xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision dfd1b812)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/log.h"
32 #include "cpregs.h"
33 #include "translate-a64.h"
34 #include "qemu/atomic128.h"
35 
36 static TCGv_i64 cpu_X[32];
37 static TCGv_i64 cpu_pc;
38 
39 /* Load/store exclusive handling */
40 static TCGv_i64 cpu_exclusive_high;
41 
42 static const char *regnames[] = {
43     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
44     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
45     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
46     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
47 };
48 
49 enum a64_shift_type {
50     A64_SHIFT_TYPE_LSL = 0,
51     A64_SHIFT_TYPE_LSR = 1,
52     A64_SHIFT_TYPE_ASR = 2,
53     A64_SHIFT_TYPE_ROR = 3
54 };
55 
56 /*
57  * Include the generated decoders.
58  */
59 
60 #include "decode-sme-fa64.c.inc"
61 #include "decode-a64.c.inc"
62 
63 /* Table based decoder typedefs - used when the relevant bits for decode
64  * are too awkwardly scattered across the instruction (eg SIMD).
65  */
66 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 
68 typedef struct AArch64DecodeTable {
69     uint32_t pattern;
70     uint32_t mask;
71     AArch64DecodeFn *disas_fn;
72 } AArch64DecodeTable;
73 
74 /* initialize TCG globals.  */
75 void a64_translate_init(void)
76 {
77     int i;
78 
79     cpu_pc = tcg_global_mem_new_i64(cpu_env,
80                                     offsetof(CPUARMState, pc),
81                                     "pc");
82     for (i = 0; i < 32; i++) {
83         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
84                                           offsetof(CPUARMState, xregs[i]),
85                                           regnames[i]);
86     }
87 
88     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
89         offsetof(CPUARMState, exclusive_high), "exclusive_high");
90 }
91 
92 /*
93  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
94  */
95 static int get_a64_user_mem_index(DisasContext *s)
96 {
97     /*
98      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
99      * which is the usual mmu_idx for this cpu state.
100      */
101     ARMMMUIdx useridx = s->mmu_idx;
102 
103     if (s->unpriv) {
104         /*
105          * We have pre-computed the condition for AccType_UNPRIV.
106          * Therefore we should never get here with a mmu_idx for
107          * which we do not know the corresponding user mmu_idx.
108          */
109         switch (useridx) {
110         case ARMMMUIdx_E10_1:
111         case ARMMMUIdx_E10_1_PAN:
112             useridx = ARMMMUIdx_E10_0;
113             break;
114         case ARMMMUIdx_E20_2:
115         case ARMMMUIdx_E20_2_PAN:
116             useridx = ARMMMUIdx_E20_0;
117             break;
118         default:
119             g_assert_not_reached();
120         }
121     }
122     return arm_to_core_mmu_idx(useridx);
123 }
124 
125 static void set_btype_raw(int val)
126 {
127     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
128                    offsetof(CPUARMState, btype));
129 }
130 
131 static void set_btype(DisasContext *s, int val)
132 {
133     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
134     tcg_debug_assert(val >= 1 && val <= 3);
135     set_btype_raw(val);
136     s->btype = -1;
137 }
138 
139 static void reset_btype(DisasContext *s)
140 {
141     if (s->btype != 0) {
142         set_btype_raw(0);
143         s->btype = 0;
144     }
145 }
146 
147 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
148 {
149     assert(s->pc_save != -1);
150     if (tb_cflags(s->base.tb) & CF_PCREL) {
151         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
152     } else {
153         tcg_gen_movi_i64(dest, s->pc_curr + diff);
154     }
155 }
156 
157 void gen_a64_update_pc(DisasContext *s, target_long diff)
158 {
159     gen_pc_plus_diff(s, cpu_pc, diff);
160     s->pc_save = s->pc_curr + diff;
161 }
162 
163 /*
164  * Handle Top Byte Ignore (TBI) bits.
165  *
166  * If address tagging is enabled via the TCR TBI bits:
167  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
168  *    then the address is zero-extended, clearing bits [63:56]
169  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
170  *    and TBI1 controls addressses with bit 55 == 1.
171  *    If the appropriate TBI bit is set for the address then
172  *    the address is sign-extended from bit 55 into bits [63:56]
173  *
174  * Here We have concatenated TBI{1,0} into tbi.
175  */
176 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
177                                 TCGv_i64 src, int tbi)
178 {
179     if (tbi == 0) {
180         /* Load unmodified address */
181         tcg_gen_mov_i64(dst, src);
182     } else if (!regime_has_2_ranges(s->mmu_idx)) {
183         /* Force tag byte to all zero */
184         tcg_gen_extract_i64(dst, src, 0, 56);
185     } else {
186         /* Sign-extend from bit 55.  */
187         tcg_gen_sextract_i64(dst, src, 0, 56);
188 
189         switch (tbi) {
190         case 1:
191             /* tbi0 but !tbi1: only use the extension if positive */
192             tcg_gen_and_i64(dst, dst, src);
193             break;
194         case 2:
195             /* !tbi0 but tbi1: only use the extension if negative */
196             tcg_gen_or_i64(dst, dst, src);
197             break;
198         case 3:
199             /* tbi0 and tbi1: always use the extension */
200             break;
201         default:
202             g_assert_not_reached();
203         }
204     }
205 }
206 
207 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
208 {
209     /*
210      * If address tagging is enabled for instructions via the TCR TBI bits,
211      * then loading an address into the PC will clear out any tag.
212      */
213     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
214     s->pc_save = -1;
215 }
216 
217 /*
218  * Handle MTE and/or TBI.
219  *
220  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
221  * for the tag to be present in the FAR_ELx register.  But for user-only
222  * mode we do not have a TLB with which to implement this, so we must
223  * remove the top byte now.
224  *
225  * Always return a fresh temporary that we can increment independently
226  * of the write-back address.
227  */
228 
229 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
230 {
231     TCGv_i64 clean = tcg_temp_new_i64();
232 #ifdef CONFIG_USER_ONLY
233     gen_top_byte_ignore(s, clean, addr, s->tbid);
234 #else
235     tcg_gen_mov_i64(clean, addr);
236 #endif
237     return clean;
238 }
239 
240 /* Insert a zero tag into src, with the result at dst. */
241 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
242 {
243     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
244 }
245 
246 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
247                              MMUAccessType acc, int log2_size)
248 {
249     gen_helper_probe_access(cpu_env, ptr,
250                             tcg_constant_i32(acc),
251                             tcg_constant_i32(get_mem_index(s)),
252                             tcg_constant_i32(1 << log2_size));
253 }
254 
255 /*
256  * For MTE, check a single logical or atomic access.  This probes a single
257  * address, the exact one specified.  The size and alignment of the access
258  * is not relevant to MTE, per se, but watchpoints do require the size,
259  * and we want to recognize those before making any other changes to state.
260  */
261 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
262                                       bool is_write, bool tag_checked,
263                                       int log2_size, bool is_unpriv,
264                                       int core_idx)
265 {
266     if (tag_checked && s->mte_active[is_unpriv]) {
267         TCGv_i64 ret;
268         int desc = 0;
269 
270         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
271         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
272         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
273         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
274         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
275 
276         ret = tcg_temp_new_i64();
277         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
278 
279         return ret;
280     }
281     return clean_data_tbi(s, addr);
282 }
283 
284 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
285                         bool tag_checked, int log2_size)
286 {
287     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
288                                  false, get_mem_index(s));
289 }
290 
291 /*
292  * For MTE, check multiple logical sequential accesses.
293  */
294 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
295                         bool tag_checked, int size)
296 {
297     if (tag_checked && s->mte_active[0]) {
298         TCGv_i64 ret;
299         int desc = 0;
300 
301         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
302         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
303         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
304         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
305         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
306 
307         ret = tcg_temp_new_i64();
308         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
309 
310         return ret;
311     }
312     return clean_data_tbi(s, addr);
313 }
314 
315 typedef struct DisasCompare64 {
316     TCGCond cond;
317     TCGv_i64 value;
318 } DisasCompare64;
319 
320 static void a64_test_cc(DisasCompare64 *c64, int cc)
321 {
322     DisasCompare c32;
323 
324     arm_test_cc(&c32, cc);
325 
326     /*
327      * Sign-extend the 32-bit value so that the GE/LT comparisons work
328      * properly.  The NE/EQ comparisons are also fine with this choice.
329       */
330     c64->cond = c32.cond;
331     c64->value = tcg_temp_new_i64();
332     tcg_gen_ext_i32_i64(c64->value, c32.value);
333 }
334 
335 static void gen_rebuild_hflags(DisasContext *s)
336 {
337     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
338 }
339 
340 static void gen_exception_internal(int excp)
341 {
342     assert(excp_is_internal(excp));
343     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
344 }
345 
346 static void gen_exception_internal_insn(DisasContext *s, int excp)
347 {
348     gen_a64_update_pc(s, 0);
349     gen_exception_internal(excp);
350     s->base.is_jmp = DISAS_NORETURN;
351 }
352 
353 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
354 {
355     gen_a64_update_pc(s, 0);
356     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
357     s->base.is_jmp = DISAS_NORETURN;
358 }
359 
360 static void gen_step_complete_exception(DisasContext *s)
361 {
362     /* We just completed step of an insn. Move from Active-not-pending
363      * to Active-pending, and then also take the swstep exception.
364      * This corresponds to making the (IMPDEF) choice to prioritize
365      * swstep exceptions over asynchronous exceptions taken to an exception
366      * level where debug is disabled. This choice has the advantage that
367      * we do not need to maintain internal state corresponding to the
368      * ISV/EX syndrome bits between completion of the step and generation
369      * of the exception, and our syndrome information is always correct.
370      */
371     gen_ss_advance(s);
372     gen_swstep_exception(s, 1, s->is_ldex);
373     s->base.is_jmp = DISAS_NORETURN;
374 }
375 
376 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
377 {
378     if (s->ss_active) {
379         return false;
380     }
381     return translator_use_goto_tb(&s->base, dest);
382 }
383 
384 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
385 {
386     if (use_goto_tb(s, s->pc_curr + diff)) {
387         /*
388          * For pcrel, the pc must always be up-to-date on entry to
389          * the linked TB, so that it can use simple additions for all
390          * further adjustments.  For !pcrel, the linked TB is compiled
391          * to know its full virtual address, so we can delay the
392          * update to pc to the unlinked path.  A long chain of links
393          * can thus avoid many updates to the PC.
394          */
395         if (tb_cflags(s->base.tb) & CF_PCREL) {
396             gen_a64_update_pc(s, diff);
397             tcg_gen_goto_tb(n);
398         } else {
399             tcg_gen_goto_tb(n);
400             gen_a64_update_pc(s, diff);
401         }
402         tcg_gen_exit_tb(s->base.tb, n);
403         s->base.is_jmp = DISAS_NORETURN;
404     } else {
405         gen_a64_update_pc(s, diff);
406         if (s->ss_active) {
407             gen_step_complete_exception(s);
408         } else {
409             tcg_gen_lookup_and_goto_ptr();
410             s->base.is_jmp = DISAS_NORETURN;
411         }
412     }
413 }
414 
415 /*
416  * Register access functions
417  *
418  * These functions are used for directly accessing a register in where
419  * changes to the final register value are likely to be made. If you
420  * need to use a register for temporary calculation (e.g. index type
421  * operations) use the read_* form.
422  *
423  * B1.2.1 Register mappings
424  *
425  * In instruction register encoding 31 can refer to ZR (zero register) or
426  * the SP (stack pointer) depending on context. In QEMU's case we map SP
427  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
428  * This is the point of the _sp forms.
429  */
430 TCGv_i64 cpu_reg(DisasContext *s, int reg)
431 {
432     if (reg == 31) {
433         TCGv_i64 t = tcg_temp_new_i64();
434         tcg_gen_movi_i64(t, 0);
435         return t;
436     } else {
437         return cpu_X[reg];
438     }
439 }
440 
441 /* register access for when 31 == SP */
442 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
443 {
444     return cpu_X[reg];
445 }
446 
447 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
448  * representing the register contents. This TCGv is an auto-freed
449  * temporary so it need not be explicitly freed, and may be modified.
450  */
451 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
452 {
453     TCGv_i64 v = tcg_temp_new_i64();
454     if (reg != 31) {
455         if (sf) {
456             tcg_gen_mov_i64(v, cpu_X[reg]);
457         } else {
458             tcg_gen_ext32u_i64(v, cpu_X[reg]);
459         }
460     } else {
461         tcg_gen_movi_i64(v, 0);
462     }
463     return v;
464 }
465 
466 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
467 {
468     TCGv_i64 v = tcg_temp_new_i64();
469     if (sf) {
470         tcg_gen_mov_i64(v, cpu_X[reg]);
471     } else {
472         tcg_gen_ext32u_i64(v, cpu_X[reg]);
473     }
474     return v;
475 }
476 
477 /* Return the offset into CPUARMState of a slice (from
478  * the least significant end) of FP register Qn (ie
479  * Dn, Sn, Hn or Bn).
480  * (Note that this is not the same mapping as for A32; see cpu.h)
481  */
482 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
483 {
484     return vec_reg_offset(s, regno, 0, size);
485 }
486 
487 /* Offset of the high half of the 128 bit vector Qn */
488 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
489 {
490     return vec_reg_offset(s, regno, 1, MO_64);
491 }
492 
493 /* Convenience accessors for reading and writing single and double
494  * FP registers. Writing clears the upper parts of the associated
495  * 128 bit vector register, as required by the architecture.
496  * Note that unlike the GP register accessors, the values returned
497  * by the read functions must be manually freed.
498  */
499 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
500 {
501     TCGv_i64 v = tcg_temp_new_i64();
502 
503     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
504     return v;
505 }
506 
507 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
508 {
509     TCGv_i32 v = tcg_temp_new_i32();
510 
511     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
512     return v;
513 }
514 
515 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
516 {
517     TCGv_i32 v = tcg_temp_new_i32();
518 
519     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
520     return v;
521 }
522 
523 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
524  * If SVE is not enabled, then there are only 128 bits in the vector.
525  */
526 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
527 {
528     unsigned ofs = fp_reg_offset(s, rd, MO_64);
529     unsigned vsz = vec_full_reg_size(s);
530 
531     /* Nop move, with side effect of clearing the tail. */
532     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
533 }
534 
535 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
536 {
537     unsigned ofs = fp_reg_offset(s, reg, MO_64);
538 
539     tcg_gen_st_i64(v, cpu_env, ofs);
540     clear_vec_high(s, false, reg);
541 }
542 
543 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
544 {
545     TCGv_i64 tmp = tcg_temp_new_i64();
546 
547     tcg_gen_extu_i32_i64(tmp, v);
548     write_fp_dreg(s, reg, tmp);
549 }
550 
551 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
552 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
553                          GVecGen2Fn *gvec_fn, int vece)
554 {
555     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
556             is_q ? 16 : 8, vec_full_reg_size(s));
557 }
558 
559 /* Expand a 2-operand + immediate AdvSIMD vector operation using
560  * an expander function.
561  */
562 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
563                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
564 {
565     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
566             imm, is_q ? 16 : 8, vec_full_reg_size(s));
567 }
568 
569 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
570 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
571                          GVecGen3Fn *gvec_fn, int vece)
572 {
573     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
574             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
575 }
576 
577 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
578 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
579                          int rx, GVecGen4Fn *gvec_fn, int vece)
580 {
581     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
582             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
583             is_q ? 16 : 8, vec_full_reg_size(s));
584 }
585 
586 /* Expand a 2-operand operation using an out-of-line helper.  */
587 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
588                              int rn, int data, gen_helper_gvec_2 *fn)
589 {
590     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
591                        vec_full_reg_offset(s, rn),
592                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
593 }
594 
595 /* Expand a 3-operand operation using an out-of-line helper.  */
596 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
597                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
598 {
599     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
600                        vec_full_reg_offset(s, rn),
601                        vec_full_reg_offset(s, rm),
602                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
603 }
604 
605 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
606  * an out-of-line helper.
607  */
608 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
609                               int rm, bool is_fp16, int data,
610                               gen_helper_gvec_3_ptr *fn)
611 {
612     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
613     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
614                        vec_full_reg_offset(s, rn),
615                        vec_full_reg_offset(s, rm), fpst,
616                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
617 }
618 
619 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
620 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
621                             int rm, gen_helper_gvec_3_ptr *fn)
622 {
623     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
624 
625     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
626     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
627                        vec_full_reg_offset(s, rn),
628                        vec_full_reg_offset(s, rm), qc_ptr,
629                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
630 }
631 
632 /* Expand a 4-operand operation using an out-of-line helper.  */
633 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
634                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
635 {
636     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
637                        vec_full_reg_offset(s, rn),
638                        vec_full_reg_offset(s, rm),
639                        vec_full_reg_offset(s, ra),
640                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
641 }
642 
643 /*
644  * Expand a 4-operand + fpstatus pointer + simd data value operation using
645  * an out-of-line helper.
646  */
647 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
648                               int rm, int ra, bool is_fp16, int data,
649                               gen_helper_gvec_4_ptr *fn)
650 {
651     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
652     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
653                        vec_full_reg_offset(s, rn),
654                        vec_full_reg_offset(s, rm),
655                        vec_full_reg_offset(s, ra), fpst,
656                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
657 }
658 
659 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
660  * than the 32 bit equivalent.
661  */
662 static inline void gen_set_NZ64(TCGv_i64 result)
663 {
664     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
665     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
666 }
667 
668 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
669 static inline void gen_logic_CC(int sf, TCGv_i64 result)
670 {
671     if (sf) {
672         gen_set_NZ64(result);
673     } else {
674         tcg_gen_extrl_i64_i32(cpu_ZF, result);
675         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
676     }
677     tcg_gen_movi_i32(cpu_CF, 0);
678     tcg_gen_movi_i32(cpu_VF, 0);
679 }
680 
681 /* dest = T0 + T1; compute C, N, V and Z flags */
682 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
683 {
684     TCGv_i64 result, flag, tmp;
685     result = tcg_temp_new_i64();
686     flag = tcg_temp_new_i64();
687     tmp = tcg_temp_new_i64();
688 
689     tcg_gen_movi_i64(tmp, 0);
690     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
691 
692     tcg_gen_extrl_i64_i32(cpu_CF, flag);
693 
694     gen_set_NZ64(result);
695 
696     tcg_gen_xor_i64(flag, result, t0);
697     tcg_gen_xor_i64(tmp, t0, t1);
698     tcg_gen_andc_i64(flag, flag, tmp);
699     tcg_gen_extrh_i64_i32(cpu_VF, flag);
700 
701     tcg_gen_mov_i64(dest, result);
702 }
703 
704 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
705 {
706     TCGv_i32 t0_32 = tcg_temp_new_i32();
707     TCGv_i32 t1_32 = tcg_temp_new_i32();
708     TCGv_i32 tmp = tcg_temp_new_i32();
709 
710     tcg_gen_movi_i32(tmp, 0);
711     tcg_gen_extrl_i64_i32(t0_32, t0);
712     tcg_gen_extrl_i64_i32(t1_32, t1);
713     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
714     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
715     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
716     tcg_gen_xor_i32(tmp, t0_32, t1_32);
717     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
718     tcg_gen_extu_i32_i64(dest, cpu_NF);
719 }
720 
721 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
722 {
723     if (sf) {
724         gen_add64_CC(dest, t0, t1);
725     } else {
726         gen_add32_CC(dest, t0, t1);
727     }
728 }
729 
730 /* dest = T0 - T1; compute C, N, V and Z flags */
731 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
732 {
733     /* 64 bit arithmetic */
734     TCGv_i64 result, flag, tmp;
735 
736     result = tcg_temp_new_i64();
737     flag = tcg_temp_new_i64();
738     tcg_gen_sub_i64(result, t0, t1);
739 
740     gen_set_NZ64(result);
741 
742     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
743     tcg_gen_extrl_i64_i32(cpu_CF, flag);
744 
745     tcg_gen_xor_i64(flag, result, t0);
746     tmp = tcg_temp_new_i64();
747     tcg_gen_xor_i64(tmp, t0, t1);
748     tcg_gen_and_i64(flag, flag, tmp);
749     tcg_gen_extrh_i64_i32(cpu_VF, flag);
750     tcg_gen_mov_i64(dest, result);
751 }
752 
753 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
754 {
755     /* 32 bit arithmetic */
756     TCGv_i32 t0_32 = tcg_temp_new_i32();
757     TCGv_i32 t1_32 = tcg_temp_new_i32();
758     TCGv_i32 tmp;
759 
760     tcg_gen_extrl_i64_i32(t0_32, t0);
761     tcg_gen_extrl_i64_i32(t1_32, t1);
762     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
763     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
764     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
765     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
766     tmp = tcg_temp_new_i32();
767     tcg_gen_xor_i32(tmp, t0_32, t1_32);
768     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
769     tcg_gen_extu_i32_i64(dest, cpu_NF);
770 }
771 
772 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
773 {
774     if (sf) {
775         gen_sub64_CC(dest, t0, t1);
776     } else {
777         gen_sub32_CC(dest, t0, t1);
778     }
779 }
780 
781 /* dest = T0 + T1 + CF; do not compute flags. */
782 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
783 {
784     TCGv_i64 flag = tcg_temp_new_i64();
785     tcg_gen_extu_i32_i64(flag, cpu_CF);
786     tcg_gen_add_i64(dest, t0, t1);
787     tcg_gen_add_i64(dest, dest, flag);
788 
789     if (!sf) {
790         tcg_gen_ext32u_i64(dest, dest);
791     }
792 }
793 
794 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
795 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
796 {
797     if (sf) {
798         TCGv_i64 result = tcg_temp_new_i64();
799         TCGv_i64 cf_64 = tcg_temp_new_i64();
800         TCGv_i64 vf_64 = tcg_temp_new_i64();
801         TCGv_i64 tmp = tcg_temp_new_i64();
802         TCGv_i64 zero = tcg_constant_i64(0);
803 
804         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
805         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
806         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
807         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
808         gen_set_NZ64(result);
809 
810         tcg_gen_xor_i64(vf_64, result, t0);
811         tcg_gen_xor_i64(tmp, t0, t1);
812         tcg_gen_andc_i64(vf_64, vf_64, tmp);
813         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
814 
815         tcg_gen_mov_i64(dest, result);
816     } else {
817         TCGv_i32 t0_32 = tcg_temp_new_i32();
818         TCGv_i32 t1_32 = tcg_temp_new_i32();
819         TCGv_i32 tmp = tcg_temp_new_i32();
820         TCGv_i32 zero = tcg_constant_i32(0);
821 
822         tcg_gen_extrl_i64_i32(t0_32, t0);
823         tcg_gen_extrl_i64_i32(t1_32, t1);
824         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
825         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
826 
827         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
828         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
829         tcg_gen_xor_i32(tmp, t0_32, t1_32);
830         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
831         tcg_gen_extu_i32_i64(dest, cpu_NF);
832     }
833 }
834 
835 /*
836  * Load/Store generators
837  */
838 
839 /*
840  * Store from GPR register to memory.
841  */
842 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
843                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
844                              bool iss_valid,
845                              unsigned int iss_srt,
846                              bool iss_sf, bool iss_ar)
847 {
848     memop = finalize_memop(s, memop);
849     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
850 
851     if (iss_valid) {
852         uint32_t syn;
853 
854         syn = syn_data_abort_with_iss(0,
855                                       (memop & MO_SIZE),
856                                       false,
857                                       iss_srt,
858                                       iss_sf,
859                                       iss_ar,
860                                       0, 0, 0, 0, 0, false);
861         disas_set_insn_syndrome(s, syn);
862     }
863 }
864 
865 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
866                       TCGv_i64 tcg_addr, MemOp memop,
867                       bool iss_valid,
868                       unsigned int iss_srt,
869                       bool iss_sf, bool iss_ar)
870 {
871     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
872                      iss_valid, iss_srt, iss_sf, iss_ar);
873 }
874 
875 /*
876  * Load from memory to GPR register
877  */
878 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
879                              MemOp memop, bool extend, int memidx,
880                              bool iss_valid, unsigned int iss_srt,
881                              bool iss_sf, bool iss_ar)
882 {
883     memop = finalize_memop(s, memop);
884     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
885 
886     if (extend && (memop & MO_SIGN)) {
887         g_assert((memop & MO_SIZE) <= MO_32);
888         tcg_gen_ext32u_i64(dest, dest);
889     }
890 
891     if (iss_valid) {
892         uint32_t syn;
893 
894         syn = syn_data_abort_with_iss(0,
895                                       (memop & MO_SIZE),
896                                       (memop & MO_SIGN) != 0,
897                                       iss_srt,
898                                       iss_sf,
899                                       iss_ar,
900                                       0, 0, 0, 0, 0, false);
901         disas_set_insn_syndrome(s, syn);
902     }
903 }
904 
905 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
906                       MemOp memop, bool extend,
907                       bool iss_valid, unsigned int iss_srt,
908                       bool iss_sf, bool iss_ar)
909 {
910     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
911                      iss_valid, iss_srt, iss_sf, iss_ar);
912 }
913 
914 /*
915  * Store from FP register to memory
916  */
917 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
918 {
919     /* This writes the bottom N bits of a 128 bit wide vector to memory */
920     TCGv_i64 tmplo = tcg_temp_new_i64();
921     MemOp mop;
922 
923     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
924 
925     if (size < 4) {
926         mop = finalize_memop(s, size);
927         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
928     } else {
929         bool be = s->be_data == MO_BE;
930         TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
931         TCGv_i64 tmphi = tcg_temp_new_i64();
932 
933         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
934 
935         mop = s->be_data | MO_UQ;
936         tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
937                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
938         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
939         tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
940                             get_mem_index(s), mop);
941     }
942 }
943 
944 /*
945  * Load from memory to FP register
946  */
947 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
948 {
949     /* This always zero-extends and writes to a full 128 bit wide vector */
950     TCGv_i64 tmplo = tcg_temp_new_i64();
951     TCGv_i64 tmphi = NULL;
952     MemOp mop;
953 
954     if (size < 4) {
955         mop = finalize_memop(s, size);
956         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
957     } else {
958         bool be = s->be_data == MO_BE;
959         TCGv_i64 tcg_hiaddr;
960 
961         tmphi = tcg_temp_new_i64();
962         tcg_hiaddr = tcg_temp_new_i64();
963 
964         mop = s->be_data | MO_UQ;
965         tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
966                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
967         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
968         tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
969                             get_mem_index(s), mop);
970     }
971 
972     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
973 
974     if (tmphi) {
975         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
976     }
977     clear_vec_high(s, tmphi != NULL, destidx);
978 }
979 
980 /*
981  * Vector load/store helpers.
982  *
983  * The principal difference between this and a FP load is that we don't
984  * zero extend as we are filling a partial chunk of the vector register.
985  * These functions don't support 128 bit loads/stores, which would be
986  * normal load/store operations.
987  *
988  * The _i32 versions are useful when operating on 32 bit quantities
989  * (eg for floating point single or using Neon helper functions).
990  */
991 
992 /* Get value of an element within a vector register */
993 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
994                              int element, MemOp memop)
995 {
996     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
997     switch ((unsigned)memop) {
998     case MO_8:
999         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1000         break;
1001     case MO_16:
1002         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1003         break;
1004     case MO_32:
1005         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1006         break;
1007     case MO_8|MO_SIGN:
1008         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1009         break;
1010     case MO_16|MO_SIGN:
1011         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1012         break;
1013     case MO_32|MO_SIGN:
1014         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1015         break;
1016     case MO_64:
1017     case MO_64|MO_SIGN:
1018         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1019         break;
1020     default:
1021         g_assert_not_reached();
1022     }
1023 }
1024 
1025 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1026                                  int element, MemOp memop)
1027 {
1028     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1029     switch (memop) {
1030     case MO_8:
1031         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1032         break;
1033     case MO_16:
1034         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1035         break;
1036     case MO_8|MO_SIGN:
1037         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1038         break;
1039     case MO_16|MO_SIGN:
1040         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1041         break;
1042     case MO_32:
1043     case MO_32|MO_SIGN:
1044         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1045         break;
1046     default:
1047         g_assert_not_reached();
1048     }
1049 }
1050 
1051 /* Set value of an element within a vector register */
1052 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1053                               int element, MemOp memop)
1054 {
1055     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1056     switch (memop) {
1057     case MO_8:
1058         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1059         break;
1060     case MO_16:
1061         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1062         break;
1063     case MO_32:
1064         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1065         break;
1066     case MO_64:
1067         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1068         break;
1069     default:
1070         g_assert_not_reached();
1071     }
1072 }
1073 
1074 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1075                                   int destidx, int element, MemOp memop)
1076 {
1077     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1078     switch (memop) {
1079     case MO_8:
1080         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1081         break;
1082     case MO_16:
1083         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1084         break;
1085     case MO_32:
1086         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1087         break;
1088     default:
1089         g_assert_not_reached();
1090     }
1091 }
1092 
1093 /* Store from vector register to memory */
1094 static void do_vec_st(DisasContext *s, int srcidx, int element,
1095                       TCGv_i64 tcg_addr, MemOp mop)
1096 {
1097     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1098 
1099     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1100     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1101 }
1102 
1103 /* Load from memory to vector register */
1104 static void do_vec_ld(DisasContext *s, int destidx, int element,
1105                       TCGv_i64 tcg_addr, MemOp mop)
1106 {
1107     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1108 
1109     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1110     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1111 }
1112 
1113 /* Check that FP/Neon access is enabled. If it is, return
1114  * true. If not, emit code to generate an appropriate exception,
1115  * and return false; the caller should not emit any code for
1116  * the instruction. Note that this check must happen after all
1117  * unallocated-encoding checks (otherwise the syndrome information
1118  * for the resulting exception will be incorrect).
1119  */
1120 static bool fp_access_check_only(DisasContext *s)
1121 {
1122     if (s->fp_excp_el) {
1123         assert(!s->fp_access_checked);
1124         s->fp_access_checked = true;
1125 
1126         gen_exception_insn_el(s, 0, EXCP_UDEF,
1127                               syn_fp_access_trap(1, 0xe, false, 0),
1128                               s->fp_excp_el);
1129         return false;
1130     }
1131     s->fp_access_checked = true;
1132     return true;
1133 }
1134 
1135 static bool fp_access_check(DisasContext *s)
1136 {
1137     if (!fp_access_check_only(s)) {
1138         return false;
1139     }
1140     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1141         gen_exception_insn(s, 0, EXCP_UDEF,
1142                            syn_smetrap(SME_ET_Streaming, false));
1143         return false;
1144     }
1145     return true;
1146 }
1147 
1148 /*
1149  * Check that SVE access is enabled.  If it is, return true.
1150  * If not, emit code to generate an appropriate exception and return false.
1151  * This function corresponds to CheckSVEEnabled().
1152  */
1153 bool sve_access_check(DisasContext *s)
1154 {
1155     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1156         assert(dc_isar_feature(aa64_sme, s));
1157         if (!sme_sm_enabled_check(s)) {
1158             goto fail_exit;
1159         }
1160     } else if (s->sve_excp_el) {
1161         gen_exception_insn_el(s, 0, EXCP_UDEF,
1162                               syn_sve_access_trap(), s->sve_excp_el);
1163         goto fail_exit;
1164     }
1165     s->sve_access_checked = true;
1166     return fp_access_check(s);
1167 
1168  fail_exit:
1169     /* Assert that we only raise one exception per instruction. */
1170     assert(!s->sve_access_checked);
1171     s->sve_access_checked = true;
1172     return false;
1173 }
1174 
1175 /*
1176  * Check that SME access is enabled, raise an exception if not.
1177  * Note that this function corresponds to CheckSMEAccess and is
1178  * only used directly for cpregs.
1179  */
1180 static bool sme_access_check(DisasContext *s)
1181 {
1182     if (s->sme_excp_el) {
1183         gen_exception_insn_el(s, 0, EXCP_UDEF,
1184                               syn_smetrap(SME_ET_AccessTrap, false),
1185                               s->sme_excp_el);
1186         return false;
1187     }
1188     return true;
1189 }
1190 
1191 /* This function corresponds to CheckSMEEnabled. */
1192 bool sme_enabled_check(DisasContext *s)
1193 {
1194     /*
1195      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1196      * to be zero when fp_excp_el has priority.  This is because we need
1197      * sme_excp_el by itself for cpregs access checks.
1198      */
1199     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1200         s->fp_access_checked = true;
1201         return sme_access_check(s);
1202     }
1203     return fp_access_check_only(s);
1204 }
1205 
1206 /* Common subroutine for CheckSMEAnd*Enabled. */
1207 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1208 {
1209     if (!sme_enabled_check(s)) {
1210         return false;
1211     }
1212     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1213         gen_exception_insn(s, 0, EXCP_UDEF,
1214                            syn_smetrap(SME_ET_NotStreaming, false));
1215         return false;
1216     }
1217     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1218         gen_exception_insn(s, 0, EXCP_UDEF,
1219                            syn_smetrap(SME_ET_InactiveZA, false));
1220         return false;
1221     }
1222     return true;
1223 }
1224 
1225 /*
1226  * This utility function is for doing register extension with an
1227  * optional shift. You will likely want to pass a temporary for the
1228  * destination register. See DecodeRegExtend() in the ARM ARM.
1229  */
1230 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1231                               int option, unsigned int shift)
1232 {
1233     int extsize = extract32(option, 0, 2);
1234     bool is_signed = extract32(option, 2, 1);
1235 
1236     if (is_signed) {
1237         switch (extsize) {
1238         case 0:
1239             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1240             break;
1241         case 1:
1242             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1243             break;
1244         case 2:
1245             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1246             break;
1247         case 3:
1248             tcg_gen_mov_i64(tcg_out, tcg_in);
1249             break;
1250         }
1251     } else {
1252         switch (extsize) {
1253         case 0:
1254             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1255             break;
1256         case 1:
1257             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1258             break;
1259         case 2:
1260             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1261             break;
1262         case 3:
1263             tcg_gen_mov_i64(tcg_out, tcg_in);
1264             break;
1265         }
1266     }
1267 
1268     if (shift) {
1269         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1270     }
1271 }
1272 
1273 static inline void gen_check_sp_alignment(DisasContext *s)
1274 {
1275     /* The AArch64 architecture mandates that (if enabled via PSTATE
1276      * or SCTLR bits) there is a check that SP is 16-aligned on every
1277      * SP-relative load or store (with an exception generated if it is not).
1278      * In line with general QEMU practice regarding misaligned accesses,
1279      * we omit these checks for the sake of guest program performance.
1280      * This function is provided as a hook so we can more easily add these
1281      * checks in future (possibly as a "favour catching guest program bugs
1282      * over speed" user selectable option).
1283      */
1284 }
1285 
1286 /*
1287  * This provides a simple table based table lookup decoder. It is
1288  * intended to be used when the relevant bits for decode are too
1289  * awkwardly placed and switch/if based logic would be confusing and
1290  * deeply nested. Since it's a linear search through the table, tables
1291  * should be kept small.
1292  *
1293  * It returns the first handler where insn & mask == pattern, or
1294  * NULL if there is no match.
1295  * The table is terminated by an empty mask (i.e. 0)
1296  */
1297 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1298                                                uint32_t insn)
1299 {
1300     const AArch64DecodeTable *tptr = table;
1301 
1302     while (tptr->mask) {
1303         if ((insn & tptr->mask) == tptr->pattern) {
1304             return tptr->disas_fn;
1305         }
1306         tptr++;
1307     }
1308     return NULL;
1309 }
1310 
1311 /*
1312  * The instruction disassembly implemented here matches
1313  * the instruction encoding classifications in chapter C4
1314  * of the ARM Architecture Reference Manual (DDI0487B_a);
1315  * classification names and decode diagrams here should generally
1316  * match up with those in the manual.
1317  */
1318 
1319 static bool trans_B(DisasContext *s, arg_i *a)
1320 {
1321     reset_btype(s);
1322     gen_goto_tb(s, 0, a->imm);
1323     return true;
1324 }
1325 
1326 static bool trans_BL(DisasContext *s, arg_i *a)
1327 {
1328     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1329     reset_btype(s);
1330     gen_goto_tb(s, 0, a->imm);
1331     return true;
1332 }
1333 
1334 
1335 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1336 {
1337     DisasLabel match;
1338     TCGv_i64 tcg_cmp;
1339 
1340     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1341     reset_btype(s);
1342 
1343     match = gen_disas_label(s);
1344     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1345                         tcg_cmp, 0, match.label);
1346     gen_goto_tb(s, 0, 4);
1347     set_disas_label(s, match);
1348     gen_goto_tb(s, 1, a->imm);
1349     return true;
1350 }
1351 
1352 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1353 {
1354     DisasLabel match;
1355     TCGv_i64 tcg_cmp;
1356 
1357     tcg_cmp = tcg_temp_new_i64();
1358     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1359 
1360     reset_btype(s);
1361 
1362     match = gen_disas_label(s);
1363     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1364                         tcg_cmp, 0, match.label);
1365     gen_goto_tb(s, 0, 4);
1366     set_disas_label(s, match);
1367     gen_goto_tb(s, 1, a->imm);
1368     return true;
1369 }
1370 
1371 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1372 {
1373     reset_btype(s);
1374     if (a->cond < 0x0e) {
1375         /* genuinely conditional branches */
1376         DisasLabel match = gen_disas_label(s);
1377         arm_gen_test_cc(a->cond, match.label);
1378         gen_goto_tb(s, 0, 4);
1379         set_disas_label(s, match);
1380         gen_goto_tb(s, 1, a->imm);
1381     } else {
1382         /* 0xe and 0xf are both "always" conditions */
1383         gen_goto_tb(s, 0, a->imm);
1384     }
1385     return true;
1386 }
1387 
1388 static void set_btype_for_br(DisasContext *s, int rn)
1389 {
1390     if (dc_isar_feature(aa64_bti, s)) {
1391         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1392         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1393     }
1394 }
1395 
1396 static void set_btype_for_blr(DisasContext *s)
1397 {
1398     if (dc_isar_feature(aa64_bti, s)) {
1399         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1400         set_btype(s, 2);
1401     }
1402 }
1403 
1404 static bool trans_BR(DisasContext *s, arg_r *a)
1405 {
1406     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1407     set_btype_for_br(s, a->rn);
1408     s->base.is_jmp = DISAS_JUMP;
1409     return true;
1410 }
1411 
1412 static bool trans_BLR(DisasContext *s, arg_r *a)
1413 {
1414     TCGv_i64 dst = cpu_reg(s, a->rn);
1415     TCGv_i64 lr = cpu_reg(s, 30);
1416     if (dst == lr) {
1417         TCGv_i64 tmp = tcg_temp_new_i64();
1418         tcg_gen_mov_i64(tmp, dst);
1419         dst = tmp;
1420     }
1421     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1422     gen_a64_set_pc(s, dst);
1423     set_btype_for_blr(s);
1424     s->base.is_jmp = DISAS_JUMP;
1425     return true;
1426 }
1427 
1428 static bool trans_RET(DisasContext *s, arg_r *a)
1429 {
1430     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1431     s->base.is_jmp = DISAS_JUMP;
1432     return true;
1433 }
1434 
1435 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1436                                    TCGv_i64 modifier, bool use_key_a)
1437 {
1438     TCGv_i64 truedst;
1439     /*
1440      * Return the branch target for a BRAA/RETA/etc, which is either
1441      * just the destination dst, or that value with the pauth check
1442      * done and the code removed from the high bits.
1443      */
1444     if (!s->pauth_active) {
1445         return dst;
1446     }
1447 
1448     truedst = tcg_temp_new_i64();
1449     if (use_key_a) {
1450         gen_helper_autia(truedst, cpu_env, dst, modifier);
1451     } else {
1452         gen_helper_autib(truedst, cpu_env, dst, modifier);
1453     }
1454     return truedst;
1455 }
1456 
1457 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1458 {
1459     TCGv_i64 dst;
1460 
1461     if (!dc_isar_feature(aa64_pauth, s)) {
1462         return false;
1463     }
1464 
1465     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1466     gen_a64_set_pc(s, dst);
1467     set_btype_for_br(s, a->rn);
1468     s->base.is_jmp = DISAS_JUMP;
1469     return true;
1470 }
1471 
1472 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1473 {
1474     TCGv_i64 dst, lr;
1475 
1476     if (!dc_isar_feature(aa64_pauth, s)) {
1477         return false;
1478     }
1479 
1480     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1481     lr = cpu_reg(s, 30);
1482     if (dst == lr) {
1483         TCGv_i64 tmp = tcg_temp_new_i64();
1484         tcg_gen_mov_i64(tmp, dst);
1485         dst = tmp;
1486     }
1487     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1488     gen_a64_set_pc(s, dst);
1489     set_btype_for_blr(s);
1490     s->base.is_jmp = DISAS_JUMP;
1491     return true;
1492 }
1493 
1494 static bool trans_RETA(DisasContext *s, arg_reta *a)
1495 {
1496     TCGv_i64 dst;
1497 
1498     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1499     gen_a64_set_pc(s, dst);
1500     s->base.is_jmp = DISAS_JUMP;
1501     return true;
1502 }
1503 
1504 static bool trans_BRA(DisasContext *s, arg_bra *a)
1505 {
1506     TCGv_i64 dst;
1507 
1508     if (!dc_isar_feature(aa64_pauth, s)) {
1509         return false;
1510     }
1511     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1512     gen_a64_set_pc(s, dst);
1513     set_btype_for_br(s, a->rn);
1514     s->base.is_jmp = DISAS_JUMP;
1515     return true;
1516 }
1517 
1518 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1519 {
1520     TCGv_i64 dst, lr;
1521 
1522     if (!dc_isar_feature(aa64_pauth, s)) {
1523         return false;
1524     }
1525     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1526     lr = cpu_reg(s, 30);
1527     if (dst == lr) {
1528         TCGv_i64 tmp = tcg_temp_new_i64();
1529         tcg_gen_mov_i64(tmp, dst);
1530         dst = tmp;
1531     }
1532     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1533     gen_a64_set_pc(s, dst);
1534     set_btype_for_blr(s);
1535     s->base.is_jmp = DISAS_JUMP;
1536     return true;
1537 }
1538 
1539 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1540 {
1541     TCGv_i64 dst;
1542 
1543     if (s->current_el == 0) {
1544         return false;
1545     }
1546     if (s->fgt_eret) {
1547         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1548         return true;
1549     }
1550     dst = tcg_temp_new_i64();
1551     tcg_gen_ld_i64(dst, cpu_env,
1552                    offsetof(CPUARMState, elr_el[s->current_el]));
1553 
1554     translator_io_start(&s->base);
1555 
1556     gen_helper_exception_return(cpu_env, dst);
1557     /* Must exit loop to check un-masked IRQs */
1558     s->base.is_jmp = DISAS_EXIT;
1559     return true;
1560 }
1561 
1562 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1563 {
1564     TCGv_i64 dst;
1565 
1566     if (!dc_isar_feature(aa64_pauth, s)) {
1567         return false;
1568     }
1569     if (s->current_el == 0) {
1570         return false;
1571     }
1572     /* The FGT trap takes precedence over an auth trap. */
1573     if (s->fgt_eret) {
1574         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1575         return true;
1576     }
1577     dst = tcg_temp_new_i64();
1578     tcg_gen_ld_i64(dst, cpu_env,
1579                    offsetof(CPUARMState, elr_el[s->current_el]));
1580 
1581     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1582 
1583     translator_io_start(&s->base);
1584 
1585     gen_helper_exception_return(cpu_env, dst);
1586     /* Must exit loop to check un-masked IRQs */
1587     s->base.is_jmp = DISAS_EXIT;
1588     return true;
1589 }
1590 
1591 /* HINT instruction group, including various allocated HINTs */
1592 static void handle_hint(DisasContext *s, uint32_t insn,
1593                         unsigned int op1, unsigned int op2, unsigned int crm)
1594 {
1595     unsigned int selector = crm << 3 | op2;
1596 
1597     if (op1 != 3) {
1598         unallocated_encoding(s);
1599         return;
1600     }
1601 
1602     switch (selector) {
1603     case 0b00000: /* NOP */
1604         break;
1605     case 0b00011: /* WFI */
1606         s->base.is_jmp = DISAS_WFI;
1607         break;
1608     case 0b00001: /* YIELD */
1609         /* When running in MTTCG we don't generate jumps to the yield and
1610          * WFE helpers as it won't affect the scheduling of other vCPUs.
1611          * If we wanted to more completely model WFE/SEV so we don't busy
1612          * spin unnecessarily we would need to do something more involved.
1613          */
1614         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1615             s->base.is_jmp = DISAS_YIELD;
1616         }
1617         break;
1618     case 0b00010: /* WFE */
1619         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1620             s->base.is_jmp = DISAS_WFE;
1621         }
1622         break;
1623     case 0b00100: /* SEV */
1624     case 0b00101: /* SEVL */
1625     case 0b00110: /* DGH */
1626         /* we treat all as NOP at least for now */
1627         break;
1628     case 0b00111: /* XPACLRI */
1629         if (s->pauth_active) {
1630             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1631         }
1632         break;
1633     case 0b01000: /* PACIA1716 */
1634         if (s->pauth_active) {
1635             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1636         }
1637         break;
1638     case 0b01010: /* PACIB1716 */
1639         if (s->pauth_active) {
1640             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1641         }
1642         break;
1643     case 0b01100: /* AUTIA1716 */
1644         if (s->pauth_active) {
1645             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1646         }
1647         break;
1648     case 0b01110: /* AUTIB1716 */
1649         if (s->pauth_active) {
1650             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1651         }
1652         break;
1653     case 0b10000: /* ESB */
1654         /* Without RAS, we must implement this as NOP. */
1655         if (dc_isar_feature(aa64_ras, s)) {
1656             /*
1657              * QEMU does not have a source of physical SErrors,
1658              * so we are only concerned with virtual SErrors.
1659              * The pseudocode in the ARM for this case is
1660              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1661              *      AArch64.vESBOperation();
1662              * Most of the condition can be evaluated at translation time.
1663              * Test for EL2 present, and defer test for SEL2 to runtime.
1664              */
1665             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1666                 gen_helper_vesb(cpu_env);
1667             }
1668         }
1669         break;
1670     case 0b11000: /* PACIAZ */
1671         if (s->pauth_active) {
1672             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1673                              tcg_constant_i64(0));
1674         }
1675         break;
1676     case 0b11001: /* PACIASP */
1677         if (s->pauth_active) {
1678             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1679         }
1680         break;
1681     case 0b11010: /* PACIBZ */
1682         if (s->pauth_active) {
1683             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1684                              tcg_constant_i64(0));
1685         }
1686         break;
1687     case 0b11011: /* PACIBSP */
1688         if (s->pauth_active) {
1689             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1690         }
1691         break;
1692     case 0b11100: /* AUTIAZ */
1693         if (s->pauth_active) {
1694             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1695                              tcg_constant_i64(0));
1696         }
1697         break;
1698     case 0b11101: /* AUTIASP */
1699         if (s->pauth_active) {
1700             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1701         }
1702         break;
1703     case 0b11110: /* AUTIBZ */
1704         if (s->pauth_active) {
1705             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1706                              tcg_constant_i64(0));
1707         }
1708         break;
1709     case 0b11111: /* AUTIBSP */
1710         if (s->pauth_active) {
1711             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1712         }
1713         break;
1714     default:
1715         /* default specified as NOP equivalent */
1716         break;
1717     }
1718 }
1719 
1720 static void gen_clrex(DisasContext *s, uint32_t insn)
1721 {
1722     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1723 }
1724 
1725 /* CLREX, DSB, DMB, ISB */
1726 static void handle_sync(DisasContext *s, uint32_t insn,
1727                         unsigned int op1, unsigned int op2, unsigned int crm)
1728 {
1729     TCGBar bar;
1730 
1731     if (op1 != 3) {
1732         unallocated_encoding(s);
1733         return;
1734     }
1735 
1736     switch (op2) {
1737     case 2: /* CLREX */
1738         gen_clrex(s, insn);
1739         return;
1740     case 4: /* DSB */
1741     case 5: /* DMB */
1742         switch (crm & 3) {
1743         case 1: /* MBReqTypes_Reads */
1744             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1745             break;
1746         case 2: /* MBReqTypes_Writes */
1747             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1748             break;
1749         default: /* MBReqTypes_All */
1750             bar = TCG_BAR_SC | TCG_MO_ALL;
1751             break;
1752         }
1753         tcg_gen_mb(bar);
1754         return;
1755     case 6: /* ISB */
1756         /* We need to break the TB after this insn to execute
1757          * a self-modified code correctly and also to take
1758          * any pending interrupts immediately.
1759          */
1760         reset_btype(s);
1761         gen_goto_tb(s, 0, 4);
1762         return;
1763 
1764     case 7: /* SB */
1765         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1766             goto do_unallocated;
1767         }
1768         /*
1769          * TODO: There is no speculation barrier opcode for TCG;
1770          * MB and end the TB instead.
1771          */
1772         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1773         gen_goto_tb(s, 0, 4);
1774         return;
1775 
1776     default:
1777     do_unallocated:
1778         unallocated_encoding(s);
1779         return;
1780     }
1781 }
1782 
1783 static void gen_xaflag(void)
1784 {
1785     TCGv_i32 z = tcg_temp_new_i32();
1786 
1787     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1788 
1789     /*
1790      * (!C & !Z) << 31
1791      * (!(C | Z)) << 31
1792      * ~((C | Z) << 31)
1793      * ~-(C | Z)
1794      * (C | Z) - 1
1795      */
1796     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1797     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1798 
1799     /* !(Z & C) */
1800     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1801     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1802 
1803     /* (!C & Z) << 31 -> -(Z & ~C) */
1804     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1805     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1806 
1807     /* C | Z */
1808     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1809 }
1810 
1811 static void gen_axflag(void)
1812 {
1813     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1814     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1815 
1816     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1817     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1818 
1819     tcg_gen_movi_i32(cpu_NF, 0);
1820     tcg_gen_movi_i32(cpu_VF, 0);
1821 }
1822 
1823 /* MSR (immediate) - move immediate to processor state field */
1824 static void handle_msr_i(DisasContext *s, uint32_t insn,
1825                          unsigned int op1, unsigned int op2, unsigned int crm)
1826 {
1827     int op = op1 << 3 | op2;
1828 
1829     /* End the TB by default, chaining is ok.  */
1830     s->base.is_jmp = DISAS_TOO_MANY;
1831 
1832     switch (op) {
1833     case 0x00: /* CFINV */
1834         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1835             goto do_unallocated;
1836         }
1837         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1838         s->base.is_jmp = DISAS_NEXT;
1839         break;
1840 
1841     case 0x01: /* XAFlag */
1842         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1843             goto do_unallocated;
1844         }
1845         gen_xaflag();
1846         s->base.is_jmp = DISAS_NEXT;
1847         break;
1848 
1849     case 0x02: /* AXFlag */
1850         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1851             goto do_unallocated;
1852         }
1853         gen_axflag();
1854         s->base.is_jmp = DISAS_NEXT;
1855         break;
1856 
1857     case 0x03: /* UAO */
1858         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1859             goto do_unallocated;
1860         }
1861         if (crm & 1) {
1862             set_pstate_bits(PSTATE_UAO);
1863         } else {
1864             clear_pstate_bits(PSTATE_UAO);
1865         }
1866         gen_rebuild_hflags(s);
1867         break;
1868 
1869     case 0x04: /* PAN */
1870         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1871             goto do_unallocated;
1872         }
1873         if (crm & 1) {
1874             set_pstate_bits(PSTATE_PAN);
1875         } else {
1876             clear_pstate_bits(PSTATE_PAN);
1877         }
1878         gen_rebuild_hflags(s);
1879         break;
1880 
1881     case 0x05: /* SPSel */
1882         if (s->current_el == 0) {
1883             goto do_unallocated;
1884         }
1885         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1886         break;
1887 
1888     case 0x19: /* SSBS */
1889         if (!dc_isar_feature(aa64_ssbs, s)) {
1890             goto do_unallocated;
1891         }
1892         if (crm & 1) {
1893             set_pstate_bits(PSTATE_SSBS);
1894         } else {
1895             clear_pstate_bits(PSTATE_SSBS);
1896         }
1897         /* Don't need to rebuild hflags since SSBS is a nop */
1898         break;
1899 
1900     case 0x1a: /* DIT */
1901         if (!dc_isar_feature(aa64_dit, s)) {
1902             goto do_unallocated;
1903         }
1904         if (crm & 1) {
1905             set_pstate_bits(PSTATE_DIT);
1906         } else {
1907             clear_pstate_bits(PSTATE_DIT);
1908         }
1909         /* There's no need to rebuild hflags because DIT is a nop */
1910         break;
1911 
1912     case 0x1e: /* DAIFSet */
1913         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1914         break;
1915 
1916     case 0x1f: /* DAIFClear */
1917         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1918         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1919         s->base.is_jmp = DISAS_UPDATE_EXIT;
1920         break;
1921 
1922     case 0x1c: /* TCO */
1923         if (dc_isar_feature(aa64_mte, s)) {
1924             /* Full MTE is enabled -- set the TCO bit as directed. */
1925             if (crm & 1) {
1926                 set_pstate_bits(PSTATE_TCO);
1927             } else {
1928                 clear_pstate_bits(PSTATE_TCO);
1929             }
1930             gen_rebuild_hflags(s);
1931             /* Many factors, including TCO, go into MTE_ACTIVE. */
1932             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1933         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1934             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1935             s->base.is_jmp = DISAS_NEXT;
1936         } else {
1937             goto do_unallocated;
1938         }
1939         break;
1940 
1941     case 0x1b: /* SVCR* */
1942         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1943             goto do_unallocated;
1944         }
1945         if (sme_access_check(s)) {
1946             int old = s->pstate_sm | (s->pstate_za << 1);
1947             int new = (crm & 1) * 3;
1948             int msk = (crm >> 1) & 3;
1949 
1950             if ((old ^ new) & msk) {
1951                 /* At least one bit changes. */
1952                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1953                                     tcg_constant_i32(msk));
1954             } else {
1955                 s->base.is_jmp = DISAS_NEXT;
1956             }
1957         }
1958         break;
1959 
1960     default:
1961     do_unallocated:
1962         unallocated_encoding(s);
1963         return;
1964     }
1965 }
1966 
1967 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1968 {
1969     TCGv_i32 tmp = tcg_temp_new_i32();
1970     TCGv_i32 nzcv = tcg_temp_new_i32();
1971 
1972     /* build bit 31, N */
1973     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1974     /* build bit 30, Z */
1975     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1976     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1977     /* build bit 29, C */
1978     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1979     /* build bit 28, V */
1980     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1981     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1982     /* generate result */
1983     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1984 }
1985 
1986 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1987 {
1988     TCGv_i32 nzcv = tcg_temp_new_i32();
1989 
1990     /* take NZCV from R[t] */
1991     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1992 
1993     /* bit 31, N */
1994     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1995     /* bit 30, Z */
1996     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1997     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1998     /* bit 29, C */
1999     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2000     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2001     /* bit 28, V */
2002     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2003     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2004 }
2005 
2006 static void gen_sysreg_undef(DisasContext *s, bool isread,
2007                              uint8_t op0, uint8_t op1, uint8_t op2,
2008                              uint8_t crn, uint8_t crm, uint8_t rt)
2009 {
2010     /*
2011      * Generate code to emit an UNDEF with correct syndrome
2012      * information for a failed system register access.
2013      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2014      * but if FEAT_IDST is implemented then read accesses to registers
2015      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2016      * syndrome.
2017      */
2018     uint32_t syndrome;
2019 
2020     if (isread && dc_isar_feature(aa64_ids, s) &&
2021         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2022         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2023     } else {
2024         syndrome = syn_uncategorized();
2025     }
2026     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2027 }
2028 
2029 /* MRS - move from system register
2030  * MSR (register) - move to system register
2031  * SYS
2032  * SYSL
2033  * These are all essentially the same insn in 'read' and 'write'
2034  * versions, with varying op0 fields.
2035  */
2036 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
2037                        unsigned int op0, unsigned int op1, unsigned int op2,
2038                        unsigned int crn, unsigned int crm, unsigned int rt)
2039 {
2040     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2041                                       crn, crm, op0, op1, op2);
2042     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2043     bool need_exit_tb = false;
2044     TCGv_ptr tcg_ri = NULL;
2045     TCGv_i64 tcg_rt;
2046 
2047     if (!ri) {
2048         /* Unknown register; this might be a guest error or a QEMU
2049          * unimplemented feature.
2050          */
2051         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2052                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2053                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2054         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2055         return;
2056     }
2057 
2058     /* Check access permissions */
2059     if (!cp_access_ok(s->current_el, ri, isread)) {
2060         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2061         return;
2062     }
2063 
2064     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2065         /* Emit code to perform further access permissions checks at
2066          * runtime; this may result in an exception.
2067          */
2068         uint32_t syndrome;
2069 
2070         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2071         gen_a64_update_pc(s, 0);
2072         tcg_ri = tcg_temp_new_ptr();
2073         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2074                                        tcg_constant_i32(key),
2075                                        tcg_constant_i32(syndrome),
2076                                        tcg_constant_i32(isread));
2077     } else if (ri->type & ARM_CP_RAISES_EXC) {
2078         /*
2079          * The readfn or writefn might raise an exception;
2080          * synchronize the CPU state in case it does.
2081          */
2082         gen_a64_update_pc(s, 0);
2083     }
2084 
2085     /* Handle special cases first */
2086     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2087     case 0:
2088         break;
2089     case ARM_CP_NOP:
2090         return;
2091     case ARM_CP_NZCV:
2092         tcg_rt = cpu_reg(s, rt);
2093         if (isread) {
2094             gen_get_nzcv(tcg_rt);
2095         } else {
2096             gen_set_nzcv(tcg_rt);
2097         }
2098         return;
2099     case ARM_CP_CURRENTEL:
2100         /* Reads as current EL value from pstate, which is
2101          * guaranteed to be constant by the tb flags.
2102          */
2103         tcg_rt = cpu_reg(s, rt);
2104         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2105         return;
2106     case ARM_CP_DC_ZVA:
2107         /* Writes clear the aligned block of memory which rt points into. */
2108         if (s->mte_active[0]) {
2109             int desc = 0;
2110 
2111             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2112             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2113             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2114 
2115             tcg_rt = tcg_temp_new_i64();
2116             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2117                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2118         } else {
2119             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2120         }
2121         gen_helper_dc_zva(cpu_env, tcg_rt);
2122         return;
2123     case ARM_CP_DC_GVA:
2124         {
2125             TCGv_i64 clean_addr, tag;
2126 
2127             /*
2128              * DC_GVA, like DC_ZVA, requires that we supply the original
2129              * pointer for an invalid page.  Probe that address first.
2130              */
2131             tcg_rt = cpu_reg(s, rt);
2132             clean_addr = clean_data_tbi(s, tcg_rt);
2133             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2134 
2135             if (s->ata) {
2136                 /* Extract the tag from the register to match STZGM.  */
2137                 tag = tcg_temp_new_i64();
2138                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2139                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2140             }
2141         }
2142         return;
2143     case ARM_CP_DC_GZVA:
2144         {
2145             TCGv_i64 clean_addr, tag;
2146 
2147             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2148             tcg_rt = cpu_reg(s, rt);
2149             clean_addr = clean_data_tbi(s, tcg_rt);
2150             gen_helper_dc_zva(cpu_env, clean_addr);
2151 
2152             if (s->ata) {
2153                 /* Extract the tag from the register to match STZGM.  */
2154                 tag = tcg_temp_new_i64();
2155                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2156                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2157             }
2158         }
2159         return;
2160     default:
2161         g_assert_not_reached();
2162     }
2163     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2164         return;
2165     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2166         return;
2167     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2168         return;
2169     }
2170 
2171     if (ri->type & ARM_CP_IO) {
2172         /* I/O operations must end the TB here (whether read or write) */
2173         need_exit_tb = translator_io_start(&s->base);
2174     }
2175 
2176     tcg_rt = cpu_reg(s, rt);
2177 
2178     if (isread) {
2179         if (ri->type & ARM_CP_CONST) {
2180             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2181         } else if (ri->readfn) {
2182             if (!tcg_ri) {
2183                 tcg_ri = gen_lookup_cp_reg(key);
2184             }
2185             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2186         } else {
2187             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2188         }
2189     } else {
2190         if (ri->type & ARM_CP_CONST) {
2191             /* If not forbidden by access permissions, treat as WI */
2192             return;
2193         } else if (ri->writefn) {
2194             if (!tcg_ri) {
2195                 tcg_ri = gen_lookup_cp_reg(key);
2196             }
2197             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2198         } else {
2199             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2200         }
2201     }
2202 
2203     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2204         /*
2205          * A write to any coprocessor regiser that ends a TB
2206          * must rebuild the hflags for the next TB.
2207          */
2208         gen_rebuild_hflags(s);
2209         /*
2210          * We default to ending the TB on a coprocessor register write,
2211          * but allow this to be suppressed by the register definition
2212          * (usually only necessary to work around guest bugs).
2213          */
2214         need_exit_tb = true;
2215     }
2216     if (need_exit_tb) {
2217         s->base.is_jmp = DISAS_UPDATE_EXIT;
2218     }
2219 }
2220 
2221 /* System
2222  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2223  * +---------------------+---+-----+-----+-------+-------+-----+------+
2224  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2225  * +---------------------+---+-----+-----+-------+-------+-----+------+
2226  */
2227 static void disas_system(DisasContext *s, uint32_t insn)
2228 {
2229     unsigned int l, op0, op1, crn, crm, op2, rt;
2230     l = extract32(insn, 21, 1);
2231     op0 = extract32(insn, 19, 2);
2232     op1 = extract32(insn, 16, 3);
2233     crn = extract32(insn, 12, 4);
2234     crm = extract32(insn, 8, 4);
2235     op2 = extract32(insn, 5, 3);
2236     rt = extract32(insn, 0, 5);
2237 
2238     if (op0 == 0) {
2239         if (l || rt != 31) {
2240             unallocated_encoding(s);
2241             return;
2242         }
2243         switch (crn) {
2244         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2245             handle_hint(s, insn, op1, op2, crm);
2246             break;
2247         case 3: /* CLREX, DSB, DMB, ISB */
2248             handle_sync(s, insn, op1, op2, crm);
2249             break;
2250         case 4: /* MSR (immediate) */
2251             handle_msr_i(s, insn, op1, op2, crm);
2252             break;
2253         default:
2254             unallocated_encoding(s);
2255             break;
2256         }
2257         return;
2258     }
2259     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2260 }
2261 
2262 /* Exception generation
2263  *
2264  *  31             24 23 21 20                     5 4   2 1  0
2265  * +-----------------+-----+------------------------+-----+----+
2266  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2267  * +-----------------------+------------------------+----------+
2268  */
2269 static void disas_exc(DisasContext *s, uint32_t insn)
2270 {
2271     int opc = extract32(insn, 21, 3);
2272     int op2_ll = extract32(insn, 0, 5);
2273     int imm16 = extract32(insn, 5, 16);
2274     uint32_t syndrome;
2275 
2276     switch (opc) {
2277     case 0:
2278         /* For SVC, HVC and SMC we advance the single-step state
2279          * machine before taking the exception. This is architecturally
2280          * mandated, to ensure that single-stepping a system call
2281          * instruction works properly.
2282          */
2283         switch (op2_ll) {
2284         case 1:                                                     /* SVC */
2285             syndrome = syn_aa64_svc(imm16);
2286             if (s->fgt_svc) {
2287                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2288                 break;
2289             }
2290             gen_ss_advance(s);
2291             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2292             break;
2293         case 2:                                                     /* HVC */
2294             if (s->current_el == 0) {
2295                 unallocated_encoding(s);
2296                 break;
2297             }
2298             /* The pre HVC helper handles cases when HVC gets trapped
2299              * as an undefined insn by runtime configuration.
2300              */
2301             gen_a64_update_pc(s, 0);
2302             gen_helper_pre_hvc(cpu_env);
2303             gen_ss_advance(s);
2304             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2305             break;
2306         case 3:                                                     /* SMC */
2307             if (s->current_el == 0) {
2308                 unallocated_encoding(s);
2309                 break;
2310             }
2311             gen_a64_update_pc(s, 0);
2312             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2313             gen_ss_advance(s);
2314             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2315             break;
2316         default:
2317             unallocated_encoding(s);
2318             break;
2319         }
2320         break;
2321     case 1:
2322         if (op2_ll != 0) {
2323             unallocated_encoding(s);
2324             break;
2325         }
2326         /* BRK */
2327         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2328         break;
2329     case 2:
2330         if (op2_ll != 0) {
2331             unallocated_encoding(s);
2332             break;
2333         }
2334         /* HLT. This has two purposes.
2335          * Architecturally, it is an external halting debug instruction.
2336          * Since QEMU doesn't implement external debug, we treat this as
2337          * it is required for halting debug disabled: it will UNDEF.
2338          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2339          */
2340         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2341             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2342         } else {
2343             unallocated_encoding(s);
2344         }
2345         break;
2346     case 5:
2347         if (op2_ll < 1 || op2_ll > 3) {
2348             unallocated_encoding(s);
2349             break;
2350         }
2351         /* DCPS1, DCPS2, DCPS3 */
2352         unallocated_encoding(s);
2353         break;
2354     default:
2355         unallocated_encoding(s);
2356         break;
2357     }
2358 }
2359 
2360 /* Branches, exception generating and system instructions */
2361 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2362 {
2363     switch (extract32(insn, 25, 7)) {
2364     case 0x6a: /* Exception generation / System */
2365         if (insn & (1 << 24)) {
2366             if (extract32(insn, 22, 2) == 0) {
2367                 disas_system(s, insn);
2368             } else {
2369                 unallocated_encoding(s);
2370             }
2371         } else {
2372             disas_exc(s, insn);
2373         }
2374         break;
2375     default:
2376         unallocated_encoding(s);
2377         break;
2378     }
2379 }
2380 
2381 /*
2382  * Load/Store exclusive instructions are implemented by remembering
2383  * the value/address loaded, and seeing if these are the same
2384  * when the store is performed. This is not actually the architecturally
2385  * mandated semantics, but it works for typical guest code sequences
2386  * and avoids having to monitor regular stores.
2387  *
2388  * The store exclusive uses the atomic cmpxchg primitives to avoid
2389  * races in multi-threaded linux-user and when MTTCG softmmu is
2390  * enabled.
2391  */
2392 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2393                                TCGv_i64 addr, int size, bool is_pair)
2394 {
2395     int idx = get_mem_index(s);
2396     MemOp memop = s->be_data;
2397 
2398     g_assert(size <= 3);
2399     if (is_pair) {
2400         g_assert(size >= 2);
2401         if (size == 2) {
2402             /* The pair must be single-copy atomic for the doubleword.  */
2403             memop |= MO_64 | MO_ALIGN;
2404             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2405             if (s->be_data == MO_LE) {
2406                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2407                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2408             } else {
2409                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2410                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2411             }
2412         } else {
2413             /* The pair must be single-copy atomic for *each* doubleword, not
2414                the entire quadword, however it must be quadword aligned.  */
2415             memop |= MO_64;
2416             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2417                                 memop | MO_ALIGN_16);
2418 
2419             TCGv_i64 addr2 = tcg_temp_new_i64();
2420             tcg_gen_addi_i64(addr2, addr, 8);
2421             tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2422 
2423             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2424             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2425         }
2426     } else {
2427         memop |= size | MO_ALIGN;
2428         tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2429         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2430     }
2431     tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2432 }
2433 
2434 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2435                                 TCGv_i64 addr, int size, int is_pair)
2436 {
2437     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2438      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2439      *     [addr] = {Rt};
2440      *     if (is_pair) {
2441      *         [addr + datasize] = {Rt2};
2442      *     }
2443      *     {Rd} = 0;
2444      * } else {
2445      *     {Rd} = 1;
2446      * }
2447      * env->exclusive_addr = -1;
2448      */
2449     TCGLabel *fail_label = gen_new_label();
2450     TCGLabel *done_label = gen_new_label();
2451     TCGv_i64 tmp;
2452 
2453     tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2454 
2455     tmp = tcg_temp_new_i64();
2456     if (is_pair) {
2457         if (size == 2) {
2458             if (s->be_data == MO_LE) {
2459                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2460             } else {
2461                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2462             }
2463             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2464                                        cpu_exclusive_val, tmp,
2465                                        get_mem_index(s),
2466                                        MO_64 | MO_ALIGN | s->be_data);
2467             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2468         } else {
2469             TCGv_i128 t16 = tcg_temp_new_i128();
2470             TCGv_i128 c16 = tcg_temp_new_i128();
2471             TCGv_i64 a, b;
2472 
2473             if (s->be_data == MO_LE) {
2474                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2475                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2476                                         cpu_exclusive_high);
2477             } else {
2478                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2479                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2480                                         cpu_exclusive_val);
2481             }
2482 
2483             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2484                                         get_mem_index(s),
2485                                         MO_128 | MO_ALIGN | s->be_data);
2486 
2487             a = tcg_temp_new_i64();
2488             b = tcg_temp_new_i64();
2489             if (s->be_data == MO_LE) {
2490                 tcg_gen_extr_i128_i64(a, b, t16);
2491             } else {
2492                 tcg_gen_extr_i128_i64(b, a, t16);
2493             }
2494 
2495             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2496             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2497             tcg_gen_or_i64(tmp, a, b);
2498 
2499             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2500         }
2501     } else {
2502         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2503                                    cpu_reg(s, rt), get_mem_index(s),
2504                                    size | MO_ALIGN | s->be_data);
2505         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2506     }
2507     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2508     tcg_gen_br(done_label);
2509 
2510     gen_set_label(fail_label);
2511     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2512     gen_set_label(done_label);
2513     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2514 }
2515 
2516 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2517                                  int rn, int size)
2518 {
2519     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2520     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2521     int memidx = get_mem_index(s);
2522     TCGv_i64 clean_addr;
2523 
2524     if (rn == 31) {
2525         gen_check_sp_alignment(s);
2526     }
2527     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2528     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2529                                size | MO_ALIGN | s->be_data);
2530 }
2531 
2532 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2533                                       int rn, int size)
2534 {
2535     TCGv_i64 s1 = cpu_reg(s, rs);
2536     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2537     TCGv_i64 t1 = cpu_reg(s, rt);
2538     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2539     TCGv_i64 clean_addr;
2540     int memidx = get_mem_index(s);
2541 
2542     if (rn == 31) {
2543         gen_check_sp_alignment(s);
2544     }
2545 
2546     /* This is a single atomic access, despite the "pair". */
2547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2548 
2549     if (size == 2) {
2550         TCGv_i64 cmp = tcg_temp_new_i64();
2551         TCGv_i64 val = tcg_temp_new_i64();
2552 
2553         if (s->be_data == MO_LE) {
2554             tcg_gen_concat32_i64(val, t1, t2);
2555             tcg_gen_concat32_i64(cmp, s1, s2);
2556         } else {
2557             tcg_gen_concat32_i64(val, t2, t1);
2558             tcg_gen_concat32_i64(cmp, s2, s1);
2559         }
2560 
2561         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2562                                    MO_64 | MO_ALIGN | s->be_data);
2563 
2564         if (s->be_data == MO_LE) {
2565             tcg_gen_extr32_i64(s1, s2, cmp);
2566         } else {
2567             tcg_gen_extr32_i64(s2, s1, cmp);
2568         }
2569     } else {
2570         TCGv_i128 cmp = tcg_temp_new_i128();
2571         TCGv_i128 val = tcg_temp_new_i128();
2572 
2573         if (s->be_data == MO_LE) {
2574             tcg_gen_concat_i64_i128(val, t1, t2);
2575             tcg_gen_concat_i64_i128(cmp, s1, s2);
2576         } else {
2577             tcg_gen_concat_i64_i128(val, t2, t1);
2578             tcg_gen_concat_i64_i128(cmp, s2, s1);
2579         }
2580 
2581         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2582                                     MO_128 | MO_ALIGN | s->be_data);
2583 
2584         if (s->be_data == MO_LE) {
2585             tcg_gen_extr_i128_i64(s1, s2, cmp);
2586         } else {
2587             tcg_gen_extr_i128_i64(s2, s1, cmp);
2588         }
2589     }
2590 }
2591 
2592 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2593  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2594  */
2595 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2596 {
2597     int opc0 = extract32(opc, 0, 1);
2598     int regsize;
2599 
2600     if (is_signed) {
2601         regsize = opc0 ? 32 : 64;
2602     } else {
2603         regsize = size == 3 ? 64 : 32;
2604     }
2605     return regsize == 64;
2606 }
2607 
2608 /* Load/store exclusive
2609  *
2610  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2611  * +-----+-------------+----+---+----+------+----+-------+------+------+
2612  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2613  * +-----+-------------+----+---+----+------+----+-------+------+------+
2614  *
2615  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2616  *   L: 0 -> store, 1 -> load
2617  *  o2: 0 -> exclusive, 1 -> not
2618  *  o1: 0 -> single register, 1 -> register pair
2619  *  o0: 1 -> load-acquire/store-release, 0 -> not
2620  */
2621 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2622 {
2623     int rt = extract32(insn, 0, 5);
2624     int rn = extract32(insn, 5, 5);
2625     int rt2 = extract32(insn, 10, 5);
2626     int rs = extract32(insn, 16, 5);
2627     int is_lasr = extract32(insn, 15, 1);
2628     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2629     int size = extract32(insn, 30, 2);
2630     TCGv_i64 clean_addr;
2631 
2632     switch (o2_L_o1_o0) {
2633     case 0x0: /* STXR */
2634     case 0x1: /* STLXR */
2635         if (rn == 31) {
2636             gen_check_sp_alignment(s);
2637         }
2638         if (is_lasr) {
2639             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2640         }
2641         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2642                                     true, rn != 31, size);
2643         gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2644         return;
2645 
2646     case 0x4: /* LDXR */
2647     case 0x5: /* LDAXR */
2648         if (rn == 31) {
2649             gen_check_sp_alignment(s);
2650         }
2651         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2652                                     false, rn != 31, size);
2653         s->is_ldex = true;
2654         gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2655         if (is_lasr) {
2656             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2657         }
2658         return;
2659 
2660     case 0x8: /* STLLR */
2661         if (!dc_isar_feature(aa64_lor, s)) {
2662             break;
2663         }
2664         /* StoreLORelease is the same as Store-Release for QEMU.  */
2665         /* fall through */
2666     case 0x9: /* STLR */
2667         /* Generate ISS for non-exclusive accesses including LASR.  */
2668         if (rn == 31) {
2669             gen_check_sp_alignment(s);
2670         }
2671         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2672         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2673                                     true, rn != 31, size);
2674         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2675         do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2676                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2677         return;
2678 
2679     case 0xc: /* LDLAR */
2680         if (!dc_isar_feature(aa64_lor, s)) {
2681             break;
2682         }
2683         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2684         /* fall through */
2685     case 0xd: /* LDAR */
2686         /* Generate ISS for non-exclusive accesses including LASR.  */
2687         if (rn == 31) {
2688             gen_check_sp_alignment(s);
2689         }
2690         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2691                                     false, rn != 31, size);
2692         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2693         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2694                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2695         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2696         return;
2697 
2698     case 0x2: case 0x3: /* CASP / STXP */
2699         if (size & 2) { /* STXP / STLXP */
2700             if (rn == 31) {
2701                 gen_check_sp_alignment(s);
2702             }
2703             if (is_lasr) {
2704                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2705             }
2706             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2707                                         true, rn != 31, size);
2708             gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2709             return;
2710         }
2711         if (rt2 == 31
2712             && ((rt | rs) & 1) == 0
2713             && dc_isar_feature(aa64_atomics, s)) {
2714             /* CASP / CASPL */
2715             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2716             return;
2717         }
2718         break;
2719 
2720     case 0x6: case 0x7: /* CASPA / LDXP */
2721         if (size & 2) { /* LDXP / LDAXP */
2722             if (rn == 31) {
2723                 gen_check_sp_alignment(s);
2724             }
2725             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2726                                         false, rn != 31, size);
2727             s->is_ldex = true;
2728             gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2729             if (is_lasr) {
2730                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2731             }
2732             return;
2733         }
2734         if (rt2 == 31
2735             && ((rt | rs) & 1) == 0
2736             && dc_isar_feature(aa64_atomics, s)) {
2737             /* CASPA / CASPAL */
2738             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2739             return;
2740         }
2741         break;
2742 
2743     case 0xa: /* CAS */
2744     case 0xb: /* CASL */
2745     case 0xe: /* CASA */
2746     case 0xf: /* CASAL */
2747         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2748             gen_compare_and_swap(s, rs, rt, rn, size);
2749             return;
2750         }
2751         break;
2752     }
2753     unallocated_encoding(s);
2754 }
2755 
2756 /*
2757  * Load register (literal)
2758  *
2759  *  31 30 29   27  26 25 24 23                5 4     0
2760  * +-----+-------+---+-----+-------------------+-------+
2761  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2762  * +-----+-------+---+-----+-------------------+-------+
2763  *
2764  * V: 1 -> vector (simd/fp)
2765  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2766  *                   10-> 32 bit signed, 11 -> prefetch
2767  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2768  */
2769 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2770 {
2771     int rt = extract32(insn, 0, 5);
2772     int64_t imm = sextract32(insn, 5, 19) << 2;
2773     bool is_vector = extract32(insn, 26, 1);
2774     int opc = extract32(insn, 30, 2);
2775     bool is_signed = false;
2776     int size = 2;
2777     TCGv_i64 tcg_rt, clean_addr;
2778 
2779     if (is_vector) {
2780         if (opc == 3) {
2781             unallocated_encoding(s);
2782             return;
2783         }
2784         size = 2 + opc;
2785         if (!fp_access_check(s)) {
2786             return;
2787         }
2788     } else {
2789         if (opc == 3) {
2790             /* PRFM (literal) : prefetch */
2791             return;
2792         }
2793         size = 2 + extract32(opc, 0, 1);
2794         is_signed = extract32(opc, 1, 1);
2795     }
2796 
2797     tcg_rt = cpu_reg(s, rt);
2798 
2799     clean_addr = tcg_temp_new_i64();
2800     gen_pc_plus_diff(s, clean_addr, imm);
2801     if (is_vector) {
2802         do_fp_ld(s, rt, clean_addr, size);
2803     } else {
2804         /* Only unsigned 32bit loads target 32bit registers.  */
2805         bool iss_sf = opc != 0;
2806 
2807         do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2808                   false, true, rt, iss_sf, false);
2809     }
2810 }
2811 
2812 /*
2813  * LDNP (Load Pair - non-temporal hint)
2814  * LDP (Load Pair - non vector)
2815  * LDPSW (Load Pair Signed Word - non vector)
2816  * STNP (Store Pair - non-temporal hint)
2817  * STP (Store Pair - non vector)
2818  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2819  * LDP (Load Pair of SIMD&FP)
2820  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2821  * STP (Store Pair of SIMD&FP)
2822  *
2823  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2824  * +-----+-------+---+---+-------+---+-----------------------------+
2825  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2826  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2827  *
2828  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2829  *      LDPSW/STGP               01
2830  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2831  *   V: 0 -> GPR, 1 -> Vector
2832  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2833  *      10 -> signed offset, 11 -> pre-index
2834  *   L: 0 -> Store 1 -> Load
2835  *
2836  * Rt, Rt2 = GPR or SIMD registers to be stored
2837  * Rn = general purpose register containing address
2838  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2839  */
2840 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2841 {
2842     int rt = extract32(insn, 0, 5);
2843     int rn = extract32(insn, 5, 5);
2844     int rt2 = extract32(insn, 10, 5);
2845     uint64_t offset = sextract64(insn, 15, 7);
2846     int index = extract32(insn, 23, 2);
2847     bool is_vector = extract32(insn, 26, 1);
2848     bool is_load = extract32(insn, 22, 1);
2849     int opc = extract32(insn, 30, 2);
2850 
2851     bool is_signed = false;
2852     bool postindex = false;
2853     bool wback = false;
2854     bool set_tag = false;
2855 
2856     TCGv_i64 clean_addr, dirty_addr;
2857 
2858     int size;
2859 
2860     if (opc == 3) {
2861         unallocated_encoding(s);
2862         return;
2863     }
2864 
2865     if (is_vector) {
2866         size = 2 + opc;
2867     } else if (opc == 1 && !is_load) {
2868         /* STGP */
2869         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2870             unallocated_encoding(s);
2871             return;
2872         }
2873         size = 3;
2874         set_tag = true;
2875     } else {
2876         size = 2 + extract32(opc, 1, 1);
2877         is_signed = extract32(opc, 0, 1);
2878         if (!is_load && is_signed) {
2879             unallocated_encoding(s);
2880             return;
2881         }
2882     }
2883 
2884     switch (index) {
2885     case 1: /* post-index */
2886         postindex = true;
2887         wback = true;
2888         break;
2889     case 0:
2890         /* signed offset with "non-temporal" hint. Since we don't emulate
2891          * caches we don't care about hints to the cache system about
2892          * data access patterns, and handle this identically to plain
2893          * signed offset.
2894          */
2895         if (is_signed) {
2896             /* There is no non-temporal-hint version of LDPSW */
2897             unallocated_encoding(s);
2898             return;
2899         }
2900         postindex = false;
2901         break;
2902     case 2: /* signed offset, rn not updated */
2903         postindex = false;
2904         break;
2905     case 3: /* pre-index */
2906         postindex = false;
2907         wback = true;
2908         break;
2909     }
2910 
2911     if (is_vector && !fp_access_check(s)) {
2912         return;
2913     }
2914 
2915     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2916 
2917     if (rn == 31) {
2918         gen_check_sp_alignment(s);
2919     }
2920 
2921     dirty_addr = read_cpu_reg_sp(s, rn, 1);
2922     if (!postindex) {
2923         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2924     }
2925 
2926     if (set_tag) {
2927         if (!s->ata) {
2928             /*
2929              * TODO: We could rely on the stores below, at least for
2930              * system mode, if we arrange to add MO_ALIGN_16.
2931              */
2932             gen_helper_stg_stub(cpu_env, dirty_addr);
2933         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2934             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2935         } else {
2936             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2937         }
2938     }
2939 
2940     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2941                                 (wback || rn != 31) && !set_tag, 2 << size);
2942 
2943     if (is_vector) {
2944         if (is_load) {
2945             do_fp_ld(s, rt, clean_addr, size);
2946         } else {
2947             do_fp_st(s, rt, clean_addr, size);
2948         }
2949         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2950         if (is_load) {
2951             do_fp_ld(s, rt2, clean_addr, size);
2952         } else {
2953             do_fp_st(s, rt2, clean_addr, size);
2954         }
2955     } else {
2956         TCGv_i64 tcg_rt = cpu_reg(s, rt);
2957         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2958 
2959         if (is_load) {
2960             TCGv_i64 tmp = tcg_temp_new_i64();
2961 
2962             /* Do not modify tcg_rt before recognizing any exception
2963              * from the second load.
2964              */
2965             do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
2966                       false, false, 0, false, false);
2967             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2968             do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
2969                       false, false, 0, false, false);
2970 
2971             tcg_gen_mov_i64(tcg_rt, tmp);
2972         } else {
2973             do_gpr_st(s, tcg_rt, clean_addr, size,
2974                       false, 0, false, false);
2975             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2976             do_gpr_st(s, tcg_rt2, clean_addr, size,
2977                       false, 0, false, false);
2978         }
2979     }
2980 
2981     if (wback) {
2982         if (postindex) {
2983             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2984         }
2985         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2986     }
2987 }
2988 
2989 /*
2990  * Load/store (immediate post-indexed)
2991  * Load/store (immediate pre-indexed)
2992  * Load/store (unscaled immediate)
2993  *
2994  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
2995  * +----+-------+---+-----+-----+---+--------+-----+------+------+
2996  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
2997  * +----+-------+---+-----+-----+---+--------+-----+------+------+
2998  *
2999  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3000          10 -> unprivileged
3001  * V = 0 -> non-vector
3002  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3003  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3004  */
3005 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3006                                 int opc,
3007                                 int size,
3008                                 int rt,
3009                                 bool is_vector)
3010 {
3011     int rn = extract32(insn, 5, 5);
3012     int imm9 = sextract32(insn, 12, 9);
3013     int idx = extract32(insn, 10, 2);
3014     bool is_signed = false;
3015     bool is_store = false;
3016     bool is_extended = false;
3017     bool is_unpriv = (idx == 2);
3018     bool iss_valid;
3019     bool post_index;
3020     bool writeback;
3021     int memidx;
3022 
3023     TCGv_i64 clean_addr, dirty_addr;
3024 
3025     if (is_vector) {
3026         size |= (opc & 2) << 1;
3027         if (size > 4 || is_unpriv) {
3028             unallocated_encoding(s);
3029             return;
3030         }
3031         is_store = ((opc & 1) == 0);
3032         if (!fp_access_check(s)) {
3033             return;
3034         }
3035     } else {
3036         if (size == 3 && opc == 2) {
3037             /* PRFM - prefetch */
3038             if (idx != 0) {
3039                 unallocated_encoding(s);
3040                 return;
3041             }
3042             return;
3043         }
3044         if (opc == 3 && size > 1) {
3045             unallocated_encoding(s);
3046             return;
3047         }
3048         is_store = (opc == 0);
3049         is_signed = extract32(opc, 1, 1);
3050         is_extended = (size < 3) && extract32(opc, 0, 1);
3051     }
3052 
3053     switch (idx) {
3054     case 0:
3055     case 2:
3056         post_index = false;
3057         writeback = false;
3058         break;
3059     case 1:
3060         post_index = true;
3061         writeback = true;
3062         break;
3063     case 3:
3064         post_index = false;
3065         writeback = true;
3066         break;
3067     default:
3068         g_assert_not_reached();
3069     }
3070 
3071     iss_valid = !is_vector && !writeback;
3072 
3073     if (rn == 31) {
3074         gen_check_sp_alignment(s);
3075     }
3076 
3077     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3078     if (!post_index) {
3079         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3080     }
3081 
3082     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3083     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3084                                        writeback || rn != 31,
3085                                        size, is_unpriv, memidx);
3086 
3087     if (is_vector) {
3088         if (is_store) {
3089             do_fp_st(s, rt, clean_addr, size);
3090         } else {
3091             do_fp_ld(s, rt, clean_addr, size);
3092         }
3093     } else {
3094         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3095         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3096 
3097         if (is_store) {
3098             do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3099                              iss_valid, rt, iss_sf, false);
3100         } else {
3101             do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3102                              is_extended, memidx,
3103                              iss_valid, rt, iss_sf, false);
3104         }
3105     }
3106 
3107     if (writeback) {
3108         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3109         if (post_index) {
3110             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3111         }
3112         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3113     }
3114 }
3115 
3116 /*
3117  * Load/store (register offset)
3118  *
3119  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3120  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3121  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3122  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3123  *
3124  * For non-vector:
3125  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3126  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3127  * For vector:
3128  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3129  *   opc<0>: 0 -> store, 1 -> load
3130  * V: 1 -> vector/simd
3131  * opt: extend encoding (see DecodeRegExtend)
3132  * S: if S=1 then scale (essentially index by sizeof(size))
3133  * Rt: register to transfer into/out of
3134  * Rn: address register or SP for base
3135  * Rm: offset register or ZR for offset
3136  */
3137 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3138                                    int opc,
3139                                    int size,
3140                                    int rt,
3141                                    bool is_vector)
3142 {
3143     int rn = extract32(insn, 5, 5);
3144     int shift = extract32(insn, 12, 1);
3145     int rm = extract32(insn, 16, 5);
3146     int opt = extract32(insn, 13, 3);
3147     bool is_signed = false;
3148     bool is_store = false;
3149     bool is_extended = false;
3150 
3151     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3152 
3153     if (extract32(opt, 1, 1) == 0) {
3154         unallocated_encoding(s);
3155         return;
3156     }
3157 
3158     if (is_vector) {
3159         size |= (opc & 2) << 1;
3160         if (size > 4) {
3161             unallocated_encoding(s);
3162             return;
3163         }
3164         is_store = !extract32(opc, 0, 1);
3165         if (!fp_access_check(s)) {
3166             return;
3167         }
3168     } else {
3169         if (size == 3 && opc == 2) {
3170             /* PRFM - prefetch */
3171             return;
3172         }
3173         if (opc == 3 && size > 1) {
3174             unallocated_encoding(s);
3175             return;
3176         }
3177         is_store = (opc == 0);
3178         is_signed = extract32(opc, 1, 1);
3179         is_extended = (size < 3) && extract32(opc, 0, 1);
3180     }
3181 
3182     if (rn == 31) {
3183         gen_check_sp_alignment(s);
3184     }
3185     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3186 
3187     tcg_rm = read_cpu_reg(s, rm, 1);
3188     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3189 
3190     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3191     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3192 
3193     if (is_vector) {
3194         if (is_store) {
3195             do_fp_st(s, rt, clean_addr, size);
3196         } else {
3197             do_fp_ld(s, rt, clean_addr, size);
3198         }
3199     } else {
3200         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3201         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3202         if (is_store) {
3203             do_gpr_st(s, tcg_rt, clean_addr, size,
3204                       true, rt, iss_sf, false);
3205         } else {
3206             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3207                       is_extended, true, rt, iss_sf, false);
3208         }
3209     }
3210 }
3211 
3212 /*
3213  * Load/store (unsigned immediate)
3214  *
3215  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3216  * +----+-------+---+-----+-----+------------+-------+------+
3217  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3218  * +----+-------+---+-----+-----+------------+-------+------+
3219  *
3220  * For non-vector:
3221  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3222  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3223  * For vector:
3224  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3225  *   opc<0>: 0 -> store, 1 -> load
3226  * Rn: base address register (inc SP)
3227  * Rt: target register
3228  */
3229 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3230                                         int opc,
3231                                         int size,
3232                                         int rt,
3233                                         bool is_vector)
3234 {
3235     int rn = extract32(insn, 5, 5);
3236     unsigned int imm12 = extract32(insn, 10, 12);
3237     unsigned int offset;
3238 
3239     TCGv_i64 clean_addr, dirty_addr;
3240 
3241     bool is_store;
3242     bool is_signed = false;
3243     bool is_extended = false;
3244 
3245     if (is_vector) {
3246         size |= (opc & 2) << 1;
3247         if (size > 4) {
3248             unallocated_encoding(s);
3249             return;
3250         }
3251         is_store = !extract32(opc, 0, 1);
3252         if (!fp_access_check(s)) {
3253             return;
3254         }
3255     } else {
3256         if (size == 3 && opc == 2) {
3257             /* PRFM - prefetch */
3258             return;
3259         }
3260         if (opc == 3 && size > 1) {
3261             unallocated_encoding(s);
3262             return;
3263         }
3264         is_store = (opc == 0);
3265         is_signed = extract32(opc, 1, 1);
3266         is_extended = (size < 3) && extract32(opc, 0, 1);
3267     }
3268 
3269     if (rn == 31) {
3270         gen_check_sp_alignment(s);
3271     }
3272     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3273     offset = imm12 << size;
3274     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3275     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3276 
3277     if (is_vector) {
3278         if (is_store) {
3279             do_fp_st(s, rt, clean_addr, size);
3280         } else {
3281             do_fp_ld(s, rt, clean_addr, size);
3282         }
3283     } else {
3284         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3285         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3286         if (is_store) {
3287             do_gpr_st(s, tcg_rt, clean_addr, size,
3288                       true, rt, iss_sf, false);
3289         } else {
3290             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3291                       is_extended, true, rt, iss_sf, false);
3292         }
3293     }
3294 }
3295 
3296 /* Atomic memory operations
3297  *
3298  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3299  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3300  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3301  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3302  *
3303  * Rt: the result register
3304  * Rn: base address or SP
3305  * Rs: the source register for the operation
3306  * V: vector flag (always 0 as of v8.3)
3307  * A: acquire flag
3308  * R: release flag
3309  */
3310 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3311                               int size, int rt, bool is_vector)
3312 {
3313     int rs = extract32(insn, 16, 5);
3314     int rn = extract32(insn, 5, 5);
3315     int o3_opc = extract32(insn, 12, 4);
3316     bool r = extract32(insn, 22, 1);
3317     bool a = extract32(insn, 23, 1);
3318     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3319     AtomicThreeOpFn *fn = NULL;
3320     MemOp mop = s->be_data | size | MO_ALIGN;
3321 
3322     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3323         unallocated_encoding(s);
3324         return;
3325     }
3326     switch (o3_opc) {
3327     case 000: /* LDADD */
3328         fn = tcg_gen_atomic_fetch_add_i64;
3329         break;
3330     case 001: /* LDCLR */
3331         fn = tcg_gen_atomic_fetch_and_i64;
3332         break;
3333     case 002: /* LDEOR */
3334         fn = tcg_gen_atomic_fetch_xor_i64;
3335         break;
3336     case 003: /* LDSET */
3337         fn = tcg_gen_atomic_fetch_or_i64;
3338         break;
3339     case 004: /* LDSMAX */
3340         fn = tcg_gen_atomic_fetch_smax_i64;
3341         mop |= MO_SIGN;
3342         break;
3343     case 005: /* LDSMIN */
3344         fn = tcg_gen_atomic_fetch_smin_i64;
3345         mop |= MO_SIGN;
3346         break;
3347     case 006: /* LDUMAX */
3348         fn = tcg_gen_atomic_fetch_umax_i64;
3349         break;
3350     case 007: /* LDUMIN */
3351         fn = tcg_gen_atomic_fetch_umin_i64;
3352         break;
3353     case 010: /* SWP */
3354         fn = tcg_gen_atomic_xchg_i64;
3355         break;
3356     case 014: /* LDAPR, LDAPRH, LDAPRB */
3357         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3358             rs != 31 || a != 1 || r != 0) {
3359             unallocated_encoding(s);
3360             return;
3361         }
3362         break;
3363     default:
3364         unallocated_encoding(s);
3365         return;
3366     }
3367 
3368     if (rn == 31) {
3369         gen_check_sp_alignment(s);
3370     }
3371     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3372 
3373     if (o3_opc == 014) {
3374         /*
3375          * LDAPR* are a special case because they are a simple load, not a
3376          * fetch-and-do-something op.
3377          * The architectural consistency requirements here are weaker than
3378          * full load-acquire (we only need "load-acquire processor consistent"),
3379          * but we choose to implement them as full LDAQ.
3380          */
3381         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3382                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3383         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3384         return;
3385     }
3386 
3387     tcg_rs = read_cpu_reg(s, rs, true);
3388     tcg_rt = cpu_reg(s, rt);
3389 
3390     if (o3_opc == 1) { /* LDCLR */
3391         tcg_gen_not_i64(tcg_rs, tcg_rs);
3392     }
3393 
3394     /* The tcg atomic primitives are all full barriers.  Therefore we
3395      * can ignore the Acquire and Release bits of this instruction.
3396      */
3397     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3398 
3399     if ((mop & MO_SIGN) && size != MO_64) {
3400         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3401     }
3402 }
3403 
3404 /*
3405  * PAC memory operations
3406  *
3407  *  31  30      27  26    24    22  21       12  11  10    5     0
3408  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3409  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3410  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3411  *
3412  * Rt: the result register
3413  * Rn: base address or SP
3414  * V: vector flag (always 0 as of v8.3)
3415  * M: clear for key DA, set for key DB
3416  * W: pre-indexing flag
3417  * S: sign for imm9.
3418  */
3419 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3420                            int size, int rt, bool is_vector)
3421 {
3422     int rn = extract32(insn, 5, 5);
3423     bool is_wback = extract32(insn, 11, 1);
3424     bool use_key_a = !extract32(insn, 23, 1);
3425     int offset;
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427 
3428     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3429         unallocated_encoding(s);
3430         return;
3431     }
3432 
3433     if (rn == 31) {
3434         gen_check_sp_alignment(s);
3435     }
3436     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3437 
3438     if (s->pauth_active) {
3439         if (use_key_a) {
3440             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3441                              tcg_constant_i64(0));
3442         } else {
3443             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3444                              tcg_constant_i64(0));
3445         }
3446     }
3447 
3448     /* Form the 10-bit signed, scaled offset.  */
3449     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3450     offset = sextract32(offset << size, 0, 10 + size);
3451     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3452 
3453     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3454     clean_addr = gen_mte_check1(s, dirty_addr, false,
3455                                 is_wback || rn != 31, size);
3456 
3457     tcg_rt = cpu_reg(s, rt);
3458     do_gpr_ld(s, tcg_rt, clean_addr, size,
3459               /* extend */ false, /* iss_valid */ !is_wback,
3460               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3461 
3462     if (is_wback) {
3463         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3464     }
3465 }
3466 
3467 /*
3468  * LDAPR/STLR (unscaled immediate)
3469  *
3470  *  31  30            24    22  21       12    10    5     0
3471  * +------+-------------+-----+---+--------+-----+----+-----+
3472  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3473  * +------+-------------+-----+---+--------+-----+----+-----+
3474  *
3475  * Rt: source or destination register
3476  * Rn: base register
3477  * imm9: unscaled immediate offset
3478  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3479  * size: size of load/store
3480  */
3481 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3482 {
3483     int rt = extract32(insn, 0, 5);
3484     int rn = extract32(insn, 5, 5);
3485     int offset = sextract32(insn, 12, 9);
3486     int opc = extract32(insn, 22, 2);
3487     int size = extract32(insn, 30, 2);
3488     TCGv_i64 clean_addr, dirty_addr;
3489     bool is_store = false;
3490     bool extend = false;
3491     bool iss_sf;
3492     MemOp mop;
3493 
3494     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3495         unallocated_encoding(s);
3496         return;
3497     }
3498 
3499     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3500     mop = size | MO_ALIGN;
3501 
3502     switch (opc) {
3503     case 0: /* STLURB */
3504         is_store = true;
3505         break;
3506     case 1: /* LDAPUR* */
3507         break;
3508     case 2: /* LDAPURS* 64-bit variant */
3509         if (size == 3) {
3510             unallocated_encoding(s);
3511             return;
3512         }
3513         mop |= MO_SIGN;
3514         break;
3515     case 3: /* LDAPURS* 32-bit variant */
3516         if (size > 1) {
3517             unallocated_encoding(s);
3518             return;
3519         }
3520         mop |= MO_SIGN;
3521         extend = true; /* zero-extend 32->64 after signed load */
3522         break;
3523     default:
3524         g_assert_not_reached();
3525     }
3526 
3527     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3528 
3529     if (rn == 31) {
3530         gen_check_sp_alignment(s);
3531     }
3532 
3533     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3534     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3535     clean_addr = clean_data_tbi(s, dirty_addr);
3536 
3537     if (is_store) {
3538         /* Store-Release semantics */
3539         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3540         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3541     } else {
3542         /*
3543          * Load-AcquirePC semantics; we implement as the slightly more
3544          * restrictive Load-Acquire.
3545          */
3546         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3547                   extend, true, rt, iss_sf, true);
3548         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3549     }
3550 }
3551 
3552 /* Load/store register (all forms) */
3553 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3554 {
3555     int rt = extract32(insn, 0, 5);
3556     int opc = extract32(insn, 22, 2);
3557     bool is_vector = extract32(insn, 26, 1);
3558     int size = extract32(insn, 30, 2);
3559 
3560     switch (extract32(insn, 24, 2)) {
3561     case 0:
3562         if (extract32(insn, 21, 1) == 0) {
3563             /* Load/store register (unscaled immediate)
3564              * Load/store immediate pre/post-indexed
3565              * Load/store register unprivileged
3566              */
3567             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3568             return;
3569         }
3570         switch (extract32(insn, 10, 2)) {
3571         case 0:
3572             disas_ldst_atomic(s, insn, size, rt, is_vector);
3573             return;
3574         case 2:
3575             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3576             return;
3577         default:
3578             disas_ldst_pac(s, insn, size, rt, is_vector);
3579             return;
3580         }
3581         break;
3582     case 1:
3583         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3584         return;
3585     }
3586     unallocated_encoding(s);
3587 }
3588 
3589 /* AdvSIMD load/store multiple structures
3590  *
3591  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3592  * +---+---+---------------+---+-------------+--------+------+------+------+
3593  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3594  * +---+---+---------------+---+-------------+--------+------+------+------+
3595  *
3596  * AdvSIMD load/store multiple structures (post-indexed)
3597  *
3598  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3599  * +---+---+---------------+---+---+---------+--------+------+------+------+
3600  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3601  * +---+---+---------------+---+---+---------+--------+------+------+------+
3602  *
3603  * Rt: first (or only) SIMD&FP register to be transferred
3604  * Rn: base address or SP
3605  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3606  */
3607 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3608 {
3609     int rt = extract32(insn, 0, 5);
3610     int rn = extract32(insn, 5, 5);
3611     int rm = extract32(insn, 16, 5);
3612     int size = extract32(insn, 10, 2);
3613     int opcode = extract32(insn, 12, 4);
3614     bool is_store = !extract32(insn, 22, 1);
3615     bool is_postidx = extract32(insn, 23, 1);
3616     bool is_q = extract32(insn, 30, 1);
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int rpt;    /* num iterations */
3623     int selem;  /* structure elements */
3624     int r;
3625 
3626     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3627         unallocated_encoding(s);
3628         return;
3629     }
3630 
3631     if (!is_postidx && rm != 0) {
3632         unallocated_encoding(s);
3633         return;
3634     }
3635 
3636     /* From the shared decode logic */
3637     switch (opcode) {
3638     case 0x0:
3639         rpt = 1;
3640         selem = 4;
3641         break;
3642     case 0x2:
3643         rpt = 4;
3644         selem = 1;
3645         break;
3646     case 0x4:
3647         rpt = 1;
3648         selem = 3;
3649         break;
3650     case 0x6:
3651         rpt = 3;
3652         selem = 1;
3653         break;
3654     case 0x7:
3655         rpt = 1;
3656         selem = 1;
3657         break;
3658     case 0x8:
3659         rpt = 1;
3660         selem = 2;
3661         break;
3662     case 0xa:
3663         rpt = 2;
3664         selem = 1;
3665         break;
3666     default:
3667         unallocated_encoding(s);
3668         return;
3669     }
3670 
3671     if (size == 3 && !is_q && selem != 1) {
3672         /* reserved */
3673         unallocated_encoding(s);
3674         return;
3675     }
3676 
3677     if (!fp_access_check(s)) {
3678         return;
3679     }
3680 
3681     if (rn == 31) {
3682         gen_check_sp_alignment(s);
3683     }
3684 
3685     /* For our purposes, bytes are always little-endian.  */
3686     endian = s->be_data;
3687     if (size == 0) {
3688         endian = MO_LE;
3689     }
3690 
3691     total = rpt * selem * (is_q ? 16 : 8);
3692     tcg_rn = cpu_reg_sp(s, rn);
3693 
3694     /*
3695      * Issue the MTE check vs the logical repeat count, before we
3696      * promote consecutive little-endian elements below.
3697      */
3698     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3699                                 total);
3700 
3701     /*
3702      * Consecutive little-endian elements from a single register
3703      * can be promoted to a larger little-endian operation.
3704      */
3705     align = MO_ALIGN;
3706     if (selem == 1 && endian == MO_LE) {
3707         align = pow2_align(size);
3708         size = 3;
3709     }
3710     if (!s->align_mem) {
3711         align = 0;
3712     }
3713     mop = endian | size | align;
3714 
3715     elements = (is_q ? 16 : 8) >> size;
3716     tcg_ebytes = tcg_constant_i64(1 << size);
3717     for (r = 0; r < rpt; r++) {
3718         int e;
3719         for (e = 0; e < elements; e++) {
3720             int xs;
3721             for (xs = 0; xs < selem; xs++) {
3722                 int tt = (rt + r + xs) % 32;
3723                 if (is_store) {
3724                     do_vec_st(s, tt, e, clean_addr, mop);
3725                 } else {
3726                     do_vec_ld(s, tt, e, clean_addr, mop);
3727                 }
3728                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3729             }
3730         }
3731     }
3732 
3733     if (!is_store) {
3734         /* For non-quad operations, setting a slice of the low
3735          * 64 bits of the register clears the high 64 bits (in
3736          * the ARM ARM pseudocode this is implicit in the fact
3737          * that 'rval' is a 64 bit wide variable).
3738          * For quad operations, we might still need to zero the
3739          * high bits of SVE.
3740          */
3741         for (r = 0; r < rpt * selem; r++) {
3742             int tt = (rt + r) % 32;
3743             clear_vec_high(s, is_q, tt);
3744         }
3745     }
3746 
3747     if (is_postidx) {
3748         if (rm == 31) {
3749             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3750         } else {
3751             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3752         }
3753     }
3754 }
3755 
3756 /* AdvSIMD load/store single structure
3757  *
3758  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3759  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3760  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3761  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3762  *
3763  * AdvSIMD load/store single structure (post-indexed)
3764  *
3765  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3766  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3767  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3768  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3769  *
3770  * Rt: first (or only) SIMD&FP register to be transferred
3771  * Rn: base address or SP
3772  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3773  * index = encoded in Q:S:size dependent on size
3774  *
3775  * lane_size = encoded in R, opc
3776  * transfer width = encoded in opc, S, size
3777  */
3778 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3779 {
3780     int rt = extract32(insn, 0, 5);
3781     int rn = extract32(insn, 5, 5);
3782     int rm = extract32(insn, 16, 5);
3783     int size = extract32(insn, 10, 2);
3784     int S = extract32(insn, 12, 1);
3785     int opc = extract32(insn, 13, 3);
3786     int R = extract32(insn, 21, 1);
3787     int is_load = extract32(insn, 22, 1);
3788     int is_postidx = extract32(insn, 23, 1);
3789     int is_q = extract32(insn, 30, 1);
3790 
3791     int scale = extract32(opc, 1, 2);
3792     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3793     bool replicate = false;
3794     int index = is_q << 3 | S << 2 | size;
3795     int xs, total;
3796     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3797     MemOp mop;
3798 
3799     if (extract32(insn, 31, 1)) {
3800         unallocated_encoding(s);
3801         return;
3802     }
3803     if (!is_postidx && rm != 0) {
3804         unallocated_encoding(s);
3805         return;
3806     }
3807 
3808     switch (scale) {
3809     case 3:
3810         if (!is_load || S) {
3811             unallocated_encoding(s);
3812             return;
3813         }
3814         scale = size;
3815         replicate = true;
3816         break;
3817     case 0:
3818         break;
3819     case 1:
3820         if (extract32(size, 0, 1)) {
3821             unallocated_encoding(s);
3822             return;
3823         }
3824         index >>= 1;
3825         break;
3826     case 2:
3827         if (extract32(size, 1, 1)) {
3828             unallocated_encoding(s);
3829             return;
3830         }
3831         if (!extract32(size, 0, 1)) {
3832             index >>= 2;
3833         } else {
3834             if (S) {
3835                 unallocated_encoding(s);
3836                 return;
3837             }
3838             index >>= 3;
3839             scale = 3;
3840         }
3841         break;
3842     default:
3843         g_assert_not_reached();
3844     }
3845 
3846     if (!fp_access_check(s)) {
3847         return;
3848     }
3849 
3850     if (rn == 31) {
3851         gen_check_sp_alignment(s);
3852     }
3853 
3854     total = selem << scale;
3855     tcg_rn = cpu_reg_sp(s, rn);
3856 
3857     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3858                                 total);
3859     mop = finalize_memop(s, scale);
3860 
3861     tcg_ebytes = tcg_constant_i64(1 << scale);
3862     for (xs = 0; xs < selem; xs++) {
3863         if (replicate) {
3864             /* Load and replicate to all elements */
3865             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3866 
3867             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3868             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3869                                  (is_q + 1) * 8, vec_full_reg_size(s),
3870                                  tcg_tmp);
3871         } else {
3872             /* Load/store one element per register */
3873             if (is_load) {
3874                 do_vec_ld(s, rt, index, clean_addr, mop);
3875             } else {
3876                 do_vec_st(s, rt, index, clean_addr, mop);
3877             }
3878         }
3879         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3880         rt = (rt + 1) % 32;
3881     }
3882 
3883     if (is_postidx) {
3884         if (rm == 31) {
3885             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3886         } else {
3887             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3888         }
3889     }
3890 }
3891 
3892 /*
3893  * Load/Store memory tags
3894  *
3895  *  31 30 29         24     22  21     12    10      5      0
3896  * +-----+-------------+-----+---+------+-----+------+------+
3897  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
3898  * +-----+-------------+-----+---+------+-----+------+------+
3899  */
3900 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3901 {
3902     int rt = extract32(insn, 0, 5);
3903     int rn = extract32(insn, 5, 5);
3904     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3905     int op2 = extract32(insn, 10, 2);
3906     int op1 = extract32(insn, 22, 2);
3907     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3908     int index = 0;
3909     TCGv_i64 addr, clean_addr, tcg_rt;
3910 
3911     /* We checked insn bits [29:24,21] in the caller.  */
3912     if (extract32(insn, 30, 2) != 3) {
3913         goto do_unallocated;
3914     }
3915 
3916     /*
3917      * @index is a tri-state variable which has 3 states:
3918      * < 0 : post-index, writeback
3919      * = 0 : signed offset
3920      * > 0 : pre-index, writeback
3921      */
3922     switch (op1) {
3923     case 0:
3924         if (op2 != 0) {
3925             /* STG */
3926             index = op2 - 2;
3927         } else {
3928             /* STZGM */
3929             if (s->current_el == 0 || offset != 0) {
3930                 goto do_unallocated;
3931             }
3932             is_mult = is_zero = true;
3933         }
3934         break;
3935     case 1:
3936         if (op2 != 0) {
3937             /* STZG */
3938             is_zero = true;
3939             index = op2 - 2;
3940         } else {
3941             /* LDG */
3942             is_load = true;
3943         }
3944         break;
3945     case 2:
3946         if (op2 != 0) {
3947             /* ST2G */
3948             is_pair = true;
3949             index = op2 - 2;
3950         } else {
3951             /* STGM */
3952             if (s->current_el == 0 || offset != 0) {
3953                 goto do_unallocated;
3954             }
3955             is_mult = true;
3956         }
3957         break;
3958     case 3:
3959         if (op2 != 0) {
3960             /* STZ2G */
3961             is_pair = is_zero = true;
3962             index = op2 - 2;
3963         } else {
3964             /* LDGM */
3965             if (s->current_el == 0 || offset != 0) {
3966                 goto do_unallocated;
3967             }
3968             is_mult = is_load = true;
3969         }
3970         break;
3971 
3972     default:
3973     do_unallocated:
3974         unallocated_encoding(s);
3975         return;
3976     }
3977 
3978     if (is_mult
3979         ? !dc_isar_feature(aa64_mte, s)
3980         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
3981         goto do_unallocated;
3982     }
3983 
3984     if (rn == 31) {
3985         gen_check_sp_alignment(s);
3986     }
3987 
3988     addr = read_cpu_reg_sp(s, rn, true);
3989     if (index >= 0) {
3990         /* pre-index or signed offset */
3991         tcg_gen_addi_i64(addr, addr, offset);
3992     }
3993 
3994     if (is_mult) {
3995         tcg_rt = cpu_reg(s, rt);
3996 
3997         if (is_zero) {
3998             int size = 4 << s->dcz_blocksize;
3999 
4000             if (s->ata) {
4001                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4002             }
4003             /*
4004              * The non-tags portion of STZGM is mostly like DC_ZVA,
4005              * except the alignment happens before the access.
4006              */
4007             clean_addr = clean_data_tbi(s, addr);
4008             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4009             gen_helper_dc_zva(cpu_env, clean_addr);
4010         } else if (s->ata) {
4011             if (is_load) {
4012                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4013             } else {
4014                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4015             }
4016         } else {
4017             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4018             int size = 4 << GMID_EL1_BS;
4019 
4020             clean_addr = clean_data_tbi(s, addr);
4021             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4022             gen_probe_access(s, clean_addr, acc, size);
4023 
4024             if (is_load) {
4025                 /* The result tags are zeros.  */
4026                 tcg_gen_movi_i64(tcg_rt, 0);
4027             }
4028         }
4029         return;
4030     }
4031 
4032     if (is_load) {
4033         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4034         tcg_rt = cpu_reg(s, rt);
4035         if (s->ata) {
4036             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4037         } else {
4038             clean_addr = clean_data_tbi(s, addr);
4039             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4040             gen_address_with_allocation_tag0(tcg_rt, addr);
4041         }
4042     } else {
4043         tcg_rt = cpu_reg_sp(s, rt);
4044         if (!s->ata) {
4045             /*
4046              * For STG and ST2G, we need to check alignment and probe memory.
4047              * TODO: For STZG and STZ2G, we could rely on the stores below,
4048              * at least for system mode; user-only won't enforce alignment.
4049              */
4050             if (is_pair) {
4051                 gen_helper_st2g_stub(cpu_env, addr);
4052             } else {
4053                 gen_helper_stg_stub(cpu_env, addr);
4054             }
4055         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4056             if (is_pair) {
4057                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4058             } else {
4059                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4060             }
4061         } else {
4062             if (is_pair) {
4063                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4064             } else {
4065                 gen_helper_stg(cpu_env, addr, tcg_rt);
4066             }
4067         }
4068     }
4069 
4070     if (is_zero) {
4071         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4072         TCGv_i64 tcg_zero = tcg_constant_i64(0);
4073         int mem_index = get_mem_index(s);
4074         int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4075 
4076         tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4077                             MO_UQ | MO_ALIGN_16);
4078         for (i = 8; i < n; i += 8) {
4079             tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4080             tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4081         }
4082     }
4083 
4084     if (index != 0) {
4085         /* pre-index or post-index */
4086         if (index < 0) {
4087             /* post-index */
4088             tcg_gen_addi_i64(addr, addr, offset);
4089         }
4090         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4091     }
4092 }
4093 
4094 /* Loads and stores */
4095 static void disas_ldst(DisasContext *s, uint32_t insn)
4096 {
4097     switch (extract32(insn, 24, 6)) {
4098     case 0x08: /* Load/store exclusive */
4099         disas_ldst_excl(s, insn);
4100         break;
4101     case 0x18: case 0x1c: /* Load register (literal) */
4102         disas_ld_lit(s, insn);
4103         break;
4104     case 0x28: case 0x29:
4105     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4106         disas_ldst_pair(s, insn);
4107         break;
4108     case 0x38: case 0x39:
4109     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4110         disas_ldst_reg(s, insn);
4111         break;
4112     case 0x0c: /* AdvSIMD load/store multiple structures */
4113         disas_ldst_multiple_struct(s, insn);
4114         break;
4115     case 0x0d: /* AdvSIMD load/store single structure */
4116         disas_ldst_single_struct(s, insn);
4117         break;
4118     case 0x19:
4119         if (extract32(insn, 21, 1) != 0) {
4120             disas_ldst_tag(s, insn);
4121         } else if (extract32(insn, 10, 2) == 0) {
4122             disas_ldst_ldapr_stlr(s, insn);
4123         } else {
4124             unallocated_encoding(s);
4125         }
4126         break;
4127     default:
4128         unallocated_encoding(s);
4129         break;
4130     }
4131 }
4132 
4133 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4134 
4135 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4136                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4137 {
4138     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4139     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4140     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4141 
4142     fn(tcg_rd, tcg_rn, tcg_imm);
4143     if (!a->sf) {
4144         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4145     }
4146     return true;
4147 }
4148 
4149 /*
4150  * PC-rel. addressing
4151  */
4152 
4153 static bool trans_ADR(DisasContext *s, arg_ri *a)
4154 {
4155     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4156     return true;
4157 }
4158 
4159 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4160 {
4161     int64_t offset = (int64_t)a->imm << 12;
4162 
4163     /* The page offset is ok for CF_PCREL. */
4164     offset -= s->pc_curr & 0xfff;
4165     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4166     return true;
4167 }
4168 
4169 /*
4170  * Add/subtract (immediate)
4171  */
4172 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4173 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4174 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4175 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4176 
4177 /*
4178  * Add/subtract (immediate, with tags)
4179  */
4180 
4181 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4182                                       bool sub_op)
4183 {
4184     TCGv_i64 tcg_rn, tcg_rd;
4185     int imm;
4186 
4187     imm = a->uimm6 << LOG2_TAG_GRANULE;
4188     if (sub_op) {
4189         imm = -imm;
4190     }
4191 
4192     tcg_rn = cpu_reg_sp(s, a->rn);
4193     tcg_rd = cpu_reg_sp(s, a->rd);
4194 
4195     if (s->ata) {
4196         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4197                            tcg_constant_i32(imm),
4198                            tcg_constant_i32(a->uimm4));
4199     } else {
4200         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4201         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4202     }
4203     return true;
4204 }
4205 
4206 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4207 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4208 
4209 /* The input should be a value in the bottom e bits (with higher
4210  * bits zero); returns that value replicated into every element
4211  * of size e in a 64 bit integer.
4212  */
4213 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4214 {
4215     assert(e != 0);
4216     while (e < 64) {
4217         mask |= mask << e;
4218         e *= 2;
4219     }
4220     return mask;
4221 }
4222 
4223 /*
4224  * Logical (immediate)
4225  */
4226 
4227 /*
4228  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4229  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4230  * value (ie should cause a guest UNDEF exception), and true if they are
4231  * valid, in which case the decoded bit pattern is written to result.
4232  */
4233 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4234                             unsigned int imms, unsigned int immr)
4235 {
4236     uint64_t mask;
4237     unsigned e, levels, s, r;
4238     int len;
4239 
4240     assert(immn < 2 && imms < 64 && immr < 64);
4241 
4242     /* The bit patterns we create here are 64 bit patterns which
4243      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4244      * 64 bits each. Each element contains the same value: a run
4245      * of between 1 and e-1 non-zero bits, rotated within the
4246      * element by between 0 and e-1 bits.
4247      *
4248      * The element size and run length are encoded into immn (1 bit)
4249      * and imms (6 bits) as follows:
4250      * 64 bit elements: immn = 1, imms = <length of run - 1>
4251      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4252      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4253      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4254      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4255      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4256      * Notice that immn = 0, imms = 11111x is the only combination
4257      * not covered by one of the above options; this is reserved.
4258      * Further, <length of run - 1> all-ones is a reserved pattern.
4259      *
4260      * In all cases the rotation is by immr % e (and immr is 6 bits).
4261      */
4262 
4263     /* First determine the element size */
4264     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4265     if (len < 1) {
4266         /* This is the immn == 0, imms == 0x11111x case */
4267         return false;
4268     }
4269     e = 1 << len;
4270 
4271     levels = e - 1;
4272     s = imms & levels;
4273     r = immr & levels;
4274 
4275     if (s == levels) {
4276         /* <length of run - 1> mustn't be all-ones. */
4277         return false;
4278     }
4279 
4280     /* Create the value of one element: s+1 set bits rotated
4281      * by r within the element (which is e bits wide)...
4282      */
4283     mask = MAKE_64BIT_MASK(0, s + 1);
4284     if (r) {
4285         mask = (mask >> r) | (mask << (e - r));
4286         mask &= MAKE_64BIT_MASK(0, e);
4287     }
4288     /* ...then replicate the element over the whole 64 bit value */
4289     mask = bitfield_replicate(mask, e);
4290     *result = mask;
4291     return true;
4292 }
4293 
4294 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4295                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4296 {
4297     TCGv_i64 tcg_rd, tcg_rn;
4298     uint64_t imm;
4299 
4300     /* Some immediate field values are reserved. */
4301     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4302                                 extract32(a->dbm, 0, 6),
4303                                 extract32(a->dbm, 6, 6))) {
4304         return false;
4305     }
4306     if (!a->sf) {
4307         imm &= 0xffffffffull;
4308     }
4309 
4310     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4311     tcg_rn = cpu_reg(s, a->rn);
4312 
4313     fn(tcg_rd, tcg_rn, imm);
4314     if (set_cc) {
4315         gen_logic_CC(a->sf, tcg_rd);
4316     }
4317     if (!a->sf) {
4318         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4319     }
4320     return true;
4321 }
4322 
4323 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4324 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4325 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4326 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4327 
4328 /*
4329  * Move wide (immediate)
4330  */
4331 
4332 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4333 {
4334     int pos = a->hw << 4;
4335     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4336     return true;
4337 }
4338 
4339 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4340 {
4341     int pos = a->hw << 4;
4342     uint64_t imm = a->imm;
4343 
4344     imm = ~(imm << pos);
4345     if (!a->sf) {
4346         imm = (uint32_t)imm;
4347     }
4348     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4349     return true;
4350 }
4351 
4352 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4353 {
4354     int pos = a->hw << 4;
4355     TCGv_i64 tcg_rd, tcg_im;
4356 
4357     tcg_rd = cpu_reg(s, a->rd);
4358     tcg_im = tcg_constant_i64(a->imm);
4359     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4360     if (!a->sf) {
4361         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4362     }
4363     return true;
4364 }
4365 
4366 /*
4367  * Bitfield
4368  */
4369 
4370 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4371 {
4372     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4373     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4374     unsigned int bitsize = a->sf ? 64 : 32;
4375     unsigned int ri = a->immr;
4376     unsigned int si = a->imms;
4377     unsigned int pos, len;
4378 
4379     if (si >= ri) {
4380         /* Wd<s-r:0> = Wn<s:r> */
4381         len = (si - ri) + 1;
4382         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4383         if (!a->sf) {
4384             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4385         }
4386     } else {
4387         /* Wd<32+s-r,32-r> = Wn<s:0> */
4388         len = si + 1;
4389         pos = (bitsize - ri) & (bitsize - 1);
4390 
4391         if (len < ri) {
4392             /*
4393              * Sign extend the destination field from len to fill the
4394              * balance of the word.  Let the deposit below insert all
4395              * of those sign bits.
4396              */
4397             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4398             len = ri;
4399         }
4400 
4401         /*
4402          * We start with zero, and we haven't modified any bits outside
4403          * bitsize, therefore no final zero-extension is unneeded for !sf.
4404          */
4405         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4406     }
4407     return true;
4408 }
4409 
4410 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4411 {
4412     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4413     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4414     unsigned int bitsize = a->sf ? 64 : 32;
4415     unsigned int ri = a->immr;
4416     unsigned int si = a->imms;
4417     unsigned int pos, len;
4418 
4419     tcg_rd = cpu_reg(s, a->rd);
4420     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4421 
4422     if (si >= ri) {
4423         /* Wd<s-r:0> = Wn<s:r> */
4424         len = (si - ri) + 1;
4425         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4426     } else {
4427         /* Wd<32+s-r,32-r> = Wn<s:0> */
4428         len = si + 1;
4429         pos = (bitsize - ri) & (bitsize - 1);
4430         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4431     }
4432     return true;
4433 }
4434 
4435 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4436 {
4437     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4438     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4439     unsigned int bitsize = a->sf ? 64 : 32;
4440     unsigned int ri = a->immr;
4441     unsigned int si = a->imms;
4442     unsigned int pos, len;
4443 
4444     tcg_rd = cpu_reg(s, a->rd);
4445     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4446 
4447     if (si >= ri) {
4448         /* Wd<s-r:0> = Wn<s:r> */
4449         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4450         len = (si - ri) + 1;
4451         pos = 0;
4452     } else {
4453         /* Wd<32+s-r,32-r> = Wn<s:0> */
4454         len = si + 1;
4455         pos = (bitsize - ri) & (bitsize - 1);
4456     }
4457 
4458     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4459     if (!a->sf) {
4460         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4461     }
4462     return true;
4463 }
4464 
4465 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4466 {
4467     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4468 
4469     tcg_rd = cpu_reg(s, a->rd);
4470 
4471     if (unlikely(a->imm == 0)) {
4472         /*
4473          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4474          * so an extract from bit 0 is a special case.
4475          */
4476         if (a->sf) {
4477             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4478         } else {
4479             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4480         }
4481     } else {
4482         tcg_rm = cpu_reg(s, a->rm);
4483         tcg_rn = cpu_reg(s, a->rn);
4484 
4485         if (a->sf) {
4486             /* Specialization to ROR happens in EXTRACT2.  */
4487             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4488         } else {
4489             TCGv_i32 t0 = tcg_temp_new_i32();
4490 
4491             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4492             if (a->rm == a->rn) {
4493                 tcg_gen_rotri_i32(t0, t0, a->imm);
4494             } else {
4495                 TCGv_i32 t1 = tcg_temp_new_i32();
4496                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4497                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4498             }
4499             tcg_gen_extu_i32_i64(tcg_rd, t0);
4500         }
4501     }
4502     return true;
4503 }
4504 
4505 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4506  * Note that it is the caller's responsibility to ensure that the
4507  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4508  * mandated semantics for out of range shifts.
4509  */
4510 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4511                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4512 {
4513     switch (shift_type) {
4514     case A64_SHIFT_TYPE_LSL:
4515         tcg_gen_shl_i64(dst, src, shift_amount);
4516         break;
4517     case A64_SHIFT_TYPE_LSR:
4518         tcg_gen_shr_i64(dst, src, shift_amount);
4519         break;
4520     case A64_SHIFT_TYPE_ASR:
4521         if (!sf) {
4522             tcg_gen_ext32s_i64(dst, src);
4523         }
4524         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4525         break;
4526     case A64_SHIFT_TYPE_ROR:
4527         if (sf) {
4528             tcg_gen_rotr_i64(dst, src, shift_amount);
4529         } else {
4530             TCGv_i32 t0, t1;
4531             t0 = tcg_temp_new_i32();
4532             t1 = tcg_temp_new_i32();
4533             tcg_gen_extrl_i64_i32(t0, src);
4534             tcg_gen_extrl_i64_i32(t1, shift_amount);
4535             tcg_gen_rotr_i32(t0, t0, t1);
4536             tcg_gen_extu_i32_i64(dst, t0);
4537         }
4538         break;
4539     default:
4540         assert(FALSE); /* all shift types should be handled */
4541         break;
4542     }
4543 
4544     if (!sf) { /* zero extend final result */
4545         tcg_gen_ext32u_i64(dst, dst);
4546     }
4547 }
4548 
4549 /* Shift a TCGv src by immediate, put result in dst.
4550  * The shift amount must be in range (this should always be true as the
4551  * relevant instructions will UNDEF on bad shift immediates).
4552  */
4553 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4554                           enum a64_shift_type shift_type, unsigned int shift_i)
4555 {
4556     assert(shift_i < (sf ? 64 : 32));
4557 
4558     if (shift_i == 0) {
4559         tcg_gen_mov_i64(dst, src);
4560     } else {
4561         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4562     }
4563 }
4564 
4565 /* Logical (shifted register)
4566  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4567  * +----+-----+-----------+-------+---+------+--------+------+------+
4568  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4569  * +----+-----+-----------+-------+---+------+--------+------+------+
4570  */
4571 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4572 {
4573     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4574     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4575 
4576     sf = extract32(insn, 31, 1);
4577     opc = extract32(insn, 29, 2);
4578     shift_type = extract32(insn, 22, 2);
4579     invert = extract32(insn, 21, 1);
4580     rm = extract32(insn, 16, 5);
4581     shift_amount = extract32(insn, 10, 6);
4582     rn = extract32(insn, 5, 5);
4583     rd = extract32(insn, 0, 5);
4584 
4585     if (!sf && (shift_amount & (1 << 5))) {
4586         unallocated_encoding(s);
4587         return;
4588     }
4589 
4590     tcg_rd = cpu_reg(s, rd);
4591 
4592     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4593         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4594          * register-register MOV and MVN, so it is worth special casing.
4595          */
4596         tcg_rm = cpu_reg(s, rm);
4597         if (invert) {
4598             tcg_gen_not_i64(tcg_rd, tcg_rm);
4599             if (!sf) {
4600                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4601             }
4602         } else {
4603             if (sf) {
4604                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4605             } else {
4606                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4607             }
4608         }
4609         return;
4610     }
4611 
4612     tcg_rm = read_cpu_reg(s, rm, sf);
4613 
4614     if (shift_amount) {
4615         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4616     }
4617 
4618     tcg_rn = cpu_reg(s, rn);
4619 
4620     switch (opc | (invert << 2)) {
4621     case 0: /* AND */
4622     case 3: /* ANDS */
4623         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4624         break;
4625     case 1: /* ORR */
4626         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4627         break;
4628     case 2: /* EOR */
4629         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4630         break;
4631     case 4: /* BIC */
4632     case 7: /* BICS */
4633         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4634         break;
4635     case 5: /* ORN */
4636         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4637         break;
4638     case 6: /* EON */
4639         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4640         break;
4641     default:
4642         assert(FALSE);
4643         break;
4644     }
4645 
4646     if (!sf) {
4647         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4648     }
4649 
4650     if (opc == 3) {
4651         gen_logic_CC(sf, tcg_rd);
4652     }
4653 }
4654 
4655 /*
4656  * Add/subtract (extended register)
4657  *
4658  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4659  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4660  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4661  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4662  *
4663  *  sf: 0 -> 32bit, 1 -> 64bit
4664  *  op: 0 -> add  , 1 -> sub
4665  *   S: 1 -> set flags
4666  * opt: 00
4667  * option: extension type (see DecodeRegExtend)
4668  * imm3: optional shift to Rm
4669  *
4670  * Rd = Rn + LSL(extend(Rm), amount)
4671  */
4672 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4673 {
4674     int rd = extract32(insn, 0, 5);
4675     int rn = extract32(insn, 5, 5);
4676     int imm3 = extract32(insn, 10, 3);
4677     int option = extract32(insn, 13, 3);
4678     int rm = extract32(insn, 16, 5);
4679     int opt = extract32(insn, 22, 2);
4680     bool setflags = extract32(insn, 29, 1);
4681     bool sub_op = extract32(insn, 30, 1);
4682     bool sf = extract32(insn, 31, 1);
4683 
4684     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4685     TCGv_i64 tcg_rd;
4686     TCGv_i64 tcg_result;
4687 
4688     if (imm3 > 4 || opt != 0) {
4689         unallocated_encoding(s);
4690         return;
4691     }
4692 
4693     /* non-flag setting ops may use SP */
4694     if (!setflags) {
4695         tcg_rd = cpu_reg_sp(s, rd);
4696     } else {
4697         tcg_rd = cpu_reg(s, rd);
4698     }
4699     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4700 
4701     tcg_rm = read_cpu_reg(s, rm, sf);
4702     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4703 
4704     tcg_result = tcg_temp_new_i64();
4705 
4706     if (!setflags) {
4707         if (sub_op) {
4708             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4709         } else {
4710             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4711         }
4712     } else {
4713         if (sub_op) {
4714             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4715         } else {
4716             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4717         }
4718     }
4719 
4720     if (sf) {
4721         tcg_gen_mov_i64(tcg_rd, tcg_result);
4722     } else {
4723         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4724     }
4725 }
4726 
4727 /*
4728  * Add/subtract (shifted register)
4729  *
4730  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4731  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4732  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4733  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4734  *
4735  *    sf: 0 -> 32bit, 1 -> 64bit
4736  *    op: 0 -> add  , 1 -> sub
4737  *     S: 1 -> set flags
4738  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4739  *  imm6: Shift amount to apply to Rm before the add/sub
4740  */
4741 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4742 {
4743     int rd = extract32(insn, 0, 5);
4744     int rn = extract32(insn, 5, 5);
4745     int imm6 = extract32(insn, 10, 6);
4746     int rm = extract32(insn, 16, 5);
4747     int shift_type = extract32(insn, 22, 2);
4748     bool setflags = extract32(insn, 29, 1);
4749     bool sub_op = extract32(insn, 30, 1);
4750     bool sf = extract32(insn, 31, 1);
4751 
4752     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4753     TCGv_i64 tcg_rn, tcg_rm;
4754     TCGv_i64 tcg_result;
4755 
4756     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4757         unallocated_encoding(s);
4758         return;
4759     }
4760 
4761     tcg_rn = read_cpu_reg(s, rn, sf);
4762     tcg_rm = read_cpu_reg(s, rm, sf);
4763 
4764     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4765 
4766     tcg_result = tcg_temp_new_i64();
4767 
4768     if (!setflags) {
4769         if (sub_op) {
4770             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4771         } else {
4772             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4773         }
4774     } else {
4775         if (sub_op) {
4776             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4777         } else {
4778             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4779         }
4780     }
4781 
4782     if (sf) {
4783         tcg_gen_mov_i64(tcg_rd, tcg_result);
4784     } else {
4785         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4786     }
4787 }
4788 
4789 /* Data-processing (3 source)
4790  *
4791  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4792  *  +--+------+-----------+------+------+----+------+------+------+
4793  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4794  *  +--+------+-----------+------+------+----+------+------+------+
4795  */
4796 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4797 {
4798     int rd = extract32(insn, 0, 5);
4799     int rn = extract32(insn, 5, 5);
4800     int ra = extract32(insn, 10, 5);
4801     int rm = extract32(insn, 16, 5);
4802     int op_id = (extract32(insn, 29, 3) << 4) |
4803         (extract32(insn, 21, 3) << 1) |
4804         extract32(insn, 15, 1);
4805     bool sf = extract32(insn, 31, 1);
4806     bool is_sub = extract32(op_id, 0, 1);
4807     bool is_high = extract32(op_id, 2, 1);
4808     bool is_signed = false;
4809     TCGv_i64 tcg_op1;
4810     TCGv_i64 tcg_op2;
4811     TCGv_i64 tcg_tmp;
4812 
4813     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4814     switch (op_id) {
4815     case 0x42: /* SMADDL */
4816     case 0x43: /* SMSUBL */
4817     case 0x44: /* SMULH */
4818         is_signed = true;
4819         break;
4820     case 0x0: /* MADD (32bit) */
4821     case 0x1: /* MSUB (32bit) */
4822     case 0x40: /* MADD (64bit) */
4823     case 0x41: /* MSUB (64bit) */
4824     case 0x4a: /* UMADDL */
4825     case 0x4b: /* UMSUBL */
4826     case 0x4c: /* UMULH */
4827         break;
4828     default:
4829         unallocated_encoding(s);
4830         return;
4831     }
4832 
4833     if (is_high) {
4834         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4835         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4836         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4837         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4838 
4839         if (is_signed) {
4840             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4841         } else {
4842             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4843         }
4844         return;
4845     }
4846 
4847     tcg_op1 = tcg_temp_new_i64();
4848     tcg_op2 = tcg_temp_new_i64();
4849     tcg_tmp = tcg_temp_new_i64();
4850 
4851     if (op_id < 0x42) {
4852         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4853         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4854     } else {
4855         if (is_signed) {
4856             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4857             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4858         } else {
4859             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4860             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4861         }
4862     }
4863 
4864     if (ra == 31 && !is_sub) {
4865         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4866         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4867     } else {
4868         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4869         if (is_sub) {
4870             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4871         } else {
4872             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4873         }
4874     }
4875 
4876     if (!sf) {
4877         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4878     }
4879 }
4880 
4881 /* Add/subtract (with carry)
4882  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4883  * +--+--+--+------------------------+------+-------------+------+-----+
4884  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4885  * +--+--+--+------------------------+------+-------------+------+-----+
4886  */
4887 
4888 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4889 {
4890     unsigned int sf, op, setflags, rm, rn, rd;
4891     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4892 
4893     sf = extract32(insn, 31, 1);
4894     op = extract32(insn, 30, 1);
4895     setflags = extract32(insn, 29, 1);
4896     rm = extract32(insn, 16, 5);
4897     rn = extract32(insn, 5, 5);
4898     rd = extract32(insn, 0, 5);
4899 
4900     tcg_rd = cpu_reg(s, rd);
4901     tcg_rn = cpu_reg(s, rn);
4902 
4903     if (op) {
4904         tcg_y = tcg_temp_new_i64();
4905         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4906     } else {
4907         tcg_y = cpu_reg(s, rm);
4908     }
4909 
4910     if (setflags) {
4911         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4912     } else {
4913         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4914     }
4915 }
4916 
4917 /*
4918  * Rotate right into flags
4919  *  31 30 29                21       15          10      5  4      0
4920  * +--+--+--+-----------------+--------+-----------+------+--+------+
4921  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4922  * +--+--+--+-----------------+--------+-----------+------+--+------+
4923  */
4924 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4925 {
4926     int mask = extract32(insn, 0, 4);
4927     int o2 = extract32(insn, 4, 1);
4928     int rn = extract32(insn, 5, 5);
4929     int imm6 = extract32(insn, 15, 6);
4930     int sf_op_s = extract32(insn, 29, 3);
4931     TCGv_i64 tcg_rn;
4932     TCGv_i32 nzcv;
4933 
4934     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4935         unallocated_encoding(s);
4936         return;
4937     }
4938 
4939     tcg_rn = read_cpu_reg(s, rn, 1);
4940     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4941 
4942     nzcv = tcg_temp_new_i32();
4943     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4944 
4945     if (mask & 8) { /* N */
4946         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4947     }
4948     if (mask & 4) { /* Z */
4949         tcg_gen_not_i32(cpu_ZF, nzcv);
4950         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4951     }
4952     if (mask & 2) { /* C */
4953         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4954     }
4955     if (mask & 1) { /* V */
4956         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4957     }
4958 }
4959 
4960 /*
4961  * Evaluate into flags
4962  *  31 30 29                21        15   14        10      5  4      0
4963  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4964  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4965  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4966  */
4967 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4968 {
4969     int o3_mask = extract32(insn, 0, 5);
4970     int rn = extract32(insn, 5, 5);
4971     int o2 = extract32(insn, 15, 6);
4972     int sz = extract32(insn, 14, 1);
4973     int sf_op_s = extract32(insn, 29, 3);
4974     TCGv_i32 tmp;
4975     int shift;
4976 
4977     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4978         !dc_isar_feature(aa64_condm_4, s)) {
4979         unallocated_encoding(s);
4980         return;
4981     }
4982     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4983 
4984     tmp = tcg_temp_new_i32();
4985     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4986     tcg_gen_shli_i32(cpu_NF, tmp, shift);
4987     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4988     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4989     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4990 }
4991 
4992 /* Conditional compare (immediate / register)
4993  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4994  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4995  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4996  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4997  *        [1]                             y                [0]       [0]
4998  */
4999 static void disas_cc(DisasContext *s, uint32_t insn)
5000 {
5001     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5002     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5003     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5004     DisasCompare c;
5005 
5006     if (!extract32(insn, 29, 1)) {
5007         unallocated_encoding(s);
5008         return;
5009     }
5010     if (insn & (1 << 10 | 1 << 4)) {
5011         unallocated_encoding(s);
5012         return;
5013     }
5014     sf = extract32(insn, 31, 1);
5015     op = extract32(insn, 30, 1);
5016     is_imm = extract32(insn, 11, 1);
5017     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5018     cond = extract32(insn, 12, 4);
5019     rn = extract32(insn, 5, 5);
5020     nzcv = extract32(insn, 0, 4);
5021 
5022     /* Set T0 = !COND.  */
5023     tcg_t0 = tcg_temp_new_i32();
5024     arm_test_cc(&c, cond);
5025     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5026 
5027     /* Load the arguments for the new comparison.  */
5028     if (is_imm) {
5029         tcg_y = tcg_temp_new_i64();
5030         tcg_gen_movi_i64(tcg_y, y);
5031     } else {
5032         tcg_y = cpu_reg(s, y);
5033     }
5034     tcg_rn = cpu_reg(s, rn);
5035 
5036     /* Set the flags for the new comparison.  */
5037     tcg_tmp = tcg_temp_new_i64();
5038     if (op) {
5039         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5040     } else {
5041         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5042     }
5043 
5044     /* If COND was false, force the flags to #nzcv.  Compute two masks
5045      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5046      * For tcg hosts that support ANDC, we can make do with just T1.
5047      * In either case, allow the tcg optimizer to delete any unused mask.
5048      */
5049     tcg_t1 = tcg_temp_new_i32();
5050     tcg_t2 = tcg_temp_new_i32();
5051     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5052     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5053 
5054     if (nzcv & 8) { /* N */
5055         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5056     } else {
5057         if (TCG_TARGET_HAS_andc_i32) {
5058             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5059         } else {
5060             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5061         }
5062     }
5063     if (nzcv & 4) { /* Z */
5064         if (TCG_TARGET_HAS_andc_i32) {
5065             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5066         } else {
5067             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5068         }
5069     } else {
5070         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5071     }
5072     if (nzcv & 2) { /* C */
5073         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5074     } else {
5075         if (TCG_TARGET_HAS_andc_i32) {
5076             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5077         } else {
5078             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5079         }
5080     }
5081     if (nzcv & 1) { /* V */
5082         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5083     } else {
5084         if (TCG_TARGET_HAS_andc_i32) {
5085             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5086         } else {
5087             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5088         }
5089     }
5090 }
5091 
5092 /* Conditional select
5093  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5094  * +----+----+---+-----------------+------+------+-----+------+------+
5095  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5096  * +----+----+---+-----------------+------+------+-----+------+------+
5097  */
5098 static void disas_cond_select(DisasContext *s, uint32_t insn)
5099 {
5100     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5101     TCGv_i64 tcg_rd, zero;
5102     DisasCompare64 c;
5103 
5104     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5105         /* S == 1 or op2<1> == 1 */
5106         unallocated_encoding(s);
5107         return;
5108     }
5109     sf = extract32(insn, 31, 1);
5110     else_inv = extract32(insn, 30, 1);
5111     rm = extract32(insn, 16, 5);
5112     cond = extract32(insn, 12, 4);
5113     else_inc = extract32(insn, 10, 1);
5114     rn = extract32(insn, 5, 5);
5115     rd = extract32(insn, 0, 5);
5116 
5117     tcg_rd = cpu_reg(s, rd);
5118 
5119     a64_test_cc(&c, cond);
5120     zero = tcg_constant_i64(0);
5121 
5122     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5123         /* CSET & CSETM.  */
5124         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5125         if (else_inv) {
5126             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5127         }
5128     } else {
5129         TCGv_i64 t_true = cpu_reg(s, rn);
5130         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5131         if (else_inv && else_inc) {
5132             tcg_gen_neg_i64(t_false, t_false);
5133         } else if (else_inv) {
5134             tcg_gen_not_i64(t_false, t_false);
5135         } else if (else_inc) {
5136             tcg_gen_addi_i64(t_false, t_false, 1);
5137         }
5138         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5139     }
5140 
5141     if (!sf) {
5142         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5143     }
5144 }
5145 
5146 static void handle_clz(DisasContext *s, unsigned int sf,
5147                        unsigned int rn, unsigned int rd)
5148 {
5149     TCGv_i64 tcg_rd, tcg_rn;
5150     tcg_rd = cpu_reg(s, rd);
5151     tcg_rn = cpu_reg(s, rn);
5152 
5153     if (sf) {
5154         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5155     } else {
5156         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5157         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5158         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5159         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5160     }
5161 }
5162 
5163 static void handle_cls(DisasContext *s, unsigned int sf,
5164                        unsigned int rn, unsigned int rd)
5165 {
5166     TCGv_i64 tcg_rd, tcg_rn;
5167     tcg_rd = cpu_reg(s, rd);
5168     tcg_rn = cpu_reg(s, rn);
5169 
5170     if (sf) {
5171         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5172     } else {
5173         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5174         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5175         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5176         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5177     }
5178 }
5179 
5180 static void handle_rbit(DisasContext *s, unsigned int sf,
5181                         unsigned int rn, unsigned int rd)
5182 {
5183     TCGv_i64 tcg_rd, tcg_rn;
5184     tcg_rd = cpu_reg(s, rd);
5185     tcg_rn = cpu_reg(s, rn);
5186 
5187     if (sf) {
5188         gen_helper_rbit64(tcg_rd, tcg_rn);
5189     } else {
5190         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5191         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5192         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5193         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5194     }
5195 }
5196 
5197 /* REV with sf==1, opcode==3 ("REV64") */
5198 static void handle_rev64(DisasContext *s, unsigned int sf,
5199                          unsigned int rn, unsigned int rd)
5200 {
5201     if (!sf) {
5202         unallocated_encoding(s);
5203         return;
5204     }
5205     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5206 }
5207 
5208 /* REV with sf==0, opcode==2
5209  * REV32 (sf==1, opcode==2)
5210  */
5211 static void handle_rev32(DisasContext *s, unsigned int sf,
5212                          unsigned int rn, unsigned int rd)
5213 {
5214     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5215     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5216 
5217     if (sf) {
5218         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5219         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5220     } else {
5221         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5222     }
5223 }
5224 
5225 /* REV16 (opcode==1) */
5226 static void handle_rev16(DisasContext *s, unsigned int sf,
5227                          unsigned int rn, unsigned int rd)
5228 {
5229     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5230     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5231     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5232     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5233 
5234     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5235     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5236     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5237     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5238     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5239 }
5240 
5241 /* Data-processing (1 source)
5242  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5243  * +----+---+---+-----------------+---------+--------+------+------+
5244  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5245  * +----+---+---+-----------------+---------+--------+------+------+
5246  */
5247 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5248 {
5249     unsigned int sf, opcode, opcode2, rn, rd;
5250     TCGv_i64 tcg_rd;
5251 
5252     if (extract32(insn, 29, 1)) {
5253         unallocated_encoding(s);
5254         return;
5255     }
5256 
5257     sf = extract32(insn, 31, 1);
5258     opcode = extract32(insn, 10, 6);
5259     opcode2 = extract32(insn, 16, 5);
5260     rn = extract32(insn, 5, 5);
5261     rd = extract32(insn, 0, 5);
5262 
5263 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5264 
5265     switch (MAP(sf, opcode2, opcode)) {
5266     case MAP(0, 0x00, 0x00): /* RBIT */
5267     case MAP(1, 0x00, 0x00):
5268         handle_rbit(s, sf, rn, rd);
5269         break;
5270     case MAP(0, 0x00, 0x01): /* REV16 */
5271     case MAP(1, 0x00, 0x01):
5272         handle_rev16(s, sf, rn, rd);
5273         break;
5274     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5275     case MAP(1, 0x00, 0x02):
5276         handle_rev32(s, sf, rn, rd);
5277         break;
5278     case MAP(1, 0x00, 0x03): /* REV64 */
5279         handle_rev64(s, sf, rn, rd);
5280         break;
5281     case MAP(0, 0x00, 0x04): /* CLZ */
5282     case MAP(1, 0x00, 0x04):
5283         handle_clz(s, sf, rn, rd);
5284         break;
5285     case MAP(0, 0x00, 0x05): /* CLS */
5286     case MAP(1, 0x00, 0x05):
5287         handle_cls(s, sf, rn, rd);
5288         break;
5289     case MAP(1, 0x01, 0x00): /* PACIA */
5290         if (s->pauth_active) {
5291             tcg_rd = cpu_reg(s, rd);
5292             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5293         } else if (!dc_isar_feature(aa64_pauth, s)) {
5294             goto do_unallocated;
5295         }
5296         break;
5297     case MAP(1, 0x01, 0x01): /* PACIB */
5298         if (s->pauth_active) {
5299             tcg_rd = cpu_reg(s, rd);
5300             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5301         } else if (!dc_isar_feature(aa64_pauth, s)) {
5302             goto do_unallocated;
5303         }
5304         break;
5305     case MAP(1, 0x01, 0x02): /* PACDA */
5306         if (s->pauth_active) {
5307             tcg_rd = cpu_reg(s, rd);
5308             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5309         } else if (!dc_isar_feature(aa64_pauth, s)) {
5310             goto do_unallocated;
5311         }
5312         break;
5313     case MAP(1, 0x01, 0x03): /* PACDB */
5314         if (s->pauth_active) {
5315             tcg_rd = cpu_reg(s, rd);
5316             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5317         } else if (!dc_isar_feature(aa64_pauth, s)) {
5318             goto do_unallocated;
5319         }
5320         break;
5321     case MAP(1, 0x01, 0x04): /* AUTIA */
5322         if (s->pauth_active) {
5323             tcg_rd = cpu_reg(s, rd);
5324             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5325         } else if (!dc_isar_feature(aa64_pauth, s)) {
5326             goto do_unallocated;
5327         }
5328         break;
5329     case MAP(1, 0x01, 0x05): /* AUTIB */
5330         if (s->pauth_active) {
5331             tcg_rd = cpu_reg(s, rd);
5332             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5333         } else if (!dc_isar_feature(aa64_pauth, s)) {
5334             goto do_unallocated;
5335         }
5336         break;
5337     case MAP(1, 0x01, 0x06): /* AUTDA */
5338         if (s->pauth_active) {
5339             tcg_rd = cpu_reg(s, rd);
5340             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5341         } else if (!dc_isar_feature(aa64_pauth, s)) {
5342             goto do_unallocated;
5343         }
5344         break;
5345     case MAP(1, 0x01, 0x07): /* AUTDB */
5346         if (s->pauth_active) {
5347             tcg_rd = cpu_reg(s, rd);
5348             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5349         } else if (!dc_isar_feature(aa64_pauth, s)) {
5350             goto do_unallocated;
5351         }
5352         break;
5353     case MAP(1, 0x01, 0x08): /* PACIZA */
5354         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5355             goto do_unallocated;
5356         } else if (s->pauth_active) {
5357             tcg_rd = cpu_reg(s, rd);
5358             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5359         }
5360         break;
5361     case MAP(1, 0x01, 0x09): /* PACIZB */
5362         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5363             goto do_unallocated;
5364         } else if (s->pauth_active) {
5365             tcg_rd = cpu_reg(s, rd);
5366             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5367         }
5368         break;
5369     case MAP(1, 0x01, 0x0a): /* PACDZA */
5370         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5371             goto do_unallocated;
5372         } else if (s->pauth_active) {
5373             tcg_rd = cpu_reg(s, rd);
5374             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5375         }
5376         break;
5377     case MAP(1, 0x01, 0x0b): /* PACDZB */
5378         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5379             goto do_unallocated;
5380         } else if (s->pauth_active) {
5381             tcg_rd = cpu_reg(s, rd);
5382             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5383         }
5384         break;
5385     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5386         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5387             goto do_unallocated;
5388         } else if (s->pauth_active) {
5389             tcg_rd = cpu_reg(s, rd);
5390             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5391         }
5392         break;
5393     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5394         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5395             goto do_unallocated;
5396         } else if (s->pauth_active) {
5397             tcg_rd = cpu_reg(s, rd);
5398             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5399         }
5400         break;
5401     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5402         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5403             goto do_unallocated;
5404         } else if (s->pauth_active) {
5405             tcg_rd = cpu_reg(s, rd);
5406             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5407         }
5408         break;
5409     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5410         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5411             goto do_unallocated;
5412         } else if (s->pauth_active) {
5413             tcg_rd = cpu_reg(s, rd);
5414             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5415         }
5416         break;
5417     case MAP(1, 0x01, 0x10): /* XPACI */
5418         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5419             goto do_unallocated;
5420         } else if (s->pauth_active) {
5421             tcg_rd = cpu_reg(s, rd);
5422             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5423         }
5424         break;
5425     case MAP(1, 0x01, 0x11): /* XPACD */
5426         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5427             goto do_unallocated;
5428         } else if (s->pauth_active) {
5429             tcg_rd = cpu_reg(s, rd);
5430             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5431         }
5432         break;
5433     default:
5434     do_unallocated:
5435         unallocated_encoding(s);
5436         break;
5437     }
5438 
5439 #undef MAP
5440 }
5441 
5442 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5443                        unsigned int rm, unsigned int rn, unsigned int rd)
5444 {
5445     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5446     tcg_rd = cpu_reg(s, rd);
5447 
5448     if (!sf && is_signed) {
5449         tcg_n = tcg_temp_new_i64();
5450         tcg_m = tcg_temp_new_i64();
5451         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5452         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5453     } else {
5454         tcg_n = read_cpu_reg(s, rn, sf);
5455         tcg_m = read_cpu_reg(s, rm, sf);
5456     }
5457 
5458     if (is_signed) {
5459         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5460     } else {
5461         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5462     }
5463 
5464     if (!sf) { /* zero extend final result */
5465         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5466     }
5467 }
5468 
5469 /* LSLV, LSRV, ASRV, RORV */
5470 static void handle_shift_reg(DisasContext *s,
5471                              enum a64_shift_type shift_type, unsigned int sf,
5472                              unsigned int rm, unsigned int rn, unsigned int rd)
5473 {
5474     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5475     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5476     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5477 
5478     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5479     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5480 }
5481 
5482 /* CRC32[BHWX], CRC32C[BHWX] */
5483 static void handle_crc32(DisasContext *s,
5484                          unsigned int sf, unsigned int sz, bool crc32c,
5485                          unsigned int rm, unsigned int rn, unsigned int rd)
5486 {
5487     TCGv_i64 tcg_acc, tcg_val;
5488     TCGv_i32 tcg_bytes;
5489 
5490     if (!dc_isar_feature(aa64_crc32, s)
5491         || (sf == 1 && sz != 3)
5492         || (sf == 0 && sz == 3)) {
5493         unallocated_encoding(s);
5494         return;
5495     }
5496 
5497     if (sz == 3) {
5498         tcg_val = cpu_reg(s, rm);
5499     } else {
5500         uint64_t mask;
5501         switch (sz) {
5502         case 0:
5503             mask = 0xFF;
5504             break;
5505         case 1:
5506             mask = 0xFFFF;
5507             break;
5508         case 2:
5509             mask = 0xFFFFFFFF;
5510             break;
5511         default:
5512             g_assert_not_reached();
5513         }
5514         tcg_val = tcg_temp_new_i64();
5515         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5516     }
5517 
5518     tcg_acc = cpu_reg(s, rn);
5519     tcg_bytes = tcg_constant_i32(1 << sz);
5520 
5521     if (crc32c) {
5522         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5523     } else {
5524         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5525     }
5526 }
5527 
5528 /* Data-processing (2 source)
5529  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5530  * +----+---+---+-----------------+------+--------+------+------+
5531  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5532  * +----+---+---+-----------------+------+--------+------+------+
5533  */
5534 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5535 {
5536     unsigned int sf, rm, opcode, rn, rd, setflag;
5537     sf = extract32(insn, 31, 1);
5538     setflag = extract32(insn, 29, 1);
5539     rm = extract32(insn, 16, 5);
5540     opcode = extract32(insn, 10, 6);
5541     rn = extract32(insn, 5, 5);
5542     rd = extract32(insn, 0, 5);
5543 
5544     if (setflag && opcode != 0) {
5545         unallocated_encoding(s);
5546         return;
5547     }
5548 
5549     switch (opcode) {
5550     case 0: /* SUBP(S) */
5551         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5552             goto do_unallocated;
5553         } else {
5554             TCGv_i64 tcg_n, tcg_m, tcg_d;
5555 
5556             tcg_n = read_cpu_reg_sp(s, rn, true);
5557             tcg_m = read_cpu_reg_sp(s, rm, true);
5558             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5559             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5560             tcg_d = cpu_reg(s, rd);
5561 
5562             if (setflag) {
5563                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5564             } else {
5565                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5566             }
5567         }
5568         break;
5569     case 2: /* UDIV */
5570         handle_div(s, false, sf, rm, rn, rd);
5571         break;
5572     case 3: /* SDIV */
5573         handle_div(s, true, sf, rm, rn, rd);
5574         break;
5575     case 4: /* IRG */
5576         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5577             goto do_unallocated;
5578         }
5579         if (s->ata) {
5580             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5581                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5582         } else {
5583             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5584                                              cpu_reg_sp(s, rn));
5585         }
5586         break;
5587     case 5: /* GMI */
5588         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5589             goto do_unallocated;
5590         } else {
5591             TCGv_i64 t = tcg_temp_new_i64();
5592 
5593             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5594             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5595             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5596         }
5597         break;
5598     case 8: /* LSLV */
5599         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5600         break;
5601     case 9: /* LSRV */
5602         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5603         break;
5604     case 10: /* ASRV */
5605         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5606         break;
5607     case 11: /* RORV */
5608         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5609         break;
5610     case 12: /* PACGA */
5611         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5612             goto do_unallocated;
5613         }
5614         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5615                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5616         break;
5617     case 16:
5618     case 17:
5619     case 18:
5620     case 19:
5621     case 20:
5622     case 21:
5623     case 22:
5624     case 23: /* CRC32 */
5625     {
5626         int sz = extract32(opcode, 0, 2);
5627         bool crc32c = extract32(opcode, 2, 1);
5628         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5629         break;
5630     }
5631     default:
5632     do_unallocated:
5633         unallocated_encoding(s);
5634         break;
5635     }
5636 }
5637 
5638 /*
5639  * Data processing - register
5640  *  31  30 29  28      25    21  20  16      10         0
5641  * +--+---+--+---+-------+-----+-------+-------+---------+
5642  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5643  * +--+---+--+---+-------+-----+-------+-------+---------+
5644  */
5645 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5646 {
5647     int op0 = extract32(insn, 30, 1);
5648     int op1 = extract32(insn, 28, 1);
5649     int op2 = extract32(insn, 21, 4);
5650     int op3 = extract32(insn, 10, 6);
5651 
5652     if (!op1) {
5653         if (op2 & 8) {
5654             if (op2 & 1) {
5655                 /* Add/sub (extended register) */
5656                 disas_add_sub_ext_reg(s, insn);
5657             } else {
5658                 /* Add/sub (shifted register) */
5659                 disas_add_sub_reg(s, insn);
5660             }
5661         } else {
5662             /* Logical (shifted register) */
5663             disas_logic_reg(s, insn);
5664         }
5665         return;
5666     }
5667 
5668     switch (op2) {
5669     case 0x0:
5670         switch (op3) {
5671         case 0x00: /* Add/subtract (with carry) */
5672             disas_adc_sbc(s, insn);
5673             break;
5674 
5675         case 0x01: /* Rotate right into flags */
5676         case 0x21:
5677             disas_rotate_right_into_flags(s, insn);
5678             break;
5679 
5680         case 0x02: /* Evaluate into flags */
5681         case 0x12:
5682         case 0x22:
5683         case 0x32:
5684             disas_evaluate_into_flags(s, insn);
5685             break;
5686 
5687         default:
5688             goto do_unallocated;
5689         }
5690         break;
5691 
5692     case 0x2: /* Conditional compare */
5693         disas_cc(s, insn); /* both imm and reg forms */
5694         break;
5695 
5696     case 0x4: /* Conditional select */
5697         disas_cond_select(s, insn);
5698         break;
5699 
5700     case 0x6: /* Data-processing */
5701         if (op0) {    /* (1 source) */
5702             disas_data_proc_1src(s, insn);
5703         } else {      /* (2 source) */
5704             disas_data_proc_2src(s, insn);
5705         }
5706         break;
5707     case 0x8 ... 0xf: /* (3 source) */
5708         disas_data_proc_3src(s, insn);
5709         break;
5710 
5711     default:
5712     do_unallocated:
5713         unallocated_encoding(s);
5714         break;
5715     }
5716 }
5717 
5718 static void handle_fp_compare(DisasContext *s, int size,
5719                               unsigned int rn, unsigned int rm,
5720                               bool cmp_with_zero, bool signal_all_nans)
5721 {
5722     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5723     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5724 
5725     if (size == MO_64) {
5726         TCGv_i64 tcg_vn, tcg_vm;
5727 
5728         tcg_vn = read_fp_dreg(s, rn);
5729         if (cmp_with_zero) {
5730             tcg_vm = tcg_constant_i64(0);
5731         } else {
5732             tcg_vm = read_fp_dreg(s, rm);
5733         }
5734         if (signal_all_nans) {
5735             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5736         } else {
5737             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5738         }
5739     } else {
5740         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5741         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5742 
5743         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5744         if (cmp_with_zero) {
5745             tcg_gen_movi_i32(tcg_vm, 0);
5746         } else {
5747             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5748         }
5749 
5750         switch (size) {
5751         case MO_32:
5752             if (signal_all_nans) {
5753                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5754             } else {
5755                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5756             }
5757             break;
5758         case MO_16:
5759             if (signal_all_nans) {
5760                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5761             } else {
5762                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5763             }
5764             break;
5765         default:
5766             g_assert_not_reached();
5767         }
5768     }
5769 
5770     gen_set_nzcv(tcg_flags);
5771 }
5772 
5773 /* Floating point compare
5774  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5775  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5776  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5777  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5778  */
5779 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5780 {
5781     unsigned int mos, type, rm, op, rn, opc, op2r;
5782     int size;
5783 
5784     mos = extract32(insn, 29, 3);
5785     type = extract32(insn, 22, 2);
5786     rm = extract32(insn, 16, 5);
5787     op = extract32(insn, 14, 2);
5788     rn = extract32(insn, 5, 5);
5789     opc = extract32(insn, 3, 2);
5790     op2r = extract32(insn, 0, 3);
5791 
5792     if (mos || op || op2r) {
5793         unallocated_encoding(s);
5794         return;
5795     }
5796 
5797     switch (type) {
5798     case 0:
5799         size = MO_32;
5800         break;
5801     case 1:
5802         size = MO_64;
5803         break;
5804     case 3:
5805         size = MO_16;
5806         if (dc_isar_feature(aa64_fp16, s)) {
5807             break;
5808         }
5809         /* fallthru */
5810     default:
5811         unallocated_encoding(s);
5812         return;
5813     }
5814 
5815     if (!fp_access_check(s)) {
5816         return;
5817     }
5818 
5819     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5820 }
5821 
5822 /* Floating point conditional compare
5823  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5824  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5825  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5826  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5827  */
5828 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5829 {
5830     unsigned int mos, type, rm, cond, rn, op, nzcv;
5831     TCGLabel *label_continue = NULL;
5832     int size;
5833 
5834     mos = extract32(insn, 29, 3);
5835     type = extract32(insn, 22, 2);
5836     rm = extract32(insn, 16, 5);
5837     cond = extract32(insn, 12, 4);
5838     rn = extract32(insn, 5, 5);
5839     op = extract32(insn, 4, 1);
5840     nzcv = extract32(insn, 0, 4);
5841 
5842     if (mos) {
5843         unallocated_encoding(s);
5844         return;
5845     }
5846 
5847     switch (type) {
5848     case 0:
5849         size = MO_32;
5850         break;
5851     case 1:
5852         size = MO_64;
5853         break;
5854     case 3:
5855         size = MO_16;
5856         if (dc_isar_feature(aa64_fp16, s)) {
5857             break;
5858         }
5859         /* fallthru */
5860     default:
5861         unallocated_encoding(s);
5862         return;
5863     }
5864 
5865     if (!fp_access_check(s)) {
5866         return;
5867     }
5868 
5869     if (cond < 0x0e) { /* not always */
5870         TCGLabel *label_match = gen_new_label();
5871         label_continue = gen_new_label();
5872         arm_gen_test_cc(cond, label_match);
5873         /* nomatch: */
5874         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5875         tcg_gen_br(label_continue);
5876         gen_set_label(label_match);
5877     }
5878 
5879     handle_fp_compare(s, size, rn, rm, false, op);
5880 
5881     if (cond < 0x0e) {
5882         gen_set_label(label_continue);
5883     }
5884 }
5885 
5886 /* Floating point conditional select
5887  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5888  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5889  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5890  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5891  */
5892 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5893 {
5894     unsigned int mos, type, rm, cond, rn, rd;
5895     TCGv_i64 t_true, t_false;
5896     DisasCompare64 c;
5897     MemOp sz;
5898 
5899     mos = extract32(insn, 29, 3);
5900     type = extract32(insn, 22, 2);
5901     rm = extract32(insn, 16, 5);
5902     cond = extract32(insn, 12, 4);
5903     rn = extract32(insn, 5, 5);
5904     rd = extract32(insn, 0, 5);
5905 
5906     if (mos) {
5907         unallocated_encoding(s);
5908         return;
5909     }
5910 
5911     switch (type) {
5912     case 0:
5913         sz = MO_32;
5914         break;
5915     case 1:
5916         sz = MO_64;
5917         break;
5918     case 3:
5919         sz = MO_16;
5920         if (dc_isar_feature(aa64_fp16, s)) {
5921             break;
5922         }
5923         /* fallthru */
5924     default:
5925         unallocated_encoding(s);
5926         return;
5927     }
5928 
5929     if (!fp_access_check(s)) {
5930         return;
5931     }
5932 
5933     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5934     t_true = tcg_temp_new_i64();
5935     t_false = tcg_temp_new_i64();
5936     read_vec_element(s, t_true, rn, 0, sz);
5937     read_vec_element(s, t_false, rm, 0, sz);
5938 
5939     a64_test_cc(&c, cond);
5940     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5941                         t_true, t_false);
5942 
5943     /* Note that sregs & hregs write back zeros to the high bits,
5944        and we've already done the zero-extension.  */
5945     write_fp_dreg(s, rd, t_true);
5946 }
5947 
5948 /* Floating-point data-processing (1 source) - half precision */
5949 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5950 {
5951     TCGv_ptr fpst = NULL;
5952     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5953     TCGv_i32 tcg_res = tcg_temp_new_i32();
5954 
5955     switch (opcode) {
5956     case 0x0: /* FMOV */
5957         tcg_gen_mov_i32(tcg_res, tcg_op);
5958         break;
5959     case 0x1: /* FABS */
5960         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5961         break;
5962     case 0x2: /* FNEG */
5963         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5964         break;
5965     case 0x3: /* FSQRT */
5966         fpst = fpstatus_ptr(FPST_FPCR_F16);
5967         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5968         break;
5969     case 0x8: /* FRINTN */
5970     case 0x9: /* FRINTP */
5971     case 0xa: /* FRINTM */
5972     case 0xb: /* FRINTZ */
5973     case 0xc: /* FRINTA */
5974     {
5975         TCGv_i32 tcg_rmode;
5976 
5977         fpst = fpstatus_ptr(FPST_FPCR_F16);
5978         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5979         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5980         gen_restore_rmode(tcg_rmode, fpst);
5981         break;
5982     }
5983     case 0xe: /* FRINTX */
5984         fpst = fpstatus_ptr(FPST_FPCR_F16);
5985         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5986         break;
5987     case 0xf: /* FRINTI */
5988         fpst = fpstatus_ptr(FPST_FPCR_F16);
5989         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5990         break;
5991     default:
5992         g_assert_not_reached();
5993     }
5994 
5995     write_fp_sreg(s, rd, tcg_res);
5996 }
5997 
5998 /* Floating-point data-processing (1 source) - single precision */
5999 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6000 {
6001     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6002     TCGv_i32 tcg_op, tcg_res;
6003     TCGv_ptr fpst;
6004     int rmode = -1;
6005 
6006     tcg_op = read_fp_sreg(s, rn);
6007     tcg_res = tcg_temp_new_i32();
6008 
6009     switch (opcode) {
6010     case 0x0: /* FMOV */
6011         tcg_gen_mov_i32(tcg_res, tcg_op);
6012         goto done;
6013     case 0x1: /* FABS */
6014         gen_helper_vfp_abss(tcg_res, tcg_op);
6015         goto done;
6016     case 0x2: /* FNEG */
6017         gen_helper_vfp_negs(tcg_res, tcg_op);
6018         goto done;
6019     case 0x3: /* FSQRT */
6020         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6021         goto done;
6022     case 0x6: /* BFCVT */
6023         gen_fpst = gen_helper_bfcvt;
6024         break;
6025     case 0x8: /* FRINTN */
6026     case 0x9: /* FRINTP */
6027     case 0xa: /* FRINTM */
6028     case 0xb: /* FRINTZ */
6029     case 0xc: /* FRINTA */
6030         rmode = opcode & 7;
6031         gen_fpst = gen_helper_rints;
6032         break;
6033     case 0xe: /* FRINTX */
6034         gen_fpst = gen_helper_rints_exact;
6035         break;
6036     case 0xf: /* FRINTI */
6037         gen_fpst = gen_helper_rints;
6038         break;
6039     case 0x10: /* FRINT32Z */
6040         rmode = FPROUNDING_ZERO;
6041         gen_fpst = gen_helper_frint32_s;
6042         break;
6043     case 0x11: /* FRINT32X */
6044         gen_fpst = gen_helper_frint32_s;
6045         break;
6046     case 0x12: /* FRINT64Z */
6047         rmode = FPROUNDING_ZERO;
6048         gen_fpst = gen_helper_frint64_s;
6049         break;
6050     case 0x13: /* FRINT64X */
6051         gen_fpst = gen_helper_frint64_s;
6052         break;
6053     default:
6054         g_assert_not_reached();
6055     }
6056 
6057     fpst = fpstatus_ptr(FPST_FPCR);
6058     if (rmode >= 0) {
6059         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6060         gen_fpst(tcg_res, tcg_op, fpst);
6061         gen_restore_rmode(tcg_rmode, fpst);
6062     } else {
6063         gen_fpst(tcg_res, tcg_op, fpst);
6064     }
6065 
6066  done:
6067     write_fp_sreg(s, rd, tcg_res);
6068 }
6069 
6070 /* Floating-point data-processing (1 source) - double precision */
6071 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6072 {
6073     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6074     TCGv_i64 tcg_op, tcg_res;
6075     TCGv_ptr fpst;
6076     int rmode = -1;
6077 
6078     switch (opcode) {
6079     case 0x0: /* FMOV */
6080         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6081         return;
6082     }
6083 
6084     tcg_op = read_fp_dreg(s, rn);
6085     tcg_res = tcg_temp_new_i64();
6086 
6087     switch (opcode) {
6088     case 0x1: /* FABS */
6089         gen_helper_vfp_absd(tcg_res, tcg_op);
6090         goto done;
6091     case 0x2: /* FNEG */
6092         gen_helper_vfp_negd(tcg_res, tcg_op);
6093         goto done;
6094     case 0x3: /* FSQRT */
6095         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6096         goto done;
6097     case 0x8: /* FRINTN */
6098     case 0x9: /* FRINTP */
6099     case 0xa: /* FRINTM */
6100     case 0xb: /* FRINTZ */
6101     case 0xc: /* FRINTA */
6102         rmode = opcode & 7;
6103         gen_fpst = gen_helper_rintd;
6104         break;
6105     case 0xe: /* FRINTX */
6106         gen_fpst = gen_helper_rintd_exact;
6107         break;
6108     case 0xf: /* FRINTI */
6109         gen_fpst = gen_helper_rintd;
6110         break;
6111     case 0x10: /* FRINT32Z */
6112         rmode = FPROUNDING_ZERO;
6113         gen_fpst = gen_helper_frint32_d;
6114         break;
6115     case 0x11: /* FRINT32X */
6116         gen_fpst = gen_helper_frint32_d;
6117         break;
6118     case 0x12: /* FRINT64Z */
6119         rmode = FPROUNDING_ZERO;
6120         gen_fpst = gen_helper_frint64_d;
6121         break;
6122     case 0x13: /* FRINT64X */
6123         gen_fpst = gen_helper_frint64_d;
6124         break;
6125     default:
6126         g_assert_not_reached();
6127     }
6128 
6129     fpst = fpstatus_ptr(FPST_FPCR);
6130     if (rmode >= 0) {
6131         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6132         gen_fpst(tcg_res, tcg_op, fpst);
6133         gen_restore_rmode(tcg_rmode, fpst);
6134     } else {
6135         gen_fpst(tcg_res, tcg_op, fpst);
6136     }
6137 
6138  done:
6139     write_fp_dreg(s, rd, tcg_res);
6140 }
6141 
6142 static void handle_fp_fcvt(DisasContext *s, int opcode,
6143                            int rd, int rn, int dtype, int ntype)
6144 {
6145     switch (ntype) {
6146     case 0x0:
6147     {
6148         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6149         if (dtype == 1) {
6150             /* Single to double */
6151             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6152             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6153             write_fp_dreg(s, rd, tcg_rd);
6154         } else {
6155             /* Single to half */
6156             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6157             TCGv_i32 ahp = get_ahp_flag();
6158             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6159 
6160             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6161             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6162             write_fp_sreg(s, rd, tcg_rd);
6163         }
6164         break;
6165     }
6166     case 0x1:
6167     {
6168         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6169         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6170         if (dtype == 0) {
6171             /* Double to single */
6172             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6173         } else {
6174             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6175             TCGv_i32 ahp = get_ahp_flag();
6176             /* Double to half */
6177             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6178             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6179         }
6180         write_fp_sreg(s, rd, tcg_rd);
6181         break;
6182     }
6183     case 0x3:
6184     {
6185         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6186         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6187         TCGv_i32 tcg_ahp = get_ahp_flag();
6188         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6189         if (dtype == 0) {
6190             /* Half to single */
6191             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6192             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6193             write_fp_sreg(s, rd, tcg_rd);
6194         } else {
6195             /* Half to double */
6196             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6197             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6198             write_fp_dreg(s, rd, tcg_rd);
6199         }
6200         break;
6201     }
6202     default:
6203         g_assert_not_reached();
6204     }
6205 }
6206 
6207 /* Floating point data-processing (1 source)
6208  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6209  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6210  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6211  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6212  */
6213 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6214 {
6215     int mos = extract32(insn, 29, 3);
6216     int type = extract32(insn, 22, 2);
6217     int opcode = extract32(insn, 15, 6);
6218     int rn = extract32(insn, 5, 5);
6219     int rd = extract32(insn, 0, 5);
6220 
6221     if (mos) {
6222         goto do_unallocated;
6223     }
6224 
6225     switch (opcode) {
6226     case 0x4: case 0x5: case 0x7:
6227     {
6228         /* FCVT between half, single and double precision */
6229         int dtype = extract32(opcode, 0, 2);
6230         if (type == 2 || dtype == type) {
6231             goto do_unallocated;
6232         }
6233         if (!fp_access_check(s)) {
6234             return;
6235         }
6236 
6237         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6238         break;
6239     }
6240 
6241     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6242         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6243             goto do_unallocated;
6244         }
6245         /* fall through */
6246     case 0x0 ... 0x3:
6247     case 0x8 ... 0xc:
6248     case 0xe ... 0xf:
6249         /* 32-to-32 and 64-to-64 ops */
6250         switch (type) {
6251         case 0:
6252             if (!fp_access_check(s)) {
6253                 return;
6254             }
6255             handle_fp_1src_single(s, opcode, rd, rn);
6256             break;
6257         case 1:
6258             if (!fp_access_check(s)) {
6259                 return;
6260             }
6261             handle_fp_1src_double(s, opcode, rd, rn);
6262             break;
6263         case 3:
6264             if (!dc_isar_feature(aa64_fp16, s)) {
6265                 goto do_unallocated;
6266             }
6267 
6268             if (!fp_access_check(s)) {
6269                 return;
6270             }
6271             handle_fp_1src_half(s, opcode, rd, rn);
6272             break;
6273         default:
6274             goto do_unallocated;
6275         }
6276         break;
6277 
6278     case 0x6:
6279         switch (type) {
6280         case 1: /* BFCVT */
6281             if (!dc_isar_feature(aa64_bf16, s)) {
6282                 goto do_unallocated;
6283             }
6284             if (!fp_access_check(s)) {
6285                 return;
6286             }
6287             handle_fp_1src_single(s, opcode, rd, rn);
6288             break;
6289         default:
6290             goto do_unallocated;
6291         }
6292         break;
6293 
6294     default:
6295     do_unallocated:
6296         unallocated_encoding(s);
6297         break;
6298     }
6299 }
6300 
6301 /* Floating-point data-processing (2 source) - single precision */
6302 static void handle_fp_2src_single(DisasContext *s, int opcode,
6303                                   int rd, int rn, int rm)
6304 {
6305     TCGv_i32 tcg_op1;
6306     TCGv_i32 tcg_op2;
6307     TCGv_i32 tcg_res;
6308     TCGv_ptr fpst;
6309 
6310     tcg_res = tcg_temp_new_i32();
6311     fpst = fpstatus_ptr(FPST_FPCR);
6312     tcg_op1 = read_fp_sreg(s, rn);
6313     tcg_op2 = read_fp_sreg(s, rm);
6314 
6315     switch (opcode) {
6316     case 0x0: /* FMUL */
6317         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6318         break;
6319     case 0x1: /* FDIV */
6320         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6321         break;
6322     case 0x2: /* FADD */
6323         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6324         break;
6325     case 0x3: /* FSUB */
6326         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6327         break;
6328     case 0x4: /* FMAX */
6329         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6330         break;
6331     case 0x5: /* FMIN */
6332         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6333         break;
6334     case 0x6: /* FMAXNM */
6335         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6336         break;
6337     case 0x7: /* FMINNM */
6338         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6339         break;
6340     case 0x8: /* FNMUL */
6341         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6342         gen_helper_vfp_negs(tcg_res, tcg_res);
6343         break;
6344     }
6345 
6346     write_fp_sreg(s, rd, tcg_res);
6347 }
6348 
6349 /* Floating-point data-processing (2 source) - double precision */
6350 static void handle_fp_2src_double(DisasContext *s, int opcode,
6351                                   int rd, int rn, int rm)
6352 {
6353     TCGv_i64 tcg_op1;
6354     TCGv_i64 tcg_op2;
6355     TCGv_i64 tcg_res;
6356     TCGv_ptr fpst;
6357 
6358     tcg_res = tcg_temp_new_i64();
6359     fpst = fpstatus_ptr(FPST_FPCR);
6360     tcg_op1 = read_fp_dreg(s, rn);
6361     tcg_op2 = read_fp_dreg(s, rm);
6362 
6363     switch (opcode) {
6364     case 0x0: /* FMUL */
6365         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6366         break;
6367     case 0x1: /* FDIV */
6368         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6369         break;
6370     case 0x2: /* FADD */
6371         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6372         break;
6373     case 0x3: /* FSUB */
6374         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6375         break;
6376     case 0x4: /* FMAX */
6377         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6378         break;
6379     case 0x5: /* FMIN */
6380         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6381         break;
6382     case 0x6: /* FMAXNM */
6383         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6384         break;
6385     case 0x7: /* FMINNM */
6386         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6387         break;
6388     case 0x8: /* FNMUL */
6389         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6390         gen_helper_vfp_negd(tcg_res, tcg_res);
6391         break;
6392     }
6393 
6394     write_fp_dreg(s, rd, tcg_res);
6395 }
6396 
6397 /* Floating-point data-processing (2 source) - half precision */
6398 static void handle_fp_2src_half(DisasContext *s, int opcode,
6399                                 int rd, int rn, int rm)
6400 {
6401     TCGv_i32 tcg_op1;
6402     TCGv_i32 tcg_op2;
6403     TCGv_i32 tcg_res;
6404     TCGv_ptr fpst;
6405 
6406     tcg_res = tcg_temp_new_i32();
6407     fpst = fpstatus_ptr(FPST_FPCR_F16);
6408     tcg_op1 = read_fp_hreg(s, rn);
6409     tcg_op2 = read_fp_hreg(s, rm);
6410 
6411     switch (opcode) {
6412     case 0x0: /* FMUL */
6413         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6414         break;
6415     case 0x1: /* FDIV */
6416         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6417         break;
6418     case 0x2: /* FADD */
6419         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6420         break;
6421     case 0x3: /* FSUB */
6422         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6423         break;
6424     case 0x4: /* FMAX */
6425         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6426         break;
6427     case 0x5: /* FMIN */
6428         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6429         break;
6430     case 0x6: /* FMAXNM */
6431         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6432         break;
6433     case 0x7: /* FMINNM */
6434         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6435         break;
6436     case 0x8: /* FNMUL */
6437         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6438         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6439         break;
6440     default:
6441         g_assert_not_reached();
6442     }
6443 
6444     write_fp_sreg(s, rd, tcg_res);
6445 }
6446 
6447 /* Floating point data-processing (2 source)
6448  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6449  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6450  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6451  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6452  */
6453 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6454 {
6455     int mos = extract32(insn, 29, 3);
6456     int type = extract32(insn, 22, 2);
6457     int rd = extract32(insn, 0, 5);
6458     int rn = extract32(insn, 5, 5);
6459     int rm = extract32(insn, 16, 5);
6460     int opcode = extract32(insn, 12, 4);
6461 
6462     if (opcode > 8 || mos) {
6463         unallocated_encoding(s);
6464         return;
6465     }
6466 
6467     switch (type) {
6468     case 0:
6469         if (!fp_access_check(s)) {
6470             return;
6471         }
6472         handle_fp_2src_single(s, opcode, rd, rn, rm);
6473         break;
6474     case 1:
6475         if (!fp_access_check(s)) {
6476             return;
6477         }
6478         handle_fp_2src_double(s, opcode, rd, rn, rm);
6479         break;
6480     case 3:
6481         if (!dc_isar_feature(aa64_fp16, s)) {
6482             unallocated_encoding(s);
6483             return;
6484         }
6485         if (!fp_access_check(s)) {
6486             return;
6487         }
6488         handle_fp_2src_half(s, opcode, rd, rn, rm);
6489         break;
6490     default:
6491         unallocated_encoding(s);
6492     }
6493 }
6494 
6495 /* Floating-point data-processing (3 source) - single precision */
6496 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6497                                   int rd, int rn, int rm, int ra)
6498 {
6499     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6500     TCGv_i32 tcg_res = tcg_temp_new_i32();
6501     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6502 
6503     tcg_op1 = read_fp_sreg(s, rn);
6504     tcg_op2 = read_fp_sreg(s, rm);
6505     tcg_op3 = read_fp_sreg(s, ra);
6506 
6507     /* These are fused multiply-add, and must be done as one
6508      * floating point operation with no rounding between the
6509      * multiplication and addition steps.
6510      * NB that doing the negations here as separate steps is
6511      * correct : an input NaN should come out with its sign bit
6512      * flipped if it is a negated-input.
6513      */
6514     if (o1 == true) {
6515         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6516     }
6517 
6518     if (o0 != o1) {
6519         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6520     }
6521 
6522     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6523 
6524     write_fp_sreg(s, rd, tcg_res);
6525 }
6526 
6527 /* Floating-point data-processing (3 source) - double precision */
6528 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6529                                   int rd, int rn, int rm, int ra)
6530 {
6531     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6532     TCGv_i64 tcg_res = tcg_temp_new_i64();
6533     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6534 
6535     tcg_op1 = read_fp_dreg(s, rn);
6536     tcg_op2 = read_fp_dreg(s, rm);
6537     tcg_op3 = read_fp_dreg(s, ra);
6538 
6539     /* These are fused multiply-add, and must be done as one
6540      * floating point operation with no rounding between the
6541      * multiplication and addition steps.
6542      * NB that doing the negations here as separate steps is
6543      * correct : an input NaN should come out with its sign bit
6544      * flipped if it is a negated-input.
6545      */
6546     if (o1 == true) {
6547         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6548     }
6549 
6550     if (o0 != o1) {
6551         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6552     }
6553 
6554     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6555 
6556     write_fp_dreg(s, rd, tcg_res);
6557 }
6558 
6559 /* Floating-point data-processing (3 source) - half precision */
6560 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6561                                 int rd, int rn, int rm, int ra)
6562 {
6563     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6564     TCGv_i32 tcg_res = tcg_temp_new_i32();
6565     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6566 
6567     tcg_op1 = read_fp_hreg(s, rn);
6568     tcg_op2 = read_fp_hreg(s, rm);
6569     tcg_op3 = read_fp_hreg(s, ra);
6570 
6571     /* These are fused multiply-add, and must be done as one
6572      * floating point operation with no rounding between the
6573      * multiplication and addition steps.
6574      * NB that doing the negations here as separate steps is
6575      * correct : an input NaN should come out with its sign bit
6576      * flipped if it is a negated-input.
6577      */
6578     if (o1 == true) {
6579         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6580     }
6581 
6582     if (o0 != o1) {
6583         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6584     }
6585 
6586     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6587 
6588     write_fp_sreg(s, rd, tcg_res);
6589 }
6590 
6591 /* Floating point data-processing (3 source)
6592  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6593  * +---+---+---+-----------+------+----+------+----+------+------+------+
6594  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6595  * +---+---+---+-----------+------+----+------+----+------+------+------+
6596  */
6597 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6598 {
6599     int mos = extract32(insn, 29, 3);
6600     int type = extract32(insn, 22, 2);
6601     int rd = extract32(insn, 0, 5);
6602     int rn = extract32(insn, 5, 5);
6603     int ra = extract32(insn, 10, 5);
6604     int rm = extract32(insn, 16, 5);
6605     bool o0 = extract32(insn, 15, 1);
6606     bool o1 = extract32(insn, 21, 1);
6607 
6608     if (mos) {
6609         unallocated_encoding(s);
6610         return;
6611     }
6612 
6613     switch (type) {
6614     case 0:
6615         if (!fp_access_check(s)) {
6616             return;
6617         }
6618         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6619         break;
6620     case 1:
6621         if (!fp_access_check(s)) {
6622             return;
6623         }
6624         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6625         break;
6626     case 3:
6627         if (!dc_isar_feature(aa64_fp16, s)) {
6628             unallocated_encoding(s);
6629             return;
6630         }
6631         if (!fp_access_check(s)) {
6632             return;
6633         }
6634         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6635         break;
6636     default:
6637         unallocated_encoding(s);
6638     }
6639 }
6640 
6641 /* Floating point immediate
6642  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6643  * +---+---+---+-----------+------+---+------------+-------+------+------+
6644  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6645  * +---+---+---+-----------+------+---+------------+-------+------+------+
6646  */
6647 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6648 {
6649     int rd = extract32(insn, 0, 5);
6650     int imm5 = extract32(insn, 5, 5);
6651     int imm8 = extract32(insn, 13, 8);
6652     int type = extract32(insn, 22, 2);
6653     int mos = extract32(insn, 29, 3);
6654     uint64_t imm;
6655     MemOp sz;
6656 
6657     if (mos || imm5) {
6658         unallocated_encoding(s);
6659         return;
6660     }
6661 
6662     switch (type) {
6663     case 0:
6664         sz = MO_32;
6665         break;
6666     case 1:
6667         sz = MO_64;
6668         break;
6669     case 3:
6670         sz = MO_16;
6671         if (dc_isar_feature(aa64_fp16, s)) {
6672             break;
6673         }
6674         /* fallthru */
6675     default:
6676         unallocated_encoding(s);
6677         return;
6678     }
6679 
6680     if (!fp_access_check(s)) {
6681         return;
6682     }
6683 
6684     imm = vfp_expand_imm(sz, imm8);
6685     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6686 }
6687 
6688 /* Handle floating point <=> fixed point conversions. Note that we can
6689  * also deal with fp <=> integer conversions as a special case (scale == 64)
6690  * OPTME: consider handling that special case specially or at least skipping
6691  * the call to scalbn in the helpers for zero shifts.
6692  */
6693 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6694                            bool itof, int rmode, int scale, int sf, int type)
6695 {
6696     bool is_signed = !(opcode & 1);
6697     TCGv_ptr tcg_fpstatus;
6698     TCGv_i32 tcg_shift, tcg_single;
6699     TCGv_i64 tcg_double;
6700 
6701     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6702 
6703     tcg_shift = tcg_constant_i32(64 - scale);
6704 
6705     if (itof) {
6706         TCGv_i64 tcg_int = cpu_reg(s, rn);
6707         if (!sf) {
6708             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6709 
6710             if (is_signed) {
6711                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6712             } else {
6713                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6714             }
6715 
6716             tcg_int = tcg_extend;
6717         }
6718 
6719         switch (type) {
6720         case 1: /* float64 */
6721             tcg_double = tcg_temp_new_i64();
6722             if (is_signed) {
6723                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6724                                      tcg_shift, tcg_fpstatus);
6725             } else {
6726                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6727                                      tcg_shift, tcg_fpstatus);
6728             }
6729             write_fp_dreg(s, rd, tcg_double);
6730             break;
6731 
6732         case 0: /* float32 */
6733             tcg_single = tcg_temp_new_i32();
6734             if (is_signed) {
6735                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6736                                      tcg_shift, tcg_fpstatus);
6737             } else {
6738                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6739                                      tcg_shift, tcg_fpstatus);
6740             }
6741             write_fp_sreg(s, rd, tcg_single);
6742             break;
6743 
6744         case 3: /* float16 */
6745             tcg_single = tcg_temp_new_i32();
6746             if (is_signed) {
6747                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6748                                      tcg_shift, tcg_fpstatus);
6749             } else {
6750                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6751                                      tcg_shift, tcg_fpstatus);
6752             }
6753             write_fp_sreg(s, rd, tcg_single);
6754             break;
6755 
6756         default:
6757             g_assert_not_reached();
6758         }
6759     } else {
6760         TCGv_i64 tcg_int = cpu_reg(s, rd);
6761         TCGv_i32 tcg_rmode;
6762 
6763         if (extract32(opcode, 2, 1)) {
6764             /* There are too many rounding modes to all fit into rmode,
6765              * so FCVTA[US] is a special case.
6766              */
6767             rmode = FPROUNDING_TIEAWAY;
6768         }
6769 
6770         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6771 
6772         switch (type) {
6773         case 1: /* float64 */
6774             tcg_double = read_fp_dreg(s, rn);
6775             if (is_signed) {
6776                 if (!sf) {
6777                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6778                                          tcg_shift, tcg_fpstatus);
6779                 } else {
6780                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6781                                          tcg_shift, tcg_fpstatus);
6782                 }
6783             } else {
6784                 if (!sf) {
6785                     gen_helper_vfp_tould(tcg_int, tcg_double,
6786                                          tcg_shift, tcg_fpstatus);
6787                 } else {
6788                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6789                                          tcg_shift, tcg_fpstatus);
6790                 }
6791             }
6792             if (!sf) {
6793                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6794             }
6795             break;
6796 
6797         case 0: /* float32 */
6798             tcg_single = read_fp_sreg(s, rn);
6799             if (sf) {
6800                 if (is_signed) {
6801                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6802                                          tcg_shift, tcg_fpstatus);
6803                 } else {
6804                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6805                                          tcg_shift, tcg_fpstatus);
6806                 }
6807             } else {
6808                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6809                 if (is_signed) {
6810                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6811                                          tcg_shift, tcg_fpstatus);
6812                 } else {
6813                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6814                                          tcg_shift, tcg_fpstatus);
6815                 }
6816                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6817             }
6818             break;
6819 
6820         case 3: /* float16 */
6821             tcg_single = read_fp_sreg(s, rn);
6822             if (sf) {
6823                 if (is_signed) {
6824                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6825                                          tcg_shift, tcg_fpstatus);
6826                 } else {
6827                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6828                                          tcg_shift, tcg_fpstatus);
6829                 }
6830             } else {
6831                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6832                 if (is_signed) {
6833                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6834                                          tcg_shift, tcg_fpstatus);
6835                 } else {
6836                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6837                                          tcg_shift, tcg_fpstatus);
6838                 }
6839                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6840             }
6841             break;
6842 
6843         default:
6844             g_assert_not_reached();
6845         }
6846 
6847         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6848     }
6849 }
6850 
6851 /* Floating point <-> fixed point conversions
6852  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6853  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6854  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6855  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6856  */
6857 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6858 {
6859     int rd = extract32(insn, 0, 5);
6860     int rn = extract32(insn, 5, 5);
6861     int scale = extract32(insn, 10, 6);
6862     int opcode = extract32(insn, 16, 3);
6863     int rmode = extract32(insn, 19, 2);
6864     int type = extract32(insn, 22, 2);
6865     bool sbit = extract32(insn, 29, 1);
6866     bool sf = extract32(insn, 31, 1);
6867     bool itof;
6868 
6869     if (sbit || (!sf && scale < 32)) {
6870         unallocated_encoding(s);
6871         return;
6872     }
6873 
6874     switch (type) {
6875     case 0: /* float32 */
6876     case 1: /* float64 */
6877         break;
6878     case 3: /* float16 */
6879         if (dc_isar_feature(aa64_fp16, s)) {
6880             break;
6881         }
6882         /* fallthru */
6883     default:
6884         unallocated_encoding(s);
6885         return;
6886     }
6887 
6888     switch ((rmode << 3) | opcode) {
6889     case 0x2: /* SCVTF */
6890     case 0x3: /* UCVTF */
6891         itof = true;
6892         break;
6893     case 0x18: /* FCVTZS */
6894     case 0x19: /* FCVTZU */
6895         itof = false;
6896         break;
6897     default:
6898         unallocated_encoding(s);
6899         return;
6900     }
6901 
6902     if (!fp_access_check(s)) {
6903         return;
6904     }
6905 
6906     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6907 }
6908 
6909 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6910 {
6911     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6912      * without conversion.
6913      */
6914 
6915     if (itof) {
6916         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6917         TCGv_i64 tmp;
6918 
6919         switch (type) {
6920         case 0:
6921             /* 32 bit */
6922             tmp = tcg_temp_new_i64();
6923             tcg_gen_ext32u_i64(tmp, tcg_rn);
6924             write_fp_dreg(s, rd, tmp);
6925             break;
6926         case 1:
6927             /* 64 bit */
6928             write_fp_dreg(s, rd, tcg_rn);
6929             break;
6930         case 2:
6931             /* 64 bit to top half. */
6932             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6933             clear_vec_high(s, true, rd);
6934             break;
6935         case 3:
6936             /* 16 bit */
6937             tmp = tcg_temp_new_i64();
6938             tcg_gen_ext16u_i64(tmp, tcg_rn);
6939             write_fp_dreg(s, rd, tmp);
6940             break;
6941         default:
6942             g_assert_not_reached();
6943         }
6944     } else {
6945         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6946 
6947         switch (type) {
6948         case 0:
6949             /* 32 bit */
6950             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6951             break;
6952         case 1:
6953             /* 64 bit */
6954             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6955             break;
6956         case 2:
6957             /* 64 bits from top half */
6958             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6959             break;
6960         case 3:
6961             /* 16 bit */
6962             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6963             break;
6964         default:
6965             g_assert_not_reached();
6966         }
6967     }
6968 }
6969 
6970 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6971 {
6972     TCGv_i64 t = read_fp_dreg(s, rn);
6973     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6974 
6975     gen_helper_fjcvtzs(t, t, fpstatus);
6976 
6977     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6978     tcg_gen_extrh_i64_i32(cpu_ZF, t);
6979     tcg_gen_movi_i32(cpu_CF, 0);
6980     tcg_gen_movi_i32(cpu_NF, 0);
6981     tcg_gen_movi_i32(cpu_VF, 0);
6982 }
6983 
6984 /* Floating point <-> integer conversions
6985  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6986  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6987  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6988  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6989  */
6990 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6991 {
6992     int rd = extract32(insn, 0, 5);
6993     int rn = extract32(insn, 5, 5);
6994     int opcode = extract32(insn, 16, 3);
6995     int rmode = extract32(insn, 19, 2);
6996     int type = extract32(insn, 22, 2);
6997     bool sbit = extract32(insn, 29, 1);
6998     bool sf = extract32(insn, 31, 1);
6999     bool itof = false;
7000 
7001     if (sbit) {
7002         goto do_unallocated;
7003     }
7004 
7005     switch (opcode) {
7006     case 2: /* SCVTF */
7007     case 3: /* UCVTF */
7008         itof = true;
7009         /* fallthru */
7010     case 4: /* FCVTAS */
7011     case 5: /* FCVTAU */
7012         if (rmode != 0) {
7013             goto do_unallocated;
7014         }
7015         /* fallthru */
7016     case 0: /* FCVT[NPMZ]S */
7017     case 1: /* FCVT[NPMZ]U */
7018         switch (type) {
7019         case 0: /* float32 */
7020         case 1: /* float64 */
7021             break;
7022         case 3: /* float16 */
7023             if (!dc_isar_feature(aa64_fp16, s)) {
7024                 goto do_unallocated;
7025             }
7026             break;
7027         default:
7028             goto do_unallocated;
7029         }
7030         if (!fp_access_check(s)) {
7031             return;
7032         }
7033         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7034         break;
7035 
7036     default:
7037         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7038         case 0b01100110: /* FMOV half <-> 32-bit int */
7039         case 0b01100111:
7040         case 0b11100110: /* FMOV half <-> 64-bit int */
7041         case 0b11100111:
7042             if (!dc_isar_feature(aa64_fp16, s)) {
7043                 goto do_unallocated;
7044             }
7045             /* fallthru */
7046         case 0b00000110: /* FMOV 32-bit */
7047         case 0b00000111:
7048         case 0b10100110: /* FMOV 64-bit */
7049         case 0b10100111:
7050         case 0b11001110: /* FMOV top half of 128-bit */
7051         case 0b11001111:
7052             if (!fp_access_check(s)) {
7053                 return;
7054             }
7055             itof = opcode & 1;
7056             handle_fmov(s, rd, rn, type, itof);
7057             break;
7058 
7059         case 0b00111110: /* FJCVTZS */
7060             if (!dc_isar_feature(aa64_jscvt, s)) {
7061                 goto do_unallocated;
7062             } else if (fp_access_check(s)) {
7063                 handle_fjcvtzs(s, rd, rn);
7064             }
7065             break;
7066 
7067         default:
7068         do_unallocated:
7069             unallocated_encoding(s);
7070             return;
7071         }
7072         break;
7073     }
7074 }
7075 
7076 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7077  *   31  30  29 28     25 24                          0
7078  * +---+---+---+---------+-----------------------------+
7079  * |   | 0 |   | 1 1 1 1 |                             |
7080  * +---+---+---+---------+-----------------------------+
7081  */
7082 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7083 {
7084     if (extract32(insn, 24, 1)) {
7085         /* Floating point data-processing (3 source) */
7086         disas_fp_3src(s, insn);
7087     } else if (extract32(insn, 21, 1) == 0) {
7088         /* Floating point to fixed point conversions */
7089         disas_fp_fixed_conv(s, insn);
7090     } else {
7091         switch (extract32(insn, 10, 2)) {
7092         case 1:
7093             /* Floating point conditional compare */
7094             disas_fp_ccomp(s, insn);
7095             break;
7096         case 2:
7097             /* Floating point data-processing (2 source) */
7098             disas_fp_2src(s, insn);
7099             break;
7100         case 3:
7101             /* Floating point conditional select */
7102             disas_fp_csel(s, insn);
7103             break;
7104         case 0:
7105             switch (ctz32(extract32(insn, 12, 4))) {
7106             case 0: /* [15:12] == xxx1 */
7107                 /* Floating point immediate */
7108                 disas_fp_imm(s, insn);
7109                 break;
7110             case 1: /* [15:12] == xx10 */
7111                 /* Floating point compare */
7112                 disas_fp_compare(s, insn);
7113                 break;
7114             case 2: /* [15:12] == x100 */
7115                 /* Floating point data-processing (1 source) */
7116                 disas_fp_1src(s, insn);
7117                 break;
7118             case 3: /* [15:12] == 1000 */
7119                 unallocated_encoding(s);
7120                 break;
7121             default: /* [15:12] == 0000 */
7122                 /* Floating point <-> integer conversions */
7123                 disas_fp_int_conv(s, insn);
7124                 break;
7125             }
7126             break;
7127         }
7128     }
7129 }
7130 
7131 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7132                      int pos)
7133 {
7134     /* Extract 64 bits from the middle of two concatenated 64 bit
7135      * vector register slices left:right. The extracted bits start
7136      * at 'pos' bits into the right (least significant) side.
7137      * We return the result in tcg_right, and guarantee not to
7138      * trash tcg_left.
7139      */
7140     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7141     assert(pos > 0 && pos < 64);
7142 
7143     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7144     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7145     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7146 }
7147 
7148 /* EXT
7149  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7150  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7151  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7152  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7153  */
7154 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7155 {
7156     int is_q = extract32(insn, 30, 1);
7157     int op2 = extract32(insn, 22, 2);
7158     int imm4 = extract32(insn, 11, 4);
7159     int rm = extract32(insn, 16, 5);
7160     int rn = extract32(insn, 5, 5);
7161     int rd = extract32(insn, 0, 5);
7162     int pos = imm4 << 3;
7163     TCGv_i64 tcg_resl, tcg_resh;
7164 
7165     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7166         unallocated_encoding(s);
7167         return;
7168     }
7169 
7170     if (!fp_access_check(s)) {
7171         return;
7172     }
7173 
7174     tcg_resh = tcg_temp_new_i64();
7175     tcg_resl = tcg_temp_new_i64();
7176 
7177     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7178      * either extracting 128 bits from a 128:128 concatenation, or
7179      * extracting 64 bits from a 64:64 concatenation.
7180      */
7181     if (!is_q) {
7182         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7183         if (pos != 0) {
7184             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7185             do_ext64(s, tcg_resh, tcg_resl, pos);
7186         }
7187     } else {
7188         TCGv_i64 tcg_hh;
7189         typedef struct {
7190             int reg;
7191             int elt;
7192         } EltPosns;
7193         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7194         EltPosns *elt = eltposns;
7195 
7196         if (pos >= 64) {
7197             elt++;
7198             pos -= 64;
7199         }
7200 
7201         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7202         elt++;
7203         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7204         elt++;
7205         if (pos != 0) {
7206             do_ext64(s, tcg_resh, tcg_resl, pos);
7207             tcg_hh = tcg_temp_new_i64();
7208             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7209             do_ext64(s, tcg_hh, tcg_resh, pos);
7210         }
7211     }
7212 
7213     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7214     if (is_q) {
7215         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7216     }
7217     clear_vec_high(s, is_q, rd);
7218 }
7219 
7220 /* TBL/TBX
7221  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7222  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7223  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7224  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7225  */
7226 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7227 {
7228     int op2 = extract32(insn, 22, 2);
7229     int is_q = extract32(insn, 30, 1);
7230     int rm = extract32(insn, 16, 5);
7231     int rn = extract32(insn, 5, 5);
7232     int rd = extract32(insn, 0, 5);
7233     int is_tbx = extract32(insn, 12, 1);
7234     int len = (extract32(insn, 13, 2) + 1) * 16;
7235 
7236     if (op2 != 0) {
7237         unallocated_encoding(s);
7238         return;
7239     }
7240 
7241     if (!fp_access_check(s)) {
7242         return;
7243     }
7244 
7245     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7246                        vec_full_reg_offset(s, rm), cpu_env,
7247                        is_q ? 16 : 8, vec_full_reg_size(s),
7248                        (len << 6) | (is_tbx << 5) | rn,
7249                        gen_helper_simd_tblx);
7250 }
7251 
7252 /* ZIP/UZP/TRN
7253  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7254  * +---+---+-------------+------+---+------+---+------------------+------+
7255  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7256  * +---+---+-------------+------+---+------+---+------------------+------+
7257  */
7258 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7259 {
7260     int rd = extract32(insn, 0, 5);
7261     int rn = extract32(insn, 5, 5);
7262     int rm = extract32(insn, 16, 5);
7263     int size = extract32(insn, 22, 2);
7264     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7265      * bit 2 indicates 1 vs 2 variant of the insn.
7266      */
7267     int opcode = extract32(insn, 12, 2);
7268     bool part = extract32(insn, 14, 1);
7269     bool is_q = extract32(insn, 30, 1);
7270     int esize = 8 << size;
7271     int i;
7272     int datasize = is_q ? 128 : 64;
7273     int elements = datasize / esize;
7274     TCGv_i64 tcg_res[2], tcg_ele;
7275 
7276     if (opcode == 0 || (size == 3 && !is_q)) {
7277         unallocated_encoding(s);
7278         return;
7279     }
7280 
7281     if (!fp_access_check(s)) {
7282         return;
7283     }
7284 
7285     tcg_res[0] = tcg_temp_new_i64();
7286     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7287     tcg_ele = tcg_temp_new_i64();
7288 
7289     for (i = 0; i < elements; i++) {
7290         int o, w;
7291 
7292         switch (opcode) {
7293         case 1: /* UZP1/2 */
7294         {
7295             int midpoint = elements / 2;
7296             if (i < midpoint) {
7297                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7298             } else {
7299                 read_vec_element(s, tcg_ele, rm,
7300                                  2 * (i - midpoint) + part, size);
7301             }
7302             break;
7303         }
7304         case 2: /* TRN1/2 */
7305             if (i & 1) {
7306                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7307             } else {
7308                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7309             }
7310             break;
7311         case 3: /* ZIP1/2 */
7312         {
7313             int base = part * elements / 2;
7314             if (i & 1) {
7315                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7316             } else {
7317                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7318             }
7319             break;
7320         }
7321         default:
7322             g_assert_not_reached();
7323         }
7324 
7325         w = (i * esize) / 64;
7326         o = (i * esize) % 64;
7327         if (o == 0) {
7328             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7329         } else {
7330             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7331             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7332         }
7333     }
7334 
7335     for (i = 0; i <= is_q; ++i) {
7336         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7337     }
7338     clear_vec_high(s, is_q, rd);
7339 }
7340 
7341 /*
7342  * do_reduction_op helper
7343  *
7344  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7345  * important for correct NaN propagation that we do these
7346  * operations in exactly the order specified by the pseudocode.
7347  *
7348  * This is a recursive function, TCG temps should be freed by the
7349  * calling function once it is done with the values.
7350  */
7351 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7352                                 int esize, int size, int vmap, TCGv_ptr fpst)
7353 {
7354     if (esize == size) {
7355         int element;
7356         MemOp msize = esize == 16 ? MO_16 : MO_32;
7357         TCGv_i32 tcg_elem;
7358 
7359         /* We should have one register left here */
7360         assert(ctpop8(vmap) == 1);
7361         element = ctz32(vmap);
7362         assert(element < 8);
7363 
7364         tcg_elem = tcg_temp_new_i32();
7365         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7366         return tcg_elem;
7367     } else {
7368         int bits = size / 2;
7369         int shift = ctpop8(vmap) / 2;
7370         int vmap_lo = (vmap >> shift) & vmap;
7371         int vmap_hi = (vmap & ~vmap_lo);
7372         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7373 
7374         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7375         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7376         tcg_res = tcg_temp_new_i32();
7377 
7378         switch (fpopcode) {
7379         case 0x0c: /* fmaxnmv half-precision */
7380             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7381             break;
7382         case 0x0f: /* fmaxv half-precision */
7383             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7384             break;
7385         case 0x1c: /* fminnmv half-precision */
7386             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7387             break;
7388         case 0x1f: /* fminv half-precision */
7389             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7390             break;
7391         case 0x2c: /* fmaxnmv */
7392             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7393             break;
7394         case 0x2f: /* fmaxv */
7395             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7396             break;
7397         case 0x3c: /* fminnmv */
7398             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7399             break;
7400         case 0x3f: /* fminv */
7401             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7402             break;
7403         default:
7404             g_assert_not_reached();
7405         }
7406         return tcg_res;
7407     }
7408 }
7409 
7410 /* AdvSIMD across lanes
7411  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7412  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7413  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7414  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7415  */
7416 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7417 {
7418     int rd = extract32(insn, 0, 5);
7419     int rn = extract32(insn, 5, 5);
7420     int size = extract32(insn, 22, 2);
7421     int opcode = extract32(insn, 12, 5);
7422     bool is_q = extract32(insn, 30, 1);
7423     bool is_u = extract32(insn, 29, 1);
7424     bool is_fp = false;
7425     bool is_min = false;
7426     int esize;
7427     int elements;
7428     int i;
7429     TCGv_i64 tcg_res, tcg_elt;
7430 
7431     switch (opcode) {
7432     case 0x1b: /* ADDV */
7433         if (is_u) {
7434             unallocated_encoding(s);
7435             return;
7436         }
7437         /* fall through */
7438     case 0x3: /* SADDLV, UADDLV */
7439     case 0xa: /* SMAXV, UMAXV */
7440     case 0x1a: /* SMINV, UMINV */
7441         if (size == 3 || (size == 2 && !is_q)) {
7442             unallocated_encoding(s);
7443             return;
7444         }
7445         break;
7446     case 0xc: /* FMAXNMV, FMINNMV */
7447     case 0xf: /* FMAXV, FMINV */
7448         /* Bit 1 of size field encodes min vs max and the actual size
7449          * depends on the encoding of the U bit. If not set (and FP16
7450          * enabled) then we do half-precision float instead of single
7451          * precision.
7452          */
7453         is_min = extract32(size, 1, 1);
7454         is_fp = true;
7455         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7456             size = 1;
7457         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7458             unallocated_encoding(s);
7459             return;
7460         } else {
7461             size = 2;
7462         }
7463         break;
7464     default:
7465         unallocated_encoding(s);
7466         return;
7467     }
7468 
7469     if (!fp_access_check(s)) {
7470         return;
7471     }
7472 
7473     esize = 8 << size;
7474     elements = (is_q ? 128 : 64) / esize;
7475 
7476     tcg_res = tcg_temp_new_i64();
7477     tcg_elt = tcg_temp_new_i64();
7478 
7479     /* These instructions operate across all lanes of a vector
7480      * to produce a single result. We can guarantee that a 64
7481      * bit intermediate is sufficient:
7482      *  + for [US]ADDLV the maximum element size is 32 bits, and
7483      *    the result type is 64 bits
7484      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7485      *    same as the element size, which is 32 bits at most
7486      * For the integer operations we can choose to work at 64
7487      * or 32 bits and truncate at the end; for simplicity
7488      * we use 64 bits always. The floating point
7489      * ops do require 32 bit intermediates, though.
7490      */
7491     if (!is_fp) {
7492         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7493 
7494         for (i = 1; i < elements; i++) {
7495             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7496 
7497             switch (opcode) {
7498             case 0x03: /* SADDLV / UADDLV */
7499             case 0x1b: /* ADDV */
7500                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7501                 break;
7502             case 0x0a: /* SMAXV / UMAXV */
7503                 if (is_u) {
7504                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7505                 } else {
7506                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7507                 }
7508                 break;
7509             case 0x1a: /* SMINV / UMINV */
7510                 if (is_u) {
7511                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7512                 } else {
7513                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7514                 }
7515                 break;
7516             default:
7517                 g_assert_not_reached();
7518             }
7519 
7520         }
7521     } else {
7522         /* Floating point vector reduction ops which work across 32
7523          * bit (single) or 16 bit (half-precision) intermediates.
7524          * Note that correct NaN propagation requires that we do these
7525          * operations in exactly the order specified by the pseudocode.
7526          */
7527         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7528         int fpopcode = opcode | is_min << 4 | is_u << 5;
7529         int vmap = (1 << elements) - 1;
7530         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7531                                              (is_q ? 128 : 64), vmap, fpst);
7532         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7533     }
7534 
7535     /* Now truncate the result to the width required for the final output */
7536     if (opcode == 0x03) {
7537         /* SADDLV, UADDLV: result is 2*esize */
7538         size++;
7539     }
7540 
7541     switch (size) {
7542     case 0:
7543         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7544         break;
7545     case 1:
7546         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7547         break;
7548     case 2:
7549         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7550         break;
7551     case 3:
7552         break;
7553     default:
7554         g_assert_not_reached();
7555     }
7556 
7557     write_fp_dreg(s, rd, tcg_res);
7558 }
7559 
7560 /* DUP (Element, Vector)
7561  *
7562  *  31  30   29              21 20    16 15        10  9    5 4    0
7563  * +---+---+-------------------+--------+-------------+------+------+
7564  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7565  * +---+---+-------------------+--------+-------------+------+------+
7566  *
7567  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7568  */
7569 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7570                              int imm5)
7571 {
7572     int size = ctz32(imm5);
7573     int index;
7574 
7575     if (size > 3 || (size == 3 && !is_q)) {
7576         unallocated_encoding(s);
7577         return;
7578     }
7579 
7580     if (!fp_access_check(s)) {
7581         return;
7582     }
7583 
7584     index = imm5 >> (size + 1);
7585     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7586                          vec_reg_offset(s, rn, index, size),
7587                          is_q ? 16 : 8, vec_full_reg_size(s));
7588 }
7589 
7590 /* DUP (element, scalar)
7591  *  31                   21 20    16 15        10  9    5 4    0
7592  * +-----------------------+--------+-------------+------+------+
7593  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7594  * +-----------------------+--------+-------------+------+------+
7595  */
7596 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7597                               int imm5)
7598 {
7599     int size = ctz32(imm5);
7600     int index;
7601     TCGv_i64 tmp;
7602 
7603     if (size > 3) {
7604         unallocated_encoding(s);
7605         return;
7606     }
7607 
7608     if (!fp_access_check(s)) {
7609         return;
7610     }
7611 
7612     index = imm5 >> (size + 1);
7613 
7614     /* This instruction just extracts the specified element and
7615      * zero-extends it into the bottom of the destination register.
7616      */
7617     tmp = tcg_temp_new_i64();
7618     read_vec_element(s, tmp, rn, index, size);
7619     write_fp_dreg(s, rd, tmp);
7620 }
7621 
7622 /* DUP (General)
7623  *
7624  *  31  30   29              21 20    16 15        10  9    5 4    0
7625  * +---+---+-------------------+--------+-------------+------+------+
7626  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7627  * +---+---+-------------------+--------+-------------+------+------+
7628  *
7629  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7630  */
7631 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7632                              int imm5)
7633 {
7634     int size = ctz32(imm5);
7635     uint32_t dofs, oprsz, maxsz;
7636 
7637     if (size > 3 || ((size == 3) && !is_q)) {
7638         unallocated_encoding(s);
7639         return;
7640     }
7641 
7642     if (!fp_access_check(s)) {
7643         return;
7644     }
7645 
7646     dofs = vec_full_reg_offset(s, rd);
7647     oprsz = is_q ? 16 : 8;
7648     maxsz = vec_full_reg_size(s);
7649 
7650     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7651 }
7652 
7653 /* INS (Element)
7654  *
7655  *  31                   21 20    16 15  14    11  10 9    5 4    0
7656  * +-----------------------+--------+------------+---+------+------+
7657  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7658  * +-----------------------+--------+------------+---+------+------+
7659  *
7660  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7661  * index: encoded in imm5<4:size+1>
7662  */
7663 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7664                              int imm4, int imm5)
7665 {
7666     int size = ctz32(imm5);
7667     int src_index, dst_index;
7668     TCGv_i64 tmp;
7669 
7670     if (size > 3) {
7671         unallocated_encoding(s);
7672         return;
7673     }
7674 
7675     if (!fp_access_check(s)) {
7676         return;
7677     }
7678 
7679     dst_index = extract32(imm5, 1+size, 5);
7680     src_index = extract32(imm4, size, 4);
7681 
7682     tmp = tcg_temp_new_i64();
7683 
7684     read_vec_element(s, tmp, rn, src_index, size);
7685     write_vec_element(s, tmp, rd, dst_index, size);
7686 
7687     /* INS is considered a 128-bit write for SVE. */
7688     clear_vec_high(s, true, rd);
7689 }
7690 
7691 
7692 /* INS (General)
7693  *
7694  *  31                   21 20    16 15        10  9    5 4    0
7695  * +-----------------------+--------+-------------+------+------+
7696  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7697  * +-----------------------+--------+-------------+------+------+
7698  *
7699  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7700  * index: encoded in imm5<4:size+1>
7701  */
7702 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7703 {
7704     int size = ctz32(imm5);
7705     int idx;
7706 
7707     if (size > 3) {
7708         unallocated_encoding(s);
7709         return;
7710     }
7711 
7712     if (!fp_access_check(s)) {
7713         return;
7714     }
7715 
7716     idx = extract32(imm5, 1 + size, 4 - size);
7717     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7718 
7719     /* INS is considered a 128-bit write for SVE. */
7720     clear_vec_high(s, true, rd);
7721 }
7722 
7723 /*
7724  * UMOV (General)
7725  * SMOV (General)
7726  *
7727  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7728  * +---+---+-------------------+--------+-------------+------+------+
7729  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7730  * +---+---+-------------------+--------+-------------+------+------+
7731  *
7732  * U: unsigned when set
7733  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7734  */
7735 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7736                                   int rn, int rd, int imm5)
7737 {
7738     int size = ctz32(imm5);
7739     int element;
7740     TCGv_i64 tcg_rd;
7741 
7742     /* Check for UnallocatedEncodings */
7743     if (is_signed) {
7744         if (size > 2 || (size == 2 && !is_q)) {
7745             unallocated_encoding(s);
7746             return;
7747         }
7748     } else {
7749         if (size > 3
7750             || (size < 3 && is_q)
7751             || (size == 3 && !is_q)) {
7752             unallocated_encoding(s);
7753             return;
7754         }
7755     }
7756 
7757     if (!fp_access_check(s)) {
7758         return;
7759     }
7760 
7761     element = extract32(imm5, 1+size, 4);
7762 
7763     tcg_rd = cpu_reg(s, rd);
7764     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7765     if (is_signed && !is_q) {
7766         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7767     }
7768 }
7769 
7770 /* AdvSIMD copy
7771  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7772  * +---+---+----+-----------------+------+---+------+---+------+------+
7773  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7774  * +---+---+----+-----------------+------+---+------+---+------+------+
7775  */
7776 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7777 {
7778     int rd = extract32(insn, 0, 5);
7779     int rn = extract32(insn, 5, 5);
7780     int imm4 = extract32(insn, 11, 4);
7781     int op = extract32(insn, 29, 1);
7782     int is_q = extract32(insn, 30, 1);
7783     int imm5 = extract32(insn, 16, 5);
7784 
7785     if (op) {
7786         if (is_q) {
7787             /* INS (element) */
7788             handle_simd_inse(s, rd, rn, imm4, imm5);
7789         } else {
7790             unallocated_encoding(s);
7791         }
7792     } else {
7793         switch (imm4) {
7794         case 0:
7795             /* DUP (element - vector) */
7796             handle_simd_dupe(s, is_q, rd, rn, imm5);
7797             break;
7798         case 1:
7799             /* DUP (general) */
7800             handle_simd_dupg(s, is_q, rd, rn, imm5);
7801             break;
7802         case 3:
7803             if (is_q) {
7804                 /* INS (general) */
7805                 handle_simd_insg(s, rd, rn, imm5);
7806             } else {
7807                 unallocated_encoding(s);
7808             }
7809             break;
7810         case 5:
7811         case 7:
7812             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7813             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7814             break;
7815         default:
7816             unallocated_encoding(s);
7817             break;
7818         }
7819     }
7820 }
7821 
7822 /* AdvSIMD modified immediate
7823  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7824  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7825  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7826  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7827  *
7828  * There are a number of operations that can be carried out here:
7829  *   MOVI - move (shifted) imm into register
7830  *   MVNI - move inverted (shifted) imm into register
7831  *   ORR  - bitwise OR of (shifted) imm with register
7832  *   BIC  - bitwise clear of (shifted) imm with register
7833  * With ARMv8.2 we also have:
7834  *   FMOV half-precision
7835  */
7836 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7837 {
7838     int rd = extract32(insn, 0, 5);
7839     int cmode = extract32(insn, 12, 4);
7840     int o2 = extract32(insn, 11, 1);
7841     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7842     bool is_neg = extract32(insn, 29, 1);
7843     bool is_q = extract32(insn, 30, 1);
7844     uint64_t imm = 0;
7845 
7846     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7847         /* Check for FMOV (vector, immediate) - half-precision */
7848         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7849             unallocated_encoding(s);
7850             return;
7851         }
7852     }
7853 
7854     if (!fp_access_check(s)) {
7855         return;
7856     }
7857 
7858     if (cmode == 15 && o2 && !is_neg) {
7859         /* FMOV (vector, immediate) - half-precision */
7860         imm = vfp_expand_imm(MO_16, abcdefgh);
7861         /* now duplicate across the lanes */
7862         imm = dup_const(MO_16, imm);
7863     } else {
7864         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7865     }
7866 
7867     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7868         /* MOVI or MVNI, with MVNI negation handled above.  */
7869         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7870                              vec_full_reg_size(s), imm);
7871     } else {
7872         /* ORR or BIC, with BIC negation to AND handled above.  */
7873         if (is_neg) {
7874             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7875         } else {
7876             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7877         }
7878     }
7879 }
7880 
7881 /* AdvSIMD scalar copy
7882  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7883  * +-----+----+-----------------+------+---+------+---+------+------+
7884  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7885  * +-----+----+-----------------+------+---+------+---+------+------+
7886  */
7887 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7888 {
7889     int rd = extract32(insn, 0, 5);
7890     int rn = extract32(insn, 5, 5);
7891     int imm4 = extract32(insn, 11, 4);
7892     int imm5 = extract32(insn, 16, 5);
7893     int op = extract32(insn, 29, 1);
7894 
7895     if (op != 0 || imm4 != 0) {
7896         unallocated_encoding(s);
7897         return;
7898     }
7899 
7900     /* DUP (element, scalar) */
7901     handle_simd_dupes(s, rd, rn, imm5);
7902 }
7903 
7904 /* AdvSIMD scalar pairwise
7905  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7906  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7907  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7908  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7909  */
7910 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7911 {
7912     int u = extract32(insn, 29, 1);
7913     int size = extract32(insn, 22, 2);
7914     int opcode = extract32(insn, 12, 5);
7915     int rn = extract32(insn, 5, 5);
7916     int rd = extract32(insn, 0, 5);
7917     TCGv_ptr fpst;
7918 
7919     /* For some ops (the FP ones), size[1] is part of the encoding.
7920      * For ADDP strictly it is not but size[1] is always 1 for valid
7921      * encodings.
7922      */
7923     opcode |= (extract32(size, 1, 1) << 5);
7924 
7925     switch (opcode) {
7926     case 0x3b: /* ADDP */
7927         if (u || size != 3) {
7928             unallocated_encoding(s);
7929             return;
7930         }
7931         if (!fp_access_check(s)) {
7932             return;
7933         }
7934 
7935         fpst = NULL;
7936         break;
7937     case 0xc: /* FMAXNMP */
7938     case 0xd: /* FADDP */
7939     case 0xf: /* FMAXP */
7940     case 0x2c: /* FMINNMP */
7941     case 0x2f: /* FMINP */
7942         /* FP op, size[0] is 32 or 64 bit*/
7943         if (!u) {
7944             if (!dc_isar_feature(aa64_fp16, s)) {
7945                 unallocated_encoding(s);
7946                 return;
7947             } else {
7948                 size = MO_16;
7949             }
7950         } else {
7951             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7952         }
7953 
7954         if (!fp_access_check(s)) {
7955             return;
7956         }
7957 
7958         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7959         break;
7960     default:
7961         unallocated_encoding(s);
7962         return;
7963     }
7964 
7965     if (size == MO_64) {
7966         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7967         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7968         TCGv_i64 tcg_res = tcg_temp_new_i64();
7969 
7970         read_vec_element(s, tcg_op1, rn, 0, MO_64);
7971         read_vec_element(s, tcg_op2, rn, 1, MO_64);
7972 
7973         switch (opcode) {
7974         case 0x3b: /* ADDP */
7975             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7976             break;
7977         case 0xc: /* FMAXNMP */
7978             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7979             break;
7980         case 0xd: /* FADDP */
7981             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7982             break;
7983         case 0xf: /* FMAXP */
7984             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7985             break;
7986         case 0x2c: /* FMINNMP */
7987             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7988             break;
7989         case 0x2f: /* FMINP */
7990             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7991             break;
7992         default:
7993             g_assert_not_reached();
7994         }
7995 
7996         write_fp_dreg(s, rd, tcg_res);
7997     } else {
7998         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7999         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8000         TCGv_i32 tcg_res = tcg_temp_new_i32();
8001 
8002         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8003         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8004 
8005         if (size == MO_16) {
8006             switch (opcode) {
8007             case 0xc: /* FMAXNMP */
8008                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8009                 break;
8010             case 0xd: /* FADDP */
8011                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8012                 break;
8013             case 0xf: /* FMAXP */
8014                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8015                 break;
8016             case 0x2c: /* FMINNMP */
8017                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8018                 break;
8019             case 0x2f: /* FMINP */
8020                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8021                 break;
8022             default:
8023                 g_assert_not_reached();
8024             }
8025         } else {
8026             switch (opcode) {
8027             case 0xc: /* FMAXNMP */
8028                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8029                 break;
8030             case 0xd: /* FADDP */
8031                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8032                 break;
8033             case 0xf: /* FMAXP */
8034                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8035                 break;
8036             case 0x2c: /* FMINNMP */
8037                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8038                 break;
8039             case 0x2f: /* FMINP */
8040                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8041                 break;
8042             default:
8043                 g_assert_not_reached();
8044             }
8045         }
8046 
8047         write_fp_sreg(s, rd, tcg_res);
8048     }
8049 }
8050 
8051 /*
8052  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8053  *
8054  * This code is handles the common shifting code and is used by both
8055  * the vector and scalar code.
8056  */
8057 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8058                                     TCGv_i64 tcg_rnd, bool accumulate,
8059                                     bool is_u, int size, int shift)
8060 {
8061     bool extended_result = false;
8062     bool round = tcg_rnd != NULL;
8063     int ext_lshift = 0;
8064     TCGv_i64 tcg_src_hi;
8065 
8066     if (round && size == 3) {
8067         extended_result = true;
8068         ext_lshift = 64 - shift;
8069         tcg_src_hi = tcg_temp_new_i64();
8070     } else if (shift == 64) {
8071         if (!accumulate && is_u) {
8072             /* result is zero */
8073             tcg_gen_movi_i64(tcg_res, 0);
8074             return;
8075         }
8076     }
8077 
8078     /* Deal with the rounding step */
8079     if (round) {
8080         if (extended_result) {
8081             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8082             if (!is_u) {
8083                 /* take care of sign extending tcg_res */
8084                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8085                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8086                                  tcg_src, tcg_src_hi,
8087                                  tcg_rnd, tcg_zero);
8088             } else {
8089                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8090                                  tcg_src, tcg_zero,
8091                                  tcg_rnd, tcg_zero);
8092             }
8093         } else {
8094             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8095         }
8096     }
8097 
8098     /* Now do the shift right */
8099     if (round && extended_result) {
8100         /* extended case, >64 bit precision required */
8101         if (ext_lshift == 0) {
8102             /* special case, only high bits matter */
8103             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8104         } else {
8105             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8106             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8107             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8108         }
8109     } else {
8110         if (is_u) {
8111             if (shift == 64) {
8112                 /* essentially shifting in 64 zeros */
8113                 tcg_gen_movi_i64(tcg_src, 0);
8114             } else {
8115                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8116             }
8117         } else {
8118             if (shift == 64) {
8119                 /* effectively extending the sign-bit */
8120                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8121             } else {
8122                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8123             }
8124         }
8125     }
8126 
8127     if (accumulate) {
8128         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8129     } else {
8130         tcg_gen_mov_i64(tcg_res, tcg_src);
8131     }
8132 }
8133 
8134 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8135 static void handle_scalar_simd_shri(DisasContext *s,
8136                                     bool is_u, int immh, int immb,
8137                                     int opcode, int rn, int rd)
8138 {
8139     const int size = 3;
8140     int immhb = immh << 3 | immb;
8141     int shift = 2 * (8 << size) - immhb;
8142     bool accumulate = false;
8143     bool round = false;
8144     bool insert = false;
8145     TCGv_i64 tcg_rn;
8146     TCGv_i64 tcg_rd;
8147     TCGv_i64 tcg_round;
8148 
8149     if (!extract32(immh, 3, 1)) {
8150         unallocated_encoding(s);
8151         return;
8152     }
8153 
8154     if (!fp_access_check(s)) {
8155         return;
8156     }
8157 
8158     switch (opcode) {
8159     case 0x02: /* SSRA / USRA (accumulate) */
8160         accumulate = true;
8161         break;
8162     case 0x04: /* SRSHR / URSHR (rounding) */
8163         round = true;
8164         break;
8165     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8166         accumulate = round = true;
8167         break;
8168     case 0x08: /* SRI */
8169         insert = true;
8170         break;
8171     }
8172 
8173     if (round) {
8174         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8175     } else {
8176         tcg_round = NULL;
8177     }
8178 
8179     tcg_rn = read_fp_dreg(s, rn);
8180     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8181 
8182     if (insert) {
8183         /* shift count same as element size is valid but does nothing;
8184          * special case to avoid potential shift by 64.
8185          */
8186         int esize = 8 << size;
8187         if (shift != esize) {
8188             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8189             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8190         }
8191     } else {
8192         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8193                                 accumulate, is_u, size, shift);
8194     }
8195 
8196     write_fp_dreg(s, rd, tcg_rd);
8197 }
8198 
8199 /* SHL/SLI - Scalar shift left */
8200 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8201                                     int immh, int immb, int opcode,
8202                                     int rn, int rd)
8203 {
8204     int size = 32 - clz32(immh) - 1;
8205     int immhb = immh << 3 | immb;
8206     int shift = immhb - (8 << size);
8207     TCGv_i64 tcg_rn;
8208     TCGv_i64 tcg_rd;
8209 
8210     if (!extract32(immh, 3, 1)) {
8211         unallocated_encoding(s);
8212         return;
8213     }
8214 
8215     if (!fp_access_check(s)) {
8216         return;
8217     }
8218 
8219     tcg_rn = read_fp_dreg(s, rn);
8220     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8221 
8222     if (insert) {
8223         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8224     } else {
8225         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8226     }
8227 
8228     write_fp_dreg(s, rd, tcg_rd);
8229 }
8230 
8231 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8232  * (signed/unsigned) narrowing */
8233 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8234                                    bool is_u_shift, bool is_u_narrow,
8235                                    int immh, int immb, int opcode,
8236                                    int rn, int rd)
8237 {
8238     int immhb = immh << 3 | immb;
8239     int size = 32 - clz32(immh) - 1;
8240     int esize = 8 << size;
8241     int shift = (2 * esize) - immhb;
8242     int elements = is_scalar ? 1 : (64 / esize);
8243     bool round = extract32(opcode, 0, 1);
8244     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8245     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8246     TCGv_i32 tcg_rd_narrowed;
8247     TCGv_i64 tcg_final;
8248 
8249     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8250         { gen_helper_neon_narrow_sat_s8,
8251           gen_helper_neon_unarrow_sat8 },
8252         { gen_helper_neon_narrow_sat_s16,
8253           gen_helper_neon_unarrow_sat16 },
8254         { gen_helper_neon_narrow_sat_s32,
8255           gen_helper_neon_unarrow_sat32 },
8256         { NULL, NULL },
8257     };
8258     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8259         gen_helper_neon_narrow_sat_u8,
8260         gen_helper_neon_narrow_sat_u16,
8261         gen_helper_neon_narrow_sat_u32,
8262         NULL
8263     };
8264     NeonGenNarrowEnvFn *narrowfn;
8265 
8266     int i;
8267 
8268     assert(size < 4);
8269 
8270     if (extract32(immh, 3, 1)) {
8271         unallocated_encoding(s);
8272         return;
8273     }
8274 
8275     if (!fp_access_check(s)) {
8276         return;
8277     }
8278 
8279     if (is_u_shift) {
8280         narrowfn = unsigned_narrow_fns[size];
8281     } else {
8282         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8283     }
8284 
8285     tcg_rn = tcg_temp_new_i64();
8286     tcg_rd = tcg_temp_new_i64();
8287     tcg_rd_narrowed = tcg_temp_new_i32();
8288     tcg_final = tcg_temp_new_i64();
8289 
8290     if (round) {
8291         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8292     } else {
8293         tcg_round = NULL;
8294     }
8295 
8296     for (i = 0; i < elements; i++) {
8297         read_vec_element(s, tcg_rn, rn, i, ldop);
8298         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8299                                 false, is_u_shift, size+1, shift);
8300         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8301         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8302         if (i == 0) {
8303             tcg_gen_mov_i64(tcg_final, tcg_rd);
8304         } else {
8305             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8306         }
8307     }
8308 
8309     if (!is_q) {
8310         write_vec_element(s, tcg_final, rd, 0, MO_64);
8311     } else {
8312         write_vec_element(s, tcg_final, rd, 1, MO_64);
8313     }
8314     clear_vec_high(s, is_q, rd);
8315 }
8316 
8317 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8318 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8319                              bool src_unsigned, bool dst_unsigned,
8320                              int immh, int immb, int rn, int rd)
8321 {
8322     int immhb = immh << 3 | immb;
8323     int size = 32 - clz32(immh) - 1;
8324     int shift = immhb - (8 << size);
8325     int pass;
8326 
8327     assert(immh != 0);
8328     assert(!(scalar && is_q));
8329 
8330     if (!scalar) {
8331         if (!is_q && extract32(immh, 3, 1)) {
8332             unallocated_encoding(s);
8333             return;
8334         }
8335 
8336         /* Since we use the variable-shift helpers we must
8337          * replicate the shift count into each element of
8338          * the tcg_shift value.
8339          */
8340         switch (size) {
8341         case 0:
8342             shift |= shift << 8;
8343             /* fall through */
8344         case 1:
8345             shift |= shift << 16;
8346             break;
8347         case 2:
8348         case 3:
8349             break;
8350         default:
8351             g_assert_not_reached();
8352         }
8353     }
8354 
8355     if (!fp_access_check(s)) {
8356         return;
8357     }
8358 
8359     if (size == 3) {
8360         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8361         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8362             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8363             { NULL, gen_helper_neon_qshl_u64 },
8364         };
8365         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8366         int maxpass = is_q ? 2 : 1;
8367 
8368         for (pass = 0; pass < maxpass; pass++) {
8369             TCGv_i64 tcg_op = tcg_temp_new_i64();
8370 
8371             read_vec_element(s, tcg_op, rn, pass, MO_64);
8372             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8373             write_vec_element(s, tcg_op, rd, pass, MO_64);
8374         }
8375         clear_vec_high(s, is_q, rd);
8376     } else {
8377         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8378         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8379             {
8380                 { gen_helper_neon_qshl_s8,
8381                   gen_helper_neon_qshl_s16,
8382                   gen_helper_neon_qshl_s32 },
8383                 { gen_helper_neon_qshlu_s8,
8384                   gen_helper_neon_qshlu_s16,
8385                   gen_helper_neon_qshlu_s32 }
8386             }, {
8387                 { NULL, NULL, NULL },
8388                 { gen_helper_neon_qshl_u8,
8389                   gen_helper_neon_qshl_u16,
8390                   gen_helper_neon_qshl_u32 }
8391             }
8392         };
8393         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8394         MemOp memop = scalar ? size : MO_32;
8395         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8396 
8397         for (pass = 0; pass < maxpass; pass++) {
8398             TCGv_i32 tcg_op = tcg_temp_new_i32();
8399 
8400             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8401             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8402             if (scalar) {
8403                 switch (size) {
8404                 case 0:
8405                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8406                     break;
8407                 case 1:
8408                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8409                     break;
8410                 case 2:
8411                     break;
8412                 default:
8413                     g_assert_not_reached();
8414                 }
8415                 write_fp_sreg(s, rd, tcg_op);
8416             } else {
8417                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8418             }
8419         }
8420 
8421         if (!scalar) {
8422             clear_vec_high(s, is_q, rd);
8423         }
8424     }
8425 }
8426 
8427 /* Common vector code for handling integer to FP conversion */
8428 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8429                                    int elements, int is_signed,
8430                                    int fracbits, int size)
8431 {
8432     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8433     TCGv_i32 tcg_shift = NULL;
8434 
8435     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8436     int pass;
8437 
8438     if (fracbits || size == MO_64) {
8439         tcg_shift = tcg_constant_i32(fracbits);
8440     }
8441 
8442     if (size == MO_64) {
8443         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8444         TCGv_i64 tcg_double = tcg_temp_new_i64();
8445 
8446         for (pass = 0; pass < elements; pass++) {
8447             read_vec_element(s, tcg_int64, rn, pass, mop);
8448 
8449             if (is_signed) {
8450                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8451                                      tcg_shift, tcg_fpst);
8452             } else {
8453                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8454                                      tcg_shift, tcg_fpst);
8455             }
8456             if (elements == 1) {
8457                 write_fp_dreg(s, rd, tcg_double);
8458             } else {
8459                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8460             }
8461         }
8462     } else {
8463         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8464         TCGv_i32 tcg_float = tcg_temp_new_i32();
8465 
8466         for (pass = 0; pass < elements; pass++) {
8467             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8468 
8469             switch (size) {
8470             case MO_32:
8471                 if (fracbits) {
8472                     if (is_signed) {
8473                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8474                                              tcg_shift, tcg_fpst);
8475                     } else {
8476                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8477                                              tcg_shift, tcg_fpst);
8478                     }
8479                 } else {
8480                     if (is_signed) {
8481                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8482                     } else {
8483                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8484                     }
8485                 }
8486                 break;
8487             case MO_16:
8488                 if (fracbits) {
8489                     if (is_signed) {
8490                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8491                                              tcg_shift, tcg_fpst);
8492                     } else {
8493                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8494                                              tcg_shift, tcg_fpst);
8495                     }
8496                 } else {
8497                     if (is_signed) {
8498                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8499                     } else {
8500                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8501                     }
8502                 }
8503                 break;
8504             default:
8505                 g_assert_not_reached();
8506             }
8507 
8508             if (elements == 1) {
8509                 write_fp_sreg(s, rd, tcg_float);
8510             } else {
8511                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8512             }
8513         }
8514     }
8515 
8516     clear_vec_high(s, elements << size == 16, rd);
8517 }
8518 
8519 /* UCVTF/SCVTF - Integer to FP conversion */
8520 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8521                                          bool is_q, bool is_u,
8522                                          int immh, int immb, int opcode,
8523                                          int rn, int rd)
8524 {
8525     int size, elements, fracbits;
8526     int immhb = immh << 3 | immb;
8527 
8528     if (immh & 8) {
8529         size = MO_64;
8530         if (!is_scalar && !is_q) {
8531             unallocated_encoding(s);
8532             return;
8533         }
8534     } else if (immh & 4) {
8535         size = MO_32;
8536     } else if (immh & 2) {
8537         size = MO_16;
8538         if (!dc_isar_feature(aa64_fp16, s)) {
8539             unallocated_encoding(s);
8540             return;
8541         }
8542     } else {
8543         /* immh == 0 would be a failure of the decode logic */
8544         g_assert(immh == 1);
8545         unallocated_encoding(s);
8546         return;
8547     }
8548 
8549     if (is_scalar) {
8550         elements = 1;
8551     } else {
8552         elements = (8 << is_q) >> size;
8553     }
8554     fracbits = (16 << size) - immhb;
8555 
8556     if (!fp_access_check(s)) {
8557         return;
8558     }
8559 
8560     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8561 }
8562 
8563 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8564 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8565                                          bool is_q, bool is_u,
8566                                          int immh, int immb, int rn, int rd)
8567 {
8568     int immhb = immh << 3 | immb;
8569     int pass, size, fracbits;
8570     TCGv_ptr tcg_fpstatus;
8571     TCGv_i32 tcg_rmode, tcg_shift;
8572 
8573     if (immh & 0x8) {
8574         size = MO_64;
8575         if (!is_scalar && !is_q) {
8576             unallocated_encoding(s);
8577             return;
8578         }
8579     } else if (immh & 0x4) {
8580         size = MO_32;
8581     } else if (immh & 0x2) {
8582         size = MO_16;
8583         if (!dc_isar_feature(aa64_fp16, s)) {
8584             unallocated_encoding(s);
8585             return;
8586         }
8587     } else {
8588         /* Should have split out AdvSIMD modified immediate earlier.  */
8589         assert(immh == 1);
8590         unallocated_encoding(s);
8591         return;
8592     }
8593 
8594     if (!fp_access_check(s)) {
8595         return;
8596     }
8597 
8598     assert(!(is_scalar && is_q));
8599 
8600     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8601     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8602     fracbits = (16 << size) - immhb;
8603     tcg_shift = tcg_constant_i32(fracbits);
8604 
8605     if (size == MO_64) {
8606         int maxpass = is_scalar ? 1 : 2;
8607 
8608         for (pass = 0; pass < maxpass; pass++) {
8609             TCGv_i64 tcg_op = tcg_temp_new_i64();
8610 
8611             read_vec_element(s, tcg_op, rn, pass, MO_64);
8612             if (is_u) {
8613                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8614             } else {
8615                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8616             }
8617             write_vec_element(s, tcg_op, rd, pass, MO_64);
8618         }
8619         clear_vec_high(s, is_q, rd);
8620     } else {
8621         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8622         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8623 
8624         switch (size) {
8625         case MO_16:
8626             if (is_u) {
8627                 fn = gen_helper_vfp_touhh;
8628             } else {
8629                 fn = gen_helper_vfp_toshh;
8630             }
8631             break;
8632         case MO_32:
8633             if (is_u) {
8634                 fn = gen_helper_vfp_touls;
8635             } else {
8636                 fn = gen_helper_vfp_tosls;
8637             }
8638             break;
8639         default:
8640             g_assert_not_reached();
8641         }
8642 
8643         for (pass = 0; pass < maxpass; pass++) {
8644             TCGv_i32 tcg_op = tcg_temp_new_i32();
8645 
8646             read_vec_element_i32(s, tcg_op, rn, pass, size);
8647             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8648             if (is_scalar) {
8649                 write_fp_sreg(s, rd, tcg_op);
8650             } else {
8651                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8652             }
8653         }
8654         if (!is_scalar) {
8655             clear_vec_high(s, is_q, rd);
8656         }
8657     }
8658 
8659     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8660 }
8661 
8662 /* AdvSIMD scalar shift by immediate
8663  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8664  * +-----+---+-------------+------+------+--------+---+------+------+
8665  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8666  * +-----+---+-------------+------+------+--------+---+------+------+
8667  *
8668  * This is the scalar version so it works on a fixed sized registers
8669  */
8670 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8671 {
8672     int rd = extract32(insn, 0, 5);
8673     int rn = extract32(insn, 5, 5);
8674     int opcode = extract32(insn, 11, 5);
8675     int immb = extract32(insn, 16, 3);
8676     int immh = extract32(insn, 19, 4);
8677     bool is_u = extract32(insn, 29, 1);
8678 
8679     if (immh == 0) {
8680         unallocated_encoding(s);
8681         return;
8682     }
8683 
8684     switch (opcode) {
8685     case 0x08: /* SRI */
8686         if (!is_u) {
8687             unallocated_encoding(s);
8688             return;
8689         }
8690         /* fall through */
8691     case 0x00: /* SSHR / USHR */
8692     case 0x02: /* SSRA / USRA */
8693     case 0x04: /* SRSHR / URSHR */
8694     case 0x06: /* SRSRA / URSRA */
8695         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8696         break;
8697     case 0x0a: /* SHL / SLI */
8698         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8699         break;
8700     case 0x1c: /* SCVTF, UCVTF */
8701         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8702                                      opcode, rn, rd);
8703         break;
8704     case 0x10: /* SQSHRUN, SQSHRUN2 */
8705     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8706         if (!is_u) {
8707             unallocated_encoding(s);
8708             return;
8709         }
8710         handle_vec_simd_sqshrn(s, true, false, false, true,
8711                                immh, immb, opcode, rn, rd);
8712         break;
8713     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8714     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8715         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8716                                immh, immb, opcode, rn, rd);
8717         break;
8718     case 0xc: /* SQSHLU */
8719         if (!is_u) {
8720             unallocated_encoding(s);
8721             return;
8722         }
8723         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8724         break;
8725     case 0xe: /* SQSHL, UQSHL */
8726         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8727         break;
8728     case 0x1f: /* FCVTZS, FCVTZU */
8729         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8730         break;
8731     default:
8732         unallocated_encoding(s);
8733         break;
8734     }
8735 }
8736 
8737 /* AdvSIMD scalar three different
8738  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8739  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8740  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8741  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8742  */
8743 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8744 {
8745     bool is_u = extract32(insn, 29, 1);
8746     int size = extract32(insn, 22, 2);
8747     int opcode = extract32(insn, 12, 4);
8748     int rm = extract32(insn, 16, 5);
8749     int rn = extract32(insn, 5, 5);
8750     int rd = extract32(insn, 0, 5);
8751 
8752     if (is_u) {
8753         unallocated_encoding(s);
8754         return;
8755     }
8756 
8757     switch (opcode) {
8758     case 0x9: /* SQDMLAL, SQDMLAL2 */
8759     case 0xb: /* SQDMLSL, SQDMLSL2 */
8760     case 0xd: /* SQDMULL, SQDMULL2 */
8761         if (size == 0 || size == 3) {
8762             unallocated_encoding(s);
8763             return;
8764         }
8765         break;
8766     default:
8767         unallocated_encoding(s);
8768         return;
8769     }
8770 
8771     if (!fp_access_check(s)) {
8772         return;
8773     }
8774 
8775     if (size == 2) {
8776         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8777         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8778         TCGv_i64 tcg_res = tcg_temp_new_i64();
8779 
8780         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8781         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8782 
8783         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8784         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8785 
8786         switch (opcode) {
8787         case 0xd: /* SQDMULL, SQDMULL2 */
8788             break;
8789         case 0xb: /* SQDMLSL, SQDMLSL2 */
8790             tcg_gen_neg_i64(tcg_res, tcg_res);
8791             /* fall through */
8792         case 0x9: /* SQDMLAL, SQDMLAL2 */
8793             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8794             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8795                                               tcg_res, tcg_op1);
8796             break;
8797         default:
8798             g_assert_not_reached();
8799         }
8800 
8801         write_fp_dreg(s, rd, tcg_res);
8802     } else {
8803         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8804         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8805         TCGv_i64 tcg_res = tcg_temp_new_i64();
8806 
8807         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8808         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8809 
8810         switch (opcode) {
8811         case 0xd: /* SQDMULL, SQDMULL2 */
8812             break;
8813         case 0xb: /* SQDMLSL, SQDMLSL2 */
8814             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8815             /* fall through */
8816         case 0x9: /* SQDMLAL, SQDMLAL2 */
8817         {
8818             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8819             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8820             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8821                                               tcg_res, tcg_op3);
8822             break;
8823         }
8824         default:
8825             g_assert_not_reached();
8826         }
8827 
8828         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8829         write_fp_dreg(s, rd, tcg_res);
8830     }
8831 }
8832 
8833 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8834                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8835 {
8836     /* Handle 64x64->64 opcodes which are shared between the scalar
8837      * and vector 3-same groups. We cover every opcode where size == 3
8838      * is valid in either the three-reg-same (integer, not pairwise)
8839      * or scalar-three-reg-same groups.
8840      */
8841     TCGCond cond;
8842 
8843     switch (opcode) {
8844     case 0x1: /* SQADD */
8845         if (u) {
8846             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8847         } else {
8848             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8849         }
8850         break;
8851     case 0x5: /* SQSUB */
8852         if (u) {
8853             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8854         } else {
8855             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8856         }
8857         break;
8858     case 0x6: /* CMGT, CMHI */
8859         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8860          * We implement this using setcond (test) and then negating.
8861          */
8862         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8863     do_cmop:
8864         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8865         tcg_gen_neg_i64(tcg_rd, tcg_rd);
8866         break;
8867     case 0x7: /* CMGE, CMHS */
8868         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8869         goto do_cmop;
8870     case 0x11: /* CMTST, CMEQ */
8871         if (u) {
8872             cond = TCG_COND_EQ;
8873             goto do_cmop;
8874         }
8875         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8876         break;
8877     case 0x8: /* SSHL, USHL */
8878         if (u) {
8879             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8880         } else {
8881             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8882         }
8883         break;
8884     case 0x9: /* SQSHL, UQSHL */
8885         if (u) {
8886             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8887         } else {
8888             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8889         }
8890         break;
8891     case 0xa: /* SRSHL, URSHL */
8892         if (u) {
8893             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8894         } else {
8895             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8896         }
8897         break;
8898     case 0xb: /* SQRSHL, UQRSHL */
8899         if (u) {
8900             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8901         } else {
8902             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8903         }
8904         break;
8905     case 0x10: /* ADD, SUB */
8906         if (u) {
8907             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8908         } else {
8909             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8910         }
8911         break;
8912     default:
8913         g_assert_not_reached();
8914     }
8915 }
8916 
8917 /* Handle the 3-same-operands float operations; shared by the scalar
8918  * and vector encodings. The caller must filter out any encodings
8919  * not allocated for the encoding it is dealing with.
8920  */
8921 static void handle_3same_float(DisasContext *s, int size, int elements,
8922                                int fpopcode, int rd, int rn, int rm)
8923 {
8924     int pass;
8925     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8926 
8927     for (pass = 0; pass < elements; pass++) {
8928         if (size) {
8929             /* Double */
8930             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8931             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8932             TCGv_i64 tcg_res = tcg_temp_new_i64();
8933 
8934             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8935             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8936 
8937             switch (fpopcode) {
8938             case 0x39: /* FMLS */
8939                 /* As usual for ARM, separate negation for fused multiply-add */
8940                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8941                 /* fall through */
8942             case 0x19: /* FMLA */
8943                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8944                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8945                                        tcg_res, fpst);
8946                 break;
8947             case 0x18: /* FMAXNM */
8948                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8949                 break;
8950             case 0x1a: /* FADD */
8951                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8952                 break;
8953             case 0x1b: /* FMULX */
8954                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8955                 break;
8956             case 0x1c: /* FCMEQ */
8957                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8958                 break;
8959             case 0x1e: /* FMAX */
8960                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8961                 break;
8962             case 0x1f: /* FRECPS */
8963                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8964                 break;
8965             case 0x38: /* FMINNM */
8966                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8967                 break;
8968             case 0x3a: /* FSUB */
8969                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8970                 break;
8971             case 0x3e: /* FMIN */
8972                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8973                 break;
8974             case 0x3f: /* FRSQRTS */
8975                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8976                 break;
8977             case 0x5b: /* FMUL */
8978                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8979                 break;
8980             case 0x5c: /* FCMGE */
8981                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8982                 break;
8983             case 0x5d: /* FACGE */
8984                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8985                 break;
8986             case 0x5f: /* FDIV */
8987                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8988                 break;
8989             case 0x7a: /* FABD */
8990                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8991                 gen_helper_vfp_absd(tcg_res, tcg_res);
8992                 break;
8993             case 0x7c: /* FCMGT */
8994                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8995                 break;
8996             case 0x7d: /* FACGT */
8997                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8998                 break;
8999             default:
9000                 g_assert_not_reached();
9001             }
9002 
9003             write_vec_element(s, tcg_res, rd, pass, MO_64);
9004         } else {
9005             /* Single */
9006             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9007             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9008             TCGv_i32 tcg_res = tcg_temp_new_i32();
9009 
9010             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9011             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9012 
9013             switch (fpopcode) {
9014             case 0x39: /* FMLS */
9015                 /* As usual for ARM, separate negation for fused multiply-add */
9016                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9017                 /* fall through */
9018             case 0x19: /* FMLA */
9019                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9020                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9021                                        tcg_res, fpst);
9022                 break;
9023             case 0x1a: /* FADD */
9024                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9025                 break;
9026             case 0x1b: /* FMULX */
9027                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9028                 break;
9029             case 0x1c: /* FCMEQ */
9030                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9031                 break;
9032             case 0x1e: /* FMAX */
9033                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9034                 break;
9035             case 0x1f: /* FRECPS */
9036                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9037                 break;
9038             case 0x18: /* FMAXNM */
9039                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9040                 break;
9041             case 0x38: /* FMINNM */
9042                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9043                 break;
9044             case 0x3a: /* FSUB */
9045                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9046                 break;
9047             case 0x3e: /* FMIN */
9048                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9049                 break;
9050             case 0x3f: /* FRSQRTS */
9051                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9052                 break;
9053             case 0x5b: /* FMUL */
9054                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9055                 break;
9056             case 0x5c: /* FCMGE */
9057                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9058                 break;
9059             case 0x5d: /* FACGE */
9060                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9061                 break;
9062             case 0x5f: /* FDIV */
9063                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9064                 break;
9065             case 0x7a: /* FABD */
9066                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9067                 gen_helper_vfp_abss(tcg_res, tcg_res);
9068                 break;
9069             case 0x7c: /* FCMGT */
9070                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9071                 break;
9072             case 0x7d: /* FACGT */
9073                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9074                 break;
9075             default:
9076                 g_assert_not_reached();
9077             }
9078 
9079             if (elements == 1) {
9080                 /* scalar single so clear high part */
9081                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9082 
9083                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9084                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9085             } else {
9086                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9087             }
9088         }
9089     }
9090 
9091     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9092 }
9093 
9094 /* AdvSIMD scalar three same
9095  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9096  * +-----+---+-----------+------+---+------+--------+---+------+------+
9097  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9098  * +-----+---+-----------+------+---+------+--------+---+------+------+
9099  */
9100 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9101 {
9102     int rd = extract32(insn, 0, 5);
9103     int rn = extract32(insn, 5, 5);
9104     int opcode = extract32(insn, 11, 5);
9105     int rm = extract32(insn, 16, 5);
9106     int size = extract32(insn, 22, 2);
9107     bool u = extract32(insn, 29, 1);
9108     TCGv_i64 tcg_rd;
9109 
9110     if (opcode >= 0x18) {
9111         /* Floating point: U, size[1] and opcode indicate operation */
9112         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9113         switch (fpopcode) {
9114         case 0x1b: /* FMULX */
9115         case 0x1f: /* FRECPS */
9116         case 0x3f: /* FRSQRTS */
9117         case 0x5d: /* FACGE */
9118         case 0x7d: /* FACGT */
9119         case 0x1c: /* FCMEQ */
9120         case 0x5c: /* FCMGE */
9121         case 0x7c: /* FCMGT */
9122         case 0x7a: /* FABD */
9123             break;
9124         default:
9125             unallocated_encoding(s);
9126             return;
9127         }
9128 
9129         if (!fp_access_check(s)) {
9130             return;
9131         }
9132 
9133         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9134         return;
9135     }
9136 
9137     switch (opcode) {
9138     case 0x1: /* SQADD, UQADD */
9139     case 0x5: /* SQSUB, UQSUB */
9140     case 0x9: /* SQSHL, UQSHL */
9141     case 0xb: /* SQRSHL, UQRSHL */
9142         break;
9143     case 0x8: /* SSHL, USHL */
9144     case 0xa: /* SRSHL, URSHL */
9145     case 0x6: /* CMGT, CMHI */
9146     case 0x7: /* CMGE, CMHS */
9147     case 0x11: /* CMTST, CMEQ */
9148     case 0x10: /* ADD, SUB (vector) */
9149         if (size != 3) {
9150             unallocated_encoding(s);
9151             return;
9152         }
9153         break;
9154     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9155         if (size != 1 && size != 2) {
9156             unallocated_encoding(s);
9157             return;
9158         }
9159         break;
9160     default:
9161         unallocated_encoding(s);
9162         return;
9163     }
9164 
9165     if (!fp_access_check(s)) {
9166         return;
9167     }
9168 
9169     tcg_rd = tcg_temp_new_i64();
9170 
9171     if (size == 3) {
9172         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9173         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9174 
9175         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9176     } else {
9177         /* Do a single operation on the lowest element in the vector.
9178          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9179          * no side effects for all these operations.
9180          * OPTME: special-purpose helpers would avoid doing some
9181          * unnecessary work in the helper for the 8 and 16 bit cases.
9182          */
9183         NeonGenTwoOpEnvFn *genenvfn;
9184         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9185         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9186         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9187 
9188         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9189         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9190 
9191         switch (opcode) {
9192         case 0x1: /* SQADD, UQADD */
9193         {
9194             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9195                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9196                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9197                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9198             };
9199             genenvfn = fns[size][u];
9200             break;
9201         }
9202         case 0x5: /* SQSUB, UQSUB */
9203         {
9204             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9205                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9206                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9207                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9208             };
9209             genenvfn = fns[size][u];
9210             break;
9211         }
9212         case 0x9: /* SQSHL, UQSHL */
9213         {
9214             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9215                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9216                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9217                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9218             };
9219             genenvfn = fns[size][u];
9220             break;
9221         }
9222         case 0xb: /* SQRSHL, UQRSHL */
9223         {
9224             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9225                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9226                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9227                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9228             };
9229             genenvfn = fns[size][u];
9230             break;
9231         }
9232         case 0x16: /* SQDMULH, SQRDMULH */
9233         {
9234             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9235                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9236                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9237             };
9238             assert(size == 1 || size == 2);
9239             genenvfn = fns[size - 1][u];
9240             break;
9241         }
9242         default:
9243             g_assert_not_reached();
9244         }
9245 
9246         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9247         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9248     }
9249 
9250     write_fp_dreg(s, rd, tcg_rd);
9251 }
9252 
9253 /* AdvSIMD scalar three same FP16
9254  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9255  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9256  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9257  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9258  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9259  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9260  */
9261 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9262                                                   uint32_t insn)
9263 {
9264     int rd = extract32(insn, 0, 5);
9265     int rn = extract32(insn, 5, 5);
9266     int opcode = extract32(insn, 11, 3);
9267     int rm = extract32(insn, 16, 5);
9268     bool u = extract32(insn, 29, 1);
9269     bool a = extract32(insn, 23, 1);
9270     int fpopcode = opcode | (a << 3) |  (u << 4);
9271     TCGv_ptr fpst;
9272     TCGv_i32 tcg_op1;
9273     TCGv_i32 tcg_op2;
9274     TCGv_i32 tcg_res;
9275 
9276     switch (fpopcode) {
9277     case 0x03: /* FMULX */
9278     case 0x04: /* FCMEQ (reg) */
9279     case 0x07: /* FRECPS */
9280     case 0x0f: /* FRSQRTS */
9281     case 0x14: /* FCMGE (reg) */
9282     case 0x15: /* FACGE */
9283     case 0x1a: /* FABD */
9284     case 0x1c: /* FCMGT (reg) */
9285     case 0x1d: /* FACGT */
9286         break;
9287     default:
9288         unallocated_encoding(s);
9289         return;
9290     }
9291 
9292     if (!dc_isar_feature(aa64_fp16, s)) {
9293         unallocated_encoding(s);
9294     }
9295 
9296     if (!fp_access_check(s)) {
9297         return;
9298     }
9299 
9300     fpst = fpstatus_ptr(FPST_FPCR_F16);
9301 
9302     tcg_op1 = read_fp_hreg(s, rn);
9303     tcg_op2 = read_fp_hreg(s, rm);
9304     tcg_res = tcg_temp_new_i32();
9305 
9306     switch (fpopcode) {
9307     case 0x03: /* FMULX */
9308         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9309         break;
9310     case 0x04: /* FCMEQ (reg) */
9311         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9312         break;
9313     case 0x07: /* FRECPS */
9314         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9315         break;
9316     case 0x0f: /* FRSQRTS */
9317         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9318         break;
9319     case 0x14: /* FCMGE (reg) */
9320         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9321         break;
9322     case 0x15: /* FACGE */
9323         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9324         break;
9325     case 0x1a: /* FABD */
9326         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9327         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9328         break;
9329     case 0x1c: /* FCMGT (reg) */
9330         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9331         break;
9332     case 0x1d: /* FACGT */
9333         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9334         break;
9335     default:
9336         g_assert_not_reached();
9337     }
9338 
9339     write_fp_sreg(s, rd, tcg_res);
9340 }
9341 
9342 /* AdvSIMD scalar three same extra
9343  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9344  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9345  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9346  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9347  */
9348 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9349                                                    uint32_t insn)
9350 {
9351     int rd = extract32(insn, 0, 5);
9352     int rn = extract32(insn, 5, 5);
9353     int opcode = extract32(insn, 11, 4);
9354     int rm = extract32(insn, 16, 5);
9355     int size = extract32(insn, 22, 2);
9356     bool u = extract32(insn, 29, 1);
9357     TCGv_i32 ele1, ele2, ele3;
9358     TCGv_i64 res;
9359     bool feature;
9360 
9361     switch (u * 16 + opcode) {
9362     case 0x10: /* SQRDMLAH (vector) */
9363     case 0x11: /* SQRDMLSH (vector) */
9364         if (size != 1 && size != 2) {
9365             unallocated_encoding(s);
9366             return;
9367         }
9368         feature = dc_isar_feature(aa64_rdm, s);
9369         break;
9370     default:
9371         unallocated_encoding(s);
9372         return;
9373     }
9374     if (!feature) {
9375         unallocated_encoding(s);
9376         return;
9377     }
9378     if (!fp_access_check(s)) {
9379         return;
9380     }
9381 
9382     /* Do a single operation on the lowest element in the vector.
9383      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9384      * with no side effects for all these operations.
9385      * OPTME: special-purpose helpers would avoid doing some
9386      * unnecessary work in the helper for the 16 bit cases.
9387      */
9388     ele1 = tcg_temp_new_i32();
9389     ele2 = tcg_temp_new_i32();
9390     ele3 = tcg_temp_new_i32();
9391 
9392     read_vec_element_i32(s, ele1, rn, 0, size);
9393     read_vec_element_i32(s, ele2, rm, 0, size);
9394     read_vec_element_i32(s, ele3, rd, 0, size);
9395 
9396     switch (opcode) {
9397     case 0x0: /* SQRDMLAH */
9398         if (size == 1) {
9399             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9400         } else {
9401             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9402         }
9403         break;
9404     case 0x1: /* SQRDMLSH */
9405         if (size == 1) {
9406             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9407         } else {
9408             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9409         }
9410         break;
9411     default:
9412         g_assert_not_reached();
9413     }
9414 
9415     res = tcg_temp_new_i64();
9416     tcg_gen_extu_i32_i64(res, ele3);
9417     write_fp_dreg(s, rd, res);
9418 }
9419 
9420 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9421                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9422                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9423 {
9424     /* Handle 64->64 opcodes which are shared between the scalar and
9425      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9426      * is valid in either group and also the double-precision fp ops.
9427      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9428      * requires them.
9429      */
9430     TCGCond cond;
9431 
9432     switch (opcode) {
9433     case 0x4: /* CLS, CLZ */
9434         if (u) {
9435             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9436         } else {
9437             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9438         }
9439         break;
9440     case 0x5: /* NOT */
9441         /* This opcode is shared with CNT and RBIT but we have earlier
9442          * enforced that size == 3 if and only if this is the NOT insn.
9443          */
9444         tcg_gen_not_i64(tcg_rd, tcg_rn);
9445         break;
9446     case 0x7: /* SQABS, SQNEG */
9447         if (u) {
9448             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9449         } else {
9450             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9451         }
9452         break;
9453     case 0xa: /* CMLT */
9454         /* 64 bit integer comparison against zero, result is
9455          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9456          * subtracting 1.
9457          */
9458         cond = TCG_COND_LT;
9459     do_cmop:
9460         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9461         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9462         break;
9463     case 0x8: /* CMGT, CMGE */
9464         cond = u ? TCG_COND_GE : TCG_COND_GT;
9465         goto do_cmop;
9466     case 0x9: /* CMEQ, CMLE */
9467         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9468         goto do_cmop;
9469     case 0xb: /* ABS, NEG */
9470         if (u) {
9471             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9472         } else {
9473             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9474         }
9475         break;
9476     case 0x2f: /* FABS */
9477         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9478         break;
9479     case 0x6f: /* FNEG */
9480         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9481         break;
9482     case 0x7f: /* FSQRT */
9483         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9484         break;
9485     case 0x1a: /* FCVTNS */
9486     case 0x1b: /* FCVTMS */
9487     case 0x1c: /* FCVTAS */
9488     case 0x3a: /* FCVTPS */
9489     case 0x3b: /* FCVTZS */
9490         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9491         break;
9492     case 0x5a: /* FCVTNU */
9493     case 0x5b: /* FCVTMU */
9494     case 0x5c: /* FCVTAU */
9495     case 0x7a: /* FCVTPU */
9496     case 0x7b: /* FCVTZU */
9497         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9498         break;
9499     case 0x18: /* FRINTN */
9500     case 0x19: /* FRINTM */
9501     case 0x38: /* FRINTP */
9502     case 0x39: /* FRINTZ */
9503     case 0x58: /* FRINTA */
9504     case 0x79: /* FRINTI */
9505         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9506         break;
9507     case 0x59: /* FRINTX */
9508         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9509         break;
9510     case 0x1e: /* FRINT32Z */
9511     case 0x5e: /* FRINT32X */
9512         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9513         break;
9514     case 0x1f: /* FRINT64Z */
9515     case 0x5f: /* FRINT64X */
9516         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9517         break;
9518     default:
9519         g_assert_not_reached();
9520     }
9521 }
9522 
9523 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9524                                    bool is_scalar, bool is_u, bool is_q,
9525                                    int size, int rn, int rd)
9526 {
9527     bool is_double = (size == MO_64);
9528     TCGv_ptr fpst;
9529 
9530     if (!fp_access_check(s)) {
9531         return;
9532     }
9533 
9534     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9535 
9536     if (is_double) {
9537         TCGv_i64 tcg_op = tcg_temp_new_i64();
9538         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9539         TCGv_i64 tcg_res = tcg_temp_new_i64();
9540         NeonGenTwoDoubleOpFn *genfn;
9541         bool swap = false;
9542         int pass;
9543 
9544         switch (opcode) {
9545         case 0x2e: /* FCMLT (zero) */
9546             swap = true;
9547             /* fallthrough */
9548         case 0x2c: /* FCMGT (zero) */
9549             genfn = gen_helper_neon_cgt_f64;
9550             break;
9551         case 0x2d: /* FCMEQ (zero) */
9552             genfn = gen_helper_neon_ceq_f64;
9553             break;
9554         case 0x6d: /* FCMLE (zero) */
9555             swap = true;
9556             /* fall through */
9557         case 0x6c: /* FCMGE (zero) */
9558             genfn = gen_helper_neon_cge_f64;
9559             break;
9560         default:
9561             g_assert_not_reached();
9562         }
9563 
9564         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9565             read_vec_element(s, tcg_op, rn, pass, MO_64);
9566             if (swap) {
9567                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9568             } else {
9569                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9570             }
9571             write_vec_element(s, tcg_res, rd, pass, MO_64);
9572         }
9573 
9574         clear_vec_high(s, !is_scalar, rd);
9575     } else {
9576         TCGv_i32 tcg_op = tcg_temp_new_i32();
9577         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9578         TCGv_i32 tcg_res = tcg_temp_new_i32();
9579         NeonGenTwoSingleOpFn *genfn;
9580         bool swap = false;
9581         int pass, maxpasses;
9582 
9583         if (size == MO_16) {
9584             switch (opcode) {
9585             case 0x2e: /* FCMLT (zero) */
9586                 swap = true;
9587                 /* fall through */
9588             case 0x2c: /* FCMGT (zero) */
9589                 genfn = gen_helper_advsimd_cgt_f16;
9590                 break;
9591             case 0x2d: /* FCMEQ (zero) */
9592                 genfn = gen_helper_advsimd_ceq_f16;
9593                 break;
9594             case 0x6d: /* FCMLE (zero) */
9595                 swap = true;
9596                 /* fall through */
9597             case 0x6c: /* FCMGE (zero) */
9598                 genfn = gen_helper_advsimd_cge_f16;
9599                 break;
9600             default:
9601                 g_assert_not_reached();
9602             }
9603         } else {
9604             switch (opcode) {
9605             case 0x2e: /* FCMLT (zero) */
9606                 swap = true;
9607                 /* fall through */
9608             case 0x2c: /* FCMGT (zero) */
9609                 genfn = gen_helper_neon_cgt_f32;
9610                 break;
9611             case 0x2d: /* FCMEQ (zero) */
9612                 genfn = gen_helper_neon_ceq_f32;
9613                 break;
9614             case 0x6d: /* FCMLE (zero) */
9615                 swap = true;
9616                 /* fall through */
9617             case 0x6c: /* FCMGE (zero) */
9618                 genfn = gen_helper_neon_cge_f32;
9619                 break;
9620             default:
9621                 g_assert_not_reached();
9622             }
9623         }
9624 
9625         if (is_scalar) {
9626             maxpasses = 1;
9627         } else {
9628             int vector_size = 8 << is_q;
9629             maxpasses = vector_size >> size;
9630         }
9631 
9632         for (pass = 0; pass < maxpasses; pass++) {
9633             read_vec_element_i32(s, tcg_op, rn, pass, size);
9634             if (swap) {
9635                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9636             } else {
9637                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9638             }
9639             if (is_scalar) {
9640                 write_fp_sreg(s, rd, tcg_res);
9641             } else {
9642                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9643             }
9644         }
9645 
9646         if (!is_scalar) {
9647             clear_vec_high(s, is_q, rd);
9648         }
9649     }
9650 }
9651 
9652 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9653                                     bool is_scalar, bool is_u, bool is_q,
9654                                     int size, int rn, int rd)
9655 {
9656     bool is_double = (size == 3);
9657     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9658 
9659     if (is_double) {
9660         TCGv_i64 tcg_op = tcg_temp_new_i64();
9661         TCGv_i64 tcg_res = tcg_temp_new_i64();
9662         int pass;
9663 
9664         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9665             read_vec_element(s, tcg_op, rn, pass, MO_64);
9666             switch (opcode) {
9667             case 0x3d: /* FRECPE */
9668                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9669                 break;
9670             case 0x3f: /* FRECPX */
9671                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9672                 break;
9673             case 0x7d: /* FRSQRTE */
9674                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9675                 break;
9676             default:
9677                 g_assert_not_reached();
9678             }
9679             write_vec_element(s, tcg_res, rd, pass, MO_64);
9680         }
9681         clear_vec_high(s, !is_scalar, rd);
9682     } else {
9683         TCGv_i32 tcg_op = tcg_temp_new_i32();
9684         TCGv_i32 tcg_res = tcg_temp_new_i32();
9685         int pass, maxpasses;
9686 
9687         if (is_scalar) {
9688             maxpasses = 1;
9689         } else {
9690             maxpasses = is_q ? 4 : 2;
9691         }
9692 
9693         for (pass = 0; pass < maxpasses; pass++) {
9694             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9695 
9696             switch (opcode) {
9697             case 0x3c: /* URECPE */
9698                 gen_helper_recpe_u32(tcg_res, tcg_op);
9699                 break;
9700             case 0x3d: /* FRECPE */
9701                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9702                 break;
9703             case 0x3f: /* FRECPX */
9704                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9705                 break;
9706             case 0x7d: /* FRSQRTE */
9707                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9708                 break;
9709             default:
9710                 g_assert_not_reached();
9711             }
9712 
9713             if (is_scalar) {
9714                 write_fp_sreg(s, rd, tcg_res);
9715             } else {
9716                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9717             }
9718         }
9719         if (!is_scalar) {
9720             clear_vec_high(s, is_q, rd);
9721         }
9722     }
9723 }
9724 
9725 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9726                                 int opcode, bool u, bool is_q,
9727                                 int size, int rn, int rd)
9728 {
9729     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9730      * in the source becomes a size element in the destination).
9731      */
9732     int pass;
9733     TCGv_i32 tcg_res[2];
9734     int destelt = is_q ? 2 : 0;
9735     int passes = scalar ? 1 : 2;
9736 
9737     if (scalar) {
9738         tcg_res[1] = tcg_constant_i32(0);
9739     }
9740 
9741     for (pass = 0; pass < passes; pass++) {
9742         TCGv_i64 tcg_op = tcg_temp_new_i64();
9743         NeonGenNarrowFn *genfn = NULL;
9744         NeonGenNarrowEnvFn *genenvfn = NULL;
9745 
9746         if (scalar) {
9747             read_vec_element(s, tcg_op, rn, pass, size + 1);
9748         } else {
9749             read_vec_element(s, tcg_op, rn, pass, MO_64);
9750         }
9751         tcg_res[pass] = tcg_temp_new_i32();
9752 
9753         switch (opcode) {
9754         case 0x12: /* XTN, SQXTUN */
9755         {
9756             static NeonGenNarrowFn * const xtnfns[3] = {
9757                 gen_helper_neon_narrow_u8,
9758                 gen_helper_neon_narrow_u16,
9759                 tcg_gen_extrl_i64_i32,
9760             };
9761             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9762                 gen_helper_neon_unarrow_sat8,
9763                 gen_helper_neon_unarrow_sat16,
9764                 gen_helper_neon_unarrow_sat32,
9765             };
9766             if (u) {
9767                 genenvfn = sqxtunfns[size];
9768             } else {
9769                 genfn = xtnfns[size];
9770             }
9771             break;
9772         }
9773         case 0x14: /* SQXTN, UQXTN */
9774         {
9775             static NeonGenNarrowEnvFn * const fns[3][2] = {
9776                 { gen_helper_neon_narrow_sat_s8,
9777                   gen_helper_neon_narrow_sat_u8 },
9778                 { gen_helper_neon_narrow_sat_s16,
9779                   gen_helper_neon_narrow_sat_u16 },
9780                 { gen_helper_neon_narrow_sat_s32,
9781                   gen_helper_neon_narrow_sat_u32 },
9782             };
9783             genenvfn = fns[size][u];
9784             break;
9785         }
9786         case 0x16: /* FCVTN, FCVTN2 */
9787             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9788             if (size == 2) {
9789                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9790             } else {
9791                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9792                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9793                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9794                 TCGv_i32 ahp = get_ahp_flag();
9795 
9796                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9797                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9798                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9799                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9800             }
9801             break;
9802         case 0x36: /* BFCVTN, BFCVTN2 */
9803             {
9804                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9805                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9806             }
9807             break;
9808         case 0x56:  /* FCVTXN, FCVTXN2 */
9809             /* 64 bit to 32 bit float conversion
9810              * with von Neumann rounding (round to odd)
9811              */
9812             assert(size == 2);
9813             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9814             break;
9815         default:
9816             g_assert_not_reached();
9817         }
9818 
9819         if (genfn) {
9820             genfn(tcg_res[pass], tcg_op);
9821         } else if (genenvfn) {
9822             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9823         }
9824     }
9825 
9826     for (pass = 0; pass < 2; pass++) {
9827         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9828     }
9829     clear_vec_high(s, is_q, rd);
9830 }
9831 
9832 /* Remaining saturating accumulating ops */
9833 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9834                                 bool is_q, int size, int rn, int rd)
9835 {
9836     bool is_double = (size == 3);
9837 
9838     if (is_double) {
9839         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9840         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9841         int pass;
9842 
9843         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9844             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9845             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9846 
9847             if (is_u) { /* USQADD */
9848                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9849             } else { /* SUQADD */
9850                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9851             }
9852             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9853         }
9854         clear_vec_high(s, !is_scalar, rd);
9855     } else {
9856         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9857         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9858         int pass, maxpasses;
9859 
9860         if (is_scalar) {
9861             maxpasses = 1;
9862         } else {
9863             maxpasses = is_q ? 4 : 2;
9864         }
9865 
9866         for (pass = 0; pass < maxpasses; pass++) {
9867             if (is_scalar) {
9868                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9869                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9870             } else {
9871                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9872                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9873             }
9874 
9875             if (is_u) { /* USQADD */
9876                 switch (size) {
9877                 case 0:
9878                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9879                     break;
9880                 case 1:
9881                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9882                     break;
9883                 case 2:
9884                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9885                     break;
9886                 default:
9887                     g_assert_not_reached();
9888                 }
9889             } else { /* SUQADD */
9890                 switch (size) {
9891                 case 0:
9892                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9893                     break;
9894                 case 1:
9895                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9896                     break;
9897                 case 2:
9898                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9899                     break;
9900                 default:
9901                     g_assert_not_reached();
9902                 }
9903             }
9904 
9905             if (is_scalar) {
9906                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9907             }
9908             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9909         }
9910         clear_vec_high(s, is_q, rd);
9911     }
9912 }
9913 
9914 /* AdvSIMD scalar two reg misc
9915  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9916  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9917  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9918  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9919  */
9920 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9921 {
9922     int rd = extract32(insn, 0, 5);
9923     int rn = extract32(insn, 5, 5);
9924     int opcode = extract32(insn, 12, 5);
9925     int size = extract32(insn, 22, 2);
9926     bool u = extract32(insn, 29, 1);
9927     bool is_fcvt = false;
9928     int rmode;
9929     TCGv_i32 tcg_rmode;
9930     TCGv_ptr tcg_fpstatus;
9931 
9932     switch (opcode) {
9933     case 0x3: /* USQADD / SUQADD*/
9934         if (!fp_access_check(s)) {
9935             return;
9936         }
9937         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9938         return;
9939     case 0x7: /* SQABS / SQNEG */
9940         break;
9941     case 0xa: /* CMLT */
9942         if (u) {
9943             unallocated_encoding(s);
9944             return;
9945         }
9946         /* fall through */
9947     case 0x8: /* CMGT, CMGE */
9948     case 0x9: /* CMEQ, CMLE */
9949     case 0xb: /* ABS, NEG */
9950         if (size != 3) {
9951             unallocated_encoding(s);
9952             return;
9953         }
9954         break;
9955     case 0x12: /* SQXTUN */
9956         if (!u) {
9957             unallocated_encoding(s);
9958             return;
9959         }
9960         /* fall through */
9961     case 0x14: /* SQXTN, UQXTN */
9962         if (size == 3) {
9963             unallocated_encoding(s);
9964             return;
9965         }
9966         if (!fp_access_check(s)) {
9967             return;
9968         }
9969         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9970         return;
9971     case 0xc ... 0xf:
9972     case 0x16 ... 0x1d:
9973     case 0x1f:
9974         /* Floating point: U, size[1] and opcode indicate operation;
9975          * size[0] indicates single or double precision.
9976          */
9977         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9978         size = extract32(size, 0, 1) ? 3 : 2;
9979         switch (opcode) {
9980         case 0x2c: /* FCMGT (zero) */
9981         case 0x2d: /* FCMEQ (zero) */
9982         case 0x2e: /* FCMLT (zero) */
9983         case 0x6c: /* FCMGE (zero) */
9984         case 0x6d: /* FCMLE (zero) */
9985             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9986             return;
9987         case 0x1d: /* SCVTF */
9988         case 0x5d: /* UCVTF */
9989         {
9990             bool is_signed = (opcode == 0x1d);
9991             if (!fp_access_check(s)) {
9992                 return;
9993             }
9994             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9995             return;
9996         }
9997         case 0x3d: /* FRECPE */
9998         case 0x3f: /* FRECPX */
9999         case 0x7d: /* FRSQRTE */
10000             if (!fp_access_check(s)) {
10001                 return;
10002             }
10003             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10004             return;
10005         case 0x1a: /* FCVTNS */
10006         case 0x1b: /* FCVTMS */
10007         case 0x3a: /* FCVTPS */
10008         case 0x3b: /* FCVTZS */
10009         case 0x5a: /* FCVTNU */
10010         case 0x5b: /* FCVTMU */
10011         case 0x7a: /* FCVTPU */
10012         case 0x7b: /* FCVTZU */
10013             is_fcvt = true;
10014             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10015             break;
10016         case 0x1c: /* FCVTAS */
10017         case 0x5c: /* FCVTAU */
10018             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10019             is_fcvt = true;
10020             rmode = FPROUNDING_TIEAWAY;
10021             break;
10022         case 0x56: /* FCVTXN, FCVTXN2 */
10023             if (size == 2) {
10024                 unallocated_encoding(s);
10025                 return;
10026             }
10027             if (!fp_access_check(s)) {
10028                 return;
10029             }
10030             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10031             return;
10032         default:
10033             unallocated_encoding(s);
10034             return;
10035         }
10036         break;
10037     default:
10038         unallocated_encoding(s);
10039         return;
10040     }
10041 
10042     if (!fp_access_check(s)) {
10043         return;
10044     }
10045 
10046     if (is_fcvt) {
10047         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10048         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10049     } else {
10050         tcg_fpstatus = NULL;
10051         tcg_rmode = NULL;
10052     }
10053 
10054     if (size == 3) {
10055         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10056         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10057 
10058         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10059         write_fp_dreg(s, rd, tcg_rd);
10060     } else {
10061         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10062         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10063 
10064         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10065 
10066         switch (opcode) {
10067         case 0x7: /* SQABS, SQNEG */
10068         {
10069             NeonGenOneOpEnvFn *genfn;
10070             static NeonGenOneOpEnvFn * const fns[3][2] = {
10071                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10072                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10073                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10074             };
10075             genfn = fns[size][u];
10076             genfn(tcg_rd, cpu_env, tcg_rn);
10077             break;
10078         }
10079         case 0x1a: /* FCVTNS */
10080         case 0x1b: /* FCVTMS */
10081         case 0x1c: /* FCVTAS */
10082         case 0x3a: /* FCVTPS */
10083         case 0x3b: /* FCVTZS */
10084             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10085                                  tcg_fpstatus);
10086             break;
10087         case 0x5a: /* FCVTNU */
10088         case 0x5b: /* FCVTMU */
10089         case 0x5c: /* FCVTAU */
10090         case 0x7a: /* FCVTPU */
10091         case 0x7b: /* FCVTZU */
10092             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10093                                  tcg_fpstatus);
10094             break;
10095         default:
10096             g_assert_not_reached();
10097         }
10098 
10099         write_fp_sreg(s, rd, tcg_rd);
10100     }
10101 
10102     if (is_fcvt) {
10103         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10104     }
10105 }
10106 
10107 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10108 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10109                                  int immh, int immb, int opcode, int rn, int rd)
10110 {
10111     int size = 32 - clz32(immh) - 1;
10112     int immhb = immh << 3 | immb;
10113     int shift = 2 * (8 << size) - immhb;
10114     GVecGen2iFn *gvec_fn;
10115 
10116     if (extract32(immh, 3, 1) && !is_q) {
10117         unallocated_encoding(s);
10118         return;
10119     }
10120     tcg_debug_assert(size <= 3);
10121 
10122     if (!fp_access_check(s)) {
10123         return;
10124     }
10125 
10126     switch (opcode) {
10127     case 0x02: /* SSRA / USRA (accumulate) */
10128         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10129         break;
10130 
10131     case 0x08: /* SRI */
10132         gvec_fn = gen_gvec_sri;
10133         break;
10134 
10135     case 0x00: /* SSHR / USHR */
10136         if (is_u) {
10137             if (shift == 8 << size) {
10138                 /* Shift count the same size as element size produces zero.  */
10139                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10140                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10141                 return;
10142             }
10143             gvec_fn = tcg_gen_gvec_shri;
10144         } else {
10145             /* Shift count the same size as element size produces all sign.  */
10146             if (shift == 8 << size) {
10147                 shift -= 1;
10148             }
10149             gvec_fn = tcg_gen_gvec_sari;
10150         }
10151         break;
10152 
10153     case 0x04: /* SRSHR / URSHR (rounding) */
10154         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10155         break;
10156 
10157     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10158         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10159         break;
10160 
10161     default:
10162         g_assert_not_reached();
10163     }
10164 
10165     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10166 }
10167 
10168 /* SHL/SLI - Vector shift left */
10169 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10170                                  int immh, int immb, int opcode, int rn, int rd)
10171 {
10172     int size = 32 - clz32(immh) - 1;
10173     int immhb = immh << 3 | immb;
10174     int shift = immhb - (8 << size);
10175 
10176     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10177     assert(size >= 0 && size <= 3);
10178 
10179     if (extract32(immh, 3, 1) && !is_q) {
10180         unallocated_encoding(s);
10181         return;
10182     }
10183 
10184     if (!fp_access_check(s)) {
10185         return;
10186     }
10187 
10188     if (insert) {
10189         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10190     } else {
10191         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10192     }
10193 }
10194 
10195 /* USHLL/SHLL - Vector shift left with widening */
10196 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10197                                  int immh, int immb, int opcode, int rn, int rd)
10198 {
10199     int size = 32 - clz32(immh) - 1;
10200     int immhb = immh << 3 | immb;
10201     int shift = immhb - (8 << size);
10202     int dsize = 64;
10203     int esize = 8 << size;
10204     int elements = dsize/esize;
10205     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10206     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10207     int i;
10208 
10209     if (size >= 3) {
10210         unallocated_encoding(s);
10211         return;
10212     }
10213 
10214     if (!fp_access_check(s)) {
10215         return;
10216     }
10217 
10218     /* For the LL variants the store is larger than the load,
10219      * so if rd == rn we would overwrite parts of our input.
10220      * So load everything right now and use shifts in the main loop.
10221      */
10222     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10223 
10224     for (i = 0; i < elements; i++) {
10225         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10226         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10227         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10228         write_vec_element(s, tcg_rd, rd, i, size + 1);
10229     }
10230 }
10231 
10232 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10233 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10234                                  int immh, int immb, int opcode, int rn, int rd)
10235 {
10236     int immhb = immh << 3 | immb;
10237     int size = 32 - clz32(immh) - 1;
10238     int dsize = 64;
10239     int esize = 8 << size;
10240     int elements = dsize/esize;
10241     int shift = (2 * esize) - immhb;
10242     bool round = extract32(opcode, 0, 1);
10243     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10244     TCGv_i64 tcg_round;
10245     int i;
10246 
10247     if (extract32(immh, 3, 1)) {
10248         unallocated_encoding(s);
10249         return;
10250     }
10251 
10252     if (!fp_access_check(s)) {
10253         return;
10254     }
10255 
10256     tcg_rn = tcg_temp_new_i64();
10257     tcg_rd = tcg_temp_new_i64();
10258     tcg_final = tcg_temp_new_i64();
10259     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10260 
10261     if (round) {
10262         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10263     } else {
10264         tcg_round = NULL;
10265     }
10266 
10267     for (i = 0; i < elements; i++) {
10268         read_vec_element(s, tcg_rn, rn, i, size+1);
10269         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10270                                 false, true, size+1, shift);
10271 
10272         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10273     }
10274 
10275     if (!is_q) {
10276         write_vec_element(s, tcg_final, rd, 0, MO_64);
10277     } else {
10278         write_vec_element(s, tcg_final, rd, 1, MO_64);
10279     }
10280 
10281     clear_vec_high(s, is_q, rd);
10282 }
10283 
10284 
10285 /* AdvSIMD shift by immediate
10286  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10287  * +---+---+---+-------------+------+------+--------+---+------+------+
10288  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10289  * +---+---+---+-------------+------+------+--------+---+------+------+
10290  */
10291 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10292 {
10293     int rd = extract32(insn, 0, 5);
10294     int rn = extract32(insn, 5, 5);
10295     int opcode = extract32(insn, 11, 5);
10296     int immb = extract32(insn, 16, 3);
10297     int immh = extract32(insn, 19, 4);
10298     bool is_u = extract32(insn, 29, 1);
10299     bool is_q = extract32(insn, 30, 1);
10300 
10301     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10302     assert(immh != 0);
10303 
10304     switch (opcode) {
10305     case 0x08: /* SRI */
10306         if (!is_u) {
10307             unallocated_encoding(s);
10308             return;
10309         }
10310         /* fall through */
10311     case 0x00: /* SSHR / USHR */
10312     case 0x02: /* SSRA / USRA (accumulate) */
10313     case 0x04: /* SRSHR / URSHR (rounding) */
10314     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10315         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10316         break;
10317     case 0x0a: /* SHL / SLI */
10318         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10319         break;
10320     case 0x10: /* SHRN */
10321     case 0x11: /* RSHRN / SQRSHRUN */
10322         if (is_u) {
10323             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10324                                    opcode, rn, rd);
10325         } else {
10326             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10327         }
10328         break;
10329     case 0x12: /* SQSHRN / UQSHRN */
10330     case 0x13: /* SQRSHRN / UQRSHRN */
10331         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10332                                opcode, rn, rd);
10333         break;
10334     case 0x14: /* SSHLL / USHLL */
10335         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10336         break;
10337     case 0x1c: /* SCVTF / UCVTF */
10338         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10339                                      opcode, rn, rd);
10340         break;
10341     case 0xc: /* SQSHLU */
10342         if (!is_u) {
10343             unallocated_encoding(s);
10344             return;
10345         }
10346         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10347         break;
10348     case 0xe: /* SQSHL, UQSHL */
10349         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10350         break;
10351     case 0x1f: /* FCVTZS/ FCVTZU */
10352         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10353         return;
10354     default:
10355         unallocated_encoding(s);
10356         return;
10357     }
10358 }
10359 
10360 /* Generate code to do a "long" addition or subtraction, ie one done in
10361  * TCGv_i64 on vector lanes twice the width specified by size.
10362  */
10363 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10364                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10365 {
10366     static NeonGenTwo64OpFn * const fns[3][2] = {
10367         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10368         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10369         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10370     };
10371     NeonGenTwo64OpFn *genfn;
10372     assert(size < 3);
10373 
10374     genfn = fns[size][is_sub];
10375     genfn(tcg_res, tcg_op1, tcg_op2);
10376 }
10377 
10378 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10379                                 int opcode, int rd, int rn, int rm)
10380 {
10381     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10382     TCGv_i64 tcg_res[2];
10383     int pass, accop;
10384 
10385     tcg_res[0] = tcg_temp_new_i64();
10386     tcg_res[1] = tcg_temp_new_i64();
10387 
10388     /* Does this op do an adding accumulate, a subtracting accumulate,
10389      * or no accumulate at all?
10390      */
10391     switch (opcode) {
10392     case 5:
10393     case 8:
10394     case 9:
10395         accop = 1;
10396         break;
10397     case 10:
10398     case 11:
10399         accop = -1;
10400         break;
10401     default:
10402         accop = 0;
10403         break;
10404     }
10405 
10406     if (accop != 0) {
10407         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10408         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10409     }
10410 
10411     /* size == 2 means two 32x32->64 operations; this is worth special
10412      * casing because we can generally handle it inline.
10413      */
10414     if (size == 2) {
10415         for (pass = 0; pass < 2; pass++) {
10416             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10417             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10418             TCGv_i64 tcg_passres;
10419             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10420 
10421             int elt = pass + is_q * 2;
10422 
10423             read_vec_element(s, tcg_op1, rn, elt, memop);
10424             read_vec_element(s, tcg_op2, rm, elt, memop);
10425 
10426             if (accop == 0) {
10427                 tcg_passres = tcg_res[pass];
10428             } else {
10429                 tcg_passres = tcg_temp_new_i64();
10430             }
10431 
10432             switch (opcode) {
10433             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10434                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10435                 break;
10436             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10437                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10438                 break;
10439             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10440             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10441             {
10442                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10443                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10444 
10445                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10446                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10447                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10448                                     tcg_passres,
10449                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10450                 break;
10451             }
10452             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10453             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10454             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10455                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10456                 break;
10457             case 9: /* SQDMLAL, SQDMLAL2 */
10458             case 11: /* SQDMLSL, SQDMLSL2 */
10459             case 13: /* SQDMULL, SQDMULL2 */
10460                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10461                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10462                                                   tcg_passres, tcg_passres);
10463                 break;
10464             default:
10465                 g_assert_not_reached();
10466             }
10467 
10468             if (opcode == 9 || opcode == 11) {
10469                 /* saturating accumulate ops */
10470                 if (accop < 0) {
10471                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10472                 }
10473                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10474                                                   tcg_res[pass], tcg_passres);
10475             } else if (accop > 0) {
10476                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10477             } else if (accop < 0) {
10478                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10479             }
10480         }
10481     } else {
10482         /* size 0 or 1, generally helper functions */
10483         for (pass = 0; pass < 2; pass++) {
10484             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10485             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10486             TCGv_i64 tcg_passres;
10487             int elt = pass + is_q * 2;
10488 
10489             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10490             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10491 
10492             if (accop == 0) {
10493                 tcg_passres = tcg_res[pass];
10494             } else {
10495                 tcg_passres = tcg_temp_new_i64();
10496             }
10497 
10498             switch (opcode) {
10499             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10500             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10501             {
10502                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10503                 static NeonGenWidenFn * const widenfns[2][2] = {
10504                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10505                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10506                 };
10507                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10508 
10509                 widenfn(tcg_op2_64, tcg_op2);
10510                 widenfn(tcg_passres, tcg_op1);
10511                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10512                               tcg_passres, tcg_op2_64);
10513                 break;
10514             }
10515             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10516             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10517                 if (size == 0) {
10518                     if (is_u) {
10519                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10520                     } else {
10521                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10522                     }
10523                 } else {
10524                     if (is_u) {
10525                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10526                     } else {
10527                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10528                     }
10529                 }
10530                 break;
10531             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10532             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10533             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10534                 if (size == 0) {
10535                     if (is_u) {
10536                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10537                     } else {
10538                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10539                     }
10540                 } else {
10541                     if (is_u) {
10542                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10543                     } else {
10544                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10545                     }
10546                 }
10547                 break;
10548             case 9: /* SQDMLAL, SQDMLAL2 */
10549             case 11: /* SQDMLSL, SQDMLSL2 */
10550             case 13: /* SQDMULL, SQDMULL2 */
10551                 assert(size == 1);
10552                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10553                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10554                                                   tcg_passres, tcg_passres);
10555                 break;
10556             default:
10557                 g_assert_not_reached();
10558             }
10559 
10560             if (accop != 0) {
10561                 if (opcode == 9 || opcode == 11) {
10562                     /* saturating accumulate ops */
10563                     if (accop < 0) {
10564                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10565                     }
10566                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10567                                                       tcg_res[pass],
10568                                                       tcg_passres);
10569                 } else {
10570                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10571                                   tcg_res[pass], tcg_passres);
10572                 }
10573             }
10574         }
10575     }
10576 
10577     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10578     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10579 }
10580 
10581 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10582                             int opcode, int rd, int rn, int rm)
10583 {
10584     TCGv_i64 tcg_res[2];
10585     int part = is_q ? 2 : 0;
10586     int pass;
10587 
10588     for (pass = 0; pass < 2; pass++) {
10589         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10590         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10591         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10592         static NeonGenWidenFn * const widenfns[3][2] = {
10593             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10594             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10595             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10596         };
10597         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10598 
10599         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10600         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10601         widenfn(tcg_op2_wide, tcg_op2);
10602         tcg_res[pass] = tcg_temp_new_i64();
10603         gen_neon_addl(size, (opcode == 3),
10604                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10605     }
10606 
10607     for (pass = 0; pass < 2; pass++) {
10608         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10609     }
10610 }
10611 
10612 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10613 {
10614     tcg_gen_addi_i64(in, in, 1U << 31);
10615     tcg_gen_extrh_i64_i32(res, in);
10616 }
10617 
10618 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10619                                  int opcode, int rd, int rn, int rm)
10620 {
10621     TCGv_i32 tcg_res[2];
10622     int part = is_q ? 2 : 0;
10623     int pass;
10624 
10625     for (pass = 0; pass < 2; pass++) {
10626         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10627         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10628         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10629         static NeonGenNarrowFn * const narrowfns[3][2] = {
10630             { gen_helper_neon_narrow_high_u8,
10631               gen_helper_neon_narrow_round_high_u8 },
10632             { gen_helper_neon_narrow_high_u16,
10633               gen_helper_neon_narrow_round_high_u16 },
10634             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10635         };
10636         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10637 
10638         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10639         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10640 
10641         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10642 
10643         tcg_res[pass] = tcg_temp_new_i32();
10644         gennarrow(tcg_res[pass], tcg_wideres);
10645     }
10646 
10647     for (pass = 0; pass < 2; pass++) {
10648         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10649     }
10650     clear_vec_high(s, is_q, rd);
10651 }
10652 
10653 /* AdvSIMD three different
10654  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10655  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10656  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10657  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10658  */
10659 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10660 {
10661     /* Instructions in this group fall into three basic classes
10662      * (in each case with the operation working on each element in
10663      * the input vectors):
10664      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10665      *     128 bit input)
10666      * (2) wide 64 x 128 -> 128
10667      * (3) narrowing 128 x 128 -> 64
10668      * Here we do initial decode, catch unallocated cases and
10669      * dispatch to separate functions for each class.
10670      */
10671     int is_q = extract32(insn, 30, 1);
10672     int is_u = extract32(insn, 29, 1);
10673     int size = extract32(insn, 22, 2);
10674     int opcode = extract32(insn, 12, 4);
10675     int rm = extract32(insn, 16, 5);
10676     int rn = extract32(insn, 5, 5);
10677     int rd = extract32(insn, 0, 5);
10678 
10679     switch (opcode) {
10680     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10681     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10682         /* 64 x 128 -> 128 */
10683         if (size == 3) {
10684             unallocated_encoding(s);
10685             return;
10686         }
10687         if (!fp_access_check(s)) {
10688             return;
10689         }
10690         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10691         break;
10692     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10693     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10694         /* 128 x 128 -> 64 */
10695         if (size == 3) {
10696             unallocated_encoding(s);
10697             return;
10698         }
10699         if (!fp_access_check(s)) {
10700             return;
10701         }
10702         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10703         break;
10704     case 14: /* PMULL, PMULL2 */
10705         if (is_u) {
10706             unallocated_encoding(s);
10707             return;
10708         }
10709         switch (size) {
10710         case 0: /* PMULL.P8 */
10711             if (!fp_access_check(s)) {
10712                 return;
10713             }
10714             /* The Q field specifies lo/hi half input for this insn.  */
10715             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10716                              gen_helper_neon_pmull_h);
10717             break;
10718 
10719         case 3: /* PMULL.P64 */
10720             if (!dc_isar_feature(aa64_pmull, s)) {
10721                 unallocated_encoding(s);
10722                 return;
10723             }
10724             if (!fp_access_check(s)) {
10725                 return;
10726             }
10727             /* The Q field specifies lo/hi half input for this insn.  */
10728             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10729                              gen_helper_gvec_pmull_q);
10730             break;
10731 
10732         default:
10733             unallocated_encoding(s);
10734             break;
10735         }
10736         return;
10737     case 9: /* SQDMLAL, SQDMLAL2 */
10738     case 11: /* SQDMLSL, SQDMLSL2 */
10739     case 13: /* SQDMULL, SQDMULL2 */
10740         if (is_u || size == 0) {
10741             unallocated_encoding(s);
10742             return;
10743         }
10744         /* fall through */
10745     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10746     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10747     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10748     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10749     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10750     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10751     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10752         /* 64 x 64 -> 128 */
10753         if (size == 3) {
10754             unallocated_encoding(s);
10755             return;
10756         }
10757         if (!fp_access_check(s)) {
10758             return;
10759         }
10760 
10761         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10762         break;
10763     default:
10764         /* opcode 15 not allocated */
10765         unallocated_encoding(s);
10766         break;
10767     }
10768 }
10769 
10770 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10771 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10772 {
10773     int rd = extract32(insn, 0, 5);
10774     int rn = extract32(insn, 5, 5);
10775     int rm = extract32(insn, 16, 5);
10776     int size = extract32(insn, 22, 2);
10777     bool is_u = extract32(insn, 29, 1);
10778     bool is_q = extract32(insn, 30, 1);
10779 
10780     if (!fp_access_check(s)) {
10781         return;
10782     }
10783 
10784     switch (size + 4 * is_u) {
10785     case 0: /* AND */
10786         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10787         return;
10788     case 1: /* BIC */
10789         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10790         return;
10791     case 2: /* ORR */
10792         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10793         return;
10794     case 3: /* ORN */
10795         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10796         return;
10797     case 4: /* EOR */
10798         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10799         return;
10800 
10801     case 5: /* BSL bitwise select */
10802         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10803         return;
10804     case 6: /* BIT, bitwise insert if true */
10805         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10806         return;
10807     case 7: /* BIF, bitwise insert if false */
10808         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10809         return;
10810 
10811     default:
10812         g_assert_not_reached();
10813     }
10814 }
10815 
10816 /* Pairwise op subgroup of C3.6.16.
10817  *
10818  * This is called directly or via the handle_3same_float for float pairwise
10819  * operations where the opcode and size are calculated differently.
10820  */
10821 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10822                                    int size, int rn, int rm, int rd)
10823 {
10824     TCGv_ptr fpst;
10825     int pass;
10826 
10827     /* Floating point operations need fpst */
10828     if (opcode >= 0x58) {
10829         fpst = fpstatus_ptr(FPST_FPCR);
10830     } else {
10831         fpst = NULL;
10832     }
10833 
10834     if (!fp_access_check(s)) {
10835         return;
10836     }
10837 
10838     /* These operations work on the concatenated rm:rn, with each pair of
10839      * adjacent elements being operated on to produce an element in the result.
10840      */
10841     if (size == 3) {
10842         TCGv_i64 tcg_res[2];
10843 
10844         for (pass = 0; pass < 2; pass++) {
10845             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10846             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10847             int passreg = (pass == 0) ? rn : rm;
10848 
10849             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10850             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10851             tcg_res[pass] = tcg_temp_new_i64();
10852 
10853             switch (opcode) {
10854             case 0x17: /* ADDP */
10855                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10856                 break;
10857             case 0x58: /* FMAXNMP */
10858                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10859                 break;
10860             case 0x5a: /* FADDP */
10861                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10862                 break;
10863             case 0x5e: /* FMAXP */
10864                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10865                 break;
10866             case 0x78: /* FMINNMP */
10867                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10868                 break;
10869             case 0x7e: /* FMINP */
10870                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10871                 break;
10872             default:
10873                 g_assert_not_reached();
10874             }
10875         }
10876 
10877         for (pass = 0; pass < 2; pass++) {
10878             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10879         }
10880     } else {
10881         int maxpass = is_q ? 4 : 2;
10882         TCGv_i32 tcg_res[4];
10883 
10884         for (pass = 0; pass < maxpass; pass++) {
10885             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10886             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10887             NeonGenTwoOpFn *genfn = NULL;
10888             int passreg = pass < (maxpass / 2) ? rn : rm;
10889             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10890 
10891             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10892             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10893             tcg_res[pass] = tcg_temp_new_i32();
10894 
10895             switch (opcode) {
10896             case 0x17: /* ADDP */
10897             {
10898                 static NeonGenTwoOpFn * const fns[3] = {
10899                     gen_helper_neon_padd_u8,
10900                     gen_helper_neon_padd_u16,
10901                     tcg_gen_add_i32,
10902                 };
10903                 genfn = fns[size];
10904                 break;
10905             }
10906             case 0x14: /* SMAXP, UMAXP */
10907             {
10908                 static NeonGenTwoOpFn * const fns[3][2] = {
10909                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10910                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10911                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10912                 };
10913                 genfn = fns[size][u];
10914                 break;
10915             }
10916             case 0x15: /* SMINP, UMINP */
10917             {
10918                 static NeonGenTwoOpFn * const fns[3][2] = {
10919                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10920                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10921                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10922                 };
10923                 genfn = fns[size][u];
10924                 break;
10925             }
10926             /* The FP operations are all on single floats (32 bit) */
10927             case 0x58: /* FMAXNMP */
10928                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10929                 break;
10930             case 0x5a: /* FADDP */
10931                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10932                 break;
10933             case 0x5e: /* FMAXP */
10934                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10935                 break;
10936             case 0x78: /* FMINNMP */
10937                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10938                 break;
10939             case 0x7e: /* FMINP */
10940                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10941                 break;
10942             default:
10943                 g_assert_not_reached();
10944             }
10945 
10946             /* FP ops called directly, otherwise call now */
10947             if (genfn) {
10948                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10949             }
10950         }
10951 
10952         for (pass = 0; pass < maxpass; pass++) {
10953             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10954         }
10955         clear_vec_high(s, is_q, rd);
10956     }
10957 }
10958 
10959 /* Floating point op subgroup of C3.6.16. */
10960 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10961 {
10962     /* For floating point ops, the U, size[1] and opcode bits
10963      * together indicate the operation. size[0] indicates single
10964      * or double.
10965      */
10966     int fpopcode = extract32(insn, 11, 5)
10967         | (extract32(insn, 23, 1) << 5)
10968         | (extract32(insn, 29, 1) << 6);
10969     int is_q = extract32(insn, 30, 1);
10970     int size = extract32(insn, 22, 1);
10971     int rm = extract32(insn, 16, 5);
10972     int rn = extract32(insn, 5, 5);
10973     int rd = extract32(insn, 0, 5);
10974 
10975     int datasize = is_q ? 128 : 64;
10976     int esize = 32 << size;
10977     int elements = datasize / esize;
10978 
10979     if (size == 1 && !is_q) {
10980         unallocated_encoding(s);
10981         return;
10982     }
10983 
10984     switch (fpopcode) {
10985     case 0x58: /* FMAXNMP */
10986     case 0x5a: /* FADDP */
10987     case 0x5e: /* FMAXP */
10988     case 0x78: /* FMINNMP */
10989     case 0x7e: /* FMINP */
10990         if (size && !is_q) {
10991             unallocated_encoding(s);
10992             return;
10993         }
10994         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10995                                rn, rm, rd);
10996         return;
10997     case 0x1b: /* FMULX */
10998     case 0x1f: /* FRECPS */
10999     case 0x3f: /* FRSQRTS */
11000     case 0x5d: /* FACGE */
11001     case 0x7d: /* FACGT */
11002     case 0x19: /* FMLA */
11003     case 0x39: /* FMLS */
11004     case 0x18: /* FMAXNM */
11005     case 0x1a: /* FADD */
11006     case 0x1c: /* FCMEQ */
11007     case 0x1e: /* FMAX */
11008     case 0x38: /* FMINNM */
11009     case 0x3a: /* FSUB */
11010     case 0x3e: /* FMIN */
11011     case 0x5b: /* FMUL */
11012     case 0x5c: /* FCMGE */
11013     case 0x5f: /* FDIV */
11014     case 0x7a: /* FABD */
11015     case 0x7c: /* FCMGT */
11016         if (!fp_access_check(s)) {
11017             return;
11018         }
11019         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11020         return;
11021 
11022     case 0x1d: /* FMLAL  */
11023     case 0x3d: /* FMLSL  */
11024     case 0x59: /* FMLAL2 */
11025     case 0x79: /* FMLSL2 */
11026         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11027             unallocated_encoding(s);
11028             return;
11029         }
11030         if (fp_access_check(s)) {
11031             int is_s = extract32(insn, 23, 1);
11032             int is_2 = extract32(insn, 29, 1);
11033             int data = (is_2 << 1) | is_s;
11034             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11035                                vec_full_reg_offset(s, rn),
11036                                vec_full_reg_offset(s, rm), cpu_env,
11037                                is_q ? 16 : 8, vec_full_reg_size(s),
11038                                data, gen_helper_gvec_fmlal_a64);
11039         }
11040         return;
11041 
11042     default:
11043         unallocated_encoding(s);
11044         return;
11045     }
11046 }
11047 
11048 /* Integer op subgroup of C3.6.16. */
11049 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11050 {
11051     int is_q = extract32(insn, 30, 1);
11052     int u = extract32(insn, 29, 1);
11053     int size = extract32(insn, 22, 2);
11054     int opcode = extract32(insn, 11, 5);
11055     int rm = extract32(insn, 16, 5);
11056     int rn = extract32(insn, 5, 5);
11057     int rd = extract32(insn, 0, 5);
11058     int pass;
11059     TCGCond cond;
11060 
11061     switch (opcode) {
11062     case 0x13: /* MUL, PMUL */
11063         if (u && size != 0) {
11064             unallocated_encoding(s);
11065             return;
11066         }
11067         /* fall through */
11068     case 0x0: /* SHADD, UHADD */
11069     case 0x2: /* SRHADD, URHADD */
11070     case 0x4: /* SHSUB, UHSUB */
11071     case 0xc: /* SMAX, UMAX */
11072     case 0xd: /* SMIN, UMIN */
11073     case 0xe: /* SABD, UABD */
11074     case 0xf: /* SABA, UABA */
11075     case 0x12: /* MLA, MLS */
11076         if (size == 3) {
11077             unallocated_encoding(s);
11078             return;
11079         }
11080         break;
11081     case 0x16: /* SQDMULH, SQRDMULH */
11082         if (size == 0 || size == 3) {
11083             unallocated_encoding(s);
11084             return;
11085         }
11086         break;
11087     default:
11088         if (size == 3 && !is_q) {
11089             unallocated_encoding(s);
11090             return;
11091         }
11092         break;
11093     }
11094 
11095     if (!fp_access_check(s)) {
11096         return;
11097     }
11098 
11099     switch (opcode) {
11100     case 0x01: /* SQADD, UQADD */
11101         if (u) {
11102             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11103         } else {
11104             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11105         }
11106         return;
11107     case 0x05: /* SQSUB, UQSUB */
11108         if (u) {
11109             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11110         } else {
11111             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11112         }
11113         return;
11114     case 0x08: /* SSHL, USHL */
11115         if (u) {
11116             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11117         } else {
11118             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11119         }
11120         return;
11121     case 0x0c: /* SMAX, UMAX */
11122         if (u) {
11123             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11124         } else {
11125             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11126         }
11127         return;
11128     case 0x0d: /* SMIN, UMIN */
11129         if (u) {
11130             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11131         } else {
11132             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11133         }
11134         return;
11135     case 0xe: /* SABD, UABD */
11136         if (u) {
11137             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11138         } else {
11139             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11140         }
11141         return;
11142     case 0xf: /* SABA, UABA */
11143         if (u) {
11144             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11145         } else {
11146             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11147         }
11148         return;
11149     case 0x10: /* ADD, SUB */
11150         if (u) {
11151             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11152         } else {
11153             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11154         }
11155         return;
11156     case 0x13: /* MUL, PMUL */
11157         if (!u) { /* MUL */
11158             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11159         } else {  /* PMUL */
11160             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11161         }
11162         return;
11163     case 0x12: /* MLA, MLS */
11164         if (u) {
11165             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11166         } else {
11167             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11168         }
11169         return;
11170     case 0x16: /* SQDMULH, SQRDMULH */
11171         {
11172             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11173                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11174                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11175             };
11176             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11177         }
11178         return;
11179     case 0x11:
11180         if (!u) { /* CMTST */
11181             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11182             return;
11183         }
11184         /* else CMEQ */
11185         cond = TCG_COND_EQ;
11186         goto do_gvec_cmp;
11187     case 0x06: /* CMGT, CMHI */
11188         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11189         goto do_gvec_cmp;
11190     case 0x07: /* CMGE, CMHS */
11191         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11192     do_gvec_cmp:
11193         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11194                          vec_full_reg_offset(s, rn),
11195                          vec_full_reg_offset(s, rm),
11196                          is_q ? 16 : 8, vec_full_reg_size(s));
11197         return;
11198     }
11199 
11200     if (size == 3) {
11201         assert(is_q);
11202         for (pass = 0; pass < 2; pass++) {
11203             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11204             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11205             TCGv_i64 tcg_res = tcg_temp_new_i64();
11206 
11207             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11208             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11209 
11210             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11211 
11212             write_vec_element(s, tcg_res, rd, pass, MO_64);
11213         }
11214     } else {
11215         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11216             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11217             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11218             TCGv_i32 tcg_res = tcg_temp_new_i32();
11219             NeonGenTwoOpFn *genfn = NULL;
11220             NeonGenTwoOpEnvFn *genenvfn = NULL;
11221 
11222             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11223             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11224 
11225             switch (opcode) {
11226             case 0x0: /* SHADD, UHADD */
11227             {
11228                 static NeonGenTwoOpFn * const fns[3][2] = {
11229                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11230                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11231                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11232                 };
11233                 genfn = fns[size][u];
11234                 break;
11235             }
11236             case 0x2: /* SRHADD, URHADD */
11237             {
11238                 static NeonGenTwoOpFn * const fns[3][2] = {
11239                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11240                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11241                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11242                 };
11243                 genfn = fns[size][u];
11244                 break;
11245             }
11246             case 0x4: /* SHSUB, UHSUB */
11247             {
11248                 static NeonGenTwoOpFn * const fns[3][2] = {
11249                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11250                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11251                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11252                 };
11253                 genfn = fns[size][u];
11254                 break;
11255             }
11256             case 0x9: /* SQSHL, UQSHL */
11257             {
11258                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11259                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11260                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11261                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11262                 };
11263                 genenvfn = fns[size][u];
11264                 break;
11265             }
11266             case 0xa: /* SRSHL, URSHL */
11267             {
11268                 static NeonGenTwoOpFn * const fns[3][2] = {
11269                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11270                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11271                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11272                 };
11273                 genfn = fns[size][u];
11274                 break;
11275             }
11276             case 0xb: /* SQRSHL, UQRSHL */
11277             {
11278                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11279                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11280                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11281                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11282                 };
11283                 genenvfn = fns[size][u];
11284                 break;
11285             }
11286             default:
11287                 g_assert_not_reached();
11288             }
11289 
11290             if (genenvfn) {
11291                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11292             } else {
11293                 genfn(tcg_res, tcg_op1, tcg_op2);
11294             }
11295 
11296             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11297         }
11298     }
11299     clear_vec_high(s, is_q, rd);
11300 }
11301 
11302 /* AdvSIMD three same
11303  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11304  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11305  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11306  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11307  */
11308 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11309 {
11310     int opcode = extract32(insn, 11, 5);
11311 
11312     switch (opcode) {
11313     case 0x3: /* logic ops */
11314         disas_simd_3same_logic(s, insn);
11315         break;
11316     case 0x17: /* ADDP */
11317     case 0x14: /* SMAXP, UMAXP */
11318     case 0x15: /* SMINP, UMINP */
11319     {
11320         /* Pairwise operations */
11321         int is_q = extract32(insn, 30, 1);
11322         int u = extract32(insn, 29, 1);
11323         int size = extract32(insn, 22, 2);
11324         int rm = extract32(insn, 16, 5);
11325         int rn = extract32(insn, 5, 5);
11326         int rd = extract32(insn, 0, 5);
11327         if (opcode == 0x17) {
11328             if (u || (size == 3 && !is_q)) {
11329                 unallocated_encoding(s);
11330                 return;
11331             }
11332         } else {
11333             if (size == 3) {
11334                 unallocated_encoding(s);
11335                 return;
11336             }
11337         }
11338         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11339         break;
11340     }
11341     case 0x18 ... 0x31:
11342         /* floating point ops, sz[1] and U are part of opcode */
11343         disas_simd_3same_float(s, insn);
11344         break;
11345     default:
11346         disas_simd_3same_int(s, insn);
11347         break;
11348     }
11349 }
11350 
11351 /*
11352  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11353  *
11354  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11355  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11356  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11357  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11358  *
11359  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11360  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11361  *
11362  */
11363 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11364 {
11365     int opcode = extract32(insn, 11, 3);
11366     int u = extract32(insn, 29, 1);
11367     int a = extract32(insn, 23, 1);
11368     int is_q = extract32(insn, 30, 1);
11369     int rm = extract32(insn, 16, 5);
11370     int rn = extract32(insn, 5, 5);
11371     int rd = extract32(insn, 0, 5);
11372     /*
11373      * For these floating point ops, the U, a and opcode bits
11374      * together indicate the operation.
11375      */
11376     int fpopcode = opcode | (a << 3) | (u << 4);
11377     int datasize = is_q ? 128 : 64;
11378     int elements = datasize / 16;
11379     bool pairwise;
11380     TCGv_ptr fpst;
11381     int pass;
11382 
11383     switch (fpopcode) {
11384     case 0x0: /* FMAXNM */
11385     case 0x1: /* FMLA */
11386     case 0x2: /* FADD */
11387     case 0x3: /* FMULX */
11388     case 0x4: /* FCMEQ */
11389     case 0x6: /* FMAX */
11390     case 0x7: /* FRECPS */
11391     case 0x8: /* FMINNM */
11392     case 0x9: /* FMLS */
11393     case 0xa: /* FSUB */
11394     case 0xe: /* FMIN */
11395     case 0xf: /* FRSQRTS */
11396     case 0x13: /* FMUL */
11397     case 0x14: /* FCMGE */
11398     case 0x15: /* FACGE */
11399     case 0x17: /* FDIV */
11400     case 0x1a: /* FABD */
11401     case 0x1c: /* FCMGT */
11402     case 0x1d: /* FACGT */
11403         pairwise = false;
11404         break;
11405     case 0x10: /* FMAXNMP */
11406     case 0x12: /* FADDP */
11407     case 0x16: /* FMAXP */
11408     case 0x18: /* FMINNMP */
11409     case 0x1e: /* FMINP */
11410         pairwise = true;
11411         break;
11412     default:
11413         unallocated_encoding(s);
11414         return;
11415     }
11416 
11417     if (!dc_isar_feature(aa64_fp16, s)) {
11418         unallocated_encoding(s);
11419         return;
11420     }
11421 
11422     if (!fp_access_check(s)) {
11423         return;
11424     }
11425 
11426     fpst = fpstatus_ptr(FPST_FPCR_F16);
11427 
11428     if (pairwise) {
11429         int maxpass = is_q ? 8 : 4;
11430         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11431         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11432         TCGv_i32 tcg_res[8];
11433 
11434         for (pass = 0; pass < maxpass; pass++) {
11435             int passreg = pass < (maxpass / 2) ? rn : rm;
11436             int passelt = (pass << 1) & (maxpass - 1);
11437 
11438             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11439             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11440             tcg_res[pass] = tcg_temp_new_i32();
11441 
11442             switch (fpopcode) {
11443             case 0x10: /* FMAXNMP */
11444                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11445                                            fpst);
11446                 break;
11447             case 0x12: /* FADDP */
11448                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11449                 break;
11450             case 0x16: /* FMAXP */
11451                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11452                 break;
11453             case 0x18: /* FMINNMP */
11454                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11455                                            fpst);
11456                 break;
11457             case 0x1e: /* FMINP */
11458                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11459                 break;
11460             default:
11461                 g_assert_not_reached();
11462             }
11463         }
11464 
11465         for (pass = 0; pass < maxpass; pass++) {
11466             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11467         }
11468     } else {
11469         for (pass = 0; pass < elements; pass++) {
11470             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11471             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11472             TCGv_i32 tcg_res = tcg_temp_new_i32();
11473 
11474             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11475             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11476 
11477             switch (fpopcode) {
11478             case 0x0: /* FMAXNM */
11479                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11480                 break;
11481             case 0x1: /* FMLA */
11482                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11483                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11484                                            fpst);
11485                 break;
11486             case 0x2: /* FADD */
11487                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11488                 break;
11489             case 0x3: /* FMULX */
11490                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11491                 break;
11492             case 0x4: /* FCMEQ */
11493                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11494                 break;
11495             case 0x6: /* FMAX */
11496                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11497                 break;
11498             case 0x7: /* FRECPS */
11499                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11500                 break;
11501             case 0x8: /* FMINNM */
11502                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11503                 break;
11504             case 0x9: /* FMLS */
11505                 /* As usual for ARM, separate negation for fused multiply-add */
11506                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11507                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11508                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11509                                            fpst);
11510                 break;
11511             case 0xa: /* FSUB */
11512                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11513                 break;
11514             case 0xe: /* FMIN */
11515                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11516                 break;
11517             case 0xf: /* FRSQRTS */
11518                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11519                 break;
11520             case 0x13: /* FMUL */
11521                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11522                 break;
11523             case 0x14: /* FCMGE */
11524                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11525                 break;
11526             case 0x15: /* FACGE */
11527                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11528                 break;
11529             case 0x17: /* FDIV */
11530                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11531                 break;
11532             case 0x1a: /* FABD */
11533                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11534                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11535                 break;
11536             case 0x1c: /* FCMGT */
11537                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11538                 break;
11539             case 0x1d: /* FACGT */
11540                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11541                 break;
11542             default:
11543                 g_assert_not_reached();
11544             }
11545 
11546             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11547         }
11548     }
11549 
11550     clear_vec_high(s, is_q, rd);
11551 }
11552 
11553 /* AdvSIMD three same extra
11554  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11555  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11556  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11557  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11558  */
11559 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11560 {
11561     int rd = extract32(insn, 0, 5);
11562     int rn = extract32(insn, 5, 5);
11563     int opcode = extract32(insn, 11, 4);
11564     int rm = extract32(insn, 16, 5);
11565     int size = extract32(insn, 22, 2);
11566     bool u = extract32(insn, 29, 1);
11567     bool is_q = extract32(insn, 30, 1);
11568     bool feature;
11569     int rot;
11570 
11571     switch (u * 16 + opcode) {
11572     case 0x10: /* SQRDMLAH (vector) */
11573     case 0x11: /* SQRDMLSH (vector) */
11574         if (size != 1 && size != 2) {
11575             unallocated_encoding(s);
11576             return;
11577         }
11578         feature = dc_isar_feature(aa64_rdm, s);
11579         break;
11580     case 0x02: /* SDOT (vector) */
11581     case 0x12: /* UDOT (vector) */
11582         if (size != MO_32) {
11583             unallocated_encoding(s);
11584             return;
11585         }
11586         feature = dc_isar_feature(aa64_dp, s);
11587         break;
11588     case 0x03: /* USDOT */
11589         if (size != MO_32) {
11590             unallocated_encoding(s);
11591             return;
11592         }
11593         feature = dc_isar_feature(aa64_i8mm, s);
11594         break;
11595     case 0x04: /* SMMLA */
11596     case 0x14: /* UMMLA */
11597     case 0x05: /* USMMLA */
11598         if (!is_q || size != MO_32) {
11599             unallocated_encoding(s);
11600             return;
11601         }
11602         feature = dc_isar_feature(aa64_i8mm, s);
11603         break;
11604     case 0x18: /* FCMLA, #0 */
11605     case 0x19: /* FCMLA, #90 */
11606     case 0x1a: /* FCMLA, #180 */
11607     case 0x1b: /* FCMLA, #270 */
11608     case 0x1c: /* FCADD, #90 */
11609     case 0x1e: /* FCADD, #270 */
11610         if (size == 0
11611             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11612             || (size == 3 && !is_q)) {
11613             unallocated_encoding(s);
11614             return;
11615         }
11616         feature = dc_isar_feature(aa64_fcma, s);
11617         break;
11618     case 0x1d: /* BFMMLA */
11619         if (size != MO_16 || !is_q) {
11620             unallocated_encoding(s);
11621             return;
11622         }
11623         feature = dc_isar_feature(aa64_bf16, s);
11624         break;
11625     case 0x1f:
11626         switch (size) {
11627         case 1: /* BFDOT */
11628         case 3: /* BFMLAL{B,T} */
11629             feature = dc_isar_feature(aa64_bf16, s);
11630             break;
11631         default:
11632             unallocated_encoding(s);
11633             return;
11634         }
11635         break;
11636     default:
11637         unallocated_encoding(s);
11638         return;
11639     }
11640     if (!feature) {
11641         unallocated_encoding(s);
11642         return;
11643     }
11644     if (!fp_access_check(s)) {
11645         return;
11646     }
11647 
11648     switch (opcode) {
11649     case 0x0: /* SQRDMLAH (vector) */
11650         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11651         return;
11652 
11653     case 0x1: /* SQRDMLSH (vector) */
11654         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11655         return;
11656 
11657     case 0x2: /* SDOT / UDOT */
11658         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11659                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11660         return;
11661 
11662     case 0x3: /* USDOT */
11663         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11664         return;
11665 
11666     case 0x04: /* SMMLA, UMMLA */
11667         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11668                          u ? gen_helper_gvec_ummla_b
11669                          : gen_helper_gvec_smmla_b);
11670         return;
11671     case 0x05: /* USMMLA */
11672         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11673         return;
11674 
11675     case 0x8: /* FCMLA, #0 */
11676     case 0x9: /* FCMLA, #90 */
11677     case 0xa: /* FCMLA, #180 */
11678     case 0xb: /* FCMLA, #270 */
11679         rot = extract32(opcode, 0, 2);
11680         switch (size) {
11681         case 1:
11682             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11683                               gen_helper_gvec_fcmlah);
11684             break;
11685         case 2:
11686             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11687                               gen_helper_gvec_fcmlas);
11688             break;
11689         case 3:
11690             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11691                               gen_helper_gvec_fcmlad);
11692             break;
11693         default:
11694             g_assert_not_reached();
11695         }
11696         return;
11697 
11698     case 0xc: /* FCADD, #90 */
11699     case 0xe: /* FCADD, #270 */
11700         rot = extract32(opcode, 1, 1);
11701         switch (size) {
11702         case 1:
11703             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11704                               gen_helper_gvec_fcaddh);
11705             break;
11706         case 2:
11707             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11708                               gen_helper_gvec_fcadds);
11709             break;
11710         case 3:
11711             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11712                               gen_helper_gvec_fcaddd);
11713             break;
11714         default:
11715             g_assert_not_reached();
11716         }
11717         return;
11718 
11719     case 0xd: /* BFMMLA */
11720         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11721         return;
11722     case 0xf:
11723         switch (size) {
11724         case 1: /* BFDOT */
11725             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11726             break;
11727         case 3: /* BFMLAL{B,T} */
11728             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11729                               gen_helper_gvec_bfmlal);
11730             break;
11731         default:
11732             g_assert_not_reached();
11733         }
11734         return;
11735 
11736     default:
11737         g_assert_not_reached();
11738     }
11739 }
11740 
11741 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11742                                   int size, int rn, int rd)
11743 {
11744     /* Handle 2-reg-misc ops which are widening (so each size element
11745      * in the source becomes a 2*size element in the destination.
11746      * The only instruction like this is FCVTL.
11747      */
11748     int pass;
11749 
11750     if (size == 3) {
11751         /* 32 -> 64 bit fp conversion */
11752         TCGv_i64 tcg_res[2];
11753         int srcelt = is_q ? 2 : 0;
11754 
11755         for (pass = 0; pass < 2; pass++) {
11756             TCGv_i32 tcg_op = tcg_temp_new_i32();
11757             tcg_res[pass] = tcg_temp_new_i64();
11758 
11759             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11760             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11761         }
11762         for (pass = 0; pass < 2; pass++) {
11763             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11764         }
11765     } else {
11766         /* 16 -> 32 bit fp conversion */
11767         int srcelt = is_q ? 4 : 0;
11768         TCGv_i32 tcg_res[4];
11769         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11770         TCGv_i32 ahp = get_ahp_flag();
11771 
11772         for (pass = 0; pass < 4; pass++) {
11773             tcg_res[pass] = tcg_temp_new_i32();
11774 
11775             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11776             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11777                                            fpst, ahp);
11778         }
11779         for (pass = 0; pass < 4; pass++) {
11780             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11781         }
11782     }
11783 }
11784 
11785 static void handle_rev(DisasContext *s, int opcode, bool u,
11786                        bool is_q, int size, int rn, int rd)
11787 {
11788     int op = (opcode << 1) | u;
11789     int opsz = op + size;
11790     int grp_size = 3 - opsz;
11791     int dsize = is_q ? 128 : 64;
11792     int i;
11793 
11794     if (opsz >= 3) {
11795         unallocated_encoding(s);
11796         return;
11797     }
11798 
11799     if (!fp_access_check(s)) {
11800         return;
11801     }
11802 
11803     if (size == 0) {
11804         /* Special case bytes, use bswap op on each group of elements */
11805         int groups = dsize / (8 << grp_size);
11806 
11807         for (i = 0; i < groups; i++) {
11808             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11809 
11810             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11811             switch (grp_size) {
11812             case MO_16:
11813                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11814                 break;
11815             case MO_32:
11816                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11817                 break;
11818             case MO_64:
11819                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11820                 break;
11821             default:
11822                 g_assert_not_reached();
11823             }
11824             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11825         }
11826         clear_vec_high(s, is_q, rd);
11827     } else {
11828         int revmask = (1 << grp_size) - 1;
11829         int esize = 8 << size;
11830         int elements = dsize / esize;
11831         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11832         TCGv_i64 tcg_rd[2];
11833 
11834         for (i = 0; i < 2; i++) {
11835             tcg_rd[i] = tcg_temp_new_i64();
11836             tcg_gen_movi_i64(tcg_rd[i], 0);
11837         }
11838 
11839         for (i = 0; i < elements; i++) {
11840             int e_rev = (i & 0xf) ^ revmask;
11841             int w = (e_rev * esize) / 64;
11842             int o = (e_rev * esize) % 64;
11843 
11844             read_vec_element(s, tcg_rn, rn, i, size);
11845             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11846         }
11847 
11848         for (i = 0; i < 2; i++) {
11849             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11850         }
11851         clear_vec_high(s, true, rd);
11852     }
11853 }
11854 
11855 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11856                                   bool is_q, int size, int rn, int rd)
11857 {
11858     /* Implement the pairwise operations from 2-misc:
11859      * SADDLP, UADDLP, SADALP, UADALP.
11860      * These all add pairs of elements in the input to produce a
11861      * double-width result element in the output (possibly accumulating).
11862      */
11863     bool accum = (opcode == 0x6);
11864     int maxpass = is_q ? 2 : 1;
11865     int pass;
11866     TCGv_i64 tcg_res[2];
11867 
11868     if (size == 2) {
11869         /* 32 + 32 -> 64 op */
11870         MemOp memop = size + (u ? 0 : MO_SIGN);
11871 
11872         for (pass = 0; pass < maxpass; pass++) {
11873             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11874             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11875 
11876             tcg_res[pass] = tcg_temp_new_i64();
11877 
11878             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11879             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11880             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11881             if (accum) {
11882                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11883                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11884             }
11885         }
11886     } else {
11887         for (pass = 0; pass < maxpass; pass++) {
11888             TCGv_i64 tcg_op = tcg_temp_new_i64();
11889             NeonGenOne64OpFn *genfn;
11890             static NeonGenOne64OpFn * const fns[2][2] = {
11891                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11892                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11893             };
11894 
11895             genfn = fns[size][u];
11896 
11897             tcg_res[pass] = tcg_temp_new_i64();
11898 
11899             read_vec_element(s, tcg_op, rn, pass, MO_64);
11900             genfn(tcg_res[pass], tcg_op);
11901 
11902             if (accum) {
11903                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11904                 if (size == 0) {
11905                     gen_helper_neon_addl_u16(tcg_res[pass],
11906                                              tcg_res[pass], tcg_op);
11907                 } else {
11908                     gen_helper_neon_addl_u32(tcg_res[pass],
11909                                              tcg_res[pass], tcg_op);
11910                 }
11911             }
11912         }
11913     }
11914     if (!is_q) {
11915         tcg_res[1] = tcg_constant_i64(0);
11916     }
11917     for (pass = 0; pass < 2; pass++) {
11918         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11919     }
11920 }
11921 
11922 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11923 {
11924     /* Implement SHLL and SHLL2 */
11925     int pass;
11926     int part = is_q ? 2 : 0;
11927     TCGv_i64 tcg_res[2];
11928 
11929     for (pass = 0; pass < 2; pass++) {
11930         static NeonGenWidenFn * const widenfns[3] = {
11931             gen_helper_neon_widen_u8,
11932             gen_helper_neon_widen_u16,
11933             tcg_gen_extu_i32_i64,
11934         };
11935         NeonGenWidenFn *widenfn = widenfns[size];
11936         TCGv_i32 tcg_op = tcg_temp_new_i32();
11937 
11938         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11939         tcg_res[pass] = tcg_temp_new_i64();
11940         widenfn(tcg_res[pass], tcg_op);
11941         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11942     }
11943 
11944     for (pass = 0; pass < 2; pass++) {
11945         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11946     }
11947 }
11948 
11949 /* AdvSIMD two reg misc
11950  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11951  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11952  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11953  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11954  */
11955 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11956 {
11957     int size = extract32(insn, 22, 2);
11958     int opcode = extract32(insn, 12, 5);
11959     bool u = extract32(insn, 29, 1);
11960     bool is_q = extract32(insn, 30, 1);
11961     int rn = extract32(insn, 5, 5);
11962     int rd = extract32(insn, 0, 5);
11963     bool need_fpstatus = false;
11964     int rmode = -1;
11965     TCGv_i32 tcg_rmode;
11966     TCGv_ptr tcg_fpstatus;
11967 
11968     switch (opcode) {
11969     case 0x0: /* REV64, REV32 */
11970     case 0x1: /* REV16 */
11971         handle_rev(s, opcode, u, is_q, size, rn, rd);
11972         return;
11973     case 0x5: /* CNT, NOT, RBIT */
11974         if (u && size == 0) {
11975             /* NOT */
11976             break;
11977         } else if (u && size == 1) {
11978             /* RBIT */
11979             break;
11980         } else if (!u && size == 0) {
11981             /* CNT */
11982             break;
11983         }
11984         unallocated_encoding(s);
11985         return;
11986     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11987     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11988         if (size == 3) {
11989             unallocated_encoding(s);
11990             return;
11991         }
11992         if (!fp_access_check(s)) {
11993             return;
11994         }
11995 
11996         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11997         return;
11998     case 0x4: /* CLS, CLZ */
11999         if (size == 3) {
12000             unallocated_encoding(s);
12001             return;
12002         }
12003         break;
12004     case 0x2: /* SADDLP, UADDLP */
12005     case 0x6: /* SADALP, UADALP */
12006         if (size == 3) {
12007             unallocated_encoding(s);
12008             return;
12009         }
12010         if (!fp_access_check(s)) {
12011             return;
12012         }
12013         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12014         return;
12015     case 0x13: /* SHLL, SHLL2 */
12016         if (u == 0 || size == 3) {
12017             unallocated_encoding(s);
12018             return;
12019         }
12020         if (!fp_access_check(s)) {
12021             return;
12022         }
12023         handle_shll(s, is_q, size, rn, rd);
12024         return;
12025     case 0xa: /* CMLT */
12026         if (u == 1) {
12027             unallocated_encoding(s);
12028             return;
12029         }
12030         /* fall through */
12031     case 0x8: /* CMGT, CMGE */
12032     case 0x9: /* CMEQ, CMLE */
12033     case 0xb: /* ABS, NEG */
12034         if (size == 3 && !is_q) {
12035             unallocated_encoding(s);
12036             return;
12037         }
12038         break;
12039     case 0x3: /* SUQADD, USQADD */
12040         if (size == 3 && !is_q) {
12041             unallocated_encoding(s);
12042             return;
12043         }
12044         if (!fp_access_check(s)) {
12045             return;
12046         }
12047         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12048         return;
12049     case 0x7: /* SQABS, SQNEG */
12050         if (size == 3 && !is_q) {
12051             unallocated_encoding(s);
12052             return;
12053         }
12054         break;
12055     case 0xc ... 0xf:
12056     case 0x16 ... 0x1f:
12057     {
12058         /* Floating point: U, size[1] and opcode indicate operation;
12059          * size[0] indicates single or double precision.
12060          */
12061         int is_double = extract32(size, 0, 1);
12062         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12063         size = is_double ? 3 : 2;
12064         switch (opcode) {
12065         case 0x2f: /* FABS */
12066         case 0x6f: /* FNEG */
12067             if (size == 3 && !is_q) {
12068                 unallocated_encoding(s);
12069                 return;
12070             }
12071             break;
12072         case 0x1d: /* SCVTF */
12073         case 0x5d: /* UCVTF */
12074         {
12075             bool is_signed = (opcode == 0x1d) ? true : false;
12076             int elements = is_double ? 2 : is_q ? 4 : 2;
12077             if (is_double && !is_q) {
12078                 unallocated_encoding(s);
12079                 return;
12080             }
12081             if (!fp_access_check(s)) {
12082                 return;
12083             }
12084             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12085             return;
12086         }
12087         case 0x2c: /* FCMGT (zero) */
12088         case 0x2d: /* FCMEQ (zero) */
12089         case 0x2e: /* FCMLT (zero) */
12090         case 0x6c: /* FCMGE (zero) */
12091         case 0x6d: /* FCMLE (zero) */
12092             if (size == 3 && !is_q) {
12093                 unallocated_encoding(s);
12094                 return;
12095             }
12096             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12097             return;
12098         case 0x7f: /* FSQRT */
12099             if (size == 3 && !is_q) {
12100                 unallocated_encoding(s);
12101                 return;
12102             }
12103             break;
12104         case 0x1a: /* FCVTNS */
12105         case 0x1b: /* FCVTMS */
12106         case 0x3a: /* FCVTPS */
12107         case 0x3b: /* FCVTZS */
12108         case 0x5a: /* FCVTNU */
12109         case 0x5b: /* FCVTMU */
12110         case 0x7a: /* FCVTPU */
12111         case 0x7b: /* FCVTZU */
12112             need_fpstatus = true;
12113             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12114             if (size == 3 && !is_q) {
12115                 unallocated_encoding(s);
12116                 return;
12117             }
12118             break;
12119         case 0x5c: /* FCVTAU */
12120         case 0x1c: /* FCVTAS */
12121             need_fpstatus = true;
12122             rmode = FPROUNDING_TIEAWAY;
12123             if (size == 3 && !is_q) {
12124                 unallocated_encoding(s);
12125                 return;
12126             }
12127             break;
12128         case 0x3c: /* URECPE */
12129             if (size == 3) {
12130                 unallocated_encoding(s);
12131                 return;
12132             }
12133             /* fall through */
12134         case 0x3d: /* FRECPE */
12135         case 0x7d: /* FRSQRTE */
12136             if (size == 3 && !is_q) {
12137                 unallocated_encoding(s);
12138                 return;
12139             }
12140             if (!fp_access_check(s)) {
12141                 return;
12142             }
12143             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12144             return;
12145         case 0x56: /* FCVTXN, FCVTXN2 */
12146             if (size == 2) {
12147                 unallocated_encoding(s);
12148                 return;
12149             }
12150             /* fall through */
12151         case 0x16: /* FCVTN, FCVTN2 */
12152             /* handle_2misc_narrow does a 2*size -> size operation, but these
12153              * instructions encode the source size rather than dest size.
12154              */
12155             if (!fp_access_check(s)) {
12156                 return;
12157             }
12158             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12159             return;
12160         case 0x36: /* BFCVTN, BFCVTN2 */
12161             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12162                 unallocated_encoding(s);
12163                 return;
12164             }
12165             if (!fp_access_check(s)) {
12166                 return;
12167             }
12168             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12169             return;
12170         case 0x17: /* FCVTL, FCVTL2 */
12171             if (!fp_access_check(s)) {
12172                 return;
12173             }
12174             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12175             return;
12176         case 0x18: /* FRINTN */
12177         case 0x19: /* FRINTM */
12178         case 0x38: /* FRINTP */
12179         case 0x39: /* FRINTZ */
12180             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12181             /* fall through */
12182         case 0x59: /* FRINTX */
12183         case 0x79: /* FRINTI */
12184             need_fpstatus = true;
12185             if (size == 3 && !is_q) {
12186                 unallocated_encoding(s);
12187                 return;
12188             }
12189             break;
12190         case 0x58: /* FRINTA */
12191             rmode = FPROUNDING_TIEAWAY;
12192             need_fpstatus = true;
12193             if (size == 3 && !is_q) {
12194                 unallocated_encoding(s);
12195                 return;
12196             }
12197             break;
12198         case 0x7c: /* URSQRTE */
12199             if (size == 3) {
12200                 unallocated_encoding(s);
12201                 return;
12202             }
12203             break;
12204         case 0x1e: /* FRINT32Z */
12205         case 0x1f: /* FRINT64Z */
12206             rmode = FPROUNDING_ZERO;
12207             /* fall through */
12208         case 0x5e: /* FRINT32X */
12209         case 0x5f: /* FRINT64X */
12210             need_fpstatus = true;
12211             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12212                 unallocated_encoding(s);
12213                 return;
12214             }
12215             break;
12216         default:
12217             unallocated_encoding(s);
12218             return;
12219         }
12220         break;
12221     }
12222     default:
12223         unallocated_encoding(s);
12224         return;
12225     }
12226 
12227     if (!fp_access_check(s)) {
12228         return;
12229     }
12230 
12231     if (need_fpstatus || rmode >= 0) {
12232         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12233     } else {
12234         tcg_fpstatus = NULL;
12235     }
12236     if (rmode >= 0) {
12237         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12238     } else {
12239         tcg_rmode = NULL;
12240     }
12241 
12242     switch (opcode) {
12243     case 0x5:
12244         if (u && size == 0) { /* NOT */
12245             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12246             return;
12247         }
12248         break;
12249     case 0x8: /* CMGT, CMGE */
12250         if (u) {
12251             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12252         } else {
12253             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12254         }
12255         return;
12256     case 0x9: /* CMEQ, CMLE */
12257         if (u) {
12258             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12259         } else {
12260             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12261         }
12262         return;
12263     case 0xa: /* CMLT */
12264         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12265         return;
12266     case 0xb:
12267         if (u) { /* ABS, NEG */
12268             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12269         } else {
12270             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12271         }
12272         return;
12273     }
12274 
12275     if (size == 3) {
12276         /* All 64-bit element operations can be shared with scalar 2misc */
12277         int pass;
12278 
12279         /* Coverity claims (size == 3 && !is_q) has been eliminated
12280          * from all paths leading to here.
12281          */
12282         tcg_debug_assert(is_q);
12283         for (pass = 0; pass < 2; pass++) {
12284             TCGv_i64 tcg_op = tcg_temp_new_i64();
12285             TCGv_i64 tcg_res = tcg_temp_new_i64();
12286 
12287             read_vec_element(s, tcg_op, rn, pass, MO_64);
12288 
12289             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12290                             tcg_rmode, tcg_fpstatus);
12291 
12292             write_vec_element(s, tcg_res, rd, pass, MO_64);
12293         }
12294     } else {
12295         int pass;
12296 
12297         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12298             TCGv_i32 tcg_op = tcg_temp_new_i32();
12299             TCGv_i32 tcg_res = tcg_temp_new_i32();
12300 
12301             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12302 
12303             if (size == 2) {
12304                 /* Special cases for 32 bit elements */
12305                 switch (opcode) {
12306                 case 0x4: /* CLS */
12307                     if (u) {
12308                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12309                     } else {
12310                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12311                     }
12312                     break;
12313                 case 0x7: /* SQABS, SQNEG */
12314                     if (u) {
12315                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12316                     } else {
12317                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12318                     }
12319                     break;
12320                 case 0x2f: /* FABS */
12321                     gen_helper_vfp_abss(tcg_res, tcg_op);
12322                     break;
12323                 case 0x6f: /* FNEG */
12324                     gen_helper_vfp_negs(tcg_res, tcg_op);
12325                     break;
12326                 case 0x7f: /* FSQRT */
12327                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12328                     break;
12329                 case 0x1a: /* FCVTNS */
12330                 case 0x1b: /* FCVTMS */
12331                 case 0x1c: /* FCVTAS */
12332                 case 0x3a: /* FCVTPS */
12333                 case 0x3b: /* FCVTZS */
12334                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12335                                          tcg_constant_i32(0), tcg_fpstatus);
12336                     break;
12337                 case 0x5a: /* FCVTNU */
12338                 case 0x5b: /* FCVTMU */
12339                 case 0x5c: /* FCVTAU */
12340                 case 0x7a: /* FCVTPU */
12341                 case 0x7b: /* FCVTZU */
12342                     gen_helper_vfp_touls(tcg_res, tcg_op,
12343                                          tcg_constant_i32(0), tcg_fpstatus);
12344                     break;
12345                 case 0x18: /* FRINTN */
12346                 case 0x19: /* FRINTM */
12347                 case 0x38: /* FRINTP */
12348                 case 0x39: /* FRINTZ */
12349                 case 0x58: /* FRINTA */
12350                 case 0x79: /* FRINTI */
12351                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12352                     break;
12353                 case 0x59: /* FRINTX */
12354                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12355                     break;
12356                 case 0x7c: /* URSQRTE */
12357                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12358                     break;
12359                 case 0x1e: /* FRINT32Z */
12360                 case 0x5e: /* FRINT32X */
12361                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12362                     break;
12363                 case 0x1f: /* FRINT64Z */
12364                 case 0x5f: /* FRINT64X */
12365                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12366                     break;
12367                 default:
12368                     g_assert_not_reached();
12369                 }
12370             } else {
12371                 /* Use helpers for 8 and 16 bit elements */
12372                 switch (opcode) {
12373                 case 0x5: /* CNT, RBIT */
12374                     /* For these two insns size is part of the opcode specifier
12375                      * (handled earlier); they always operate on byte elements.
12376                      */
12377                     if (u) {
12378                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12379                     } else {
12380                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12381                     }
12382                     break;
12383                 case 0x7: /* SQABS, SQNEG */
12384                 {
12385                     NeonGenOneOpEnvFn *genfn;
12386                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12387                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12388                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12389                     };
12390                     genfn = fns[size][u];
12391                     genfn(tcg_res, cpu_env, tcg_op);
12392                     break;
12393                 }
12394                 case 0x4: /* CLS, CLZ */
12395                     if (u) {
12396                         if (size == 0) {
12397                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12398                         } else {
12399                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12400                         }
12401                     } else {
12402                         if (size == 0) {
12403                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12404                         } else {
12405                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12406                         }
12407                     }
12408                     break;
12409                 default:
12410                     g_assert_not_reached();
12411                 }
12412             }
12413 
12414             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12415         }
12416     }
12417     clear_vec_high(s, is_q, rd);
12418 
12419     if (tcg_rmode) {
12420         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12421     }
12422 }
12423 
12424 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12425  *
12426  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12427  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12428  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12429  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12430  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12431  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12432  *
12433  * This actually covers two groups where scalar access is governed by
12434  * bit 28. A bunch of the instructions (float to integral) only exist
12435  * in the vector form and are un-allocated for the scalar decode. Also
12436  * in the scalar decode Q is always 1.
12437  */
12438 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12439 {
12440     int fpop, opcode, a, u;
12441     int rn, rd;
12442     bool is_q;
12443     bool is_scalar;
12444     bool only_in_vector = false;
12445 
12446     int pass;
12447     TCGv_i32 tcg_rmode = NULL;
12448     TCGv_ptr tcg_fpstatus = NULL;
12449     bool need_fpst = true;
12450     int rmode = -1;
12451 
12452     if (!dc_isar_feature(aa64_fp16, s)) {
12453         unallocated_encoding(s);
12454         return;
12455     }
12456 
12457     rd = extract32(insn, 0, 5);
12458     rn = extract32(insn, 5, 5);
12459 
12460     a = extract32(insn, 23, 1);
12461     u = extract32(insn, 29, 1);
12462     is_scalar = extract32(insn, 28, 1);
12463     is_q = extract32(insn, 30, 1);
12464 
12465     opcode = extract32(insn, 12, 5);
12466     fpop = deposit32(opcode, 5, 1, a);
12467     fpop = deposit32(fpop, 6, 1, u);
12468 
12469     switch (fpop) {
12470     case 0x1d: /* SCVTF */
12471     case 0x5d: /* UCVTF */
12472     {
12473         int elements;
12474 
12475         if (is_scalar) {
12476             elements = 1;
12477         } else {
12478             elements = (is_q ? 8 : 4);
12479         }
12480 
12481         if (!fp_access_check(s)) {
12482             return;
12483         }
12484         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12485         return;
12486     }
12487     break;
12488     case 0x2c: /* FCMGT (zero) */
12489     case 0x2d: /* FCMEQ (zero) */
12490     case 0x2e: /* FCMLT (zero) */
12491     case 0x6c: /* FCMGE (zero) */
12492     case 0x6d: /* FCMLE (zero) */
12493         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12494         return;
12495     case 0x3d: /* FRECPE */
12496     case 0x3f: /* FRECPX */
12497         break;
12498     case 0x18: /* FRINTN */
12499         only_in_vector = true;
12500         rmode = FPROUNDING_TIEEVEN;
12501         break;
12502     case 0x19: /* FRINTM */
12503         only_in_vector = true;
12504         rmode = FPROUNDING_NEGINF;
12505         break;
12506     case 0x38: /* FRINTP */
12507         only_in_vector = true;
12508         rmode = FPROUNDING_POSINF;
12509         break;
12510     case 0x39: /* FRINTZ */
12511         only_in_vector = true;
12512         rmode = FPROUNDING_ZERO;
12513         break;
12514     case 0x58: /* FRINTA */
12515         only_in_vector = true;
12516         rmode = FPROUNDING_TIEAWAY;
12517         break;
12518     case 0x59: /* FRINTX */
12519     case 0x79: /* FRINTI */
12520         only_in_vector = true;
12521         /* current rounding mode */
12522         break;
12523     case 0x1a: /* FCVTNS */
12524         rmode = FPROUNDING_TIEEVEN;
12525         break;
12526     case 0x1b: /* FCVTMS */
12527         rmode = FPROUNDING_NEGINF;
12528         break;
12529     case 0x1c: /* FCVTAS */
12530         rmode = FPROUNDING_TIEAWAY;
12531         break;
12532     case 0x3a: /* FCVTPS */
12533         rmode = FPROUNDING_POSINF;
12534         break;
12535     case 0x3b: /* FCVTZS */
12536         rmode = FPROUNDING_ZERO;
12537         break;
12538     case 0x5a: /* FCVTNU */
12539         rmode = FPROUNDING_TIEEVEN;
12540         break;
12541     case 0x5b: /* FCVTMU */
12542         rmode = FPROUNDING_NEGINF;
12543         break;
12544     case 0x5c: /* FCVTAU */
12545         rmode = FPROUNDING_TIEAWAY;
12546         break;
12547     case 0x7a: /* FCVTPU */
12548         rmode = FPROUNDING_POSINF;
12549         break;
12550     case 0x7b: /* FCVTZU */
12551         rmode = FPROUNDING_ZERO;
12552         break;
12553     case 0x2f: /* FABS */
12554     case 0x6f: /* FNEG */
12555         need_fpst = false;
12556         break;
12557     case 0x7d: /* FRSQRTE */
12558     case 0x7f: /* FSQRT (vector) */
12559         break;
12560     default:
12561         unallocated_encoding(s);
12562         return;
12563     }
12564 
12565 
12566     /* Check additional constraints for the scalar encoding */
12567     if (is_scalar) {
12568         if (!is_q) {
12569             unallocated_encoding(s);
12570             return;
12571         }
12572         /* FRINTxx is only in the vector form */
12573         if (only_in_vector) {
12574             unallocated_encoding(s);
12575             return;
12576         }
12577     }
12578 
12579     if (!fp_access_check(s)) {
12580         return;
12581     }
12582 
12583     if (rmode >= 0 || need_fpst) {
12584         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12585     }
12586 
12587     if (rmode >= 0) {
12588         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12589     }
12590 
12591     if (is_scalar) {
12592         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12593         TCGv_i32 tcg_res = tcg_temp_new_i32();
12594 
12595         switch (fpop) {
12596         case 0x1a: /* FCVTNS */
12597         case 0x1b: /* FCVTMS */
12598         case 0x1c: /* FCVTAS */
12599         case 0x3a: /* FCVTPS */
12600         case 0x3b: /* FCVTZS */
12601             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12602             break;
12603         case 0x3d: /* FRECPE */
12604             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12605             break;
12606         case 0x3f: /* FRECPX */
12607             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12608             break;
12609         case 0x5a: /* FCVTNU */
12610         case 0x5b: /* FCVTMU */
12611         case 0x5c: /* FCVTAU */
12612         case 0x7a: /* FCVTPU */
12613         case 0x7b: /* FCVTZU */
12614             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12615             break;
12616         case 0x6f: /* FNEG */
12617             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12618             break;
12619         case 0x7d: /* FRSQRTE */
12620             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12621             break;
12622         default:
12623             g_assert_not_reached();
12624         }
12625 
12626         /* limit any sign extension going on */
12627         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12628         write_fp_sreg(s, rd, tcg_res);
12629     } else {
12630         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12631             TCGv_i32 tcg_op = tcg_temp_new_i32();
12632             TCGv_i32 tcg_res = tcg_temp_new_i32();
12633 
12634             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12635 
12636             switch (fpop) {
12637             case 0x1a: /* FCVTNS */
12638             case 0x1b: /* FCVTMS */
12639             case 0x1c: /* FCVTAS */
12640             case 0x3a: /* FCVTPS */
12641             case 0x3b: /* FCVTZS */
12642                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12643                 break;
12644             case 0x3d: /* FRECPE */
12645                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12646                 break;
12647             case 0x5a: /* FCVTNU */
12648             case 0x5b: /* FCVTMU */
12649             case 0x5c: /* FCVTAU */
12650             case 0x7a: /* FCVTPU */
12651             case 0x7b: /* FCVTZU */
12652                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12653                 break;
12654             case 0x18: /* FRINTN */
12655             case 0x19: /* FRINTM */
12656             case 0x38: /* FRINTP */
12657             case 0x39: /* FRINTZ */
12658             case 0x58: /* FRINTA */
12659             case 0x79: /* FRINTI */
12660                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12661                 break;
12662             case 0x59: /* FRINTX */
12663                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12664                 break;
12665             case 0x2f: /* FABS */
12666                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12667                 break;
12668             case 0x6f: /* FNEG */
12669                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12670                 break;
12671             case 0x7d: /* FRSQRTE */
12672                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12673                 break;
12674             case 0x7f: /* FSQRT */
12675                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12676                 break;
12677             default:
12678                 g_assert_not_reached();
12679             }
12680 
12681             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12682         }
12683 
12684         clear_vec_high(s, is_q, rd);
12685     }
12686 
12687     if (tcg_rmode) {
12688         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12689     }
12690 }
12691 
12692 /* AdvSIMD scalar x indexed element
12693  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12694  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12695  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12696  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12697  * AdvSIMD vector x indexed element
12698  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12699  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12700  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12701  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12702  */
12703 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12704 {
12705     /* This encoding has two kinds of instruction:
12706      *  normal, where we perform elt x idxelt => elt for each
12707      *     element in the vector
12708      *  long, where we perform elt x idxelt and generate a result of
12709      *     double the width of the input element
12710      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12711      */
12712     bool is_scalar = extract32(insn, 28, 1);
12713     bool is_q = extract32(insn, 30, 1);
12714     bool u = extract32(insn, 29, 1);
12715     int size = extract32(insn, 22, 2);
12716     int l = extract32(insn, 21, 1);
12717     int m = extract32(insn, 20, 1);
12718     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12719     int rm = extract32(insn, 16, 4);
12720     int opcode = extract32(insn, 12, 4);
12721     int h = extract32(insn, 11, 1);
12722     int rn = extract32(insn, 5, 5);
12723     int rd = extract32(insn, 0, 5);
12724     bool is_long = false;
12725     int is_fp = 0;
12726     bool is_fp16 = false;
12727     int index;
12728     TCGv_ptr fpst;
12729 
12730     switch (16 * u + opcode) {
12731     case 0x08: /* MUL */
12732     case 0x10: /* MLA */
12733     case 0x14: /* MLS */
12734         if (is_scalar) {
12735             unallocated_encoding(s);
12736             return;
12737         }
12738         break;
12739     case 0x02: /* SMLAL, SMLAL2 */
12740     case 0x12: /* UMLAL, UMLAL2 */
12741     case 0x06: /* SMLSL, SMLSL2 */
12742     case 0x16: /* UMLSL, UMLSL2 */
12743     case 0x0a: /* SMULL, SMULL2 */
12744     case 0x1a: /* UMULL, UMULL2 */
12745         if (is_scalar) {
12746             unallocated_encoding(s);
12747             return;
12748         }
12749         is_long = true;
12750         break;
12751     case 0x03: /* SQDMLAL, SQDMLAL2 */
12752     case 0x07: /* SQDMLSL, SQDMLSL2 */
12753     case 0x0b: /* SQDMULL, SQDMULL2 */
12754         is_long = true;
12755         break;
12756     case 0x0c: /* SQDMULH */
12757     case 0x0d: /* SQRDMULH */
12758         break;
12759     case 0x01: /* FMLA */
12760     case 0x05: /* FMLS */
12761     case 0x09: /* FMUL */
12762     case 0x19: /* FMULX */
12763         is_fp = 1;
12764         break;
12765     case 0x1d: /* SQRDMLAH */
12766     case 0x1f: /* SQRDMLSH */
12767         if (!dc_isar_feature(aa64_rdm, s)) {
12768             unallocated_encoding(s);
12769             return;
12770         }
12771         break;
12772     case 0x0e: /* SDOT */
12773     case 0x1e: /* UDOT */
12774         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12775             unallocated_encoding(s);
12776             return;
12777         }
12778         break;
12779     case 0x0f:
12780         switch (size) {
12781         case 0: /* SUDOT */
12782         case 2: /* USDOT */
12783             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12784                 unallocated_encoding(s);
12785                 return;
12786             }
12787             size = MO_32;
12788             break;
12789         case 1: /* BFDOT */
12790             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12791                 unallocated_encoding(s);
12792                 return;
12793             }
12794             size = MO_32;
12795             break;
12796         case 3: /* BFMLAL{B,T} */
12797             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12798                 unallocated_encoding(s);
12799                 return;
12800             }
12801             /* can't set is_fp without other incorrect size checks */
12802             size = MO_16;
12803             break;
12804         default:
12805             unallocated_encoding(s);
12806             return;
12807         }
12808         break;
12809     case 0x11: /* FCMLA #0 */
12810     case 0x13: /* FCMLA #90 */
12811     case 0x15: /* FCMLA #180 */
12812     case 0x17: /* FCMLA #270 */
12813         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12814             unallocated_encoding(s);
12815             return;
12816         }
12817         is_fp = 2;
12818         break;
12819     case 0x00: /* FMLAL */
12820     case 0x04: /* FMLSL */
12821     case 0x18: /* FMLAL2 */
12822     case 0x1c: /* FMLSL2 */
12823         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12824             unallocated_encoding(s);
12825             return;
12826         }
12827         size = MO_16;
12828         /* is_fp, but we pass cpu_env not fp_status.  */
12829         break;
12830     default:
12831         unallocated_encoding(s);
12832         return;
12833     }
12834 
12835     switch (is_fp) {
12836     case 1: /* normal fp */
12837         /* convert insn encoded size to MemOp size */
12838         switch (size) {
12839         case 0: /* half-precision */
12840             size = MO_16;
12841             is_fp16 = true;
12842             break;
12843         case MO_32: /* single precision */
12844         case MO_64: /* double precision */
12845             break;
12846         default:
12847             unallocated_encoding(s);
12848             return;
12849         }
12850         break;
12851 
12852     case 2: /* complex fp */
12853         /* Each indexable element is a complex pair.  */
12854         size += 1;
12855         switch (size) {
12856         case MO_32:
12857             if (h && !is_q) {
12858                 unallocated_encoding(s);
12859                 return;
12860             }
12861             is_fp16 = true;
12862             break;
12863         case MO_64:
12864             break;
12865         default:
12866             unallocated_encoding(s);
12867             return;
12868         }
12869         break;
12870 
12871     default: /* integer */
12872         switch (size) {
12873         case MO_8:
12874         case MO_64:
12875             unallocated_encoding(s);
12876             return;
12877         }
12878         break;
12879     }
12880     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12881         unallocated_encoding(s);
12882         return;
12883     }
12884 
12885     /* Given MemOp size, adjust register and indexing.  */
12886     switch (size) {
12887     case MO_16:
12888         index = h << 2 | l << 1 | m;
12889         break;
12890     case MO_32:
12891         index = h << 1 | l;
12892         rm |= m << 4;
12893         break;
12894     case MO_64:
12895         if (l || !is_q) {
12896             unallocated_encoding(s);
12897             return;
12898         }
12899         index = h;
12900         rm |= m << 4;
12901         break;
12902     default:
12903         g_assert_not_reached();
12904     }
12905 
12906     if (!fp_access_check(s)) {
12907         return;
12908     }
12909 
12910     if (is_fp) {
12911         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12912     } else {
12913         fpst = NULL;
12914     }
12915 
12916     switch (16 * u + opcode) {
12917     case 0x0e: /* SDOT */
12918     case 0x1e: /* UDOT */
12919         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12920                          u ? gen_helper_gvec_udot_idx_b
12921                          : gen_helper_gvec_sdot_idx_b);
12922         return;
12923     case 0x0f:
12924         switch (extract32(insn, 22, 2)) {
12925         case 0: /* SUDOT */
12926             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12927                              gen_helper_gvec_sudot_idx_b);
12928             return;
12929         case 1: /* BFDOT */
12930             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12931                              gen_helper_gvec_bfdot_idx);
12932             return;
12933         case 2: /* USDOT */
12934             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12935                              gen_helper_gvec_usdot_idx_b);
12936             return;
12937         case 3: /* BFMLAL{B,T} */
12938             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12939                               gen_helper_gvec_bfmlal_idx);
12940             return;
12941         }
12942         g_assert_not_reached();
12943     case 0x11: /* FCMLA #0 */
12944     case 0x13: /* FCMLA #90 */
12945     case 0x15: /* FCMLA #180 */
12946     case 0x17: /* FCMLA #270 */
12947         {
12948             int rot = extract32(insn, 13, 2);
12949             int data = (index << 2) | rot;
12950             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12951                                vec_full_reg_offset(s, rn),
12952                                vec_full_reg_offset(s, rm),
12953                                vec_full_reg_offset(s, rd), fpst,
12954                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12955                                size == MO_64
12956                                ? gen_helper_gvec_fcmlas_idx
12957                                : gen_helper_gvec_fcmlah_idx);
12958         }
12959         return;
12960 
12961     case 0x00: /* FMLAL */
12962     case 0x04: /* FMLSL */
12963     case 0x18: /* FMLAL2 */
12964     case 0x1c: /* FMLSL2 */
12965         {
12966             int is_s = extract32(opcode, 2, 1);
12967             int is_2 = u;
12968             int data = (index << 2) | (is_2 << 1) | is_s;
12969             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12970                                vec_full_reg_offset(s, rn),
12971                                vec_full_reg_offset(s, rm), cpu_env,
12972                                is_q ? 16 : 8, vec_full_reg_size(s),
12973                                data, gen_helper_gvec_fmlal_idx_a64);
12974         }
12975         return;
12976 
12977     case 0x08: /* MUL */
12978         if (!is_long && !is_scalar) {
12979             static gen_helper_gvec_3 * const fns[3] = {
12980                 gen_helper_gvec_mul_idx_h,
12981                 gen_helper_gvec_mul_idx_s,
12982                 gen_helper_gvec_mul_idx_d,
12983             };
12984             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12985                                vec_full_reg_offset(s, rn),
12986                                vec_full_reg_offset(s, rm),
12987                                is_q ? 16 : 8, vec_full_reg_size(s),
12988                                index, fns[size - 1]);
12989             return;
12990         }
12991         break;
12992 
12993     case 0x10: /* MLA */
12994         if (!is_long && !is_scalar) {
12995             static gen_helper_gvec_4 * const fns[3] = {
12996                 gen_helper_gvec_mla_idx_h,
12997                 gen_helper_gvec_mla_idx_s,
12998                 gen_helper_gvec_mla_idx_d,
12999             };
13000             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13001                                vec_full_reg_offset(s, rn),
13002                                vec_full_reg_offset(s, rm),
13003                                vec_full_reg_offset(s, rd),
13004                                is_q ? 16 : 8, vec_full_reg_size(s),
13005                                index, fns[size - 1]);
13006             return;
13007         }
13008         break;
13009 
13010     case 0x14: /* MLS */
13011         if (!is_long && !is_scalar) {
13012             static gen_helper_gvec_4 * const fns[3] = {
13013                 gen_helper_gvec_mls_idx_h,
13014                 gen_helper_gvec_mls_idx_s,
13015                 gen_helper_gvec_mls_idx_d,
13016             };
13017             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13018                                vec_full_reg_offset(s, rn),
13019                                vec_full_reg_offset(s, rm),
13020                                vec_full_reg_offset(s, rd),
13021                                is_q ? 16 : 8, vec_full_reg_size(s),
13022                                index, fns[size - 1]);
13023             return;
13024         }
13025         break;
13026     }
13027 
13028     if (size == 3) {
13029         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13030         int pass;
13031 
13032         assert(is_fp && is_q && !is_long);
13033 
13034         read_vec_element(s, tcg_idx, rm, index, MO_64);
13035 
13036         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13037             TCGv_i64 tcg_op = tcg_temp_new_i64();
13038             TCGv_i64 tcg_res = tcg_temp_new_i64();
13039 
13040             read_vec_element(s, tcg_op, rn, pass, MO_64);
13041 
13042             switch (16 * u + opcode) {
13043             case 0x05: /* FMLS */
13044                 /* As usual for ARM, separate negation for fused multiply-add */
13045                 gen_helper_vfp_negd(tcg_op, tcg_op);
13046                 /* fall through */
13047             case 0x01: /* FMLA */
13048                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13049                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13050                 break;
13051             case 0x09: /* FMUL */
13052                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13053                 break;
13054             case 0x19: /* FMULX */
13055                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13056                 break;
13057             default:
13058                 g_assert_not_reached();
13059             }
13060 
13061             write_vec_element(s, tcg_res, rd, pass, MO_64);
13062         }
13063 
13064         clear_vec_high(s, !is_scalar, rd);
13065     } else if (!is_long) {
13066         /* 32 bit floating point, or 16 or 32 bit integer.
13067          * For the 16 bit scalar case we use the usual Neon helpers and
13068          * rely on the fact that 0 op 0 == 0 with no side effects.
13069          */
13070         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13071         int pass, maxpasses;
13072 
13073         if (is_scalar) {
13074             maxpasses = 1;
13075         } else {
13076             maxpasses = is_q ? 4 : 2;
13077         }
13078 
13079         read_vec_element_i32(s, tcg_idx, rm, index, size);
13080 
13081         if (size == 1 && !is_scalar) {
13082             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13083              * the index into both halves of the 32 bit tcg_idx and then use
13084              * the usual Neon helpers.
13085              */
13086             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13087         }
13088 
13089         for (pass = 0; pass < maxpasses; pass++) {
13090             TCGv_i32 tcg_op = tcg_temp_new_i32();
13091             TCGv_i32 tcg_res = tcg_temp_new_i32();
13092 
13093             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13094 
13095             switch (16 * u + opcode) {
13096             case 0x08: /* MUL */
13097             case 0x10: /* MLA */
13098             case 0x14: /* MLS */
13099             {
13100                 static NeonGenTwoOpFn * const fns[2][2] = {
13101                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13102                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13103                 };
13104                 NeonGenTwoOpFn *genfn;
13105                 bool is_sub = opcode == 0x4;
13106 
13107                 if (size == 1) {
13108                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13109                 } else {
13110                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13111                 }
13112                 if (opcode == 0x8) {
13113                     break;
13114                 }
13115                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13116                 genfn = fns[size - 1][is_sub];
13117                 genfn(tcg_res, tcg_op, tcg_res);
13118                 break;
13119             }
13120             case 0x05: /* FMLS */
13121             case 0x01: /* FMLA */
13122                 read_vec_element_i32(s, tcg_res, rd, pass,
13123                                      is_scalar ? size : MO_32);
13124                 switch (size) {
13125                 case 1:
13126                     if (opcode == 0x5) {
13127                         /* As usual for ARM, separate negation for fused
13128                          * multiply-add */
13129                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13130                     }
13131                     if (is_scalar) {
13132                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13133                                                    tcg_res, fpst);
13134                     } else {
13135                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13136                                                     tcg_res, fpst);
13137                     }
13138                     break;
13139                 case 2:
13140                     if (opcode == 0x5) {
13141                         /* As usual for ARM, separate negation for
13142                          * fused multiply-add */
13143                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13144                     }
13145                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13146                                            tcg_res, fpst);
13147                     break;
13148                 default:
13149                     g_assert_not_reached();
13150                 }
13151                 break;
13152             case 0x09: /* FMUL */
13153                 switch (size) {
13154                 case 1:
13155                     if (is_scalar) {
13156                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13157                                                 tcg_idx, fpst);
13158                     } else {
13159                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13160                                                  tcg_idx, fpst);
13161                     }
13162                     break;
13163                 case 2:
13164                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13165                     break;
13166                 default:
13167                     g_assert_not_reached();
13168                 }
13169                 break;
13170             case 0x19: /* FMULX */
13171                 switch (size) {
13172                 case 1:
13173                     if (is_scalar) {
13174                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13175                                                  tcg_idx, fpst);
13176                     } else {
13177                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13178                                                   tcg_idx, fpst);
13179                     }
13180                     break;
13181                 case 2:
13182                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13183                     break;
13184                 default:
13185                     g_assert_not_reached();
13186                 }
13187                 break;
13188             case 0x0c: /* SQDMULH */
13189                 if (size == 1) {
13190                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13191                                                tcg_op, tcg_idx);
13192                 } else {
13193                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13194                                                tcg_op, tcg_idx);
13195                 }
13196                 break;
13197             case 0x0d: /* SQRDMULH */
13198                 if (size == 1) {
13199                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13200                                                 tcg_op, tcg_idx);
13201                 } else {
13202                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13203                                                 tcg_op, tcg_idx);
13204                 }
13205                 break;
13206             case 0x1d: /* SQRDMLAH */
13207                 read_vec_element_i32(s, tcg_res, rd, pass,
13208                                      is_scalar ? size : MO_32);
13209                 if (size == 1) {
13210                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13211                                                 tcg_op, tcg_idx, tcg_res);
13212                 } else {
13213                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13214                                                 tcg_op, tcg_idx, tcg_res);
13215                 }
13216                 break;
13217             case 0x1f: /* SQRDMLSH */
13218                 read_vec_element_i32(s, tcg_res, rd, pass,
13219                                      is_scalar ? size : MO_32);
13220                 if (size == 1) {
13221                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13222                                                 tcg_op, tcg_idx, tcg_res);
13223                 } else {
13224                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13225                                                 tcg_op, tcg_idx, tcg_res);
13226                 }
13227                 break;
13228             default:
13229                 g_assert_not_reached();
13230             }
13231 
13232             if (is_scalar) {
13233                 write_fp_sreg(s, rd, tcg_res);
13234             } else {
13235                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13236             }
13237         }
13238 
13239         clear_vec_high(s, is_q, rd);
13240     } else {
13241         /* long ops: 16x16->32 or 32x32->64 */
13242         TCGv_i64 tcg_res[2];
13243         int pass;
13244         bool satop = extract32(opcode, 0, 1);
13245         MemOp memop = MO_32;
13246 
13247         if (satop || !u) {
13248             memop |= MO_SIGN;
13249         }
13250 
13251         if (size == 2) {
13252             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13253 
13254             read_vec_element(s, tcg_idx, rm, index, memop);
13255 
13256             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13257                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13258                 TCGv_i64 tcg_passres;
13259                 int passelt;
13260 
13261                 if (is_scalar) {
13262                     passelt = 0;
13263                 } else {
13264                     passelt = pass + (is_q * 2);
13265                 }
13266 
13267                 read_vec_element(s, tcg_op, rn, passelt, memop);
13268 
13269                 tcg_res[pass] = tcg_temp_new_i64();
13270 
13271                 if (opcode == 0xa || opcode == 0xb) {
13272                     /* Non-accumulating ops */
13273                     tcg_passres = tcg_res[pass];
13274                 } else {
13275                     tcg_passres = tcg_temp_new_i64();
13276                 }
13277 
13278                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13279 
13280                 if (satop) {
13281                     /* saturating, doubling */
13282                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13283                                                       tcg_passres, tcg_passres);
13284                 }
13285 
13286                 if (opcode == 0xa || opcode == 0xb) {
13287                     continue;
13288                 }
13289 
13290                 /* Accumulating op: handle accumulate step */
13291                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13292 
13293                 switch (opcode) {
13294                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13295                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13296                     break;
13297                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13298                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13299                     break;
13300                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13301                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13302                     /* fall through */
13303                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13304                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13305                                                       tcg_res[pass],
13306                                                       tcg_passres);
13307                     break;
13308                 default:
13309                     g_assert_not_reached();
13310                 }
13311             }
13312 
13313             clear_vec_high(s, !is_scalar, rd);
13314         } else {
13315             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13316 
13317             assert(size == 1);
13318             read_vec_element_i32(s, tcg_idx, rm, index, size);
13319 
13320             if (!is_scalar) {
13321                 /* The simplest way to handle the 16x16 indexed ops is to
13322                  * duplicate the index into both halves of the 32 bit tcg_idx
13323                  * and then use the usual Neon helpers.
13324                  */
13325                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13326             }
13327 
13328             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13329                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13330                 TCGv_i64 tcg_passres;
13331 
13332                 if (is_scalar) {
13333                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13334                 } else {
13335                     read_vec_element_i32(s, tcg_op, rn,
13336                                          pass + (is_q * 2), MO_32);
13337                 }
13338 
13339                 tcg_res[pass] = tcg_temp_new_i64();
13340 
13341                 if (opcode == 0xa || opcode == 0xb) {
13342                     /* Non-accumulating ops */
13343                     tcg_passres = tcg_res[pass];
13344                 } else {
13345                     tcg_passres = tcg_temp_new_i64();
13346                 }
13347 
13348                 if (memop & MO_SIGN) {
13349                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13350                 } else {
13351                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13352                 }
13353                 if (satop) {
13354                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13355                                                       tcg_passres, tcg_passres);
13356                 }
13357 
13358                 if (opcode == 0xa || opcode == 0xb) {
13359                     continue;
13360                 }
13361 
13362                 /* Accumulating op: handle accumulate step */
13363                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13364 
13365                 switch (opcode) {
13366                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13367                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13368                                              tcg_passres);
13369                     break;
13370                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13371                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13372                                              tcg_passres);
13373                     break;
13374                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13375                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13376                     /* fall through */
13377                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13378                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13379                                                       tcg_res[pass],
13380                                                       tcg_passres);
13381                     break;
13382                 default:
13383                     g_assert_not_reached();
13384                 }
13385             }
13386 
13387             if (is_scalar) {
13388                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13389             }
13390         }
13391 
13392         if (is_scalar) {
13393             tcg_res[1] = tcg_constant_i64(0);
13394         }
13395 
13396         for (pass = 0; pass < 2; pass++) {
13397             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13398         }
13399     }
13400 }
13401 
13402 /* Crypto AES
13403  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13404  * +-----------------+------+-----------+--------+-----+------+------+
13405  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13406  * +-----------------+------+-----------+--------+-----+------+------+
13407  */
13408 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13409 {
13410     int size = extract32(insn, 22, 2);
13411     int opcode = extract32(insn, 12, 5);
13412     int rn = extract32(insn, 5, 5);
13413     int rd = extract32(insn, 0, 5);
13414     int decrypt;
13415     gen_helper_gvec_2 *genfn2 = NULL;
13416     gen_helper_gvec_3 *genfn3 = NULL;
13417 
13418     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13419         unallocated_encoding(s);
13420         return;
13421     }
13422 
13423     switch (opcode) {
13424     case 0x4: /* AESE */
13425         decrypt = 0;
13426         genfn3 = gen_helper_crypto_aese;
13427         break;
13428     case 0x6: /* AESMC */
13429         decrypt = 0;
13430         genfn2 = gen_helper_crypto_aesmc;
13431         break;
13432     case 0x5: /* AESD */
13433         decrypt = 1;
13434         genfn3 = gen_helper_crypto_aese;
13435         break;
13436     case 0x7: /* AESIMC */
13437         decrypt = 1;
13438         genfn2 = gen_helper_crypto_aesmc;
13439         break;
13440     default:
13441         unallocated_encoding(s);
13442         return;
13443     }
13444 
13445     if (!fp_access_check(s)) {
13446         return;
13447     }
13448     if (genfn2) {
13449         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13450     } else {
13451         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13452     }
13453 }
13454 
13455 /* Crypto three-reg SHA
13456  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13457  * +-----------------+------+---+------+---+--------+-----+------+------+
13458  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13459  * +-----------------+------+---+------+---+--------+-----+------+------+
13460  */
13461 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13462 {
13463     int size = extract32(insn, 22, 2);
13464     int opcode = extract32(insn, 12, 3);
13465     int rm = extract32(insn, 16, 5);
13466     int rn = extract32(insn, 5, 5);
13467     int rd = extract32(insn, 0, 5);
13468     gen_helper_gvec_3 *genfn;
13469     bool feature;
13470 
13471     if (size != 0) {
13472         unallocated_encoding(s);
13473         return;
13474     }
13475 
13476     switch (opcode) {
13477     case 0: /* SHA1C */
13478         genfn = gen_helper_crypto_sha1c;
13479         feature = dc_isar_feature(aa64_sha1, s);
13480         break;
13481     case 1: /* SHA1P */
13482         genfn = gen_helper_crypto_sha1p;
13483         feature = dc_isar_feature(aa64_sha1, s);
13484         break;
13485     case 2: /* SHA1M */
13486         genfn = gen_helper_crypto_sha1m;
13487         feature = dc_isar_feature(aa64_sha1, s);
13488         break;
13489     case 3: /* SHA1SU0 */
13490         genfn = gen_helper_crypto_sha1su0;
13491         feature = dc_isar_feature(aa64_sha1, s);
13492         break;
13493     case 4: /* SHA256H */
13494         genfn = gen_helper_crypto_sha256h;
13495         feature = dc_isar_feature(aa64_sha256, s);
13496         break;
13497     case 5: /* SHA256H2 */
13498         genfn = gen_helper_crypto_sha256h2;
13499         feature = dc_isar_feature(aa64_sha256, s);
13500         break;
13501     case 6: /* SHA256SU1 */
13502         genfn = gen_helper_crypto_sha256su1;
13503         feature = dc_isar_feature(aa64_sha256, s);
13504         break;
13505     default:
13506         unallocated_encoding(s);
13507         return;
13508     }
13509 
13510     if (!feature) {
13511         unallocated_encoding(s);
13512         return;
13513     }
13514 
13515     if (!fp_access_check(s)) {
13516         return;
13517     }
13518     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13519 }
13520 
13521 /* Crypto two-reg SHA
13522  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13523  * +-----------------+------+-----------+--------+-----+------+------+
13524  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13525  * +-----------------+------+-----------+--------+-----+------+------+
13526  */
13527 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13528 {
13529     int size = extract32(insn, 22, 2);
13530     int opcode = extract32(insn, 12, 5);
13531     int rn = extract32(insn, 5, 5);
13532     int rd = extract32(insn, 0, 5);
13533     gen_helper_gvec_2 *genfn;
13534     bool feature;
13535 
13536     if (size != 0) {
13537         unallocated_encoding(s);
13538         return;
13539     }
13540 
13541     switch (opcode) {
13542     case 0: /* SHA1H */
13543         feature = dc_isar_feature(aa64_sha1, s);
13544         genfn = gen_helper_crypto_sha1h;
13545         break;
13546     case 1: /* SHA1SU1 */
13547         feature = dc_isar_feature(aa64_sha1, s);
13548         genfn = gen_helper_crypto_sha1su1;
13549         break;
13550     case 2: /* SHA256SU0 */
13551         feature = dc_isar_feature(aa64_sha256, s);
13552         genfn = gen_helper_crypto_sha256su0;
13553         break;
13554     default:
13555         unallocated_encoding(s);
13556         return;
13557     }
13558 
13559     if (!feature) {
13560         unallocated_encoding(s);
13561         return;
13562     }
13563 
13564     if (!fp_access_check(s)) {
13565         return;
13566     }
13567     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13568 }
13569 
13570 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13571 {
13572     tcg_gen_rotli_i64(d, m, 1);
13573     tcg_gen_xor_i64(d, d, n);
13574 }
13575 
13576 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13577 {
13578     tcg_gen_rotli_vec(vece, d, m, 1);
13579     tcg_gen_xor_vec(vece, d, d, n);
13580 }
13581 
13582 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13583                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13584 {
13585     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13586     static const GVecGen3 op = {
13587         .fni8 = gen_rax1_i64,
13588         .fniv = gen_rax1_vec,
13589         .opt_opc = vecop_list,
13590         .fno = gen_helper_crypto_rax1,
13591         .vece = MO_64,
13592     };
13593     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13594 }
13595 
13596 /* Crypto three-reg SHA512
13597  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13598  * +-----------------------+------+---+---+-----+--------+------+------+
13599  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13600  * +-----------------------+------+---+---+-----+--------+------+------+
13601  */
13602 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13603 {
13604     int opcode = extract32(insn, 10, 2);
13605     int o =  extract32(insn, 14, 1);
13606     int rm = extract32(insn, 16, 5);
13607     int rn = extract32(insn, 5, 5);
13608     int rd = extract32(insn, 0, 5);
13609     bool feature;
13610     gen_helper_gvec_3 *oolfn = NULL;
13611     GVecGen3Fn *gvecfn = NULL;
13612 
13613     if (o == 0) {
13614         switch (opcode) {
13615         case 0: /* SHA512H */
13616             feature = dc_isar_feature(aa64_sha512, s);
13617             oolfn = gen_helper_crypto_sha512h;
13618             break;
13619         case 1: /* SHA512H2 */
13620             feature = dc_isar_feature(aa64_sha512, s);
13621             oolfn = gen_helper_crypto_sha512h2;
13622             break;
13623         case 2: /* SHA512SU1 */
13624             feature = dc_isar_feature(aa64_sha512, s);
13625             oolfn = gen_helper_crypto_sha512su1;
13626             break;
13627         case 3: /* RAX1 */
13628             feature = dc_isar_feature(aa64_sha3, s);
13629             gvecfn = gen_gvec_rax1;
13630             break;
13631         default:
13632             g_assert_not_reached();
13633         }
13634     } else {
13635         switch (opcode) {
13636         case 0: /* SM3PARTW1 */
13637             feature = dc_isar_feature(aa64_sm3, s);
13638             oolfn = gen_helper_crypto_sm3partw1;
13639             break;
13640         case 1: /* SM3PARTW2 */
13641             feature = dc_isar_feature(aa64_sm3, s);
13642             oolfn = gen_helper_crypto_sm3partw2;
13643             break;
13644         case 2: /* SM4EKEY */
13645             feature = dc_isar_feature(aa64_sm4, s);
13646             oolfn = gen_helper_crypto_sm4ekey;
13647             break;
13648         default:
13649             unallocated_encoding(s);
13650             return;
13651         }
13652     }
13653 
13654     if (!feature) {
13655         unallocated_encoding(s);
13656         return;
13657     }
13658 
13659     if (!fp_access_check(s)) {
13660         return;
13661     }
13662 
13663     if (oolfn) {
13664         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13665     } else {
13666         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13667     }
13668 }
13669 
13670 /* Crypto two-reg SHA512
13671  *  31                                     12  11  10  9    5 4    0
13672  * +-----------------------------------------+--------+------+------+
13673  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13674  * +-----------------------------------------+--------+------+------+
13675  */
13676 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13677 {
13678     int opcode = extract32(insn, 10, 2);
13679     int rn = extract32(insn, 5, 5);
13680     int rd = extract32(insn, 0, 5);
13681     bool feature;
13682 
13683     switch (opcode) {
13684     case 0: /* SHA512SU0 */
13685         feature = dc_isar_feature(aa64_sha512, s);
13686         break;
13687     case 1: /* SM4E */
13688         feature = dc_isar_feature(aa64_sm4, s);
13689         break;
13690     default:
13691         unallocated_encoding(s);
13692         return;
13693     }
13694 
13695     if (!feature) {
13696         unallocated_encoding(s);
13697         return;
13698     }
13699 
13700     if (!fp_access_check(s)) {
13701         return;
13702     }
13703 
13704     switch (opcode) {
13705     case 0: /* SHA512SU0 */
13706         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13707         break;
13708     case 1: /* SM4E */
13709         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13710         break;
13711     default:
13712         g_assert_not_reached();
13713     }
13714 }
13715 
13716 /* Crypto four-register
13717  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13718  * +-------------------+-----+------+---+------+------+------+
13719  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13720  * +-------------------+-----+------+---+------+------+------+
13721  */
13722 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13723 {
13724     int op0 = extract32(insn, 21, 2);
13725     int rm = extract32(insn, 16, 5);
13726     int ra = extract32(insn, 10, 5);
13727     int rn = extract32(insn, 5, 5);
13728     int rd = extract32(insn, 0, 5);
13729     bool feature;
13730 
13731     switch (op0) {
13732     case 0: /* EOR3 */
13733     case 1: /* BCAX */
13734         feature = dc_isar_feature(aa64_sha3, s);
13735         break;
13736     case 2: /* SM3SS1 */
13737         feature = dc_isar_feature(aa64_sm3, s);
13738         break;
13739     default:
13740         unallocated_encoding(s);
13741         return;
13742     }
13743 
13744     if (!feature) {
13745         unallocated_encoding(s);
13746         return;
13747     }
13748 
13749     if (!fp_access_check(s)) {
13750         return;
13751     }
13752 
13753     if (op0 < 2) {
13754         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13755         int pass;
13756 
13757         tcg_op1 = tcg_temp_new_i64();
13758         tcg_op2 = tcg_temp_new_i64();
13759         tcg_op3 = tcg_temp_new_i64();
13760         tcg_res[0] = tcg_temp_new_i64();
13761         tcg_res[1] = tcg_temp_new_i64();
13762 
13763         for (pass = 0; pass < 2; pass++) {
13764             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13765             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13766             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13767 
13768             if (op0 == 0) {
13769                 /* EOR3 */
13770                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13771             } else {
13772                 /* BCAX */
13773                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13774             }
13775             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13776         }
13777         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13778         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13779     } else {
13780         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13781 
13782         tcg_op1 = tcg_temp_new_i32();
13783         tcg_op2 = tcg_temp_new_i32();
13784         tcg_op3 = tcg_temp_new_i32();
13785         tcg_res = tcg_temp_new_i32();
13786         tcg_zero = tcg_constant_i32(0);
13787 
13788         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13789         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13790         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13791 
13792         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13793         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13794         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13795         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13796 
13797         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13798         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13799         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13800         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13801     }
13802 }
13803 
13804 /* Crypto XAR
13805  *  31                   21 20  16 15    10 9    5 4    0
13806  * +-----------------------+------+--------+------+------+
13807  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13808  * +-----------------------+------+--------+------+------+
13809  */
13810 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13811 {
13812     int rm = extract32(insn, 16, 5);
13813     int imm6 = extract32(insn, 10, 6);
13814     int rn = extract32(insn, 5, 5);
13815     int rd = extract32(insn, 0, 5);
13816 
13817     if (!dc_isar_feature(aa64_sha3, s)) {
13818         unallocated_encoding(s);
13819         return;
13820     }
13821 
13822     if (!fp_access_check(s)) {
13823         return;
13824     }
13825 
13826     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13827                  vec_full_reg_offset(s, rn),
13828                  vec_full_reg_offset(s, rm), imm6, 16,
13829                  vec_full_reg_size(s));
13830 }
13831 
13832 /* Crypto three-reg imm2
13833  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13834  * +-----------------------+------+-----+------+--------+------+------+
13835  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13836  * +-----------------------+------+-----+------+--------+------+------+
13837  */
13838 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13839 {
13840     static gen_helper_gvec_3 * const fns[4] = {
13841         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13842         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13843     };
13844     int opcode = extract32(insn, 10, 2);
13845     int imm2 = extract32(insn, 12, 2);
13846     int rm = extract32(insn, 16, 5);
13847     int rn = extract32(insn, 5, 5);
13848     int rd = extract32(insn, 0, 5);
13849 
13850     if (!dc_isar_feature(aa64_sm3, s)) {
13851         unallocated_encoding(s);
13852         return;
13853     }
13854 
13855     if (!fp_access_check(s)) {
13856         return;
13857     }
13858 
13859     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13860 }
13861 
13862 /* C3.6 Data processing - SIMD, inc Crypto
13863  *
13864  * As the decode gets a little complex we are using a table based
13865  * approach for this part of the decode.
13866  */
13867 static const AArch64DecodeTable data_proc_simd[] = {
13868     /* pattern  ,  mask     ,  fn                        */
13869     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13870     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13871     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13872     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13873     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13874     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13875     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13876     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13877     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13878     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13879     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13880     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13881     { 0x2e000000, 0xbf208400, disas_simd_ext },
13882     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13883     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13884     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13885     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13886     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13887     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13888     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13889     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13890     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13891     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13892     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13893     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13894     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13895     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13896     { 0xce800000, 0xffe00000, disas_crypto_xar },
13897     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13898     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13899     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13900     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13901     { 0x00000000, 0x00000000, NULL }
13902 };
13903 
13904 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13905 {
13906     /* Note that this is called with all non-FP cases from
13907      * table C3-6 so it must UNDEF for entries not specifically
13908      * allocated to instructions in that table.
13909      */
13910     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13911     if (fn) {
13912         fn(s, insn);
13913     } else {
13914         unallocated_encoding(s);
13915     }
13916 }
13917 
13918 /* C3.6 Data processing - SIMD and floating point */
13919 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13920 {
13921     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13922         disas_data_proc_fp(s, insn);
13923     } else {
13924         /* SIMD, including crypto */
13925         disas_data_proc_simd(s, insn);
13926     }
13927 }
13928 
13929 static bool trans_OK(DisasContext *s, arg_OK *a)
13930 {
13931     return true;
13932 }
13933 
13934 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13935 {
13936     s->is_nonstreaming = true;
13937     return true;
13938 }
13939 
13940 /**
13941  * is_guarded_page:
13942  * @env: The cpu environment
13943  * @s: The DisasContext
13944  *
13945  * Return true if the page is guarded.
13946  */
13947 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13948 {
13949     uint64_t addr = s->base.pc_first;
13950 #ifdef CONFIG_USER_ONLY
13951     return page_get_flags(addr) & PAGE_BTI;
13952 #else
13953     CPUTLBEntryFull *full;
13954     void *host;
13955     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13956     int flags;
13957 
13958     /*
13959      * We test this immediately after reading an insn, which means
13960      * that the TLB entry must be present and valid, and thus this
13961      * access will never raise an exception.
13962      */
13963     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13964                               false, &host, &full, 0);
13965     assert(!(flags & TLB_INVALID_MASK));
13966 
13967     return full->guarded;
13968 #endif
13969 }
13970 
13971 /**
13972  * btype_destination_ok:
13973  * @insn: The instruction at the branch destination
13974  * @bt: SCTLR_ELx.BT
13975  * @btype: PSTATE.BTYPE, and is non-zero
13976  *
13977  * On a guarded page, there are a limited number of insns
13978  * that may be present at the branch target:
13979  *   - branch target identifiers,
13980  *   - paciasp, pacibsp,
13981  *   - BRK insn
13982  *   - HLT insn
13983  * Anything else causes a Branch Target Exception.
13984  *
13985  * Return true if the branch is compatible, false to raise BTITRAP.
13986  */
13987 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13988 {
13989     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13990         /* HINT space */
13991         switch (extract32(insn, 5, 7)) {
13992         case 0b011001: /* PACIASP */
13993         case 0b011011: /* PACIBSP */
13994             /*
13995              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13996              * with btype == 3.  Otherwise all btype are ok.
13997              */
13998             return !bt || btype != 3;
13999         case 0b100000: /* BTI */
14000             /* Not compatible with any btype.  */
14001             return false;
14002         case 0b100010: /* BTI c */
14003             /* Not compatible with btype == 3 */
14004             return btype != 3;
14005         case 0b100100: /* BTI j */
14006             /* Not compatible with btype == 2 */
14007             return btype != 2;
14008         case 0b100110: /* BTI jc */
14009             /* Compatible with any btype.  */
14010             return true;
14011         }
14012     } else {
14013         switch (insn & 0xffe0001fu) {
14014         case 0xd4200000u: /* BRK */
14015         case 0xd4400000u: /* HLT */
14016             /* Give priority to the breakpoint exception.  */
14017             return true;
14018         }
14019     }
14020     return false;
14021 }
14022 
14023 /* C3.1 A64 instruction index by encoding */
14024 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14025 {
14026     switch (extract32(insn, 25, 4)) {
14027     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14028         disas_b_exc_sys(s, insn);
14029         break;
14030     case 0x4:
14031     case 0x6:
14032     case 0xc:
14033     case 0xe:      /* Loads and stores */
14034         disas_ldst(s, insn);
14035         break;
14036     case 0x5:
14037     case 0xd:      /* Data processing - register */
14038         disas_data_proc_reg(s, insn);
14039         break;
14040     case 0x7:
14041     case 0xf:      /* Data processing - SIMD and floating point */
14042         disas_data_proc_simd_fp(s, insn);
14043         break;
14044     default:
14045         unallocated_encoding(s);
14046         break;
14047     }
14048 }
14049 
14050 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14051                                           CPUState *cpu)
14052 {
14053     DisasContext *dc = container_of(dcbase, DisasContext, base);
14054     CPUARMState *env = cpu->env_ptr;
14055     ARMCPU *arm_cpu = env_archcpu(env);
14056     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14057     int bound, core_mmu_idx;
14058 
14059     dc->isar = &arm_cpu->isar;
14060     dc->condjmp = 0;
14061     dc->pc_save = dc->base.pc_first;
14062     dc->aarch64 = true;
14063     dc->thumb = false;
14064     dc->sctlr_b = 0;
14065     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14066     dc->condexec_mask = 0;
14067     dc->condexec_cond = 0;
14068     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14069     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14070     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14071     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14072     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14073     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14074 #if !defined(CONFIG_USER_ONLY)
14075     dc->user = (dc->current_el == 0);
14076 #endif
14077     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14078     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14079     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14080     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14081     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14082     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14083     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14084     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14085     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14086     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14087     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14088     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14089     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14090     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14091     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14092     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14093     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14094     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14095     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14096     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14097     dc->vec_len = 0;
14098     dc->vec_stride = 0;
14099     dc->cp_regs = arm_cpu->cp_regs;
14100     dc->features = env->features;
14101     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14102 
14103 #ifdef CONFIG_USER_ONLY
14104     /* In sve_probe_page, we assume TBI is enabled. */
14105     tcg_debug_assert(dc->tbid & 1);
14106 #endif
14107 
14108     /* Single step state. The code-generation logic here is:
14109      *  SS_ACTIVE == 0:
14110      *   generate code with no special handling for single-stepping (except
14111      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14112      *   this happens anyway because those changes are all system register or
14113      *   PSTATE writes).
14114      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14115      *   emit code for one insn
14116      *   emit code to clear PSTATE.SS
14117      *   emit code to generate software step exception for completed step
14118      *   end TB (as usual for having generated an exception)
14119      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14120      *   emit code to generate a software step exception
14121      *   end the TB
14122      */
14123     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14124     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14125     dc->is_ldex = false;
14126 
14127     /* Bound the number of insns to execute to those left on the page.  */
14128     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14129 
14130     /* If architectural single step active, limit to 1.  */
14131     if (dc->ss_active) {
14132         bound = 1;
14133     }
14134     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14135 }
14136 
14137 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14138 {
14139 }
14140 
14141 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14142 {
14143     DisasContext *dc = container_of(dcbase, DisasContext, base);
14144     target_ulong pc_arg = dc->base.pc_next;
14145 
14146     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14147         pc_arg &= ~TARGET_PAGE_MASK;
14148     }
14149     tcg_gen_insn_start(pc_arg, 0, 0);
14150     dc->insn_start = tcg_last_op();
14151 }
14152 
14153 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14154 {
14155     DisasContext *s = container_of(dcbase, DisasContext, base);
14156     CPUARMState *env = cpu->env_ptr;
14157     uint64_t pc = s->base.pc_next;
14158     uint32_t insn;
14159 
14160     /* Singlestep exceptions have the highest priority. */
14161     if (s->ss_active && !s->pstate_ss) {
14162         /* Singlestep state is Active-pending.
14163          * If we're in this state at the start of a TB then either
14164          *  a) we just took an exception to an EL which is being debugged
14165          *     and this is the first insn in the exception handler
14166          *  b) debug exceptions were masked and we just unmasked them
14167          *     without changing EL (eg by clearing PSTATE.D)
14168          * In either case we're going to take a swstep exception in the
14169          * "did not step an insn" case, and so the syndrome ISV and EX
14170          * bits should be zero.
14171          */
14172         assert(s->base.num_insns == 1);
14173         gen_swstep_exception(s, 0, 0);
14174         s->base.is_jmp = DISAS_NORETURN;
14175         s->base.pc_next = pc + 4;
14176         return;
14177     }
14178 
14179     if (pc & 3) {
14180         /*
14181          * PC alignment fault.  This has priority over the instruction abort
14182          * that we would receive from a translation fault via arm_ldl_code.
14183          * This should only be possible after an indirect branch, at the
14184          * start of the TB.
14185          */
14186         assert(s->base.num_insns == 1);
14187         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14188         s->base.is_jmp = DISAS_NORETURN;
14189         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14190         return;
14191     }
14192 
14193     s->pc_curr = pc;
14194     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14195     s->insn = insn;
14196     s->base.pc_next = pc + 4;
14197 
14198     s->fp_access_checked = false;
14199     s->sve_access_checked = false;
14200 
14201     if (s->pstate_il) {
14202         /*
14203          * Illegal execution state. This has priority over BTI
14204          * exceptions, but comes after instruction abort exceptions.
14205          */
14206         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14207         return;
14208     }
14209 
14210     if (dc_isar_feature(aa64_bti, s)) {
14211         if (s->base.num_insns == 1) {
14212             /*
14213              * At the first insn of the TB, compute s->guarded_page.
14214              * We delayed computing this until successfully reading
14215              * the first insn of the TB, above.  This (mostly) ensures
14216              * that the softmmu tlb entry has been populated, and the
14217              * page table GP bit is available.
14218              *
14219              * Note that we need to compute this even if btype == 0,
14220              * because this value is used for BR instructions later
14221              * where ENV is not available.
14222              */
14223             s->guarded_page = is_guarded_page(env, s);
14224 
14225             /* First insn can have btype set to non-zero.  */
14226             tcg_debug_assert(s->btype >= 0);
14227 
14228             /*
14229              * Note that the Branch Target Exception has fairly high
14230              * priority -- below debugging exceptions but above most
14231              * everything else.  This allows us to handle this now
14232              * instead of waiting until the insn is otherwise decoded.
14233              */
14234             if (s->btype != 0
14235                 && s->guarded_page
14236                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14237                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14238                 return;
14239             }
14240         } else {
14241             /* Not the first insn: btype must be 0.  */
14242             tcg_debug_assert(s->btype == 0);
14243         }
14244     }
14245 
14246     s->is_nonstreaming = false;
14247     if (s->sme_trap_nonstreaming) {
14248         disas_sme_fa64(s, insn);
14249     }
14250 
14251     if (!disas_a64(s, insn) &&
14252         !disas_sme(s, insn) &&
14253         !disas_sve(s, insn)) {
14254         disas_a64_legacy(s, insn);
14255     }
14256 
14257     /*
14258      * After execution of most insns, btype is reset to 0.
14259      * Note that we set btype == -1 when the insn sets btype.
14260      */
14261     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14262         reset_btype(s);
14263     }
14264 }
14265 
14266 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14267 {
14268     DisasContext *dc = container_of(dcbase, DisasContext, base);
14269 
14270     if (unlikely(dc->ss_active)) {
14271         /* Note that this means single stepping WFI doesn't halt the CPU.
14272          * For conditional branch insns this is harmless unreachable code as
14273          * gen_goto_tb() has already handled emitting the debug exception
14274          * (and thus a tb-jump is not possible when singlestepping).
14275          */
14276         switch (dc->base.is_jmp) {
14277         default:
14278             gen_a64_update_pc(dc, 4);
14279             /* fall through */
14280         case DISAS_EXIT:
14281         case DISAS_JUMP:
14282             gen_step_complete_exception(dc);
14283             break;
14284         case DISAS_NORETURN:
14285             break;
14286         }
14287     } else {
14288         switch (dc->base.is_jmp) {
14289         case DISAS_NEXT:
14290         case DISAS_TOO_MANY:
14291             gen_goto_tb(dc, 1, 4);
14292             break;
14293         default:
14294         case DISAS_UPDATE_EXIT:
14295             gen_a64_update_pc(dc, 4);
14296             /* fall through */
14297         case DISAS_EXIT:
14298             tcg_gen_exit_tb(NULL, 0);
14299             break;
14300         case DISAS_UPDATE_NOCHAIN:
14301             gen_a64_update_pc(dc, 4);
14302             /* fall through */
14303         case DISAS_JUMP:
14304             tcg_gen_lookup_and_goto_ptr();
14305             break;
14306         case DISAS_NORETURN:
14307         case DISAS_SWI:
14308             break;
14309         case DISAS_WFE:
14310             gen_a64_update_pc(dc, 4);
14311             gen_helper_wfe(cpu_env);
14312             break;
14313         case DISAS_YIELD:
14314             gen_a64_update_pc(dc, 4);
14315             gen_helper_yield(cpu_env);
14316             break;
14317         case DISAS_WFI:
14318             /*
14319              * This is a special case because we don't want to just halt
14320              * the CPU if trying to debug across a WFI.
14321              */
14322             gen_a64_update_pc(dc, 4);
14323             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14324             /*
14325              * The helper doesn't necessarily throw an exception, but we
14326              * must go back to the main loop to check for interrupts anyway.
14327              */
14328             tcg_gen_exit_tb(NULL, 0);
14329             break;
14330         }
14331     }
14332 }
14333 
14334 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14335                                  CPUState *cpu, FILE *logfile)
14336 {
14337     DisasContext *dc = container_of(dcbase, DisasContext, base);
14338 
14339     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14340     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14341 }
14342 
14343 const TranslatorOps aarch64_translator_ops = {
14344     .init_disas_context = aarch64_tr_init_disas_context,
14345     .tb_start           = aarch64_tr_tb_start,
14346     .insn_start         = aarch64_tr_insn_start,
14347     .translate_insn     = aarch64_tr_translate_insn,
14348     .tb_stop            = aarch64_tr_tb_stop,
14349     .disas_log          = aarch64_tr_disas_log,
14350 };
14351