xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision e0300a9a)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmulx = {
4919     gen_helper_advsimd_mulxh,
4920     gen_helper_vfp_mulxs,
4921     gen_helper_vfp_mulxd,
4922 };
4923 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4924 
4925 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
4926                           gen_helper_gvec_3_ptr * const fns[3])
4927 {
4928     MemOp esz = a->esz;
4929 
4930     switch (esz) {
4931     case MO_64:
4932         if (!a->q) {
4933             return false;
4934         }
4935         break;
4936     case MO_32:
4937         break;
4938     case MO_16:
4939         if (!dc_isar_feature(aa64_fp16, s)) {
4940             return false;
4941         }
4942         break;
4943     default:
4944         return false;
4945     }
4946     if (fp_access_check(s)) {
4947         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
4948                           esz == MO_16, 0, fns[esz - 1]);
4949     }
4950     return true;
4951 }
4952 
4953 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
4954     gen_helper_gvec_fadd_h,
4955     gen_helper_gvec_fadd_s,
4956     gen_helper_gvec_fadd_d,
4957 };
4958 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
4959 
4960 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
4961     gen_helper_gvec_fsub_h,
4962     gen_helper_gvec_fsub_s,
4963     gen_helper_gvec_fsub_d,
4964 };
4965 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
4966 
4967 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
4968     gen_helper_gvec_fdiv_h,
4969     gen_helper_gvec_fdiv_s,
4970     gen_helper_gvec_fdiv_d,
4971 };
4972 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
4973 
4974 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
4975     gen_helper_gvec_fmul_h,
4976     gen_helper_gvec_fmul_s,
4977     gen_helper_gvec_fmul_d,
4978 };
4979 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
4980 
4981 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
4982     gen_helper_gvec_fmulx_h,
4983     gen_helper_gvec_fmulx_s,
4984     gen_helper_gvec_fmulx_d,
4985 };
4986 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
4987 
4988 /*
4989  * Advanced SIMD scalar/vector x indexed element
4990  */
4991 
4992 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
4993 {
4994     switch (a->esz) {
4995     case MO_64:
4996         if (fp_access_check(s)) {
4997             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4998             TCGv_i64 t1 = tcg_temp_new_i64();
4999 
5000             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5001             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5002             write_fp_dreg(s, a->rd, t0);
5003         }
5004         break;
5005     case MO_32:
5006         if (fp_access_check(s)) {
5007             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5008             TCGv_i32 t1 = tcg_temp_new_i32();
5009 
5010             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5011             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5012             write_fp_sreg(s, a->rd, t0);
5013         }
5014         break;
5015     case MO_16:
5016         if (!dc_isar_feature(aa64_fp16, s)) {
5017             return false;
5018         }
5019         if (fp_access_check(s)) {
5020             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5021             TCGv_i32 t1 = tcg_temp_new_i32();
5022 
5023             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5024             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5025             write_fp_sreg(s, a->rd, t0);
5026         }
5027         break;
5028     default:
5029         g_assert_not_reached();
5030     }
5031     return true;
5032 }
5033 
5034 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5035 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5036 
5037 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5038                               gen_helper_gvec_3_ptr * const fns[3])
5039 {
5040     MemOp esz = a->esz;
5041 
5042     switch (esz) {
5043     case MO_64:
5044         if (!a->q) {
5045             return false;
5046         }
5047         break;
5048     case MO_32:
5049         break;
5050     case MO_16:
5051         if (!dc_isar_feature(aa64_fp16, s)) {
5052             return false;
5053         }
5054         break;
5055     default:
5056         g_assert_not_reached();
5057     }
5058     if (fp_access_check(s)) {
5059         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5060                           esz == MO_16, a->idx, fns[esz - 1]);
5061     }
5062     return true;
5063 }
5064 
5065 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5066     gen_helper_gvec_fmul_idx_h,
5067     gen_helper_gvec_fmul_idx_s,
5068     gen_helper_gvec_fmul_idx_d,
5069 };
5070 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5071 
5072 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5073     gen_helper_gvec_fmulx_idx_h,
5074     gen_helper_gvec_fmulx_idx_s,
5075     gen_helper_gvec_fmulx_idx_d,
5076 };
5077 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5078 
5079 
5080 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5081  * Note that it is the caller's responsibility to ensure that the
5082  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5083  * mandated semantics for out of range shifts.
5084  */
5085 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5086                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5087 {
5088     switch (shift_type) {
5089     case A64_SHIFT_TYPE_LSL:
5090         tcg_gen_shl_i64(dst, src, shift_amount);
5091         break;
5092     case A64_SHIFT_TYPE_LSR:
5093         tcg_gen_shr_i64(dst, src, shift_amount);
5094         break;
5095     case A64_SHIFT_TYPE_ASR:
5096         if (!sf) {
5097             tcg_gen_ext32s_i64(dst, src);
5098         }
5099         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5100         break;
5101     case A64_SHIFT_TYPE_ROR:
5102         if (sf) {
5103             tcg_gen_rotr_i64(dst, src, shift_amount);
5104         } else {
5105             TCGv_i32 t0, t1;
5106             t0 = tcg_temp_new_i32();
5107             t1 = tcg_temp_new_i32();
5108             tcg_gen_extrl_i64_i32(t0, src);
5109             tcg_gen_extrl_i64_i32(t1, shift_amount);
5110             tcg_gen_rotr_i32(t0, t0, t1);
5111             tcg_gen_extu_i32_i64(dst, t0);
5112         }
5113         break;
5114     default:
5115         assert(FALSE); /* all shift types should be handled */
5116         break;
5117     }
5118 
5119     if (!sf) { /* zero extend final result */
5120         tcg_gen_ext32u_i64(dst, dst);
5121     }
5122 }
5123 
5124 /* Shift a TCGv src by immediate, put result in dst.
5125  * The shift amount must be in range (this should always be true as the
5126  * relevant instructions will UNDEF on bad shift immediates).
5127  */
5128 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5129                           enum a64_shift_type shift_type, unsigned int shift_i)
5130 {
5131     assert(shift_i < (sf ? 64 : 32));
5132 
5133     if (shift_i == 0) {
5134         tcg_gen_mov_i64(dst, src);
5135     } else {
5136         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5137     }
5138 }
5139 
5140 /* Logical (shifted register)
5141  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5142  * +----+-----+-----------+-------+---+------+--------+------+------+
5143  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5144  * +----+-----+-----------+-------+---+------+--------+------+------+
5145  */
5146 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5147 {
5148     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5149     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5150 
5151     sf = extract32(insn, 31, 1);
5152     opc = extract32(insn, 29, 2);
5153     shift_type = extract32(insn, 22, 2);
5154     invert = extract32(insn, 21, 1);
5155     rm = extract32(insn, 16, 5);
5156     shift_amount = extract32(insn, 10, 6);
5157     rn = extract32(insn, 5, 5);
5158     rd = extract32(insn, 0, 5);
5159 
5160     if (!sf && (shift_amount & (1 << 5))) {
5161         unallocated_encoding(s);
5162         return;
5163     }
5164 
5165     tcg_rd = cpu_reg(s, rd);
5166 
5167     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5168         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5169          * register-register MOV and MVN, so it is worth special casing.
5170          */
5171         tcg_rm = cpu_reg(s, rm);
5172         if (invert) {
5173             tcg_gen_not_i64(tcg_rd, tcg_rm);
5174             if (!sf) {
5175                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5176             }
5177         } else {
5178             if (sf) {
5179                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5180             } else {
5181                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5182             }
5183         }
5184         return;
5185     }
5186 
5187     tcg_rm = read_cpu_reg(s, rm, sf);
5188 
5189     if (shift_amount) {
5190         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5191     }
5192 
5193     tcg_rn = cpu_reg(s, rn);
5194 
5195     switch (opc | (invert << 2)) {
5196     case 0: /* AND */
5197     case 3: /* ANDS */
5198         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5199         break;
5200     case 1: /* ORR */
5201         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5202         break;
5203     case 2: /* EOR */
5204         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5205         break;
5206     case 4: /* BIC */
5207     case 7: /* BICS */
5208         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5209         break;
5210     case 5: /* ORN */
5211         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5212         break;
5213     case 6: /* EON */
5214         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5215         break;
5216     default:
5217         assert(FALSE);
5218         break;
5219     }
5220 
5221     if (!sf) {
5222         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5223     }
5224 
5225     if (opc == 3) {
5226         gen_logic_CC(sf, tcg_rd);
5227     }
5228 }
5229 
5230 /*
5231  * Add/subtract (extended register)
5232  *
5233  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5234  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5235  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5236  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5237  *
5238  *  sf: 0 -> 32bit, 1 -> 64bit
5239  *  op: 0 -> add  , 1 -> sub
5240  *   S: 1 -> set flags
5241  * opt: 00
5242  * option: extension type (see DecodeRegExtend)
5243  * imm3: optional shift to Rm
5244  *
5245  * Rd = Rn + LSL(extend(Rm), amount)
5246  */
5247 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5248 {
5249     int rd = extract32(insn, 0, 5);
5250     int rn = extract32(insn, 5, 5);
5251     int imm3 = extract32(insn, 10, 3);
5252     int option = extract32(insn, 13, 3);
5253     int rm = extract32(insn, 16, 5);
5254     int opt = extract32(insn, 22, 2);
5255     bool setflags = extract32(insn, 29, 1);
5256     bool sub_op = extract32(insn, 30, 1);
5257     bool sf = extract32(insn, 31, 1);
5258 
5259     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5260     TCGv_i64 tcg_rd;
5261     TCGv_i64 tcg_result;
5262 
5263     if (imm3 > 4 || opt != 0) {
5264         unallocated_encoding(s);
5265         return;
5266     }
5267 
5268     /* non-flag setting ops may use SP */
5269     if (!setflags) {
5270         tcg_rd = cpu_reg_sp(s, rd);
5271     } else {
5272         tcg_rd = cpu_reg(s, rd);
5273     }
5274     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5275 
5276     tcg_rm = read_cpu_reg(s, rm, sf);
5277     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5278 
5279     tcg_result = tcg_temp_new_i64();
5280 
5281     if (!setflags) {
5282         if (sub_op) {
5283             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5284         } else {
5285             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5286         }
5287     } else {
5288         if (sub_op) {
5289             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5290         } else {
5291             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5292         }
5293     }
5294 
5295     if (sf) {
5296         tcg_gen_mov_i64(tcg_rd, tcg_result);
5297     } else {
5298         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5299     }
5300 }
5301 
5302 /*
5303  * Add/subtract (shifted register)
5304  *
5305  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5306  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5307  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5308  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5309  *
5310  *    sf: 0 -> 32bit, 1 -> 64bit
5311  *    op: 0 -> add  , 1 -> sub
5312  *     S: 1 -> set flags
5313  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5314  *  imm6: Shift amount to apply to Rm before the add/sub
5315  */
5316 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5317 {
5318     int rd = extract32(insn, 0, 5);
5319     int rn = extract32(insn, 5, 5);
5320     int imm6 = extract32(insn, 10, 6);
5321     int rm = extract32(insn, 16, 5);
5322     int shift_type = extract32(insn, 22, 2);
5323     bool setflags = extract32(insn, 29, 1);
5324     bool sub_op = extract32(insn, 30, 1);
5325     bool sf = extract32(insn, 31, 1);
5326 
5327     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5328     TCGv_i64 tcg_rn, tcg_rm;
5329     TCGv_i64 tcg_result;
5330 
5331     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5332         unallocated_encoding(s);
5333         return;
5334     }
5335 
5336     tcg_rn = read_cpu_reg(s, rn, sf);
5337     tcg_rm = read_cpu_reg(s, rm, sf);
5338 
5339     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5340 
5341     tcg_result = tcg_temp_new_i64();
5342 
5343     if (!setflags) {
5344         if (sub_op) {
5345             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5346         } else {
5347             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5348         }
5349     } else {
5350         if (sub_op) {
5351             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5352         } else {
5353             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5354         }
5355     }
5356 
5357     if (sf) {
5358         tcg_gen_mov_i64(tcg_rd, tcg_result);
5359     } else {
5360         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5361     }
5362 }
5363 
5364 /* Data-processing (3 source)
5365  *
5366  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5367  *  +--+------+-----------+------+------+----+------+------+------+
5368  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5369  *  +--+------+-----------+------+------+----+------+------+------+
5370  */
5371 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5372 {
5373     int rd = extract32(insn, 0, 5);
5374     int rn = extract32(insn, 5, 5);
5375     int ra = extract32(insn, 10, 5);
5376     int rm = extract32(insn, 16, 5);
5377     int op_id = (extract32(insn, 29, 3) << 4) |
5378         (extract32(insn, 21, 3) << 1) |
5379         extract32(insn, 15, 1);
5380     bool sf = extract32(insn, 31, 1);
5381     bool is_sub = extract32(op_id, 0, 1);
5382     bool is_high = extract32(op_id, 2, 1);
5383     bool is_signed = false;
5384     TCGv_i64 tcg_op1;
5385     TCGv_i64 tcg_op2;
5386     TCGv_i64 tcg_tmp;
5387 
5388     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5389     switch (op_id) {
5390     case 0x42: /* SMADDL */
5391     case 0x43: /* SMSUBL */
5392     case 0x44: /* SMULH */
5393         is_signed = true;
5394         break;
5395     case 0x0: /* MADD (32bit) */
5396     case 0x1: /* MSUB (32bit) */
5397     case 0x40: /* MADD (64bit) */
5398     case 0x41: /* MSUB (64bit) */
5399     case 0x4a: /* UMADDL */
5400     case 0x4b: /* UMSUBL */
5401     case 0x4c: /* UMULH */
5402         break;
5403     default:
5404         unallocated_encoding(s);
5405         return;
5406     }
5407 
5408     if (is_high) {
5409         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5410         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5411         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5412         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5413 
5414         if (is_signed) {
5415             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5416         } else {
5417             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5418         }
5419         return;
5420     }
5421 
5422     tcg_op1 = tcg_temp_new_i64();
5423     tcg_op2 = tcg_temp_new_i64();
5424     tcg_tmp = tcg_temp_new_i64();
5425 
5426     if (op_id < 0x42) {
5427         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5428         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5429     } else {
5430         if (is_signed) {
5431             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5432             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5433         } else {
5434             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5435             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5436         }
5437     }
5438 
5439     if (ra == 31 && !is_sub) {
5440         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5441         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5442     } else {
5443         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5444         if (is_sub) {
5445             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5446         } else {
5447             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5448         }
5449     }
5450 
5451     if (!sf) {
5452         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5453     }
5454 }
5455 
5456 /* Add/subtract (with carry)
5457  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5458  * +--+--+--+------------------------+------+-------------+------+-----+
5459  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5460  * +--+--+--+------------------------+------+-------------+------+-----+
5461  */
5462 
5463 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5464 {
5465     unsigned int sf, op, setflags, rm, rn, rd;
5466     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5467 
5468     sf = extract32(insn, 31, 1);
5469     op = extract32(insn, 30, 1);
5470     setflags = extract32(insn, 29, 1);
5471     rm = extract32(insn, 16, 5);
5472     rn = extract32(insn, 5, 5);
5473     rd = extract32(insn, 0, 5);
5474 
5475     tcg_rd = cpu_reg(s, rd);
5476     tcg_rn = cpu_reg(s, rn);
5477 
5478     if (op) {
5479         tcg_y = tcg_temp_new_i64();
5480         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5481     } else {
5482         tcg_y = cpu_reg(s, rm);
5483     }
5484 
5485     if (setflags) {
5486         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5487     } else {
5488         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5489     }
5490 }
5491 
5492 /*
5493  * Rotate right into flags
5494  *  31 30 29                21       15          10      5  4      0
5495  * +--+--+--+-----------------+--------+-----------+------+--+------+
5496  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5497  * +--+--+--+-----------------+--------+-----------+------+--+------+
5498  */
5499 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5500 {
5501     int mask = extract32(insn, 0, 4);
5502     int o2 = extract32(insn, 4, 1);
5503     int rn = extract32(insn, 5, 5);
5504     int imm6 = extract32(insn, 15, 6);
5505     int sf_op_s = extract32(insn, 29, 3);
5506     TCGv_i64 tcg_rn;
5507     TCGv_i32 nzcv;
5508 
5509     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5510         unallocated_encoding(s);
5511         return;
5512     }
5513 
5514     tcg_rn = read_cpu_reg(s, rn, 1);
5515     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5516 
5517     nzcv = tcg_temp_new_i32();
5518     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5519 
5520     if (mask & 8) { /* N */
5521         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5522     }
5523     if (mask & 4) { /* Z */
5524         tcg_gen_not_i32(cpu_ZF, nzcv);
5525         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5526     }
5527     if (mask & 2) { /* C */
5528         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5529     }
5530     if (mask & 1) { /* V */
5531         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5532     }
5533 }
5534 
5535 /*
5536  * Evaluate into flags
5537  *  31 30 29                21        15   14        10      5  4      0
5538  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5539  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5540  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5541  */
5542 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5543 {
5544     int o3_mask = extract32(insn, 0, 5);
5545     int rn = extract32(insn, 5, 5);
5546     int o2 = extract32(insn, 15, 6);
5547     int sz = extract32(insn, 14, 1);
5548     int sf_op_s = extract32(insn, 29, 3);
5549     TCGv_i32 tmp;
5550     int shift;
5551 
5552     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5553         !dc_isar_feature(aa64_condm_4, s)) {
5554         unallocated_encoding(s);
5555         return;
5556     }
5557     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5558 
5559     tmp = tcg_temp_new_i32();
5560     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5561     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5562     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5563     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5564     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5565 }
5566 
5567 /* Conditional compare (immediate / register)
5568  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5569  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5570  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5571  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5572  *        [1]                             y                [0]       [0]
5573  */
5574 static void disas_cc(DisasContext *s, uint32_t insn)
5575 {
5576     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5577     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5578     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5579     DisasCompare c;
5580 
5581     if (!extract32(insn, 29, 1)) {
5582         unallocated_encoding(s);
5583         return;
5584     }
5585     if (insn & (1 << 10 | 1 << 4)) {
5586         unallocated_encoding(s);
5587         return;
5588     }
5589     sf = extract32(insn, 31, 1);
5590     op = extract32(insn, 30, 1);
5591     is_imm = extract32(insn, 11, 1);
5592     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5593     cond = extract32(insn, 12, 4);
5594     rn = extract32(insn, 5, 5);
5595     nzcv = extract32(insn, 0, 4);
5596 
5597     /* Set T0 = !COND.  */
5598     tcg_t0 = tcg_temp_new_i32();
5599     arm_test_cc(&c, cond);
5600     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5601 
5602     /* Load the arguments for the new comparison.  */
5603     if (is_imm) {
5604         tcg_y = tcg_temp_new_i64();
5605         tcg_gen_movi_i64(tcg_y, y);
5606     } else {
5607         tcg_y = cpu_reg(s, y);
5608     }
5609     tcg_rn = cpu_reg(s, rn);
5610 
5611     /* Set the flags for the new comparison.  */
5612     tcg_tmp = tcg_temp_new_i64();
5613     if (op) {
5614         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5615     } else {
5616         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5617     }
5618 
5619     /* If COND was false, force the flags to #nzcv.  Compute two masks
5620      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5621      * For tcg hosts that support ANDC, we can make do with just T1.
5622      * In either case, allow the tcg optimizer to delete any unused mask.
5623      */
5624     tcg_t1 = tcg_temp_new_i32();
5625     tcg_t2 = tcg_temp_new_i32();
5626     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5627     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5628 
5629     if (nzcv & 8) { /* N */
5630         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5631     } else {
5632         if (TCG_TARGET_HAS_andc_i32) {
5633             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5634         } else {
5635             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5636         }
5637     }
5638     if (nzcv & 4) { /* Z */
5639         if (TCG_TARGET_HAS_andc_i32) {
5640             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5641         } else {
5642             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5643         }
5644     } else {
5645         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5646     }
5647     if (nzcv & 2) { /* C */
5648         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5649     } else {
5650         if (TCG_TARGET_HAS_andc_i32) {
5651             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5652         } else {
5653             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5654         }
5655     }
5656     if (nzcv & 1) { /* V */
5657         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5658     } else {
5659         if (TCG_TARGET_HAS_andc_i32) {
5660             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5661         } else {
5662             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5663         }
5664     }
5665 }
5666 
5667 /* Conditional select
5668  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5669  * +----+----+---+-----------------+------+------+-----+------+------+
5670  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5671  * +----+----+---+-----------------+------+------+-----+------+------+
5672  */
5673 static void disas_cond_select(DisasContext *s, uint32_t insn)
5674 {
5675     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5676     TCGv_i64 tcg_rd, zero;
5677     DisasCompare64 c;
5678 
5679     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5680         /* S == 1 or op2<1> == 1 */
5681         unallocated_encoding(s);
5682         return;
5683     }
5684     sf = extract32(insn, 31, 1);
5685     else_inv = extract32(insn, 30, 1);
5686     rm = extract32(insn, 16, 5);
5687     cond = extract32(insn, 12, 4);
5688     else_inc = extract32(insn, 10, 1);
5689     rn = extract32(insn, 5, 5);
5690     rd = extract32(insn, 0, 5);
5691 
5692     tcg_rd = cpu_reg(s, rd);
5693 
5694     a64_test_cc(&c, cond);
5695     zero = tcg_constant_i64(0);
5696 
5697     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5698         /* CSET & CSETM.  */
5699         if (else_inv) {
5700             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5701                                    tcg_rd, c.value, zero);
5702         } else {
5703             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5704                                 tcg_rd, c.value, zero);
5705         }
5706     } else {
5707         TCGv_i64 t_true = cpu_reg(s, rn);
5708         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5709         if (else_inv && else_inc) {
5710             tcg_gen_neg_i64(t_false, t_false);
5711         } else if (else_inv) {
5712             tcg_gen_not_i64(t_false, t_false);
5713         } else if (else_inc) {
5714             tcg_gen_addi_i64(t_false, t_false, 1);
5715         }
5716         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5717     }
5718 
5719     if (!sf) {
5720         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5721     }
5722 }
5723 
5724 static void handle_clz(DisasContext *s, unsigned int sf,
5725                        unsigned int rn, unsigned int rd)
5726 {
5727     TCGv_i64 tcg_rd, tcg_rn;
5728     tcg_rd = cpu_reg(s, rd);
5729     tcg_rn = cpu_reg(s, rn);
5730 
5731     if (sf) {
5732         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5733     } else {
5734         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5735         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5736         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5737         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5738     }
5739 }
5740 
5741 static void handle_cls(DisasContext *s, unsigned int sf,
5742                        unsigned int rn, unsigned int rd)
5743 {
5744     TCGv_i64 tcg_rd, tcg_rn;
5745     tcg_rd = cpu_reg(s, rd);
5746     tcg_rn = cpu_reg(s, rn);
5747 
5748     if (sf) {
5749         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5750     } else {
5751         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5752         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5753         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5754         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5755     }
5756 }
5757 
5758 static void handle_rbit(DisasContext *s, unsigned int sf,
5759                         unsigned int rn, unsigned int rd)
5760 {
5761     TCGv_i64 tcg_rd, tcg_rn;
5762     tcg_rd = cpu_reg(s, rd);
5763     tcg_rn = cpu_reg(s, rn);
5764 
5765     if (sf) {
5766         gen_helper_rbit64(tcg_rd, tcg_rn);
5767     } else {
5768         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5769         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5770         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5771         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5772     }
5773 }
5774 
5775 /* REV with sf==1, opcode==3 ("REV64") */
5776 static void handle_rev64(DisasContext *s, unsigned int sf,
5777                          unsigned int rn, unsigned int rd)
5778 {
5779     if (!sf) {
5780         unallocated_encoding(s);
5781         return;
5782     }
5783     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5784 }
5785 
5786 /* REV with sf==0, opcode==2
5787  * REV32 (sf==1, opcode==2)
5788  */
5789 static void handle_rev32(DisasContext *s, unsigned int sf,
5790                          unsigned int rn, unsigned int rd)
5791 {
5792     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5793     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5794 
5795     if (sf) {
5796         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5797         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5798     } else {
5799         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5800     }
5801 }
5802 
5803 /* REV16 (opcode==1) */
5804 static void handle_rev16(DisasContext *s, unsigned int sf,
5805                          unsigned int rn, unsigned int rd)
5806 {
5807     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5808     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5809     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5810     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5811 
5812     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5813     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5814     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5815     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5816     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5817 }
5818 
5819 /* Data-processing (1 source)
5820  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5821  * +----+---+---+-----------------+---------+--------+------+------+
5822  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5823  * +----+---+---+-----------------+---------+--------+------+------+
5824  */
5825 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5826 {
5827     unsigned int sf, opcode, opcode2, rn, rd;
5828     TCGv_i64 tcg_rd;
5829 
5830     if (extract32(insn, 29, 1)) {
5831         unallocated_encoding(s);
5832         return;
5833     }
5834 
5835     sf = extract32(insn, 31, 1);
5836     opcode = extract32(insn, 10, 6);
5837     opcode2 = extract32(insn, 16, 5);
5838     rn = extract32(insn, 5, 5);
5839     rd = extract32(insn, 0, 5);
5840 
5841 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5842 
5843     switch (MAP(sf, opcode2, opcode)) {
5844     case MAP(0, 0x00, 0x00): /* RBIT */
5845     case MAP(1, 0x00, 0x00):
5846         handle_rbit(s, sf, rn, rd);
5847         break;
5848     case MAP(0, 0x00, 0x01): /* REV16 */
5849     case MAP(1, 0x00, 0x01):
5850         handle_rev16(s, sf, rn, rd);
5851         break;
5852     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5853     case MAP(1, 0x00, 0x02):
5854         handle_rev32(s, sf, rn, rd);
5855         break;
5856     case MAP(1, 0x00, 0x03): /* REV64 */
5857         handle_rev64(s, sf, rn, rd);
5858         break;
5859     case MAP(0, 0x00, 0x04): /* CLZ */
5860     case MAP(1, 0x00, 0x04):
5861         handle_clz(s, sf, rn, rd);
5862         break;
5863     case MAP(0, 0x00, 0x05): /* CLS */
5864     case MAP(1, 0x00, 0x05):
5865         handle_cls(s, sf, rn, rd);
5866         break;
5867     case MAP(1, 0x01, 0x00): /* PACIA */
5868         if (s->pauth_active) {
5869             tcg_rd = cpu_reg(s, rd);
5870             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5871         } else if (!dc_isar_feature(aa64_pauth, s)) {
5872             goto do_unallocated;
5873         }
5874         break;
5875     case MAP(1, 0x01, 0x01): /* PACIB */
5876         if (s->pauth_active) {
5877             tcg_rd = cpu_reg(s, rd);
5878             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5879         } else if (!dc_isar_feature(aa64_pauth, s)) {
5880             goto do_unallocated;
5881         }
5882         break;
5883     case MAP(1, 0x01, 0x02): /* PACDA */
5884         if (s->pauth_active) {
5885             tcg_rd = cpu_reg(s, rd);
5886             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5887         } else if (!dc_isar_feature(aa64_pauth, s)) {
5888             goto do_unallocated;
5889         }
5890         break;
5891     case MAP(1, 0x01, 0x03): /* PACDB */
5892         if (s->pauth_active) {
5893             tcg_rd = cpu_reg(s, rd);
5894             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5895         } else if (!dc_isar_feature(aa64_pauth, s)) {
5896             goto do_unallocated;
5897         }
5898         break;
5899     case MAP(1, 0x01, 0x04): /* AUTIA */
5900         if (s->pauth_active) {
5901             tcg_rd = cpu_reg(s, rd);
5902             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5903         } else if (!dc_isar_feature(aa64_pauth, s)) {
5904             goto do_unallocated;
5905         }
5906         break;
5907     case MAP(1, 0x01, 0x05): /* AUTIB */
5908         if (s->pauth_active) {
5909             tcg_rd = cpu_reg(s, rd);
5910             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5911         } else if (!dc_isar_feature(aa64_pauth, s)) {
5912             goto do_unallocated;
5913         }
5914         break;
5915     case MAP(1, 0x01, 0x06): /* AUTDA */
5916         if (s->pauth_active) {
5917             tcg_rd = cpu_reg(s, rd);
5918             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5919         } else if (!dc_isar_feature(aa64_pauth, s)) {
5920             goto do_unallocated;
5921         }
5922         break;
5923     case MAP(1, 0x01, 0x07): /* AUTDB */
5924         if (s->pauth_active) {
5925             tcg_rd = cpu_reg(s, rd);
5926             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5927         } else if (!dc_isar_feature(aa64_pauth, s)) {
5928             goto do_unallocated;
5929         }
5930         break;
5931     case MAP(1, 0x01, 0x08): /* PACIZA */
5932         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5933             goto do_unallocated;
5934         } else if (s->pauth_active) {
5935             tcg_rd = cpu_reg(s, rd);
5936             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5937         }
5938         break;
5939     case MAP(1, 0x01, 0x09): /* PACIZB */
5940         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5941             goto do_unallocated;
5942         } else if (s->pauth_active) {
5943             tcg_rd = cpu_reg(s, rd);
5944             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5945         }
5946         break;
5947     case MAP(1, 0x01, 0x0a): /* PACDZA */
5948         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5949             goto do_unallocated;
5950         } else if (s->pauth_active) {
5951             tcg_rd = cpu_reg(s, rd);
5952             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5953         }
5954         break;
5955     case MAP(1, 0x01, 0x0b): /* PACDZB */
5956         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5957             goto do_unallocated;
5958         } else if (s->pauth_active) {
5959             tcg_rd = cpu_reg(s, rd);
5960             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5961         }
5962         break;
5963     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5964         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5965             goto do_unallocated;
5966         } else if (s->pauth_active) {
5967             tcg_rd = cpu_reg(s, rd);
5968             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5969         }
5970         break;
5971     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5972         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5973             goto do_unallocated;
5974         } else if (s->pauth_active) {
5975             tcg_rd = cpu_reg(s, rd);
5976             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5977         }
5978         break;
5979     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5980         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5981             goto do_unallocated;
5982         } else if (s->pauth_active) {
5983             tcg_rd = cpu_reg(s, rd);
5984             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5985         }
5986         break;
5987     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5988         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5989             goto do_unallocated;
5990         } else if (s->pauth_active) {
5991             tcg_rd = cpu_reg(s, rd);
5992             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5993         }
5994         break;
5995     case MAP(1, 0x01, 0x10): /* XPACI */
5996         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5997             goto do_unallocated;
5998         } else if (s->pauth_active) {
5999             tcg_rd = cpu_reg(s, rd);
6000             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6001         }
6002         break;
6003     case MAP(1, 0x01, 0x11): /* XPACD */
6004         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6005             goto do_unallocated;
6006         } else if (s->pauth_active) {
6007             tcg_rd = cpu_reg(s, rd);
6008             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6009         }
6010         break;
6011     default:
6012     do_unallocated:
6013         unallocated_encoding(s);
6014         break;
6015     }
6016 
6017 #undef MAP
6018 }
6019 
6020 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6021                        unsigned int rm, unsigned int rn, unsigned int rd)
6022 {
6023     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6024     tcg_rd = cpu_reg(s, rd);
6025 
6026     if (!sf && is_signed) {
6027         tcg_n = tcg_temp_new_i64();
6028         tcg_m = tcg_temp_new_i64();
6029         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6030         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6031     } else {
6032         tcg_n = read_cpu_reg(s, rn, sf);
6033         tcg_m = read_cpu_reg(s, rm, sf);
6034     }
6035 
6036     if (is_signed) {
6037         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6038     } else {
6039         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6040     }
6041 
6042     if (!sf) { /* zero extend final result */
6043         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6044     }
6045 }
6046 
6047 /* LSLV, LSRV, ASRV, RORV */
6048 static void handle_shift_reg(DisasContext *s,
6049                              enum a64_shift_type shift_type, unsigned int sf,
6050                              unsigned int rm, unsigned int rn, unsigned int rd)
6051 {
6052     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6053     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6054     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6055 
6056     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6057     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6058 }
6059 
6060 /* CRC32[BHWX], CRC32C[BHWX] */
6061 static void handle_crc32(DisasContext *s,
6062                          unsigned int sf, unsigned int sz, bool crc32c,
6063                          unsigned int rm, unsigned int rn, unsigned int rd)
6064 {
6065     TCGv_i64 tcg_acc, tcg_val;
6066     TCGv_i32 tcg_bytes;
6067 
6068     if (!dc_isar_feature(aa64_crc32, s)
6069         || (sf == 1 && sz != 3)
6070         || (sf == 0 && sz == 3)) {
6071         unallocated_encoding(s);
6072         return;
6073     }
6074 
6075     if (sz == 3) {
6076         tcg_val = cpu_reg(s, rm);
6077     } else {
6078         uint64_t mask;
6079         switch (sz) {
6080         case 0:
6081             mask = 0xFF;
6082             break;
6083         case 1:
6084             mask = 0xFFFF;
6085             break;
6086         case 2:
6087             mask = 0xFFFFFFFF;
6088             break;
6089         default:
6090             g_assert_not_reached();
6091         }
6092         tcg_val = tcg_temp_new_i64();
6093         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6094     }
6095 
6096     tcg_acc = cpu_reg(s, rn);
6097     tcg_bytes = tcg_constant_i32(1 << sz);
6098 
6099     if (crc32c) {
6100         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6101     } else {
6102         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6103     }
6104 }
6105 
6106 /* Data-processing (2 source)
6107  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6108  * +----+---+---+-----------------+------+--------+------+------+
6109  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6110  * +----+---+---+-----------------+------+--------+------+------+
6111  */
6112 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6113 {
6114     unsigned int sf, rm, opcode, rn, rd, setflag;
6115     sf = extract32(insn, 31, 1);
6116     setflag = extract32(insn, 29, 1);
6117     rm = extract32(insn, 16, 5);
6118     opcode = extract32(insn, 10, 6);
6119     rn = extract32(insn, 5, 5);
6120     rd = extract32(insn, 0, 5);
6121 
6122     if (setflag && opcode != 0) {
6123         unallocated_encoding(s);
6124         return;
6125     }
6126 
6127     switch (opcode) {
6128     case 0: /* SUBP(S) */
6129         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6130             goto do_unallocated;
6131         } else {
6132             TCGv_i64 tcg_n, tcg_m, tcg_d;
6133 
6134             tcg_n = read_cpu_reg_sp(s, rn, true);
6135             tcg_m = read_cpu_reg_sp(s, rm, true);
6136             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6137             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6138             tcg_d = cpu_reg(s, rd);
6139 
6140             if (setflag) {
6141                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6142             } else {
6143                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6144             }
6145         }
6146         break;
6147     case 2: /* UDIV */
6148         handle_div(s, false, sf, rm, rn, rd);
6149         break;
6150     case 3: /* SDIV */
6151         handle_div(s, true, sf, rm, rn, rd);
6152         break;
6153     case 4: /* IRG */
6154         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6155             goto do_unallocated;
6156         }
6157         if (s->ata[0]) {
6158             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6159                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6160         } else {
6161             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6162                                              cpu_reg_sp(s, rn));
6163         }
6164         break;
6165     case 5: /* GMI */
6166         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6167             goto do_unallocated;
6168         } else {
6169             TCGv_i64 t = tcg_temp_new_i64();
6170 
6171             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6172             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6173             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6174         }
6175         break;
6176     case 8: /* LSLV */
6177         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6178         break;
6179     case 9: /* LSRV */
6180         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6181         break;
6182     case 10: /* ASRV */
6183         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6184         break;
6185     case 11: /* RORV */
6186         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6187         break;
6188     case 12: /* PACGA */
6189         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6190             goto do_unallocated;
6191         }
6192         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6193                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6194         break;
6195     case 16:
6196     case 17:
6197     case 18:
6198     case 19:
6199     case 20:
6200     case 21:
6201     case 22:
6202     case 23: /* CRC32 */
6203     {
6204         int sz = extract32(opcode, 0, 2);
6205         bool crc32c = extract32(opcode, 2, 1);
6206         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6207         break;
6208     }
6209     default:
6210     do_unallocated:
6211         unallocated_encoding(s);
6212         break;
6213     }
6214 }
6215 
6216 /*
6217  * Data processing - register
6218  *  31  30 29  28      25    21  20  16      10         0
6219  * +--+---+--+---+-------+-----+-------+-------+---------+
6220  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6221  * +--+---+--+---+-------+-----+-------+-------+---------+
6222  */
6223 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6224 {
6225     int op0 = extract32(insn, 30, 1);
6226     int op1 = extract32(insn, 28, 1);
6227     int op2 = extract32(insn, 21, 4);
6228     int op3 = extract32(insn, 10, 6);
6229 
6230     if (!op1) {
6231         if (op2 & 8) {
6232             if (op2 & 1) {
6233                 /* Add/sub (extended register) */
6234                 disas_add_sub_ext_reg(s, insn);
6235             } else {
6236                 /* Add/sub (shifted register) */
6237                 disas_add_sub_reg(s, insn);
6238             }
6239         } else {
6240             /* Logical (shifted register) */
6241             disas_logic_reg(s, insn);
6242         }
6243         return;
6244     }
6245 
6246     switch (op2) {
6247     case 0x0:
6248         switch (op3) {
6249         case 0x00: /* Add/subtract (with carry) */
6250             disas_adc_sbc(s, insn);
6251             break;
6252 
6253         case 0x01: /* Rotate right into flags */
6254         case 0x21:
6255             disas_rotate_right_into_flags(s, insn);
6256             break;
6257 
6258         case 0x02: /* Evaluate into flags */
6259         case 0x12:
6260         case 0x22:
6261         case 0x32:
6262             disas_evaluate_into_flags(s, insn);
6263             break;
6264 
6265         default:
6266             goto do_unallocated;
6267         }
6268         break;
6269 
6270     case 0x2: /* Conditional compare */
6271         disas_cc(s, insn); /* both imm and reg forms */
6272         break;
6273 
6274     case 0x4: /* Conditional select */
6275         disas_cond_select(s, insn);
6276         break;
6277 
6278     case 0x6: /* Data-processing */
6279         if (op0) {    /* (1 source) */
6280             disas_data_proc_1src(s, insn);
6281         } else {      /* (2 source) */
6282             disas_data_proc_2src(s, insn);
6283         }
6284         break;
6285     case 0x8 ... 0xf: /* (3 source) */
6286         disas_data_proc_3src(s, insn);
6287         break;
6288 
6289     default:
6290     do_unallocated:
6291         unallocated_encoding(s);
6292         break;
6293     }
6294 }
6295 
6296 static void handle_fp_compare(DisasContext *s, int size,
6297                               unsigned int rn, unsigned int rm,
6298                               bool cmp_with_zero, bool signal_all_nans)
6299 {
6300     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6301     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6302 
6303     if (size == MO_64) {
6304         TCGv_i64 tcg_vn, tcg_vm;
6305 
6306         tcg_vn = read_fp_dreg(s, rn);
6307         if (cmp_with_zero) {
6308             tcg_vm = tcg_constant_i64(0);
6309         } else {
6310             tcg_vm = read_fp_dreg(s, rm);
6311         }
6312         if (signal_all_nans) {
6313             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6314         } else {
6315             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6316         }
6317     } else {
6318         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6319         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6320 
6321         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6322         if (cmp_with_zero) {
6323             tcg_gen_movi_i32(tcg_vm, 0);
6324         } else {
6325             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6326         }
6327 
6328         switch (size) {
6329         case MO_32:
6330             if (signal_all_nans) {
6331                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6332             } else {
6333                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6334             }
6335             break;
6336         case MO_16:
6337             if (signal_all_nans) {
6338                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6339             } else {
6340                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6341             }
6342             break;
6343         default:
6344             g_assert_not_reached();
6345         }
6346     }
6347 
6348     gen_set_nzcv(tcg_flags);
6349 }
6350 
6351 /* Floating point compare
6352  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6353  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6354  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6355  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6356  */
6357 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6358 {
6359     unsigned int mos, type, rm, op, rn, opc, op2r;
6360     int size;
6361 
6362     mos = extract32(insn, 29, 3);
6363     type = extract32(insn, 22, 2);
6364     rm = extract32(insn, 16, 5);
6365     op = extract32(insn, 14, 2);
6366     rn = extract32(insn, 5, 5);
6367     opc = extract32(insn, 3, 2);
6368     op2r = extract32(insn, 0, 3);
6369 
6370     if (mos || op || op2r) {
6371         unallocated_encoding(s);
6372         return;
6373     }
6374 
6375     switch (type) {
6376     case 0:
6377         size = MO_32;
6378         break;
6379     case 1:
6380         size = MO_64;
6381         break;
6382     case 3:
6383         size = MO_16;
6384         if (dc_isar_feature(aa64_fp16, s)) {
6385             break;
6386         }
6387         /* fallthru */
6388     default:
6389         unallocated_encoding(s);
6390         return;
6391     }
6392 
6393     if (!fp_access_check(s)) {
6394         return;
6395     }
6396 
6397     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6398 }
6399 
6400 /* Floating point conditional compare
6401  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6402  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6403  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6404  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6405  */
6406 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6407 {
6408     unsigned int mos, type, rm, cond, rn, op, nzcv;
6409     TCGLabel *label_continue = NULL;
6410     int size;
6411 
6412     mos = extract32(insn, 29, 3);
6413     type = extract32(insn, 22, 2);
6414     rm = extract32(insn, 16, 5);
6415     cond = extract32(insn, 12, 4);
6416     rn = extract32(insn, 5, 5);
6417     op = extract32(insn, 4, 1);
6418     nzcv = extract32(insn, 0, 4);
6419 
6420     if (mos) {
6421         unallocated_encoding(s);
6422         return;
6423     }
6424 
6425     switch (type) {
6426     case 0:
6427         size = MO_32;
6428         break;
6429     case 1:
6430         size = MO_64;
6431         break;
6432     case 3:
6433         size = MO_16;
6434         if (dc_isar_feature(aa64_fp16, s)) {
6435             break;
6436         }
6437         /* fallthru */
6438     default:
6439         unallocated_encoding(s);
6440         return;
6441     }
6442 
6443     if (!fp_access_check(s)) {
6444         return;
6445     }
6446 
6447     if (cond < 0x0e) { /* not always */
6448         TCGLabel *label_match = gen_new_label();
6449         label_continue = gen_new_label();
6450         arm_gen_test_cc(cond, label_match);
6451         /* nomatch: */
6452         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6453         tcg_gen_br(label_continue);
6454         gen_set_label(label_match);
6455     }
6456 
6457     handle_fp_compare(s, size, rn, rm, false, op);
6458 
6459     if (cond < 0x0e) {
6460         gen_set_label(label_continue);
6461     }
6462 }
6463 
6464 /* Floating point conditional select
6465  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6466  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6467  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6468  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6469  */
6470 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6471 {
6472     unsigned int mos, type, rm, cond, rn, rd;
6473     TCGv_i64 t_true, t_false;
6474     DisasCompare64 c;
6475     MemOp sz;
6476 
6477     mos = extract32(insn, 29, 3);
6478     type = extract32(insn, 22, 2);
6479     rm = extract32(insn, 16, 5);
6480     cond = extract32(insn, 12, 4);
6481     rn = extract32(insn, 5, 5);
6482     rd = extract32(insn, 0, 5);
6483 
6484     if (mos) {
6485         unallocated_encoding(s);
6486         return;
6487     }
6488 
6489     switch (type) {
6490     case 0:
6491         sz = MO_32;
6492         break;
6493     case 1:
6494         sz = MO_64;
6495         break;
6496     case 3:
6497         sz = MO_16;
6498         if (dc_isar_feature(aa64_fp16, s)) {
6499             break;
6500         }
6501         /* fallthru */
6502     default:
6503         unallocated_encoding(s);
6504         return;
6505     }
6506 
6507     if (!fp_access_check(s)) {
6508         return;
6509     }
6510 
6511     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6512     t_true = tcg_temp_new_i64();
6513     t_false = tcg_temp_new_i64();
6514     read_vec_element(s, t_true, rn, 0, sz);
6515     read_vec_element(s, t_false, rm, 0, sz);
6516 
6517     a64_test_cc(&c, cond);
6518     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6519                         t_true, t_false);
6520 
6521     /* Note that sregs & hregs write back zeros to the high bits,
6522        and we've already done the zero-extension.  */
6523     write_fp_dreg(s, rd, t_true);
6524 }
6525 
6526 /* Floating-point data-processing (1 source) - half precision */
6527 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6528 {
6529     TCGv_ptr fpst = NULL;
6530     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6531     TCGv_i32 tcg_res = tcg_temp_new_i32();
6532 
6533     switch (opcode) {
6534     case 0x0: /* FMOV */
6535         tcg_gen_mov_i32(tcg_res, tcg_op);
6536         break;
6537     case 0x1: /* FABS */
6538         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6539         break;
6540     case 0x2: /* FNEG */
6541         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6542         break;
6543     case 0x3: /* FSQRT */
6544         fpst = fpstatus_ptr(FPST_FPCR_F16);
6545         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6546         break;
6547     case 0x8: /* FRINTN */
6548     case 0x9: /* FRINTP */
6549     case 0xa: /* FRINTM */
6550     case 0xb: /* FRINTZ */
6551     case 0xc: /* FRINTA */
6552     {
6553         TCGv_i32 tcg_rmode;
6554 
6555         fpst = fpstatus_ptr(FPST_FPCR_F16);
6556         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6557         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6558         gen_restore_rmode(tcg_rmode, fpst);
6559         break;
6560     }
6561     case 0xe: /* FRINTX */
6562         fpst = fpstatus_ptr(FPST_FPCR_F16);
6563         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6564         break;
6565     case 0xf: /* FRINTI */
6566         fpst = fpstatus_ptr(FPST_FPCR_F16);
6567         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6568         break;
6569     default:
6570         g_assert_not_reached();
6571     }
6572 
6573     write_fp_sreg(s, rd, tcg_res);
6574 }
6575 
6576 /* Floating-point data-processing (1 source) - single precision */
6577 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6578 {
6579     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6580     TCGv_i32 tcg_op, tcg_res;
6581     TCGv_ptr fpst;
6582     int rmode = -1;
6583 
6584     tcg_op = read_fp_sreg(s, rn);
6585     tcg_res = tcg_temp_new_i32();
6586 
6587     switch (opcode) {
6588     case 0x0: /* FMOV */
6589         tcg_gen_mov_i32(tcg_res, tcg_op);
6590         goto done;
6591     case 0x1: /* FABS */
6592         gen_helper_vfp_abss(tcg_res, tcg_op);
6593         goto done;
6594     case 0x2: /* FNEG */
6595         gen_helper_vfp_negs(tcg_res, tcg_op);
6596         goto done;
6597     case 0x3: /* FSQRT */
6598         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6599         goto done;
6600     case 0x6: /* BFCVT */
6601         gen_fpst = gen_helper_bfcvt;
6602         break;
6603     case 0x8: /* FRINTN */
6604     case 0x9: /* FRINTP */
6605     case 0xa: /* FRINTM */
6606     case 0xb: /* FRINTZ */
6607     case 0xc: /* FRINTA */
6608         rmode = opcode & 7;
6609         gen_fpst = gen_helper_rints;
6610         break;
6611     case 0xe: /* FRINTX */
6612         gen_fpst = gen_helper_rints_exact;
6613         break;
6614     case 0xf: /* FRINTI */
6615         gen_fpst = gen_helper_rints;
6616         break;
6617     case 0x10: /* FRINT32Z */
6618         rmode = FPROUNDING_ZERO;
6619         gen_fpst = gen_helper_frint32_s;
6620         break;
6621     case 0x11: /* FRINT32X */
6622         gen_fpst = gen_helper_frint32_s;
6623         break;
6624     case 0x12: /* FRINT64Z */
6625         rmode = FPROUNDING_ZERO;
6626         gen_fpst = gen_helper_frint64_s;
6627         break;
6628     case 0x13: /* FRINT64X */
6629         gen_fpst = gen_helper_frint64_s;
6630         break;
6631     default:
6632         g_assert_not_reached();
6633     }
6634 
6635     fpst = fpstatus_ptr(FPST_FPCR);
6636     if (rmode >= 0) {
6637         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6638         gen_fpst(tcg_res, tcg_op, fpst);
6639         gen_restore_rmode(tcg_rmode, fpst);
6640     } else {
6641         gen_fpst(tcg_res, tcg_op, fpst);
6642     }
6643 
6644  done:
6645     write_fp_sreg(s, rd, tcg_res);
6646 }
6647 
6648 /* Floating-point data-processing (1 source) - double precision */
6649 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6650 {
6651     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6652     TCGv_i64 tcg_op, tcg_res;
6653     TCGv_ptr fpst;
6654     int rmode = -1;
6655 
6656     switch (opcode) {
6657     case 0x0: /* FMOV */
6658         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6659         return;
6660     }
6661 
6662     tcg_op = read_fp_dreg(s, rn);
6663     tcg_res = tcg_temp_new_i64();
6664 
6665     switch (opcode) {
6666     case 0x1: /* FABS */
6667         gen_helper_vfp_absd(tcg_res, tcg_op);
6668         goto done;
6669     case 0x2: /* FNEG */
6670         gen_helper_vfp_negd(tcg_res, tcg_op);
6671         goto done;
6672     case 0x3: /* FSQRT */
6673         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6674         goto done;
6675     case 0x8: /* FRINTN */
6676     case 0x9: /* FRINTP */
6677     case 0xa: /* FRINTM */
6678     case 0xb: /* FRINTZ */
6679     case 0xc: /* FRINTA */
6680         rmode = opcode & 7;
6681         gen_fpst = gen_helper_rintd;
6682         break;
6683     case 0xe: /* FRINTX */
6684         gen_fpst = gen_helper_rintd_exact;
6685         break;
6686     case 0xf: /* FRINTI */
6687         gen_fpst = gen_helper_rintd;
6688         break;
6689     case 0x10: /* FRINT32Z */
6690         rmode = FPROUNDING_ZERO;
6691         gen_fpst = gen_helper_frint32_d;
6692         break;
6693     case 0x11: /* FRINT32X */
6694         gen_fpst = gen_helper_frint32_d;
6695         break;
6696     case 0x12: /* FRINT64Z */
6697         rmode = FPROUNDING_ZERO;
6698         gen_fpst = gen_helper_frint64_d;
6699         break;
6700     case 0x13: /* FRINT64X */
6701         gen_fpst = gen_helper_frint64_d;
6702         break;
6703     default:
6704         g_assert_not_reached();
6705     }
6706 
6707     fpst = fpstatus_ptr(FPST_FPCR);
6708     if (rmode >= 0) {
6709         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6710         gen_fpst(tcg_res, tcg_op, fpst);
6711         gen_restore_rmode(tcg_rmode, fpst);
6712     } else {
6713         gen_fpst(tcg_res, tcg_op, fpst);
6714     }
6715 
6716  done:
6717     write_fp_dreg(s, rd, tcg_res);
6718 }
6719 
6720 static void handle_fp_fcvt(DisasContext *s, int opcode,
6721                            int rd, int rn, int dtype, int ntype)
6722 {
6723     switch (ntype) {
6724     case 0x0:
6725     {
6726         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6727         if (dtype == 1) {
6728             /* Single to double */
6729             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6730             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6731             write_fp_dreg(s, rd, tcg_rd);
6732         } else {
6733             /* Single to half */
6734             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6735             TCGv_i32 ahp = get_ahp_flag();
6736             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6737 
6738             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6739             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6740             write_fp_sreg(s, rd, tcg_rd);
6741         }
6742         break;
6743     }
6744     case 0x1:
6745     {
6746         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6747         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6748         if (dtype == 0) {
6749             /* Double to single */
6750             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6751         } else {
6752             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6753             TCGv_i32 ahp = get_ahp_flag();
6754             /* Double to half */
6755             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6756             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6757         }
6758         write_fp_sreg(s, rd, tcg_rd);
6759         break;
6760     }
6761     case 0x3:
6762     {
6763         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6764         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6765         TCGv_i32 tcg_ahp = get_ahp_flag();
6766         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6767         if (dtype == 0) {
6768             /* Half to single */
6769             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6770             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6771             write_fp_sreg(s, rd, tcg_rd);
6772         } else {
6773             /* Half to double */
6774             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6775             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6776             write_fp_dreg(s, rd, tcg_rd);
6777         }
6778         break;
6779     }
6780     default:
6781         g_assert_not_reached();
6782     }
6783 }
6784 
6785 /* Floating point data-processing (1 source)
6786  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6787  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6788  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6789  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6790  */
6791 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6792 {
6793     int mos = extract32(insn, 29, 3);
6794     int type = extract32(insn, 22, 2);
6795     int opcode = extract32(insn, 15, 6);
6796     int rn = extract32(insn, 5, 5);
6797     int rd = extract32(insn, 0, 5);
6798 
6799     if (mos) {
6800         goto do_unallocated;
6801     }
6802 
6803     switch (opcode) {
6804     case 0x4: case 0x5: case 0x7:
6805     {
6806         /* FCVT between half, single and double precision */
6807         int dtype = extract32(opcode, 0, 2);
6808         if (type == 2 || dtype == type) {
6809             goto do_unallocated;
6810         }
6811         if (!fp_access_check(s)) {
6812             return;
6813         }
6814 
6815         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6816         break;
6817     }
6818 
6819     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6820         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6821             goto do_unallocated;
6822         }
6823         /* fall through */
6824     case 0x0 ... 0x3:
6825     case 0x8 ... 0xc:
6826     case 0xe ... 0xf:
6827         /* 32-to-32 and 64-to-64 ops */
6828         switch (type) {
6829         case 0:
6830             if (!fp_access_check(s)) {
6831                 return;
6832             }
6833             handle_fp_1src_single(s, opcode, rd, rn);
6834             break;
6835         case 1:
6836             if (!fp_access_check(s)) {
6837                 return;
6838             }
6839             handle_fp_1src_double(s, opcode, rd, rn);
6840             break;
6841         case 3:
6842             if (!dc_isar_feature(aa64_fp16, s)) {
6843                 goto do_unallocated;
6844             }
6845 
6846             if (!fp_access_check(s)) {
6847                 return;
6848             }
6849             handle_fp_1src_half(s, opcode, rd, rn);
6850             break;
6851         default:
6852             goto do_unallocated;
6853         }
6854         break;
6855 
6856     case 0x6:
6857         switch (type) {
6858         case 1: /* BFCVT */
6859             if (!dc_isar_feature(aa64_bf16, s)) {
6860                 goto do_unallocated;
6861             }
6862             if (!fp_access_check(s)) {
6863                 return;
6864             }
6865             handle_fp_1src_single(s, opcode, rd, rn);
6866             break;
6867         default:
6868             goto do_unallocated;
6869         }
6870         break;
6871 
6872     default:
6873     do_unallocated:
6874         unallocated_encoding(s);
6875         break;
6876     }
6877 }
6878 
6879 /* Floating-point data-processing (2 source) - single precision */
6880 static void handle_fp_2src_single(DisasContext *s, int opcode,
6881                                   int rd, int rn, int rm)
6882 {
6883     TCGv_i32 tcg_op1;
6884     TCGv_i32 tcg_op2;
6885     TCGv_i32 tcg_res;
6886     TCGv_ptr fpst;
6887 
6888     tcg_res = tcg_temp_new_i32();
6889     fpst = fpstatus_ptr(FPST_FPCR);
6890     tcg_op1 = read_fp_sreg(s, rn);
6891     tcg_op2 = read_fp_sreg(s, rm);
6892 
6893     switch (opcode) {
6894     case 0x4: /* FMAX */
6895         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6896         break;
6897     case 0x5: /* FMIN */
6898         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6899         break;
6900     case 0x6: /* FMAXNM */
6901         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6902         break;
6903     case 0x7: /* FMINNM */
6904         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6905         break;
6906     case 0x8: /* FNMUL */
6907         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6908         gen_helper_vfp_negs(tcg_res, tcg_res);
6909         break;
6910     default:
6911     case 0x0: /* FMUL */
6912     case 0x1: /* FDIV */
6913     case 0x2: /* FADD */
6914     case 0x3: /* FSUB */
6915         g_assert_not_reached();
6916     }
6917 
6918     write_fp_sreg(s, rd, tcg_res);
6919 }
6920 
6921 /* Floating-point data-processing (2 source) - double precision */
6922 static void handle_fp_2src_double(DisasContext *s, int opcode,
6923                                   int rd, int rn, int rm)
6924 {
6925     TCGv_i64 tcg_op1;
6926     TCGv_i64 tcg_op2;
6927     TCGv_i64 tcg_res;
6928     TCGv_ptr fpst;
6929 
6930     tcg_res = tcg_temp_new_i64();
6931     fpst = fpstatus_ptr(FPST_FPCR);
6932     tcg_op1 = read_fp_dreg(s, rn);
6933     tcg_op2 = read_fp_dreg(s, rm);
6934 
6935     switch (opcode) {
6936     case 0x4: /* FMAX */
6937         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6938         break;
6939     case 0x5: /* FMIN */
6940         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6941         break;
6942     case 0x6: /* FMAXNM */
6943         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6944         break;
6945     case 0x7: /* FMINNM */
6946         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6947         break;
6948     case 0x8: /* FNMUL */
6949         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6950         gen_helper_vfp_negd(tcg_res, tcg_res);
6951         break;
6952     default:
6953     case 0x0: /* FMUL */
6954     case 0x1: /* FDIV */
6955     case 0x2: /* FADD */
6956     case 0x3: /* FSUB */
6957         g_assert_not_reached();
6958     }
6959 
6960     write_fp_dreg(s, rd, tcg_res);
6961 }
6962 
6963 /* Floating-point data-processing (2 source) - half precision */
6964 static void handle_fp_2src_half(DisasContext *s, int opcode,
6965                                 int rd, int rn, int rm)
6966 {
6967     TCGv_i32 tcg_op1;
6968     TCGv_i32 tcg_op2;
6969     TCGv_i32 tcg_res;
6970     TCGv_ptr fpst;
6971 
6972     tcg_res = tcg_temp_new_i32();
6973     fpst = fpstatus_ptr(FPST_FPCR_F16);
6974     tcg_op1 = read_fp_hreg(s, rn);
6975     tcg_op2 = read_fp_hreg(s, rm);
6976 
6977     switch (opcode) {
6978     case 0x4: /* FMAX */
6979         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6980         break;
6981     case 0x5: /* FMIN */
6982         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6983         break;
6984     case 0x6: /* FMAXNM */
6985         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6986         break;
6987     case 0x7: /* FMINNM */
6988         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6989         break;
6990     case 0x8: /* FNMUL */
6991         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6992         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6993         break;
6994     default:
6995     case 0x0: /* FMUL */
6996     case 0x1: /* FDIV */
6997     case 0x2: /* FADD */
6998     case 0x3: /* FSUB */
6999         g_assert_not_reached();
7000     }
7001 
7002     write_fp_sreg(s, rd, tcg_res);
7003 }
7004 
7005 /* Floating point data-processing (2 source)
7006  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
7007  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
7008  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
7009  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
7010  */
7011 static void disas_fp_2src(DisasContext *s, uint32_t insn)
7012 {
7013     int mos = extract32(insn, 29, 3);
7014     int type = extract32(insn, 22, 2);
7015     int rd = extract32(insn, 0, 5);
7016     int rn = extract32(insn, 5, 5);
7017     int rm = extract32(insn, 16, 5);
7018     int opcode = extract32(insn, 12, 4);
7019 
7020     if (opcode > 8 || mos) {
7021         unallocated_encoding(s);
7022         return;
7023     }
7024 
7025     switch (type) {
7026     case 0:
7027         if (!fp_access_check(s)) {
7028             return;
7029         }
7030         handle_fp_2src_single(s, opcode, rd, rn, rm);
7031         break;
7032     case 1:
7033         if (!fp_access_check(s)) {
7034             return;
7035         }
7036         handle_fp_2src_double(s, opcode, rd, rn, rm);
7037         break;
7038     case 3:
7039         if (!dc_isar_feature(aa64_fp16, s)) {
7040             unallocated_encoding(s);
7041             return;
7042         }
7043         if (!fp_access_check(s)) {
7044             return;
7045         }
7046         handle_fp_2src_half(s, opcode, rd, rn, rm);
7047         break;
7048     default:
7049         unallocated_encoding(s);
7050     }
7051 }
7052 
7053 /* Floating-point data-processing (3 source) - single precision */
7054 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7055                                   int rd, int rn, int rm, int ra)
7056 {
7057     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7058     TCGv_i32 tcg_res = tcg_temp_new_i32();
7059     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7060 
7061     tcg_op1 = read_fp_sreg(s, rn);
7062     tcg_op2 = read_fp_sreg(s, rm);
7063     tcg_op3 = read_fp_sreg(s, ra);
7064 
7065     /* These are fused multiply-add, and must be done as one
7066      * floating point operation with no rounding between the
7067      * multiplication and addition steps.
7068      * NB that doing the negations here as separate steps is
7069      * correct : an input NaN should come out with its sign bit
7070      * flipped if it is a negated-input.
7071      */
7072     if (o1 == true) {
7073         gen_helper_vfp_negs(tcg_op3, tcg_op3);
7074     }
7075 
7076     if (o0 != o1) {
7077         gen_helper_vfp_negs(tcg_op1, tcg_op1);
7078     }
7079 
7080     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7081 
7082     write_fp_sreg(s, rd, tcg_res);
7083 }
7084 
7085 /* Floating-point data-processing (3 source) - double precision */
7086 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7087                                   int rd, int rn, int rm, int ra)
7088 {
7089     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7090     TCGv_i64 tcg_res = tcg_temp_new_i64();
7091     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7092 
7093     tcg_op1 = read_fp_dreg(s, rn);
7094     tcg_op2 = read_fp_dreg(s, rm);
7095     tcg_op3 = read_fp_dreg(s, ra);
7096 
7097     /* These are fused multiply-add, and must be done as one
7098      * floating point operation with no rounding between the
7099      * multiplication and addition steps.
7100      * NB that doing the negations here as separate steps is
7101      * correct : an input NaN should come out with its sign bit
7102      * flipped if it is a negated-input.
7103      */
7104     if (o1 == true) {
7105         gen_helper_vfp_negd(tcg_op3, tcg_op3);
7106     }
7107 
7108     if (o0 != o1) {
7109         gen_helper_vfp_negd(tcg_op1, tcg_op1);
7110     }
7111 
7112     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7113 
7114     write_fp_dreg(s, rd, tcg_res);
7115 }
7116 
7117 /* Floating-point data-processing (3 source) - half precision */
7118 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7119                                 int rd, int rn, int rm, int ra)
7120 {
7121     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7122     TCGv_i32 tcg_res = tcg_temp_new_i32();
7123     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7124 
7125     tcg_op1 = read_fp_hreg(s, rn);
7126     tcg_op2 = read_fp_hreg(s, rm);
7127     tcg_op3 = read_fp_hreg(s, ra);
7128 
7129     /* These are fused multiply-add, and must be done as one
7130      * floating point operation with no rounding between the
7131      * multiplication and addition steps.
7132      * NB that doing the negations here as separate steps is
7133      * correct : an input NaN should come out with its sign bit
7134      * flipped if it is a negated-input.
7135      */
7136     if (o1 == true) {
7137         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7138     }
7139 
7140     if (o0 != o1) {
7141         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7142     }
7143 
7144     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7145 
7146     write_fp_sreg(s, rd, tcg_res);
7147 }
7148 
7149 /* Floating point data-processing (3 source)
7150  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7151  * +---+---+---+-----------+------+----+------+----+------+------+------+
7152  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7153  * +---+---+---+-----------+------+----+------+----+------+------+------+
7154  */
7155 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7156 {
7157     int mos = extract32(insn, 29, 3);
7158     int type = extract32(insn, 22, 2);
7159     int rd = extract32(insn, 0, 5);
7160     int rn = extract32(insn, 5, 5);
7161     int ra = extract32(insn, 10, 5);
7162     int rm = extract32(insn, 16, 5);
7163     bool o0 = extract32(insn, 15, 1);
7164     bool o1 = extract32(insn, 21, 1);
7165 
7166     if (mos) {
7167         unallocated_encoding(s);
7168         return;
7169     }
7170 
7171     switch (type) {
7172     case 0:
7173         if (!fp_access_check(s)) {
7174             return;
7175         }
7176         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7177         break;
7178     case 1:
7179         if (!fp_access_check(s)) {
7180             return;
7181         }
7182         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7183         break;
7184     case 3:
7185         if (!dc_isar_feature(aa64_fp16, s)) {
7186             unallocated_encoding(s);
7187             return;
7188         }
7189         if (!fp_access_check(s)) {
7190             return;
7191         }
7192         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7193         break;
7194     default:
7195         unallocated_encoding(s);
7196     }
7197 }
7198 
7199 /* Floating point immediate
7200  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7201  * +---+---+---+-----------+------+---+------------+-------+------+------+
7202  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7203  * +---+---+---+-----------+------+---+------------+-------+------+------+
7204  */
7205 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7206 {
7207     int rd = extract32(insn, 0, 5);
7208     int imm5 = extract32(insn, 5, 5);
7209     int imm8 = extract32(insn, 13, 8);
7210     int type = extract32(insn, 22, 2);
7211     int mos = extract32(insn, 29, 3);
7212     uint64_t imm;
7213     MemOp sz;
7214 
7215     if (mos || imm5) {
7216         unallocated_encoding(s);
7217         return;
7218     }
7219 
7220     switch (type) {
7221     case 0:
7222         sz = MO_32;
7223         break;
7224     case 1:
7225         sz = MO_64;
7226         break;
7227     case 3:
7228         sz = MO_16;
7229         if (dc_isar_feature(aa64_fp16, s)) {
7230             break;
7231         }
7232         /* fallthru */
7233     default:
7234         unallocated_encoding(s);
7235         return;
7236     }
7237 
7238     if (!fp_access_check(s)) {
7239         return;
7240     }
7241 
7242     imm = vfp_expand_imm(sz, imm8);
7243     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7244 }
7245 
7246 /* Handle floating point <=> fixed point conversions. Note that we can
7247  * also deal with fp <=> integer conversions as a special case (scale == 64)
7248  * OPTME: consider handling that special case specially or at least skipping
7249  * the call to scalbn in the helpers for zero shifts.
7250  */
7251 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7252                            bool itof, int rmode, int scale, int sf, int type)
7253 {
7254     bool is_signed = !(opcode & 1);
7255     TCGv_ptr tcg_fpstatus;
7256     TCGv_i32 tcg_shift, tcg_single;
7257     TCGv_i64 tcg_double;
7258 
7259     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7260 
7261     tcg_shift = tcg_constant_i32(64 - scale);
7262 
7263     if (itof) {
7264         TCGv_i64 tcg_int = cpu_reg(s, rn);
7265         if (!sf) {
7266             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7267 
7268             if (is_signed) {
7269                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7270             } else {
7271                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7272             }
7273 
7274             tcg_int = tcg_extend;
7275         }
7276 
7277         switch (type) {
7278         case 1: /* float64 */
7279             tcg_double = tcg_temp_new_i64();
7280             if (is_signed) {
7281                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7282                                      tcg_shift, tcg_fpstatus);
7283             } else {
7284                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7285                                      tcg_shift, tcg_fpstatus);
7286             }
7287             write_fp_dreg(s, rd, tcg_double);
7288             break;
7289 
7290         case 0: /* float32 */
7291             tcg_single = tcg_temp_new_i32();
7292             if (is_signed) {
7293                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7294                                      tcg_shift, tcg_fpstatus);
7295             } else {
7296                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7297                                      tcg_shift, tcg_fpstatus);
7298             }
7299             write_fp_sreg(s, rd, tcg_single);
7300             break;
7301 
7302         case 3: /* float16 */
7303             tcg_single = tcg_temp_new_i32();
7304             if (is_signed) {
7305                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7306                                      tcg_shift, tcg_fpstatus);
7307             } else {
7308                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7309                                      tcg_shift, tcg_fpstatus);
7310             }
7311             write_fp_sreg(s, rd, tcg_single);
7312             break;
7313 
7314         default:
7315             g_assert_not_reached();
7316         }
7317     } else {
7318         TCGv_i64 tcg_int = cpu_reg(s, rd);
7319         TCGv_i32 tcg_rmode;
7320 
7321         if (extract32(opcode, 2, 1)) {
7322             /* There are too many rounding modes to all fit into rmode,
7323              * so FCVTA[US] is a special case.
7324              */
7325             rmode = FPROUNDING_TIEAWAY;
7326         }
7327 
7328         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7329 
7330         switch (type) {
7331         case 1: /* float64 */
7332             tcg_double = read_fp_dreg(s, rn);
7333             if (is_signed) {
7334                 if (!sf) {
7335                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7336                                          tcg_shift, tcg_fpstatus);
7337                 } else {
7338                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7339                                          tcg_shift, tcg_fpstatus);
7340                 }
7341             } else {
7342                 if (!sf) {
7343                     gen_helper_vfp_tould(tcg_int, tcg_double,
7344                                          tcg_shift, tcg_fpstatus);
7345                 } else {
7346                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7347                                          tcg_shift, tcg_fpstatus);
7348                 }
7349             }
7350             if (!sf) {
7351                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7352             }
7353             break;
7354 
7355         case 0: /* float32 */
7356             tcg_single = read_fp_sreg(s, rn);
7357             if (sf) {
7358                 if (is_signed) {
7359                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7360                                          tcg_shift, tcg_fpstatus);
7361                 } else {
7362                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7363                                          tcg_shift, tcg_fpstatus);
7364                 }
7365             } else {
7366                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7367                 if (is_signed) {
7368                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7369                                          tcg_shift, tcg_fpstatus);
7370                 } else {
7371                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7372                                          tcg_shift, tcg_fpstatus);
7373                 }
7374                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7375             }
7376             break;
7377 
7378         case 3: /* float16 */
7379             tcg_single = read_fp_sreg(s, rn);
7380             if (sf) {
7381                 if (is_signed) {
7382                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7383                                          tcg_shift, tcg_fpstatus);
7384                 } else {
7385                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7386                                          tcg_shift, tcg_fpstatus);
7387                 }
7388             } else {
7389                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7390                 if (is_signed) {
7391                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7392                                          tcg_shift, tcg_fpstatus);
7393                 } else {
7394                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7395                                          tcg_shift, tcg_fpstatus);
7396                 }
7397                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7398             }
7399             break;
7400 
7401         default:
7402             g_assert_not_reached();
7403         }
7404 
7405         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7406     }
7407 }
7408 
7409 /* Floating point <-> fixed point conversions
7410  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7411  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7412  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7413  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7414  */
7415 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7416 {
7417     int rd = extract32(insn, 0, 5);
7418     int rn = extract32(insn, 5, 5);
7419     int scale = extract32(insn, 10, 6);
7420     int opcode = extract32(insn, 16, 3);
7421     int rmode = extract32(insn, 19, 2);
7422     int type = extract32(insn, 22, 2);
7423     bool sbit = extract32(insn, 29, 1);
7424     bool sf = extract32(insn, 31, 1);
7425     bool itof;
7426 
7427     if (sbit || (!sf && scale < 32)) {
7428         unallocated_encoding(s);
7429         return;
7430     }
7431 
7432     switch (type) {
7433     case 0: /* float32 */
7434     case 1: /* float64 */
7435         break;
7436     case 3: /* float16 */
7437         if (dc_isar_feature(aa64_fp16, s)) {
7438             break;
7439         }
7440         /* fallthru */
7441     default:
7442         unallocated_encoding(s);
7443         return;
7444     }
7445 
7446     switch ((rmode << 3) | opcode) {
7447     case 0x2: /* SCVTF */
7448     case 0x3: /* UCVTF */
7449         itof = true;
7450         break;
7451     case 0x18: /* FCVTZS */
7452     case 0x19: /* FCVTZU */
7453         itof = false;
7454         break;
7455     default:
7456         unallocated_encoding(s);
7457         return;
7458     }
7459 
7460     if (!fp_access_check(s)) {
7461         return;
7462     }
7463 
7464     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7465 }
7466 
7467 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7468 {
7469     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7470      * without conversion.
7471      */
7472 
7473     if (itof) {
7474         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7475         TCGv_i64 tmp;
7476 
7477         switch (type) {
7478         case 0:
7479             /* 32 bit */
7480             tmp = tcg_temp_new_i64();
7481             tcg_gen_ext32u_i64(tmp, tcg_rn);
7482             write_fp_dreg(s, rd, tmp);
7483             break;
7484         case 1:
7485             /* 64 bit */
7486             write_fp_dreg(s, rd, tcg_rn);
7487             break;
7488         case 2:
7489             /* 64 bit to top half. */
7490             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7491             clear_vec_high(s, true, rd);
7492             break;
7493         case 3:
7494             /* 16 bit */
7495             tmp = tcg_temp_new_i64();
7496             tcg_gen_ext16u_i64(tmp, tcg_rn);
7497             write_fp_dreg(s, rd, tmp);
7498             break;
7499         default:
7500             g_assert_not_reached();
7501         }
7502     } else {
7503         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7504 
7505         switch (type) {
7506         case 0:
7507             /* 32 bit */
7508             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7509             break;
7510         case 1:
7511             /* 64 bit */
7512             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7513             break;
7514         case 2:
7515             /* 64 bits from top half */
7516             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7517             break;
7518         case 3:
7519             /* 16 bit */
7520             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7521             break;
7522         default:
7523             g_assert_not_reached();
7524         }
7525     }
7526 }
7527 
7528 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7529 {
7530     TCGv_i64 t = read_fp_dreg(s, rn);
7531     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7532 
7533     gen_helper_fjcvtzs(t, t, fpstatus);
7534 
7535     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7536     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7537     tcg_gen_movi_i32(cpu_CF, 0);
7538     tcg_gen_movi_i32(cpu_NF, 0);
7539     tcg_gen_movi_i32(cpu_VF, 0);
7540 }
7541 
7542 /* Floating point <-> integer conversions
7543  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7544  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7545  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7546  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7547  */
7548 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7549 {
7550     int rd = extract32(insn, 0, 5);
7551     int rn = extract32(insn, 5, 5);
7552     int opcode = extract32(insn, 16, 3);
7553     int rmode = extract32(insn, 19, 2);
7554     int type = extract32(insn, 22, 2);
7555     bool sbit = extract32(insn, 29, 1);
7556     bool sf = extract32(insn, 31, 1);
7557     bool itof = false;
7558 
7559     if (sbit) {
7560         goto do_unallocated;
7561     }
7562 
7563     switch (opcode) {
7564     case 2: /* SCVTF */
7565     case 3: /* UCVTF */
7566         itof = true;
7567         /* fallthru */
7568     case 4: /* FCVTAS */
7569     case 5: /* FCVTAU */
7570         if (rmode != 0) {
7571             goto do_unallocated;
7572         }
7573         /* fallthru */
7574     case 0: /* FCVT[NPMZ]S */
7575     case 1: /* FCVT[NPMZ]U */
7576         switch (type) {
7577         case 0: /* float32 */
7578         case 1: /* float64 */
7579             break;
7580         case 3: /* float16 */
7581             if (!dc_isar_feature(aa64_fp16, s)) {
7582                 goto do_unallocated;
7583             }
7584             break;
7585         default:
7586             goto do_unallocated;
7587         }
7588         if (!fp_access_check(s)) {
7589             return;
7590         }
7591         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7592         break;
7593 
7594     default:
7595         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7596         case 0b01100110: /* FMOV half <-> 32-bit int */
7597         case 0b01100111:
7598         case 0b11100110: /* FMOV half <-> 64-bit int */
7599         case 0b11100111:
7600             if (!dc_isar_feature(aa64_fp16, s)) {
7601                 goto do_unallocated;
7602             }
7603             /* fallthru */
7604         case 0b00000110: /* FMOV 32-bit */
7605         case 0b00000111:
7606         case 0b10100110: /* FMOV 64-bit */
7607         case 0b10100111:
7608         case 0b11001110: /* FMOV top half of 128-bit */
7609         case 0b11001111:
7610             if (!fp_access_check(s)) {
7611                 return;
7612             }
7613             itof = opcode & 1;
7614             handle_fmov(s, rd, rn, type, itof);
7615             break;
7616 
7617         case 0b00111110: /* FJCVTZS */
7618             if (!dc_isar_feature(aa64_jscvt, s)) {
7619                 goto do_unallocated;
7620             } else if (fp_access_check(s)) {
7621                 handle_fjcvtzs(s, rd, rn);
7622             }
7623             break;
7624 
7625         default:
7626         do_unallocated:
7627             unallocated_encoding(s);
7628             return;
7629         }
7630         break;
7631     }
7632 }
7633 
7634 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7635  *   31  30  29 28     25 24                          0
7636  * +---+---+---+---------+-----------------------------+
7637  * |   | 0 |   | 1 1 1 1 |                             |
7638  * +---+---+---+---------+-----------------------------+
7639  */
7640 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7641 {
7642     if (extract32(insn, 24, 1)) {
7643         /* Floating point data-processing (3 source) */
7644         disas_fp_3src(s, insn);
7645     } else if (extract32(insn, 21, 1) == 0) {
7646         /* Floating point to fixed point conversions */
7647         disas_fp_fixed_conv(s, insn);
7648     } else {
7649         switch (extract32(insn, 10, 2)) {
7650         case 1:
7651             /* Floating point conditional compare */
7652             disas_fp_ccomp(s, insn);
7653             break;
7654         case 2:
7655             /* Floating point data-processing (2 source) */
7656             disas_fp_2src(s, insn);
7657             break;
7658         case 3:
7659             /* Floating point conditional select */
7660             disas_fp_csel(s, insn);
7661             break;
7662         case 0:
7663             switch (ctz32(extract32(insn, 12, 4))) {
7664             case 0: /* [15:12] == xxx1 */
7665                 /* Floating point immediate */
7666                 disas_fp_imm(s, insn);
7667                 break;
7668             case 1: /* [15:12] == xx10 */
7669                 /* Floating point compare */
7670                 disas_fp_compare(s, insn);
7671                 break;
7672             case 2: /* [15:12] == x100 */
7673                 /* Floating point data-processing (1 source) */
7674                 disas_fp_1src(s, insn);
7675                 break;
7676             case 3: /* [15:12] == 1000 */
7677                 unallocated_encoding(s);
7678                 break;
7679             default: /* [15:12] == 0000 */
7680                 /* Floating point <-> integer conversions */
7681                 disas_fp_int_conv(s, insn);
7682                 break;
7683             }
7684             break;
7685         }
7686     }
7687 }
7688 
7689 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7690                      int pos)
7691 {
7692     /* Extract 64 bits from the middle of two concatenated 64 bit
7693      * vector register slices left:right. The extracted bits start
7694      * at 'pos' bits into the right (least significant) side.
7695      * We return the result in tcg_right, and guarantee not to
7696      * trash tcg_left.
7697      */
7698     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7699     assert(pos > 0 && pos < 64);
7700 
7701     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7702     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7703     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7704 }
7705 
7706 /* EXT
7707  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7708  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7709  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7710  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7711  */
7712 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7713 {
7714     int is_q = extract32(insn, 30, 1);
7715     int op2 = extract32(insn, 22, 2);
7716     int imm4 = extract32(insn, 11, 4);
7717     int rm = extract32(insn, 16, 5);
7718     int rn = extract32(insn, 5, 5);
7719     int rd = extract32(insn, 0, 5);
7720     int pos = imm4 << 3;
7721     TCGv_i64 tcg_resl, tcg_resh;
7722 
7723     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7724         unallocated_encoding(s);
7725         return;
7726     }
7727 
7728     if (!fp_access_check(s)) {
7729         return;
7730     }
7731 
7732     tcg_resh = tcg_temp_new_i64();
7733     tcg_resl = tcg_temp_new_i64();
7734 
7735     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7736      * either extracting 128 bits from a 128:128 concatenation, or
7737      * extracting 64 bits from a 64:64 concatenation.
7738      */
7739     if (!is_q) {
7740         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7741         if (pos != 0) {
7742             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7743             do_ext64(s, tcg_resh, tcg_resl, pos);
7744         }
7745     } else {
7746         TCGv_i64 tcg_hh;
7747         typedef struct {
7748             int reg;
7749             int elt;
7750         } EltPosns;
7751         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7752         EltPosns *elt = eltposns;
7753 
7754         if (pos >= 64) {
7755             elt++;
7756             pos -= 64;
7757         }
7758 
7759         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7760         elt++;
7761         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7762         elt++;
7763         if (pos != 0) {
7764             do_ext64(s, tcg_resh, tcg_resl, pos);
7765             tcg_hh = tcg_temp_new_i64();
7766             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7767             do_ext64(s, tcg_hh, tcg_resh, pos);
7768         }
7769     }
7770 
7771     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7772     if (is_q) {
7773         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7774     }
7775     clear_vec_high(s, is_q, rd);
7776 }
7777 
7778 /* TBL/TBX
7779  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7780  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7781  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7782  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7783  */
7784 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7785 {
7786     int op2 = extract32(insn, 22, 2);
7787     int is_q = extract32(insn, 30, 1);
7788     int rm = extract32(insn, 16, 5);
7789     int rn = extract32(insn, 5, 5);
7790     int rd = extract32(insn, 0, 5);
7791     int is_tbx = extract32(insn, 12, 1);
7792     int len = (extract32(insn, 13, 2) + 1) * 16;
7793 
7794     if (op2 != 0) {
7795         unallocated_encoding(s);
7796         return;
7797     }
7798 
7799     if (!fp_access_check(s)) {
7800         return;
7801     }
7802 
7803     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7804                        vec_full_reg_offset(s, rm), tcg_env,
7805                        is_q ? 16 : 8, vec_full_reg_size(s),
7806                        (len << 6) | (is_tbx << 5) | rn,
7807                        gen_helper_simd_tblx);
7808 }
7809 
7810 /* ZIP/UZP/TRN
7811  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7812  * +---+---+-------------+------+---+------+---+------------------+------+
7813  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7814  * +---+---+-------------+------+---+------+---+------------------+------+
7815  */
7816 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7817 {
7818     int rd = extract32(insn, 0, 5);
7819     int rn = extract32(insn, 5, 5);
7820     int rm = extract32(insn, 16, 5);
7821     int size = extract32(insn, 22, 2);
7822     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7823      * bit 2 indicates 1 vs 2 variant of the insn.
7824      */
7825     int opcode = extract32(insn, 12, 2);
7826     bool part = extract32(insn, 14, 1);
7827     bool is_q = extract32(insn, 30, 1);
7828     int esize = 8 << size;
7829     int i;
7830     int datasize = is_q ? 128 : 64;
7831     int elements = datasize / esize;
7832     TCGv_i64 tcg_res[2], tcg_ele;
7833 
7834     if (opcode == 0 || (size == 3 && !is_q)) {
7835         unallocated_encoding(s);
7836         return;
7837     }
7838 
7839     if (!fp_access_check(s)) {
7840         return;
7841     }
7842 
7843     tcg_res[0] = tcg_temp_new_i64();
7844     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7845     tcg_ele = tcg_temp_new_i64();
7846 
7847     for (i = 0; i < elements; i++) {
7848         int o, w;
7849 
7850         switch (opcode) {
7851         case 1: /* UZP1/2 */
7852         {
7853             int midpoint = elements / 2;
7854             if (i < midpoint) {
7855                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7856             } else {
7857                 read_vec_element(s, tcg_ele, rm,
7858                                  2 * (i - midpoint) + part, size);
7859             }
7860             break;
7861         }
7862         case 2: /* TRN1/2 */
7863             if (i & 1) {
7864                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7865             } else {
7866                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7867             }
7868             break;
7869         case 3: /* ZIP1/2 */
7870         {
7871             int base = part * elements / 2;
7872             if (i & 1) {
7873                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7874             } else {
7875                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7876             }
7877             break;
7878         }
7879         default:
7880             g_assert_not_reached();
7881         }
7882 
7883         w = (i * esize) / 64;
7884         o = (i * esize) % 64;
7885         if (o == 0) {
7886             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7887         } else {
7888             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7889             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7890         }
7891     }
7892 
7893     for (i = 0; i <= is_q; ++i) {
7894         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7895     }
7896     clear_vec_high(s, is_q, rd);
7897 }
7898 
7899 /*
7900  * do_reduction_op helper
7901  *
7902  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7903  * important for correct NaN propagation that we do these
7904  * operations in exactly the order specified by the pseudocode.
7905  *
7906  * This is a recursive function, TCG temps should be freed by the
7907  * calling function once it is done with the values.
7908  */
7909 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7910                                 int esize, int size, int vmap, TCGv_ptr fpst)
7911 {
7912     if (esize == size) {
7913         int element;
7914         MemOp msize = esize == 16 ? MO_16 : MO_32;
7915         TCGv_i32 tcg_elem;
7916 
7917         /* We should have one register left here */
7918         assert(ctpop8(vmap) == 1);
7919         element = ctz32(vmap);
7920         assert(element < 8);
7921 
7922         tcg_elem = tcg_temp_new_i32();
7923         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7924         return tcg_elem;
7925     } else {
7926         int bits = size / 2;
7927         int shift = ctpop8(vmap) / 2;
7928         int vmap_lo = (vmap >> shift) & vmap;
7929         int vmap_hi = (vmap & ~vmap_lo);
7930         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7931 
7932         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7933         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7934         tcg_res = tcg_temp_new_i32();
7935 
7936         switch (fpopcode) {
7937         case 0x0c: /* fmaxnmv half-precision */
7938             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7939             break;
7940         case 0x0f: /* fmaxv half-precision */
7941             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7942             break;
7943         case 0x1c: /* fminnmv half-precision */
7944             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7945             break;
7946         case 0x1f: /* fminv half-precision */
7947             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7948             break;
7949         case 0x2c: /* fmaxnmv */
7950             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7951             break;
7952         case 0x2f: /* fmaxv */
7953             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7954             break;
7955         case 0x3c: /* fminnmv */
7956             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7957             break;
7958         case 0x3f: /* fminv */
7959             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7960             break;
7961         default:
7962             g_assert_not_reached();
7963         }
7964         return tcg_res;
7965     }
7966 }
7967 
7968 /* AdvSIMD across lanes
7969  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7970  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7971  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7972  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7973  */
7974 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7975 {
7976     int rd = extract32(insn, 0, 5);
7977     int rn = extract32(insn, 5, 5);
7978     int size = extract32(insn, 22, 2);
7979     int opcode = extract32(insn, 12, 5);
7980     bool is_q = extract32(insn, 30, 1);
7981     bool is_u = extract32(insn, 29, 1);
7982     bool is_fp = false;
7983     bool is_min = false;
7984     int esize;
7985     int elements;
7986     int i;
7987     TCGv_i64 tcg_res, tcg_elt;
7988 
7989     switch (opcode) {
7990     case 0x1b: /* ADDV */
7991         if (is_u) {
7992             unallocated_encoding(s);
7993             return;
7994         }
7995         /* fall through */
7996     case 0x3: /* SADDLV, UADDLV */
7997     case 0xa: /* SMAXV, UMAXV */
7998     case 0x1a: /* SMINV, UMINV */
7999         if (size == 3 || (size == 2 && !is_q)) {
8000             unallocated_encoding(s);
8001             return;
8002         }
8003         break;
8004     case 0xc: /* FMAXNMV, FMINNMV */
8005     case 0xf: /* FMAXV, FMINV */
8006         /* Bit 1 of size field encodes min vs max and the actual size
8007          * depends on the encoding of the U bit. If not set (and FP16
8008          * enabled) then we do half-precision float instead of single
8009          * precision.
8010          */
8011         is_min = extract32(size, 1, 1);
8012         is_fp = true;
8013         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8014             size = 1;
8015         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8016             unallocated_encoding(s);
8017             return;
8018         } else {
8019             size = 2;
8020         }
8021         break;
8022     default:
8023         unallocated_encoding(s);
8024         return;
8025     }
8026 
8027     if (!fp_access_check(s)) {
8028         return;
8029     }
8030 
8031     esize = 8 << size;
8032     elements = (is_q ? 128 : 64) / esize;
8033 
8034     tcg_res = tcg_temp_new_i64();
8035     tcg_elt = tcg_temp_new_i64();
8036 
8037     /* These instructions operate across all lanes of a vector
8038      * to produce a single result. We can guarantee that a 64
8039      * bit intermediate is sufficient:
8040      *  + for [US]ADDLV the maximum element size is 32 bits, and
8041      *    the result type is 64 bits
8042      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8043      *    same as the element size, which is 32 bits at most
8044      * For the integer operations we can choose to work at 64
8045      * or 32 bits and truncate at the end; for simplicity
8046      * we use 64 bits always. The floating point
8047      * ops do require 32 bit intermediates, though.
8048      */
8049     if (!is_fp) {
8050         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8051 
8052         for (i = 1; i < elements; i++) {
8053             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8054 
8055             switch (opcode) {
8056             case 0x03: /* SADDLV / UADDLV */
8057             case 0x1b: /* ADDV */
8058                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8059                 break;
8060             case 0x0a: /* SMAXV / UMAXV */
8061                 if (is_u) {
8062                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8063                 } else {
8064                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8065                 }
8066                 break;
8067             case 0x1a: /* SMINV / UMINV */
8068                 if (is_u) {
8069                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8070                 } else {
8071                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8072                 }
8073                 break;
8074             default:
8075                 g_assert_not_reached();
8076             }
8077 
8078         }
8079     } else {
8080         /* Floating point vector reduction ops which work across 32
8081          * bit (single) or 16 bit (half-precision) intermediates.
8082          * Note that correct NaN propagation requires that we do these
8083          * operations in exactly the order specified by the pseudocode.
8084          */
8085         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8086         int fpopcode = opcode | is_min << 4 | is_u << 5;
8087         int vmap = (1 << elements) - 1;
8088         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8089                                              (is_q ? 128 : 64), vmap, fpst);
8090         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8091     }
8092 
8093     /* Now truncate the result to the width required for the final output */
8094     if (opcode == 0x03) {
8095         /* SADDLV, UADDLV: result is 2*esize */
8096         size++;
8097     }
8098 
8099     switch (size) {
8100     case 0:
8101         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8102         break;
8103     case 1:
8104         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8105         break;
8106     case 2:
8107         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8108         break;
8109     case 3:
8110         break;
8111     default:
8112         g_assert_not_reached();
8113     }
8114 
8115     write_fp_dreg(s, rd, tcg_res);
8116 }
8117 
8118 /* AdvSIMD modified immediate
8119  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8120  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8121  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8122  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8123  *
8124  * There are a number of operations that can be carried out here:
8125  *   MOVI - move (shifted) imm into register
8126  *   MVNI - move inverted (shifted) imm into register
8127  *   ORR  - bitwise OR of (shifted) imm with register
8128  *   BIC  - bitwise clear of (shifted) imm with register
8129  * With ARMv8.2 we also have:
8130  *   FMOV half-precision
8131  */
8132 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8133 {
8134     int rd = extract32(insn, 0, 5);
8135     int cmode = extract32(insn, 12, 4);
8136     int o2 = extract32(insn, 11, 1);
8137     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8138     bool is_neg = extract32(insn, 29, 1);
8139     bool is_q = extract32(insn, 30, 1);
8140     uint64_t imm = 0;
8141 
8142     if (o2) {
8143         if (cmode != 0xf || is_neg) {
8144             unallocated_encoding(s);
8145             return;
8146         }
8147         /* FMOV (vector, immediate) - half-precision */
8148         if (!dc_isar_feature(aa64_fp16, s)) {
8149             unallocated_encoding(s);
8150             return;
8151         }
8152         imm = vfp_expand_imm(MO_16, abcdefgh);
8153         /* now duplicate across the lanes */
8154         imm = dup_const(MO_16, imm);
8155     } else {
8156         if (cmode == 0xf && is_neg && !is_q) {
8157             unallocated_encoding(s);
8158             return;
8159         }
8160         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8161     }
8162 
8163     if (!fp_access_check(s)) {
8164         return;
8165     }
8166 
8167     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8168         /* MOVI or MVNI, with MVNI negation handled above.  */
8169         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8170                              vec_full_reg_size(s), imm);
8171     } else {
8172         /* ORR or BIC, with BIC negation to AND handled above.  */
8173         if (is_neg) {
8174             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8175         } else {
8176             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8177         }
8178     }
8179 }
8180 
8181 /* AdvSIMD scalar pairwise
8182  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8183  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8184  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8185  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8186  */
8187 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8188 {
8189     int u = extract32(insn, 29, 1);
8190     int size = extract32(insn, 22, 2);
8191     int opcode = extract32(insn, 12, 5);
8192     int rn = extract32(insn, 5, 5);
8193     int rd = extract32(insn, 0, 5);
8194     TCGv_ptr fpst;
8195 
8196     /* For some ops (the FP ones), size[1] is part of the encoding.
8197      * For ADDP strictly it is not but size[1] is always 1 for valid
8198      * encodings.
8199      */
8200     opcode |= (extract32(size, 1, 1) << 5);
8201 
8202     switch (opcode) {
8203     case 0x3b: /* ADDP */
8204         if (u || size != 3) {
8205             unallocated_encoding(s);
8206             return;
8207         }
8208         if (!fp_access_check(s)) {
8209             return;
8210         }
8211 
8212         fpst = NULL;
8213         break;
8214     case 0xc: /* FMAXNMP */
8215     case 0xd: /* FADDP */
8216     case 0xf: /* FMAXP */
8217     case 0x2c: /* FMINNMP */
8218     case 0x2f: /* FMINP */
8219         /* FP op, size[0] is 32 or 64 bit*/
8220         if (!u) {
8221             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8222                 unallocated_encoding(s);
8223                 return;
8224             } else {
8225                 size = MO_16;
8226             }
8227         } else {
8228             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8229         }
8230 
8231         if (!fp_access_check(s)) {
8232             return;
8233         }
8234 
8235         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8236         break;
8237     default:
8238         unallocated_encoding(s);
8239         return;
8240     }
8241 
8242     if (size == MO_64) {
8243         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8244         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8245         TCGv_i64 tcg_res = tcg_temp_new_i64();
8246 
8247         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8248         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8249 
8250         switch (opcode) {
8251         case 0x3b: /* ADDP */
8252             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8253             break;
8254         case 0xc: /* FMAXNMP */
8255             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8256             break;
8257         case 0xd: /* FADDP */
8258             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8259             break;
8260         case 0xf: /* FMAXP */
8261             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8262             break;
8263         case 0x2c: /* FMINNMP */
8264             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8265             break;
8266         case 0x2f: /* FMINP */
8267             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8268             break;
8269         default:
8270             g_assert_not_reached();
8271         }
8272 
8273         write_fp_dreg(s, rd, tcg_res);
8274     } else {
8275         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8276         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8277         TCGv_i32 tcg_res = tcg_temp_new_i32();
8278 
8279         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8280         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8281 
8282         if (size == MO_16) {
8283             switch (opcode) {
8284             case 0xc: /* FMAXNMP */
8285                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8286                 break;
8287             case 0xd: /* FADDP */
8288                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8289                 break;
8290             case 0xf: /* FMAXP */
8291                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8292                 break;
8293             case 0x2c: /* FMINNMP */
8294                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8295                 break;
8296             case 0x2f: /* FMINP */
8297                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8298                 break;
8299             default:
8300                 g_assert_not_reached();
8301             }
8302         } else {
8303             switch (opcode) {
8304             case 0xc: /* FMAXNMP */
8305                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8306                 break;
8307             case 0xd: /* FADDP */
8308                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8309                 break;
8310             case 0xf: /* FMAXP */
8311                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8312                 break;
8313             case 0x2c: /* FMINNMP */
8314                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8315                 break;
8316             case 0x2f: /* FMINP */
8317                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8318                 break;
8319             default:
8320                 g_assert_not_reached();
8321             }
8322         }
8323 
8324         write_fp_sreg(s, rd, tcg_res);
8325     }
8326 }
8327 
8328 /*
8329  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8330  *
8331  * This code is handles the common shifting code and is used by both
8332  * the vector and scalar code.
8333  */
8334 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8335                                     TCGv_i64 tcg_rnd, bool accumulate,
8336                                     bool is_u, int size, int shift)
8337 {
8338     bool extended_result = false;
8339     bool round = tcg_rnd != NULL;
8340     int ext_lshift = 0;
8341     TCGv_i64 tcg_src_hi;
8342 
8343     if (round && size == 3) {
8344         extended_result = true;
8345         ext_lshift = 64 - shift;
8346         tcg_src_hi = tcg_temp_new_i64();
8347     } else if (shift == 64) {
8348         if (!accumulate && is_u) {
8349             /* result is zero */
8350             tcg_gen_movi_i64(tcg_res, 0);
8351             return;
8352         }
8353     }
8354 
8355     /* Deal with the rounding step */
8356     if (round) {
8357         if (extended_result) {
8358             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8359             if (!is_u) {
8360                 /* take care of sign extending tcg_res */
8361                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8362                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8363                                  tcg_src, tcg_src_hi,
8364                                  tcg_rnd, tcg_zero);
8365             } else {
8366                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8367                                  tcg_src, tcg_zero,
8368                                  tcg_rnd, tcg_zero);
8369             }
8370         } else {
8371             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8372         }
8373     }
8374 
8375     /* Now do the shift right */
8376     if (round && extended_result) {
8377         /* extended case, >64 bit precision required */
8378         if (ext_lshift == 0) {
8379             /* special case, only high bits matter */
8380             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8381         } else {
8382             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8383             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8384             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8385         }
8386     } else {
8387         if (is_u) {
8388             if (shift == 64) {
8389                 /* essentially shifting in 64 zeros */
8390                 tcg_gen_movi_i64(tcg_src, 0);
8391             } else {
8392                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8393             }
8394         } else {
8395             if (shift == 64) {
8396                 /* effectively extending the sign-bit */
8397                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8398             } else {
8399                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8400             }
8401         }
8402     }
8403 
8404     if (accumulate) {
8405         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8406     } else {
8407         tcg_gen_mov_i64(tcg_res, tcg_src);
8408     }
8409 }
8410 
8411 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8412 static void handle_scalar_simd_shri(DisasContext *s,
8413                                     bool is_u, int immh, int immb,
8414                                     int opcode, int rn, int rd)
8415 {
8416     const int size = 3;
8417     int immhb = immh << 3 | immb;
8418     int shift = 2 * (8 << size) - immhb;
8419     bool accumulate = false;
8420     bool round = false;
8421     bool insert = false;
8422     TCGv_i64 tcg_rn;
8423     TCGv_i64 tcg_rd;
8424     TCGv_i64 tcg_round;
8425 
8426     if (!extract32(immh, 3, 1)) {
8427         unallocated_encoding(s);
8428         return;
8429     }
8430 
8431     if (!fp_access_check(s)) {
8432         return;
8433     }
8434 
8435     switch (opcode) {
8436     case 0x02: /* SSRA / USRA (accumulate) */
8437         accumulate = true;
8438         break;
8439     case 0x04: /* SRSHR / URSHR (rounding) */
8440         round = true;
8441         break;
8442     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8443         accumulate = round = true;
8444         break;
8445     case 0x08: /* SRI */
8446         insert = true;
8447         break;
8448     }
8449 
8450     if (round) {
8451         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8452     } else {
8453         tcg_round = NULL;
8454     }
8455 
8456     tcg_rn = read_fp_dreg(s, rn);
8457     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8458 
8459     if (insert) {
8460         /* shift count same as element size is valid but does nothing;
8461          * special case to avoid potential shift by 64.
8462          */
8463         int esize = 8 << size;
8464         if (shift != esize) {
8465             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8466             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8467         }
8468     } else {
8469         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8470                                 accumulate, is_u, size, shift);
8471     }
8472 
8473     write_fp_dreg(s, rd, tcg_rd);
8474 }
8475 
8476 /* SHL/SLI - Scalar shift left */
8477 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8478                                     int immh, int immb, int opcode,
8479                                     int rn, int rd)
8480 {
8481     int size = 32 - clz32(immh) - 1;
8482     int immhb = immh << 3 | immb;
8483     int shift = immhb - (8 << size);
8484     TCGv_i64 tcg_rn;
8485     TCGv_i64 tcg_rd;
8486 
8487     if (!extract32(immh, 3, 1)) {
8488         unallocated_encoding(s);
8489         return;
8490     }
8491 
8492     if (!fp_access_check(s)) {
8493         return;
8494     }
8495 
8496     tcg_rn = read_fp_dreg(s, rn);
8497     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8498 
8499     if (insert) {
8500         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8501     } else {
8502         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8503     }
8504 
8505     write_fp_dreg(s, rd, tcg_rd);
8506 }
8507 
8508 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8509  * (signed/unsigned) narrowing */
8510 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8511                                    bool is_u_shift, bool is_u_narrow,
8512                                    int immh, int immb, int opcode,
8513                                    int rn, int rd)
8514 {
8515     int immhb = immh << 3 | immb;
8516     int size = 32 - clz32(immh) - 1;
8517     int esize = 8 << size;
8518     int shift = (2 * esize) - immhb;
8519     int elements = is_scalar ? 1 : (64 / esize);
8520     bool round = extract32(opcode, 0, 1);
8521     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8522     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8523     TCGv_i32 tcg_rd_narrowed;
8524     TCGv_i64 tcg_final;
8525 
8526     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8527         { gen_helper_neon_narrow_sat_s8,
8528           gen_helper_neon_unarrow_sat8 },
8529         { gen_helper_neon_narrow_sat_s16,
8530           gen_helper_neon_unarrow_sat16 },
8531         { gen_helper_neon_narrow_sat_s32,
8532           gen_helper_neon_unarrow_sat32 },
8533         { NULL, NULL },
8534     };
8535     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8536         gen_helper_neon_narrow_sat_u8,
8537         gen_helper_neon_narrow_sat_u16,
8538         gen_helper_neon_narrow_sat_u32,
8539         NULL
8540     };
8541     NeonGenNarrowEnvFn *narrowfn;
8542 
8543     int i;
8544 
8545     assert(size < 4);
8546 
8547     if (extract32(immh, 3, 1)) {
8548         unallocated_encoding(s);
8549         return;
8550     }
8551 
8552     if (!fp_access_check(s)) {
8553         return;
8554     }
8555 
8556     if (is_u_shift) {
8557         narrowfn = unsigned_narrow_fns[size];
8558     } else {
8559         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8560     }
8561 
8562     tcg_rn = tcg_temp_new_i64();
8563     tcg_rd = tcg_temp_new_i64();
8564     tcg_rd_narrowed = tcg_temp_new_i32();
8565     tcg_final = tcg_temp_new_i64();
8566 
8567     if (round) {
8568         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8569     } else {
8570         tcg_round = NULL;
8571     }
8572 
8573     for (i = 0; i < elements; i++) {
8574         read_vec_element(s, tcg_rn, rn, i, ldop);
8575         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8576                                 false, is_u_shift, size+1, shift);
8577         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8578         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8579         if (i == 0) {
8580             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8581         } else {
8582             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8583         }
8584     }
8585 
8586     if (!is_q) {
8587         write_vec_element(s, tcg_final, rd, 0, MO_64);
8588     } else {
8589         write_vec_element(s, tcg_final, rd, 1, MO_64);
8590     }
8591     clear_vec_high(s, is_q, rd);
8592 }
8593 
8594 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8595 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8596                              bool src_unsigned, bool dst_unsigned,
8597                              int immh, int immb, int rn, int rd)
8598 {
8599     int immhb = immh << 3 | immb;
8600     int size = 32 - clz32(immh) - 1;
8601     int shift = immhb - (8 << size);
8602     int pass;
8603 
8604     assert(immh != 0);
8605     assert(!(scalar && is_q));
8606 
8607     if (!scalar) {
8608         if (!is_q && extract32(immh, 3, 1)) {
8609             unallocated_encoding(s);
8610             return;
8611         }
8612 
8613         /* Since we use the variable-shift helpers we must
8614          * replicate the shift count into each element of
8615          * the tcg_shift value.
8616          */
8617         switch (size) {
8618         case 0:
8619             shift |= shift << 8;
8620             /* fall through */
8621         case 1:
8622             shift |= shift << 16;
8623             break;
8624         case 2:
8625         case 3:
8626             break;
8627         default:
8628             g_assert_not_reached();
8629         }
8630     }
8631 
8632     if (!fp_access_check(s)) {
8633         return;
8634     }
8635 
8636     if (size == 3) {
8637         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8638         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8639             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8640             { NULL, gen_helper_neon_qshl_u64 },
8641         };
8642         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8643         int maxpass = is_q ? 2 : 1;
8644 
8645         for (pass = 0; pass < maxpass; pass++) {
8646             TCGv_i64 tcg_op = tcg_temp_new_i64();
8647 
8648             read_vec_element(s, tcg_op, rn, pass, MO_64);
8649             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8650             write_vec_element(s, tcg_op, rd, pass, MO_64);
8651         }
8652         clear_vec_high(s, is_q, rd);
8653     } else {
8654         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8655         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8656             {
8657                 { gen_helper_neon_qshl_s8,
8658                   gen_helper_neon_qshl_s16,
8659                   gen_helper_neon_qshl_s32 },
8660                 { gen_helper_neon_qshlu_s8,
8661                   gen_helper_neon_qshlu_s16,
8662                   gen_helper_neon_qshlu_s32 }
8663             }, {
8664                 { NULL, NULL, NULL },
8665                 { gen_helper_neon_qshl_u8,
8666                   gen_helper_neon_qshl_u16,
8667                   gen_helper_neon_qshl_u32 }
8668             }
8669         };
8670         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8671         MemOp memop = scalar ? size : MO_32;
8672         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8673 
8674         for (pass = 0; pass < maxpass; pass++) {
8675             TCGv_i32 tcg_op = tcg_temp_new_i32();
8676 
8677             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8678             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8679             if (scalar) {
8680                 switch (size) {
8681                 case 0:
8682                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8683                     break;
8684                 case 1:
8685                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8686                     break;
8687                 case 2:
8688                     break;
8689                 default:
8690                     g_assert_not_reached();
8691                 }
8692                 write_fp_sreg(s, rd, tcg_op);
8693             } else {
8694                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8695             }
8696         }
8697 
8698         if (!scalar) {
8699             clear_vec_high(s, is_q, rd);
8700         }
8701     }
8702 }
8703 
8704 /* Common vector code for handling integer to FP conversion */
8705 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8706                                    int elements, int is_signed,
8707                                    int fracbits, int size)
8708 {
8709     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8710     TCGv_i32 tcg_shift = NULL;
8711 
8712     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8713     int pass;
8714 
8715     if (fracbits || size == MO_64) {
8716         tcg_shift = tcg_constant_i32(fracbits);
8717     }
8718 
8719     if (size == MO_64) {
8720         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8721         TCGv_i64 tcg_double = tcg_temp_new_i64();
8722 
8723         for (pass = 0; pass < elements; pass++) {
8724             read_vec_element(s, tcg_int64, rn, pass, mop);
8725 
8726             if (is_signed) {
8727                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8728                                      tcg_shift, tcg_fpst);
8729             } else {
8730                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8731                                      tcg_shift, tcg_fpst);
8732             }
8733             if (elements == 1) {
8734                 write_fp_dreg(s, rd, tcg_double);
8735             } else {
8736                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8737             }
8738         }
8739     } else {
8740         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8741         TCGv_i32 tcg_float = tcg_temp_new_i32();
8742 
8743         for (pass = 0; pass < elements; pass++) {
8744             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8745 
8746             switch (size) {
8747             case MO_32:
8748                 if (fracbits) {
8749                     if (is_signed) {
8750                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8751                                              tcg_shift, tcg_fpst);
8752                     } else {
8753                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8754                                              tcg_shift, tcg_fpst);
8755                     }
8756                 } else {
8757                     if (is_signed) {
8758                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8759                     } else {
8760                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8761                     }
8762                 }
8763                 break;
8764             case MO_16:
8765                 if (fracbits) {
8766                     if (is_signed) {
8767                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8768                                              tcg_shift, tcg_fpst);
8769                     } else {
8770                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8771                                              tcg_shift, tcg_fpst);
8772                     }
8773                 } else {
8774                     if (is_signed) {
8775                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8776                     } else {
8777                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8778                     }
8779                 }
8780                 break;
8781             default:
8782                 g_assert_not_reached();
8783             }
8784 
8785             if (elements == 1) {
8786                 write_fp_sreg(s, rd, tcg_float);
8787             } else {
8788                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8789             }
8790         }
8791     }
8792 
8793     clear_vec_high(s, elements << size == 16, rd);
8794 }
8795 
8796 /* UCVTF/SCVTF - Integer to FP conversion */
8797 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8798                                          bool is_q, bool is_u,
8799                                          int immh, int immb, int opcode,
8800                                          int rn, int rd)
8801 {
8802     int size, elements, fracbits;
8803     int immhb = immh << 3 | immb;
8804 
8805     if (immh & 8) {
8806         size = MO_64;
8807         if (!is_scalar && !is_q) {
8808             unallocated_encoding(s);
8809             return;
8810         }
8811     } else if (immh & 4) {
8812         size = MO_32;
8813     } else if (immh & 2) {
8814         size = MO_16;
8815         if (!dc_isar_feature(aa64_fp16, s)) {
8816             unallocated_encoding(s);
8817             return;
8818         }
8819     } else {
8820         /* immh == 0 would be a failure of the decode logic */
8821         g_assert(immh == 1);
8822         unallocated_encoding(s);
8823         return;
8824     }
8825 
8826     if (is_scalar) {
8827         elements = 1;
8828     } else {
8829         elements = (8 << is_q) >> size;
8830     }
8831     fracbits = (16 << size) - immhb;
8832 
8833     if (!fp_access_check(s)) {
8834         return;
8835     }
8836 
8837     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8838 }
8839 
8840 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8841 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8842                                          bool is_q, bool is_u,
8843                                          int immh, int immb, int rn, int rd)
8844 {
8845     int immhb = immh << 3 | immb;
8846     int pass, size, fracbits;
8847     TCGv_ptr tcg_fpstatus;
8848     TCGv_i32 tcg_rmode, tcg_shift;
8849 
8850     if (immh & 0x8) {
8851         size = MO_64;
8852         if (!is_scalar && !is_q) {
8853             unallocated_encoding(s);
8854             return;
8855         }
8856     } else if (immh & 0x4) {
8857         size = MO_32;
8858     } else if (immh & 0x2) {
8859         size = MO_16;
8860         if (!dc_isar_feature(aa64_fp16, s)) {
8861             unallocated_encoding(s);
8862             return;
8863         }
8864     } else {
8865         /* Should have split out AdvSIMD modified immediate earlier.  */
8866         assert(immh == 1);
8867         unallocated_encoding(s);
8868         return;
8869     }
8870 
8871     if (!fp_access_check(s)) {
8872         return;
8873     }
8874 
8875     assert(!(is_scalar && is_q));
8876 
8877     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8878     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8879     fracbits = (16 << size) - immhb;
8880     tcg_shift = tcg_constant_i32(fracbits);
8881 
8882     if (size == MO_64) {
8883         int maxpass = is_scalar ? 1 : 2;
8884 
8885         for (pass = 0; pass < maxpass; pass++) {
8886             TCGv_i64 tcg_op = tcg_temp_new_i64();
8887 
8888             read_vec_element(s, tcg_op, rn, pass, MO_64);
8889             if (is_u) {
8890                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8891             } else {
8892                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8893             }
8894             write_vec_element(s, tcg_op, rd, pass, MO_64);
8895         }
8896         clear_vec_high(s, is_q, rd);
8897     } else {
8898         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8899         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8900 
8901         switch (size) {
8902         case MO_16:
8903             if (is_u) {
8904                 fn = gen_helper_vfp_touhh;
8905             } else {
8906                 fn = gen_helper_vfp_toshh;
8907             }
8908             break;
8909         case MO_32:
8910             if (is_u) {
8911                 fn = gen_helper_vfp_touls;
8912             } else {
8913                 fn = gen_helper_vfp_tosls;
8914             }
8915             break;
8916         default:
8917             g_assert_not_reached();
8918         }
8919 
8920         for (pass = 0; pass < maxpass; pass++) {
8921             TCGv_i32 tcg_op = tcg_temp_new_i32();
8922 
8923             read_vec_element_i32(s, tcg_op, rn, pass, size);
8924             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8925             if (is_scalar) {
8926                 if (size == MO_16 && !is_u) {
8927                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8928                 }
8929                 write_fp_sreg(s, rd, tcg_op);
8930             } else {
8931                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8932             }
8933         }
8934         if (!is_scalar) {
8935             clear_vec_high(s, is_q, rd);
8936         }
8937     }
8938 
8939     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8940 }
8941 
8942 /* AdvSIMD scalar shift by immediate
8943  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8944  * +-----+---+-------------+------+------+--------+---+------+------+
8945  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8946  * +-----+---+-------------+------+------+--------+---+------+------+
8947  *
8948  * This is the scalar version so it works on a fixed sized registers
8949  */
8950 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8951 {
8952     int rd = extract32(insn, 0, 5);
8953     int rn = extract32(insn, 5, 5);
8954     int opcode = extract32(insn, 11, 5);
8955     int immb = extract32(insn, 16, 3);
8956     int immh = extract32(insn, 19, 4);
8957     bool is_u = extract32(insn, 29, 1);
8958 
8959     if (immh == 0) {
8960         unallocated_encoding(s);
8961         return;
8962     }
8963 
8964     switch (opcode) {
8965     case 0x08: /* SRI */
8966         if (!is_u) {
8967             unallocated_encoding(s);
8968             return;
8969         }
8970         /* fall through */
8971     case 0x00: /* SSHR / USHR */
8972     case 0x02: /* SSRA / USRA */
8973     case 0x04: /* SRSHR / URSHR */
8974     case 0x06: /* SRSRA / URSRA */
8975         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8976         break;
8977     case 0x0a: /* SHL / SLI */
8978         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8979         break;
8980     case 0x1c: /* SCVTF, UCVTF */
8981         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8982                                      opcode, rn, rd);
8983         break;
8984     case 0x10: /* SQSHRUN, SQSHRUN2 */
8985     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8986         if (!is_u) {
8987             unallocated_encoding(s);
8988             return;
8989         }
8990         handle_vec_simd_sqshrn(s, true, false, false, true,
8991                                immh, immb, opcode, rn, rd);
8992         break;
8993     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8994     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8995         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8996                                immh, immb, opcode, rn, rd);
8997         break;
8998     case 0xc: /* SQSHLU */
8999         if (!is_u) {
9000             unallocated_encoding(s);
9001             return;
9002         }
9003         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9004         break;
9005     case 0xe: /* SQSHL, UQSHL */
9006         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9007         break;
9008     case 0x1f: /* FCVTZS, FCVTZU */
9009         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9010         break;
9011     default:
9012         unallocated_encoding(s);
9013         break;
9014     }
9015 }
9016 
9017 /* AdvSIMD scalar three different
9018  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9019  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9020  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9021  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9022  */
9023 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9024 {
9025     bool is_u = extract32(insn, 29, 1);
9026     int size = extract32(insn, 22, 2);
9027     int opcode = extract32(insn, 12, 4);
9028     int rm = extract32(insn, 16, 5);
9029     int rn = extract32(insn, 5, 5);
9030     int rd = extract32(insn, 0, 5);
9031 
9032     if (is_u) {
9033         unallocated_encoding(s);
9034         return;
9035     }
9036 
9037     switch (opcode) {
9038     case 0x9: /* SQDMLAL, SQDMLAL2 */
9039     case 0xb: /* SQDMLSL, SQDMLSL2 */
9040     case 0xd: /* SQDMULL, SQDMULL2 */
9041         if (size == 0 || size == 3) {
9042             unallocated_encoding(s);
9043             return;
9044         }
9045         break;
9046     default:
9047         unallocated_encoding(s);
9048         return;
9049     }
9050 
9051     if (!fp_access_check(s)) {
9052         return;
9053     }
9054 
9055     if (size == 2) {
9056         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9057         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9058         TCGv_i64 tcg_res = tcg_temp_new_i64();
9059 
9060         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9061         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9062 
9063         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9064         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9065 
9066         switch (opcode) {
9067         case 0xd: /* SQDMULL, SQDMULL2 */
9068             break;
9069         case 0xb: /* SQDMLSL, SQDMLSL2 */
9070             tcg_gen_neg_i64(tcg_res, tcg_res);
9071             /* fall through */
9072         case 0x9: /* SQDMLAL, SQDMLAL2 */
9073             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9074             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9075                                               tcg_res, tcg_op1);
9076             break;
9077         default:
9078             g_assert_not_reached();
9079         }
9080 
9081         write_fp_dreg(s, rd, tcg_res);
9082     } else {
9083         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9084         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9085         TCGv_i64 tcg_res = tcg_temp_new_i64();
9086 
9087         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9088         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9089 
9090         switch (opcode) {
9091         case 0xd: /* SQDMULL, SQDMULL2 */
9092             break;
9093         case 0xb: /* SQDMLSL, SQDMLSL2 */
9094             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9095             /* fall through */
9096         case 0x9: /* SQDMLAL, SQDMLAL2 */
9097         {
9098             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9099             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9100             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9101                                               tcg_res, tcg_op3);
9102             break;
9103         }
9104         default:
9105             g_assert_not_reached();
9106         }
9107 
9108         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9109         write_fp_dreg(s, rd, tcg_res);
9110     }
9111 }
9112 
9113 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9114                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9115 {
9116     /* Handle 64x64->64 opcodes which are shared between the scalar
9117      * and vector 3-same groups. We cover every opcode where size == 3
9118      * is valid in either the three-reg-same (integer, not pairwise)
9119      * or scalar-three-reg-same groups.
9120      */
9121     TCGCond cond;
9122 
9123     switch (opcode) {
9124     case 0x1: /* SQADD */
9125         if (u) {
9126             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9127         } else {
9128             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9129         }
9130         break;
9131     case 0x5: /* SQSUB */
9132         if (u) {
9133             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9134         } else {
9135             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9136         }
9137         break;
9138     case 0x6: /* CMGT, CMHI */
9139         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9140     do_cmop:
9141         /* 64 bit integer comparison, result = test ? -1 : 0. */
9142         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9143         break;
9144     case 0x7: /* CMGE, CMHS */
9145         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9146         goto do_cmop;
9147     case 0x11: /* CMTST, CMEQ */
9148         if (u) {
9149             cond = TCG_COND_EQ;
9150             goto do_cmop;
9151         }
9152         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9153         break;
9154     case 0x8: /* SSHL, USHL */
9155         if (u) {
9156             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9157         } else {
9158             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9159         }
9160         break;
9161     case 0x9: /* SQSHL, UQSHL */
9162         if (u) {
9163             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9164         } else {
9165             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9166         }
9167         break;
9168     case 0xa: /* SRSHL, URSHL */
9169         if (u) {
9170             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9171         } else {
9172             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9173         }
9174         break;
9175     case 0xb: /* SQRSHL, UQRSHL */
9176         if (u) {
9177             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9178         } else {
9179             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9180         }
9181         break;
9182     case 0x10: /* ADD, SUB */
9183         if (u) {
9184             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9185         } else {
9186             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9187         }
9188         break;
9189     default:
9190         g_assert_not_reached();
9191     }
9192 }
9193 
9194 /* Handle the 3-same-operands float operations; shared by the scalar
9195  * and vector encodings. The caller must filter out any encodings
9196  * not allocated for the encoding it is dealing with.
9197  */
9198 static void handle_3same_float(DisasContext *s, int size, int elements,
9199                                int fpopcode, int rd, int rn, int rm)
9200 {
9201     int pass;
9202     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9203 
9204     for (pass = 0; pass < elements; pass++) {
9205         if (size) {
9206             /* Double */
9207             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9208             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9209             TCGv_i64 tcg_res = tcg_temp_new_i64();
9210 
9211             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9212             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9213 
9214             switch (fpopcode) {
9215             case 0x39: /* FMLS */
9216                 /* As usual for ARM, separate negation for fused multiply-add */
9217                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9218                 /* fall through */
9219             case 0x19: /* FMLA */
9220                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9221                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9222                                        tcg_res, fpst);
9223                 break;
9224             case 0x18: /* FMAXNM */
9225                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9226                 break;
9227             case 0x1c: /* FCMEQ */
9228                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9229                 break;
9230             case 0x1e: /* FMAX */
9231                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9232                 break;
9233             case 0x1f: /* FRECPS */
9234                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9235                 break;
9236             case 0x38: /* FMINNM */
9237                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9238                 break;
9239             case 0x3e: /* FMIN */
9240                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9241                 break;
9242             case 0x3f: /* FRSQRTS */
9243                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9244                 break;
9245             case 0x5c: /* FCMGE */
9246                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9247                 break;
9248             case 0x5d: /* FACGE */
9249                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9250                 break;
9251             case 0x7a: /* FABD */
9252                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9253                 gen_helper_vfp_absd(tcg_res, tcg_res);
9254                 break;
9255             case 0x7c: /* FCMGT */
9256                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9257                 break;
9258             case 0x7d: /* FACGT */
9259                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9260                 break;
9261             default:
9262             case 0x1a: /* FADD */
9263             case 0x1b: /* FMULX */
9264             case 0x3a: /* FSUB */
9265             case 0x5b: /* FMUL */
9266             case 0x5f: /* FDIV */
9267                 g_assert_not_reached();
9268             }
9269 
9270             write_vec_element(s, tcg_res, rd, pass, MO_64);
9271         } else {
9272             /* Single */
9273             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9274             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9275             TCGv_i32 tcg_res = tcg_temp_new_i32();
9276 
9277             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9278             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9279 
9280             switch (fpopcode) {
9281             case 0x39: /* FMLS */
9282                 /* As usual for ARM, separate negation for fused multiply-add */
9283                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9284                 /* fall through */
9285             case 0x19: /* FMLA */
9286                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9287                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9288                                        tcg_res, fpst);
9289                 break;
9290             case 0x1c: /* FCMEQ */
9291                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9292                 break;
9293             case 0x1e: /* FMAX */
9294                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9295                 break;
9296             case 0x1f: /* FRECPS */
9297                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9298                 break;
9299             case 0x18: /* FMAXNM */
9300                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9301                 break;
9302             case 0x38: /* FMINNM */
9303                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9304                 break;
9305             case 0x3e: /* FMIN */
9306                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9307                 break;
9308             case 0x3f: /* FRSQRTS */
9309                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9310                 break;
9311             case 0x5c: /* FCMGE */
9312                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9313                 break;
9314             case 0x5d: /* FACGE */
9315                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9316                 break;
9317             case 0x7a: /* FABD */
9318                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9319                 gen_helper_vfp_abss(tcg_res, tcg_res);
9320                 break;
9321             case 0x7c: /* FCMGT */
9322                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9323                 break;
9324             case 0x7d: /* FACGT */
9325                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9326                 break;
9327             default:
9328             case 0x1a: /* FADD */
9329             case 0x1b: /* FMULX */
9330             case 0x3a: /* FSUB */
9331             case 0x5b: /* FMUL */
9332             case 0x5f: /* FDIV */
9333                 g_assert_not_reached();
9334             }
9335 
9336             if (elements == 1) {
9337                 /* scalar single so clear high part */
9338                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9339 
9340                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9341                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9342             } else {
9343                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9344             }
9345         }
9346     }
9347 
9348     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9349 }
9350 
9351 /* AdvSIMD scalar three same
9352  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9353  * +-----+---+-----------+------+---+------+--------+---+------+------+
9354  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9355  * +-----+---+-----------+------+---+------+--------+---+------+------+
9356  */
9357 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9358 {
9359     int rd = extract32(insn, 0, 5);
9360     int rn = extract32(insn, 5, 5);
9361     int opcode = extract32(insn, 11, 5);
9362     int rm = extract32(insn, 16, 5);
9363     int size = extract32(insn, 22, 2);
9364     bool u = extract32(insn, 29, 1);
9365     TCGv_i64 tcg_rd;
9366 
9367     if (opcode >= 0x18) {
9368         /* Floating point: U, size[1] and opcode indicate operation */
9369         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9370         switch (fpopcode) {
9371         case 0x1f: /* FRECPS */
9372         case 0x3f: /* FRSQRTS */
9373         case 0x5d: /* FACGE */
9374         case 0x7d: /* FACGT */
9375         case 0x1c: /* FCMEQ */
9376         case 0x5c: /* FCMGE */
9377         case 0x7c: /* FCMGT */
9378         case 0x7a: /* FABD */
9379             break;
9380         default:
9381         case 0x1b: /* FMULX */
9382             unallocated_encoding(s);
9383             return;
9384         }
9385 
9386         if (!fp_access_check(s)) {
9387             return;
9388         }
9389 
9390         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9391         return;
9392     }
9393 
9394     switch (opcode) {
9395     case 0x1: /* SQADD, UQADD */
9396     case 0x5: /* SQSUB, UQSUB */
9397     case 0x9: /* SQSHL, UQSHL */
9398     case 0xb: /* SQRSHL, UQRSHL */
9399         break;
9400     case 0x8: /* SSHL, USHL */
9401     case 0xa: /* SRSHL, URSHL */
9402     case 0x6: /* CMGT, CMHI */
9403     case 0x7: /* CMGE, CMHS */
9404     case 0x11: /* CMTST, CMEQ */
9405     case 0x10: /* ADD, SUB (vector) */
9406         if (size != 3) {
9407             unallocated_encoding(s);
9408             return;
9409         }
9410         break;
9411     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9412         if (size != 1 && size != 2) {
9413             unallocated_encoding(s);
9414             return;
9415         }
9416         break;
9417     default:
9418         unallocated_encoding(s);
9419         return;
9420     }
9421 
9422     if (!fp_access_check(s)) {
9423         return;
9424     }
9425 
9426     tcg_rd = tcg_temp_new_i64();
9427 
9428     if (size == 3) {
9429         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9430         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9431 
9432         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9433     } else {
9434         /* Do a single operation on the lowest element in the vector.
9435          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9436          * no side effects for all these operations.
9437          * OPTME: special-purpose helpers would avoid doing some
9438          * unnecessary work in the helper for the 8 and 16 bit cases.
9439          */
9440         NeonGenTwoOpEnvFn *genenvfn;
9441         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9442         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9443         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9444 
9445         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9446         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9447 
9448         switch (opcode) {
9449         case 0x1: /* SQADD, UQADD */
9450         {
9451             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9452                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9453                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9454                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9455             };
9456             genenvfn = fns[size][u];
9457             break;
9458         }
9459         case 0x5: /* SQSUB, UQSUB */
9460         {
9461             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9462                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9463                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9464                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9465             };
9466             genenvfn = fns[size][u];
9467             break;
9468         }
9469         case 0x9: /* SQSHL, UQSHL */
9470         {
9471             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9472                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9473                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9474                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9475             };
9476             genenvfn = fns[size][u];
9477             break;
9478         }
9479         case 0xb: /* SQRSHL, UQRSHL */
9480         {
9481             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9482                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9483                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9484                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9485             };
9486             genenvfn = fns[size][u];
9487             break;
9488         }
9489         case 0x16: /* SQDMULH, SQRDMULH */
9490         {
9491             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9492                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9493                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9494             };
9495             assert(size == 1 || size == 2);
9496             genenvfn = fns[size - 1][u];
9497             break;
9498         }
9499         default:
9500             g_assert_not_reached();
9501         }
9502 
9503         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9504         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9505     }
9506 
9507     write_fp_dreg(s, rd, tcg_rd);
9508 }
9509 
9510 /* AdvSIMD scalar three same FP16
9511  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9512  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9513  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9514  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9515  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9516  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9517  */
9518 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9519                                                   uint32_t insn)
9520 {
9521     int rd = extract32(insn, 0, 5);
9522     int rn = extract32(insn, 5, 5);
9523     int opcode = extract32(insn, 11, 3);
9524     int rm = extract32(insn, 16, 5);
9525     bool u = extract32(insn, 29, 1);
9526     bool a = extract32(insn, 23, 1);
9527     int fpopcode = opcode | (a << 3) |  (u << 4);
9528     TCGv_ptr fpst;
9529     TCGv_i32 tcg_op1;
9530     TCGv_i32 tcg_op2;
9531     TCGv_i32 tcg_res;
9532 
9533     switch (fpopcode) {
9534     case 0x04: /* FCMEQ (reg) */
9535     case 0x07: /* FRECPS */
9536     case 0x0f: /* FRSQRTS */
9537     case 0x14: /* FCMGE (reg) */
9538     case 0x15: /* FACGE */
9539     case 0x1a: /* FABD */
9540     case 0x1c: /* FCMGT (reg) */
9541     case 0x1d: /* FACGT */
9542         break;
9543     default:
9544     case 0x03: /* FMULX */
9545         unallocated_encoding(s);
9546         return;
9547     }
9548 
9549     if (!dc_isar_feature(aa64_fp16, s)) {
9550         unallocated_encoding(s);
9551     }
9552 
9553     if (!fp_access_check(s)) {
9554         return;
9555     }
9556 
9557     fpst = fpstatus_ptr(FPST_FPCR_F16);
9558 
9559     tcg_op1 = read_fp_hreg(s, rn);
9560     tcg_op2 = read_fp_hreg(s, rm);
9561     tcg_res = tcg_temp_new_i32();
9562 
9563     switch (fpopcode) {
9564     case 0x04: /* FCMEQ (reg) */
9565         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9566         break;
9567     case 0x07: /* FRECPS */
9568         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9569         break;
9570     case 0x0f: /* FRSQRTS */
9571         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9572         break;
9573     case 0x14: /* FCMGE (reg) */
9574         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9575         break;
9576     case 0x15: /* FACGE */
9577         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9578         break;
9579     case 0x1a: /* FABD */
9580         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9581         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9582         break;
9583     case 0x1c: /* FCMGT (reg) */
9584         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9585         break;
9586     case 0x1d: /* FACGT */
9587         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9588         break;
9589     default:
9590     case 0x03: /* FMULX */
9591         g_assert_not_reached();
9592     }
9593 
9594     write_fp_sreg(s, rd, tcg_res);
9595 }
9596 
9597 /* AdvSIMD scalar three same extra
9598  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9599  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9600  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9601  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9602  */
9603 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9604                                                    uint32_t insn)
9605 {
9606     int rd = extract32(insn, 0, 5);
9607     int rn = extract32(insn, 5, 5);
9608     int opcode = extract32(insn, 11, 4);
9609     int rm = extract32(insn, 16, 5);
9610     int size = extract32(insn, 22, 2);
9611     bool u = extract32(insn, 29, 1);
9612     TCGv_i32 ele1, ele2, ele3;
9613     TCGv_i64 res;
9614     bool feature;
9615 
9616     switch (u * 16 + opcode) {
9617     case 0x10: /* SQRDMLAH (vector) */
9618     case 0x11: /* SQRDMLSH (vector) */
9619         if (size != 1 && size != 2) {
9620             unallocated_encoding(s);
9621             return;
9622         }
9623         feature = dc_isar_feature(aa64_rdm, s);
9624         break;
9625     default:
9626         unallocated_encoding(s);
9627         return;
9628     }
9629     if (!feature) {
9630         unallocated_encoding(s);
9631         return;
9632     }
9633     if (!fp_access_check(s)) {
9634         return;
9635     }
9636 
9637     /* Do a single operation on the lowest element in the vector.
9638      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9639      * with no side effects for all these operations.
9640      * OPTME: special-purpose helpers would avoid doing some
9641      * unnecessary work in the helper for the 16 bit cases.
9642      */
9643     ele1 = tcg_temp_new_i32();
9644     ele2 = tcg_temp_new_i32();
9645     ele3 = tcg_temp_new_i32();
9646 
9647     read_vec_element_i32(s, ele1, rn, 0, size);
9648     read_vec_element_i32(s, ele2, rm, 0, size);
9649     read_vec_element_i32(s, ele3, rd, 0, size);
9650 
9651     switch (opcode) {
9652     case 0x0: /* SQRDMLAH */
9653         if (size == 1) {
9654             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9655         } else {
9656             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9657         }
9658         break;
9659     case 0x1: /* SQRDMLSH */
9660         if (size == 1) {
9661             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9662         } else {
9663             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9664         }
9665         break;
9666     default:
9667         g_assert_not_reached();
9668     }
9669 
9670     res = tcg_temp_new_i64();
9671     tcg_gen_extu_i32_i64(res, ele3);
9672     write_fp_dreg(s, rd, res);
9673 }
9674 
9675 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9676                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9677                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9678 {
9679     /* Handle 64->64 opcodes which are shared between the scalar and
9680      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9681      * is valid in either group and also the double-precision fp ops.
9682      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9683      * requires them.
9684      */
9685     TCGCond cond;
9686 
9687     switch (opcode) {
9688     case 0x4: /* CLS, CLZ */
9689         if (u) {
9690             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9691         } else {
9692             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9693         }
9694         break;
9695     case 0x5: /* NOT */
9696         /* This opcode is shared with CNT and RBIT but we have earlier
9697          * enforced that size == 3 if and only if this is the NOT insn.
9698          */
9699         tcg_gen_not_i64(tcg_rd, tcg_rn);
9700         break;
9701     case 0x7: /* SQABS, SQNEG */
9702         if (u) {
9703             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9704         } else {
9705             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9706         }
9707         break;
9708     case 0xa: /* CMLT */
9709         cond = TCG_COND_LT;
9710     do_cmop:
9711         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9712         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9713         break;
9714     case 0x8: /* CMGT, CMGE */
9715         cond = u ? TCG_COND_GE : TCG_COND_GT;
9716         goto do_cmop;
9717     case 0x9: /* CMEQ, CMLE */
9718         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9719         goto do_cmop;
9720     case 0xb: /* ABS, NEG */
9721         if (u) {
9722             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9723         } else {
9724             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9725         }
9726         break;
9727     case 0x2f: /* FABS */
9728         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9729         break;
9730     case 0x6f: /* FNEG */
9731         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9732         break;
9733     case 0x7f: /* FSQRT */
9734         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9735         break;
9736     case 0x1a: /* FCVTNS */
9737     case 0x1b: /* FCVTMS */
9738     case 0x1c: /* FCVTAS */
9739     case 0x3a: /* FCVTPS */
9740     case 0x3b: /* FCVTZS */
9741         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9742         break;
9743     case 0x5a: /* FCVTNU */
9744     case 0x5b: /* FCVTMU */
9745     case 0x5c: /* FCVTAU */
9746     case 0x7a: /* FCVTPU */
9747     case 0x7b: /* FCVTZU */
9748         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9749         break;
9750     case 0x18: /* FRINTN */
9751     case 0x19: /* FRINTM */
9752     case 0x38: /* FRINTP */
9753     case 0x39: /* FRINTZ */
9754     case 0x58: /* FRINTA */
9755     case 0x79: /* FRINTI */
9756         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9757         break;
9758     case 0x59: /* FRINTX */
9759         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9760         break;
9761     case 0x1e: /* FRINT32Z */
9762     case 0x5e: /* FRINT32X */
9763         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9764         break;
9765     case 0x1f: /* FRINT64Z */
9766     case 0x5f: /* FRINT64X */
9767         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9768         break;
9769     default:
9770         g_assert_not_reached();
9771     }
9772 }
9773 
9774 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9775                                    bool is_scalar, bool is_u, bool is_q,
9776                                    int size, int rn, int rd)
9777 {
9778     bool is_double = (size == MO_64);
9779     TCGv_ptr fpst;
9780 
9781     if (!fp_access_check(s)) {
9782         return;
9783     }
9784 
9785     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9786 
9787     if (is_double) {
9788         TCGv_i64 tcg_op = tcg_temp_new_i64();
9789         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9790         TCGv_i64 tcg_res = tcg_temp_new_i64();
9791         NeonGenTwoDoubleOpFn *genfn;
9792         bool swap = false;
9793         int pass;
9794 
9795         switch (opcode) {
9796         case 0x2e: /* FCMLT (zero) */
9797             swap = true;
9798             /* fallthrough */
9799         case 0x2c: /* FCMGT (zero) */
9800             genfn = gen_helper_neon_cgt_f64;
9801             break;
9802         case 0x2d: /* FCMEQ (zero) */
9803             genfn = gen_helper_neon_ceq_f64;
9804             break;
9805         case 0x6d: /* FCMLE (zero) */
9806             swap = true;
9807             /* fall through */
9808         case 0x6c: /* FCMGE (zero) */
9809             genfn = gen_helper_neon_cge_f64;
9810             break;
9811         default:
9812             g_assert_not_reached();
9813         }
9814 
9815         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9816             read_vec_element(s, tcg_op, rn, pass, MO_64);
9817             if (swap) {
9818                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9819             } else {
9820                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9821             }
9822             write_vec_element(s, tcg_res, rd, pass, MO_64);
9823         }
9824 
9825         clear_vec_high(s, !is_scalar, rd);
9826     } else {
9827         TCGv_i32 tcg_op = tcg_temp_new_i32();
9828         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9829         TCGv_i32 tcg_res = tcg_temp_new_i32();
9830         NeonGenTwoSingleOpFn *genfn;
9831         bool swap = false;
9832         int pass, maxpasses;
9833 
9834         if (size == MO_16) {
9835             switch (opcode) {
9836             case 0x2e: /* FCMLT (zero) */
9837                 swap = true;
9838                 /* fall through */
9839             case 0x2c: /* FCMGT (zero) */
9840                 genfn = gen_helper_advsimd_cgt_f16;
9841                 break;
9842             case 0x2d: /* FCMEQ (zero) */
9843                 genfn = gen_helper_advsimd_ceq_f16;
9844                 break;
9845             case 0x6d: /* FCMLE (zero) */
9846                 swap = true;
9847                 /* fall through */
9848             case 0x6c: /* FCMGE (zero) */
9849                 genfn = gen_helper_advsimd_cge_f16;
9850                 break;
9851             default:
9852                 g_assert_not_reached();
9853             }
9854         } else {
9855             switch (opcode) {
9856             case 0x2e: /* FCMLT (zero) */
9857                 swap = true;
9858                 /* fall through */
9859             case 0x2c: /* FCMGT (zero) */
9860                 genfn = gen_helper_neon_cgt_f32;
9861                 break;
9862             case 0x2d: /* FCMEQ (zero) */
9863                 genfn = gen_helper_neon_ceq_f32;
9864                 break;
9865             case 0x6d: /* FCMLE (zero) */
9866                 swap = true;
9867                 /* fall through */
9868             case 0x6c: /* FCMGE (zero) */
9869                 genfn = gen_helper_neon_cge_f32;
9870                 break;
9871             default:
9872                 g_assert_not_reached();
9873             }
9874         }
9875 
9876         if (is_scalar) {
9877             maxpasses = 1;
9878         } else {
9879             int vector_size = 8 << is_q;
9880             maxpasses = vector_size >> size;
9881         }
9882 
9883         for (pass = 0; pass < maxpasses; pass++) {
9884             read_vec_element_i32(s, tcg_op, rn, pass, size);
9885             if (swap) {
9886                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9887             } else {
9888                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9889             }
9890             if (is_scalar) {
9891                 write_fp_sreg(s, rd, tcg_res);
9892             } else {
9893                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9894             }
9895         }
9896 
9897         if (!is_scalar) {
9898             clear_vec_high(s, is_q, rd);
9899         }
9900     }
9901 }
9902 
9903 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9904                                     bool is_scalar, bool is_u, bool is_q,
9905                                     int size, int rn, int rd)
9906 {
9907     bool is_double = (size == 3);
9908     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9909 
9910     if (is_double) {
9911         TCGv_i64 tcg_op = tcg_temp_new_i64();
9912         TCGv_i64 tcg_res = tcg_temp_new_i64();
9913         int pass;
9914 
9915         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9916             read_vec_element(s, tcg_op, rn, pass, MO_64);
9917             switch (opcode) {
9918             case 0x3d: /* FRECPE */
9919                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9920                 break;
9921             case 0x3f: /* FRECPX */
9922                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9923                 break;
9924             case 0x7d: /* FRSQRTE */
9925                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9926                 break;
9927             default:
9928                 g_assert_not_reached();
9929             }
9930             write_vec_element(s, tcg_res, rd, pass, MO_64);
9931         }
9932         clear_vec_high(s, !is_scalar, rd);
9933     } else {
9934         TCGv_i32 tcg_op = tcg_temp_new_i32();
9935         TCGv_i32 tcg_res = tcg_temp_new_i32();
9936         int pass, maxpasses;
9937 
9938         if (is_scalar) {
9939             maxpasses = 1;
9940         } else {
9941             maxpasses = is_q ? 4 : 2;
9942         }
9943 
9944         for (pass = 0; pass < maxpasses; pass++) {
9945             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9946 
9947             switch (opcode) {
9948             case 0x3c: /* URECPE */
9949                 gen_helper_recpe_u32(tcg_res, tcg_op);
9950                 break;
9951             case 0x3d: /* FRECPE */
9952                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9953                 break;
9954             case 0x3f: /* FRECPX */
9955                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9956                 break;
9957             case 0x7d: /* FRSQRTE */
9958                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9959                 break;
9960             default:
9961                 g_assert_not_reached();
9962             }
9963 
9964             if (is_scalar) {
9965                 write_fp_sreg(s, rd, tcg_res);
9966             } else {
9967                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9968             }
9969         }
9970         if (!is_scalar) {
9971             clear_vec_high(s, is_q, rd);
9972         }
9973     }
9974 }
9975 
9976 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9977                                 int opcode, bool u, bool is_q,
9978                                 int size, int rn, int rd)
9979 {
9980     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9981      * in the source becomes a size element in the destination).
9982      */
9983     int pass;
9984     TCGv_i32 tcg_res[2];
9985     int destelt = is_q ? 2 : 0;
9986     int passes = scalar ? 1 : 2;
9987 
9988     if (scalar) {
9989         tcg_res[1] = tcg_constant_i32(0);
9990     }
9991 
9992     for (pass = 0; pass < passes; pass++) {
9993         TCGv_i64 tcg_op = tcg_temp_new_i64();
9994         NeonGenNarrowFn *genfn = NULL;
9995         NeonGenNarrowEnvFn *genenvfn = NULL;
9996 
9997         if (scalar) {
9998             read_vec_element(s, tcg_op, rn, pass, size + 1);
9999         } else {
10000             read_vec_element(s, tcg_op, rn, pass, MO_64);
10001         }
10002         tcg_res[pass] = tcg_temp_new_i32();
10003 
10004         switch (opcode) {
10005         case 0x12: /* XTN, SQXTUN */
10006         {
10007             static NeonGenNarrowFn * const xtnfns[3] = {
10008                 gen_helper_neon_narrow_u8,
10009                 gen_helper_neon_narrow_u16,
10010                 tcg_gen_extrl_i64_i32,
10011             };
10012             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10013                 gen_helper_neon_unarrow_sat8,
10014                 gen_helper_neon_unarrow_sat16,
10015                 gen_helper_neon_unarrow_sat32,
10016             };
10017             if (u) {
10018                 genenvfn = sqxtunfns[size];
10019             } else {
10020                 genfn = xtnfns[size];
10021             }
10022             break;
10023         }
10024         case 0x14: /* SQXTN, UQXTN */
10025         {
10026             static NeonGenNarrowEnvFn * const fns[3][2] = {
10027                 { gen_helper_neon_narrow_sat_s8,
10028                   gen_helper_neon_narrow_sat_u8 },
10029                 { gen_helper_neon_narrow_sat_s16,
10030                   gen_helper_neon_narrow_sat_u16 },
10031                 { gen_helper_neon_narrow_sat_s32,
10032                   gen_helper_neon_narrow_sat_u32 },
10033             };
10034             genenvfn = fns[size][u];
10035             break;
10036         }
10037         case 0x16: /* FCVTN, FCVTN2 */
10038             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10039             if (size == 2) {
10040                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10041             } else {
10042                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10043                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10044                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10045                 TCGv_i32 ahp = get_ahp_flag();
10046 
10047                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10048                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10049                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10050                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10051             }
10052             break;
10053         case 0x36: /* BFCVTN, BFCVTN2 */
10054             {
10055                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10056                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10057             }
10058             break;
10059         case 0x56:  /* FCVTXN, FCVTXN2 */
10060             /* 64 bit to 32 bit float conversion
10061              * with von Neumann rounding (round to odd)
10062              */
10063             assert(size == 2);
10064             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10065             break;
10066         default:
10067             g_assert_not_reached();
10068         }
10069 
10070         if (genfn) {
10071             genfn(tcg_res[pass], tcg_op);
10072         } else if (genenvfn) {
10073             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10074         }
10075     }
10076 
10077     for (pass = 0; pass < 2; pass++) {
10078         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10079     }
10080     clear_vec_high(s, is_q, rd);
10081 }
10082 
10083 /* Remaining saturating accumulating ops */
10084 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10085                                 bool is_q, int size, int rn, int rd)
10086 {
10087     bool is_double = (size == 3);
10088 
10089     if (is_double) {
10090         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10091         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10092         int pass;
10093 
10094         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10095             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10096             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10097 
10098             if (is_u) { /* USQADD */
10099                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10100             } else { /* SUQADD */
10101                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10102             }
10103             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10104         }
10105         clear_vec_high(s, !is_scalar, rd);
10106     } else {
10107         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10108         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10109         int pass, maxpasses;
10110 
10111         if (is_scalar) {
10112             maxpasses = 1;
10113         } else {
10114             maxpasses = is_q ? 4 : 2;
10115         }
10116 
10117         for (pass = 0; pass < maxpasses; pass++) {
10118             if (is_scalar) {
10119                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10120                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10121             } else {
10122                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10123                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10124             }
10125 
10126             if (is_u) { /* USQADD */
10127                 switch (size) {
10128                 case 0:
10129                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10130                     break;
10131                 case 1:
10132                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10133                     break;
10134                 case 2:
10135                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10136                     break;
10137                 default:
10138                     g_assert_not_reached();
10139                 }
10140             } else { /* SUQADD */
10141                 switch (size) {
10142                 case 0:
10143                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10144                     break;
10145                 case 1:
10146                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10147                     break;
10148                 case 2:
10149                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10150                     break;
10151                 default:
10152                     g_assert_not_reached();
10153                 }
10154             }
10155 
10156             if (is_scalar) {
10157                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10158             }
10159             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10160         }
10161         clear_vec_high(s, is_q, rd);
10162     }
10163 }
10164 
10165 /* AdvSIMD scalar two reg misc
10166  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10167  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10168  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10169  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10170  */
10171 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10172 {
10173     int rd = extract32(insn, 0, 5);
10174     int rn = extract32(insn, 5, 5);
10175     int opcode = extract32(insn, 12, 5);
10176     int size = extract32(insn, 22, 2);
10177     bool u = extract32(insn, 29, 1);
10178     bool is_fcvt = false;
10179     int rmode;
10180     TCGv_i32 tcg_rmode;
10181     TCGv_ptr tcg_fpstatus;
10182 
10183     switch (opcode) {
10184     case 0x3: /* USQADD / SUQADD*/
10185         if (!fp_access_check(s)) {
10186             return;
10187         }
10188         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10189         return;
10190     case 0x7: /* SQABS / SQNEG */
10191         break;
10192     case 0xa: /* CMLT */
10193         if (u) {
10194             unallocated_encoding(s);
10195             return;
10196         }
10197         /* fall through */
10198     case 0x8: /* CMGT, CMGE */
10199     case 0x9: /* CMEQ, CMLE */
10200     case 0xb: /* ABS, NEG */
10201         if (size != 3) {
10202             unallocated_encoding(s);
10203             return;
10204         }
10205         break;
10206     case 0x12: /* SQXTUN */
10207         if (!u) {
10208             unallocated_encoding(s);
10209             return;
10210         }
10211         /* fall through */
10212     case 0x14: /* SQXTN, UQXTN */
10213         if (size == 3) {
10214             unallocated_encoding(s);
10215             return;
10216         }
10217         if (!fp_access_check(s)) {
10218             return;
10219         }
10220         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10221         return;
10222     case 0xc ... 0xf:
10223     case 0x16 ... 0x1d:
10224     case 0x1f:
10225         /* Floating point: U, size[1] and opcode indicate operation;
10226          * size[0] indicates single or double precision.
10227          */
10228         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10229         size = extract32(size, 0, 1) ? 3 : 2;
10230         switch (opcode) {
10231         case 0x2c: /* FCMGT (zero) */
10232         case 0x2d: /* FCMEQ (zero) */
10233         case 0x2e: /* FCMLT (zero) */
10234         case 0x6c: /* FCMGE (zero) */
10235         case 0x6d: /* FCMLE (zero) */
10236             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10237             return;
10238         case 0x1d: /* SCVTF */
10239         case 0x5d: /* UCVTF */
10240         {
10241             bool is_signed = (opcode == 0x1d);
10242             if (!fp_access_check(s)) {
10243                 return;
10244             }
10245             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10246             return;
10247         }
10248         case 0x3d: /* FRECPE */
10249         case 0x3f: /* FRECPX */
10250         case 0x7d: /* FRSQRTE */
10251             if (!fp_access_check(s)) {
10252                 return;
10253             }
10254             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10255             return;
10256         case 0x1a: /* FCVTNS */
10257         case 0x1b: /* FCVTMS */
10258         case 0x3a: /* FCVTPS */
10259         case 0x3b: /* FCVTZS */
10260         case 0x5a: /* FCVTNU */
10261         case 0x5b: /* FCVTMU */
10262         case 0x7a: /* FCVTPU */
10263         case 0x7b: /* FCVTZU */
10264             is_fcvt = true;
10265             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10266             break;
10267         case 0x1c: /* FCVTAS */
10268         case 0x5c: /* FCVTAU */
10269             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10270             is_fcvt = true;
10271             rmode = FPROUNDING_TIEAWAY;
10272             break;
10273         case 0x56: /* FCVTXN, FCVTXN2 */
10274             if (size == 2) {
10275                 unallocated_encoding(s);
10276                 return;
10277             }
10278             if (!fp_access_check(s)) {
10279                 return;
10280             }
10281             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10282             return;
10283         default:
10284             unallocated_encoding(s);
10285             return;
10286         }
10287         break;
10288     default:
10289         unallocated_encoding(s);
10290         return;
10291     }
10292 
10293     if (!fp_access_check(s)) {
10294         return;
10295     }
10296 
10297     if (is_fcvt) {
10298         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10299         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10300     } else {
10301         tcg_fpstatus = NULL;
10302         tcg_rmode = NULL;
10303     }
10304 
10305     if (size == 3) {
10306         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10307         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10308 
10309         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10310         write_fp_dreg(s, rd, tcg_rd);
10311     } else {
10312         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10313         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10314 
10315         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10316 
10317         switch (opcode) {
10318         case 0x7: /* SQABS, SQNEG */
10319         {
10320             NeonGenOneOpEnvFn *genfn;
10321             static NeonGenOneOpEnvFn * const fns[3][2] = {
10322                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10323                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10324                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10325             };
10326             genfn = fns[size][u];
10327             genfn(tcg_rd, tcg_env, tcg_rn);
10328             break;
10329         }
10330         case 0x1a: /* FCVTNS */
10331         case 0x1b: /* FCVTMS */
10332         case 0x1c: /* FCVTAS */
10333         case 0x3a: /* FCVTPS */
10334         case 0x3b: /* FCVTZS */
10335             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10336                                  tcg_fpstatus);
10337             break;
10338         case 0x5a: /* FCVTNU */
10339         case 0x5b: /* FCVTMU */
10340         case 0x5c: /* FCVTAU */
10341         case 0x7a: /* FCVTPU */
10342         case 0x7b: /* FCVTZU */
10343             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10344                                  tcg_fpstatus);
10345             break;
10346         default:
10347             g_assert_not_reached();
10348         }
10349 
10350         write_fp_sreg(s, rd, tcg_rd);
10351     }
10352 
10353     if (is_fcvt) {
10354         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10355     }
10356 }
10357 
10358 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10359 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10360                                  int immh, int immb, int opcode, int rn, int rd)
10361 {
10362     int size = 32 - clz32(immh) - 1;
10363     int immhb = immh << 3 | immb;
10364     int shift = 2 * (8 << size) - immhb;
10365     GVecGen2iFn *gvec_fn;
10366 
10367     if (extract32(immh, 3, 1) && !is_q) {
10368         unallocated_encoding(s);
10369         return;
10370     }
10371     tcg_debug_assert(size <= 3);
10372 
10373     if (!fp_access_check(s)) {
10374         return;
10375     }
10376 
10377     switch (opcode) {
10378     case 0x02: /* SSRA / USRA (accumulate) */
10379         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10380         break;
10381 
10382     case 0x08: /* SRI */
10383         gvec_fn = gen_gvec_sri;
10384         break;
10385 
10386     case 0x00: /* SSHR / USHR */
10387         if (is_u) {
10388             if (shift == 8 << size) {
10389                 /* Shift count the same size as element size produces zero.  */
10390                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10391                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10392                 return;
10393             }
10394             gvec_fn = tcg_gen_gvec_shri;
10395         } else {
10396             /* Shift count the same size as element size produces all sign.  */
10397             if (shift == 8 << size) {
10398                 shift -= 1;
10399             }
10400             gvec_fn = tcg_gen_gvec_sari;
10401         }
10402         break;
10403 
10404     case 0x04: /* SRSHR / URSHR (rounding) */
10405         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10406         break;
10407 
10408     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10409         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10410         break;
10411 
10412     default:
10413         g_assert_not_reached();
10414     }
10415 
10416     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10417 }
10418 
10419 /* SHL/SLI - Vector shift left */
10420 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10421                                  int immh, int immb, int opcode, int rn, int rd)
10422 {
10423     int size = 32 - clz32(immh) - 1;
10424     int immhb = immh << 3 | immb;
10425     int shift = immhb - (8 << size);
10426 
10427     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10428     assert(size >= 0 && size <= 3);
10429 
10430     if (extract32(immh, 3, 1) && !is_q) {
10431         unallocated_encoding(s);
10432         return;
10433     }
10434 
10435     if (!fp_access_check(s)) {
10436         return;
10437     }
10438 
10439     if (insert) {
10440         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10441     } else {
10442         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10443     }
10444 }
10445 
10446 /* USHLL/SHLL - Vector shift left with widening */
10447 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10448                                  int immh, int immb, int opcode, int rn, int rd)
10449 {
10450     int size = 32 - clz32(immh) - 1;
10451     int immhb = immh << 3 | immb;
10452     int shift = immhb - (8 << size);
10453     int dsize = 64;
10454     int esize = 8 << size;
10455     int elements = dsize/esize;
10456     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10457     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10458     int i;
10459 
10460     if (size >= 3) {
10461         unallocated_encoding(s);
10462         return;
10463     }
10464 
10465     if (!fp_access_check(s)) {
10466         return;
10467     }
10468 
10469     /* For the LL variants the store is larger than the load,
10470      * so if rd == rn we would overwrite parts of our input.
10471      * So load everything right now and use shifts in the main loop.
10472      */
10473     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10474 
10475     for (i = 0; i < elements; i++) {
10476         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10477         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10478         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10479         write_vec_element(s, tcg_rd, rd, i, size + 1);
10480     }
10481 }
10482 
10483 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10484 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10485                                  int immh, int immb, int opcode, int rn, int rd)
10486 {
10487     int immhb = immh << 3 | immb;
10488     int size = 32 - clz32(immh) - 1;
10489     int dsize = 64;
10490     int esize = 8 << size;
10491     int elements = dsize/esize;
10492     int shift = (2 * esize) - immhb;
10493     bool round = extract32(opcode, 0, 1);
10494     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10495     TCGv_i64 tcg_round;
10496     int i;
10497 
10498     if (extract32(immh, 3, 1)) {
10499         unallocated_encoding(s);
10500         return;
10501     }
10502 
10503     if (!fp_access_check(s)) {
10504         return;
10505     }
10506 
10507     tcg_rn = tcg_temp_new_i64();
10508     tcg_rd = tcg_temp_new_i64();
10509     tcg_final = tcg_temp_new_i64();
10510     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10511 
10512     if (round) {
10513         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10514     } else {
10515         tcg_round = NULL;
10516     }
10517 
10518     for (i = 0; i < elements; i++) {
10519         read_vec_element(s, tcg_rn, rn, i, size+1);
10520         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10521                                 false, true, size+1, shift);
10522 
10523         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10524     }
10525 
10526     if (!is_q) {
10527         write_vec_element(s, tcg_final, rd, 0, MO_64);
10528     } else {
10529         write_vec_element(s, tcg_final, rd, 1, MO_64);
10530     }
10531 
10532     clear_vec_high(s, is_q, rd);
10533 }
10534 
10535 
10536 /* AdvSIMD shift by immediate
10537  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10538  * +---+---+---+-------------+------+------+--------+---+------+------+
10539  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10540  * +---+---+---+-------------+------+------+--------+---+------+------+
10541  */
10542 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10543 {
10544     int rd = extract32(insn, 0, 5);
10545     int rn = extract32(insn, 5, 5);
10546     int opcode = extract32(insn, 11, 5);
10547     int immb = extract32(insn, 16, 3);
10548     int immh = extract32(insn, 19, 4);
10549     bool is_u = extract32(insn, 29, 1);
10550     bool is_q = extract32(insn, 30, 1);
10551 
10552     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10553     assert(immh != 0);
10554 
10555     switch (opcode) {
10556     case 0x08: /* SRI */
10557         if (!is_u) {
10558             unallocated_encoding(s);
10559             return;
10560         }
10561         /* fall through */
10562     case 0x00: /* SSHR / USHR */
10563     case 0x02: /* SSRA / USRA (accumulate) */
10564     case 0x04: /* SRSHR / URSHR (rounding) */
10565     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10566         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10567         break;
10568     case 0x0a: /* SHL / SLI */
10569         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10570         break;
10571     case 0x10: /* SHRN */
10572     case 0x11: /* RSHRN / SQRSHRUN */
10573         if (is_u) {
10574             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10575                                    opcode, rn, rd);
10576         } else {
10577             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10578         }
10579         break;
10580     case 0x12: /* SQSHRN / UQSHRN */
10581     case 0x13: /* SQRSHRN / UQRSHRN */
10582         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10583                                opcode, rn, rd);
10584         break;
10585     case 0x14: /* SSHLL / USHLL */
10586         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10587         break;
10588     case 0x1c: /* SCVTF / UCVTF */
10589         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10590                                      opcode, rn, rd);
10591         break;
10592     case 0xc: /* SQSHLU */
10593         if (!is_u) {
10594             unallocated_encoding(s);
10595             return;
10596         }
10597         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10598         break;
10599     case 0xe: /* SQSHL, UQSHL */
10600         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10601         break;
10602     case 0x1f: /* FCVTZS/ FCVTZU */
10603         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10604         return;
10605     default:
10606         unallocated_encoding(s);
10607         return;
10608     }
10609 }
10610 
10611 /* Generate code to do a "long" addition or subtraction, ie one done in
10612  * TCGv_i64 on vector lanes twice the width specified by size.
10613  */
10614 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10615                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10616 {
10617     static NeonGenTwo64OpFn * const fns[3][2] = {
10618         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10619         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10620         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10621     };
10622     NeonGenTwo64OpFn *genfn;
10623     assert(size < 3);
10624 
10625     genfn = fns[size][is_sub];
10626     genfn(tcg_res, tcg_op1, tcg_op2);
10627 }
10628 
10629 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10630                                 int opcode, int rd, int rn, int rm)
10631 {
10632     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10633     TCGv_i64 tcg_res[2];
10634     int pass, accop;
10635 
10636     tcg_res[0] = tcg_temp_new_i64();
10637     tcg_res[1] = tcg_temp_new_i64();
10638 
10639     /* Does this op do an adding accumulate, a subtracting accumulate,
10640      * or no accumulate at all?
10641      */
10642     switch (opcode) {
10643     case 5:
10644     case 8:
10645     case 9:
10646         accop = 1;
10647         break;
10648     case 10:
10649     case 11:
10650         accop = -1;
10651         break;
10652     default:
10653         accop = 0;
10654         break;
10655     }
10656 
10657     if (accop != 0) {
10658         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10659         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10660     }
10661 
10662     /* size == 2 means two 32x32->64 operations; this is worth special
10663      * casing because we can generally handle it inline.
10664      */
10665     if (size == 2) {
10666         for (pass = 0; pass < 2; pass++) {
10667             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10668             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10669             TCGv_i64 tcg_passres;
10670             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10671 
10672             int elt = pass + is_q * 2;
10673 
10674             read_vec_element(s, tcg_op1, rn, elt, memop);
10675             read_vec_element(s, tcg_op2, rm, elt, memop);
10676 
10677             if (accop == 0) {
10678                 tcg_passres = tcg_res[pass];
10679             } else {
10680                 tcg_passres = tcg_temp_new_i64();
10681             }
10682 
10683             switch (opcode) {
10684             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10685                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10686                 break;
10687             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10688                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10689                 break;
10690             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10691             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10692             {
10693                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10694                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10695 
10696                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10697                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10698                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10699                                     tcg_passres,
10700                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10701                 break;
10702             }
10703             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10704             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10705             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10706                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10707                 break;
10708             case 9: /* SQDMLAL, SQDMLAL2 */
10709             case 11: /* SQDMLSL, SQDMLSL2 */
10710             case 13: /* SQDMULL, SQDMULL2 */
10711                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10712                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10713                                                   tcg_passres, tcg_passres);
10714                 break;
10715             default:
10716                 g_assert_not_reached();
10717             }
10718 
10719             if (opcode == 9 || opcode == 11) {
10720                 /* saturating accumulate ops */
10721                 if (accop < 0) {
10722                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10723                 }
10724                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10725                                                   tcg_res[pass], tcg_passres);
10726             } else if (accop > 0) {
10727                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10728             } else if (accop < 0) {
10729                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10730             }
10731         }
10732     } else {
10733         /* size 0 or 1, generally helper functions */
10734         for (pass = 0; pass < 2; pass++) {
10735             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10736             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10737             TCGv_i64 tcg_passres;
10738             int elt = pass + is_q * 2;
10739 
10740             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10741             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10742 
10743             if (accop == 0) {
10744                 tcg_passres = tcg_res[pass];
10745             } else {
10746                 tcg_passres = tcg_temp_new_i64();
10747             }
10748 
10749             switch (opcode) {
10750             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10751             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10752             {
10753                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10754                 static NeonGenWidenFn * const widenfns[2][2] = {
10755                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10756                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10757                 };
10758                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10759 
10760                 widenfn(tcg_op2_64, tcg_op2);
10761                 widenfn(tcg_passres, tcg_op1);
10762                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10763                               tcg_passres, tcg_op2_64);
10764                 break;
10765             }
10766             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10767             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10768                 if (size == 0) {
10769                     if (is_u) {
10770                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10771                     } else {
10772                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10773                     }
10774                 } else {
10775                     if (is_u) {
10776                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10777                     } else {
10778                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10779                     }
10780                 }
10781                 break;
10782             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10783             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10784             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10785                 if (size == 0) {
10786                     if (is_u) {
10787                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10788                     } else {
10789                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10790                     }
10791                 } else {
10792                     if (is_u) {
10793                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10794                     } else {
10795                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10796                     }
10797                 }
10798                 break;
10799             case 9: /* SQDMLAL, SQDMLAL2 */
10800             case 11: /* SQDMLSL, SQDMLSL2 */
10801             case 13: /* SQDMULL, SQDMULL2 */
10802                 assert(size == 1);
10803                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10804                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10805                                                   tcg_passres, tcg_passres);
10806                 break;
10807             default:
10808                 g_assert_not_reached();
10809             }
10810 
10811             if (accop != 0) {
10812                 if (opcode == 9 || opcode == 11) {
10813                     /* saturating accumulate ops */
10814                     if (accop < 0) {
10815                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10816                     }
10817                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10818                                                       tcg_res[pass],
10819                                                       tcg_passres);
10820                 } else {
10821                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10822                                   tcg_res[pass], tcg_passres);
10823                 }
10824             }
10825         }
10826     }
10827 
10828     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10829     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10830 }
10831 
10832 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10833                             int opcode, int rd, int rn, int rm)
10834 {
10835     TCGv_i64 tcg_res[2];
10836     int part = is_q ? 2 : 0;
10837     int pass;
10838 
10839     for (pass = 0; pass < 2; pass++) {
10840         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10841         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10842         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10843         static NeonGenWidenFn * const widenfns[3][2] = {
10844             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10845             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10846             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10847         };
10848         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10849 
10850         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10851         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10852         widenfn(tcg_op2_wide, tcg_op2);
10853         tcg_res[pass] = tcg_temp_new_i64();
10854         gen_neon_addl(size, (opcode == 3),
10855                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10856     }
10857 
10858     for (pass = 0; pass < 2; pass++) {
10859         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10860     }
10861 }
10862 
10863 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10864 {
10865     tcg_gen_addi_i64(in, in, 1U << 31);
10866     tcg_gen_extrh_i64_i32(res, in);
10867 }
10868 
10869 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10870                                  int opcode, int rd, int rn, int rm)
10871 {
10872     TCGv_i32 tcg_res[2];
10873     int part = is_q ? 2 : 0;
10874     int pass;
10875 
10876     for (pass = 0; pass < 2; pass++) {
10877         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10878         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10879         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10880         static NeonGenNarrowFn * const narrowfns[3][2] = {
10881             { gen_helper_neon_narrow_high_u8,
10882               gen_helper_neon_narrow_round_high_u8 },
10883             { gen_helper_neon_narrow_high_u16,
10884               gen_helper_neon_narrow_round_high_u16 },
10885             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10886         };
10887         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10888 
10889         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10890         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10891 
10892         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10893 
10894         tcg_res[pass] = tcg_temp_new_i32();
10895         gennarrow(tcg_res[pass], tcg_wideres);
10896     }
10897 
10898     for (pass = 0; pass < 2; pass++) {
10899         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10900     }
10901     clear_vec_high(s, is_q, rd);
10902 }
10903 
10904 /* AdvSIMD three different
10905  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10906  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10907  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10908  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10909  */
10910 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10911 {
10912     /* Instructions in this group fall into three basic classes
10913      * (in each case with the operation working on each element in
10914      * the input vectors):
10915      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10916      *     128 bit input)
10917      * (2) wide 64 x 128 -> 128
10918      * (3) narrowing 128 x 128 -> 64
10919      * Here we do initial decode, catch unallocated cases and
10920      * dispatch to separate functions for each class.
10921      */
10922     int is_q = extract32(insn, 30, 1);
10923     int is_u = extract32(insn, 29, 1);
10924     int size = extract32(insn, 22, 2);
10925     int opcode = extract32(insn, 12, 4);
10926     int rm = extract32(insn, 16, 5);
10927     int rn = extract32(insn, 5, 5);
10928     int rd = extract32(insn, 0, 5);
10929 
10930     switch (opcode) {
10931     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10932     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10933         /* 64 x 128 -> 128 */
10934         if (size == 3) {
10935             unallocated_encoding(s);
10936             return;
10937         }
10938         if (!fp_access_check(s)) {
10939             return;
10940         }
10941         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10942         break;
10943     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10944     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10945         /* 128 x 128 -> 64 */
10946         if (size == 3) {
10947             unallocated_encoding(s);
10948             return;
10949         }
10950         if (!fp_access_check(s)) {
10951             return;
10952         }
10953         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10954         break;
10955     case 14: /* PMULL, PMULL2 */
10956         if (is_u) {
10957             unallocated_encoding(s);
10958             return;
10959         }
10960         switch (size) {
10961         case 0: /* PMULL.P8 */
10962             if (!fp_access_check(s)) {
10963                 return;
10964             }
10965             /* The Q field specifies lo/hi half input for this insn.  */
10966             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10967                              gen_helper_neon_pmull_h);
10968             break;
10969 
10970         case 3: /* PMULL.P64 */
10971             if (!dc_isar_feature(aa64_pmull, s)) {
10972                 unallocated_encoding(s);
10973                 return;
10974             }
10975             if (!fp_access_check(s)) {
10976                 return;
10977             }
10978             /* The Q field specifies lo/hi half input for this insn.  */
10979             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10980                              gen_helper_gvec_pmull_q);
10981             break;
10982 
10983         default:
10984             unallocated_encoding(s);
10985             break;
10986         }
10987         return;
10988     case 9: /* SQDMLAL, SQDMLAL2 */
10989     case 11: /* SQDMLSL, SQDMLSL2 */
10990     case 13: /* SQDMULL, SQDMULL2 */
10991         if (is_u || size == 0) {
10992             unallocated_encoding(s);
10993             return;
10994         }
10995         /* fall through */
10996     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10997     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10998     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10999     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11000     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11001     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11002     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11003         /* 64 x 64 -> 128 */
11004         if (size == 3) {
11005             unallocated_encoding(s);
11006             return;
11007         }
11008         if (!fp_access_check(s)) {
11009             return;
11010         }
11011 
11012         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11013         break;
11014     default:
11015         /* opcode 15 not allocated */
11016         unallocated_encoding(s);
11017         break;
11018     }
11019 }
11020 
11021 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11022 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11023 {
11024     int rd = extract32(insn, 0, 5);
11025     int rn = extract32(insn, 5, 5);
11026     int rm = extract32(insn, 16, 5);
11027     int size = extract32(insn, 22, 2);
11028     bool is_u = extract32(insn, 29, 1);
11029     bool is_q = extract32(insn, 30, 1);
11030 
11031     if (!fp_access_check(s)) {
11032         return;
11033     }
11034 
11035     switch (size + 4 * is_u) {
11036     case 0: /* AND */
11037         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11038         return;
11039     case 1: /* BIC */
11040         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11041         return;
11042     case 2: /* ORR */
11043         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11044         return;
11045     case 3: /* ORN */
11046         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11047         return;
11048     case 4: /* EOR */
11049         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11050         return;
11051 
11052     case 5: /* BSL bitwise select */
11053         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11054         return;
11055     case 6: /* BIT, bitwise insert if true */
11056         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11057         return;
11058     case 7: /* BIF, bitwise insert if false */
11059         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11060         return;
11061 
11062     default:
11063         g_assert_not_reached();
11064     }
11065 }
11066 
11067 /* Pairwise op subgroup of C3.6.16.
11068  *
11069  * This is called directly or via the handle_3same_float for float pairwise
11070  * operations where the opcode and size are calculated differently.
11071  */
11072 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11073                                    int size, int rn, int rm, int rd)
11074 {
11075     TCGv_ptr fpst;
11076     int pass;
11077 
11078     /* Floating point operations need fpst */
11079     if (opcode >= 0x58) {
11080         fpst = fpstatus_ptr(FPST_FPCR);
11081     } else {
11082         fpst = NULL;
11083     }
11084 
11085     if (!fp_access_check(s)) {
11086         return;
11087     }
11088 
11089     /* These operations work on the concatenated rm:rn, with each pair of
11090      * adjacent elements being operated on to produce an element in the result.
11091      */
11092     if (size == 3) {
11093         TCGv_i64 tcg_res[2];
11094 
11095         for (pass = 0; pass < 2; pass++) {
11096             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11097             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11098             int passreg = (pass == 0) ? rn : rm;
11099 
11100             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11101             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11102             tcg_res[pass] = tcg_temp_new_i64();
11103 
11104             switch (opcode) {
11105             case 0x17: /* ADDP */
11106                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11107                 break;
11108             case 0x58: /* FMAXNMP */
11109                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11110                 break;
11111             case 0x5a: /* FADDP */
11112                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11113                 break;
11114             case 0x5e: /* FMAXP */
11115                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11116                 break;
11117             case 0x78: /* FMINNMP */
11118                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11119                 break;
11120             case 0x7e: /* FMINP */
11121                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11122                 break;
11123             default:
11124                 g_assert_not_reached();
11125             }
11126         }
11127 
11128         for (pass = 0; pass < 2; pass++) {
11129             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11130         }
11131     } else {
11132         int maxpass = is_q ? 4 : 2;
11133         TCGv_i32 tcg_res[4];
11134 
11135         for (pass = 0; pass < maxpass; pass++) {
11136             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11137             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11138             NeonGenTwoOpFn *genfn = NULL;
11139             int passreg = pass < (maxpass / 2) ? rn : rm;
11140             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11141 
11142             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11143             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11144             tcg_res[pass] = tcg_temp_new_i32();
11145 
11146             switch (opcode) {
11147             case 0x17: /* ADDP */
11148             {
11149                 static NeonGenTwoOpFn * const fns[3] = {
11150                     gen_helper_neon_padd_u8,
11151                     gen_helper_neon_padd_u16,
11152                     tcg_gen_add_i32,
11153                 };
11154                 genfn = fns[size];
11155                 break;
11156             }
11157             case 0x14: /* SMAXP, UMAXP */
11158             {
11159                 static NeonGenTwoOpFn * const fns[3][2] = {
11160                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11161                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11162                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11163                 };
11164                 genfn = fns[size][u];
11165                 break;
11166             }
11167             case 0x15: /* SMINP, UMINP */
11168             {
11169                 static NeonGenTwoOpFn * const fns[3][2] = {
11170                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11171                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11172                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11173                 };
11174                 genfn = fns[size][u];
11175                 break;
11176             }
11177             /* The FP operations are all on single floats (32 bit) */
11178             case 0x58: /* FMAXNMP */
11179                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11180                 break;
11181             case 0x5a: /* FADDP */
11182                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11183                 break;
11184             case 0x5e: /* FMAXP */
11185                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11186                 break;
11187             case 0x78: /* FMINNMP */
11188                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11189                 break;
11190             case 0x7e: /* FMINP */
11191                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11192                 break;
11193             default:
11194                 g_assert_not_reached();
11195             }
11196 
11197             /* FP ops called directly, otherwise call now */
11198             if (genfn) {
11199                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11200             }
11201         }
11202 
11203         for (pass = 0; pass < maxpass; pass++) {
11204             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11205         }
11206         clear_vec_high(s, is_q, rd);
11207     }
11208 }
11209 
11210 /* Floating point op subgroup of C3.6.16. */
11211 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11212 {
11213     /* For floating point ops, the U, size[1] and opcode bits
11214      * together indicate the operation. size[0] indicates single
11215      * or double.
11216      */
11217     int fpopcode = extract32(insn, 11, 5)
11218         | (extract32(insn, 23, 1) << 5)
11219         | (extract32(insn, 29, 1) << 6);
11220     int is_q = extract32(insn, 30, 1);
11221     int size = extract32(insn, 22, 1);
11222     int rm = extract32(insn, 16, 5);
11223     int rn = extract32(insn, 5, 5);
11224     int rd = extract32(insn, 0, 5);
11225 
11226     int datasize = is_q ? 128 : 64;
11227     int esize = 32 << size;
11228     int elements = datasize / esize;
11229 
11230     if (size == 1 && !is_q) {
11231         unallocated_encoding(s);
11232         return;
11233     }
11234 
11235     switch (fpopcode) {
11236     case 0x58: /* FMAXNMP */
11237     case 0x5a: /* FADDP */
11238     case 0x5e: /* FMAXP */
11239     case 0x78: /* FMINNMP */
11240     case 0x7e: /* FMINP */
11241         if (size && !is_q) {
11242             unallocated_encoding(s);
11243             return;
11244         }
11245         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11246                                rn, rm, rd);
11247         return;
11248     case 0x1f: /* FRECPS */
11249     case 0x3f: /* FRSQRTS */
11250     case 0x5d: /* FACGE */
11251     case 0x7d: /* FACGT */
11252     case 0x19: /* FMLA */
11253     case 0x39: /* FMLS */
11254     case 0x18: /* FMAXNM */
11255     case 0x1c: /* FCMEQ */
11256     case 0x1e: /* FMAX */
11257     case 0x38: /* FMINNM */
11258     case 0x3e: /* FMIN */
11259     case 0x5c: /* FCMGE */
11260     case 0x7a: /* FABD */
11261     case 0x7c: /* FCMGT */
11262         if (!fp_access_check(s)) {
11263             return;
11264         }
11265         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11266         return;
11267 
11268     case 0x1d: /* FMLAL  */
11269     case 0x3d: /* FMLSL  */
11270     case 0x59: /* FMLAL2 */
11271     case 0x79: /* FMLSL2 */
11272         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11273             unallocated_encoding(s);
11274             return;
11275         }
11276         if (fp_access_check(s)) {
11277             int is_s = extract32(insn, 23, 1);
11278             int is_2 = extract32(insn, 29, 1);
11279             int data = (is_2 << 1) | is_s;
11280             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11281                                vec_full_reg_offset(s, rn),
11282                                vec_full_reg_offset(s, rm), tcg_env,
11283                                is_q ? 16 : 8, vec_full_reg_size(s),
11284                                data, gen_helper_gvec_fmlal_a64);
11285         }
11286         return;
11287 
11288     default:
11289     case 0x1a: /* FADD */
11290     case 0x1b: /* FMULX */
11291     case 0x3a: /* FSUB */
11292     case 0x5b: /* FMUL */
11293     case 0x5f: /* FDIV */
11294         unallocated_encoding(s);
11295         return;
11296     }
11297 }
11298 
11299 /* Integer op subgroup of C3.6.16. */
11300 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11301 {
11302     int is_q = extract32(insn, 30, 1);
11303     int u = extract32(insn, 29, 1);
11304     int size = extract32(insn, 22, 2);
11305     int opcode = extract32(insn, 11, 5);
11306     int rm = extract32(insn, 16, 5);
11307     int rn = extract32(insn, 5, 5);
11308     int rd = extract32(insn, 0, 5);
11309     int pass;
11310     TCGCond cond;
11311 
11312     switch (opcode) {
11313     case 0x13: /* MUL, PMUL */
11314         if (u && size != 0) {
11315             unallocated_encoding(s);
11316             return;
11317         }
11318         /* fall through */
11319     case 0x0: /* SHADD, UHADD */
11320     case 0x2: /* SRHADD, URHADD */
11321     case 0x4: /* SHSUB, UHSUB */
11322     case 0xc: /* SMAX, UMAX */
11323     case 0xd: /* SMIN, UMIN */
11324     case 0xe: /* SABD, UABD */
11325     case 0xf: /* SABA, UABA */
11326     case 0x12: /* MLA, MLS */
11327         if (size == 3) {
11328             unallocated_encoding(s);
11329             return;
11330         }
11331         break;
11332     case 0x16: /* SQDMULH, SQRDMULH */
11333         if (size == 0 || size == 3) {
11334             unallocated_encoding(s);
11335             return;
11336         }
11337         break;
11338     default:
11339         if (size == 3 && !is_q) {
11340             unallocated_encoding(s);
11341             return;
11342         }
11343         break;
11344     }
11345 
11346     if (!fp_access_check(s)) {
11347         return;
11348     }
11349 
11350     switch (opcode) {
11351     case 0x01: /* SQADD, UQADD */
11352         if (u) {
11353             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11354         } else {
11355             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11356         }
11357         return;
11358     case 0x05: /* SQSUB, UQSUB */
11359         if (u) {
11360             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11361         } else {
11362             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11363         }
11364         return;
11365     case 0x08: /* SSHL, USHL */
11366         if (u) {
11367             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11368         } else {
11369             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11370         }
11371         return;
11372     case 0x0c: /* SMAX, UMAX */
11373         if (u) {
11374             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11375         } else {
11376             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11377         }
11378         return;
11379     case 0x0d: /* SMIN, UMIN */
11380         if (u) {
11381             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11382         } else {
11383             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11384         }
11385         return;
11386     case 0xe: /* SABD, UABD */
11387         if (u) {
11388             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11389         } else {
11390             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11391         }
11392         return;
11393     case 0xf: /* SABA, UABA */
11394         if (u) {
11395             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11396         } else {
11397             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11398         }
11399         return;
11400     case 0x10: /* ADD, SUB */
11401         if (u) {
11402             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11403         } else {
11404             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11405         }
11406         return;
11407     case 0x13: /* MUL, PMUL */
11408         if (!u) { /* MUL */
11409             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11410         } else {  /* PMUL */
11411             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11412         }
11413         return;
11414     case 0x12: /* MLA, MLS */
11415         if (u) {
11416             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11417         } else {
11418             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11419         }
11420         return;
11421     case 0x16: /* SQDMULH, SQRDMULH */
11422         {
11423             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11424                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11425                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11426             };
11427             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11428         }
11429         return;
11430     case 0x11:
11431         if (!u) { /* CMTST */
11432             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11433             return;
11434         }
11435         /* else CMEQ */
11436         cond = TCG_COND_EQ;
11437         goto do_gvec_cmp;
11438     case 0x06: /* CMGT, CMHI */
11439         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11440         goto do_gvec_cmp;
11441     case 0x07: /* CMGE, CMHS */
11442         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11443     do_gvec_cmp:
11444         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11445                          vec_full_reg_offset(s, rn),
11446                          vec_full_reg_offset(s, rm),
11447                          is_q ? 16 : 8, vec_full_reg_size(s));
11448         return;
11449     }
11450 
11451     if (size == 3) {
11452         assert(is_q);
11453         for (pass = 0; pass < 2; pass++) {
11454             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11455             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11456             TCGv_i64 tcg_res = tcg_temp_new_i64();
11457 
11458             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11459             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11460 
11461             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11462 
11463             write_vec_element(s, tcg_res, rd, pass, MO_64);
11464         }
11465     } else {
11466         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11467             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11468             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11469             TCGv_i32 tcg_res = tcg_temp_new_i32();
11470             NeonGenTwoOpFn *genfn = NULL;
11471             NeonGenTwoOpEnvFn *genenvfn = NULL;
11472 
11473             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11474             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11475 
11476             switch (opcode) {
11477             case 0x0: /* SHADD, UHADD */
11478             {
11479                 static NeonGenTwoOpFn * const fns[3][2] = {
11480                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11481                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11482                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11483                 };
11484                 genfn = fns[size][u];
11485                 break;
11486             }
11487             case 0x2: /* SRHADD, URHADD */
11488             {
11489                 static NeonGenTwoOpFn * const fns[3][2] = {
11490                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11491                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11492                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11493                 };
11494                 genfn = fns[size][u];
11495                 break;
11496             }
11497             case 0x4: /* SHSUB, UHSUB */
11498             {
11499                 static NeonGenTwoOpFn * const fns[3][2] = {
11500                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11501                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11502                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11503                 };
11504                 genfn = fns[size][u];
11505                 break;
11506             }
11507             case 0x9: /* SQSHL, UQSHL */
11508             {
11509                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11510                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11511                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11512                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11513                 };
11514                 genenvfn = fns[size][u];
11515                 break;
11516             }
11517             case 0xa: /* SRSHL, URSHL */
11518             {
11519                 static NeonGenTwoOpFn * const fns[3][2] = {
11520                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11521                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11522                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11523                 };
11524                 genfn = fns[size][u];
11525                 break;
11526             }
11527             case 0xb: /* SQRSHL, UQRSHL */
11528             {
11529                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11530                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11531                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11532                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11533                 };
11534                 genenvfn = fns[size][u];
11535                 break;
11536             }
11537             default:
11538                 g_assert_not_reached();
11539             }
11540 
11541             if (genenvfn) {
11542                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11543             } else {
11544                 genfn(tcg_res, tcg_op1, tcg_op2);
11545             }
11546 
11547             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11548         }
11549     }
11550     clear_vec_high(s, is_q, rd);
11551 }
11552 
11553 /* AdvSIMD three same
11554  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11555  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11556  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11557  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11558  */
11559 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11560 {
11561     int opcode = extract32(insn, 11, 5);
11562 
11563     switch (opcode) {
11564     case 0x3: /* logic ops */
11565         disas_simd_3same_logic(s, insn);
11566         break;
11567     case 0x17: /* ADDP */
11568     case 0x14: /* SMAXP, UMAXP */
11569     case 0x15: /* SMINP, UMINP */
11570     {
11571         /* Pairwise operations */
11572         int is_q = extract32(insn, 30, 1);
11573         int u = extract32(insn, 29, 1);
11574         int size = extract32(insn, 22, 2);
11575         int rm = extract32(insn, 16, 5);
11576         int rn = extract32(insn, 5, 5);
11577         int rd = extract32(insn, 0, 5);
11578         if (opcode == 0x17) {
11579             if (u || (size == 3 && !is_q)) {
11580                 unallocated_encoding(s);
11581                 return;
11582             }
11583         } else {
11584             if (size == 3) {
11585                 unallocated_encoding(s);
11586                 return;
11587             }
11588         }
11589         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11590         break;
11591     }
11592     case 0x18 ... 0x31:
11593         /* floating point ops, sz[1] and U are part of opcode */
11594         disas_simd_3same_float(s, insn);
11595         break;
11596     default:
11597         disas_simd_3same_int(s, insn);
11598         break;
11599     }
11600 }
11601 
11602 /*
11603  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11604  *
11605  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11606  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11607  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11608  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11609  *
11610  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11611  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11612  *
11613  */
11614 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11615 {
11616     int opcode = extract32(insn, 11, 3);
11617     int u = extract32(insn, 29, 1);
11618     int a = extract32(insn, 23, 1);
11619     int is_q = extract32(insn, 30, 1);
11620     int rm = extract32(insn, 16, 5);
11621     int rn = extract32(insn, 5, 5);
11622     int rd = extract32(insn, 0, 5);
11623     /*
11624      * For these floating point ops, the U, a and opcode bits
11625      * together indicate the operation.
11626      */
11627     int fpopcode = opcode | (a << 3) | (u << 4);
11628     int datasize = is_q ? 128 : 64;
11629     int elements = datasize / 16;
11630     bool pairwise;
11631     TCGv_ptr fpst;
11632     int pass;
11633 
11634     switch (fpopcode) {
11635     case 0x0: /* FMAXNM */
11636     case 0x1: /* FMLA */
11637     case 0x4: /* FCMEQ */
11638     case 0x6: /* FMAX */
11639     case 0x7: /* FRECPS */
11640     case 0x8: /* FMINNM */
11641     case 0x9: /* FMLS */
11642     case 0xe: /* FMIN */
11643     case 0xf: /* FRSQRTS */
11644     case 0x14: /* FCMGE */
11645     case 0x15: /* FACGE */
11646     case 0x1a: /* FABD */
11647     case 0x1c: /* FCMGT */
11648     case 0x1d: /* FACGT */
11649         pairwise = false;
11650         break;
11651     case 0x10: /* FMAXNMP */
11652     case 0x12: /* FADDP */
11653     case 0x16: /* FMAXP */
11654     case 0x18: /* FMINNMP */
11655     case 0x1e: /* FMINP */
11656         pairwise = true;
11657         break;
11658     default:
11659     case 0x2: /* FADD */
11660     case 0x3: /* FMULX */
11661     case 0xa: /* FSUB */
11662     case 0x13: /* FMUL */
11663     case 0x17: /* FDIV */
11664         unallocated_encoding(s);
11665         return;
11666     }
11667 
11668     if (!dc_isar_feature(aa64_fp16, s)) {
11669         unallocated_encoding(s);
11670         return;
11671     }
11672 
11673     if (!fp_access_check(s)) {
11674         return;
11675     }
11676 
11677     fpst = fpstatus_ptr(FPST_FPCR_F16);
11678 
11679     if (pairwise) {
11680         int maxpass = is_q ? 8 : 4;
11681         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11682         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11683         TCGv_i32 tcg_res[8];
11684 
11685         for (pass = 0; pass < maxpass; pass++) {
11686             int passreg = pass < (maxpass / 2) ? rn : rm;
11687             int passelt = (pass << 1) & (maxpass - 1);
11688 
11689             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11690             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11691             tcg_res[pass] = tcg_temp_new_i32();
11692 
11693             switch (fpopcode) {
11694             case 0x10: /* FMAXNMP */
11695                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11696                                            fpst);
11697                 break;
11698             case 0x12: /* FADDP */
11699                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11700                 break;
11701             case 0x16: /* FMAXP */
11702                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11703                 break;
11704             case 0x18: /* FMINNMP */
11705                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11706                                            fpst);
11707                 break;
11708             case 0x1e: /* FMINP */
11709                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11710                 break;
11711             default:
11712                 g_assert_not_reached();
11713             }
11714         }
11715 
11716         for (pass = 0; pass < maxpass; pass++) {
11717             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11718         }
11719     } else {
11720         for (pass = 0; pass < elements; pass++) {
11721             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11722             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11723             TCGv_i32 tcg_res = tcg_temp_new_i32();
11724 
11725             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11726             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11727 
11728             switch (fpopcode) {
11729             case 0x0: /* FMAXNM */
11730                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11731                 break;
11732             case 0x1: /* FMLA */
11733                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11734                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11735                                            fpst);
11736                 break;
11737             case 0x4: /* FCMEQ */
11738                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11739                 break;
11740             case 0x6: /* FMAX */
11741                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11742                 break;
11743             case 0x7: /* FRECPS */
11744                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11745                 break;
11746             case 0x8: /* FMINNM */
11747                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11748                 break;
11749             case 0x9: /* FMLS */
11750                 /* As usual for ARM, separate negation for fused multiply-add */
11751                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11752                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11753                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11754                                            fpst);
11755                 break;
11756             case 0xe: /* FMIN */
11757                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11758                 break;
11759             case 0xf: /* FRSQRTS */
11760                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11761                 break;
11762             case 0x14: /* FCMGE */
11763                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11764                 break;
11765             case 0x15: /* FACGE */
11766                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11767                 break;
11768             case 0x1a: /* FABD */
11769                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11770                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11771                 break;
11772             case 0x1c: /* FCMGT */
11773                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11774                 break;
11775             case 0x1d: /* FACGT */
11776                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11777                 break;
11778             default:
11779             case 0x2: /* FADD */
11780             case 0x3: /* FMULX */
11781             case 0xa: /* FSUB */
11782             case 0x13: /* FMUL */
11783             case 0x17: /* FDIV */
11784                 g_assert_not_reached();
11785             }
11786 
11787             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11788         }
11789     }
11790 
11791     clear_vec_high(s, is_q, rd);
11792 }
11793 
11794 /* AdvSIMD three same extra
11795  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11796  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11797  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11798  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11799  */
11800 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11801 {
11802     int rd = extract32(insn, 0, 5);
11803     int rn = extract32(insn, 5, 5);
11804     int opcode = extract32(insn, 11, 4);
11805     int rm = extract32(insn, 16, 5);
11806     int size = extract32(insn, 22, 2);
11807     bool u = extract32(insn, 29, 1);
11808     bool is_q = extract32(insn, 30, 1);
11809     bool feature;
11810     int rot;
11811 
11812     switch (u * 16 + opcode) {
11813     case 0x10: /* SQRDMLAH (vector) */
11814     case 0x11: /* SQRDMLSH (vector) */
11815         if (size != 1 && size != 2) {
11816             unallocated_encoding(s);
11817             return;
11818         }
11819         feature = dc_isar_feature(aa64_rdm, s);
11820         break;
11821     case 0x02: /* SDOT (vector) */
11822     case 0x12: /* UDOT (vector) */
11823         if (size != MO_32) {
11824             unallocated_encoding(s);
11825             return;
11826         }
11827         feature = dc_isar_feature(aa64_dp, s);
11828         break;
11829     case 0x03: /* USDOT */
11830         if (size != MO_32) {
11831             unallocated_encoding(s);
11832             return;
11833         }
11834         feature = dc_isar_feature(aa64_i8mm, s);
11835         break;
11836     case 0x04: /* SMMLA */
11837     case 0x14: /* UMMLA */
11838     case 0x05: /* USMMLA */
11839         if (!is_q || size != MO_32) {
11840             unallocated_encoding(s);
11841             return;
11842         }
11843         feature = dc_isar_feature(aa64_i8mm, s);
11844         break;
11845     case 0x18: /* FCMLA, #0 */
11846     case 0x19: /* FCMLA, #90 */
11847     case 0x1a: /* FCMLA, #180 */
11848     case 0x1b: /* FCMLA, #270 */
11849     case 0x1c: /* FCADD, #90 */
11850     case 0x1e: /* FCADD, #270 */
11851         if (size == 0
11852             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11853             || (size == 3 && !is_q)) {
11854             unallocated_encoding(s);
11855             return;
11856         }
11857         feature = dc_isar_feature(aa64_fcma, s);
11858         break;
11859     case 0x1d: /* BFMMLA */
11860         if (size != MO_16 || !is_q) {
11861             unallocated_encoding(s);
11862             return;
11863         }
11864         feature = dc_isar_feature(aa64_bf16, s);
11865         break;
11866     case 0x1f:
11867         switch (size) {
11868         case 1: /* BFDOT */
11869         case 3: /* BFMLAL{B,T} */
11870             feature = dc_isar_feature(aa64_bf16, s);
11871             break;
11872         default:
11873             unallocated_encoding(s);
11874             return;
11875         }
11876         break;
11877     default:
11878         unallocated_encoding(s);
11879         return;
11880     }
11881     if (!feature) {
11882         unallocated_encoding(s);
11883         return;
11884     }
11885     if (!fp_access_check(s)) {
11886         return;
11887     }
11888 
11889     switch (opcode) {
11890     case 0x0: /* SQRDMLAH (vector) */
11891         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11892         return;
11893 
11894     case 0x1: /* SQRDMLSH (vector) */
11895         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11896         return;
11897 
11898     case 0x2: /* SDOT / UDOT */
11899         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11900                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11901         return;
11902 
11903     case 0x3: /* USDOT */
11904         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11905         return;
11906 
11907     case 0x04: /* SMMLA, UMMLA */
11908         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11909                          u ? gen_helper_gvec_ummla_b
11910                          : gen_helper_gvec_smmla_b);
11911         return;
11912     case 0x05: /* USMMLA */
11913         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11914         return;
11915 
11916     case 0x8: /* FCMLA, #0 */
11917     case 0x9: /* FCMLA, #90 */
11918     case 0xa: /* FCMLA, #180 */
11919     case 0xb: /* FCMLA, #270 */
11920         rot = extract32(opcode, 0, 2);
11921         switch (size) {
11922         case 1:
11923             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11924                               gen_helper_gvec_fcmlah);
11925             break;
11926         case 2:
11927             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11928                               gen_helper_gvec_fcmlas);
11929             break;
11930         case 3:
11931             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11932                               gen_helper_gvec_fcmlad);
11933             break;
11934         default:
11935             g_assert_not_reached();
11936         }
11937         return;
11938 
11939     case 0xc: /* FCADD, #90 */
11940     case 0xe: /* FCADD, #270 */
11941         rot = extract32(opcode, 1, 1);
11942         switch (size) {
11943         case 1:
11944             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11945                               gen_helper_gvec_fcaddh);
11946             break;
11947         case 2:
11948             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11949                               gen_helper_gvec_fcadds);
11950             break;
11951         case 3:
11952             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11953                               gen_helper_gvec_fcaddd);
11954             break;
11955         default:
11956             g_assert_not_reached();
11957         }
11958         return;
11959 
11960     case 0xd: /* BFMMLA */
11961         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11962         return;
11963     case 0xf:
11964         switch (size) {
11965         case 1: /* BFDOT */
11966             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11967             break;
11968         case 3: /* BFMLAL{B,T} */
11969             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11970                               gen_helper_gvec_bfmlal);
11971             break;
11972         default:
11973             g_assert_not_reached();
11974         }
11975         return;
11976 
11977     default:
11978         g_assert_not_reached();
11979     }
11980 }
11981 
11982 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11983                                   int size, int rn, int rd)
11984 {
11985     /* Handle 2-reg-misc ops which are widening (so each size element
11986      * in the source becomes a 2*size element in the destination.
11987      * The only instruction like this is FCVTL.
11988      */
11989     int pass;
11990 
11991     if (size == 3) {
11992         /* 32 -> 64 bit fp conversion */
11993         TCGv_i64 tcg_res[2];
11994         int srcelt = is_q ? 2 : 0;
11995 
11996         for (pass = 0; pass < 2; pass++) {
11997             TCGv_i32 tcg_op = tcg_temp_new_i32();
11998             tcg_res[pass] = tcg_temp_new_i64();
11999 
12000             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12001             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
12002         }
12003         for (pass = 0; pass < 2; pass++) {
12004             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12005         }
12006     } else {
12007         /* 16 -> 32 bit fp conversion */
12008         int srcelt = is_q ? 4 : 0;
12009         TCGv_i32 tcg_res[4];
12010         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12011         TCGv_i32 ahp = get_ahp_flag();
12012 
12013         for (pass = 0; pass < 4; pass++) {
12014             tcg_res[pass] = tcg_temp_new_i32();
12015 
12016             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12017             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12018                                            fpst, ahp);
12019         }
12020         for (pass = 0; pass < 4; pass++) {
12021             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12022         }
12023     }
12024 }
12025 
12026 static void handle_rev(DisasContext *s, int opcode, bool u,
12027                        bool is_q, int size, int rn, int rd)
12028 {
12029     int op = (opcode << 1) | u;
12030     int opsz = op + size;
12031     int grp_size = 3 - opsz;
12032     int dsize = is_q ? 128 : 64;
12033     int i;
12034 
12035     if (opsz >= 3) {
12036         unallocated_encoding(s);
12037         return;
12038     }
12039 
12040     if (!fp_access_check(s)) {
12041         return;
12042     }
12043 
12044     if (size == 0) {
12045         /* Special case bytes, use bswap op on each group of elements */
12046         int groups = dsize / (8 << grp_size);
12047 
12048         for (i = 0; i < groups; i++) {
12049             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12050 
12051             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12052             switch (grp_size) {
12053             case MO_16:
12054                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12055                 break;
12056             case MO_32:
12057                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12058                 break;
12059             case MO_64:
12060                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12061                 break;
12062             default:
12063                 g_assert_not_reached();
12064             }
12065             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12066         }
12067         clear_vec_high(s, is_q, rd);
12068     } else {
12069         int revmask = (1 << grp_size) - 1;
12070         int esize = 8 << size;
12071         int elements = dsize / esize;
12072         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12073         TCGv_i64 tcg_rd[2];
12074 
12075         for (i = 0; i < 2; i++) {
12076             tcg_rd[i] = tcg_temp_new_i64();
12077             tcg_gen_movi_i64(tcg_rd[i], 0);
12078         }
12079 
12080         for (i = 0; i < elements; i++) {
12081             int e_rev = (i & 0xf) ^ revmask;
12082             int w = (e_rev * esize) / 64;
12083             int o = (e_rev * esize) % 64;
12084 
12085             read_vec_element(s, tcg_rn, rn, i, size);
12086             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12087         }
12088 
12089         for (i = 0; i < 2; i++) {
12090             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12091         }
12092         clear_vec_high(s, true, rd);
12093     }
12094 }
12095 
12096 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12097                                   bool is_q, int size, int rn, int rd)
12098 {
12099     /* Implement the pairwise operations from 2-misc:
12100      * SADDLP, UADDLP, SADALP, UADALP.
12101      * These all add pairs of elements in the input to produce a
12102      * double-width result element in the output (possibly accumulating).
12103      */
12104     bool accum = (opcode == 0x6);
12105     int maxpass = is_q ? 2 : 1;
12106     int pass;
12107     TCGv_i64 tcg_res[2];
12108 
12109     if (size == 2) {
12110         /* 32 + 32 -> 64 op */
12111         MemOp memop = size + (u ? 0 : MO_SIGN);
12112 
12113         for (pass = 0; pass < maxpass; pass++) {
12114             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12115             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12116 
12117             tcg_res[pass] = tcg_temp_new_i64();
12118 
12119             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12120             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12121             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12122             if (accum) {
12123                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12124                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12125             }
12126         }
12127     } else {
12128         for (pass = 0; pass < maxpass; pass++) {
12129             TCGv_i64 tcg_op = tcg_temp_new_i64();
12130             NeonGenOne64OpFn *genfn;
12131             static NeonGenOne64OpFn * const fns[2][2] = {
12132                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12133                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12134             };
12135 
12136             genfn = fns[size][u];
12137 
12138             tcg_res[pass] = tcg_temp_new_i64();
12139 
12140             read_vec_element(s, tcg_op, rn, pass, MO_64);
12141             genfn(tcg_res[pass], tcg_op);
12142 
12143             if (accum) {
12144                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12145                 if (size == 0) {
12146                     gen_helper_neon_addl_u16(tcg_res[pass],
12147                                              tcg_res[pass], tcg_op);
12148                 } else {
12149                     gen_helper_neon_addl_u32(tcg_res[pass],
12150                                              tcg_res[pass], tcg_op);
12151                 }
12152             }
12153         }
12154     }
12155     if (!is_q) {
12156         tcg_res[1] = tcg_constant_i64(0);
12157     }
12158     for (pass = 0; pass < 2; pass++) {
12159         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12160     }
12161 }
12162 
12163 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12164 {
12165     /* Implement SHLL and SHLL2 */
12166     int pass;
12167     int part = is_q ? 2 : 0;
12168     TCGv_i64 tcg_res[2];
12169 
12170     for (pass = 0; pass < 2; pass++) {
12171         static NeonGenWidenFn * const widenfns[3] = {
12172             gen_helper_neon_widen_u8,
12173             gen_helper_neon_widen_u16,
12174             tcg_gen_extu_i32_i64,
12175         };
12176         NeonGenWidenFn *widenfn = widenfns[size];
12177         TCGv_i32 tcg_op = tcg_temp_new_i32();
12178 
12179         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12180         tcg_res[pass] = tcg_temp_new_i64();
12181         widenfn(tcg_res[pass], tcg_op);
12182         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12183     }
12184 
12185     for (pass = 0; pass < 2; pass++) {
12186         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12187     }
12188 }
12189 
12190 /* AdvSIMD two reg misc
12191  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12192  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12193  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12194  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12195  */
12196 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12197 {
12198     int size = extract32(insn, 22, 2);
12199     int opcode = extract32(insn, 12, 5);
12200     bool u = extract32(insn, 29, 1);
12201     bool is_q = extract32(insn, 30, 1);
12202     int rn = extract32(insn, 5, 5);
12203     int rd = extract32(insn, 0, 5);
12204     bool need_fpstatus = false;
12205     int rmode = -1;
12206     TCGv_i32 tcg_rmode;
12207     TCGv_ptr tcg_fpstatus;
12208 
12209     switch (opcode) {
12210     case 0x0: /* REV64, REV32 */
12211     case 0x1: /* REV16 */
12212         handle_rev(s, opcode, u, is_q, size, rn, rd);
12213         return;
12214     case 0x5: /* CNT, NOT, RBIT */
12215         if (u && size == 0) {
12216             /* NOT */
12217             break;
12218         } else if (u && size == 1) {
12219             /* RBIT */
12220             break;
12221         } else if (!u && size == 0) {
12222             /* CNT */
12223             break;
12224         }
12225         unallocated_encoding(s);
12226         return;
12227     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12228     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12229         if (size == 3) {
12230             unallocated_encoding(s);
12231             return;
12232         }
12233         if (!fp_access_check(s)) {
12234             return;
12235         }
12236 
12237         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12238         return;
12239     case 0x4: /* CLS, CLZ */
12240         if (size == 3) {
12241             unallocated_encoding(s);
12242             return;
12243         }
12244         break;
12245     case 0x2: /* SADDLP, UADDLP */
12246     case 0x6: /* SADALP, UADALP */
12247         if (size == 3) {
12248             unallocated_encoding(s);
12249             return;
12250         }
12251         if (!fp_access_check(s)) {
12252             return;
12253         }
12254         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12255         return;
12256     case 0x13: /* SHLL, SHLL2 */
12257         if (u == 0 || size == 3) {
12258             unallocated_encoding(s);
12259             return;
12260         }
12261         if (!fp_access_check(s)) {
12262             return;
12263         }
12264         handle_shll(s, is_q, size, rn, rd);
12265         return;
12266     case 0xa: /* CMLT */
12267         if (u == 1) {
12268             unallocated_encoding(s);
12269             return;
12270         }
12271         /* fall through */
12272     case 0x8: /* CMGT, CMGE */
12273     case 0x9: /* CMEQ, CMLE */
12274     case 0xb: /* ABS, NEG */
12275         if (size == 3 && !is_q) {
12276             unallocated_encoding(s);
12277             return;
12278         }
12279         break;
12280     case 0x3: /* SUQADD, USQADD */
12281         if (size == 3 && !is_q) {
12282             unallocated_encoding(s);
12283             return;
12284         }
12285         if (!fp_access_check(s)) {
12286             return;
12287         }
12288         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12289         return;
12290     case 0x7: /* SQABS, SQNEG */
12291         if (size == 3 && !is_q) {
12292             unallocated_encoding(s);
12293             return;
12294         }
12295         break;
12296     case 0xc ... 0xf:
12297     case 0x16 ... 0x1f:
12298     {
12299         /* Floating point: U, size[1] and opcode indicate operation;
12300          * size[0] indicates single or double precision.
12301          */
12302         int is_double = extract32(size, 0, 1);
12303         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12304         size = is_double ? 3 : 2;
12305         switch (opcode) {
12306         case 0x2f: /* FABS */
12307         case 0x6f: /* FNEG */
12308             if (size == 3 && !is_q) {
12309                 unallocated_encoding(s);
12310                 return;
12311             }
12312             break;
12313         case 0x1d: /* SCVTF */
12314         case 0x5d: /* UCVTF */
12315         {
12316             bool is_signed = (opcode == 0x1d) ? true : false;
12317             int elements = is_double ? 2 : is_q ? 4 : 2;
12318             if (is_double && !is_q) {
12319                 unallocated_encoding(s);
12320                 return;
12321             }
12322             if (!fp_access_check(s)) {
12323                 return;
12324             }
12325             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12326             return;
12327         }
12328         case 0x2c: /* FCMGT (zero) */
12329         case 0x2d: /* FCMEQ (zero) */
12330         case 0x2e: /* FCMLT (zero) */
12331         case 0x6c: /* FCMGE (zero) */
12332         case 0x6d: /* FCMLE (zero) */
12333             if (size == 3 && !is_q) {
12334                 unallocated_encoding(s);
12335                 return;
12336             }
12337             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12338             return;
12339         case 0x7f: /* FSQRT */
12340             if (size == 3 && !is_q) {
12341                 unallocated_encoding(s);
12342                 return;
12343             }
12344             break;
12345         case 0x1a: /* FCVTNS */
12346         case 0x1b: /* FCVTMS */
12347         case 0x3a: /* FCVTPS */
12348         case 0x3b: /* FCVTZS */
12349         case 0x5a: /* FCVTNU */
12350         case 0x5b: /* FCVTMU */
12351         case 0x7a: /* FCVTPU */
12352         case 0x7b: /* FCVTZU */
12353             need_fpstatus = true;
12354             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12355             if (size == 3 && !is_q) {
12356                 unallocated_encoding(s);
12357                 return;
12358             }
12359             break;
12360         case 0x5c: /* FCVTAU */
12361         case 0x1c: /* FCVTAS */
12362             need_fpstatus = true;
12363             rmode = FPROUNDING_TIEAWAY;
12364             if (size == 3 && !is_q) {
12365                 unallocated_encoding(s);
12366                 return;
12367             }
12368             break;
12369         case 0x3c: /* URECPE */
12370             if (size == 3) {
12371                 unallocated_encoding(s);
12372                 return;
12373             }
12374             /* fall through */
12375         case 0x3d: /* FRECPE */
12376         case 0x7d: /* FRSQRTE */
12377             if (size == 3 && !is_q) {
12378                 unallocated_encoding(s);
12379                 return;
12380             }
12381             if (!fp_access_check(s)) {
12382                 return;
12383             }
12384             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12385             return;
12386         case 0x56: /* FCVTXN, FCVTXN2 */
12387             if (size == 2) {
12388                 unallocated_encoding(s);
12389                 return;
12390             }
12391             /* fall through */
12392         case 0x16: /* FCVTN, FCVTN2 */
12393             /* handle_2misc_narrow does a 2*size -> size operation, but these
12394              * instructions encode the source size rather than dest size.
12395              */
12396             if (!fp_access_check(s)) {
12397                 return;
12398             }
12399             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12400             return;
12401         case 0x36: /* BFCVTN, BFCVTN2 */
12402             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12403                 unallocated_encoding(s);
12404                 return;
12405             }
12406             if (!fp_access_check(s)) {
12407                 return;
12408             }
12409             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12410             return;
12411         case 0x17: /* FCVTL, FCVTL2 */
12412             if (!fp_access_check(s)) {
12413                 return;
12414             }
12415             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12416             return;
12417         case 0x18: /* FRINTN */
12418         case 0x19: /* FRINTM */
12419         case 0x38: /* FRINTP */
12420         case 0x39: /* FRINTZ */
12421             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12422             /* fall through */
12423         case 0x59: /* FRINTX */
12424         case 0x79: /* FRINTI */
12425             need_fpstatus = true;
12426             if (size == 3 && !is_q) {
12427                 unallocated_encoding(s);
12428                 return;
12429             }
12430             break;
12431         case 0x58: /* FRINTA */
12432             rmode = FPROUNDING_TIEAWAY;
12433             need_fpstatus = true;
12434             if (size == 3 && !is_q) {
12435                 unallocated_encoding(s);
12436                 return;
12437             }
12438             break;
12439         case 0x7c: /* URSQRTE */
12440             if (size == 3) {
12441                 unallocated_encoding(s);
12442                 return;
12443             }
12444             break;
12445         case 0x1e: /* FRINT32Z */
12446         case 0x1f: /* FRINT64Z */
12447             rmode = FPROUNDING_ZERO;
12448             /* fall through */
12449         case 0x5e: /* FRINT32X */
12450         case 0x5f: /* FRINT64X */
12451             need_fpstatus = true;
12452             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12453                 unallocated_encoding(s);
12454                 return;
12455             }
12456             break;
12457         default:
12458             unallocated_encoding(s);
12459             return;
12460         }
12461         break;
12462     }
12463     default:
12464         unallocated_encoding(s);
12465         return;
12466     }
12467 
12468     if (!fp_access_check(s)) {
12469         return;
12470     }
12471 
12472     if (need_fpstatus || rmode >= 0) {
12473         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12474     } else {
12475         tcg_fpstatus = NULL;
12476     }
12477     if (rmode >= 0) {
12478         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12479     } else {
12480         tcg_rmode = NULL;
12481     }
12482 
12483     switch (opcode) {
12484     case 0x5:
12485         if (u && size == 0) { /* NOT */
12486             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12487             return;
12488         }
12489         break;
12490     case 0x8: /* CMGT, CMGE */
12491         if (u) {
12492             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12493         } else {
12494             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12495         }
12496         return;
12497     case 0x9: /* CMEQ, CMLE */
12498         if (u) {
12499             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12500         } else {
12501             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12502         }
12503         return;
12504     case 0xa: /* CMLT */
12505         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12506         return;
12507     case 0xb:
12508         if (u) { /* ABS, NEG */
12509             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12510         } else {
12511             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12512         }
12513         return;
12514     }
12515 
12516     if (size == 3) {
12517         /* All 64-bit element operations can be shared with scalar 2misc */
12518         int pass;
12519 
12520         /* Coverity claims (size == 3 && !is_q) has been eliminated
12521          * from all paths leading to here.
12522          */
12523         tcg_debug_assert(is_q);
12524         for (pass = 0; pass < 2; pass++) {
12525             TCGv_i64 tcg_op = tcg_temp_new_i64();
12526             TCGv_i64 tcg_res = tcg_temp_new_i64();
12527 
12528             read_vec_element(s, tcg_op, rn, pass, MO_64);
12529 
12530             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12531                             tcg_rmode, tcg_fpstatus);
12532 
12533             write_vec_element(s, tcg_res, rd, pass, MO_64);
12534         }
12535     } else {
12536         int pass;
12537 
12538         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12539             TCGv_i32 tcg_op = tcg_temp_new_i32();
12540             TCGv_i32 tcg_res = tcg_temp_new_i32();
12541 
12542             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12543 
12544             if (size == 2) {
12545                 /* Special cases for 32 bit elements */
12546                 switch (opcode) {
12547                 case 0x4: /* CLS */
12548                     if (u) {
12549                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12550                     } else {
12551                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12552                     }
12553                     break;
12554                 case 0x7: /* SQABS, SQNEG */
12555                     if (u) {
12556                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12557                     } else {
12558                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12559                     }
12560                     break;
12561                 case 0x2f: /* FABS */
12562                     gen_helper_vfp_abss(tcg_res, tcg_op);
12563                     break;
12564                 case 0x6f: /* FNEG */
12565                     gen_helper_vfp_negs(tcg_res, tcg_op);
12566                     break;
12567                 case 0x7f: /* FSQRT */
12568                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12569                     break;
12570                 case 0x1a: /* FCVTNS */
12571                 case 0x1b: /* FCVTMS */
12572                 case 0x1c: /* FCVTAS */
12573                 case 0x3a: /* FCVTPS */
12574                 case 0x3b: /* FCVTZS */
12575                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12576                                          tcg_constant_i32(0), tcg_fpstatus);
12577                     break;
12578                 case 0x5a: /* FCVTNU */
12579                 case 0x5b: /* FCVTMU */
12580                 case 0x5c: /* FCVTAU */
12581                 case 0x7a: /* FCVTPU */
12582                 case 0x7b: /* FCVTZU */
12583                     gen_helper_vfp_touls(tcg_res, tcg_op,
12584                                          tcg_constant_i32(0), tcg_fpstatus);
12585                     break;
12586                 case 0x18: /* FRINTN */
12587                 case 0x19: /* FRINTM */
12588                 case 0x38: /* FRINTP */
12589                 case 0x39: /* FRINTZ */
12590                 case 0x58: /* FRINTA */
12591                 case 0x79: /* FRINTI */
12592                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12593                     break;
12594                 case 0x59: /* FRINTX */
12595                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12596                     break;
12597                 case 0x7c: /* URSQRTE */
12598                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12599                     break;
12600                 case 0x1e: /* FRINT32Z */
12601                 case 0x5e: /* FRINT32X */
12602                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12603                     break;
12604                 case 0x1f: /* FRINT64Z */
12605                 case 0x5f: /* FRINT64X */
12606                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12607                     break;
12608                 default:
12609                     g_assert_not_reached();
12610                 }
12611             } else {
12612                 /* Use helpers for 8 and 16 bit elements */
12613                 switch (opcode) {
12614                 case 0x5: /* CNT, RBIT */
12615                     /* For these two insns size is part of the opcode specifier
12616                      * (handled earlier); they always operate on byte elements.
12617                      */
12618                     if (u) {
12619                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12620                     } else {
12621                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12622                     }
12623                     break;
12624                 case 0x7: /* SQABS, SQNEG */
12625                 {
12626                     NeonGenOneOpEnvFn *genfn;
12627                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12628                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12629                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12630                     };
12631                     genfn = fns[size][u];
12632                     genfn(tcg_res, tcg_env, tcg_op);
12633                     break;
12634                 }
12635                 case 0x4: /* CLS, CLZ */
12636                     if (u) {
12637                         if (size == 0) {
12638                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12639                         } else {
12640                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12641                         }
12642                     } else {
12643                         if (size == 0) {
12644                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12645                         } else {
12646                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12647                         }
12648                     }
12649                     break;
12650                 default:
12651                     g_assert_not_reached();
12652                 }
12653             }
12654 
12655             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12656         }
12657     }
12658     clear_vec_high(s, is_q, rd);
12659 
12660     if (tcg_rmode) {
12661         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12662     }
12663 }
12664 
12665 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12666  *
12667  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12668  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12669  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12670  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12671  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12672  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12673  *
12674  * This actually covers two groups where scalar access is governed by
12675  * bit 28. A bunch of the instructions (float to integral) only exist
12676  * in the vector form and are un-allocated for the scalar decode. Also
12677  * in the scalar decode Q is always 1.
12678  */
12679 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12680 {
12681     int fpop, opcode, a, u;
12682     int rn, rd;
12683     bool is_q;
12684     bool is_scalar;
12685     bool only_in_vector = false;
12686 
12687     int pass;
12688     TCGv_i32 tcg_rmode = NULL;
12689     TCGv_ptr tcg_fpstatus = NULL;
12690     bool need_fpst = true;
12691     int rmode = -1;
12692 
12693     if (!dc_isar_feature(aa64_fp16, s)) {
12694         unallocated_encoding(s);
12695         return;
12696     }
12697 
12698     rd = extract32(insn, 0, 5);
12699     rn = extract32(insn, 5, 5);
12700 
12701     a = extract32(insn, 23, 1);
12702     u = extract32(insn, 29, 1);
12703     is_scalar = extract32(insn, 28, 1);
12704     is_q = extract32(insn, 30, 1);
12705 
12706     opcode = extract32(insn, 12, 5);
12707     fpop = deposit32(opcode, 5, 1, a);
12708     fpop = deposit32(fpop, 6, 1, u);
12709 
12710     switch (fpop) {
12711     case 0x1d: /* SCVTF */
12712     case 0x5d: /* UCVTF */
12713     {
12714         int elements;
12715 
12716         if (is_scalar) {
12717             elements = 1;
12718         } else {
12719             elements = (is_q ? 8 : 4);
12720         }
12721 
12722         if (!fp_access_check(s)) {
12723             return;
12724         }
12725         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12726         return;
12727     }
12728     break;
12729     case 0x2c: /* FCMGT (zero) */
12730     case 0x2d: /* FCMEQ (zero) */
12731     case 0x2e: /* FCMLT (zero) */
12732     case 0x6c: /* FCMGE (zero) */
12733     case 0x6d: /* FCMLE (zero) */
12734         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12735         return;
12736     case 0x3d: /* FRECPE */
12737     case 0x3f: /* FRECPX */
12738         break;
12739     case 0x18: /* FRINTN */
12740         only_in_vector = true;
12741         rmode = FPROUNDING_TIEEVEN;
12742         break;
12743     case 0x19: /* FRINTM */
12744         only_in_vector = true;
12745         rmode = FPROUNDING_NEGINF;
12746         break;
12747     case 0x38: /* FRINTP */
12748         only_in_vector = true;
12749         rmode = FPROUNDING_POSINF;
12750         break;
12751     case 0x39: /* FRINTZ */
12752         only_in_vector = true;
12753         rmode = FPROUNDING_ZERO;
12754         break;
12755     case 0x58: /* FRINTA */
12756         only_in_vector = true;
12757         rmode = FPROUNDING_TIEAWAY;
12758         break;
12759     case 0x59: /* FRINTX */
12760     case 0x79: /* FRINTI */
12761         only_in_vector = true;
12762         /* current rounding mode */
12763         break;
12764     case 0x1a: /* FCVTNS */
12765         rmode = FPROUNDING_TIEEVEN;
12766         break;
12767     case 0x1b: /* FCVTMS */
12768         rmode = FPROUNDING_NEGINF;
12769         break;
12770     case 0x1c: /* FCVTAS */
12771         rmode = FPROUNDING_TIEAWAY;
12772         break;
12773     case 0x3a: /* FCVTPS */
12774         rmode = FPROUNDING_POSINF;
12775         break;
12776     case 0x3b: /* FCVTZS */
12777         rmode = FPROUNDING_ZERO;
12778         break;
12779     case 0x5a: /* FCVTNU */
12780         rmode = FPROUNDING_TIEEVEN;
12781         break;
12782     case 0x5b: /* FCVTMU */
12783         rmode = FPROUNDING_NEGINF;
12784         break;
12785     case 0x5c: /* FCVTAU */
12786         rmode = FPROUNDING_TIEAWAY;
12787         break;
12788     case 0x7a: /* FCVTPU */
12789         rmode = FPROUNDING_POSINF;
12790         break;
12791     case 0x7b: /* FCVTZU */
12792         rmode = FPROUNDING_ZERO;
12793         break;
12794     case 0x2f: /* FABS */
12795     case 0x6f: /* FNEG */
12796         need_fpst = false;
12797         break;
12798     case 0x7d: /* FRSQRTE */
12799     case 0x7f: /* FSQRT (vector) */
12800         break;
12801     default:
12802         unallocated_encoding(s);
12803         return;
12804     }
12805 
12806 
12807     /* Check additional constraints for the scalar encoding */
12808     if (is_scalar) {
12809         if (!is_q) {
12810             unallocated_encoding(s);
12811             return;
12812         }
12813         /* FRINTxx is only in the vector form */
12814         if (only_in_vector) {
12815             unallocated_encoding(s);
12816             return;
12817         }
12818     }
12819 
12820     if (!fp_access_check(s)) {
12821         return;
12822     }
12823 
12824     if (rmode >= 0 || need_fpst) {
12825         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12826     }
12827 
12828     if (rmode >= 0) {
12829         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12830     }
12831 
12832     if (is_scalar) {
12833         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12834         TCGv_i32 tcg_res = tcg_temp_new_i32();
12835 
12836         switch (fpop) {
12837         case 0x1a: /* FCVTNS */
12838         case 0x1b: /* FCVTMS */
12839         case 0x1c: /* FCVTAS */
12840         case 0x3a: /* FCVTPS */
12841         case 0x3b: /* FCVTZS */
12842             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12843             break;
12844         case 0x3d: /* FRECPE */
12845             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12846             break;
12847         case 0x3f: /* FRECPX */
12848             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12849             break;
12850         case 0x5a: /* FCVTNU */
12851         case 0x5b: /* FCVTMU */
12852         case 0x5c: /* FCVTAU */
12853         case 0x7a: /* FCVTPU */
12854         case 0x7b: /* FCVTZU */
12855             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12856             break;
12857         case 0x6f: /* FNEG */
12858             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12859             break;
12860         case 0x7d: /* FRSQRTE */
12861             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12862             break;
12863         default:
12864             g_assert_not_reached();
12865         }
12866 
12867         /* limit any sign extension going on */
12868         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12869         write_fp_sreg(s, rd, tcg_res);
12870     } else {
12871         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12872             TCGv_i32 tcg_op = tcg_temp_new_i32();
12873             TCGv_i32 tcg_res = tcg_temp_new_i32();
12874 
12875             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12876 
12877             switch (fpop) {
12878             case 0x1a: /* FCVTNS */
12879             case 0x1b: /* FCVTMS */
12880             case 0x1c: /* FCVTAS */
12881             case 0x3a: /* FCVTPS */
12882             case 0x3b: /* FCVTZS */
12883                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12884                 break;
12885             case 0x3d: /* FRECPE */
12886                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12887                 break;
12888             case 0x5a: /* FCVTNU */
12889             case 0x5b: /* FCVTMU */
12890             case 0x5c: /* FCVTAU */
12891             case 0x7a: /* FCVTPU */
12892             case 0x7b: /* FCVTZU */
12893                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12894                 break;
12895             case 0x18: /* FRINTN */
12896             case 0x19: /* FRINTM */
12897             case 0x38: /* FRINTP */
12898             case 0x39: /* FRINTZ */
12899             case 0x58: /* FRINTA */
12900             case 0x79: /* FRINTI */
12901                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12902                 break;
12903             case 0x59: /* FRINTX */
12904                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12905                 break;
12906             case 0x2f: /* FABS */
12907                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12908                 break;
12909             case 0x6f: /* FNEG */
12910                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12911                 break;
12912             case 0x7d: /* FRSQRTE */
12913                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12914                 break;
12915             case 0x7f: /* FSQRT */
12916                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12917                 break;
12918             default:
12919                 g_assert_not_reached();
12920             }
12921 
12922             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12923         }
12924 
12925         clear_vec_high(s, is_q, rd);
12926     }
12927 
12928     if (tcg_rmode) {
12929         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12930     }
12931 }
12932 
12933 /* AdvSIMD scalar x indexed element
12934  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12935  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12936  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12937  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12938  * AdvSIMD vector x indexed element
12939  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12940  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12941  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12942  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12943  */
12944 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12945 {
12946     /* This encoding has two kinds of instruction:
12947      *  normal, where we perform elt x idxelt => elt for each
12948      *     element in the vector
12949      *  long, where we perform elt x idxelt and generate a result of
12950      *     double the width of the input element
12951      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12952      */
12953     bool is_scalar = extract32(insn, 28, 1);
12954     bool is_q = extract32(insn, 30, 1);
12955     bool u = extract32(insn, 29, 1);
12956     int size = extract32(insn, 22, 2);
12957     int l = extract32(insn, 21, 1);
12958     int m = extract32(insn, 20, 1);
12959     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12960     int rm = extract32(insn, 16, 4);
12961     int opcode = extract32(insn, 12, 4);
12962     int h = extract32(insn, 11, 1);
12963     int rn = extract32(insn, 5, 5);
12964     int rd = extract32(insn, 0, 5);
12965     bool is_long = false;
12966     int is_fp = 0;
12967     bool is_fp16 = false;
12968     int index;
12969     TCGv_ptr fpst;
12970 
12971     switch (16 * u + opcode) {
12972     case 0x08: /* MUL */
12973     case 0x10: /* MLA */
12974     case 0x14: /* MLS */
12975         if (is_scalar) {
12976             unallocated_encoding(s);
12977             return;
12978         }
12979         break;
12980     case 0x02: /* SMLAL, SMLAL2 */
12981     case 0x12: /* UMLAL, UMLAL2 */
12982     case 0x06: /* SMLSL, SMLSL2 */
12983     case 0x16: /* UMLSL, UMLSL2 */
12984     case 0x0a: /* SMULL, SMULL2 */
12985     case 0x1a: /* UMULL, UMULL2 */
12986         if (is_scalar) {
12987             unallocated_encoding(s);
12988             return;
12989         }
12990         is_long = true;
12991         break;
12992     case 0x03: /* SQDMLAL, SQDMLAL2 */
12993     case 0x07: /* SQDMLSL, SQDMLSL2 */
12994     case 0x0b: /* SQDMULL, SQDMULL2 */
12995         is_long = true;
12996         break;
12997     case 0x0c: /* SQDMULH */
12998     case 0x0d: /* SQRDMULH */
12999         break;
13000     case 0x01: /* FMLA */
13001     case 0x05: /* FMLS */
13002         is_fp = 1;
13003         break;
13004     case 0x1d: /* SQRDMLAH */
13005     case 0x1f: /* SQRDMLSH */
13006         if (!dc_isar_feature(aa64_rdm, s)) {
13007             unallocated_encoding(s);
13008             return;
13009         }
13010         break;
13011     case 0x0e: /* SDOT */
13012     case 0x1e: /* UDOT */
13013         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13014             unallocated_encoding(s);
13015             return;
13016         }
13017         break;
13018     case 0x0f:
13019         switch (size) {
13020         case 0: /* SUDOT */
13021         case 2: /* USDOT */
13022             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13023                 unallocated_encoding(s);
13024                 return;
13025             }
13026             size = MO_32;
13027             break;
13028         case 1: /* BFDOT */
13029             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13030                 unallocated_encoding(s);
13031                 return;
13032             }
13033             size = MO_32;
13034             break;
13035         case 3: /* BFMLAL{B,T} */
13036             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13037                 unallocated_encoding(s);
13038                 return;
13039             }
13040             /* can't set is_fp without other incorrect size checks */
13041             size = MO_16;
13042             break;
13043         default:
13044             unallocated_encoding(s);
13045             return;
13046         }
13047         break;
13048     case 0x11: /* FCMLA #0 */
13049     case 0x13: /* FCMLA #90 */
13050     case 0x15: /* FCMLA #180 */
13051     case 0x17: /* FCMLA #270 */
13052         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13053             unallocated_encoding(s);
13054             return;
13055         }
13056         is_fp = 2;
13057         break;
13058     case 0x00: /* FMLAL */
13059     case 0x04: /* FMLSL */
13060     case 0x18: /* FMLAL2 */
13061     case 0x1c: /* FMLSL2 */
13062         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13063             unallocated_encoding(s);
13064             return;
13065         }
13066         size = MO_16;
13067         /* is_fp, but we pass tcg_env not fp_status.  */
13068         break;
13069     default:
13070     case 0x09: /* FMUL */
13071     case 0x19: /* FMULX */
13072         unallocated_encoding(s);
13073         return;
13074     }
13075 
13076     switch (is_fp) {
13077     case 1: /* normal fp */
13078         /* convert insn encoded size to MemOp size */
13079         switch (size) {
13080         case 0: /* half-precision */
13081             size = MO_16;
13082             is_fp16 = true;
13083             break;
13084         case MO_32: /* single precision */
13085         case MO_64: /* double precision */
13086             break;
13087         default:
13088             unallocated_encoding(s);
13089             return;
13090         }
13091         break;
13092 
13093     case 2: /* complex fp */
13094         /* Each indexable element is a complex pair.  */
13095         size += 1;
13096         switch (size) {
13097         case MO_32:
13098             if (h && !is_q) {
13099                 unallocated_encoding(s);
13100                 return;
13101             }
13102             is_fp16 = true;
13103             break;
13104         case MO_64:
13105             break;
13106         default:
13107             unallocated_encoding(s);
13108             return;
13109         }
13110         break;
13111 
13112     default: /* integer */
13113         switch (size) {
13114         case MO_8:
13115         case MO_64:
13116             unallocated_encoding(s);
13117             return;
13118         }
13119         break;
13120     }
13121     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13122         unallocated_encoding(s);
13123         return;
13124     }
13125 
13126     /* Given MemOp size, adjust register and indexing.  */
13127     switch (size) {
13128     case MO_16:
13129         index = h << 2 | l << 1 | m;
13130         break;
13131     case MO_32:
13132         index = h << 1 | l;
13133         rm |= m << 4;
13134         break;
13135     case MO_64:
13136         if (l || !is_q) {
13137             unallocated_encoding(s);
13138             return;
13139         }
13140         index = h;
13141         rm |= m << 4;
13142         break;
13143     default:
13144         g_assert_not_reached();
13145     }
13146 
13147     if (!fp_access_check(s)) {
13148         return;
13149     }
13150 
13151     if (is_fp) {
13152         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13153     } else {
13154         fpst = NULL;
13155     }
13156 
13157     switch (16 * u + opcode) {
13158     case 0x0e: /* SDOT */
13159     case 0x1e: /* UDOT */
13160         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13161                          u ? gen_helper_gvec_udot_idx_b
13162                          : gen_helper_gvec_sdot_idx_b);
13163         return;
13164     case 0x0f:
13165         switch (extract32(insn, 22, 2)) {
13166         case 0: /* SUDOT */
13167             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13168                              gen_helper_gvec_sudot_idx_b);
13169             return;
13170         case 1: /* BFDOT */
13171             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13172                              gen_helper_gvec_bfdot_idx);
13173             return;
13174         case 2: /* USDOT */
13175             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13176                              gen_helper_gvec_usdot_idx_b);
13177             return;
13178         case 3: /* BFMLAL{B,T} */
13179             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13180                               gen_helper_gvec_bfmlal_idx);
13181             return;
13182         }
13183         g_assert_not_reached();
13184     case 0x11: /* FCMLA #0 */
13185     case 0x13: /* FCMLA #90 */
13186     case 0x15: /* FCMLA #180 */
13187     case 0x17: /* FCMLA #270 */
13188         {
13189             int rot = extract32(insn, 13, 2);
13190             int data = (index << 2) | rot;
13191             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13192                                vec_full_reg_offset(s, rn),
13193                                vec_full_reg_offset(s, rm),
13194                                vec_full_reg_offset(s, rd), fpst,
13195                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13196                                size == MO_64
13197                                ? gen_helper_gvec_fcmlas_idx
13198                                : gen_helper_gvec_fcmlah_idx);
13199         }
13200         return;
13201 
13202     case 0x00: /* FMLAL */
13203     case 0x04: /* FMLSL */
13204     case 0x18: /* FMLAL2 */
13205     case 0x1c: /* FMLSL2 */
13206         {
13207             int is_s = extract32(opcode, 2, 1);
13208             int is_2 = u;
13209             int data = (index << 2) | (is_2 << 1) | is_s;
13210             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13211                                vec_full_reg_offset(s, rn),
13212                                vec_full_reg_offset(s, rm), tcg_env,
13213                                is_q ? 16 : 8, vec_full_reg_size(s),
13214                                data, gen_helper_gvec_fmlal_idx_a64);
13215         }
13216         return;
13217 
13218     case 0x08: /* MUL */
13219         if (!is_long && !is_scalar) {
13220             static gen_helper_gvec_3 * const fns[3] = {
13221                 gen_helper_gvec_mul_idx_h,
13222                 gen_helper_gvec_mul_idx_s,
13223                 gen_helper_gvec_mul_idx_d,
13224             };
13225             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13226                                vec_full_reg_offset(s, rn),
13227                                vec_full_reg_offset(s, rm),
13228                                is_q ? 16 : 8, vec_full_reg_size(s),
13229                                index, fns[size - 1]);
13230             return;
13231         }
13232         break;
13233 
13234     case 0x10: /* MLA */
13235         if (!is_long && !is_scalar) {
13236             static gen_helper_gvec_4 * const fns[3] = {
13237                 gen_helper_gvec_mla_idx_h,
13238                 gen_helper_gvec_mla_idx_s,
13239                 gen_helper_gvec_mla_idx_d,
13240             };
13241             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13242                                vec_full_reg_offset(s, rn),
13243                                vec_full_reg_offset(s, rm),
13244                                vec_full_reg_offset(s, rd),
13245                                is_q ? 16 : 8, vec_full_reg_size(s),
13246                                index, fns[size - 1]);
13247             return;
13248         }
13249         break;
13250 
13251     case 0x14: /* MLS */
13252         if (!is_long && !is_scalar) {
13253             static gen_helper_gvec_4 * const fns[3] = {
13254                 gen_helper_gvec_mls_idx_h,
13255                 gen_helper_gvec_mls_idx_s,
13256                 gen_helper_gvec_mls_idx_d,
13257             };
13258             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13259                                vec_full_reg_offset(s, rn),
13260                                vec_full_reg_offset(s, rm),
13261                                vec_full_reg_offset(s, rd),
13262                                is_q ? 16 : 8, vec_full_reg_size(s),
13263                                index, fns[size - 1]);
13264             return;
13265         }
13266         break;
13267     }
13268 
13269     if (size == 3) {
13270         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13271         int pass;
13272 
13273         assert(is_fp && is_q && !is_long);
13274 
13275         read_vec_element(s, tcg_idx, rm, index, MO_64);
13276 
13277         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13278             TCGv_i64 tcg_op = tcg_temp_new_i64();
13279             TCGv_i64 tcg_res = tcg_temp_new_i64();
13280 
13281             read_vec_element(s, tcg_op, rn, pass, MO_64);
13282 
13283             switch (16 * u + opcode) {
13284             case 0x05: /* FMLS */
13285                 /* As usual for ARM, separate negation for fused multiply-add */
13286                 gen_helper_vfp_negd(tcg_op, tcg_op);
13287                 /* fall through */
13288             case 0x01: /* FMLA */
13289                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13290                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13291                 break;
13292             default:
13293             case 0x09: /* FMUL */
13294             case 0x19: /* FMULX */
13295                 g_assert_not_reached();
13296             }
13297 
13298             write_vec_element(s, tcg_res, rd, pass, MO_64);
13299         }
13300 
13301         clear_vec_high(s, !is_scalar, rd);
13302     } else if (!is_long) {
13303         /* 32 bit floating point, or 16 or 32 bit integer.
13304          * For the 16 bit scalar case we use the usual Neon helpers and
13305          * rely on the fact that 0 op 0 == 0 with no side effects.
13306          */
13307         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13308         int pass, maxpasses;
13309 
13310         if (is_scalar) {
13311             maxpasses = 1;
13312         } else {
13313             maxpasses = is_q ? 4 : 2;
13314         }
13315 
13316         read_vec_element_i32(s, tcg_idx, rm, index, size);
13317 
13318         if (size == 1 && !is_scalar) {
13319             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13320              * the index into both halves of the 32 bit tcg_idx and then use
13321              * the usual Neon helpers.
13322              */
13323             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13324         }
13325 
13326         for (pass = 0; pass < maxpasses; pass++) {
13327             TCGv_i32 tcg_op = tcg_temp_new_i32();
13328             TCGv_i32 tcg_res = tcg_temp_new_i32();
13329 
13330             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13331 
13332             switch (16 * u + opcode) {
13333             case 0x08: /* MUL */
13334             case 0x10: /* MLA */
13335             case 0x14: /* MLS */
13336             {
13337                 static NeonGenTwoOpFn * const fns[2][2] = {
13338                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13339                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13340                 };
13341                 NeonGenTwoOpFn *genfn;
13342                 bool is_sub = opcode == 0x4;
13343 
13344                 if (size == 1) {
13345                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13346                 } else {
13347                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13348                 }
13349                 if (opcode == 0x8) {
13350                     break;
13351                 }
13352                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13353                 genfn = fns[size - 1][is_sub];
13354                 genfn(tcg_res, tcg_op, tcg_res);
13355                 break;
13356             }
13357             case 0x05: /* FMLS */
13358             case 0x01: /* FMLA */
13359                 read_vec_element_i32(s, tcg_res, rd, pass,
13360                                      is_scalar ? size : MO_32);
13361                 switch (size) {
13362                 case 1:
13363                     if (opcode == 0x5) {
13364                         /* As usual for ARM, separate negation for fused
13365                          * multiply-add */
13366                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13367                     }
13368                     if (is_scalar) {
13369                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13370                                                    tcg_res, fpst);
13371                     } else {
13372                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13373                                                     tcg_res, fpst);
13374                     }
13375                     break;
13376                 case 2:
13377                     if (opcode == 0x5) {
13378                         /* As usual for ARM, separate negation for
13379                          * fused multiply-add */
13380                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13381                     }
13382                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13383                                            tcg_res, fpst);
13384                     break;
13385                 default:
13386                     g_assert_not_reached();
13387                 }
13388                 break;
13389             case 0x0c: /* SQDMULH */
13390                 if (size == 1) {
13391                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13392                                                tcg_op, tcg_idx);
13393                 } else {
13394                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13395                                                tcg_op, tcg_idx);
13396                 }
13397                 break;
13398             case 0x0d: /* SQRDMULH */
13399                 if (size == 1) {
13400                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13401                                                 tcg_op, tcg_idx);
13402                 } else {
13403                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13404                                                 tcg_op, tcg_idx);
13405                 }
13406                 break;
13407             case 0x1d: /* SQRDMLAH */
13408                 read_vec_element_i32(s, tcg_res, rd, pass,
13409                                      is_scalar ? size : MO_32);
13410                 if (size == 1) {
13411                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13412                                                 tcg_op, tcg_idx, tcg_res);
13413                 } else {
13414                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13415                                                 tcg_op, tcg_idx, tcg_res);
13416                 }
13417                 break;
13418             case 0x1f: /* SQRDMLSH */
13419                 read_vec_element_i32(s, tcg_res, rd, pass,
13420                                      is_scalar ? size : MO_32);
13421                 if (size == 1) {
13422                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13423                                                 tcg_op, tcg_idx, tcg_res);
13424                 } else {
13425                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13426                                                 tcg_op, tcg_idx, tcg_res);
13427                 }
13428                 break;
13429             default:
13430             case 0x09: /* FMUL */
13431             case 0x19: /* FMULX */
13432                 g_assert_not_reached();
13433             }
13434 
13435             if (is_scalar) {
13436                 write_fp_sreg(s, rd, tcg_res);
13437             } else {
13438                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13439             }
13440         }
13441 
13442         clear_vec_high(s, is_q, rd);
13443     } else {
13444         /* long ops: 16x16->32 or 32x32->64 */
13445         TCGv_i64 tcg_res[2];
13446         int pass;
13447         bool satop = extract32(opcode, 0, 1);
13448         MemOp memop = MO_32;
13449 
13450         if (satop || !u) {
13451             memop |= MO_SIGN;
13452         }
13453 
13454         if (size == 2) {
13455             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13456 
13457             read_vec_element(s, tcg_idx, rm, index, memop);
13458 
13459             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13460                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13461                 TCGv_i64 tcg_passres;
13462                 int passelt;
13463 
13464                 if (is_scalar) {
13465                     passelt = 0;
13466                 } else {
13467                     passelt = pass + (is_q * 2);
13468                 }
13469 
13470                 read_vec_element(s, tcg_op, rn, passelt, memop);
13471 
13472                 tcg_res[pass] = tcg_temp_new_i64();
13473 
13474                 if (opcode == 0xa || opcode == 0xb) {
13475                     /* Non-accumulating ops */
13476                     tcg_passres = tcg_res[pass];
13477                 } else {
13478                     tcg_passres = tcg_temp_new_i64();
13479                 }
13480 
13481                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13482 
13483                 if (satop) {
13484                     /* saturating, doubling */
13485                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13486                                                       tcg_passres, tcg_passres);
13487                 }
13488 
13489                 if (opcode == 0xa || opcode == 0xb) {
13490                     continue;
13491                 }
13492 
13493                 /* Accumulating op: handle accumulate step */
13494                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13495 
13496                 switch (opcode) {
13497                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13498                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13499                     break;
13500                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13501                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13502                     break;
13503                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13504                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13505                     /* fall through */
13506                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13507                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13508                                                       tcg_res[pass],
13509                                                       tcg_passres);
13510                     break;
13511                 default:
13512                     g_assert_not_reached();
13513                 }
13514             }
13515 
13516             clear_vec_high(s, !is_scalar, rd);
13517         } else {
13518             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13519 
13520             assert(size == 1);
13521             read_vec_element_i32(s, tcg_idx, rm, index, size);
13522 
13523             if (!is_scalar) {
13524                 /* The simplest way to handle the 16x16 indexed ops is to
13525                  * duplicate the index into both halves of the 32 bit tcg_idx
13526                  * and then use the usual Neon helpers.
13527                  */
13528                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13529             }
13530 
13531             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13532                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13533                 TCGv_i64 tcg_passres;
13534 
13535                 if (is_scalar) {
13536                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13537                 } else {
13538                     read_vec_element_i32(s, tcg_op, rn,
13539                                          pass + (is_q * 2), MO_32);
13540                 }
13541 
13542                 tcg_res[pass] = tcg_temp_new_i64();
13543 
13544                 if (opcode == 0xa || opcode == 0xb) {
13545                     /* Non-accumulating ops */
13546                     tcg_passres = tcg_res[pass];
13547                 } else {
13548                     tcg_passres = tcg_temp_new_i64();
13549                 }
13550 
13551                 if (memop & MO_SIGN) {
13552                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13553                 } else {
13554                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13555                 }
13556                 if (satop) {
13557                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13558                                                       tcg_passres, tcg_passres);
13559                 }
13560 
13561                 if (opcode == 0xa || opcode == 0xb) {
13562                     continue;
13563                 }
13564 
13565                 /* Accumulating op: handle accumulate step */
13566                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13567 
13568                 switch (opcode) {
13569                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13570                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13571                                              tcg_passres);
13572                     break;
13573                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13574                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13575                                              tcg_passres);
13576                     break;
13577                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13578                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13579                     /* fall through */
13580                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13581                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13582                                                       tcg_res[pass],
13583                                                       tcg_passres);
13584                     break;
13585                 default:
13586                     g_assert_not_reached();
13587                 }
13588             }
13589 
13590             if (is_scalar) {
13591                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13592             }
13593         }
13594 
13595         if (is_scalar) {
13596             tcg_res[1] = tcg_constant_i64(0);
13597         }
13598 
13599         for (pass = 0; pass < 2; pass++) {
13600             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13601         }
13602     }
13603 }
13604 
13605 /* C3.6 Data processing - SIMD, inc Crypto
13606  *
13607  * As the decode gets a little complex we are using a table based
13608  * approach for this part of the decode.
13609  */
13610 static const AArch64DecodeTable data_proc_simd[] = {
13611     /* pattern  ,  mask     ,  fn                        */
13612     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13613     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13614     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13615     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13616     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13617     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13618     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13619     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13620     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13621     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13622     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13623     { 0x2e000000, 0xbf208400, disas_simd_ext },
13624     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13625     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13626     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13627     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13628     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13629     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13630     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13631     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13632     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13633     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13634     { 0x00000000, 0x00000000, NULL }
13635 };
13636 
13637 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13638 {
13639     /* Note that this is called with all non-FP cases from
13640      * table C3-6 so it must UNDEF for entries not specifically
13641      * allocated to instructions in that table.
13642      */
13643     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13644     if (fn) {
13645         fn(s, insn);
13646     } else {
13647         unallocated_encoding(s);
13648     }
13649 }
13650 
13651 /* C3.6 Data processing - SIMD and floating point */
13652 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13653 {
13654     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13655         disas_data_proc_fp(s, insn);
13656     } else {
13657         /* SIMD, including crypto */
13658         disas_data_proc_simd(s, insn);
13659     }
13660 }
13661 
13662 static bool trans_OK(DisasContext *s, arg_OK *a)
13663 {
13664     return true;
13665 }
13666 
13667 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13668 {
13669     s->is_nonstreaming = true;
13670     return true;
13671 }
13672 
13673 /**
13674  * is_guarded_page:
13675  * @env: The cpu environment
13676  * @s: The DisasContext
13677  *
13678  * Return true if the page is guarded.
13679  */
13680 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13681 {
13682     uint64_t addr = s->base.pc_first;
13683 #ifdef CONFIG_USER_ONLY
13684     return page_get_flags(addr) & PAGE_BTI;
13685 #else
13686     CPUTLBEntryFull *full;
13687     void *host;
13688     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13689     int flags;
13690 
13691     /*
13692      * We test this immediately after reading an insn, which means
13693      * that the TLB entry must be present and valid, and thus this
13694      * access will never raise an exception.
13695      */
13696     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13697                               false, &host, &full, 0);
13698     assert(!(flags & TLB_INVALID_MASK));
13699 
13700     return full->extra.arm.guarded;
13701 #endif
13702 }
13703 
13704 /**
13705  * btype_destination_ok:
13706  * @insn: The instruction at the branch destination
13707  * @bt: SCTLR_ELx.BT
13708  * @btype: PSTATE.BTYPE, and is non-zero
13709  *
13710  * On a guarded page, there are a limited number of insns
13711  * that may be present at the branch target:
13712  *   - branch target identifiers,
13713  *   - paciasp, pacibsp,
13714  *   - BRK insn
13715  *   - HLT insn
13716  * Anything else causes a Branch Target Exception.
13717  *
13718  * Return true if the branch is compatible, false to raise BTITRAP.
13719  */
13720 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13721 {
13722     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13723         /* HINT space */
13724         switch (extract32(insn, 5, 7)) {
13725         case 0b011001: /* PACIASP */
13726         case 0b011011: /* PACIBSP */
13727             /*
13728              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13729              * with btype == 3.  Otherwise all btype are ok.
13730              */
13731             return !bt || btype != 3;
13732         case 0b100000: /* BTI */
13733             /* Not compatible with any btype.  */
13734             return false;
13735         case 0b100010: /* BTI c */
13736             /* Not compatible with btype == 3 */
13737             return btype != 3;
13738         case 0b100100: /* BTI j */
13739             /* Not compatible with btype == 2 */
13740             return btype != 2;
13741         case 0b100110: /* BTI jc */
13742             /* Compatible with any btype.  */
13743             return true;
13744         }
13745     } else {
13746         switch (insn & 0xffe0001fu) {
13747         case 0xd4200000u: /* BRK */
13748         case 0xd4400000u: /* HLT */
13749             /* Give priority to the breakpoint exception.  */
13750             return true;
13751         }
13752     }
13753     return false;
13754 }
13755 
13756 /* C3.1 A64 instruction index by encoding */
13757 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13758 {
13759     switch (extract32(insn, 25, 4)) {
13760     case 0x5:
13761     case 0xd:      /* Data processing - register */
13762         disas_data_proc_reg(s, insn);
13763         break;
13764     case 0x7:
13765     case 0xf:      /* Data processing - SIMD and floating point */
13766         disas_data_proc_simd_fp(s, insn);
13767         break;
13768     default:
13769         unallocated_encoding(s);
13770         break;
13771     }
13772 }
13773 
13774 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13775                                           CPUState *cpu)
13776 {
13777     DisasContext *dc = container_of(dcbase, DisasContext, base);
13778     CPUARMState *env = cpu_env(cpu);
13779     ARMCPU *arm_cpu = env_archcpu(env);
13780     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13781     int bound, core_mmu_idx;
13782 
13783     dc->isar = &arm_cpu->isar;
13784     dc->condjmp = 0;
13785     dc->pc_save = dc->base.pc_first;
13786     dc->aarch64 = true;
13787     dc->thumb = false;
13788     dc->sctlr_b = 0;
13789     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13790     dc->condexec_mask = 0;
13791     dc->condexec_cond = 0;
13792     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13793     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13794     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13795     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13796     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13797     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13798 #if !defined(CONFIG_USER_ONLY)
13799     dc->user = (dc->current_el == 0);
13800 #endif
13801     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13802     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13803     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13804     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13805     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13806     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13807     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13808     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13809     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13810     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13811     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13812     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13813     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13814     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13815     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13816     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13817     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13818     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13819     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13820     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13821     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13822     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13823     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13824     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13825     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13826     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13827     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13828     dc->vec_len = 0;
13829     dc->vec_stride = 0;
13830     dc->cp_regs = arm_cpu->cp_regs;
13831     dc->features = env->features;
13832     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13833     dc->gm_blocksize = arm_cpu->gm_blocksize;
13834 
13835 #ifdef CONFIG_USER_ONLY
13836     /* In sve_probe_page, we assume TBI is enabled. */
13837     tcg_debug_assert(dc->tbid & 1);
13838 #endif
13839 
13840     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13841 
13842     /* Single step state. The code-generation logic here is:
13843      *  SS_ACTIVE == 0:
13844      *   generate code with no special handling for single-stepping (except
13845      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13846      *   this happens anyway because those changes are all system register or
13847      *   PSTATE writes).
13848      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13849      *   emit code for one insn
13850      *   emit code to clear PSTATE.SS
13851      *   emit code to generate software step exception for completed step
13852      *   end TB (as usual for having generated an exception)
13853      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13854      *   emit code to generate a software step exception
13855      *   end the TB
13856      */
13857     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13858     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13859     dc->is_ldex = false;
13860 
13861     /* Bound the number of insns to execute to those left on the page.  */
13862     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13863 
13864     /* If architectural single step active, limit to 1.  */
13865     if (dc->ss_active) {
13866         bound = 1;
13867     }
13868     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13869 }
13870 
13871 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13872 {
13873 }
13874 
13875 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13876 {
13877     DisasContext *dc = container_of(dcbase, DisasContext, base);
13878     target_ulong pc_arg = dc->base.pc_next;
13879 
13880     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13881         pc_arg &= ~TARGET_PAGE_MASK;
13882     }
13883     tcg_gen_insn_start(pc_arg, 0, 0);
13884     dc->insn_start_updated = false;
13885 }
13886 
13887 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13888 {
13889     DisasContext *s = container_of(dcbase, DisasContext, base);
13890     CPUARMState *env = cpu_env(cpu);
13891     uint64_t pc = s->base.pc_next;
13892     uint32_t insn;
13893 
13894     /* Singlestep exceptions have the highest priority. */
13895     if (s->ss_active && !s->pstate_ss) {
13896         /* Singlestep state is Active-pending.
13897          * If we're in this state at the start of a TB then either
13898          *  a) we just took an exception to an EL which is being debugged
13899          *     and this is the first insn in the exception handler
13900          *  b) debug exceptions were masked and we just unmasked them
13901          *     without changing EL (eg by clearing PSTATE.D)
13902          * In either case we're going to take a swstep exception in the
13903          * "did not step an insn" case, and so the syndrome ISV and EX
13904          * bits should be zero.
13905          */
13906         assert(s->base.num_insns == 1);
13907         gen_swstep_exception(s, 0, 0);
13908         s->base.is_jmp = DISAS_NORETURN;
13909         s->base.pc_next = pc + 4;
13910         return;
13911     }
13912 
13913     if (pc & 3) {
13914         /*
13915          * PC alignment fault.  This has priority over the instruction abort
13916          * that we would receive from a translation fault via arm_ldl_code.
13917          * This should only be possible after an indirect branch, at the
13918          * start of the TB.
13919          */
13920         assert(s->base.num_insns == 1);
13921         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13922         s->base.is_jmp = DISAS_NORETURN;
13923         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13924         return;
13925     }
13926 
13927     s->pc_curr = pc;
13928     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13929     s->insn = insn;
13930     s->base.pc_next = pc + 4;
13931 
13932     s->fp_access_checked = false;
13933     s->sve_access_checked = false;
13934 
13935     if (s->pstate_il) {
13936         /*
13937          * Illegal execution state. This has priority over BTI
13938          * exceptions, but comes after instruction abort exceptions.
13939          */
13940         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13941         return;
13942     }
13943 
13944     if (dc_isar_feature(aa64_bti, s)) {
13945         if (s->base.num_insns == 1) {
13946             /*
13947              * At the first insn of the TB, compute s->guarded_page.
13948              * We delayed computing this until successfully reading
13949              * the first insn of the TB, above.  This (mostly) ensures
13950              * that the softmmu tlb entry has been populated, and the
13951              * page table GP bit is available.
13952              *
13953              * Note that we need to compute this even if btype == 0,
13954              * because this value is used for BR instructions later
13955              * where ENV is not available.
13956              */
13957             s->guarded_page = is_guarded_page(env, s);
13958 
13959             /* First insn can have btype set to non-zero.  */
13960             tcg_debug_assert(s->btype >= 0);
13961 
13962             /*
13963              * Note that the Branch Target Exception has fairly high
13964              * priority -- below debugging exceptions but above most
13965              * everything else.  This allows us to handle this now
13966              * instead of waiting until the insn is otherwise decoded.
13967              */
13968             if (s->btype != 0
13969                 && s->guarded_page
13970                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13971                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13972                 return;
13973             }
13974         } else {
13975             /* Not the first insn: btype must be 0.  */
13976             tcg_debug_assert(s->btype == 0);
13977         }
13978     }
13979 
13980     s->is_nonstreaming = false;
13981     if (s->sme_trap_nonstreaming) {
13982         disas_sme_fa64(s, insn);
13983     }
13984 
13985     if (!disas_a64(s, insn) &&
13986         !disas_sme(s, insn) &&
13987         !disas_sve(s, insn)) {
13988         disas_a64_legacy(s, insn);
13989     }
13990 
13991     /*
13992      * After execution of most insns, btype is reset to 0.
13993      * Note that we set btype == -1 when the insn sets btype.
13994      */
13995     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13996         reset_btype(s);
13997     }
13998 }
13999 
14000 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14001 {
14002     DisasContext *dc = container_of(dcbase, DisasContext, base);
14003 
14004     if (unlikely(dc->ss_active)) {
14005         /* Note that this means single stepping WFI doesn't halt the CPU.
14006          * For conditional branch insns this is harmless unreachable code as
14007          * gen_goto_tb() has already handled emitting the debug exception
14008          * (and thus a tb-jump is not possible when singlestepping).
14009          */
14010         switch (dc->base.is_jmp) {
14011         default:
14012             gen_a64_update_pc(dc, 4);
14013             /* fall through */
14014         case DISAS_EXIT:
14015         case DISAS_JUMP:
14016             gen_step_complete_exception(dc);
14017             break;
14018         case DISAS_NORETURN:
14019             break;
14020         }
14021     } else {
14022         switch (dc->base.is_jmp) {
14023         case DISAS_NEXT:
14024         case DISAS_TOO_MANY:
14025             gen_goto_tb(dc, 1, 4);
14026             break;
14027         default:
14028         case DISAS_UPDATE_EXIT:
14029             gen_a64_update_pc(dc, 4);
14030             /* fall through */
14031         case DISAS_EXIT:
14032             tcg_gen_exit_tb(NULL, 0);
14033             break;
14034         case DISAS_UPDATE_NOCHAIN:
14035             gen_a64_update_pc(dc, 4);
14036             /* fall through */
14037         case DISAS_JUMP:
14038             tcg_gen_lookup_and_goto_ptr();
14039             break;
14040         case DISAS_NORETURN:
14041         case DISAS_SWI:
14042             break;
14043         case DISAS_WFE:
14044             gen_a64_update_pc(dc, 4);
14045             gen_helper_wfe(tcg_env);
14046             break;
14047         case DISAS_YIELD:
14048             gen_a64_update_pc(dc, 4);
14049             gen_helper_yield(tcg_env);
14050             break;
14051         case DISAS_WFI:
14052             /*
14053              * This is a special case because we don't want to just halt
14054              * the CPU if trying to debug across a WFI.
14055              */
14056             gen_a64_update_pc(dc, 4);
14057             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14058             /*
14059              * The helper doesn't necessarily throw an exception, but we
14060              * must go back to the main loop to check for interrupts anyway.
14061              */
14062             tcg_gen_exit_tb(NULL, 0);
14063             break;
14064         }
14065     }
14066 }
14067 
14068 const TranslatorOps aarch64_translator_ops = {
14069     .init_disas_context = aarch64_tr_init_disas_context,
14070     .tb_start           = aarch64_tr_tb_start,
14071     .insn_start         = aarch64_tr_insn_start,
14072     .translate_insn     = aarch64_tr_translate_insn,
14073     .tb_stop            = aarch64_tr_tb_stop,
14074 };
14075