936 } 11937 return; 11938 11939 case 0xc: /* FCADD, #90 */ 11940 case 0xe: /* FCADD, #270 */ 11941 rot = extract32(opcode, 1, 1); 11942 switch (size) { 11943 case 1: 11944 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11945 gen_helper_gvec_fcaddh); 11946 break; 11947 case 2: 11948 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11949 gen_helper_gvec_fcadds); 11950 break; 11951 case 3: 11952 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11953 gen_helper_gvec_fcaddd); 11954 break; 11955 default: 11956 g_assert_not_reached(); 11957 } 11958 return; 11959 11960 case 0xd: /* BFMMLA */ 11961 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11962 return; 11963 case 0xf: 11964 switch (size) { 11965 case 1: /* BFDOT */ 11966 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11967 break; 11968 case 3: /* BFMLAL{B,T} */ 11969 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11970 gen_helper_gvec_bfmlal); 11971 break; 11972 default: 11973 g_assert_not_reached(); 11974 } 11975 return; 11976 11977 default: 11978 g_assert_not_reached(); 11979 } 11980 } 11981 11982 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11983 int size, int rn, int rd) 11984 { 11985 /* Handle 2-reg-misc ops which are widening (so each size element 11986 * in the source becomes a 2*size element in the destination. 11987 * The only instruction like this is FCVTL. 11988 */ 11989 int pass; 11990 11991 if (size == 3) { 11992 /* 32 -> 64 bit fp conversion */ 11993 TCGv_i64 tcg_res[2]; 11994 int srcelt = is_q ? 2 : 0; 11995 11996 for (pass = 0; pass < 2; pass++) { 11997 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11998 tcg_res[pass] = tcg_temp_new_i64(); 11999 12000 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 12001 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 12002 } 12003 for (pass = 0; pass < 2; pass++) { 12004 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12005 } 12006 } else { 12007 /* 16 -> 32 bit fp conversion */ 12008 int srcelt = is_q ? 4 : 0; 12009 TCGv_i32 tcg_res[4]; 12010 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 12011 TCGv_i32 ahp = get_ahp_flag(); 12012 12013 for (pass = 0; pass < 4; pass++) { 12014 tcg_res[pass] = tcg_temp_new_i32(); 12015 12016 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 12017 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 12018 fpst, ahp); 12019 } 12020 for (pass = 0; pass < 4; pass++) { 12021 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 12022 } 12023 } 12024 } 12025 12026 static void handle_rev(DisasContext *s, int opcode, bool u, 12027 bool is_q, int size, int rn, int rd) 12028 { 12029 int op = (opcode << 1) | u; 12030 int opsz = op + size; 12031 int grp_size = 3 - opsz; 12032 int dsize = is_q ? 128 : 64; 12033 int i; 12034 12035 if (opsz >= 3) { 12036 unallocated_encoding(s); 12037 return; 12038 } 12039 12040 if (!fp_access_check(s)) { 12041 return; 12042 } 12043 12044 if (size == 0) { 12045 /* Special case bytes, use bswap op on each group of elements */ 12046 int groups = dsize / (8 << grp_size); 12047 12048 for (i = 0; i < groups; i++) { 12049 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12050 12051 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12052 switch (grp_size) { 12053 case MO_16: 12054 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12055 break; 12056 case MO_32: 12057 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12058 break; 12059 case MO_64: 12060 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12061 break; 12062 default: 12063 g_assert_not_reached(); 12064 } 12065 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12066 } 12067 clear_vec_high(s, is_q, rd); 12068 } else { 12069 int revmask = (1 << grp_size) - 1; 12070 int esize = 8 << size; 12071 int elements = dsize / esize; 12072 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12073 TCGv_i64 tcg_rd[2]; 12074 12075 for (i = 0; i < 2; i++) { 12076 tcg_rd[i] = tcg_temp_new_i64(); 12077 tcg_gen_movi_i64(tcg_rd[i], 0); 12078 } 12079 12080 for (i = 0; i < elements; i++) { 12081 int e_rev = (i & 0xf) ^ revmask; 12082 int w = (e_rev * esize) / 64; 12083 int o = (e_rev * esize) % 64; 12084 12085 read_vec_element(s, tcg_rn, rn, i, size); 12086 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12087 } 12088 12089 for (i = 0; i < 2; i++) { 12090 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12091 } 12092 clear_vec_high(s, true, rd); 12093 } 12094 } 12095 12096 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12097 bool is_q, int size, int rn, int rd) 12098 { 12099 /* Implement the pairwise operations from 2-misc: 12100 * SADDLP, UADDLP, SADALP, UADALP. 12101 * These all add pairs of elements in the input to produce a 12102 * double-width result element in the output (possibly accumulating). 12103 */ 12104 bool accum = (opcode == 0x6); 12105 int maxpass = is_q ? 2 : 1; 12106 int pass; 12107 TCGv_i64 tcg_res[2]; 12108 12109 if (size == 2) { 12110 /* 32 + 32 -> 64 op */ 12111 MemOp memop = size + (u ? 0 : MO_SIGN); 12112 12113 for (pass = 0; pass < maxpass; pass++) { 12114 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12115 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12116 12117 tcg_res[pass] = tcg_temp_new_i64(); 12118 12119 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12120 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12121 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12122 if (accum) { 12123 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12124 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12125 } 12126 } 12127 } else { 12128 for (pass = 0; pass < maxpass; pass++) { 12129 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12130 NeonGenOne64OpFn *genfn; 12131 static NeonGenOne64OpFn * const fns[2][2] = { 12132 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12133 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12134 }; 12135 12136 genfn = fns[size][u]; 12137 12138 tcg_res[pass] = tcg_temp_new_i64(); 12139 12140 read_vec_element(s, tcg_op, rn, pass, MO_64); 12141 genfn(tcg_res[pass], tcg_op); 12142 12143 if (accum) { 12144 read_vec_element(s, tcg_op, rd, pass, MO_64); 12145 if (size == 0) { 12146 gen_helper_neon_addl_u16(tcg_res[pass], 12147 tcg_res[pass], tcg_op); 12148 } else { 12149 gen_helper_neon_addl_u32(tcg_res[pass], 12150 tcg_res[pass], tcg_op); 12151 } 12152 } 12153 } 12154 } 12155 if (!is_q) { 12156 tcg_res[1] = tcg_constant_i64(0); 12157 } 12158 for (pass = 0; pass < 2; pass++) { 12159 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12160 } 12161 } 12162 12163 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12164 { 12165 /* Implement SHLL and SHLL2 */ 12166 int pass; 12167 int part = is_q ? 2 : 0; 12168 TCGv_i64 tcg_res[2]; 12169 12170 for (pass = 0; pass < 2; pass++) { 12171 static NeonGenWidenFn * const widenfns[3] = { 12172 gen_helper_neon_widen_u8, 12173 gen_helper_neon_widen_u16, 12174 tcg_gen_extu_i32_i64, 12175 }; 12176 NeonGenWidenFn *widenfn = widenfns[size]; 12177 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12178 12179 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12180 tcg_res[pass] = tcg_temp_new_i64(); 12181 widenfn(tcg_res[pass], tcg_op); 12182 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12183 } 12184 12185 for (pass = 0; pass < 2; pass++) { 12186 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12187 } 12188 } 12189 12190 /* AdvSIMD two reg misc 12191 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12192 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12193 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12194 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12195 */ 12196 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12197 { 12198 int size = extract32(insn, 22, 2); 12199 int opcode = extract32(insn, 12, 5); 12200 bool u = extract32(insn, 29, 1); 12201 bool is_q = extract32(insn, 30, 1); 12202 int rn = extract32(insn, 5, 5); 12203 int rd = extract32(insn, 0, 5); 12204 bool need_fpstatus = false; 12205 int rmode = -1; 12206 TCGv_i32 tcg_rmode; 12207 TCGv_ptr tcg_fpstatus; 12208 12209 switch (opcode) { 12210 case 0x0: /* REV64, REV32 */ 12211 case 0x1: /* REV16 */ 12212 handle_rev(s, opcode, u, is_q, size, rn, rd); 12213 return; 12214 case 0x5: /* CNT, NOT, RBIT */ 12215 if (u && size == 0) { 12216 /* NOT */ 12217 break; 12218 } else if (u && size == 1) { 12219 /* RBIT */ 12220 break; 12221 } else if (!u && size == 0) { 12222 /* CNT */ 12223 break; 12224 } 12225 unallocated_encoding(s); 12226 return; 12227 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12228 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12229 if (size == 3) { 12230 unallocated_encoding(s); 12231 return; 12232 } 12233 if (!fp_access_check(s)) { 12234 return; 12235 } 12236 12237 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12238 return; 12239 case 0x4: /* CLS, CLZ */ 12240 if (size == 3) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0x2: /* SADDLP, UADDLP */ 12246 case 0x6: /* SADALP, UADALP */ 12247 if (size == 3) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 if (!fp_access_check(s)) { 12252 return; 12253 } 12254 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12255 return; 12256 case 0x13: /* SHLL, SHLL2 */ 12257 if (u == 0 || size == 3) { 12258 unallocated_encoding(s); 12259 return; 12260 } 12261 if (!fp_access_check(s)) { 12262 return; 12263 } 12264 handle_shll(s, is_q, size, rn, rd); 12265 return; 12266 case 0xa: /* CMLT */ 12267 if (u == 1) { 12268 unallocated_encoding(s); 12269 return; 12270 } 12271 /* fall through */ 12272 case 0x8: /* CMGT, CMGE */ 12273 case 0x9: /* CMEQ, CMLE */ 12274 case 0xb: /* ABS, NEG */ 12275 if (size == 3 && !is_q) { 12276 unallocated_encoding(s); 12277 return; 12278 } 12279 break; 12280 case 0x3: /* SUQADD, USQADD */ 12281 if (size == 3 && !is_q) { 12282 unallocated_encoding(s); 12283 return; 12284 } 12285 if (!fp_access_check(s)) { 12286 return; 12287 } 12288 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12289 return; 12290 case 0x7: /* SQABS, SQNEG */ 12291 if (size == 3 && !is_q) { 12292 unallocated_encoding(s); 12293 return; 12294 } 12295 break; 12296 case 0xc ... 0xf: 12297 case 0x16 ... 0x1f: 12298 { 12299 /* Floating point: U, size[1] and opcode indicate operation; 12300 * size[0] indicates single or double precision. 12301 */ 12302 int is_double = extract32(size, 0, 1); 12303 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12304 size = is_double ? 3 : 2; 12305 switch (opcode) { 12306 case 0x2f: /* FABS */ 12307 case 0x6f: /* FNEG */ 12308 if (size == 3 && !is_q) { 12309 unallocated_encoding(s); 12310 return; 12311 } 12312 break; 12313 case 0x1d: /* SCVTF */ 12314 case 0x5d: /* UCVTF */ 12315 { 12316 bool is_signed = (opcode == 0x1d) ? true : false; 12317 int elements = is_double ? 2 : is_q ? 4 : 2; 12318 if (is_double && !is_q) { 12319 unallocated_encoding(s); 12320 return; 12321 } 12322 if (!fp_access_check(s)) { 12323 return; 12324 } 12325 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12326 return; 12327 } 12328 case 0x2c: /* FCMGT (zero) */ 12329 case 0x2d: /* FCMEQ (zero) */ 12330 case 0x2e: /* FCMLT (zero) */ 12331 case 0x6c: /* FCMGE (zero) */ 12332 case 0x6d: /* FCMLE (zero) */ 12333 if (size == 3 && !is_q) { 12334 unallocated_encoding(s); 12335 return; 12336 } 12337 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12338 return; 12339 case 0x7f: /* FSQRT */ 12340 if (size == 3 && !is_q) { 12341 unallocated_encoding(s); 12342 return; 12343 } 12344 break; 12345 case 0x1a: /* FCVTNS */ 12346 case 0x1b: /* FCVTMS */ 12347 case 0x3a: /* FCVTPS */ 12348 case 0x3b: /* FCVTZS */ 12349 case 0x5a: /* FCVTNU */ 12350 case 0x5b: /* FCVTMU */ 12351 case 0x7a: /* FCVTPU */ 12352 case 0x7b: /* FCVTZU */ 12353 need_fpstatus = true; 12354 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12355 if (size == 3 && !is_q) { 12356 unallocated_encoding(s); 12357 return; 12358 } 12359 break; 12360 case 0x5c: /* FCVTAU */ 12361 case 0x1c: /* FCVTAS */ 12362 need_fpstatus = true; 12363 rmode = FPROUNDING_TIEAWAY; 12364 if (size == 3 && !is_q) { 12365 unallocated_encoding(s); 12366 return; 12367 } 12368 break; 12369 case 0x3c: /* URECPE */ 12370 if (size == 3) { 12371 unallocated_encoding(s); 12372 return; 12373 } 12374 /* fall through */ 12375 case 0x3d: /* FRECPE */ 12376 case 0x7d: /* FRSQRTE */ 12377 if (size == 3 && !is_q) { 12378 unallocated_encoding(s); 12379 return; 12380 } 12381 if (!fp_access_check(s)) { 12382 return; 12383 } 12384 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12385 return; 12386 case 0x56: /* FCVTXN, FCVTXN2 */ 12387 if (size == 2) { 12388 unallocated_encoding(s); 12389 return; 12390 } 12391 /* fall through */ 12392 case 0x16: /* FCVTN, FCVTN2 */ 12393 /* handle_2misc_narrow does a 2*size -> size operation, but these 12394 * instructions encode the source size rather than dest size. 12395 */ 12396 if (!fp_access_check(s)) { 12397 return; 12398 } 12399 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12400 return; 12401 case 0x36: /* BFCVTN, BFCVTN2 */ 12402 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12403 unallocated_encoding(s); 12404 return; 12405 } 12406 if (!fp_access_check(s)) { 12407 return; 12408 } 12409 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12410 return; 12411 case 0x17: /* FCVTL, FCVTL2 */ 12412 if (!fp_access_check(s)) { 12413 return; 12414 } 12415 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12416 return; 12417 case 0x18: /* FRINTN */ 12418 case 0x19: /* FRINTM */ 12419 case 0x38: /* FRINTP */ 12420 case 0x39: /* FRINTZ */ 12421 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12422 /* fall through */ 12423 case 0x59: /* FRINTX */ 12424 case 0x79: /* FRINTI */ 12425 need_fpstatus = true; 12426 if (size == 3 && !is_q) { 12427 unallocated_encoding(s); 12428 return; 12429 } 12430 break; 12431 case 0x58: /* FRINTA */ 12432 rmode = FPROUNDING_TIEAWAY; 12433 need_fpstatus = true; 12434 if (size == 3 && !is_q) { 12435 unallocated_encoding(s); 12436 return; 12437 } 12438 break; 12439 case 0x7c: /* URSQRTE */ 12440 if (size == 3) { 12441 unallocated_encoding(s); 12442 return; 12443 } 12444 break; 12445 case 0x1e: /* FRINT32Z */ 12446 case 0x1f: /* FRINT64Z */ 12447 rmode = FPROUNDING_ZERO; 12448 /* fall through */ 12449 case 0x5e: /* FRINT32X */ 12450 case 0x5f: /* FRINT64X */ 12451 need_fpstatus = true; 12452 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12453 unallocated_encoding(s); 12454 return; 12455 } 12456 break; 12457 default: 12458 unallocated_encoding(s); 12459 return; 12460 } 12461 break; 12462 } 12463 default: 12464 unallocated_encoding(s); 12465 return; 12466 } 12467 12468 if (!fp_access_check(s)) { 12469 return; 12470 } 12471 12472 if (need_fpstatus || rmode >= 0) { 12473 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12474 } else { 12475 tcg_fpstatus = NULL; 12476 } 12477 if (rmode >= 0) { 12478 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12479 } else { 12480 tcg_rmode = NULL; 12481 } 12482 12483 switch (opcode) { 12484 case 0x5: 12485 if (u && size == 0) { /* NOT */ 12486 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12487 return; 12488 } 12489 break; 12490 case 0x8: /* CMGT, CMGE */ 12491 if (u) { 12492 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12493 } else { 12494 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12495 } 12496 return; 12497 case 0x9: /* CMEQ, CMLE */ 12498 if (u) { 12499 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12500 } else { 12501 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12502 } 12503 return; 12504 case 0xa: /* CMLT */ 12505 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12506 return; 12507 case 0xb: 12508 if (u) { /* ABS, NEG */ 12509 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12510 } else { 12511 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12512 } 12513 return; 12514 } 12515 12516 if (size == 3) { 12517 /* All 64-bit element operations can be shared with scalar 2misc */ 12518 int pass; 12519 12520 /* Coverity claims (size == 3 && !is_q) has been eliminated 12521 * from all paths leading to here. 12522 */ 12523 tcg_debug_assert(is_q); 12524 for (pass = 0; pass < 2; pass++) { 12525 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12526 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12527 12528 read_vec_element(s, tcg_op, rn, pass, MO_64); 12529 12530 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12531 tcg_rmode, tcg_fpstatus); 12532 12533 write_vec_element(s, tcg_res, rd, pass, MO_64); 12534 } 12535 } else { 12536 int pass; 12537 12538 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12539 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12540 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12541 12542 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12543 12544 if (size == 2) { 12545 /* Special cases for 32 bit elements */ 12546 switch (opcode) { 12547 case 0x4: /* CLS */ 12548 if (u) { 12549 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12550 } else { 12551 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12552 } 12553 break; 12554 case 0x7: /* SQABS, SQNEG */ 12555 if (u) { 12556 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12557 } else { 12558 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12559 } 12560 break; 12561 case 0x2f: /* FABS */ 12562 gen_helper_vfp_abss(tcg_res, tcg_op); 12563 break; 12564 case 0x6f: /* FNEG */ 12565 gen_helper_vfp_negs(tcg_res, tcg_op); 12566 break; 12567 case 0x7f: /* FSQRT */ 12568 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12569 break; 12570 case 0x1a: /* FCVTNS */ 12571 case 0x1b: /* FCVTMS */ 12572 case 0x1c: /* FCVTAS */ 12573 case 0x3a: /* FCVTPS */ 12574 case 0x3b: /* FCVTZS */ 12575 gen_helper_vfp_tosls(tcg_res, tcg_op, 12576 tcg_constant_i32(0), tcg_fpstatus); 12577 break; 12578 case 0x5a: /* FCVTNU */ 12579 case 0x5b: /* FCVTMU */ 12580 case 0x5c: /* FCVTAU */ 12581 case 0x7a: /* FCVTPU */ 12582 case 0x7b: /* FCVTZU */ 12583 gen_helper_vfp_touls(tcg_res, tcg_op, 12584 tcg_constant_i32(0), tcg_fpstatus); 12585 break; 12586 case 0x18: /* FRINTN */ 12587 case 0x19: /* FRINTM */ 12588 case 0x38: /* FRINTP */ 12589 case 0x39: /* FRINTZ */ 12590 case 0x58: /* FRINTA */ 12591 case 0x79: /* FRINTI */ 12592 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12593 break; 12594 case 0x59: /* FRINTX */ 12595 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12596 break; 12597 case 0x7c: /* URSQRTE */ 12598 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12599 break; 12600 case 0x1e: /* FRINT32Z */ 12601 case 0x5e: /* FRINT32X */ 12602 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12603 break; 12604 case 0x1f: /* FRINT64Z */ 12605 case 0x5f: /* FRINT64X */ 12606 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12607 break; 12608 default: 12609 g_assert_not_reached(); 12610 } 12611 } else { 12612 /* Use helpers for 8 and 16 bit elements */ 12613 switch (opcode) { 12614 case 0x5: /* CNT, RBIT */ 12615 /* For these two insns size is part of the opcode specifier 12616 * (handled earlier); they always operate on byte elements. 12617 */ 12618 if (u) { 12619 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12620 } else { 12621 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12622 } 12623 break; 12624 case 0x7: /* SQABS, SQNEG */ 12625 { 12626 NeonGenOneOpEnvFn *genfn; 12627 static NeonGenOneOpEnvFn * const fns[2][2] = { 12628 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12629 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12630 }; 12631 genfn = fns[size][u]; 12632 genfn(tcg_res, tcg_env, tcg_op); 12633 break; 12634 } 12635 case 0x4: /* CLS, CLZ */ 12636 if (u) { 12637 if (size == 0) { 12638 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12639 } else { 12640 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12641 } 12642 } else { 12643 if (size == 0) { 12644 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12645 } else { 12646 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12647 } 12648 } 12649 break; 12650 default: 12651 g_assert_not_reached(); 12652 } 12653 } 12654 12655 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12656 } 12657 } 12658 clear_vec_high(s, is_q, rd); 12659 12660 if (tcg_rmode) { 12661 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12662 } 12663 } 12664 12665 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12666 * 12667 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12668 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12669 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12670 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12671 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12672 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12673 * 12674 * This actually covers two groups where scalar access is governed by 12675 * bit 28. A bunch of the instructions (float to integral) only exist 12676 * in the vector form and are un-allocated for the scalar decode. Also 12677 * in the scalar decode Q is always 1. 12678 */ 12679 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12680 { 12681 int fpop, opcode, a, u; 12682 int rn, rd; 12683 bool is_q; 12684 bool is_scalar; 12685 bool only_in_vector = false; 12686 12687 int pass; 12688 TCGv_i32 tcg_rmode = NULL; 12689 TCGv_ptr tcg_fpstatus = NULL; 12690 bool need_fpst = true; 12691 int rmode = -1; 12692 12693 if (!dc_isar_feature(aa64_fp16, s)) { 12694 unallocated_encoding(s); 12695 return; 12696 } 12697 12698 rd = extract32(insn, 0, 5); 12699 rn = extract32(insn, 5, 5); 12700 12701 a = extract32(insn, 23, 1); 12702 u = extract32(insn, 29, 1); 12703 is_scalar = extract32(insn, 28, 1); 12704 is_q = extract32(insn, 30, 1); 12705 12706 opcode = extract32(insn, 12, 5); 12707 fpop = deposit32(opcode, 5, 1, a); 12708 fpop = deposit32(fpop, 6, 1, u); 12709 12710 switch (fpop) { 12711 case 0x1d: /* SCVTF */ 12712 case 0x5d: /* UCVTF */ 12713 { 12714 int elements; 12715 12716 if (is_scalar) { 12717 elements = 1; 12718 } else { 12719 elements = (is_q ? 8 : 4); 12720 } 12721 12722 if (!fp_access_check(s)) { 12723 return; 12724 } 12725 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12726 return; 12727 } 12728 break; 12729 case 0x2c: /* FCMGT (zero) */ 12730 case 0x2d: /* FCMEQ (zero) */ 12731 case 0x2e: /* FCMLT (zero) */ 12732 case 0x6c: /* FCMGE (zero) */ 12733 case 0x6d: /* FCMLE (zero) */ 12734 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12735 return; 12736 case 0x3d: /* FRECPE */ 12737 case 0x3f: /* FRECPX */ 12738 break; 12739 case 0x18: /* FRINTN */ 12740 only_in_vector = true; 12741 rmode = FPROUNDING_TIEEVEN; 12742 break; 12743 case 0x19: /* FRINTM */ 12744 only_in_vector = true; 12745 rmode = FPROUNDING_NEGINF; 12746 break; 12747 case 0x38: /* FRINTP */ 12748 only_in_vector = true; 12749 rmode = FPROUNDING_POSINF; 12750 break; 12751 case 0x39: /* FRINTZ */ 12752 only_in_vector = true; 12753 rmode = FPROUNDING_ZERO; 12754 break; 12755 case 0x58: /* FRINTA */ 12756 only_in_vector = true; 12757 rmode = FPROUNDING_TIEAWAY; 12758 break; 12759 case 0x59: /* FRINTX */ 12760 case 0x79: /* FRINTI */ 12761 only_in_vector = true; 12762 /* current rounding mode */ 12763 break; 12764 case 0x1a: /* FCVTNS */ 12765 rmode = FPROUNDING_TIEEVEN; 12766 break; 12767 case 0x1b: /* FCVTMS */ 12768 rmode = FPROUNDING_NEGINF; 12769 break; 12770 case 0x1c: /* FCVTAS */ 12771 rmode = FPROUNDING_TIEAWAY; 12772 break; 12773 case 0x3a: /* FCVTPS */ 12774 rmode = FPROUNDING_POSINF; 12775 break; 12776 case 0x3b: /* FCVTZS */ 12777 rmode = FPROUNDING_ZERO; 12778 break; 12779 case 0x5a: /* FCVTNU */ 12780 rmode = FPROUNDING_TIEEVEN; 12781 break; 12782 case 0x5b: /* FCVTMU */ 12783 rmode = FPROUNDING_NEGINF; 12784 break; 12785 case 0x5c: /* FCVTAU */ 12786 rmode = FPROUNDING_TIEAWAY; 12787 break; 12788 case 0x7a: /* FCVTPU */ 12789 rmode = FPROUNDING_POSINF; 12790 break; 12791 case 0x7b: /* FCVTZU */ 12792 rmode = FPROUNDING_ZERO; 12793 break; 12794 case 0x2f: /* FABS */ 12795 case 0x6f: /* FNEG */ 12796 need_fpst = false; 12797 break; 12798 case 0x7d: /* FRSQRTE */ 12799 case 0x7f: /* FSQRT (vector) */ 12800 break; 12801 default: 12802 unallocated_encoding(s); 12803 return; 12804 } 12805 12806 12807 /* Check additional constraints for the scalar encoding */ 12808 if (is_scalar) { 12809 if (!is_q) { 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 /* FRINTxx is only in the vector form */ 12814 if (only_in_vector) { 12815 unallocated_encoding(s); 12816 return; 12817 } 12818 } 12819 12820 if (!fp_access_check(s)) { 12821 return; 12822 } 12823 12824 if (rmode >= 0 || need_fpst) { 12825 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12826 } 12827 12828 if (rmode >= 0) { 12829 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12830 } 12831 12832 if (is_scalar) { 12833 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12834 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12835 12836 switch (fpop) { 12837 case 0x1a: /* FCVTNS */ 12838 case 0x1b: /* FCVTMS */ 12839 case 0x1c: /* FCVTAS */ 12840 case 0x3a: /* FCVTPS */ 12841 case 0x3b: /* FCVTZS */ 12842 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12843 break; 12844 case 0x3d: /* FRECPE */ 12845 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12846 break; 12847 case 0x3f: /* FRECPX */ 12848 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12849 break; 12850 case 0x5a: /* FCVTNU */ 12851 case 0x5b: /* FCVTMU */ 12852 case 0x5c: /* FCVTAU */ 12853 case 0x7a: /* FCVTPU */ 12854 case 0x7b: /* FCVTZU */ 12855 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12856 break; 12857 case 0x6f: /* FNEG */ 12858 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12859 break; 12860 case 0x7d: /* FRSQRTE */ 12861 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12862 break; 12863 default: 12864 g_assert_not_reached(); 12865 } 12866 12867 /* limit any sign extension going on */ 12868 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12869 write_fp_sreg(s, rd, tcg_res); 12870 } else { 12871 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12872 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12873 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12874 12875 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12876 12877 switch (fpop) { 12878 case 0x1a: /* FCVTNS */ 12879 case 0x1b: /* FCVTMS */ 12880 case 0x1c: /* FCVTAS */ 12881 case 0x3a: /* FCVTPS */ 12882 case 0x3b: /* FCVTZS */ 12883 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12884 break; 12885 case 0x3d: /* FRECPE */ 12886 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12887 break; 12888 case 0x5a: /* FCVTNU */ 12889 case 0x5b: /* FCVTMU */ 12890 case 0x5c: /* FCVTAU */ 12891 case 0x7a: /* FCVTPU */ 12892 case 0x7b: /* FCVTZU */ 12893 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12894 break; 12895 case 0x18: /* FRINTN */ 12896 case 0x19: /* FRINTM */ 12897 case 0x38: /* FRINTP */ 12898 case 0x39: /* FRINTZ */ 12899 case 0x58: /* FRINTA */ 12900 case 0x79: /* FRINTI */ 12901 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12902 break; 12903 case 0x59: /* FRINTX */ 12904 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12905 break; 12906 case 0x2f: /* FABS */ 12907 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12908 break; 12909 case 0x6f: /* FNEG */ 12910 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12911 break; 12912 case 0x7d: /* FRSQRTE */ 12913 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12914 break; 12915 case 0x7f: /* FSQRT */ 12916 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12917 break; 12918 default: 12919 g_assert_not_reached(); 12920 } 12921 12922 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12923 } 12924 12925 clear_vec_high(s, is_q, rd); 12926 } 12927 12928 if (tcg_rmode) { 12929 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12930 } 12931 } 12932 12933 /* AdvSIMD scalar x indexed element 12934 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12935 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12936 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12937 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12938 * AdvSIMD vector x indexed element 12939 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12940 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12941 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12942 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12943 */ 12944 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12945 { 12946 /* This encoding has two kinds of instruction: 12947 * normal, where we perform elt x idxelt => elt for each 12948 * element in the vector 12949 * long, where we perform elt x idxelt and generate a result of 12950 * double the width of the input element 12951 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12952 */ 12953 bool is_scalar = extract32(insn, 28, 1); 12954 bool is_q = extract32(insn, 30, 1); 12955 bool u = extract32(insn, 29, 1); 12956 int size = extract32(insn, 22, 2); 12957 int l = extract32(insn, 21, 1); 12958 int m = extract32(insn, 20, 1); 12959 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12960 int rm = extract32(insn, 16, 4); 12961 int opcode = extract32(insn, 12, 4); 12962 int h = extract32(insn, 11, 1); 12963 int rn = extract32(insn, 5, 5); 12964 int rd = extract32(insn, 0, 5); 12965 bool is_long = false; 12966 int is_fp = 0; 12967 bool is_fp16 = false; 12968 int index; 12969 TCGv_ptr fpst; 12970 12971 switch (16 * u + opcode) { 12972 case 0x08: /* MUL */ 12973 case 0x10: /* MLA */ 12974 case 0x14: /* MLS */ 12975 if (is_scalar) { 12976 unallocated_encoding(s); 12977 return; 12978 } 12979 break; 12980 case 0x02: /* SMLAL, SMLAL2 */ 12981 case 0x12: /* UMLAL, UMLAL2 */ 12982 case 0x06: /* SMLSL, SMLSL2 */ 12983 case 0x16: /* UMLSL, UMLSL2 */ 12984 case 0x0a: /* SMULL, SMULL2 */ 12985 case 0x1a: /* UMULL, UMULL2 */ 12986 if (is_scalar) { 12987 unallocated_encoding(s); 12988 return; 12989 } 12990 is_long = true; 12991 break; 12992 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12993 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12994 case 0x0b: /* SQDMULL, SQDMULL2 */ 12995 is_long = true; 12996 break; 12997 case 0x0c: /* SQDMULH */ 12998 case 0x0d: /* SQRDMULH */ 12999 break; 13000 case 0x01: /* FMLA */ 13001 case 0x05: /* FMLS */ 13002 is_fp = 1; 13003 break; 13004 case 0x1d: /* SQRDMLAH */ 13005 case 0x1f: /* SQRDMLSH */ 13006 if (!dc_isar_feature(aa64_rdm, s)) { 13007 unallocated_encoding(s); 13008 return; 13009 } 13010 break; 13011 case 0x0e: /* SDOT */ 13012 case 0x1e: /* UDOT */ 13013 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 13014 unallocated_encoding(s); 13015 return; 13016 } 13017 break; 13018 case 0x0f: 13019 switch (size) { 13020 case 0: /* SUDOT */ 13021 case 2: /* USDOT */ 13022 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 13023 unallocated_encoding(s); 13024 return; 13025 } 13026 size = MO_32; 13027 break; 13028 case 1: /* BFDOT */ 13029 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13030 unallocated_encoding(s); 13031 return; 13032 } 13033 size = MO_32; 13034 break; 13035 case 3: /* BFMLAL{B,T} */ 13036 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 /* can't set is_fp without other incorrect size checks */ 13041 size = MO_16; 13042 break; 13043 default: 13044 unallocated_encoding(s); 13045 return; 13046 } 13047 break; 13048 case 0x11: /* FCMLA #0 */ 13049 case 0x13: /* FCMLA #90 */ 13050 case 0x15: /* FCMLA #180 */ 13051 case 0x17: /* FCMLA #270 */ 13052 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13053 unallocated_encoding(s); 13054 return; 13055 } 13056 is_fp = 2; 13057 break; 13058 case 0x00: /* FMLAL */ 13059 case 0x04: /* FMLSL */ 13060 case 0x18: /* FMLAL2 */ 13061 case 0x1c: /* FMLSL2 */ 13062 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13063 unallocated_encoding(s); 13064 return; 13065 } 13066 size = MO_16; 13067 /* is_fp, but we pass tcg_env not fp_status. */ 13068 break; 13069 default: 13070 case 0x09: /* FMUL */ 13071 case 0x19: /* FMULX */ 13072 unallocated_encoding(s); 13073 return; 13074 } 13075 13076 switch (is_fp) { 13077 case 1: /* normal fp */ 13078 /* convert insn encoded size to MemOp size */ 13079 switch (size) { 13080 case 0: /* half-precision */ 13081 size = MO_16; 13082 is_fp16 = true; 13083 break; 13084 case MO_32: /* single precision */ 13085 case MO_64: /* double precision */ 13086 break; 13087 default: 13088 unallocated_encoding(s); 13089 return; 13090 } 13091 break; 13092 13093 case 2: /* complex fp */ 13094 /* Each indexable element is a complex pair. */ 13095 size += 1; 13096 switch (size) { 13097 case MO_32: 13098 if (h && !is_q) { 13099 unallocated_encoding(s); 13100 return; 13101 } 13102 is_fp16 = true; 13103 break; 13104 case MO_64: 13105 break; 13106 default: 13107 unallocated_encoding(s); 13108 return; 13109 } 13110 break; 13111 13112 default: /* integer */ 13113 switch (size) { 13114 case MO_8: 13115 case MO_64: 13116 unallocated_encoding(s); 13117 return; 13118 } 13119 break; 13120 } 13121 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13122 unallocated_encoding(s); 13123 return; 13124 } 13125 13126 /* Given MemOp size, adjust register and indexing. */ 13127 switch (size) { 13128 case MO_16: 13129 index = h << 2 | l << 1 | m; 13130 break; 13131 case MO_32: 13132 index = h << 1 | l; 13133 rm |= m << 4; 13134 break; 13135 case MO_64: 13136 if (l || !is_q) { 13137 unallocated_encoding(s); 13138 return; 13139 } 13140 index = h; 13141 rm |= m << 4; 13142 break; 13143 default: 13144 g_assert_not_reached(); 13145 } 13146 13147 if (!fp_access_check(s)) { 13148 return; 13149 } 13150 13151 if (is_fp) { 13152 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13153 } else { 13154 fpst = NULL; 13155 } 13156 13157 switch (16 * u + opcode) { 13158 case 0x0e: /* SDOT */ 13159 case 0x1e: /* UDOT */ 13160 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13161 u ? gen_helper_gvec_udot_idx_b 13162 : gen_helper_gvec_sdot_idx_b); 13163 return; 13164 case 0x0f: 13165 switch (extract32(insn, 22, 2)) { 13166 case 0: /* SUDOT */ 13167 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13168 gen_helper_gvec_sudot_idx_b); 13169 return; 13170 case 1: /* BFDOT */ 13171 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13172 gen_helper_gvec_bfdot_idx); 13173 return; 13174 case 2: /* USDOT */ 13175 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13176 gen_helper_gvec_usdot_idx_b); 13177 return; 13178 case 3: /* BFMLAL{B,T} */ 13179 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13180 gen_helper_gvec_bfmlal_idx); 13181 return; 13182 } 13183 g_assert_not_reached(); 13184 case 0x11: /* FCMLA #0 */ 13185 case 0x13: /* FCMLA #90 */ 13186 case 0x15: /* FCMLA #180 */ 13187 case 0x17: /* FCMLA #270 */ 13188 { 13189 int rot = extract32(insn, 13, 2); 13190 int data = (index << 2) | rot; 13191 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13192 vec_full_reg_offset(s, rn), 13193 vec_full_reg_offset(s, rm), 13194 vec_full_reg_offset(s, rd), fpst, 13195 is_q ? 16 : 8, vec_full_reg_size(s), data, 13196 size == MO_64 13197 ? gen_helper_gvec_fcmlas_idx 13198 : gen_helper_gvec_fcmlah_idx); 13199 } 13200 return; 13201 13202 case 0x00: /* FMLAL */ 13203 case 0x04: /* FMLSL */ 13204 case 0x18: /* FMLAL2 */ 13205 case 0x1c: /* FMLSL2 */ 13206 { 13207 int is_s = extract32(opcode, 2, 1); 13208 int is_2 = u; 13209 int data = (index << 2) | (is_2 << 1) | is_s; 13210 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13211 vec_full_reg_offset(s, rn), 13212 vec_full_reg_offset(s, rm), tcg_env, 13213 is_q ? 16 : 8, vec_full_reg_size(s), 13214 data, gen_helper_gvec_fmlal_idx_a64); 13215 } 13216 return; 13217 13218 case 0x08: /* MUL */ 13219 if (!is_long && !is_scalar) { 13220 static gen_helper_gvec_3 * const fns[3] = { 13221 gen_helper_gvec_mul_idx_h, 13222 gen_helper_gvec_mul_idx_s, 13223 gen_helper_gvec_mul_idx_d, 13224 }; 13225 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13226 vec_full_reg_offset(s, rn), 13227 vec_full_reg_offset(s, rm), 13228 is_q ? 16 : 8, vec_full_reg_size(s), 13229 index, fns[size - 1]); 13230 return; 13231 } 13232 break; 13233 13234 case 0x10: /* MLA */ 13235 if (!is_long && !is_scalar) { 13236 static gen_helper_gvec_4 * const fns[3] = { 13237 gen_helper_gvec_mla_idx_h, 13238 gen_helper_gvec_mla_idx_s, 13239 gen_helper_gvec_mla_idx_d, 13240 }; 13241 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13242 vec_full_reg_offset(s, rn), 13243 vec_full_reg_offset(s, rm), 13244 vec_full_reg_offset(s, rd), 13245 is_q ? 16 : 8, vec_full_reg_size(s), 13246 index, fns[size - 1]); 13247 return; 13248 } 13249 break; 13250 13251 case 0x14: /* MLS */ 13252 if (!is_long && !is_scalar) { 13253 static gen_helper_gvec_4 * const fns[3] = { 13254 gen_helper_gvec_mls_idx_h, 13255 gen_helper_gvec_mls_idx_s, 13256 gen_helper_gvec_mls_idx_d, 13257 }; 13258 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13259 vec_full_reg_offset(s, rn), 13260 vec_full_reg_offset(s, rm), 13261 vec_full_reg_offset(s, rd), 13262 is_q ? 16 : 8, vec_full_reg_size(s), 13263 index, fns[size - 1]); 13264 return; 13265 } 13266 break; 13267 } 13268 13269 if (size == 3) { 13270 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13271 int pass; 13272 13273 assert(is_fp && is_q && !is_long); 13274 13275 read_vec_element(s, tcg_idx, rm, index, MO_64); 13276 13277 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13278 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13279 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13280 13281 read_vec_element(s, tcg_op, rn, pass, MO_64); 13282 13283 switch (16 * u + opcode) { 13284 case 0x05: /* FMLS */ 13285 /* As usual for ARM, separate negation for fused multiply-add */ 13286 gen_helper_vfp_negd(tcg_op, tcg_op); 13287 /* fall through */ 13288 case 0x01: /* FMLA */ 13289 read_vec_element(s, tcg_res, rd, pass, MO_64); 13290 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13291 break; 13292 default: 13293 case 0x09: /* FMUL */ 13294 case 0x19: /* FMULX */ 13295 g_assert_not_reached(); 13296 } 13297 13298 write_vec_element(s, tcg_res, rd, pass, MO_64); 13299 } 13300 13301 clear_vec_high(s, !is_scalar, rd); 13302 } else if (!is_long) { 13303 /* 32 bit floating point, or 16 or 32 bit integer. 13304 * For the 16 bit scalar case we use the usual Neon helpers and 13305 * rely on the fact that 0 op 0 == 0 with no side effects. 13306 */ 13307 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13308 int pass, maxpasses; 13309 13310 if (is_scalar) { 13311 maxpasses = 1; 13312 } else { 13313 maxpasses = is_q ? 4 : 2; 13314 } 13315 13316 read_vec_element_i32(s, tcg_idx, rm, index, size); 13317 13318 if (size == 1 && !is_scalar) { 13319 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13320 * the index into both halves of the 32 bit tcg_idx and then use 13321 * the usual Neon helpers. 13322 */ 13323 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13324 } 13325 13326 for (pass = 0; pass < maxpasses; pass++) { 13327 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13328 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13329 13330 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13331 13332 switch (16 * u + opcode) { 13333 case 0x08: /* MUL */ 13334 case 0x10: /* MLA */ 13335 case 0x14: /* MLS */ 13336 { 13337 static NeonGenTwoOpFn * const fns[2][2] = { 13338 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13339 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13340 }; 13341 NeonGenTwoOpFn *genfn; 13342 bool is_sub = opcode == 0x4; 13343 13344 if (size == 1) { 13345 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13346 } else { 13347 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13348 } 13349 if (opcode == 0x8) { 13350 break; 13351 } 13352 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13353 genfn = fns[size - 1][is_sub]; 13354 genfn(tcg_res, tcg_op, tcg_res); 13355 break; 13356 } 13357 case 0x05: /* FMLS */ 13358 case 0x01: /* FMLA */ 13359 read_vec_element_i32(s, tcg_res, rd, pass, 13360 is_scalar ? size : MO_32); 13361 switch (size) { 13362 case 1: 13363 if (opcode == 0x5) { 13364 /* As usual for ARM, separate negation for fused 13365 * multiply-add */ 13366 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13367 } 13368 if (is_scalar) { 13369 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13370 tcg_res, fpst); 13371 } else { 13372 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13373 tcg_res, fpst); 13374 } 13375 break; 13376 case 2: 13377 if (opcode == 0x5) { 13378 /* As usual for ARM, separate negation for 13379 * fused multiply-add */ 13380 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13381 } 13382 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13383 tcg_res, fpst); 13384 break; 13385 default: 13386 g_assert_not_reached(); 13387 } 13388 break; 13389 case 0x0c: /* SQDMULH */ 13390 if (size == 1) { 13391 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13392 tcg_op, tcg_idx); 13393 } else { 13394 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13395 tcg_op, tcg_idx); 13396 } 13397 break; 13398 case 0x0d: /* SQRDMULH */ 13399 if (size == 1) { 13400 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13401 tcg_op, tcg_idx); 13402 } else { 13403 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13404 tcg_op, tcg_idx); 13405 } 13406 break; 13407 case 0x1d: /* SQRDMLAH */ 13408 read_vec_element_i32(s, tcg_res, rd, pass, 13409 is_scalar ? size : MO_32); 13410 if (size == 1) { 13411 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13412 tcg_op, tcg_idx, tcg_res); 13413 } else { 13414 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13415 tcg_op, tcg_idx, tcg_res); 13416 } 13417 break; 13418 case 0x1f: /* SQRDMLSH */ 13419 read_vec_element_i32(s, tcg_res, rd, pass, 13420 is_scalar ? size : MO_32); 13421 if (size == 1) { 13422 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13423 tcg_op, tcg_idx, tcg_res); 13424 } else { 13425 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13426 tcg_op, tcg_idx, tcg_res); 13427 } 13428 break; 13429 default: 13430 case 0x09: /* FMUL */ 13431 case 0x19: /* FMULX */ 13432 g_assert_not_reached(); 13433 } 13434 13435 if (is_scalar) { 13436 write_fp_sreg(s, rd, tcg_res); 13437 } else { 13438 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13439 } 13440 } 13441 13442 clear_vec_high(s, is_q, rd); 13443 } else { 13444 /* long ops: 16x16->32 or 32x32->64 */ 13445 TCGv_i64 tcg_res[2]; 13446 int pass; 13447 bool satop = extract32(opcode, 0, 1); 13448 MemOp memop = MO_32; 13449 13450 if (satop || !u) { 13451 memop |= MO_SIGN; 13452 } 13453 13454 if (size == 2) { 13455 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13456 13457 read_vec_element(s, tcg_idx, rm, index, memop); 13458 13459 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13460 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13461 TCGv_i64 tcg_passres; 13462 int passelt; 13463 13464 if (is_scalar) { 13465 passelt = 0; 13466 } else { 13467 passelt = pass + (is_q * 2); 13468 } 13469 13470 read_vec_element(s, tcg_op, rn, passelt, memop); 13471 13472 tcg_res[pass] = tcg_temp_new_i64(); 13473 13474 if (opcode == 0xa || opcode == 0xb) { 13475 /* Non-accumulating ops */ 13476 tcg_passres = tcg_res[pass]; 13477 } else { 13478 tcg_passres = tcg_temp_new_i64(); 13479 } 13480 13481 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13482 13483 if (satop) { 13484 /* saturating, doubling */ 13485 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13486 tcg_passres, tcg_passres); 13487 } 13488 13489 if (opcode == 0xa || opcode == 0xb) { 13490 continue; 13491 } 13492 13493 /* Accumulating op: handle accumulate step */ 13494 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13495 13496 switch (opcode) { 13497 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13498 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13499 break; 13500 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13501 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13502 break; 13503 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13504 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13505 /* fall through */ 13506 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13507 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13508 tcg_res[pass], 13509 tcg_passres); 13510 break; 13511 default: 13512 g_assert_not_reached(); 13513 } 13514 } 13515 13516 clear_vec_high(s, !is_scalar, rd); 13517 } else { 13518 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13519 13520 assert(size == 1); 13521 read_vec_element_i32(s, tcg_idx, rm, index, size); 13522 13523 if (!is_scalar) { 13524 /* The simplest way to handle the 16x16 indexed ops is to 13525 * duplicate the index into both halves of the 32 bit tcg_idx 13526 * and then use the usual Neon helpers. 13527 */ 13528 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13529 } 13530 13531 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13532 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13533 TCGv_i64 tcg_passres; 13534 13535 if (is_scalar) { 13536 read_vec_element_i32(s, tcg_op, rn, pass, size); 13537 } else { 13538 read_vec_element_i32(s, tcg_op, rn, 13539 pass + (is_q * 2), MO_32); 13540 } 13541 13542 tcg_res[pass] = tcg_temp_new_i64(); 13543 13544 if (opcode == 0xa || opcode == 0xb) { 13545 /* Non-accumulating ops */ 13546 tcg_passres = tcg_res[pass]; 13547 } else { 13548 tcg_passres = tcg_temp_new_i64(); 13549 } 13550 13551 if (memop & MO_SIGN) { 13552 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13553 } else { 13554 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13555 } 13556 if (satop) { 13557 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13558 tcg_passres, tcg_passres); 13559 } 13560 13561 if (opcode == 0xa || opcode == 0xb) { 13562 continue; 13563 } 13564 13565 /* Accumulating op: handle accumulate step */ 13566 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13567 13568 switch (opcode) { 13569 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13570 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13571 tcg_passres); 13572 break; 13573 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13574 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13575 tcg_passres); 13576 break; 13577 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13578 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13579 /* fall through */ 13580 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13581 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13582 tcg_res[pass], 13583 tcg_passres); 13584 break; 13585 default: 13586 g_assert_not_reached(); 13587 } 13588 } 13589 13590 if (is_scalar) { 13591 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13592 } 13593 } 13594 13595 if (is_scalar) { 13596 tcg_res[1] = tcg_constant_i64(0); 13597 } 13598 13599 for (pass = 0; pass < 2; pass++) { 13600 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13601 } 13602 } 13603 } 13604 13605 /* C3.6 Data processing - SIMD, inc Crypto 13606 * 13607 * As the decode gets a little complex we are using a table based 13608 * approach for this part of the decode. 13609 */ 13610 static const AArch64DecodeTable data_proc_simd[] = { 13611 /* pattern , mask , fn */ 13612 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13613 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13614 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13615 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13616 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13617 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13618 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13619 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13620 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13621 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13622 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13623 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13624 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13625 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13626 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13627 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13628 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13629 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13630 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13631 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13632 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13633 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13634 { 0x00000000, 0x00000000, NULL } 13635 }; 13636 13637 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13638 { 13639 /* Note that this is called with all non-FP cases from 13640 * table C3-6 so it must UNDEF for entries not specifically 13641 * allocated to instructions in that table. 13642 */ 13643 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13644 if (fn) { 13645 fn(s, insn); 13646 } else { 13647 unallocated_encoding(s); 13648 } 13649 } 13650 13651 /* C3.6 Data processing - SIMD and floating point */ 13652 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13653 { 13654 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13655 disas_data_proc_fp(s, insn); 13656 } else { 13657 /* SIMD, including crypto */ 13658 disas_data_proc_simd(s, insn); 13659 } 13660 } 13661 13662 static bool trans_OK(DisasContext *s, arg_OK *a) 13663 { 13664 return true; 13665 } 13666 13667 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13668 { 13669 s->is_nonstreaming = true; 13670 return true; 13671 } 13672 13673 /** 13674 * is_guarded_page: 13675 * @env: The cpu environment 13676 * @s: The DisasContext 13677 * 13678 * Return true if the page is guarded. 13679 */ 13680 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13681 { 13682 uint64_t addr = s->base.pc_first; 13683 #ifdef CONFIG_USER_ONLY 13684 return page_get_flags(addr) & PAGE_BTI; 13685 #else 13686 CPUTLBEntryFull *full; 13687 void *host; 13688 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13689 int flags; 13690 13691 /* 13692 * We test this immediately after reading an insn, which means 13693 * that the TLB entry must be present and valid, and thus this 13694 * access will never raise an exception. 13695 */ 13696 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13697 false, &host, &full, 0); 13698 assert(!(flags & TLB_INVALID_MASK)); 13699 13700 return full->extra.arm.guarded; 13701 #endif 13702 } 13703 13704 /** 13705 * btype_destination_ok: 13706 * @insn: The instruction at the branch destination 13707 * @bt: SCTLR_ELx.BT 13708 * @btype: PSTATE.BTYPE, and is non-zero 13709 * 13710 * On a guarded page, there are a limited number of insns 13711 * that may be present at the branch target: 13712 * - branch target identifiers, 13713 * - paciasp, pacibsp, 13714 * - BRK insn 13715 * - HLT insn 13716 * Anything else causes a Branch Target Exception. 13717 * 13718 * Return true if the branch is compatible, false to raise BTITRAP. 13719 */ 13720 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13721 { 13722 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13723 /* HINT space */ 13724 switch (extract32(insn, 5, 7)) { 13725 case 0b011001: /* PACIASP */ 13726 case 0b011011: /* PACIBSP */ 13727 /* 13728 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13729 * with btype == 3. Otherwise all btype are ok. 13730 */ 13731 return !bt || btype != 3; 13732 case 0b100000: /* BTI */ 13733 /* Not compatible with any btype. */ 13734 return false; 13735 case 0b100010: /* BTI c */ 13736 /* Not compatible with btype == 3 */ 13737 return btype != 3; 13738 case 0b100100: /* BTI j */ 13739 /* Not compatible with btype == 2 */ 13740 return btype != 2; 13741 case 0b100110: /* BTI jc */ 13742 /* Compatible with any btype. */ 13743 return true; 13744 } 13745 } else { 13746 switch (insn & 0xffe0001fu) { 13747 case 0xd4200000u: /* BRK */ 13748 case 0xd4400000u: /* HLT */ 13749 /* Give priority to the breakpoint exception. */ 13750 return true; 13751 } 13752 } 13753 return false; 13754 } 13755 13756 /* C3.1 A64 instruction index by encoding */ 13757 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13758 { 13759 switch (extract32(insn, 25, 4)) { 13760 case 0x5: 13761 case 0xd: /* Data processing - register */ 13762 disas_data_proc_reg(s, insn); 13763 break; 13764 case 0x7: 13765 case 0xf: /* Data processing - SIMD and floating point */ 13766 disas_data_proc_simd_fp(s, insn); 13767 break; 13768 default: 13769 unallocated_encoding(s); 13770 break; 13771 } 13772 } 13773 13774 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13775 CPUState *cpu) 13776 { 13777 DisasContext *dc = container_of(dcbase, DisasContext, base); 13778 CPUARMState *env = cpu_env(cpu); 13779 ARMCPU *arm_cpu = env_archcpu(env); 13780 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13781 int bound, core_mmu_idx; 13782 13783 dc->isar = &arm_cpu->isar; 13784 dc->condjmp = 0; 13785 dc->pc_save = dc->base.pc_first; 13786 dc->aarch64 = true; 13787 dc->thumb = false; 13788 dc->sctlr_b = 0; 13789 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13790 dc->condexec_mask = 0; 13791 dc->condexec_cond = 0; 13792 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13793 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13794 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13795 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13796 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13797 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13798 #if !defined(CONFIG_USER_ONLY) 13799 dc->user = (dc->current_el == 0); 13800 #endif 13801 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13802 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13803 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13804 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13805 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13806 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13807 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13808 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13809 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13810 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13811 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13812 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13813 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13814 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13815 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13816 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13817 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13818 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13819 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13820 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13821 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13822 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13823 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13824 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13825 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13826 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13827 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13828 dc->vec_len = 0; 13829 dc->vec_stride = 0; 13830 dc->cp_regs = arm_cpu->cp_regs; 13831 dc->features = env->features; 13832 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13833 dc->gm_blocksize = arm_cpu->gm_blocksize; 13834 13835 #ifdef CONFIG_USER_ONLY 13836 /* In sve_probe_page, we assume TBI is enabled. */ 13837 tcg_debug_assert(dc->tbid & 1); 13838 #endif 13839 13840 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13841 13842 /* Single step state. The code-generation logic here is: 13843 * SS_ACTIVE == 0: 13844 * generate code with no special handling for single-stepping (except 13845 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13846 * this happens anyway because those changes are all system register or 13847 * PSTATE writes). 13848 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13849 * emit code for one insn 13850 * emit code to clear PSTATE.SS 13851 * emit code to generate software step exception for completed step 13852 * end TB (as usual for having generated an exception) 13853 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13854 * emit code to generate a software step exception 13855 * end the TB 13856 */ 13857 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13858 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13859 dc->is_ldex = false; 13860 13861 /* Bound the number of insns to execute to those left on the page. */ 13862 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13863 13864 /* If architectural single step active, limit to 1. */ 13865 if (dc->ss_active) { 13866 bound = 1; 13867 } 13868 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13869 } 13870 13871 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13872 { 13873 } 13874 13875 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13876 { 13877 DisasContext *dc = container_of(dcbase, DisasContext, base); 13878 target_ulong pc_arg = dc->base.pc_next; 13879 13880 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13881 pc_arg &= ~TARGET_PAGE_MASK; 13882 } 13883 tcg_gen_insn_start(pc_arg, 0, 0); 13884 dc->insn_start_updated = false; 13885 } 13886 13887 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13888 { 13889 DisasContext *s = container_of(dcbase, DisasContext, base); 13890 CPUARMState *env = cpu_env(cpu); 13891 uint64_t pc = s->base.pc_next; 13892 uint32_t insn; 13893 13894 /* Singlestep exceptions have the highest priority. */ 13895 if (s->ss_active && !s->pstate_ss) { 13896 /* Singlestep state is Active-pending. 13897 * If we're in this state at the start of a TB then either 13898 * a) we just took an exception to an EL which is being debugged 13899 * and this is the first insn in the exception handler 13900 * b) debug exceptions were masked and we just unmasked them 13901 * without changing EL (eg by clearing PSTATE.D) 13902 * In either case we're going to take a swstep exception in the 13903 * "did not step an insn" case, and so the syndrome ISV and EX 13904 * bits should be zero. 13905 */ 13906 assert(s->base.num_insns == 1); 13907 gen_swstep_exception(s, 0, 0); 13908 s->base.is_jmp = DISAS_NORETURN; 13909 s->base.pc_next = pc + 4; 13910 return; 13911 } 13912 13913 if (pc & 3) { 13914 /* 13915 * PC alignment fault. This has priority over the instruction abort 13916 * that we would receive from a translation fault via arm_ldl_code. 13917 * This should only be possible after an indirect branch, at the 13918 * start of the TB. 13919 */ 13920 assert(s->base.num_insns == 1); 13921 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13922 s->base.is_jmp = DISAS_NORETURN; 13923 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13924 return; 13925 } 13926 13927 s->pc_curr = pc; 13928 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13929 s->insn = insn; 13930 s->base.pc_next = pc + 4; 13931 13932 s->fp_access_checked = false; 13933 s->sve_access_checked = false; 13934 13935 if (s->pstate_il) { 13936 /* 13937 * Illegal execution state. This has priority over BTI 13938 * exceptions, but comes after instruction abort exceptions. 13939 */ 13940 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13941 return; 13942 } 13943 13944 if (dc_isar_feature(aa64_bti, s)) { 13945 if (s->base.num_insns == 1) { 13946 /* 13947 * At the first insn of the TB, compute s->guarded_page. 13948 * We delayed computing this until successfully reading 13949 * the first insn of the TB, above. This (mostly) ensures 13950 * that the softmmu tlb entry has been populated, and the 13951 * page table GP bit is available. 13952 * 13953 * Note that we need to compute this even if btype == 0, 13954 * because this value is used for BR instructions later 13955 * where ENV is not available. 13956 */ 13957 s->guarded_page = is_guarded_page(env, s); 13958 13959 /* First insn can have btype set to non-zero. */ 13960 tcg_debug_assert(s->btype >= 0); 13961 13962 /* 13963 * Note that the Branch Target Exception has fairly high 13964 * priority -- below debugging exceptions but above most 13965 * everything else. This allows us to handle this now 13966 * instead of waiting until the insn is otherwise decoded. 13967 */ 13968 if (s->btype != 0 13969 && s->guarded_page 13970 && !btype_destination_ok(insn, s->bt, s->btype)) { 13971 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13972 return; 13973 } 13974 } else { 13975 /* Not the first insn: btype must be 0. */ 13976 tcg_debug_assert(s->btype == 0); 13977 } 13978 } 13979 13980 s->is_nonstreaming = false; 13981 if (s->sme_trap_nonstreaming) { 13982 disas_sme_fa64(s, insn); 13983 } 13984 13985 if (!disas_a64(s, insn) && 13986 !disas_sme(s, insn) && 13987 !disas_sve(s, insn)) { 13988 disas_a64_legacy(s, insn); 13989 } 13990 13991 /* 13992 * After execution of most insns, btype is reset to 0. 13993 * Note that we set btype == -1 when the insn sets btype. 13994 */ 13995 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13996 reset_btype(s); 13997 } 13998 } 13999 14000 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14001 { 14002 DisasContext *dc = container_of(dcbase, DisasContext, base); 14003 14004 if (unlikely(dc->ss_active)) { 14005 /* Note that this means single stepping WFI doesn't halt the CPU. 14006 * For conditional branch insns this is harmless unreachable code as 14007 * gen_goto_tb() has already handled emitting the debug exception 14008 * (and thus a tb-jump is not possible when singlestepping). 14009 */ 14010 switch (dc->base.is_jmp) { 14011 default: 14012 gen_a64_update_pc(dc, 4); 14013 /* fall through */ 14014 case DISAS_EXIT: 14015 case DISAS_JUMP: 14016 gen_step_complete_exception(dc); 14017 break; 14018 case DISAS_NORETURN: 14019 break; 14020 } 14021 } else { 14022 switch (dc->base.is_jmp) { 14023 case DISAS_NEXT: 14024 case DISAS_TOO_MANY: 14025 gen_goto_tb(dc, 1, 4); 14026 break; 14027 default: 14028 case DISAS_UPDATE_EXIT: 14029 gen_a64_update_pc(dc, 4); 14030 /* fall through */ 14031 case DISAS_EXIT: 14032 tcg_gen_exit_tb(NULL, 0); 14033 break; 14034 case DISAS_UPDATE_NOCHAIN: 14035 gen_a64_update_pc(dc, 4); 14036 /* fall through */ 14037 case DISAS_JUMP: 14038 tcg_gen_lookup_and_goto_ptr(); 14039 break; 14040 case DISAS_NORETURN: 14041 case DISAS_SWI: 14042 break; 14043 case DISAS_WFE: 14044 gen_a64_update_pc(dc, 4); 14045 gen_helper_wfe(tcg_env); 14046 break; 14047 case DISAS_YIELD: 14048 gen_a64_update_pc(dc, 4); 14049 gen_helper_yield(tcg_env); 14050 break; 14051 case DISAS_WFI: 14052 /* 14053 * This is a special case because we don't want to just halt 14054 * the CPU if trying to debug across a WFI. 14055 */ 14056 gen_a64_update_pc(dc, 4); 14057 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14058 /* 14059 * The helper doesn't necessarily throw an exception, but we 14060 * must go back to the main loop to check for interrupts anyway. 14061 */ 14062 tcg_gen_exit_tb(NULL, 0); 14063 break; 14064 } 14065 } 14066 } 14067 14068 const TranslatorOps aarch64_translator_ops = { 14069 .init_disas_context = aarch64_tr_init_disas_context, 14070 .tb_start = aarch64_tr_tb_start, 14071 .insn_start = aarch64_tr_insn_start, 14072 .translate_insn = aarch64_tr_translate_insn, 14073 .tb_stop = aarch64_tr_tb_stop, 14074 }; 14075