1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->trap_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->trap_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2040 { 2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2042 return false; 2043 } 2044 if (sme_access_check(s)) { 2045 int old = s->pstate_sm | (s->pstate_za << 1); 2046 int new = a->imm * 3; 2047 2048 if ((old ^ new) & a->mask) { 2049 /* At least one bit changes. */ 2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2051 tcg_constant_i32(a->mask)); 2052 s->base.is_jmp = DISAS_TOO_MANY; 2053 } 2054 } 2055 return true; 2056 } 2057 2058 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2059 { 2060 TCGv_i32 tmp = tcg_temp_new_i32(); 2061 TCGv_i32 nzcv = tcg_temp_new_i32(); 2062 2063 /* build bit 31, N */ 2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2065 /* build bit 30, Z */ 2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2068 /* build bit 29, C */ 2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2070 /* build bit 28, V */ 2071 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2073 /* generate result */ 2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2075 } 2076 2077 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* take NZCV from R[t] */ 2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2083 2084 /* bit 31, N */ 2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2086 /* bit 30, Z */ 2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2089 /* bit 29, C */ 2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2092 /* bit 28, V */ 2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2095 } 2096 2097 static void gen_sysreg_undef(DisasContext *s, bool isread, 2098 uint8_t op0, uint8_t op1, uint8_t op2, 2099 uint8_t crn, uint8_t crm, uint8_t rt) 2100 { 2101 /* 2102 * Generate code to emit an UNDEF with correct syndrome 2103 * information for a failed system register access. 2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2105 * but if FEAT_IDST is implemented then read accesses to registers 2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2107 * syndrome. 2108 */ 2109 uint32_t syndrome; 2110 2111 if (isread && dc_isar_feature(aa64_ids, s) && 2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2114 } else { 2115 syndrome = syn_uncategorized(); 2116 } 2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2118 } 2119 2120 /* MRS - move from system register 2121 * MSR (register) - move to system register 2122 * SYS 2123 * SYSL 2124 * These are all essentially the same insn in 'read' and 'write' 2125 * versions, with varying op0 fields. 2126 */ 2127 static void handle_sys(DisasContext *s, bool isread, 2128 unsigned int op0, unsigned int op1, unsigned int op2, 2129 unsigned int crn, unsigned int crm, unsigned int rt) 2130 { 2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2132 crn, crm, op0, op1, op2); 2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2134 bool need_exit_tb = false; 2135 bool nv_trap_to_el2 = false; 2136 bool nv_redirect_reg = false; 2137 bool skip_fp_access_checks = false; 2138 bool nv2_mem_redirect = false; 2139 TCGv_ptr tcg_ri = NULL; 2140 TCGv_i64 tcg_rt; 2141 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2142 2143 if (crn == 11 || crn == 15) { 2144 /* 2145 * Check for TIDCP trap, which must take precedence over 2146 * the UNDEF for "no such register" etc. 2147 */ 2148 switch (s->current_el) { 2149 case 0: 2150 if (dc_isar_feature(aa64_tidcp1, s)) { 2151 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2152 } 2153 break; 2154 case 1: 2155 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2156 break; 2157 } 2158 } 2159 2160 if (!ri) { 2161 /* Unknown register; this might be a guest error or a QEMU 2162 * unimplemented feature. 2163 */ 2164 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2165 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2166 isread ? "read" : "write", op0, op1, crn, crm, op2); 2167 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2168 return; 2169 } 2170 2171 if (s->nv2 && ri->nv2_redirect_offset) { 2172 /* 2173 * Some registers always redirect to memory; some only do so if 2174 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2175 * pairs which share an offset; see the table in R_CSRPQ). 2176 */ 2177 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2178 nv2_mem_redirect = s->nv1; 2179 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2180 nv2_mem_redirect = !s->nv1; 2181 } else { 2182 nv2_mem_redirect = true; 2183 } 2184 } 2185 2186 /* Check access permissions */ 2187 if (!cp_access_ok(s->current_el, ri, isread)) { 2188 /* 2189 * FEAT_NV/NV2 handling does not do the usual FP access checks 2190 * for registers only accessible at EL2 (though it *does* do them 2191 * for registers accessible at EL1). 2192 */ 2193 skip_fp_access_checks = true; 2194 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2195 /* 2196 * This is one of the few EL2 registers which should redirect 2197 * to the equivalent EL1 register. We do that after running 2198 * the EL2 register's accessfn. 2199 */ 2200 nv_redirect_reg = true; 2201 assert(!nv2_mem_redirect); 2202 } else if (nv2_mem_redirect) { 2203 /* 2204 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2205 * UNDEF to EL1. 2206 */ 2207 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2208 /* 2209 * This register / instruction exists and is an EL2 register, so 2210 * we must trap to EL2 if accessed in nested virtualization EL1 2211 * instead of UNDEFing. We'll do that after the usual access checks. 2212 * (This makes a difference only for a couple of registers like 2213 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2214 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2215 * an accessfn which does nothing when called from EL1, because 2216 * the trap-to-EL3 controls which would apply to that register 2217 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2218 */ 2219 nv_trap_to_el2 = true; 2220 } else { 2221 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2222 return; 2223 } 2224 } 2225 2226 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2227 /* Emit code to perform further access permissions checks at 2228 * runtime; this may result in an exception. 2229 */ 2230 gen_a64_update_pc(s, 0); 2231 tcg_ri = tcg_temp_new_ptr(); 2232 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2233 tcg_constant_i32(key), 2234 tcg_constant_i32(syndrome), 2235 tcg_constant_i32(isread)); 2236 } else if (ri->type & ARM_CP_RAISES_EXC) { 2237 /* 2238 * The readfn or writefn might raise an exception; 2239 * synchronize the CPU state in case it does. 2240 */ 2241 gen_a64_update_pc(s, 0); 2242 } 2243 2244 if (!skip_fp_access_checks) { 2245 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2246 return; 2247 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2248 return; 2249 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2250 return; 2251 } 2252 } 2253 2254 if (nv_trap_to_el2) { 2255 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2256 return; 2257 } 2258 2259 if (nv_redirect_reg) { 2260 /* 2261 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2262 * Conveniently in all cases the encoding of the EL1 register is 2263 * identical to the EL2 register except that opc1 is 0. 2264 * Get the reginfo for the EL1 register to use for the actual access. 2265 * We don't use the EL1 register's access function, and 2266 * fine-grained-traps on EL1 also do not apply here. 2267 */ 2268 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2269 crn, crm, op0, 0, op2); 2270 ri = get_arm_cp_reginfo(s->cp_regs, key); 2271 assert(ri); 2272 assert(cp_access_ok(s->current_el, ri, isread)); 2273 /* 2274 * We might not have done an update_pc earlier, so check we don't 2275 * need it. We could support this in future if necessary. 2276 */ 2277 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2278 } 2279 2280 if (nv2_mem_redirect) { 2281 /* 2282 * This system register is being redirected into an EL2 memory access. 2283 * This means it is not an IO operation, doesn't change hflags, 2284 * and need not end the TB, because it has no side effects. 2285 * 2286 * The access is 64-bit single copy atomic, guaranteed aligned because 2287 * of the definition of VCNR_EL2. Its endianness depends on 2288 * SCTLR_EL2.EE, not on the data endianness of EL1. 2289 * It is done under either the EL2 translation regime or the EL2&0 2290 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2291 * PSTATE.PAN is 0. 2292 */ 2293 TCGv_i64 ptr = tcg_temp_new_i64(); 2294 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2295 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2296 int memidx = arm_to_core_mmu_idx(armmemidx); 2297 2298 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2299 2300 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2301 tcg_gen_addi_i64(ptr, ptr, 2302 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2303 tcg_rt = cpu_reg(s, rt); 2304 if (isread) { 2305 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2306 } else { 2307 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2308 } 2309 return; 2310 } 2311 2312 /* Handle special cases first */ 2313 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2314 case 0: 2315 break; 2316 case ARM_CP_NOP: 2317 return; 2318 case ARM_CP_NZCV: 2319 tcg_rt = cpu_reg(s, rt); 2320 if (isread) { 2321 gen_get_nzcv(tcg_rt); 2322 } else { 2323 gen_set_nzcv(tcg_rt); 2324 } 2325 return; 2326 case ARM_CP_CURRENTEL: 2327 { 2328 /* 2329 * Reads as current EL value from pstate, which is 2330 * guaranteed to be constant by the tb flags. 2331 * For nested virt we should report EL2. 2332 */ 2333 int el = s->nv ? 2 : s->current_el; 2334 tcg_rt = cpu_reg(s, rt); 2335 tcg_gen_movi_i64(tcg_rt, el << 2); 2336 return; 2337 } 2338 case ARM_CP_DC_ZVA: 2339 /* Writes clear the aligned block of memory which rt points into. */ 2340 if (s->mte_active[0]) { 2341 int desc = 0; 2342 2343 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2344 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2345 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2346 2347 tcg_rt = tcg_temp_new_i64(); 2348 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2349 tcg_constant_i32(desc), cpu_reg(s, rt)); 2350 } else { 2351 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2352 } 2353 gen_helper_dc_zva(tcg_env, tcg_rt); 2354 return; 2355 case ARM_CP_DC_GVA: 2356 { 2357 TCGv_i64 clean_addr, tag; 2358 2359 /* 2360 * DC_GVA, like DC_ZVA, requires that we supply the original 2361 * pointer for an invalid page. Probe that address first. 2362 */ 2363 tcg_rt = cpu_reg(s, rt); 2364 clean_addr = clean_data_tbi(s, tcg_rt); 2365 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2366 2367 if (s->ata[0]) { 2368 /* Extract the tag from the register to match STZGM. */ 2369 tag = tcg_temp_new_i64(); 2370 tcg_gen_shri_i64(tag, tcg_rt, 56); 2371 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2372 } 2373 } 2374 return; 2375 case ARM_CP_DC_GZVA: 2376 { 2377 TCGv_i64 clean_addr, tag; 2378 2379 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2380 tcg_rt = cpu_reg(s, rt); 2381 clean_addr = clean_data_tbi(s, tcg_rt); 2382 gen_helper_dc_zva(tcg_env, clean_addr); 2383 2384 if (s->ata[0]) { 2385 /* Extract the tag from the register to match STZGM. */ 2386 tag = tcg_temp_new_i64(); 2387 tcg_gen_shri_i64(tag, tcg_rt, 56); 2388 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2389 } 2390 } 2391 return; 2392 default: 2393 g_assert_not_reached(); 2394 } 2395 2396 if (ri->type & ARM_CP_IO) { 2397 /* I/O operations must end the TB here (whether read or write) */ 2398 need_exit_tb = translator_io_start(&s->base); 2399 } 2400 2401 tcg_rt = cpu_reg(s, rt); 2402 2403 if (isread) { 2404 if (ri->type & ARM_CP_CONST) { 2405 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2406 } else if (ri->readfn) { 2407 if (!tcg_ri) { 2408 tcg_ri = gen_lookup_cp_reg(key); 2409 } 2410 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2411 } else { 2412 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2413 } 2414 } else { 2415 if (ri->type & ARM_CP_CONST) { 2416 /* If not forbidden by access permissions, treat as WI */ 2417 return; 2418 } else if (ri->writefn) { 2419 if (!tcg_ri) { 2420 tcg_ri = gen_lookup_cp_reg(key); 2421 } 2422 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2423 } else { 2424 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2425 } 2426 } 2427 2428 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2429 /* 2430 * A write to any coprocessor register that ends a TB 2431 * must rebuild the hflags for the next TB. 2432 */ 2433 gen_rebuild_hflags(s); 2434 /* 2435 * We default to ending the TB on a coprocessor register write, 2436 * but allow this to be suppressed by the register definition 2437 * (usually only necessary to work around guest bugs). 2438 */ 2439 need_exit_tb = true; 2440 } 2441 if (need_exit_tb) { 2442 s->base.is_jmp = DISAS_UPDATE_EXIT; 2443 } 2444 } 2445 2446 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2447 { 2448 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2449 return true; 2450 } 2451 2452 static bool trans_SVC(DisasContext *s, arg_i *a) 2453 { 2454 /* 2455 * For SVC, HVC and SMC we advance the single-step state 2456 * machine before taking the exception. This is architecturally 2457 * mandated, to ensure that single-stepping a system call 2458 * instruction works properly. 2459 */ 2460 uint32_t syndrome = syn_aa64_svc(a->imm); 2461 if (s->fgt_svc) { 2462 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2463 return true; 2464 } 2465 gen_ss_advance(s); 2466 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2467 return true; 2468 } 2469 2470 static bool trans_HVC(DisasContext *s, arg_i *a) 2471 { 2472 int target_el = s->current_el == 3 ? 3 : 2; 2473 2474 if (s->current_el == 0) { 2475 unallocated_encoding(s); 2476 return true; 2477 } 2478 /* 2479 * The pre HVC helper handles cases when HVC gets trapped 2480 * as an undefined insn by runtime configuration. 2481 */ 2482 gen_a64_update_pc(s, 0); 2483 gen_helper_pre_hvc(tcg_env); 2484 /* Architecture requires ss advance before we do the actual work */ 2485 gen_ss_advance(s); 2486 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2487 return true; 2488 } 2489 2490 static bool trans_SMC(DisasContext *s, arg_i *a) 2491 { 2492 if (s->current_el == 0) { 2493 unallocated_encoding(s); 2494 return true; 2495 } 2496 gen_a64_update_pc(s, 0); 2497 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2498 /* Architecture requires ss advance before we do the actual work */ 2499 gen_ss_advance(s); 2500 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2501 return true; 2502 } 2503 2504 static bool trans_BRK(DisasContext *s, arg_i *a) 2505 { 2506 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2507 return true; 2508 } 2509 2510 static bool trans_HLT(DisasContext *s, arg_i *a) 2511 { 2512 /* 2513 * HLT. This has two purposes. 2514 * Architecturally, it is an external halting debug instruction. 2515 * Since QEMU doesn't implement external debug, we treat this as 2516 * it is required for halting debug disabled: it will UNDEF. 2517 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2518 */ 2519 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2520 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2521 } else { 2522 unallocated_encoding(s); 2523 } 2524 return true; 2525 } 2526 2527 /* 2528 * Load/Store exclusive instructions are implemented by remembering 2529 * the value/address loaded, and seeing if these are the same 2530 * when the store is performed. This is not actually the architecturally 2531 * mandated semantics, but it works for typical guest code sequences 2532 * and avoids having to monitor regular stores. 2533 * 2534 * The store exclusive uses the atomic cmpxchg primitives to avoid 2535 * races in multi-threaded linux-user and when MTTCG softmmu is 2536 * enabled. 2537 */ 2538 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2539 int size, bool is_pair) 2540 { 2541 int idx = get_mem_index(s); 2542 TCGv_i64 dirty_addr, clean_addr; 2543 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2544 2545 s->is_ldex = true; 2546 dirty_addr = cpu_reg_sp(s, rn); 2547 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2548 2549 g_assert(size <= 3); 2550 if (is_pair) { 2551 g_assert(size >= 2); 2552 if (size == 2) { 2553 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2554 if (s->be_data == MO_LE) { 2555 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2556 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2557 } else { 2558 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2559 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2560 } 2561 } else { 2562 TCGv_i128 t16 = tcg_temp_new_i128(); 2563 2564 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2565 2566 if (s->be_data == MO_LE) { 2567 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2568 cpu_exclusive_high, t16); 2569 } else { 2570 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2571 cpu_exclusive_val, t16); 2572 } 2573 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2574 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2575 } 2576 } else { 2577 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2578 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2579 } 2580 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2581 } 2582 2583 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2584 int rn, int size, int is_pair) 2585 { 2586 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2587 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2588 * [addr] = {Rt}; 2589 * if (is_pair) { 2590 * [addr + datasize] = {Rt2}; 2591 * } 2592 * {Rd} = 0; 2593 * } else { 2594 * {Rd} = 1; 2595 * } 2596 * env->exclusive_addr = -1; 2597 */ 2598 TCGLabel *fail_label = gen_new_label(); 2599 TCGLabel *done_label = gen_new_label(); 2600 TCGv_i64 tmp, clean_addr; 2601 MemOp memop; 2602 2603 /* 2604 * FIXME: We are out of spec here. We have recorded only the address 2605 * from load_exclusive, not the entire range, and we assume that the 2606 * size of the access on both sides match. The architecture allows the 2607 * store to be smaller than the load, so long as the stored bytes are 2608 * within the range recorded by the load. 2609 */ 2610 2611 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2612 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2613 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2614 2615 /* 2616 * The write, and any associated faults, only happen if the virtual 2617 * and physical addresses pass the exclusive monitor check. These 2618 * faults are exceedingly unlikely, because normally the guest uses 2619 * the exact same address register for the load_exclusive, and we 2620 * would have recognized these faults there. 2621 * 2622 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2623 * unaligned 4-byte write within the range of an aligned 8-byte load. 2624 * With LSE2, the store would need to cross a 16-byte boundary when the 2625 * load did not, which would mean the store is outside the range 2626 * recorded for the monitor, which would have failed a corrected monitor 2627 * check above. For now, we assume no size change and retain the 2628 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2629 * 2630 * It is possible to trigger an MTE fault, by performing the load with 2631 * a virtual address with a valid tag and performing the store with the 2632 * same virtual address and a different invalid tag. 2633 */ 2634 memop = size + is_pair; 2635 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2636 memop |= MO_ALIGN; 2637 } 2638 memop = finalize_memop(s, memop); 2639 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2640 2641 tmp = tcg_temp_new_i64(); 2642 if (is_pair) { 2643 if (size == 2) { 2644 if (s->be_data == MO_LE) { 2645 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2646 } else { 2647 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2648 } 2649 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2650 cpu_exclusive_val, tmp, 2651 get_mem_index(s), memop); 2652 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2653 } else { 2654 TCGv_i128 t16 = tcg_temp_new_i128(); 2655 TCGv_i128 c16 = tcg_temp_new_i128(); 2656 TCGv_i64 a, b; 2657 2658 if (s->be_data == MO_LE) { 2659 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2660 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2661 cpu_exclusive_high); 2662 } else { 2663 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2664 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2665 cpu_exclusive_val); 2666 } 2667 2668 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2669 get_mem_index(s), memop); 2670 2671 a = tcg_temp_new_i64(); 2672 b = tcg_temp_new_i64(); 2673 if (s->be_data == MO_LE) { 2674 tcg_gen_extr_i128_i64(a, b, t16); 2675 } else { 2676 tcg_gen_extr_i128_i64(b, a, t16); 2677 } 2678 2679 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2680 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2681 tcg_gen_or_i64(tmp, a, b); 2682 2683 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2684 } 2685 } else { 2686 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2687 cpu_reg(s, rt), get_mem_index(s), memop); 2688 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2689 } 2690 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2691 tcg_gen_br(done_label); 2692 2693 gen_set_label(fail_label); 2694 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2695 gen_set_label(done_label); 2696 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2697 } 2698 2699 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2700 int rn, int size) 2701 { 2702 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2703 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2704 int memidx = get_mem_index(s); 2705 TCGv_i64 clean_addr; 2706 MemOp memop; 2707 2708 if (rn == 31) { 2709 gen_check_sp_alignment(s); 2710 } 2711 memop = check_atomic_align(s, rn, size); 2712 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2713 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2714 memidx, memop); 2715 } 2716 2717 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2718 int rn, int size) 2719 { 2720 TCGv_i64 s1 = cpu_reg(s, rs); 2721 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2722 TCGv_i64 t1 = cpu_reg(s, rt); 2723 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2724 TCGv_i64 clean_addr; 2725 int memidx = get_mem_index(s); 2726 MemOp memop; 2727 2728 if (rn == 31) { 2729 gen_check_sp_alignment(s); 2730 } 2731 2732 /* This is a single atomic access, despite the "pair". */ 2733 memop = check_atomic_align(s, rn, size + 1); 2734 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2735 2736 if (size == 2) { 2737 TCGv_i64 cmp = tcg_temp_new_i64(); 2738 TCGv_i64 val = tcg_temp_new_i64(); 2739 2740 if (s->be_data == MO_LE) { 2741 tcg_gen_concat32_i64(val, t1, t2); 2742 tcg_gen_concat32_i64(cmp, s1, s2); 2743 } else { 2744 tcg_gen_concat32_i64(val, t2, t1); 2745 tcg_gen_concat32_i64(cmp, s2, s1); 2746 } 2747 2748 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2749 2750 if (s->be_data == MO_LE) { 2751 tcg_gen_extr32_i64(s1, s2, cmp); 2752 } else { 2753 tcg_gen_extr32_i64(s2, s1, cmp); 2754 } 2755 } else { 2756 TCGv_i128 cmp = tcg_temp_new_i128(); 2757 TCGv_i128 val = tcg_temp_new_i128(); 2758 2759 if (s->be_data == MO_LE) { 2760 tcg_gen_concat_i64_i128(val, t1, t2); 2761 tcg_gen_concat_i64_i128(cmp, s1, s2); 2762 } else { 2763 tcg_gen_concat_i64_i128(val, t2, t1); 2764 tcg_gen_concat_i64_i128(cmp, s2, s1); 2765 } 2766 2767 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2768 2769 if (s->be_data == MO_LE) { 2770 tcg_gen_extr_i128_i64(s1, s2, cmp); 2771 } else { 2772 tcg_gen_extr_i128_i64(s2, s1, cmp); 2773 } 2774 } 2775 } 2776 2777 /* 2778 * Compute the ISS.SF bit for syndrome information if an exception 2779 * is taken on a load or store. This indicates whether the instruction 2780 * is accessing a 32-bit or 64-bit register. This logic is derived 2781 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2782 */ 2783 static bool ldst_iss_sf(int size, bool sign, bool ext) 2784 { 2785 2786 if (sign) { 2787 /* 2788 * Signed loads are 64 bit results if we are not going to 2789 * do a zero-extend from 32 to 64 after the load. 2790 * (For a store, sign and ext are always false.) 2791 */ 2792 return !ext; 2793 } else { 2794 /* Unsigned loads/stores work at the specified size */ 2795 return size == MO_64; 2796 } 2797 } 2798 2799 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2800 { 2801 if (a->rn == 31) { 2802 gen_check_sp_alignment(s); 2803 } 2804 if (a->lasr) { 2805 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2806 } 2807 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2808 return true; 2809 } 2810 2811 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2812 { 2813 if (a->rn == 31) { 2814 gen_check_sp_alignment(s); 2815 } 2816 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2817 if (a->lasr) { 2818 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2819 } 2820 return true; 2821 } 2822 2823 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2824 { 2825 TCGv_i64 clean_addr; 2826 MemOp memop; 2827 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2828 2829 /* 2830 * StoreLORelease is the same as Store-Release for QEMU, but 2831 * needs the feature-test. 2832 */ 2833 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2834 return false; 2835 } 2836 /* Generate ISS for non-exclusive accesses including LASR. */ 2837 if (a->rn == 31) { 2838 gen_check_sp_alignment(s); 2839 } 2840 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2841 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2842 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2843 true, a->rn != 31, memop); 2844 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2845 iss_sf, a->lasr); 2846 return true; 2847 } 2848 2849 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2850 { 2851 TCGv_i64 clean_addr; 2852 MemOp memop; 2853 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2854 2855 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2856 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2857 return false; 2858 } 2859 /* Generate ISS for non-exclusive accesses including LASR. */ 2860 if (a->rn == 31) { 2861 gen_check_sp_alignment(s); 2862 } 2863 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2864 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2865 false, a->rn != 31, memop); 2866 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2867 a->rt, iss_sf, a->lasr); 2868 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2869 return true; 2870 } 2871 2872 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2873 { 2874 if (a->rn == 31) { 2875 gen_check_sp_alignment(s); 2876 } 2877 if (a->lasr) { 2878 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2879 } 2880 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2881 return true; 2882 } 2883 2884 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2885 { 2886 if (a->rn == 31) { 2887 gen_check_sp_alignment(s); 2888 } 2889 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2890 if (a->lasr) { 2891 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2892 } 2893 return true; 2894 } 2895 2896 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2897 { 2898 if (!dc_isar_feature(aa64_atomics, s)) { 2899 return false; 2900 } 2901 if (((a->rt | a->rs) & 1) != 0) { 2902 return false; 2903 } 2904 2905 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2906 return true; 2907 } 2908 2909 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2910 { 2911 if (!dc_isar_feature(aa64_atomics, s)) { 2912 return false; 2913 } 2914 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2915 return true; 2916 } 2917 2918 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2919 { 2920 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2921 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2922 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2923 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2924 2925 gen_pc_plus_diff(s, clean_addr, a->imm); 2926 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2927 false, true, a->rt, iss_sf, false); 2928 return true; 2929 } 2930 2931 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2932 { 2933 /* Load register (literal), vector version */ 2934 TCGv_i64 clean_addr; 2935 MemOp memop; 2936 2937 if (!fp_access_check(s)) { 2938 return true; 2939 } 2940 memop = finalize_memop_asimd(s, a->sz); 2941 clean_addr = tcg_temp_new_i64(); 2942 gen_pc_plus_diff(s, clean_addr, a->imm); 2943 do_fp_ld(s, a->rt, clean_addr, memop); 2944 return true; 2945 } 2946 2947 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2948 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2949 uint64_t offset, bool is_store, MemOp mop) 2950 { 2951 if (a->rn == 31) { 2952 gen_check_sp_alignment(s); 2953 } 2954 2955 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2956 if (!a->p) { 2957 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2958 } 2959 2960 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2961 (a->w || a->rn != 31), 2 << a->sz, mop); 2962 } 2963 2964 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2965 TCGv_i64 dirty_addr, uint64_t offset) 2966 { 2967 if (a->w) { 2968 if (a->p) { 2969 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2970 } 2971 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2972 } 2973 } 2974 2975 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2976 { 2977 uint64_t offset = a->imm << a->sz; 2978 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2979 MemOp mop = finalize_memop(s, a->sz); 2980 2981 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2982 tcg_rt = cpu_reg(s, a->rt); 2983 tcg_rt2 = cpu_reg(s, a->rt2); 2984 /* 2985 * We built mop above for the single logical access -- rebuild it 2986 * now for the paired operation. 2987 * 2988 * With LSE2, non-sign-extending pairs are treated atomically if 2989 * aligned, and if unaligned one of the pair will be completely 2990 * within a 16-byte block and that element will be atomic. 2991 * Otherwise each element is separately atomic. 2992 * In all cases, issue one operation with the correct atomicity. 2993 */ 2994 mop = a->sz + 1; 2995 if (s->align_mem) { 2996 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2997 } 2998 mop = finalize_memop_pair(s, mop); 2999 if (a->sz == 2) { 3000 TCGv_i64 tmp = tcg_temp_new_i64(); 3001 3002 if (s->be_data == MO_LE) { 3003 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3004 } else { 3005 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3006 } 3007 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3008 } else { 3009 TCGv_i128 tmp = tcg_temp_new_i128(); 3010 3011 if (s->be_data == MO_LE) { 3012 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3013 } else { 3014 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3015 } 3016 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3017 } 3018 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3019 return true; 3020 } 3021 3022 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3023 { 3024 uint64_t offset = a->imm << a->sz; 3025 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3026 MemOp mop = finalize_memop(s, a->sz); 3027 3028 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3029 tcg_rt = cpu_reg(s, a->rt); 3030 tcg_rt2 = cpu_reg(s, a->rt2); 3031 3032 /* 3033 * We built mop above for the single logical access -- rebuild it 3034 * now for the paired operation. 3035 * 3036 * With LSE2, non-sign-extending pairs are treated atomically if 3037 * aligned, and if unaligned one of the pair will be completely 3038 * within a 16-byte block and that element will be atomic. 3039 * Otherwise each element is separately atomic. 3040 * In all cases, issue one operation with the correct atomicity. 3041 * 3042 * This treats sign-extending loads like zero-extending loads, 3043 * since that reuses the most code below. 3044 */ 3045 mop = a->sz + 1; 3046 if (s->align_mem) { 3047 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3048 } 3049 mop = finalize_memop_pair(s, mop); 3050 if (a->sz == 2) { 3051 int o2 = s->be_data == MO_LE ? 32 : 0; 3052 int o1 = o2 ^ 32; 3053 3054 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3055 if (a->sign) { 3056 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3057 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3058 } else { 3059 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3060 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3061 } 3062 } else { 3063 TCGv_i128 tmp = tcg_temp_new_i128(); 3064 3065 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3066 if (s->be_data == MO_LE) { 3067 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3068 } else { 3069 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3070 } 3071 } 3072 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3073 return true; 3074 } 3075 3076 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3077 { 3078 uint64_t offset = a->imm << a->sz; 3079 TCGv_i64 clean_addr, dirty_addr; 3080 MemOp mop; 3081 3082 if (!fp_access_check(s)) { 3083 return true; 3084 } 3085 3086 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3087 mop = finalize_memop_asimd(s, a->sz); 3088 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3089 do_fp_st(s, a->rt, clean_addr, mop); 3090 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3091 do_fp_st(s, a->rt2, clean_addr, mop); 3092 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3093 return true; 3094 } 3095 3096 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3097 { 3098 uint64_t offset = a->imm << a->sz; 3099 TCGv_i64 clean_addr, dirty_addr; 3100 MemOp mop; 3101 3102 if (!fp_access_check(s)) { 3103 return true; 3104 } 3105 3106 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3107 mop = finalize_memop_asimd(s, a->sz); 3108 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3109 do_fp_ld(s, a->rt, clean_addr, mop); 3110 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3111 do_fp_ld(s, a->rt2, clean_addr, mop); 3112 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3113 return true; 3114 } 3115 3116 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3117 { 3118 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3119 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3120 MemOp mop; 3121 TCGv_i128 tmp; 3122 3123 /* STGP only comes in one size. */ 3124 tcg_debug_assert(a->sz == MO_64); 3125 3126 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3127 return false; 3128 } 3129 3130 if (a->rn == 31) { 3131 gen_check_sp_alignment(s); 3132 } 3133 3134 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3135 if (!a->p) { 3136 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3137 } 3138 3139 clean_addr = clean_data_tbi(s, dirty_addr); 3140 tcg_rt = cpu_reg(s, a->rt); 3141 tcg_rt2 = cpu_reg(s, a->rt2); 3142 3143 /* 3144 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3145 * and one tag operation. We implement it as one single aligned 16-byte 3146 * memory operation for convenience. Note that the alignment ensures 3147 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3148 */ 3149 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3150 3151 tmp = tcg_temp_new_i128(); 3152 if (s->be_data == MO_LE) { 3153 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3154 } else { 3155 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3156 } 3157 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3158 3159 /* Perform the tag store, if tag access enabled. */ 3160 if (s->ata[0]) { 3161 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3162 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3163 } else { 3164 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3165 } 3166 } 3167 3168 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3169 return true; 3170 } 3171 3172 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3173 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3174 uint64_t offset, bool is_store, MemOp mop) 3175 { 3176 int memidx; 3177 3178 if (a->rn == 31) { 3179 gen_check_sp_alignment(s); 3180 } 3181 3182 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3183 if (!a->p) { 3184 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3185 } 3186 memidx = get_a64_user_mem_index(s, a->unpriv); 3187 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3188 a->w || a->rn != 31, 3189 mop, a->unpriv, memidx); 3190 } 3191 3192 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3193 TCGv_i64 dirty_addr, uint64_t offset) 3194 { 3195 if (a->w) { 3196 if (a->p) { 3197 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3198 } 3199 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3200 } 3201 } 3202 3203 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3204 { 3205 bool iss_sf, iss_valid = !a->w; 3206 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3207 int memidx = get_a64_user_mem_index(s, a->unpriv); 3208 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3209 3210 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3211 3212 tcg_rt = cpu_reg(s, a->rt); 3213 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3214 3215 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3216 iss_valid, a->rt, iss_sf, false); 3217 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3218 return true; 3219 } 3220 3221 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3222 { 3223 bool iss_sf, iss_valid = !a->w; 3224 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3225 int memidx = get_a64_user_mem_index(s, a->unpriv); 3226 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3227 3228 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3229 3230 tcg_rt = cpu_reg(s, a->rt); 3231 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3232 3233 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3234 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3235 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3236 return true; 3237 } 3238 3239 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3240 { 3241 TCGv_i64 clean_addr, dirty_addr; 3242 MemOp mop; 3243 3244 if (!fp_access_check(s)) { 3245 return true; 3246 } 3247 mop = finalize_memop_asimd(s, a->sz); 3248 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3249 do_fp_st(s, a->rt, clean_addr, mop); 3250 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3251 return true; 3252 } 3253 3254 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3255 { 3256 TCGv_i64 clean_addr, dirty_addr; 3257 MemOp mop; 3258 3259 if (!fp_access_check(s)) { 3260 return true; 3261 } 3262 mop = finalize_memop_asimd(s, a->sz); 3263 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3264 do_fp_ld(s, a->rt, clean_addr, mop); 3265 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3266 return true; 3267 } 3268 3269 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3270 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3271 bool is_store, MemOp memop) 3272 { 3273 TCGv_i64 tcg_rm; 3274 3275 if (a->rn == 31) { 3276 gen_check_sp_alignment(s); 3277 } 3278 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3279 3280 tcg_rm = read_cpu_reg(s, a->rm, 1); 3281 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3282 3283 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3284 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3285 } 3286 3287 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3288 { 3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3290 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3291 MemOp memop; 3292 3293 if (extract32(a->opt, 1, 1) == 0) { 3294 return false; 3295 } 3296 3297 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3298 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3299 tcg_rt = cpu_reg(s, a->rt); 3300 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3301 a->ext, true, a->rt, iss_sf, false); 3302 return true; 3303 } 3304 3305 static bool trans_STR(DisasContext *s, arg_ldst *a) 3306 { 3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3308 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3309 MemOp memop; 3310 3311 if (extract32(a->opt, 1, 1) == 0) { 3312 return false; 3313 } 3314 3315 memop = finalize_memop(s, a->sz); 3316 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3317 tcg_rt = cpu_reg(s, a->rt); 3318 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3319 return true; 3320 } 3321 3322 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3323 { 3324 TCGv_i64 clean_addr, dirty_addr; 3325 MemOp memop; 3326 3327 if (extract32(a->opt, 1, 1) == 0) { 3328 return false; 3329 } 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 3335 memop = finalize_memop_asimd(s, a->sz); 3336 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3337 do_fp_ld(s, a->rt, clean_addr, memop); 3338 return true; 3339 } 3340 3341 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3342 { 3343 TCGv_i64 clean_addr, dirty_addr; 3344 MemOp memop; 3345 3346 if (extract32(a->opt, 1, 1) == 0) { 3347 return false; 3348 } 3349 3350 if (!fp_access_check(s)) { 3351 return true; 3352 } 3353 3354 memop = finalize_memop_asimd(s, a->sz); 3355 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3356 do_fp_st(s, a->rt, clean_addr, memop); 3357 return true; 3358 } 3359 3360 3361 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3362 int sign, bool invert) 3363 { 3364 MemOp mop = a->sz | sign; 3365 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3366 3367 if (a->rn == 31) { 3368 gen_check_sp_alignment(s); 3369 } 3370 mop = check_atomic_align(s, a->rn, mop); 3371 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3372 a->rn != 31, mop); 3373 tcg_rs = read_cpu_reg(s, a->rs, true); 3374 tcg_rt = cpu_reg(s, a->rt); 3375 if (invert) { 3376 tcg_gen_not_i64(tcg_rs, tcg_rs); 3377 } 3378 /* 3379 * The tcg atomic primitives are all full barriers. Therefore we 3380 * can ignore the Acquire and Release bits of this instruction. 3381 */ 3382 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3383 3384 if (mop & MO_SIGN) { 3385 switch (a->sz) { 3386 case MO_8: 3387 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3388 break; 3389 case MO_16: 3390 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3391 break; 3392 case MO_32: 3393 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3394 break; 3395 case MO_64: 3396 break; 3397 default: 3398 g_assert_not_reached(); 3399 } 3400 } 3401 return true; 3402 } 3403 3404 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3405 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3406 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3407 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3408 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3409 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3410 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3411 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3412 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3413 3414 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3415 { 3416 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3417 TCGv_i64 clean_addr; 3418 MemOp mop; 3419 3420 if (!dc_isar_feature(aa64_atomics, s) || 3421 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3422 return false; 3423 } 3424 if (a->rn == 31) { 3425 gen_check_sp_alignment(s); 3426 } 3427 mop = check_atomic_align(s, a->rn, a->sz); 3428 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3429 a->rn != 31, mop); 3430 /* 3431 * LDAPR* are a special case because they are a simple load, not a 3432 * fetch-and-do-something op. 3433 * The architectural consistency requirements here are weaker than 3434 * full load-acquire (we only need "load-acquire processor consistent"), 3435 * but we choose to implement them as full LDAQ. 3436 */ 3437 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3438 true, a->rt, iss_sf, true); 3439 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3440 return true; 3441 } 3442 3443 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3444 { 3445 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3446 MemOp memop; 3447 3448 /* Load with pointer authentication */ 3449 if (!dc_isar_feature(aa64_pauth, s)) { 3450 return false; 3451 } 3452 3453 if (a->rn == 31) { 3454 gen_check_sp_alignment(s); 3455 } 3456 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3457 3458 if (s->pauth_active) { 3459 if (!a->m) { 3460 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3461 tcg_constant_i64(0)); 3462 } else { 3463 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3464 tcg_constant_i64(0)); 3465 } 3466 } 3467 3468 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3469 3470 memop = finalize_memop(s, MO_64); 3471 3472 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3473 clean_addr = gen_mte_check1(s, dirty_addr, false, 3474 a->w || a->rn != 31, memop); 3475 3476 tcg_rt = cpu_reg(s, a->rt); 3477 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3478 /* extend */ false, /* iss_valid */ !a->w, 3479 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3480 3481 if (a->w) { 3482 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3483 } 3484 return true; 3485 } 3486 3487 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3488 { 3489 TCGv_i64 clean_addr, dirty_addr; 3490 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3491 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3492 3493 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3494 return false; 3495 } 3496 3497 if (a->rn == 31) { 3498 gen_check_sp_alignment(s); 3499 } 3500 3501 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3502 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3503 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3504 clean_addr = clean_data_tbi(s, dirty_addr); 3505 3506 /* 3507 * Load-AcquirePC semantics; we implement as the slightly more 3508 * restrictive Load-Acquire. 3509 */ 3510 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3511 a->rt, iss_sf, true); 3512 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3513 return true; 3514 } 3515 3516 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3517 { 3518 TCGv_i64 clean_addr, dirty_addr; 3519 MemOp mop = a->sz; 3520 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3521 3522 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3523 return false; 3524 } 3525 3526 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3527 3528 if (a->rn == 31) { 3529 gen_check_sp_alignment(s); 3530 } 3531 3532 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3533 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3534 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3535 clean_addr = clean_data_tbi(s, dirty_addr); 3536 3537 /* Store-Release semantics */ 3538 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3539 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3540 return true; 3541 } 3542 3543 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3544 { 3545 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3546 MemOp endian, align, mop; 3547 3548 int total; /* total bytes */ 3549 int elements; /* elements per vector */ 3550 int r; 3551 int size = a->sz; 3552 3553 if (!a->p && a->rm != 0) { 3554 /* For non-postindexed accesses the Rm field must be 0 */ 3555 return false; 3556 } 3557 if (size == 3 && !a->q && a->selem != 1) { 3558 return false; 3559 } 3560 if (!fp_access_check(s)) { 3561 return true; 3562 } 3563 3564 if (a->rn == 31) { 3565 gen_check_sp_alignment(s); 3566 } 3567 3568 /* For our purposes, bytes are always little-endian. */ 3569 endian = s->be_data; 3570 if (size == 0) { 3571 endian = MO_LE; 3572 } 3573 3574 total = a->rpt * a->selem * (a->q ? 16 : 8); 3575 tcg_rn = cpu_reg_sp(s, a->rn); 3576 3577 /* 3578 * Issue the MTE check vs the logical repeat count, before we 3579 * promote consecutive little-endian elements below. 3580 */ 3581 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3582 finalize_memop_asimd(s, size)); 3583 3584 /* 3585 * Consecutive little-endian elements from a single register 3586 * can be promoted to a larger little-endian operation. 3587 */ 3588 align = MO_ALIGN; 3589 if (a->selem == 1 && endian == MO_LE) { 3590 align = pow2_align(size); 3591 size = 3; 3592 } 3593 if (!s->align_mem) { 3594 align = 0; 3595 } 3596 mop = endian | size | align; 3597 3598 elements = (a->q ? 16 : 8) >> size; 3599 tcg_ebytes = tcg_constant_i64(1 << size); 3600 for (r = 0; r < a->rpt; r++) { 3601 int e; 3602 for (e = 0; e < elements; e++) { 3603 int xs; 3604 for (xs = 0; xs < a->selem; xs++) { 3605 int tt = (a->rt + r + xs) % 32; 3606 do_vec_ld(s, tt, e, clean_addr, mop); 3607 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3608 } 3609 } 3610 } 3611 3612 /* 3613 * For non-quad operations, setting a slice of the low 64 bits of 3614 * the register clears the high 64 bits (in the ARM ARM pseudocode 3615 * this is implicit in the fact that 'rval' is a 64 bit wide 3616 * variable). For quad operations, we might still need to zero 3617 * the high bits of SVE. 3618 */ 3619 for (r = 0; r < a->rpt * a->selem; r++) { 3620 int tt = (a->rt + r) % 32; 3621 clear_vec_high(s, a->q, tt); 3622 } 3623 3624 if (a->p) { 3625 if (a->rm == 31) { 3626 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3627 } else { 3628 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3629 } 3630 } 3631 return true; 3632 } 3633 3634 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3635 { 3636 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3637 MemOp endian, align, mop; 3638 3639 int total; /* total bytes */ 3640 int elements; /* elements per vector */ 3641 int r; 3642 int size = a->sz; 3643 3644 if (!a->p && a->rm != 0) { 3645 /* For non-postindexed accesses the Rm field must be 0 */ 3646 return false; 3647 } 3648 if (size == 3 && !a->q && a->selem != 1) { 3649 return false; 3650 } 3651 if (!fp_access_check(s)) { 3652 return true; 3653 } 3654 3655 if (a->rn == 31) { 3656 gen_check_sp_alignment(s); 3657 } 3658 3659 /* For our purposes, bytes are always little-endian. */ 3660 endian = s->be_data; 3661 if (size == 0) { 3662 endian = MO_LE; 3663 } 3664 3665 total = a->rpt * a->selem * (a->q ? 16 : 8); 3666 tcg_rn = cpu_reg_sp(s, a->rn); 3667 3668 /* 3669 * Issue the MTE check vs the logical repeat count, before we 3670 * promote consecutive little-endian elements below. 3671 */ 3672 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3673 finalize_memop_asimd(s, size)); 3674 3675 /* 3676 * Consecutive little-endian elements from a single register 3677 * can be promoted to a larger little-endian operation. 3678 */ 3679 align = MO_ALIGN; 3680 if (a->selem == 1 && endian == MO_LE) { 3681 align = pow2_align(size); 3682 size = 3; 3683 } 3684 if (!s->align_mem) { 3685 align = 0; 3686 } 3687 mop = endian | size | align; 3688 3689 elements = (a->q ? 16 : 8) >> size; 3690 tcg_ebytes = tcg_constant_i64(1 << size); 3691 for (r = 0; r < a->rpt; r++) { 3692 int e; 3693 for (e = 0; e < elements; e++) { 3694 int xs; 3695 for (xs = 0; xs < a->selem; xs++) { 3696 int tt = (a->rt + r + xs) % 32; 3697 do_vec_st(s, tt, e, clean_addr, mop); 3698 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3699 } 3700 } 3701 } 3702 3703 if (a->p) { 3704 if (a->rm == 31) { 3705 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3706 } else { 3707 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3708 } 3709 } 3710 return true; 3711 } 3712 3713 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3714 { 3715 int xs, total, rt; 3716 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3717 MemOp mop; 3718 3719 if (!a->p && a->rm != 0) { 3720 return false; 3721 } 3722 if (!fp_access_check(s)) { 3723 return true; 3724 } 3725 3726 if (a->rn == 31) { 3727 gen_check_sp_alignment(s); 3728 } 3729 3730 total = a->selem << a->scale; 3731 tcg_rn = cpu_reg_sp(s, a->rn); 3732 3733 mop = finalize_memop_asimd(s, a->scale); 3734 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3735 total, mop); 3736 3737 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3738 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3739 do_vec_st(s, rt, a->index, clean_addr, mop); 3740 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3741 } 3742 3743 if (a->p) { 3744 if (a->rm == 31) { 3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3746 } else { 3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3748 } 3749 } 3750 return true; 3751 } 3752 3753 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3754 { 3755 int xs, total, rt; 3756 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3757 MemOp mop; 3758 3759 if (!a->p && a->rm != 0) { 3760 return false; 3761 } 3762 if (!fp_access_check(s)) { 3763 return true; 3764 } 3765 3766 if (a->rn == 31) { 3767 gen_check_sp_alignment(s); 3768 } 3769 3770 total = a->selem << a->scale; 3771 tcg_rn = cpu_reg_sp(s, a->rn); 3772 3773 mop = finalize_memop_asimd(s, a->scale); 3774 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3775 total, mop); 3776 3777 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3778 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3779 do_vec_ld(s, rt, a->index, clean_addr, mop); 3780 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3781 } 3782 3783 if (a->p) { 3784 if (a->rm == 31) { 3785 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3786 } else { 3787 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3788 } 3789 } 3790 return true; 3791 } 3792 3793 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3794 { 3795 int xs, total, rt; 3796 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3797 MemOp mop; 3798 3799 if (!a->p && a->rm != 0) { 3800 return false; 3801 } 3802 if (!fp_access_check(s)) { 3803 return true; 3804 } 3805 3806 if (a->rn == 31) { 3807 gen_check_sp_alignment(s); 3808 } 3809 3810 total = a->selem << a->scale; 3811 tcg_rn = cpu_reg_sp(s, a->rn); 3812 3813 mop = finalize_memop_asimd(s, a->scale); 3814 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3815 total, mop); 3816 3817 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3818 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3819 /* Load and replicate to all elements */ 3820 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3821 3822 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3823 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3824 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3825 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3826 } 3827 3828 if (a->p) { 3829 if (a->rm == 31) { 3830 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3831 } else { 3832 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3833 } 3834 } 3835 return true; 3836 } 3837 3838 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3839 { 3840 TCGv_i64 addr, clean_addr, tcg_rt; 3841 int size = 4 << s->dcz_blocksize; 3842 3843 if (!dc_isar_feature(aa64_mte, s)) { 3844 return false; 3845 } 3846 if (s->current_el == 0) { 3847 return false; 3848 } 3849 3850 if (a->rn == 31) { 3851 gen_check_sp_alignment(s); 3852 } 3853 3854 addr = read_cpu_reg_sp(s, a->rn, true); 3855 tcg_gen_addi_i64(addr, addr, a->imm); 3856 tcg_rt = cpu_reg(s, a->rt); 3857 3858 if (s->ata[0]) { 3859 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3860 } 3861 /* 3862 * The non-tags portion of STZGM is mostly like DC_ZVA, 3863 * except the alignment happens before the access. 3864 */ 3865 clean_addr = clean_data_tbi(s, addr); 3866 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3867 gen_helper_dc_zva(tcg_env, clean_addr); 3868 return true; 3869 } 3870 3871 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3872 { 3873 TCGv_i64 addr, clean_addr, tcg_rt; 3874 3875 if (!dc_isar_feature(aa64_mte, s)) { 3876 return false; 3877 } 3878 if (s->current_el == 0) { 3879 return false; 3880 } 3881 3882 if (a->rn == 31) { 3883 gen_check_sp_alignment(s); 3884 } 3885 3886 addr = read_cpu_reg_sp(s, a->rn, true); 3887 tcg_gen_addi_i64(addr, addr, a->imm); 3888 tcg_rt = cpu_reg(s, a->rt); 3889 3890 if (s->ata[0]) { 3891 gen_helper_stgm(tcg_env, addr, tcg_rt); 3892 } else { 3893 MMUAccessType acc = MMU_DATA_STORE; 3894 int size = 4 << s->gm_blocksize; 3895 3896 clean_addr = clean_data_tbi(s, addr); 3897 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3898 gen_probe_access(s, clean_addr, acc, size); 3899 } 3900 return true; 3901 } 3902 3903 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3904 { 3905 TCGv_i64 addr, clean_addr, tcg_rt; 3906 3907 if (!dc_isar_feature(aa64_mte, s)) { 3908 return false; 3909 } 3910 if (s->current_el == 0) { 3911 return false; 3912 } 3913 3914 if (a->rn == 31) { 3915 gen_check_sp_alignment(s); 3916 } 3917 3918 addr = read_cpu_reg_sp(s, a->rn, true); 3919 tcg_gen_addi_i64(addr, addr, a->imm); 3920 tcg_rt = cpu_reg(s, a->rt); 3921 3922 if (s->ata[0]) { 3923 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3924 } else { 3925 MMUAccessType acc = MMU_DATA_LOAD; 3926 int size = 4 << s->gm_blocksize; 3927 3928 clean_addr = clean_data_tbi(s, addr); 3929 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3930 gen_probe_access(s, clean_addr, acc, size); 3931 /* The result tags are zeros. */ 3932 tcg_gen_movi_i64(tcg_rt, 0); 3933 } 3934 return true; 3935 } 3936 3937 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3938 { 3939 TCGv_i64 addr, clean_addr, tcg_rt; 3940 3941 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3942 return false; 3943 } 3944 3945 if (a->rn == 31) { 3946 gen_check_sp_alignment(s); 3947 } 3948 3949 addr = read_cpu_reg_sp(s, a->rn, true); 3950 if (!a->p) { 3951 /* pre-index or signed offset */ 3952 tcg_gen_addi_i64(addr, addr, a->imm); 3953 } 3954 3955 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3956 tcg_rt = cpu_reg(s, a->rt); 3957 if (s->ata[0]) { 3958 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3959 } else { 3960 /* 3961 * Tag access disabled: we must check for aborts on the load 3962 * load from [rn+offset], and then insert a 0 tag into rt. 3963 */ 3964 clean_addr = clean_data_tbi(s, addr); 3965 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3966 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3967 } 3968 3969 if (a->w) { 3970 /* pre-index or post-index */ 3971 if (a->p) { 3972 /* post-index */ 3973 tcg_gen_addi_i64(addr, addr, a->imm); 3974 } 3975 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3976 } 3977 return true; 3978 } 3979 3980 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3981 { 3982 TCGv_i64 addr, tcg_rt; 3983 3984 if (a->rn == 31) { 3985 gen_check_sp_alignment(s); 3986 } 3987 3988 addr = read_cpu_reg_sp(s, a->rn, true); 3989 if (!a->p) { 3990 /* pre-index or signed offset */ 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 } 3993 tcg_rt = cpu_reg_sp(s, a->rt); 3994 if (!s->ata[0]) { 3995 /* 3996 * For STG and ST2G, we need to check alignment and probe memory. 3997 * TODO: For STZG and STZ2G, we could rely on the stores below, 3998 * at least for system mode; user-only won't enforce alignment. 3999 */ 4000 if (is_pair) { 4001 gen_helper_st2g_stub(tcg_env, addr); 4002 } else { 4003 gen_helper_stg_stub(tcg_env, addr); 4004 } 4005 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4006 if (is_pair) { 4007 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4008 } else { 4009 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4010 } 4011 } else { 4012 if (is_pair) { 4013 gen_helper_st2g(tcg_env, addr, tcg_rt); 4014 } else { 4015 gen_helper_stg(tcg_env, addr, tcg_rt); 4016 } 4017 } 4018 4019 if (is_zero) { 4020 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4021 TCGv_i64 zero64 = tcg_constant_i64(0); 4022 TCGv_i128 zero128 = tcg_temp_new_i128(); 4023 int mem_index = get_mem_index(s); 4024 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4025 4026 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4027 4028 /* This is 1 or 2 atomic 16-byte operations. */ 4029 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4030 if (is_pair) { 4031 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4032 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4033 } 4034 } 4035 4036 if (a->w) { 4037 /* pre-index or post-index */ 4038 if (a->p) { 4039 /* post-index */ 4040 tcg_gen_addi_i64(addr, addr, a->imm); 4041 } 4042 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4043 } 4044 return true; 4045 } 4046 4047 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4048 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4049 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4050 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4051 4052 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4053 4054 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4055 bool is_setg, SetFn fn) 4056 { 4057 int memidx; 4058 uint32_t syndrome, desc = 0; 4059 4060 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4061 return false; 4062 } 4063 4064 /* 4065 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4066 * us to pull this check before the CheckMOPSEnabled() test 4067 * (which we do in the helper function) 4068 */ 4069 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4070 a->rd == 31 || a->rn == 31) { 4071 return false; 4072 } 4073 4074 memidx = get_a64_user_mem_index(s, a->unpriv); 4075 4076 /* 4077 * We pass option_a == true, matching our implementation; 4078 * we pass wrong_option == false: helper function may set that bit. 4079 */ 4080 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4081 is_epilogue, false, true, a->rd, a->rs, a->rn); 4082 4083 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4084 /* We may need to do MTE tag checking, so assemble the descriptor */ 4085 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4086 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4087 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4088 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4089 } 4090 /* The helper function always needs the memidx even with MTE disabled */ 4091 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4092 4093 /* 4094 * The helper needs the register numbers, but since they're in 4095 * the syndrome anyway, we let it extract them from there rather 4096 * than passing in an extra three integer arguments. 4097 */ 4098 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4099 return true; 4100 } 4101 4102 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4103 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4104 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4105 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4106 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4107 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4108 4109 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4110 4111 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4112 { 4113 int rmemidx, wmemidx; 4114 uint32_t syndrome, rdesc = 0, wdesc = 0; 4115 bool wunpriv = extract32(a->options, 0, 1); 4116 bool runpriv = extract32(a->options, 1, 1); 4117 4118 /* 4119 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4120 * us to pull this check before the CheckMOPSEnabled() test 4121 * (which we do in the helper function) 4122 */ 4123 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4124 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4125 return false; 4126 } 4127 4128 rmemidx = get_a64_user_mem_index(s, runpriv); 4129 wmemidx = get_a64_user_mem_index(s, wunpriv); 4130 4131 /* 4132 * We pass option_a == true, matching our implementation; 4133 * we pass wrong_option == false: helper function may set that bit. 4134 */ 4135 syndrome = syn_mop(false, false, a->options, is_epilogue, 4136 false, true, a->rd, a->rs, a->rn); 4137 4138 /* If we need to do MTE tag checking, assemble the descriptors */ 4139 if (s->mte_active[runpriv]) { 4140 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4141 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4142 } 4143 if (s->mte_active[wunpriv]) { 4144 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4145 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4146 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4147 } 4148 /* The helper function needs these parts of the descriptor regardless */ 4149 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4150 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4151 4152 /* 4153 * The helper needs the register numbers, but since they're in 4154 * the syndrome anyway, we let it extract them from there rather 4155 * than passing in an extra three integer arguments. 4156 */ 4157 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4158 tcg_constant_i32(rdesc)); 4159 return true; 4160 } 4161 4162 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4163 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4164 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4165 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4166 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4167 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4168 4169 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4170 4171 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4172 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4173 { 4174 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4175 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4176 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4177 4178 fn(tcg_rd, tcg_rn, tcg_imm); 4179 if (!a->sf) { 4180 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4181 } 4182 return true; 4183 } 4184 4185 /* 4186 * PC-rel. addressing 4187 */ 4188 4189 static bool trans_ADR(DisasContext *s, arg_ri *a) 4190 { 4191 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4192 return true; 4193 } 4194 4195 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4196 { 4197 int64_t offset = (int64_t)a->imm << 12; 4198 4199 /* The page offset is ok for CF_PCREL. */ 4200 offset -= s->pc_curr & 0xfff; 4201 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4202 return true; 4203 } 4204 4205 /* 4206 * Add/subtract (immediate) 4207 */ 4208 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4209 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4210 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4211 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4212 4213 /* 4214 * Add/subtract (immediate, with tags) 4215 */ 4216 4217 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4218 bool sub_op) 4219 { 4220 TCGv_i64 tcg_rn, tcg_rd; 4221 int imm; 4222 4223 imm = a->uimm6 << LOG2_TAG_GRANULE; 4224 if (sub_op) { 4225 imm = -imm; 4226 } 4227 4228 tcg_rn = cpu_reg_sp(s, a->rn); 4229 tcg_rd = cpu_reg_sp(s, a->rd); 4230 4231 if (s->ata[0]) { 4232 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4233 tcg_constant_i32(imm), 4234 tcg_constant_i32(a->uimm4)); 4235 } else { 4236 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4237 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4238 } 4239 return true; 4240 } 4241 4242 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4243 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4244 4245 /* The input should be a value in the bottom e bits (with higher 4246 * bits zero); returns that value replicated into every element 4247 * of size e in a 64 bit integer. 4248 */ 4249 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4250 { 4251 assert(e != 0); 4252 while (e < 64) { 4253 mask |= mask << e; 4254 e *= 2; 4255 } 4256 return mask; 4257 } 4258 4259 /* 4260 * Logical (immediate) 4261 */ 4262 4263 /* 4264 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4265 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4266 * value (ie should cause a guest UNDEF exception), and true if they are 4267 * valid, in which case the decoded bit pattern is written to result. 4268 */ 4269 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4270 unsigned int imms, unsigned int immr) 4271 { 4272 uint64_t mask; 4273 unsigned e, levels, s, r; 4274 int len; 4275 4276 assert(immn < 2 && imms < 64 && immr < 64); 4277 4278 /* The bit patterns we create here are 64 bit patterns which 4279 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4280 * 64 bits each. Each element contains the same value: a run 4281 * of between 1 and e-1 non-zero bits, rotated within the 4282 * element by between 0 and e-1 bits. 4283 * 4284 * The element size and run length are encoded into immn (1 bit) 4285 * and imms (6 bits) as follows: 4286 * 64 bit elements: immn = 1, imms = <length of run - 1> 4287 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4288 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4289 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4290 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4291 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4292 * Notice that immn = 0, imms = 11111x is the only combination 4293 * not covered by one of the above options; this is reserved. 4294 * Further, <length of run - 1> all-ones is a reserved pattern. 4295 * 4296 * In all cases the rotation is by immr % e (and immr is 6 bits). 4297 */ 4298 4299 /* First determine the element size */ 4300 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4301 if (len < 1) { 4302 /* This is the immn == 0, imms == 0x11111x case */ 4303 return false; 4304 } 4305 e = 1 << len; 4306 4307 levels = e - 1; 4308 s = imms & levels; 4309 r = immr & levels; 4310 4311 if (s == levels) { 4312 /* <length of run - 1> mustn't be all-ones. */ 4313 return false; 4314 } 4315 4316 /* Create the value of one element: s+1 set bits rotated 4317 * by r within the element (which is e bits wide)... 4318 */ 4319 mask = MAKE_64BIT_MASK(0, s + 1); 4320 if (r) { 4321 mask = (mask >> r) | (mask << (e - r)); 4322 mask &= MAKE_64BIT_MASK(0, e); 4323 } 4324 /* ...then replicate the element over the whole 64 bit value */ 4325 mask = bitfield_replicate(mask, e); 4326 *result = mask; 4327 return true; 4328 } 4329 4330 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4331 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4332 { 4333 TCGv_i64 tcg_rd, tcg_rn; 4334 uint64_t imm; 4335 4336 /* Some immediate field values are reserved. */ 4337 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4338 extract32(a->dbm, 0, 6), 4339 extract32(a->dbm, 6, 6))) { 4340 return false; 4341 } 4342 if (!a->sf) { 4343 imm &= 0xffffffffull; 4344 } 4345 4346 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4347 tcg_rn = cpu_reg(s, a->rn); 4348 4349 fn(tcg_rd, tcg_rn, imm); 4350 if (set_cc) { 4351 gen_logic_CC(a->sf, tcg_rd); 4352 } 4353 if (!a->sf) { 4354 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4355 } 4356 return true; 4357 } 4358 4359 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4360 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4361 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4362 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4363 4364 /* 4365 * Move wide (immediate) 4366 */ 4367 4368 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4369 { 4370 int pos = a->hw << 4; 4371 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4372 return true; 4373 } 4374 4375 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4376 { 4377 int pos = a->hw << 4; 4378 uint64_t imm = a->imm; 4379 4380 imm = ~(imm << pos); 4381 if (!a->sf) { 4382 imm = (uint32_t)imm; 4383 } 4384 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4385 return true; 4386 } 4387 4388 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4389 { 4390 int pos = a->hw << 4; 4391 TCGv_i64 tcg_rd, tcg_im; 4392 4393 tcg_rd = cpu_reg(s, a->rd); 4394 tcg_im = tcg_constant_i64(a->imm); 4395 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4396 if (!a->sf) { 4397 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4398 } 4399 return true; 4400 } 4401 4402 /* 4403 * Bitfield 4404 */ 4405 4406 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4407 { 4408 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4409 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4410 unsigned int bitsize = a->sf ? 64 : 32; 4411 unsigned int ri = a->immr; 4412 unsigned int si = a->imms; 4413 unsigned int pos, len; 4414 4415 if (si >= ri) { 4416 /* Wd<s-r:0> = Wn<s:r> */ 4417 len = (si - ri) + 1; 4418 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4419 if (!a->sf) { 4420 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4421 } 4422 } else { 4423 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4424 len = si + 1; 4425 pos = (bitsize - ri) & (bitsize - 1); 4426 4427 if (len < ri) { 4428 /* 4429 * Sign extend the destination field from len to fill the 4430 * balance of the word. Let the deposit below insert all 4431 * of those sign bits. 4432 */ 4433 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4434 len = ri; 4435 } 4436 4437 /* 4438 * We start with zero, and we haven't modified any bits outside 4439 * bitsize, therefore no final zero-extension is unneeded for !sf. 4440 */ 4441 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4442 } 4443 return true; 4444 } 4445 4446 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4447 { 4448 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4449 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4450 unsigned int bitsize = a->sf ? 64 : 32; 4451 unsigned int ri = a->immr; 4452 unsigned int si = a->imms; 4453 unsigned int pos, len; 4454 4455 tcg_rd = cpu_reg(s, a->rd); 4456 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4457 4458 if (si >= ri) { 4459 /* Wd<s-r:0> = Wn<s:r> */ 4460 len = (si - ri) + 1; 4461 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4462 } else { 4463 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4464 len = si + 1; 4465 pos = (bitsize - ri) & (bitsize - 1); 4466 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4467 } 4468 return true; 4469 } 4470 4471 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4472 { 4473 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4474 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4475 unsigned int bitsize = a->sf ? 64 : 32; 4476 unsigned int ri = a->immr; 4477 unsigned int si = a->imms; 4478 unsigned int pos, len; 4479 4480 tcg_rd = cpu_reg(s, a->rd); 4481 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 4483 if (si >= ri) { 4484 /* Wd<s-r:0> = Wn<s:r> */ 4485 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4486 len = (si - ri) + 1; 4487 pos = 0; 4488 } else { 4489 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4490 len = si + 1; 4491 pos = (bitsize - ri) & (bitsize - 1); 4492 } 4493 4494 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4495 if (!a->sf) { 4496 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4497 } 4498 return true; 4499 } 4500 4501 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4502 { 4503 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4504 4505 tcg_rd = cpu_reg(s, a->rd); 4506 4507 if (unlikely(a->imm == 0)) { 4508 /* 4509 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4510 * so an extract from bit 0 is a special case. 4511 */ 4512 if (a->sf) { 4513 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4514 } else { 4515 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4516 } 4517 } else { 4518 tcg_rm = cpu_reg(s, a->rm); 4519 tcg_rn = cpu_reg(s, a->rn); 4520 4521 if (a->sf) { 4522 /* Specialization to ROR happens in EXTRACT2. */ 4523 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4524 } else { 4525 TCGv_i32 t0 = tcg_temp_new_i32(); 4526 4527 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4528 if (a->rm == a->rn) { 4529 tcg_gen_rotri_i32(t0, t0, a->imm); 4530 } else { 4531 TCGv_i32 t1 = tcg_temp_new_i32(); 4532 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4533 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4534 } 4535 tcg_gen_extu_i32_i64(tcg_rd, t0); 4536 } 4537 } 4538 return true; 4539 } 4540 4541 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4542 * Note that it is the caller's responsibility to ensure that the 4543 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4544 * mandated semantics for out of range shifts. 4545 */ 4546 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4547 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4548 { 4549 switch (shift_type) { 4550 case A64_SHIFT_TYPE_LSL: 4551 tcg_gen_shl_i64(dst, src, shift_amount); 4552 break; 4553 case A64_SHIFT_TYPE_LSR: 4554 tcg_gen_shr_i64(dst, src, shift_amount); 4555 break; 4556 case A64_SHIFT_TYPE_ASR: 4557 if (!sf) { 4558 tcg_gen_ext32s_i64(dst, src); 4559 } 4560 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4561 break; 4562 case A64_SHIFT_TYPE_ROR: 4563 if (sf) { 4564 tcg_gen_rotr_i64(dst, src, shift_amount); 4565 } else { 4566 TCGv_i32 t0, t1; 4567 t0 = tcg_temp_new_i32(); 4568 t1 = tcg_temp_new_i32(); 4569 tcg_gen_extrl_i64_i32(t0, src); 4570 tcg_gen_extrl_i64_i32(t1, shift_amount); 4571 tcg_gen_rotr_i32(t0, t0, t1); 4572 tcg_gen_extu_i32_i64(dst, t0); 4573 } 4574 break; 4575 default: 4576 assert(FALSE); /* all shift types should be handled */ 4577 break; 4578 } 4579 4580 if (!sf) { /* zero extend final result */ 4581 tcg_gen_ext32u_i64(dst, dst); 4582 } 4583 } 4584 4585 /* Shift a TCGv src by immediate, put result in dst. 4586 * The shift amount must be in range (this should always be true as the 4587 * relevant instructions will UNDEF on bad shift immediates). 4588 */ 4589 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4590 enum a64_shift_type shift_type, unsigned int shift_i) 4591 { 4592 assert(shift_i < (sf ? 64 : 32)); 4593 4594 if (shift_i == 0) { 4595 tcg_gen_mov_i64(dst, src); 4596 } else { 4597 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4598 } 4599 } 4600 4601 /* Logical (shifted register) 4602 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4603 * +----+-----+-----------+-------+---+------+--------+------+------+ 4604 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4605 * +----+-----+-----------+-------+---+------+--------+------+------+ 4606 */ 4607 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4608 { 4609 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4610 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4611 4612 sf = extract32(insn, 31, 1); 4613 opc = extract32(insn, 29, 2); 4614 shift_type = extract32(insn, 22, 2); 4615 invert = extract32(insn, 21, 1); 4616 rm = extract32(insn, 16, 5); 4617 shift_amount = extract32(insn, 10, 6); 4618 rn = extract32(insn, 5, 5); 4619 rd = extract32(insn, 0, 5); 4620 4621 if (!sf && (shift_amount & (1 << 5))) { 4622 unallocated_encoding(s); 4623 return; 4624 } 4625 4626 tcg_rd = cpu_reg(s, rd); 4627 4628 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4629 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4630 * register-register MOV and MVN, so it is worth special casing. 4631 */ 4632 tcg_rm = cpu_reg(s, rm); 4633 if (invert) { 4634 tcg_gen_not_i64(tcg_rd, tcg_rm); 4635 if (!sf) { 4636 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4637 } 4638 } else { 4639 if (sf) { 4640 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4641 } else { 4642 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4643 } 4644 } 4645 return; 4646 } 4647 4648 tcg_rm = read_cpu_reg(s, rm, sf); 4649 4650 if (shift_amount) { 4651 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4652 } 4653 4654 tcg_rn = cpu_reg(s, rn); 4655 4656 switch (opc | (invert << 2)) { 4657 case 0: /* AND */ 4658 case 3: /* ANDS */ 4659 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4660 break; 4661 case 1: /* ORR */ 4662 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4663 break; 4664 case 2: /* EOR */ 4665 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4666 break; 4667 case 4: /* BIC */ 4668 case 7: /* BICS */ 4669 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4670 break; 4671 case 5: /* ORN */ 4672 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4673 break; 4674 case 6: /* EON */ 4675 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4676 break; 4677 default: 4678 assert(FALSE); 4679 break; 4680 } 4681 4682 if (!sf) { 4683 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4684 } 4685 4686 if (opc == 3) { 4687 gen_logic_CC(sf, tcg_rd); 4688 } 4689 } 4690 4691 /* 4692 * Add/subtract (extended register) 4693 * 4694 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4695 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4696 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4697 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4698 * 4699 * sf: 0 -> 32bit, 1 -> 64bit 4700 * op: 0 -> add , 1 -> sub 4701 * S: 1 -> set flags 4702 * opt: 00 4703 * option: extension type (see DecodeRegExtend) 4704 * imm3: optional shift to Rm 4705 * 4706 * Rd = Rn + LSL(extend(Rm), amount) 4707 */ 4708 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4709 { 4710 int rd = extract32(insn, 0, 5); 4711 int rn = extract32(insn, 5, 5); 4712 int imm3 = extract32(insn, 10, 3); 4713 int option = extract32(insn, 13, 3); 4714 int rm = extract32(insn, 16, 5); 4715 int opt = extract32(insn, 22, 2); 4716 bool setflags = extract32(insn, 29, 1); 4717 bool sub_op = extract32(insn, 30, 1); 4718 bool sf = extract32(insn, 31, 1); 4719 4720 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4721 TCGv_i64 tcg_rd; 4722 TCGv_i64 tcg_result; 4723 4724 if (imm3 > 4 || opt != 0) { 4725 unallocated_encoding(s); 4726 return; 4727 } 4728 4729 /* non-flag setting ops may use SP */ 4730 if (!setflags) { 4731 tcg_rd = cpu_reg_sp(s, rd); 4732 } else { 4733 tcg_rd = cpu_reg(s, rd); 4734 } 4735 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4736 4737 tcg_rm = read_cpu_reg(s, rm, sf); 4738 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4739 4740 tcg_result = tcg_temp_new_i64(); 4741 4742 if (!setflags) { 4743 if (sub_op) { 4744 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4745 } else { 4746 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4747 } 4748 } else { 4749 if (sub_op) { 4750 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4751 } else { 4752 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4753 } 4754 } 4755 4756 if (sf) { 4757 tcg_gen_mov_i64(tcg_rd, tcg_result); 4758 } else { 4759 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4760 } 4761 } 4762 4763 /* 4764 * Add/subtract (shifted register) 4765 * 4766 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4767 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4768 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4769 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4770 * 4771 * sf: 0 -> 32bit, 1 -> 64bit 4772 * op: 0 -> add , 1 -> sub 4773 * S: 1 -> set flags 4774 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4775 * imm6: Shift amount to apply to Rm before the add/sub 4776 */ 4777 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4778 { 4779 int rd = extract32(insn, 0, 5); 4780 int rn = extract32(insn, 5, 5); 4781 int imm6 = extract32(insn, 10, 6); 4782 int rm = extract32(insn, 16, 5); 4783 int shift_type = extract32(insn, 22, 2); 4784 bool setflags = extract32(insn, 29, 1); 4785 bool sub_op = extract32(insn, 30, 1); 4786 bool sf = extract32(insn, 31, 1); 4787 4788 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4789 TCGv_i64 tcg_rn, tcg_rm; 4790 TCGv_i64 tcg_result; 4791 4792 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4793 unallocated_encoding(s); 4794 return; 4795 } 4796 4797 tcg_rn = read_cpu_reg(s, rn, sf); 4798 tcg_rm = read_cpu_reg(s, rm, sf); 4799 4800 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4801 4802 tcg_result = tcg_temp_new_i64(); 4803 4804 if (!setflags) { 4805 if (sub_op) { 4806 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4807 } else { 4808 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4809 } 4810 } else { 4811 if (sub_op) { 4812 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4813 } else { 4814 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4815 } 4816 } 4817 4818 if (sf) { 4819 tcg_gen_mov_i64(tcg_rd, tcg_result); 4820 } else { 4821 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4822 } 4823 } 4824 4825 /* Data-processing (3 source) 4826 * 4827 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4828 * +--+------+-----------+------+------+----+------+------+------+ 4829 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4830 * +--+------+-----------+------+------+----+------+------+------+ 4831 */ 4832 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4833 { 4834 int rd = extract32(insn, 0, 5); 4835 int rn = extract32(insn, 5, 5); 4836 int ra = extract32(insn, 10, 5); 4837 int rm = extract32(insn, 16, 5); 4838 int op_id = (extract32(insn, 29, 3) << 4) | 4839 (extract32(insn, 21, 3) << 1) | 4840 extract32(insn, 15, 1); 4841 bool sf = extract32(insn, 31, 1); 4842 bool is_sub = extract32(op_id, 0, 1); 4843 bool is_high = extract32(op_id, 2, 1); 4844 bool is_signed = false; 4845 TCGv_i64 tcg_op1; 4846 TCGv_i64 tcg_op2; 4847 TCGv_i64 tcg_tmp; 4848 4849 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4850 switch (op_id) { 4851 case 0x42: /* SMADDL */ 4852 case 0x43: /* SMSUBL */ 4853 case 0x44: /* SMULH */ 4854 is_signed = true; 4855 break; 4856 case 0x0: /* MADD (32bit) */ 4857 case 0x1: /* MSUB (32bit) */ 4858 case 0x40: /* MADD (64bit) */ 4859 case 0x41: /* MSUB (64bit) */ 4860 case 0x4a: /* UMADDL */ 4861 case 0x4b: /* UMSUBL */ 4862 case 0x4c: /* UMULH */ 4863 break; 4864 default: 4865 unallocated_encoding(s); 4866 return; 4867 } 4868 4869 if (is_high) { 4870 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4871 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4872 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4873 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4874 4875 if (is_signed) { 4876 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4877 } else { 4878 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4879 } 4880 return; 4881 } 4882 4883 tcg_op1 = tcg_temp_new_i64(); 4884 tcg_op2 = tcg_temp_new_i64(); 4885 tcg_tmp = tcg_temp_new_i64(); 4886 4887 if (op_id < 0x42) { 4888 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4889 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4890 } else { 4891 if (is_signed) { 4892 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4893 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4894 } else { 4895 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4896 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4897 } 4898 } 4899 4900 if (ra == 31 && !is_sub) { 4901 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4902 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4903 } else { 4904 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4905 if (is_sub) { 4906 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4907 } else { 4908 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4909 } 4910 } 4911 4912 if (!sf) { 4913 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4914 } 4915 } 4916 4917 /* Add/subtract (with carry) 4918 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4919 * +--+--+--+------------------------+------+-------------+------+-----+ 4920 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4921 * +--+--+--+------------------------+------+-------------+------+-----+ 4922 */ 4923 4924 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4925 { 4926 unsigned int sf, op, setflags, rm, rn, rd; 4927 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4928 4929 sf = extract32(insn, 31, 1); 4930 op = extract32(insn, 30, 1); 4931 setflags = extract32(insn, 29, 1); 4932 rm = extract32(insn, 16, 5); 4933 rn = extract32(insn, 5, 5); 4934 rd = extract32(insn, 0, 5); 4935 4936 tcg_rd = cpu_reg(s, rd); 4937 tcg_rn = cpu_reg(s, rn); 4938 4939 if (op) { 4940 tcg_y = tcg_temp_new_i64(); 4941 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4942 } else { 4943 tcg_y = cpu_reg(s, rm); 4944 } 4945 4946 if (setflags) { 4947 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4948 } else { 4949 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4950 } 4951 } 4952 4953 /* 4954 * Rotate right into flags 4955 * 31 30 29 21 15 10 5 4 0 4956 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4957 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4958 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4959 */ 4960 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4961 { 4962 int mask = extract32(insn, 0, 4); 4963 int o2 = extract32(insn, 4, 1); 4964 int rn = extract32(insn, 5, 5); 4965 int imm6 = extract32(insn, 15, 6); 4966 int sf_op_s = extract32(insn, 29, 3); 4967 TCGv_i64 tcg_rn; 4968 TCGv_i32 nzcv; 4969 4970 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4971 unallocated_encoding(s); 4972 return; 4973 } 4974 4975 tcg_rn = read_cpu_reg(s, rn, 1); 4976 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4977 4978 nzcv = tcg_temp_new_i32(); 4979 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4980 4981 if (mask & 8) { /* N */ 4982 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4983 } 4984 if (mask & 4) { /* Z */ 4985 tcg_gen_not_i32(cpu_ZF, nzcv); 4986 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4987 } 4988 if (mask & 2) { /* C */ 4989 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4990 } 4991 if (mask & 1) { /* V */ 4992 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4993 } 4994 } 4995 4996 /* 4997 * Evaluate into flags 4998 * 31 30 29 21 15 14 10 5 4 0 4999 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5000 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5001 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5002 */ 5003 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5004 { 5005 int o3_mask = extract32(insn, 0, 5); 5006 int rn = extract32(insn, 5, 5); 5007 int o2 = extract32(insn, 15, 6); 5008 int sz = extract32(insn, 14, 1); 5009 int sf_op_s = extract32(insn, 29, 3); 5010 TCGv_i32 tmp; 5011 int shift; 5012 5013 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5014 !dc_isar_feature(aa64_condm_4, s)) { 5015 unallocated_encoding(s); 5016 return; 5017 } 5018 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5019 5020 tmp = tcg_temp_new_i32(); 5021 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5022 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5023 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5024 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5025 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5026 } 5027 5028 /* Conditional compare (immediate / register) 5029 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5030 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5031 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5032 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5033 * [1] y [0] [0] 5034 */ 5035 static void disas_cc(DisasContext *s, uint32_t insn) 5036 { 5037 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5038 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5039 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5040 DisasCompare c; 5041 5042 if (!extract32(insn, 29, 1)) { 5043 unallocated_encoding(s); 5044 return; 5045 } 5046 if (insn & (1 << 10 | 1 << 4)) { 5047 unallocated_encoding(s); 5048 return; 5049 } 5050 sf = extract32(insn, 31, 1); 5051 op = extract32(insn, 30, 1); 5052 is_imm = extract32(insn, 11, 1); 5053 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5054 cond = extract32(insn, 12, 4); 5055 rn = extract32(insn, 5, 5); 5056 nzcv = extract32(insn, 0, 4); 5057 5058 /* Set T0 = !COND. */ 5059 tcg_t0 = tcg_temp_new_i32(); 5060 arm_test_cc(&c, cond); 5061 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5062 5063 /* Load the arguments for the new comparison. */ 5064 if (is_imm) { 5065 tcg_y = tcg_temp_new_i64(); 5066 tcg_gen_movi_i64(tcg_y, y); 5067 } else { 5068 tcg_y = cpu_reg(s, y); 5069 } 5070 tcg_rn = cpu_reg(s, rn); 5071 5072 /* Set the flags for the new comparison. */ 5073 tcg_tmp = tcg_temp_new_i64(); 5074 if (op) { 5075 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5076 } else { 5077 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5078 } 5079 5080 /* If COND was false, force the flags to #nzcv. Compute two masks 5081 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5082 * For tcg hosts that support ANDC, we can make do with just T1. 5083 * In either case, allow the tcg optimizer to delete any unused mask. 5084 */ 5085 tcg_t1 = tcg_temp_new_i32(); 5086 tcg_t2 = tcg_temp_new_i32(); 5087 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5088 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5089 5090 if (nzcv & 8) { /* N */ 5091 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5092 } else { 5093 if (TCG_TARGET_HAS_andc_i32) { 5094 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5095 } else { 5096 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5097 } 5098 } 5099 if (nzcv & 4) { /* Z */ 5100 if (TCG_TARGET_HAS_andc_i32) { 5101 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5102 } else { 5103 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5104 } 5105 } else { 5106 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5107 } 5108 if (nzcv & 2) { /* C */ 5109 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5110 } else { 5111 if (TCG_TARGET_HAS_andc_i32) { 5112 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5113 } else { 5114 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5115 } 5116 } 5117 if (nzcv & 1) { /* V */ 5118 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5119 } else { 5120 if (TCG_TARGET_HAS_andc_i32) { 5121 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5122 } else { 5123 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5124 } 5125 } 5126 } 5127 5128 /* Conditional select 5129 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5130 * +----+----+---+-----------------+------+------+-----+------+------+ 5131 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5132 * +----+----+---+-----------------+------+------+-----+------+------+ 5133 */ 5134 static void disas_cond_select(DisasContext *s, uint32_t insn) 5135 { 5136 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5137 TCGv_i64 tcg_rd, zero; 5138 DisasCompare64 c; 5139 5140 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5141 /* S == 1 or op2<1> == 1 */ 5142 unallocated_encoding(s); 5143 return; 5144 } 5145 sf = extract32(insn, 31, 1); 5146 else_inv = extract32(insn, 30, 1); 5147 rm = extract32(insn, 16, 5); 5148 cond = extract32(insn, 12, 4); 5149 else_inc = extract32(insn, 10, 1); 5150 rn = extract32(insn, 5, 5); 5151 rd = extract32(insn, 0, 5); 5152 5153 tcg_rd = cpu_reg(s, rd); 5154 5155 a64_test_cc(&c, cond); 5156 zero = tcg_constant_i64(0); 5157 5158 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5159 /* CSET & CSETM. */ 5160 if (else_inv) { 5161 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5162 tcg_rd, c.value, zero); 5163 } else { 5164 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5165 tcg_rd, c.value, zero); 5166 } 5167 } else { 5168 TCGv_i64 t_true = cpu_reg(s, rn); 5169 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5170 if (else_inv && else_inc) { 5171 tcg_gen_neg_i64(t_false, t_false); 5172 } else if (else_inv) { 5173 tcg_gen_not_i64(t_false, t_false); 5174 } else if (else_inc) { 5175 tcg_gen_addi_i64(t_false, t_false, 1); 5176 } 5177 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5178 } 5179 5180 if (!sf) { 5181 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5182 } 5183 } 5184 5185 static void handle_clz(DisasContext *s, unsigned int sf, 5186 unsigned int rn, unsigned int rd) 5187 { 5188 TCGv_i64 tcg_rd, tcg_rn; 5189 tcg_rd = cpu_reg(s, rd); 5190 tcg_rn = cpu_reg(s, rn); 5191 5192 if (sf) { 5193 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5194 } else { 5195 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5196 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5197 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5198 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5199 } 5200 } 5201 5202 static void handle_cls(DisasContext *s, unsigned int sf, 5203 unsigned int rn, unsigned int rd) 5204 { 5205 TCGv_i64 tcg_rd, tcg_rn; 5206 tcg_rd = cpu_reg(s, rd); 5207 tcg_rn = cpu_reg(s, rn); 5208 5209 if (sf) { 5210 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5211 } else { 5212 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5213 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5214 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5215 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5216 } 5217 } 5218 5219 static void handle_rbit(DisasContext *s, unsigned int sf, 5220 unsigned int rn, unsigned int rd) 5221 { 5222 TCGv_i64 tcg_rd, tcg_rn; 5223 tcg_rd = cpu_reg(s, rd); 5224 tcg_rn = cpu_reg(s, rn); 5225 5226 if (sf) { 5227 gen_helper_rbit64(tcg_rd, tcg_rn); 5228 } else { 5229 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5230 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5231 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5232 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5233 } 5234 } 5235 5236 /* REV with sf==1, opcode==3 ("REV64") */ 5237 static void handle_rev64(DisasContext *s, unsigned int sf, 5238 unsigned int rn, unsigned int rd) 5239 { 5240 if (!sf) { 5241 unallocated_encoding(s); 5242 return; 5243 } 5244 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5245 } 5246 5247 /* REV with sf==0, opcode==2 5248 * REV32 (sf==1, opcode==2) 5249 */ 5250 static void handle_rev32(DisasContext *s, unsigned int sf, 5251 unsigned int rn, unsigned int rd) 5252 { 5253 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5254 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5255 5256 if (sf) { 5257 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5258 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5259 } else { 5260 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5261 } 5262 } 5263 5264 /* REV16 (opcode==1) */ 5265 static void handle_rev16(DisasContext *s, unsigned int sf, 5266 unsigned int rn, unsigned int rd) 5267 { 5268 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5269 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5270 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5271 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5272 5273 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5274 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5275 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5276 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5277 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5278 } 5279 5280 /* Data-processing (1 source) 5281 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5282 * +----+---+---+-----------------+---------+--------+------+------+ 5283 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5284 * +----+---+---+-----------------+---------+--------+------+------+ 5285 */ 5286 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5287 { 5288 unsigned int sf, opcode, opcode2, rn, rd; 5289 TCGv_i64 tcg_rd; 5290 5291 if (extract32(insn, 29, 1)) { 5292 unallocated_encoding(s); 5293 return; 5294 } 5295 5296 sf = extract32(insn, 31, 1); 5297 opcode = extract32(insn, 10, 6); 5298 opcode2 = extract32(insn, 16, 5); 5299 rn = extract32(insn, 5, 5); 5300 rd = extract32(insn, 0, 5); 5301 5302 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5303 5304 switch (MAP(sf, opcode2, opcode)) { 5305 case MAP(0, 0x00, 0x00): /* RBIT */ 5306 case MAP(1, 0x00, 0x00): 5307 handle_rbit(s, sf, rn, rd); 5308 break; 5309 case MAP(0, 0x00, 0x01): /* REV16 */ 5310 case MAP(1, 0x00, 0x01): 5311 handle_rev16(s, sf, rn, rd); 5312 break; 5313 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5314 case MAP(1, 0x00, 0x02): 5315 handle_rev32(s, sf, rn, rd); 5316 break; 5317 case MAP(1, 0x00, 0x03): /* REV64 */ 5318 handle_rev64(s, sf, rn, rd); 5319 break; 5320 case MAP(0, 0x00, 0x04): /* CLZ */ 5321 case MAP(1, 0x00, 0x04): 5322 handle_clz(s, sf, rn, rd); 5323 break; 5324 case MAP(0, 0x00, 0x05): /* CLS */ 5325 case MAP(1, 0x00, 0x05): 5326 handle_cls(s, sf, rn, rd); 5327 break; 5328 case MAP(1, 0x01, 0x00): /* PACIA */ 5329 if (s->pauth_active) { 5330 tcg_rd = cpu_reg(s, rd); 5331 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5332 } else if (!dc_isar_feature(aa64_pauth, s)) { 5333 goto do_unallocated; 5334 } 5335 break; 5336 case MAP(1, 0x01, 0x01): /* PACIB */ 5337 if (s->pauth_active) { 5338 tcg_rd = cpu_reg(s, rd); 5339 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5340 } else if (!dc_isar_feature(aa64_pauth, s)) { 5341 goto do_unallocated; 5342 } 5343 break; 5344 case MAP(1, 0x01, 0x02): /* PACDA */ 5345 if (s->pauth_active) { 5346 tcg_rd = cpu_reg(s, rd); 5347 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5348 } else if (!dc_isar_feature(aa64_pauth, s)) { 5349 goto do_unallocated; 5350 } 5351 break; 5352 case MAP(1, 0x01, 0x03): /* PACDB */ 5353 if (s->pauth_active) { 5354 tcg_rd = cpu_reg(s, rd); 5355 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5356 } else if (!dc_isar_feature(aa64_pauth, s)) { 5357 goto do_unallocated; 5358 } 5359 break; 5360 case MAP(1, 0x01, 0x04): /* AUTIA */ 5361 if (s->pauth_active) { 5362 tcg_rd = cpu_reg(s, rd); 5363 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5364 } else if (!dc_isar_feature(aa64_pauth, s)) { 5365 goto do_unallocated; 5366 } 5367 break; 5368 case MAP(1, 0x01, 0x05): /* AUTIB */ 5369 if (s->pauth_active) { 5370 tcg_rd = cpu_reg(s, rd); 5371 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5372 } else if (!dc_isar_feature(aa64_pauth, s)) { 5373 goto do_unallocated; 5374 } 5375 break; 5376 case MAP(1, 0x01, 0x06): /* AUTDA */ 5377 if (s->pauth_active) { 5378 tcg_rd = cpu_reg(s, rd); 5379 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5380 } else if (!dc_isar_feature(aa64_pauth, s)) { 5381 goto do_unallocated; 5382 } 5383 break; 5384 case MAP(1, 0x01, 0x07): /* AUTDB */ 5385 if (s->pauth_active) { 5386 tcg_rd = cpu_reg(s, rd); 5387 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5388 } else if (!dc_isar_feature(aa64_pauth, s)) { 5389 goto do_unallocated; 5390 } 5391 break; 5392 case MAP(1, 0x01, 0x08): /* PACIZA */ 5393 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5394 goto do_unallocated; 5395 } else if (s->pauth_active) { 5396 tcg_rd = cpu_reg(s, rd); 5397 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5398 } 5399 break; 5400 case MAP(1, 0x01, 0x09): /* PACIZB */ 5401 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5402 goto do_unallocated; 5403 } else if (s->pauth_active) { 5404 tcg_rd = cpu_reg(s, rd); 5405 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5406 } 5407 break; 5408 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5409 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5410 goto do_unallocated; 5411 } else if (s->pauth_active) { 5412 tcg_rd = cpu_reg(s, rd); 5413 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5414 } 5415 break; 5416 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5417 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5418 goto do_unallocated; 5419 } else if (s->pauth_active) { 5420 tcg_rd = cpu_reg(s, rd); 5421 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5422 } 5423 break; 5424 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5425 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5426 goto do_unallocated; 5427 } else if (s->pauth_active) { 5428 tcg_rd = cpu_reg(s, rd); 5429 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5430 } 5431 break; 5432 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5433 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5434 goto do_unallocated; 5435 } else if (s->pauth_active) { 5436 tcg_rd = cpu_reg(s, rd); 5437 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5438 } 5439 break; 5440 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5441 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5442 goto do_unallocated; 5443 } else if (s->pauth_active) { 5444 tcg_rd = cpu_reg(s, rd); 5445 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5446 } 5447 break; 5448 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5449 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5450 goto do_unallocated; 5451 } else if (s->pauth_active) { 5452 tcg_rd = cpu_reg(s, rd); 5453 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5454 } 5455 break; 5456 case MAP(1, 0x01, 0x10): /* XPACI */ 5457 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5458 goto do_unallocated; 5459 } else if (s->pauth_active) { 5460 tcg_rd = cpu_reg(s, rd); 5461 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5462 } 5463 break; 5464 case MAP(1, 0x01, 0x11): /* XPACD */ 5465 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5466 goto do_unallocated; 5467 } else if (s->pauth_active) { 5468 tcg_rd = cpu_reg(s, rd); 5469 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5470 } 5471 break; 5472 default: 5473 do_unallocated: 5474 unallocated_encoding(s); 5475 break; 5476 } 5477 5478 #undef MAP 5479 } 5480 5481 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5482 unsigned int rm, unsigned int rn, unsigned int rd) 5483 { 5484 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5485 tcg_rd = cpu_reg(s, rd); 5486 5487 if (!sf && is_signed) { 5488 tcg_n = tcg_temp_new_i64(); 5489 tcg_m = tcg_temp_new_i64(); 5490 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5491 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5492 } else { 5493 tcg_n = read_cpu_reg(s, rn, sf); 5494 tcg_m = read_cpu_reg(s, rm, sf); 5495 } 5496 5497 if (is_signed) { 5498 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5499 } else { 5500 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5501 } 5502 5503 if (!sf) { /* zero extend final result */ 5504 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5505 } 5506 } 5507 5508 /* LSLV, LSRV, ASRV, RORV */ 5509 static void handle_shift_reg(DisasContext *s, 5510 enum a64_shift_type shift_type, unsigned int sf, 5511 unsigned int rm, unsigned int rn, unsigned int rd) 5512 { 5513 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5514 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5515 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5516 5517 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5518 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5519 } 5520 5521 /* CRC32[BHWX], CRC32C[BHWX] */ 5522 static void handle_crc32(DisasContext *s, 5523 unsigned int sf, unsigned int sz, bool crc32c, 5524 unsigned int rm, unsigned int rn, unsigned int rd) 5525 { 5526 TCGv_i64 tcg_acc, tcg_val; 5527 TCGv_i32 tcg_bytes; 5528 5529 if (!dc_isar_feature(aa64_crc32, s) 5530 || (sf == 1 && sz != 3) 5531 || (sf == 0 && sz == 3)) { 5532 unallocated_encoding(s); 5533 return; 5534 } 5535 5536 if (sz == 3) { 5537 tcg_val = cpu_reg(s, rm); 5538 } else { 5539 uint64_t mask; 5540 switch (sz) { 5541 case 0: 5542 mask = 0xFF; 5543 break; 5544 case 1: 5545 mask = 0xFFFF; 5546 break; 5547 case 2: 5548 mask = 0xFFFFFFFF; 5549 break; 5550 default: 5551 g_assert_not_reached(); 5552 } 5553 tcg_val = tcg_temp_new_i64(); 5554 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5555 } 5556 5557 tcg_acc = cpu_reg(s, rn); 5558 tcg_bytes = tcg_constant_i32(1 << sz); 5559 5560 if (crc32c) { 5561 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5562 } else { 5563 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5564 } 5565 } 5566 5567 /* Data-processing (2 source) 5568 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5569 * +----+---+---+-----------------+------+--------+------+------+ 5570 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5571 * +----+---+---+-----------------+------+--------+------+------+ 5572 */ 5573 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5574 { 5575 unsigned int sf, rm, opcode, rn, rd, setflag; 5576 sf = extract32(insn, 31, 1); 5577 setflag = extract32(insn, 29, 1); 5578 rm = extract32(insn, 16, 5); 5579 opcode = extract32(insn, 10, 6); 5580 rn = extract32(insn, 5, 5); 5581 rd = extract32(insn, 0, 5); 5582 5583 if (setflag && opcode != 0) { 5584 unallocated_encoding(s); 5585 return; 5586 } 5587 5588 switch (opcode) { 5589 case 0: /* SUBP(S) */ 5590 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5591 goto do_unallocated; 5592 } else { 5593 TCGv_i64 tcg_n, tcg_m, tcg_d; 5594 5595 tcg_n = read_cpu_reg_sp(s, rn, true); 5596 tcg_m = read_cpu_reg_sp(s, rm, true); 5597 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5598 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5599 tcg_d = cpu_reg(s, rd); 5600 5601 if (setflag) { 5602 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5603 } else { 5604 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5605 } 5606 } 5607 break; 5608 case 2: /* UDIV */ 5609 handle_div(s, false, sf, rm, rn, rd); 5610 break; 5611 case 3: /* SDIV */ 5612 handle_div(s, true, sf, rm, rn, rd); 5613 break; 5614 case 4: /* IRG */ 5615 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5616 goto do_unallocated; 5617 } 5618 if (s->ata[0]) { 5619 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5620 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5621 } else { 5622 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5623 cpu_reg_sp(s, rn)); 5624 } 5625 break; 5626 case 5: /* GMI */ 5627 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5628 goto do_unallocated; 5629 } else { 5630 TCGv_i64 t = tcg_temp_new_i64(); 5631 5632 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5633 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5634 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5635 } 5636 break; 5637 case 8: /* LSLV */ 5638 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5639 break; 5640 case 9: /* LSRV */ 5641 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5642 break; 5643 case 10: /* ASRV */ 5644 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5645 break; 5646 case 11: /* RORV */ 5647 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5648 break; 5649 case 12: /* PACGA */ 5650 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5651 goto do_unallocated; 5652 } 5653 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5654 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5655 break; 5656 case 16: 5657 case 17: 5658 case 18: 5659 case 19: 5660 case 20: 5661 case 21: 5662 case 22: 5663 case 23: /* CRC32 */ 5664 { 5665 int sz = extract32(opcode, 0, 2); 5666 bool crc32c = extract32(opcode, 2, 1); 5667 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5668 break; 5669 } 5670 default: 5671 do_unallocated: 5672 unallocated_encoding(s); 5673 break; 5674 } 5675 } 5676 5677 /* 5678 * Data processing - register 5679 * 31 30 29 28 25 21 20 16 10 0 5680 * +--+---+--+---+-------+-----+-------+-------+---------+ 5681 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5682 * +--+---+--+---+-------+-----+-------+-------+---------+ 5683 */ 5684 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5685 { 5686 int op0 = extract32(insn, 30, 1); 5687 int op1 = extract32(insn, 28, 1); 5688 int op2 = extract32(insn, 21, 4); 5689 int op3 = extract32(insn, 10, 6); 5690 5691 if (!op1) { 5692 if (op2 & 8) { 5693 if (op2 & 1) { 5694 /* Add/sub (extended register) */ 5695 disas_add_sub_ext_reg(s, insn); 5696 } else { 5697 /* Add/sub (shifted register) */ 5698 disas_add_sub_reg(s, insn); 5699 } 5700 } else { 5701 /* Logical (shifted register) */ 5702 disas_logic_reg(s, insn); 5703 } 5704 return; 5705 } 5706 5707 switch (op2) { 5708 case 0x0: 5709 switch (op3) { 5710 case 0x00: /* Add/subtract (with carry) */ 5711 disas_adc_sbc(s, insn); 5712 break; 5713 5714 case 0x01: /* Rotate right into flags */ 5715 case 0x21: 5716 disas_rotate_right_into_flags(s, insn); 5717 break; 5718 5719 case 0x02: /* Evaluate into flags */ 5720 case 0x12: 5721 case 0x22: 5722 case 0x32: 5723 disas_evaluate_into_flags(s, insn); 5724 break; 5725 5726 default: 5727 goto do_unallocated; 5728 } 5729 break; 5730 5731 case 0x2: /* Conditional compare */ 5732 disas_cc(s, insn); /* both imm and reg forms */ 5733 break; 5734 5735 case 0x4: /* Conditional select */ 5736 disas_cond_select(s, insn); 5737 break; 5738 5739 case 0x6: /* Data-processing */ 5740 if (op0) { /* (1 source) */ 5741 disas_data_proc_1src(s, insn); 5742 } else { /* (2 source) */ 5743 disas_data_proc_2src(s, insn); 5744 } 5745 break; 5746 case 0x8 ... 0xf: /* (3 source) */ 5747 disas_data_proc_3src(s, insn); 5748 break; 5749 5750 default: 5751 do_unallocated: 5752 unallocated_encoding(s); 5753 break; 5754 } 5755 } 5756 5757 static void handle_fp_compare(DisasContext *s, int size, 5758 unsigned int rn, unsigned int rm, 5759 bool cmp_with_zero, bool signal_all_nans) 5760 { 5761 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5762 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5763 5764 if (size == MO_64) { 5765 TCGv_i64 tcg_vn, tcg_vm; 5766 5767 tcg_vn = read_fp_dreg(s, rn); 5768 if (cmp_with_zero) { 5769 tcg_vm = tcg_constant_i64(0); 5770 } else { 5771 tcg_vm = read_fp_dreg(s, rm); 5772 } 5773 if (signal_all_nans) { 5774 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5775 } else { 5776 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5777 } 5778 } else { 5779 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5780 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5781 5782 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5783 if (cmp_with_zero) { 5784 tcg_gen_movi_i32(tcg_vm, 0); 5785 } else { 5786 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5787 } 5788 5789 switch (size) { 5790 case MO_32: 5791 if (signal_all_nans) { 5792 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5793 } else { 5794 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5795 } 5796 break; 5797 case MO_16: 5798 if (signal_all_nans) { 5799 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5800 } else { 5801 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5802 } 5803 break; 5804 default: 5805 g_assert_not_reached(); 5806 } 5807 } 5808 5809 gen_set_nzcv(tcg_flags); 5810 } 5811 5812 /* Floating point compare 5813 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5814 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5816 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5817 */ 5818 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5819 { 5820 unsigned int mos, type, rm, op, rn, opc, op2r; 5821 int size; 5822 5823 mos = extract32(insn, 29, 3); 5824 type = extract32(insn, 22, 2); 5825 rm = extract32(insn, 16, 5); 5826 op = extract32(insn, 14, 2); 5827 rn = extract32(insn, 5, 5); 5828 opc = extract32(insn, 3, 2); 5829 op2r = extract32(insn, 0, 3); 5830 5831 if (mos || op || op2r) { 5832 unallocated_encoding(s); 5833 return; 5834 } 5835 5836 switch (type) { 5837 case 0: 5838 size = MO_32; 5839 break; 5840 case 1: 5841 size = MO_64; 5842 break; 5843 case 3: 5844 size = MO_16; 5845 if (dc_isar_feature(aa64_fp16, s)) { 5846 break; 5847 } 5848 /* fallthru */ 5849 default: 5850 unallocated_encoding(s); 5851 return; 5852 } 5853 5854 if (!fp_access_check(s)) { 5855 return; 5856 } 5857 5858 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5859 } 5860 5861 /* Floating point conditional compare 5862 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5863 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5864 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5865 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5866 */ 5867 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5868 { 5869 unsigned int mos, type, rm, cond, rn, op, nzcv; 5870 TCGLabel *label_continue = NULL; 5871 int size; 5872 5873 mos = extract32(insn, 29, 3); 5874 type = extract32(insn, 22, 2); 5875 rm = extract32(insn, 16, 5); 5876 cond = extract32(insn, 12, 4); 5877 rn = extract32(insn, 5, 5); 5878 op = extract32(insn, 4, 1); 5879 nzcv = extract32(insn, 0, 4); 5880 5881 if (mos) { 5882 unallocated_encoding(s); 5883 return; 5884 } 5885 5886 switch (type) { 5887 case 0: 5888 size = MO_32; 5889 break; 5890 case 1: 5891 size = MO_64; 5892 break; 5893 case 3: 5894 size = MO_16; 5895 if (dc_isar_feature(aa64_fp16, s)) { 5896 break; 5897 } 5898 /* fallthru */ 5899 default: 5900 unallocated_encoding(s); 5901 return; 5902 } 5903 5904 if (!fp_access_check(s)) { 5905 return; 5906 } 5907 5908 if (cond < 0x0e) { /* not always */ 5909 TCGLabel *label_match = gen_new_label(); 5910 label_continue = gen_new_label(); 5911 arm_gen_test_cc(cond, label_match); 5912 /* nomatch: */ 5913 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5914 tcg_gen_br(label_continue); 5915 gen_set_label(label_match); 5916 } 5917 5918 handle_fp_compare(s, size, rn, rm, false, op); 5919 5920 if (cond < 0x0e) { 5921 gen_set_label(label_continue); 5922 } 5923 } 5924 5925 /* Floating point conditional select 5926 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5927 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5928 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5929 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5930 */ 5931 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5932 { 5933 unsigned int mos, type, rm, cond, rn, rd; 5934 TCGv_i64 t_true, t_false; 5935 DisasCompare64 c; 5936 MemOp sz; 5937 5938 mos = extract32(insn, 29, 3); 5939 type = extract32(insn, 22, 2); 5940 rm = extract32(insn, 16, 5); 5941 cond = extract32(insn, 12, 4); 5942 rn = extract32(insn, 5, 5); 5943 rd = extract32(insn, 0, 5); 5944 5945 if (mos) { 5946 unallocated_encoding(s); 5947 return; 5948 } 5949 5950 switch (type) { 5951 case 0: 5952 sz = MO_32; 5953 break; 5954 case 1: 5955 sz = MO_64; 5956 break; 5957 case 3: 5958 sz = MO_16; 5959 if (dc_isar_feature(aa64_fp16, s)) { 5960 break; 5961 } 5962 /* fallthru */ 5963 default: 5964 unallocated_encoding(s); 5965 return; 5966 } 5967 5968 if (!fp_access_check(s)) { 5969 return; 5970 } 5971 5972 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5973 t_true = tcg_temp_new_i64(); 5974 t_false = tcg_temp_new_i64(); 5975 read_vec_element(s, t_true, rn, 0, sz); 5976 read_vec_element(s, t_false, rm, 0, sz); 5977 5978 a64_test_cc(&c, cond); 5979 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5980 t_true, t_false); 5981 5982 /* Note that sregs & hregs write back zeros to the high bits, 5983 and we've already done the zero-extension. */ 5984 write_fp_dreg(s, rd, t_true); 5985 } 5986 5987 /* Floating-point data-processing (1 source) - half precision */ 5988 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5989 { 5990 TCGv_ptr fpst = NULL; 5991 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5992 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5993 5994 switch (opcode) { 5995 case 0x0: /* FMOV */ 5996 tcg_gen_mov_i32(tcg_res, tcg_op); 5997 break; 5998 case 0x1: /* FABS */ 5999 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6000 break; 6001 case 0x2: /* FNEG */ 6002 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6003 break; 6004 case 0x3: /* FSQRT */ 6005 fpst = fpstatus_ptr(FPST_FPCR_F16); 6006 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6007 break; 6008 case 0x8: /* FRINTN */ 6009 case 0x9: /* FRINTP */ 6010 case 0xa: /* FRINTM */ 6011 case 0xb: /* FRINTZ */ 6012 case 0xc: /* FRINTA */ 6013 { 6014 TCGv_i32 tcg_rmode; 6015 6016 fpst = fpstatus_ptr(FPST_FPCR_F16); 6017 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6018 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6019 gen_restore_rmode(tcg_rmode, fpst); 6020 break; 6021 } 6022 case 0xe: /* FRINTX */ 6023 fpst = fpstatus_ptr(FPST_FPCR_F16); 6024 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6025 break; 6026 case 0xf: /* FRINTI */ 6027 fpst = fpstatus_ptr(FPST_FPCR_F16); 6028 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6029 break; 6030 default: 6031 g_assert_not_reached(); 6032 } 6033 6034 write_fp_sreg(s, rd, tcg_res); 6035 } 6036 6037 /* Floating-point data-processing (1 source) - single precision */ 6038 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6039 { 6040 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6041 TCGv_i32 tcg_op, tcg_res; 6042 TCGv_ptr fpst; 6043 int rmode = -1; 6044 6045 tcg_op = read_fp_sreg(s, rn); 6046 tcg_res = tcg_temp_new_i32(); 6047 6048 switch (opcode) { 6049 case 0x0: /* FMOV */ 6050 tcg_gen_mov_i32(tcg_res, tcg_op); 6051 goto done; 6052 case 0x1: /* FABS */ 6053 gen_helper_vfp_abss(tcg_res, tcg_op); 6054 goto done; 6055 case 0x2: /* FNEG */ 6056 gen_helper_vfp_negs(tcg_res, tcg_op); 6057 goto done; 6058 case 0x3: /* FSQRT */ 6059 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6060 goto done; 6061 case 0x6: /* BFCVT */ 6062 gen_fpst = gen_helper_bfcvt; 6063 break; 6064 case 0x8: /* FRINTN */ 6065 case 0x9: /* FRINTP */ 6066 case 0xa: /* FRINTM */ 6067 case 0xb: /* FRINTZ */ 6068 case 0xc: /* FRINTA */ 6069 rmode = opcode & 7; 6070 gen_fpst = gen_helper_rints; 6071 break; 6072 case 0xe: /* FRINTX */ 6073 gen_fpst = gen_helper_rints_exact; 6074 break; 6075 case 0xf: /* FRINTI */ 6076 gen_fpst = gen_helper_rints; 6077 break; 6078 case 0x10: /* FRINT32Z */ 6079 rmode = FPROUNDING_ZERO; 6080 gen_fpst = gen_helper_frint32_s; 6081 break; 6082 case 0x11: /* FRINT32X */ 6083 gen_fpst = gen_helper_frint32_s; 6084 break; 6085 case 0x12: /* FRINT64Z */ 6086 rmode = FPROUNDING_ZERO; 6087 gen_fpst = gen_helper_frint64_s; 6088 break; 6089 case 0x13: /* FRINT64X */ 6090 gen_fpst = gen_helper_frint64_s; 6091 break; 6092 default: 6093 g_assert_not_reached(); 6094 } 6095 6096 fpst = fpstatus_ptr(FPST_FPCR); 6097 if (rmode >= 0) { 6098 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6099 gen_fpst(tcg_res, tcg_op, fpst); 6100 gen_restore_rmode(tcg_rmode, fpst); 6101 } else { 6102 gen_fpst(tcg_res, tcg_op, fpst); 6103 } 6104 6105 done: 6106 write_fp_sreg(s, rd, tcg_res); 6107 } 6108 6109 /* Floating-point data-processing (1 source) - double precision */ 6110 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6111 { 6112 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6113 TCGv_i64 tcg_op, tcg_res; 6114 TCGv_ptr fpst; 6115 int rmode = -1; 6116 6117 switch (opcode) { 6118 case 0x0: /* FMOV */ 6119 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6120 return; 6121 } 6122 6123 tcg_op = read_fp_dreg(s, rn); 6124 tcg_res = tcg_temp_new_i64(); 6125 6126 switch (opcode) { 6127 case 0x1: /* FABS */ 6128 gen_helper_vfp_absd(tcg_res, tcg_op); 6129 goto done; 6130 case 0x2: /* FNEG */ 6131 gen_helper_vfp_negd(tcg_res, tcg_op); 6132 goto done; 6133 case 0x3: /* FSQRT */ 6134 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6135 goto done; 6136 case 0x8: /* FRINTN */ 6137 case 0x9: /* FRINTP */ 6138 case 0xa: /* FRINTM */ 6139 case 0xb: /* FRINTZ */ 6140 case 0xc: /* FRINTA */ 6141 rmode = opcode & 7; 6142 gen_fpst = gen_helper_rintd; 6143 break; 6144 case 0xe: /* FRINTX */ 6145 gen_fpst = gen_helper_rintd_exact; 6146 break; 6147 case 0xf: /* FRINTI */ 6148 gen_fpst = gen_helper_rintd; 6149 break; 6150 case 0x10: /* FRINT32Z */ 6151 rmode = FPROUNDING_ZERO; 6152 gen_fpst = gen_helper_frint32_d; 6153 break; 6154 case 0x11: /* FRINT32X */ 6155 gen_fpst = gen_helper_frint32_d; 6156 break; 6157 case 0x12: /* FRINT64Z */ 6158 rmode = FPROUNDING_ZERO; 6159 gen_fpst = gen_helper_frint64_d; 6160 break; 6161 case 0x13: /* FRINT64X */ 6162 gen_fpst = gen_helper_frint64_d; 6163 break; 6164 default: 6165 g_assert_not_reached(); 6166 } 6167 6168 fpst = fpstatus_ptr(FPST_FPCR); 6169 if (rmode >= 0) { 6170 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6171 gen_fpst(tcg_res, tcg_op, fpst); 6172 gen_restore_rmode(tcg_rmode, fpst); 6173 } else { 6174 gen_fpst(tcg_res, tcg_op, fpst); 6175 } 6176 6177 done: 6178 write_fp_dreg(s, rd, tcg_res); 6179 } 6180 6181 static void handle_fp_fcvt(DisasContext *s, int opcode, 6182 int rd, int rn, int dtype, int ntype) 6183 { 6184 switch (ntype) { 6185 case 0x0: 6186 { 6187 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6188 if (dtype == 1) { 6189 /* Single to double */ 6190 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6191 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6192 write_fp_dreg(s, rd, tcg_rd); 6193 } else { 6194 /* Single to half */ 6195 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6196 TCGv_i32 ahp = get_ahp_flag(); 6197 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6198 6199 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6200 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6201 write_fp_sreg(s, rd, tcg_rd); 6202 } 6203 break; 6204 } 6205 case 0x1: 6206 { 6207 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6208 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6209 if (dtype == 0) { 6210 /* Double to single */ 6211 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6212 } else { 6213 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6214 TCGv_i32 ahp = get_ahp_flag(); 6215 /* Double to half */ 6216 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6217 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6218 } 6219 write_fp_sreg(s, rd, tcg_rd); 6220 break; 6221 } 6222 case 0x3: 6223 { 6224 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6225 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6226 TCGv_i32 tcg_ahp = get_ahp_flag(); 6227 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6228 if (dtype == 0) { 6229 /* Half to single */ 6230 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6231 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6232 write_fp_sreg(s, rd, tcg_rd); 6233 } else { 6234 /* Half to double */ 6235 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6236 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6237 write_fp_dreg(s, rd, tcg_rd); 6238 } 6239 break; 6240 } 6241 default: 6242 g_assert_not_reached(); 6243 } 6244 } 6245 6246 /* Floating point data-processing (1 source) 6247 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6248 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6249 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6250 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6251 */ 6252 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6253 { 6254 int mos = extract32(insn, 29, 3); 6255 int type = extract32(insn, 22, 2); 6256 int opcode = extract32(insn, 15, 6); 6257 int rn = extract32(insn, 5, 5); 6258 int rd = extract32(insn, 0, 5); 6259 6260 if (mos) { 6261 goto do_unallocated; 6262 } 6263 6264 switch (opcode) { 6265 case 0x4: case 0x5: case 0x7: 6266 { 6267 /* FCVT between half, single and double precision */ 6268 int dtype = extract32(opcode, 0, 2); 6269 if (type == 2 || dtype == type) { 6270 goto do_unallocated; 6271 } 6272 if (!fp_access_check(s)) { 6273 return; 6274 } 6275 6276 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6277 break; 6278 } 6279 6280 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6281 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6282 goto do_unallocated; 6283 } 6284 /* fall through */ 6285 case 0x0 ... 0x3: 6286 case 0x8 ... 0xc: 6287 case 0xe ... 0xf: 6288 /* 32-to-32 and 64-to-64 ops */ 6289 switch (type) { 6290 case 0: 6291 if (!fp_access_check(s)) { 6292 return; 6293 } 6294 handle_fp_1src_single(s, opcode, rd, rn); 6295 break; 6296 case 1: 6297 if (!fp_access_check(s)) { 6298 return; 6299 } 6300 handle_fp_1src_double(s, opcode, rd, rn); 6301 break; 6302 case 3: 6303 if (!dc_isar_feature(aa64_fp16, s)) { 6304 goto do_unallocated; 6305 } 6306 6307 if (!fp_access_check(s)) { 6308 return; 6309 } 6310 handle_fp_1src_half(s, opcode, rd, rn); 6311 break; 6312 default: 6313 goto do_unallocated; 6314 } 6315 break; 6316 6317 case 0x6: 6318 switch (type) { 6319 case 1: /* BFCVT */ 6320 if (!dc_isar_feature(aa64_bf16, s)) { 6321 goto do_unallocated; 6322 } 6323 if (!fp_access_check(s)) { 6324 return; 6325 } 6326 handle_fp_1src_single(s, opcode, rd, rn); 6327 break; 6328 default: 6329 goto do_unallocated; 6330 } 6331 break; 6332 6333 default: 6334 do_unallocated: 6335 unallocated_encoding(s); 6336 break; 6337 } 6338 } 6339 6340 /* Floating-point data-processing (2 source) - single precision */ 6341 static void handle_fp_2src_single(DisasContext *s, int opcode, 6342 int rd, int rn, int rm) 6343 { 6344 TCGv_i32 tcg_op1; 6345 TCGv_i32 tcg_op2; 6346 TCGv_i32 tcg_res; 6347 TCGv_ptr fpst; 6348 6349 tcg_res = tcg_temp_new_i32(); 6350 fpst = fpstatus_ptr(FPST_FPCR); 6351 tcg_op1 = read_fp_sreg(s, rn); 6352 tcg_op2 = read_fp_sreg(s, rm); 6353 6354 switch (opcode) { 6355 case 0x0: /* FMUL */ 6356 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6357 break; 6358 case 0x1: /* FDIV */ 6359 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6360 break; 6361 case 0x2: /* FADD */ 6362 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6363 break; 6364 case 0x3: /* FSUB */ 6365 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x4: /* FMAX */ 6368 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x5: /* FMIN */ 6371 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6372 break; 6373 case 0x6: /* FMAXNM */ 6374 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6375 break; 6376 case 0x7: /* FMINNM */ 6377 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6378 break; 6379 case 0x8: /* FNMUL */ 6380 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6381 gen_helper_vfp_negs(tcg_res, tcg_res); 6382 break; 6383 } 6384 6385 write_fp_sreg(s, rd, tcg_res); 6386 } 6387 6388 /* Floating-point data-processing (2 source) - double precision */ 6389 static void handle_fp_2src_double(DisasContext *s, int opcode, 6390 int rd, int rn, int rm) 6391 { 6392 TCGv_i64 tcg_op1; 6393 TCGv_i64 tcg_op2; 6394 TCGv_i64 tcg_res; 6395 TCGv_ptr fpst; 6396 6397 tcg_res = tcg_temp_new_i64(); 6398 fpst = fpstatus_ptr(FPST_FPCR); 6399 tcg_op1 = read_fp_dreg(s, rn); 6400 tcg_op2 = read_fp_dreg(s, rm); 6401 6402 switch (opcode) { 6403 case 0x0: /* FMUL */ 6404 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6405 break; 6406 case 0x1: /* FDIV */ 6407 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6408 break; 6409 case 0x2: /* FADD */ 6410 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6411 break; 6412 case 0x3: /* FSUB */ 6413 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6414 break; 6415 case 0x4: /* FMAX */ 6416 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6417 break; 6418 case 0x5: /* FMIN */ 6419 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6420 break; 6421 case 0x6: /* FMAXNM */ 6422 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6423 break; 6424 case 0x7: /* FMINNM */ 6425 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6426 break; 6427 case 0x8: /* FNMUL */ 6428 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6429 gen_helper_vfp_negd(tcg_res, tcg_res); 6430 break; 6431 } 6432 6433 write_fp_dreg(s, rd, tcg_res); 6434 } 6435 6436 /* Floating-point data-processing (2 source) - half precision */ 6437 static void handle_fp_2src_half(DisasContext *s, int opcode, 6438 int rd, int rn, int rm) 6439 { 6440 TCGv_i32 tcg_op1; 6441 TCGv_i32 tcg_op2; 6442 TCGv_i32 tcg_res; 6443 TCGv_ptr fpst; 6444 6445 tcg_res = tcg_temp_new_i32(); 6446 fpst = fpstatus_ptr(FPST_FPCR_F16); 6447 tcg_op1 = read_fp_hreg(s, rn); 6448 tcg_op2 = read_fp_hreg(s, rm); 6449 6450 switch (opcode) { 6451 case 0x0: /* FMUL */ 6452 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6453 break; 6454 case 0x1: /* FDIV */ 6455 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6456 break; 6457 case 0x2: /* FADD */ 6458 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6459 break; 6460 case 0x3: /* FSUB */ 6461 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6462 break; 6463 case 0x4: /* FMAX */ 6464 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6465 break; 6466 case 0x5: /* FMIN */ 6467 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6468 break; 6469 case 0x6: /* FMAXNM */ 6470 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6471 break; 6472 case 0x7: /* FMINNM */ 6473 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6474 break; 6475 case 0x8: /* FNMUL */ 6476 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6477 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6478 break; 6479 default: 6480 g_assert_not_reached(); 6481 } 6482 6483 write_fp_sreg(s, rd, tcg_res); 6484 } 6485 6486 /* Floating point data-processing (2 source) 6487 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6488 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6489 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6490 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6491 */ 6492 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6493 { 6494 int mos = extract32(insn, 29, 3); 6495 int type = extract32(insn, 22, 2); 6496 int rd = extract32(insn, 0, 5); 6497 int rn = extract32(insn, 5, 5); 6498 int rm = extract32(insn, 16, 5); 6499 int opcode = extract32(insn, 12, 4); 6500 6501 if (opcode > 8 || mos) { 6502 unallocated_encoding(s); 6503 return; 6504 } 6505 6506 switch (type) { 6507 case 0: 6508 if (!fp_access_check(s)) { 6509 return; 6510 } 6511 handle_fp_2src_single(s, opcode, rd, rn, rm); 6512 break; 6513 case 1: 6514 if (!fp_access_check(s)) { 6515 return; 6516 } 6517 handle_fp_2src_double(s, opcode, rd, rn, rm); 6518 break; 6519 case 3: 6520 if (!dc_isar_feature(aa64_fp16, s)) { 6521 unallocated_encoding(s); 6522 return; 6523 } 6524 if (!fp_access_check(s)) { 6525 return; 6526 } 6527 handle_fp_2src_half(s, opcode, rd, rn, rm); 6528 break; 6529 default: 6530 unallocated_encoding(s); 6531 } 6532 } 6533 6534 /* Floating-point data-processing (3 source) - single precision */ 6535 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6536 int rd, int rn, int rm, int ra) 6537 { 6538 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6539 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6540 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6541 6542 tcg_op1 = read_fp_sreg(s, rn); 6543 tcg_op2 = read_fp_sreg(s, rm); 6544 tcg_op3 = read_fp_sreg(s, ra); 6545 6546 /* These are fused multiply-add, and must be done as one 6547 * floating point operation with no rounding between the 6548 * multiplication and addition steps. 6549 * NB that doing the negations here as separate steps is 6550 * correct : an input NaN should come out with its sign bit 6551 * flipped if it is a negated-input. 6552 */ 6553 if (o1 == true) { 6554 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6555 } 6556 6557 if (o0 != o1) { 6558 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6559 } 6560 6561 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6562 6563 write_fp_sreg(s, rd, tcg_res); 6564 } 6565 6566 /* Floating-point data-processing (3 source) - double precision */ 6567 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6568 int rd, int rn, int rm, int ra) 6569 { 6570 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6571 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6572 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6573 6574 tcg_op1 = read_fp_dreg(s, rn); 6575 tcg_op2 = read_fp_dreg(s, rm); 6576 tcg_op3 = read_fp_dreg(s, ra); 6577 6578 /* These are fused multiply-add, and must be done as one 6579 * floating point operation with no rounding between the 6580 * multiplication and addition steps. 6581 * NB that doing the negations here as separate steps is 6582 * correct : an input NaN should come out with its sign bit 6583 * flipped if it is a negated-input. 6584 */ 6585 if (o1 == true) { 6586 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6587 } 6588 6589 if (o0 != o1) { 6590 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6591 } 6592 6593 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6594 6595 write_fp_dreg(s, rd, tcg_res); 6596 } 6597 6598 /* Floating-point data-processing (3 source) - half precision */ 6599 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6600 int rd, int rn, int rm, int ra) 6601 { 6602 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6603 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6604 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6605 6606 tcg_op1 = read_fp_hreg(s, rn); 6607 tcg_op2 = read_fp_hreg(s, rm); 6608 tcg_op3 = read_fp_hreg(s, ra); 6609 6610 /* These are fused multiply-add, and must be done as one 6611 * floating point operation with no rounding between the 6612 * multiplication and addition steps. 6613 * NB that doing the negations here as separate steps is 6614 * correct : an input NaN should come out with its sign bit 6615 * flipped if it is a negated-input. 6616 */ 6617 if (o1 == true) { 6618 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6619 } 6620 6621 if (o0 != o1) { 6622 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6623 } 6624 6625 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6626 6627 write_fp_sreg(s, rd, tcg_res); 6628 } 6629 6630 /* Floating point data-processing (3 source) 6631 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6632 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6633 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6634 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6635 */ 6636 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6637 { 6638 int mos = extract32(insn, 29, 3); 6639 int type = extract32(insn, 22, 2); 6640 int rd = extract32(insn, 0, 5); 6641 int rn = extract32(insn, 5, 5); 6642 int ra = extract32(insn, 10, 5); 6643 int rm = extract32(insn, 16, 5); 6644 bool o0 = extract32(insn, 15, 1); 6645 bool o1 = extract32(insn, 21, 1); 6646 6647 if (mos) { 6648 unallocated_encoding(s); 6649 return; 6650 } 6651 6652 switch (type) { 6653 case 0: 6654 if (!fp_access_check(s)) { 6655 return; 6656 } 6657 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6658 break; 6659 case 1: 6660 if (!fp_access_check(s)) { 6661 return; 6662 } 6663 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6664 break; 6665 case 3: 6666 if (!dc_isar_feature(aa64_fp16, s)) { 6667 unallocated_encoding(s); 6668 return; 6669 } 6670 if (!fp_access_check(s)) { 6671 return; 6672 } 6673 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6674 break; 6675 default: 6676 unallocated_encoding(s); 6677 } 6678 } 6679 6680 /* Floating point immediate 6681 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6682 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6683 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6684 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6685 */ 6686 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6687 { 6688 int rd = extract32(insn, 0, 5); 6689 int imm5 = extract32(insn, 5, 5); 6690 int imm8 = extract32(insn, 13, 8); 6691 int type = extract32(insn, 22, 2); 6692 int mos = extract32(insn, 29, 3); 6693 uint64_t imm; 6694 MemOp sz; 6695 6696 if (mos || imm5) { 6697 unallocated_encoding(s); 6698 return; 6699 } 6700 6701 switch (type) { 6702 case 0: 6703 sz = MO_32; 6704 break; 6705 case 1: 6706 sz = MO_64; 6707 break; 6708 case 3: 6709 sz = MO_16; 6710 if (dc_isar_feature(aa64_fp16, s)) { 6711 break; 6712 } 6713 /* fallthru */ 6714 default: 6715 unallocated_encoding(s); 6716 return; 6717 } 6718 6719 if (!fp_access_check(s)) { 6720 return; 6721 } 6722 6723 imm = vfp_expand_imm(sz, imm8); 6724 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6725 } 6726 6727 /* Handle floating point <=> fixed point conversions. Note that we can 6728 * also deal with fp <=> integer conversions as a special case (scale == 64) 6729 * OPTME: consider handling that special case specially or at least skipping 6730 * the call to scalbn in the helpers for zero shifts. 6731 */ 6732 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6733 bool itof, int rmode, int scale, int sf, int type) 6734 { 6735 bool is_signed = !(opcode & 1); 6736 TCGv_ptr tcg_fpstatus; 6737 TCGv_i32 tcg_shift, tcg_single; 6738 TCGv_i64 tcg_double; 6739 6740 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6741 6742 tcg_shift = tcg_constant_i32(64 - scale); 6743 6744 if (itof) { 6745 TCGv_i64 tcg_int = cpu_reg(s, rn); 6746 if (!sf) { 6747 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6748 6749 if (is_signed) { 6750 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6751 } else { 6752 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6753 } 6754 6755 tcg_int = tcg_extend; 6756 } 6757 6758 switch (type) { 6759 case 1: /* float64 */ 6760 tcg_double = tcg_temp_new_i64(); 6761 if (is_signed) { 6762 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6763 tcg_shift, tcg_fpstatus); 6764 } else { 6765 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6766 tcg_shift, tcg_fpstatus); 6767 } 6768 write_fp_dreg(s, rd, tcg_double); 6769 break; 6770 6771 case 0: /* float32 */ 6772 tcg_single = tcg_temp_new_i32(); 6773 if (is_signed) { 6774 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6775 tcg_shift, tcg_fpstatus); 6776 } else { 6777 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6778 tcg_shift, tcg_fpstatus); 6779 } 6780 write_fp_sreg(s, rd, tcg_single); 6781 break; 6782 6783 case 3: /* float16 */ 6784 tcg_single = tcg_temp_new_i32(); 6785 if (is_signed) { 6786 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6787 tcg_shift, tcg_fpstatus); 6788 } else { 6789 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6790 tcg_shift, tcg_fpstatus); 6791 } 6792 write_fp_sreg(s, rd, tcg_single); 6793 break; 6794 6795 default: 6796 g_assert_not_reached(); 6797 } 6798 } else { 6799 TCGv_i64 tcg_int = cpu_reg(s, rd); 6800 TCGv_i32 tcg_rmode; 6801 6802 if (extract32(opcode, 2, 1)) { 6803 /* There are too many rounding modes to all fit into rmode, 6804 * so FCVTA[US] is a special case. 6805 */ 6806 rmode = FPROUNDING_TIEAWAY; 6807 } 6808 6809 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6810 6811 switch (type) { 6812 case 1: /* float64 */ 6813 tcg_double = read_fp_dreg(s, rn); 6814 if (is_signed) { 6815 if (!sf) { 6816 gen_helper_vfp_tosld(tcg_int, tcg_double, 6817 tcg_shift, tcg_fpstatus); 6818 } else { 6819 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6820 tcg_shift, tcg_fpstatus); 6821 } 6822 } else { 6823 if (!sf) { 6824 gen_helper_vfp_tould(tcg_int, tcg_double, 6825 tcg_shift, tcg_fpstatus); 6826 } else { 6827 gen_helper_vfp_touqd(tcg_int, tcg_double, 6828 tcg_shift, tcg_fpstatus); 6829 } 6830 } 6831 if (!sf) { 6832 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6833 } 6834 break; 6835 6836 case 0: /* float32 */ 6837 tcg_single = read_fp_sreg(s, rn); 6838 if (sf) { 6839 if (is_signed) { 6840 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6841 tcg_shift, tcg_fpstatus); 6842 } else { 6843 gen_helper_vfp_touqs(tcg_int, tcg_single, 6844 tcg_shift, tcg_fpstatus); 6845 } 6846 } else { 6847 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6848 if (is_signed) { 6849 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6850 tcg_shift, tcg_fpstatus); 6851 } else { 6852 gen_helper_vfp_touls(tcg_dest, tcg_single, 6853 tcg_shift, tcg_fpstatus); 6854 } 6855 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6856 } 6857 break; 6858 6859 case 3: /* float16 */ 6860 tcg_single = read_fp_sreg(s, rn); 6861 if (sf) { 6862 if (is_signed) { 6863 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6864 tcg_shift, tcg_fpstatus); 6865 } else { 6866 gen_helper_vfp_touqh(tcg_int, tcg_single, 6867 tcg_shift, tcg_fpstatus); 6868 } 6869 } else { 6870 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6871 if (is_signed) { 6872 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6873 tcg_shift, tcg_fpstatus); 6874 } else { 6875 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6876 tcg_shift, tcg_fpstatus); 6877 } 6878 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6879 } 6880 break; 6881 6882 default: 6883 g_assert_not_reached(); 6884 } 6885 6886 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6887 } 6888 } 6889 6890 /* Floating point <-> fixed point conversions 6891 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6892 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6893 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6894 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6895 */ 6896 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6897 { 6898 int rd = extract32(insn, 0, 5); 6899 int rn = extract32(insn, 5, 5); 6900 int scale = extract32(insn, 10, 6); 6901 int opcode = extract32(insn, 16, 3); 6902 int rmode = extract32(insn, 19, 2); 6903 int type = extract32(insn, 22, 2); 6904 bool sbit = extract32(insn, 29, 1); 6905 bool sf = extract32(insn, 31, 1); 6906 bool itof; 6907 6908 if (sbit || (!sf && scale < 32)) { 6909 unallocated_encoding(s); 6910 return; 6911 } 6912 6913 switch (type) { 6914 case 0: /* float32 */ 6915 case 1: /* float64 */ 6916 break; 6917 case 3: /* float16 */ 6918 if (dc_isar_feature(aa64_fp16, s)) { 6919 break; 6920 } 6921 /* fallthru */ 6922 default: 6923 unallocated_encoding(s); 6924 return; 6925 } 6926 6927 switch ((rmode << 3) | opcode) { 6928 case 0x2: /* SCVTF */ 6929 case 0x3: /* UCVTF */ 6930 itof = true; 6931 break; 6932 case 0x18: /* FCVTZS */ 6933 case 0x19: /* FCVTZU */ 6934 itof = false; 6935 break; 6936 default: 6937 unallocated_encoding(s); 6938 return; 6939 } 6940 6941 if (!fp_access_check(s)) { 6942 return; 6943 } 6944 6945 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6946 } 6947 6948 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6949 { 6950 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6951 * without conversion. 6952 */ 6953 6954 if (itof) { 6955 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6956 TCGv_i64 tmp; 6957 6958 switch (type) { 6959 case 0: 6960 /* 32 bit */ 6961 tmp = tcg_temp_new_i64(); 6962 tcg_gen_ext32u_i64(tmp, tcg_rn); 6963 write_fp_dreg(s, rd, tmp); 6964 break; 6965 case 1: 6966 /* 64 bit */ 6967 write_fp_dreg(s, rd, tcg_rn); 6968 break; 6969 case 2: 6970 /* 64 bit to top half. */ 6971 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6972 clear_vec_high(s, true, rd); 6973 break; 6974 case 3: 6975 /* 16 bit */ 6976 tmp = tcg_temp_new_i64(); 6977 tcg_gen_ext16u_i64(tmp, tcg_rn); 6978 write_fp_dreg(s, rd, tmp); 6979 break; 6980 default: 6981 g_assert_not_reached(); 6982 } 6983 } else { 6984 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6985 6986 switch (type) { 6987 case 0: 6988 /* 32 bit */ 6989 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6990 break; 6991 case 1: 6992 /* 64 bit */ 6993 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6994 break; 6995 case 2: 6996 /* 64 bits from top half */ 6997 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 6998 break; 6999 case 3: 7000 /* 16 bit */ 7001 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7002 break; 7003 default: 7004 g_assert_not_reached(); 7005 } 7006 } 7007 } 7008 7009 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7010 { 7011 TCGv_i64 t = read_fp_dreg(s, rn); 7012 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7013 7014 gen_helper_fjcvtzs(t, t, fpstatus); 7015 7016 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7017 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7018 tcg_gen_movi_i32(cpu_CF, 0); 7019 tcg_gen_movi_i32(cpu_NF, 0); 7020 tcg_gen_movi_i32(cpu_VF, 0); 7021 } 7022 7023 /* Floating point <-> integer conversions 7024 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7025 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7026 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7027 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7028 */ 7029 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7030 { 7031 int rd = extract32(insn, 0, 5); 7032 int rn = extract32(insn, 5, 5); 7033 int opcode = extract32(insn, 16, 3); 7034 int rmode = extract32(insn, 19, 2); 7035 int type = extract32(insn, 22, 2); 7036 bool sbit = extract32(insn, 29, 1); 7037 bool sf = extract32(insn, 31, 1); 7038 bool itof = false; 7039 7040 if (sbit) { 7041 goto do_unallocated; 7042 } 7043 7044 switch (opcode) { 7045 case 2: /* SCVTF */ 7046 case 3: /* UCVTF */ 7047 itof = true; 7048 /* fallthru */ 7049 case 4: /* FCVTAS */ 7050 case 5: /* FCVTAU */ 7051 if (rmode != 0) { 7052 goto do_unallocated; 7053 } 7054 /* fallthru */ 7055 case 0: /* FCVT[NPMZ]S */ 7056 case 1: /* FCVT[NPMZ]U */ 7057 switch (type) { 7058 case 0: /* float32 */ 7059 case 1: /* float64 */ 7060 break; 7061 case 3: /* float16 */ 7062 if (!dc_isar_feature(aa64_fp16, s)) { 7063 goto do_unallocated; 7064 } 7065 break; 7066 default: 7067 goto do_unallocated; 7068 } 7069 if (!fp_access_check(s)) { 7070 return; 7071 } 7072 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7073 break; 7074 7075 default: 7076 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7077 case 0b01100110: /* FMOV half <-> 32-bit int */ 7078 case 0b01100111: 7079 case 0b11100110: /* FMOV half <-> 64-bit int */ 7080 case 0b11100111: 7081 if (!dc_isar_feature(aa64_fp16, s)) { 7082 goto do_unallocated; 7083 } 7084 /* fallthru */ 7085 case 0b00000110: /* FMOV 32-bit */ 7086 case 0b00000111: 7087 case 0b10100110: /* FMOV 64-bit */ 7088 case 0b10100111: 7089 case 0b11001110: /* FMOV top half of 128-bit */ 7090 case 0b11001111: 7091 if (!fp_access_check(s)) { 7092 return; 7093 } 7094 itof = opcode & 1; 7095 handle_fmov(s, rd, rn, type, itof); 7096 break; 7097 7098 case 0b00111110: /* FJCVTZS */ 7099 if (!dc_isar_feature(aa64_jscvt, s)) { 7100 goto do_unallocated; 7101 } else if (fp_access_check(s)) { 7102 handle_fjcvtzs(s, rd, rn); 7103 } 7104 break; 7105 7106 default: 7107 do_unallocated: 7108 unallocated_encoding(s); 7109 return; 7110 } 7111 break; 7112 } 7113 } 7114 7115 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7116 * 31 30 29 28 25 24 0 7117 * +---+---+---+---------+-----------------------------+ 7118 * | | 0 | | 1 1 1 1 | | 7119 * +---+---+---+---------+-----------------------------+ 7120 */ 7121 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7122 { 7123 if (extract32(insn, 24, 1)) { 7124 /* Floating point data-processing (3 source) */ 7125 disas_fp_3src(s, insn); 7126 } else if (extract32(insn, 21, 1) == 0) { 7127 /* Floating point to fixed point conversions */ 7128 disas_fp_fixed_conv(s, insn); 7129 } else { 7130 switch (extract32(insn, 10, 2)) { 7131 case 1: 7132 /* Floating point conditional compare */ 7133 disas_fp_ccomp(s, insn); 7134 break; 7135 case 2: 7136 /* Floating point data-processing (2 source) */ 7137 disas_fp_2src(s, insn); 7138 break; 7139 case 3: 7140 /* Floating point conditional select */ 7141 disas_fp_csel(s, insn); 7142 break; 7143 case 0: 7144 switch (ctz32(extract32(insn, 12, 4))) { 7145 case 0: /* [15:12] == xxx1 */ 7146 /* Floating point immediate */ 7147 disas_fp_imm(s, insn); 7148 break; 7149 case 1: /* [15:12] == xx10 */ 7150 /* Floating point compare */ 7151 disas_fp_compare(s, insn); 7152 break; 7153 case 2: /* [15:12] == x100 */ 7154 /* Floating point data-processing (1 source) */ 7155 disas_fp_1src(s, insn); 7156 break; 7157 case 3: /* [15:12] == 1000 */ 7158 unallocated_encoding(s); 7159 break; 7160 default: /* [15:12] == 0000 */ 7161 /* Floating point <-> integer conversions */ 7162 disas_fp_int_conv(s, insn); 7163 break; 7164 } 7165 break; 7166 } 7167 } 7168 } 7169 7170 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7171 int pos) 7172 { 7173 /* Extract 64 bits from the middle of two concatenated 64 bit 7174 * vector register slices left:right. The extracted bits start 7175 * at 'pos' bits into the right (least significant) side. 7176 * We return the result in tcg_right, and guarantee not to 7177 * trash tcg_left. 7178 */ 7179 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7180 assert(pos > 0 && pos < 64); 7181 7182 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7183 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7184 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7185 } 7186 7187 /* EXT 7188 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7189 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7190 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7191 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7192 */ 7193 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7194 { 7195 int is_q = extract32(insn, 30, 1); 7196 int op2 = extract32(insn, 22, 2); 7197 int imm4 = extract32(insn, 11, 4); 7198 int rm = extract32(insn, 16, 5); 7199 int rn = extract32(insn, 5, 5); 7200 int rd = extract32(insn, 0, 5); 7201 int pos = imm4 << 3; 7202 TCGv_i64 tcg_resl, tcg_resh; 7203 7204 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7205 unallocated_encoding(s); 7206 return; 7207 } 7208 7209 if (!fp_access_check(s)) { 7210 return; 7211 } 7212 7213 tcg_resh = tcg_temp_new_i64(); 7214 tcg_resl = tcg_temp_new_i64(); 7215 7216 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7217 * either extracting 128 bits from a 128:128 concatenation, or 7218 * extracting 64 bits from a 64:64 concatenation. 7219 */ 7220 if (!is_q) { 7221 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7222 if (pos != 0) { 7223 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7224 do_ext64(s, tcg_resh, tcg_resl, pos); 7225 } 7226 } else { 7227 TCGv_i64 tcg_hh; 7228 typedef struct { 7229 int reg; 7230 int elt; 7231 } EltPosns; 7232 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7233 EltPosns *elt = eltposns; 7234 7235 if (pos >= 64) { 7236 elt++; 7237 pos -= 64; 7238 } 7239 7240 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7241 elt++; 7242 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7243 elt++; 7244 if (pos != 0) { 7245 do_ext64(s, tcg_resh, tcg_resl, pos); 7246 tcg_hh = tcg_temp_new_i64(); 7247 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7248 do_ext64(s, tcg_hh, tcg_resh, pos); 7249 } 7250 } 7251 7252 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7253 if (is_q) { 7254 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7255 } 7256 clear_vec_high(s, is_q, rd); 7257 } 7258 7259 /* TBL/TBX 7260 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7261 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7262 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7263 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7264 */ 7265 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7266 { 7267 int op2 = extract32(insn, 22, 2); 7268 int is_q = extract32(insn, 30, 1); 7269 int rm = extract32(insn, 16, 5); 7270 int rn = extract32(insn, 5, 5); 7271 int rd = extract32(insn, 0, 5); 7272 int is_tbx = extract32(insn, 12, 1); 7273 int len = (extract32(insn, 13, 2) + 1) * 16; 7274 7275 if (op2 != 0) { 7276 unallocated_encoding(s); 7277 return; 7278 } 7279 7280 if (!fp_access_check(s)) { 7281 return; 7282 } 7283 7284 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7285 vec_full_reg_offset(s, rm), tcg_env, 7286 is_q ? 16 : 8, vec_full_reg_size(s), 7287 (len << 6) | (is_tbx << 5) | rn, 7288 gen_helper_simd_tblx); 7289 } 7290 7291 /* ZIP/UZP/TRN 7292 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7293 * +---+---+-------------+------+---+------+---+------------------+------+ 7294 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7295 * +---+---+-------------+------+---+------+---+------------------+------+ 7296 */ 7297 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7298 { 7299 int rd = extract32(insn, 0, 5); 7300 int rn = extract32(insn, 5, 5); 7301 int rm = extract32(insn, 16, 5); 7302 int size = extract32(insn, 22, 2); 7303 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7304 * bit 2 indicates 1 vs 2 variant of the insn. 7305 */ 7306 int opcode = extract32(insn, 12, 2); 7307 bool part = extract32(insn, 14, 1); 7308 bool is_q = extract32(insn, 30, 1); 7309 int esize = 8 << size; 7310 int i; 7311 int datasize = is_q ? 128 : 64; 7312 int elements = datasize / esize; 7313 TCGv_i64 tcg_res[2], tcg_ele; 7314 7315 if (opcode == 0 || (size == 3 && !is_q)) { 7316 unallocated_encoding(s); 7317 return; 7318 } 7319 7320 if (!fp_access_check(s)) { 7321 return; 7322 } 7323 7324 tcg_res[0] = tcg_temp_new_i64(); 7325 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7326 tcg_ele = tcg_temp_new_i64(); 7327 7328 for (i = 0; i < elements; i++) { 7329 int o, w; 7330 7331 switch (opcode) { 7332 case 1: /* UZP1/2 */ 7333 { 7334 int midpoint = elements / 2; 7335 if (i < midpoint) { 7336 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7337 } else { 7338 read_vec_element(s, tcg_ele, rm, 7339 2 * (i - midpoint) + part, size); 7340 } 7341 break; 7342 } 7343 case 2: /* TRN1/2 */ 7344 if (i & 1) { 7345 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7346 } else { 7347 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7348 } 7349 break; 7350 case 3: /* ZIP1/2 */ 7351 { 7352 int base = part * elements / 2; 7353 if (i & 1) { 7354 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7355 } else { 7356 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7357 } 7358 break; 7359 } 7360 default: 7361 g_assert_not_reached(); 7362 } 7363 7364 w = (i * esize) / 64; 7365 o = (i * esize) % 64; 7366 if (o == 0) { 7367 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7368 } else { 7369 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7370 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7371 } 7372 } 7373 7374 for (i = 0; i <= is_q; ++i) { 7375 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7376 } 7377 clear_vec_high(s, is_q, rd); 7378 } 7379 7380 /* 7381 * do_reduction_op helper 7382 * 7383 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7384 * important for correct NaN propagation that we do these 7385 * operations in exactly the order specified by the pseudocode. 7386 * 7387 * This is a recursive function, TCG temps should be freed by the 7388 * calling function once it is done with the values. 7389 */ 7390 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7391 int esize, int size, int vmap, TCGv_ptr fpst) 7392 { 7393 if (esize == size) { 7394 int element; 7395 MemOp msize = esize == 16 ? MO_16 : MO_32; 7396 TCGv_i32 tcg_elem; 7397 7398 /* We should have one register left here */ 7399 assert(ctpop8(vmap) == 1); 7400 element = ctz32(vmap); 7401 assert(element < 8); 7402 7403 tcg_elem = tcg_temp_new_i32(); 7404 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7405 return tcg_elem; 7406 } else { 7407 int bits = size / 2; 7408 int shift = ctpop8(vmap) / 2; 7409 int vmap_lo = (vmap >> shift) & vmap; 7410 int vmap_hi = (vmap & ~vmap_lo); 7411 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7412 7413 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7414 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7415 tcg_res = tcg_temp_new_i32(); 7416 7417 switch (fpopcode) { 7418 case 0x0c: /* fmaxnmv half-precision */ 7419 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7420 break; 7421 case 0x0f: /* fmaxv half-precision */ 7422 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7423 break; 7424 case 0x1c: /* fminnmv half-precision */ 7425 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7426 break; 7427 case 0x1f: /* fminv half-precision */ 7428 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7429 break; 7430 case 0x2c: /* fmaxnmv */ 7431 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7432 break; 7433 case 0x2f: /* fmaxv */ 7434 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7435 break; 7436 case 0x3c: /* fminnmv */ 7437 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7438 break; 7439 case 0x3f: /* fminv */ 7440 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7441 break; 7442 default: 7443 g_assert_not_reached(); 7444 } 7445 return tcg_res; 7446 } 7447 } 7448 7449 /* AdvSIMD across lanes 7450 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7451 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7452 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7453 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7454 */ 7455 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7456 { 7457 int rd = extract32(insn, 0, 5); 7458 int rn = extract32(insn, 5, 5); 7459 int size = extract32(insn, 22, 2); 7460 int opcode = extract32(insn, 12, 5); 7461 bool is_q = extract32(insn, 30, 1); 7462 bool is_u = extract32(insn, 29, 1); 7463 bool is_fp = false; 7464 bool is_min = false; 7465 int esize; 7466 int elements; 7467 int i; 7468 TCGv_i64 tcg_res, tcg_elt; 7469 7470 switch (opcode) { 7471 case 0x1b: /* ADDV */ 7472 if (is_u) { 7473 unallocated_encoding(s); 7474 return; 7475 } 7476 /* fall through */ 7477 case 0x3: /* SADDLV, UADDLV */ 7478 case 0xa: /* SMAXV, UMAXV */ 7479 case 0x1a: /* SMINV, UMINV */ 7480 if (size == 3 || (size == 2 && !is_q)) { 7481 unallocated_encoding(s); 7482 return; 7483 } 7484 break; 7485 case 0xc: /* FMAXNMV, FMINNMV */ 7486 case 0xf: /* FMAXV, FMINV */ 7487 /* Bit 1 of size field encodes min vs max and the actual size 7488 * depends on the encoding of the U bit. If not set (and FP16 7489 * enabled) then we do half-precision float instead of single 7490 * precision. 7491 */ 7492 is_min = extract32(size, 1, 1); 7493 is_fp = true; 7494 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7495 size = 1; 7496 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7497 unallocated_encoding(s); 7498 return; 7499 } else { 7500 size = 2; 7501 } 7502 break; 7503 default: 7504 unallocated_encoding(s); 7505 return; 7506 } 7507 7508 if (!fp_access_check(s)) { 7509 return; 7510 } 7511 7512 esize = 8 << size; 7513 elements = (is_q ? 128 : 64) / esize; 7514 7515 tcg_res = tcg_temp_new_i64(); 7516 tcg_elt = tcg_temp_new_i64(); 7517 7518 /* These instructions operate across all lanes of a vector 7519 * to produce a single result. We can guarantee that a 64 7520 * bit intermediate is sufficient: 7521 * + for [US]ADDLV the maximum element size is 32 bits, and 7522 * the result type is 64 bits 7523 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7524 * same as the element size, which is 32 bits at most 7525 * For the integer operations we can choose to work at 64 7526 * or 32 bits and truncate at the end; for simplicity 7527 * we use 64 bits always. The floating point 7528 * ops do require 32 bit intermediates, though. 7529 */ 7530 if (!is_fp) { 7531 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7532 7533 for (i = 1; i < elements; i++) { 7534 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7535 7536 switch (opcode) { 7537 case 0x03: /* SADDLV / UADDLV */ 7538 case 0x1b: /* ADDV */ 7539 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7540 break; 7541 case 0x0a: /* SMAXV / UMAXV */ 7542 if (is_u) { 7543 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7544 } else { 7545 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7546 } 7547 break; 7548 case 0x1a: /* SMINV / UMINV */ 7549 if (is_u) { 7550 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7551 } else { 7552 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7553 } 7554 break; 7555 default: 7556 g_assert_not_reached(); 7557 } 7558 7559 } 7560 } else { 7561 /* Floating point vector reduction ops which work across 32 7562 * bit (single) or 16 bit (half-precision) intermediates. 7563 * Note that correct NaN propagation requires that we do these 7564 * operations in exactly the order specified by the pseudocode. 7565 */ 7566 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7567 int fpopcode = opcode | is_min << 4 | is_u << 5; 7568 int vmap = (1 << elements) - 1; 7569 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7570 (is_q ? 128 : 64), vmap, fpst); 7571 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7572 } 7573 7574 /* Now truncate the result to the width required for the final output */ 7575 if (opcode == 0x03) { 7576 /* SADDLV, UADDLV: result is 2*esize */ 7577 size++; 7578 } 7579 7580 switch (size) { 7581 case 0: 7582 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7583 break; 7584 case 1: 7585 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7586 break; 7587 case 2: 7588 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7589 break; 7590 case 3: 7591 break; 7592 default: 7593 g_assert_not_reached(); 7594 } 7595 7596 write_fp_dreg(s, rd, tcg_res); 7597 } 7598 7599 /* DUP (Element, Vector) 7600 * 7601 * 31 30 29 21 20 16 15 10 9 5 4 0 7602 * +---+---+-------------------+--------+-------------+------+------+ 7603 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7604 * +---+---+-------------------+--------+-------------+------+------+ 7605 * 7606 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7607 */ 7608 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7609 int imm5) 7610 { 7611 int size = ctz32(imm5); 7612 int index; 7613 7614 if (size > 3 || (size == 3 && !is_q)) { 7615 unallocated_encoding(s); 7616 return; 7617 } 7618 7619 if (!fp_access_check(s)) { 7620 return; 7621 } 7622 7623 index = imm5 >> (size + 1); 7624 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7625 vec_reg_offset(s, rn, index, size), 7626 is_q ? 16 : 8, vec_full_reg_size(s)); 7627 } 7628 7629 /* DUP (element, scalar) 7630 * 31 21 20 16 15 10 9 5 4 0 7631 * +-----------------------+--------+-------------+------+------+ 7632 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7633 * +-----------------------+--------+-------------+------+------+ 7634 */ 7635 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7636 int imm5) 7637 { 7638 int size = ctz32(imm5); 7639 int index; 7640 TCGv_i64 tmp; 7641 7642 if (size > 3) { 7643 unallocated_encoding(s); 7644 return; 7645 } 7646 7647 if (!fp_access_check(s)) { 7648 return; 7649 } 7650 7651 index = imm5 >> (size + 1); 7652 7653 /* This instruction just extracts the specified element and 7654 * zero-extends it into the bottom of the destination register. 7655 */ 7656 tmp = tcg_temp_new_i64(); 7657 read_vec_element(s, tmp, rn, index, size); 7658 write_fp_dreg(s, rd, tmp); 7659 } 7660 7661 /* DUP (General) 7662 * 7663 * 31 30 29 21 20 16 15 10 9 5 4 0 7664 * +---+---+-------------------+--------+-------------+------+------+ 7665 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7666 * +---+---+-------------------+--------+-------------+------+------+ 7667 * 7668 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7669 */ 7670 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7671 int imm5) 7672 { 7673 int size = ctz32(imm5); 7674 uint32_t dofs, oprsz, maxsz; 7675 7676 if (size > 3 || ((size == 3) && !is_q)) { 7677 unallocated_encoding(s); 7678 return; 7679 } 7680 7681 if (!fp_access_check(s)) { 7682 return; 7683 } 7684 7685 dofs = vec_full_reg_offset(s, rd); 7686 oprsz = is_q ? 16 : 8; 7687 maxsz = vec_full_reg_size(s); 7688 7689 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7690 } 7691 7692 /* INS (Element) 7693 * 7694 * 31 21 20 16 15 14 11 10 9 5 4 0 7695 * +-----------------------+--------+------------+---+------+------+ 7696 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7697 * +-----------------------+--------+------------+---+------+------+ 7698 * 7699 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7700 * index: encoded in imm5<4:size+1> 7701 */ 7702 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7703 int imm4, int imm5) 7704 { 7705 int size = ctz32(imm5); 7706 int src_index, dst_index; 7707 TCGv_i64 tmp; 7708 7709 if (size > 3) { 7710 unallocated_encoding(s); 7711 return; 7712 } 7713 7714 if (!fp_access_check(s)) { 7715 return; 7716 } 7717 7718 dst_index = extract32(imm5, 1+size, 5); 7719 src_index = extract32(imm4, size, 4); 7720 7721 tmp = tcg_temp_new_i64(); 7722 7723 read_vec_element(s, tmp, rn, src_index, size); 7724 write_vec_element(s, tmp, rd, dst_index, size); 7725 7726 /* INS is considered a 128-bit write for SVE. */ 7727 clear_vec_high(s, true, rd); 7728 } 7729 7730 7731 /* INS (General) 7732 * 7733 * 31 21 20 16 15 10 9 5 4 0 7734 * +-----------------------+--------+-------------+------+------+ 7735 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7736 * +-----------------------+--------+-------------+------+------+ 7737 * 7738 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7739 * index: encoded in imm5<4:size+1> 7740 */ 7741 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7742 { 7743 int size = ctz32(imm5); 7744 int idx; 7745 7746 if (size > 3) { 7747 unallocated_encoding(s); 7748 return; 7749 } 7750 7751 if (!fp_access_check(s)) { 7752 return; 7753 } 7754 7755 idx = extract32(imm5, 1 + size, 4 - size); 7756 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7757 7758 /* INS is considered a 128-bit write for SVE. */ 7759 clear_vec_high(s, true, rd); 7760 } 7761 7762 /* 7763 * UMOV (General) 7764 * SMOV (General) 7765 * 7766 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7767 * +---+---+-------------------+--------+-------------+------+------+ 7768 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7769 * +---+---+-------------------+--------+-------------+------+------+ 7770 * 7771 * U: unsigned when set 7772 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7773 */ 7774 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7775 int rn, int rd, int imm5) 7776 { 7777 int size = ctz32(imm5); 7778 int element; 7779 TCGv_i64 tcg_rd; 7780 7781 /* Check for UnallocatedEncodings */ 7782 if (is_signed) { 7783 if (size > 2 || (size == 2 && !is_q)) { 7784 unallocated_encoding(s); 7785 return; 7786 } 7787 } else { 7788 if (size > 3 7789 || (size < 3 && is_q) 7790 || (size == 3 && !is_q)) { 7791 unallocated_encoding(s); 7792 return; 7793 } 7794 } 7795 7796 if (!fp_access_check(s)) { 7797 return; 7798 } 7799 7800 element = extract32(imm5, 1+size, 4); 7801 7802 tcg_rd = cpu_reg(s, rd); 7803 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7804 if (is_signed && !is_q) { 7805 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7806 } 7807 } 7808 7809 /* AdvSIMD copy 7810 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7811 * +---+---+----+-----------------+------+---+------+---+------+------+ 7812 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7813 * +---+---+----+-----------------+------+---+------+---+------+------+ 7814 */ 7815 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7816 { 7817 int rd = extract32(insn, 0, 5); 7818 int rn = extract32(insn, 5, 5); 7819 int imm4 = extract32(insn, 11, 4); 7820 int op = extract32(insn, 29, 1); 7821 int is_q = extract32(insn, 30, 1); 7822 int imm5 = extract32(insn, 16, 5); 7823 7824 if (op) { 7825 if (is_q) { 7826 /* INS (element) */ 7827 handle_simd_inse(s, rd, rn, imm4, imm5); 7828 } else { 7829 unallocated_encoding(s); 7830 } 7831 } else { 7832 switch (imm4) { 7833 case 0: 7834 /* DUP (element - vector) */ 7835 handle_simd_dupe(s, is_q, rd, rn, imm5); 7836 break; 7837 case 1: 7838 /* DUP (general) */ 7839 handle_simd_dupg(s, is_q, rd, rn, imm5); 7840 break; 7841 case 3: 7842 if (is_q) { 7843 /* INS (general) */ 7844 handle_simd_insg(s, rd, rn, imm5); 7845 } else { 7846 unallocated_encoding(s); 7847 } 7848 break; 7849 case 5: 7850 case 7: 7851 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7852 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7853 break; 7854 default: 7855 unallocated_encoding(s); 7856 break; 7857 } 7858 } 7859 } 7860 7861 /* AdvSIMD modified immediate 7862 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7863 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7864 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7865 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7866 * 7867 * There are a number of operations that can be carried out here: 7868 * MOVI - move (shifted) imm into register 7869 * MVNI - move inverted (shifted) imm into register 7870 * ORR - bitwise OR of (shifted) imm with register 7871 * BIC - bitwise clear of (shifted) imm with register 7872 * With ARMv8.2 we also have: 7873 * FMOV half-precision 7874 */ 7875 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7876 { 7877 int rd = extract32(insn, 0, 5); 7878 int cmode = extract32(insn, 12, 4); 7879 int o2 = extract32(insn, 11, 1); 7880 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7881 bool is_neg = extract32(insn, 29, 1); 7882 bool is_q = extract32(insn, 30, 1); 7883 uint64_t imm = 0; 7884 7885 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7886 /* Check for FMOV (vector, immediate) - half-precision */ 7887 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7888 unallocated_encoding(s); 7889 return; 7890 } 7891 } 7892 7893 if (!fp_access_check(s)) { 7894 return; 7895 } 7896 7897 if (cmode == 15 && o2 && !is_neg) { 7898 /* FMOV (vector, immediate) - half-precision */ 7899 imm = vfp_expand_imm(MO_16, abcdefgh); 7900 /* now duplicate across the lanes */ 7901 imm = dup_const(MO_16, imm); 7902 } else { 7903 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7904 } 7905 7906 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7907 /* MOVI or MVNI, with MVNI negation handled above. */ 7908 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7909 vec_full_reg_size(s), imm); 7910 } else { 7911 /* ORR or BIC, with BIC negation to AND handled above. */ 7912 if (is_neg) { 7913 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7914 } else { 7915 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7916 } 7917 } 7918 } 7919 7920 /* AdvSIMD scalar copy 7921 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7922 * +-----+----+-----------------+------+---+------+---+------+------+ 7923 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7924 * +-----+----+-----------------+------+---+------+---+------+------+ 7925 */ 7926 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7927 { 7928 int rd = extract32(insn, 0, 5); 7929 int rn = extract32(insn, 5, 5); 7930 int imm4 = extract32(insn, 11, 4); 7931 int imm5 = extract32(insn, 16, 5); 7932 int op = extract32(insn, 29, 1); 7933 7934 if (op != 0 || imm4 != 0) { 7935 unallocated_encoding(s); 7936 return; 7937 } 7938 7939 /* DUP (element, scalar) */ 7940 handle_simd_dupes(s, rd, rn, imm5); 7941 } 7942 7943 /* AdvSIMD scalar pairwise 7944 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7945 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7946 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7947 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7948 */ 7949 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7950 { 7951 int u = extract32(insn, 29, 1); 7952 int size = extract32(insn, 22, 2); 7953 int opcode = extract32(insn, 12, 5); 7954 int rn = extract32(insn, 5, 5); 7955 int rd = extract32(insn, 0, 5); 7956 TCGv_ptr fpst; 7957 7958 /* For some ops (the FP ones), size[1] is part of the encoding. 7959 * For ADDP strictly it is not but size[1] is always 1 for valid 7960 * encodings. 7961 */ 7962 opcode |= (extract32(size, 1, 1) << 5); 7963 7964 switch (opcode) { 7965 case 0x3b: /* ADDP */ 7966 if (u || size != 3) { 7967 unallocated_encoding(s); 7968 return; 7969 } 7970 if (!fp_access_check(s)) { 7971 return; 7972 } 7973 7974 fpst = NULL; 7975 break; 7976 case 0xc: /* FMAXNMP */ 7977 case 0xd: /* FADDP */ 7978 case 0xf: /* FMAXP */ 7979 case 0x2c: /* FMINNMP */ 7980 case 0x2f: /* FMINP */ 7981 /* FP op, size[0] is 32 or 64 bit*/ 7982 if (!u) { 7983 if (!dc_isar_feature(aa64_fp16, s)) { 7984 unallocated_encoding(s); 7985 return; 7986 } else { 7987 size = MO_16; 7988 } 7989 } else { 7990 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7991 } 7992 7993 if (!fp_access_check(s)) { 7994 return; 7995 } 7996 7997 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7998 break; 7999 default: 8000 unallocated_encoding(s); 8001 return; 8002 } 8003 8004 if (size == MO_64) { 8005 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8006 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8007 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8008 8009 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8010 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8011 8012 switch (opcode) { 8013 case 0x3b: /* ADDP */ 8014 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8015 break; 8016 case 0xc: /* FMAXNMP */ 8017 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8018 break; 8019 case 0xd: /* FADDP */ 8020 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 case 0xf: /* FMAXP */ 8023 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8024 break; 8025 case 0x2c: /* FMINNMP */ 8026 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0x2f: /* FMINP */ 8029 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 default: 8032 g_assert_not_reached(); 8033 } 8034 8035 write_fp_dreg(s, rd, tcg_res); 8036 } else { 8037 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8038 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8039 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8040 8041 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8042 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8043 8044 if (size == MO_16) { 8045 switch (opcode) { 8046 case 0xc: /* FMAXNMP */ 8047 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8048 break; 8049 case 0xd: /* FADDP */ 8050 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8051 break; 8052 case 0xf: /* FMAXP */ 8053 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8054 break; 8055 case 0x2c: /* FMINNMP */ 8056 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8057 break; 8058 case 0x2f: /* FMINP */ 8059 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8060 break; 8061 default: 8062 g_assert_not_reached(); 8063 } 8064 } else { 8065 switch (opcode) { 8066 case 0xc: /* FMAXNMP */ 8067 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8068 break; 8069 case 0xd: /* FADDP */ 8070 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8071 break; 8072 case 0xf: /* FMAXP */ 8073 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8074 break; 8075 case 0x2c: /* FMINNMP */ 8076 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8077 break; 8078 case 0x2f: /* FMINP */ 8079 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8080 break; 8081 default: 8082 g_assert_not_reached(); 8083 } 8084 } 8085 8086 write_fp_sreg(s, rd, tcg_res); 8087 } 8088 } 8089 8090 /* 8091 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8092 * 8093 * This code is handles the common shifting code and is used by both 8094 * the vector and scalar code. 8095 */ 8096 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8097 TCGv_i64 tcg_rnd, bool accumulate, 8098 bool is_u, int size, int shift) 8099 { 8100 bool extended_result = false; 8101 bool round = tcg_rnd != NULL; 8102 int ext_lshift = 0; 8103 TCGv_i64 tcg_src_hi; 8104 8105 if (round && size == 3) { 8106 extended_result = true; 8107 ext_lshift = 64 - shift; 8108 tcg_src_hi = tcg_temp_new_i64(); 8109 } else if (shift == 64) { 8110 if (!accumulate && is_u) { 8111 /* result is zero */ 8112 tcg_gen_movi_i64(tcg_res, 0); 8113 return; 8114 } 8115 } 8116 8117 /* Deal with the rounding step */ 8118 if (round) { 8119 if (extended_result) { 8120 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8121 if (!is_u) { 8122 /* take care of sign extending tcg_res */ 8123 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8124 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8125 tcg_src, tcg_src_hi, 8126 tcg_rnd, tcg_zero); 8127 } else { 8128 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8129 tcg_src, tcg_zero, 8130 tcg_rnd, tcg_zero); 8131 } 8132 } else { 8133 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8134 } 8135 } 8136 8137 /* Now do the shift right */ 8138 if (round && extended_result) { 8139 /* extended case, >64 bit precision required */ 8140 if (ext_lshift == 0) { 8141 /* special case, only high bits matter */ 8142 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8143 } else { 8144 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8145 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8146 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8147 } 8148 } else { 8149 if (is_u) { 8150 if (shift == 64) { 8151 /* essentially shifting in 64 zeros */ 8152 tcg_gen_movi_i64(tcg_src, 0); 8153 } else { 8154 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8155 } 8156 } else { 8157 if (shift == 64) { 8158 /* effectively extending the sign-bit */ 8159 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8160 } else { 8161 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8162 } 8163 } 8164 } 8165 8166 if (accumulate) { 8167 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8168 } else { 8169 tcg_gen_mov_i64(tcg_res, tcg_src); 8170 } 8171 } 8172 8173 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8174 static void handle_scalar_simd_shri(DisasContext *s, 8175 bool is_u, int immh, int immb, 8176 int opcode, int rn, int rd) 8177 { 8178 const int size = 3; 8179 int immhb = immh << 3 | immb; 8180 int shift = 2 * (8 << size) - immhb; 8181 bool accumulate = false; 8182 bool round = false; 8183 bool insert = false; 8184 TCGv_i64 tcg_rn; 8185 TCGv_i64 tcg_rd; 8186 TCGv_i64 tcg_round; 8187 8188 if (!extract32(immh, 3, 1)) { 8189 unallocated_encoding(s); 8190 return; 8191 } 8192 8193 if (!fp_access_check(s)) { 8194 return; 8195 } 8196 8197 switch (opcode) { 8198 case 0x02: /* SSRA / USRA (accumulate) */ 8199 accumulate = true; 8200 break; 8201 case 0x04: /* SRSHR / URSHR (rounding) */ 8202 round = true; 8203 break; 8204 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8205 accumulate = round = true; 8206 break; 8207 case 0x08: /* SRI */ 8208 insert = true; 8209 break; 8210 } 8211 8212 if (round) { 8213 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8214 } else { 8215 tcg_round = NULL; 8216 } 8217 8218 tcg_rn = read_fp_dreg(s, rn); 8219 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8220 8221 if (insert) { 8222 /* shift count same as element size is valid but does nothing; 8223 * special case to avoid potential shift by 64. 8224 */ 8225 int esize = 8 << size; 8226 if (shift != esize) { 8227 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8228 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8229 } 8230 } else { 8231 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8232 accumulate, is_u, size, shift); 8233 } 8234 8235 write_fp_dreg(s, rd, tcg_rd); 8236 } 8237 8238 /* SHL/SLI - Scalar shift left */ 8239 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8240 int immh, int immb, int opcode, 8241 int rn, int rd) 8242 { 8243 int size = 32 - clz32(immh) - 1; 8244 int immhb = immh << 3 | immb; 8245 int shift = immhb - (8 << size); 8246 TCGv_i64 tcg_rn; 8247 TCGv_i64 tcg_rd; 8248 8249 if (!extract32(immh, 3, 1)) { 8250 unallocated_encoding(s); 8251 return; 8252 } 8253 8254 if (!fp_access_check(s)) { 8255 return; 8256 } 8257 8258 tcg_rn = read_fp_dreg(s, rn); 8259 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8260 8261 if (insert) { 8262 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8263 } else { 8264 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8265 } 8266 8267 write_fp_dreg(s, rd, tcg_rd); 8268 } 8269 8270 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8271 * (signed/unsigned) narrowing */ 8272 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8273 bool is_u_shift, bool is_u_narrow, 8274 int immh, int immb, int opcode, 8275 int rn, int rd) 8276 { 8277 int immhb = immh << 3 | immb; 8278 int size = 32 - clz32(immh) - 1; 8279 int esize = 8 << size; 8280 int shift = (2 * esize) - immhb; 8281 int elements = is_scalar ? 1 : (64 / esize); 8282 bool round = extract32(opcode, 0, 1); 8283 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8284 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8285 TCGv_i32 tcg_rd_narrowed; 8286 TCGv_i64 tcg_final; 8287 8288 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8289 { gen_helper_neon_narrow_sat_s8, 8290 gen_helper_neon_unarrow_sat8 }, 8291 { gen_helper_neon_narrow_sat_s16, 8292 gen_helper_neon_unarrow_sat16 }, 8293 { gen_helper_neon_narrow_sat_s32, 8294 gen_helper_neon_unarrow_sat32 }, 8295 { NULL, NULL }, 8296 }; 8297 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8298 gen_helper_neon_narrow_sat_u8, 8299 gen_helper_neon_narrow_sat_u16, 8300 gen_helper_neon_narrow_sat_u32, 8301 NULL 8302 }; 8303 NeonGenNarrowEnvFn *narrowfn; 8304 8305 int i; 8306 8307 assert(size < 4); 8308 8309 if (extract32(immh, 3, 1)) { 8310 unallocated_encoding(s); 8311 return; 8312 } 8313 8314 if (!fp_access_check(s)) { 8315 return; 8316 } 8317 8318 if (is_u_shift) { 8319 narrowfn = unsigned_narrow_fns[size]; 8320 } else { 8321 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8322 } 8323 8324 tcg_rn = tcg_temp_new_i64(); 8325 tcg_rd = tcg_temp_new_i64(); 8326 tcg_rd_narrowed = tcg_temp_new_i32(); 8327 tcg_final = tcg_temp_new_i64(); 8328 8329 if (round) { 8330 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8331 } else { 8332 tcg_round = NULL; 8333 } 8334 8335 for (i = 0; i < elements; i++) { 8336 read_vec_element(s, tcg_rn, rn, i, ldop); 8337 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8338 false, is_u_shift, size+1, shift); 8339 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8340 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8341 if (i == 0) { 8342 tcg_gen_mov_i64(tcg_final, tcg_rd); 8343 } else { 8344 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8345 } 8346 } 8347 8348 if (!is_q) { 8349 write_vec_element(s, tcg_final, rd, 0, MO_64); 8350 } else { 8351 write_vec_element(s, tcg_final, rd, 1, MO_64); 8352 } 8353 clear_vec_high(s, is_q, rd); 8354 } 8355 8356 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8357 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8358 bool src_unsigned, bool dst_unsigned, 8359 int immh, int immb, int rn, int rd) 8360 { 8361 int immhb = immh << 3 | immb; 8362 int size = 32 - clz32(immh) - 1; 8363 int shift = immhb - (8 << size); 8364 int pass; 8365 8366 assert(immh != 0); 8367 assert(!(scalar && is_q)); 8368 8369 if (!scalar) { 8370 if (!is_q && extract32(immh, 3, 1)) { 8371 unallocated_encoding(s); 8372 return; 8373 } 8374 8375 /* Since we use the variable-shift helpers we must 8376 * replicate the shift count into each element of 8377 * the tcg_shift value. 8378 */ 8379 switch (size) { 8380 case 0: 8381 shift |= shift << 8; 8382 /* fall through */ 8383 case 1: 8384 shift |= shift << 16; 8385 break; 8386 case 2: 8387 case 3: 8388 break; 8389 default: 8390 g_assert_not_reached(); 8391 } 8392 } 8393 8394 if (!fp_access_check(s)) { 8395 return; 8396 } 8397 8398 if (size == 3) { 8399 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8400 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8401 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8402 { NULL, gen_helper_neon_qshl_u64 }, 8403 }; 8404 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8405 int maxpass = is_q ? 2 : 1; 8406 8407 for (pass = 0; pass < maxpass; pass++) { 8408 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8409 8410 read_vec_element(s, tcg_op, rn, pass, MO_64); 8411 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8412 write_vec_element(s, tcg_op, rd, pass, MO_64); 8413 } 8414 clear_vec_high(s, is_q, rd); 8415 } else { 8416 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8417 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8418 { 8419 { gen_helper_neon_qshl_s8, 8420 gen_helper_neon_qshl_s16, 8421 gen_helper_neon_qshl_s32 }, 8422 { gen_helper_neon_qshlu_s8, 8423 gen_helper_neon_qshlu_s16, 8424 gen_helper_neon_qshlu_s32 } 8425 }, { 8426 { NULL, NULL, NULL }, 8427 { gen_helper_neon_qshl_u8, 8428 gen_helper_neon_qshl_u16, 8429 gen_helper_neon_qshl_u32 } 8430 } 8431 }; 8432 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8433 MemOp memop = scalar ? size : MO_32; 8434 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8435 8436 for (pass = 0; pass < maxpass; pass++) { 8437 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8438 8439 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8440 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8441 if (scalar) { 8442 switch (size) { 8443 case 0: 8444 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8445 break; 8446 case 1: 8447 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8448 break; 8449 case 2: 8450 break; 8451 default: 8452 g_assert_not_reached(); 8453 } 8454 write_fp_sreg(s, rd, tcg_op); 8455 } else { 8456 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8457 } 8458 } 8459 8460 if (!scalar) { 8461 clear_vec_high(s, is_q, rd); 8462 } 8463 } 8464 } 8465 8466 /* Common vector code for handling integer to FP conversion */ 8467 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8468 int elements, int is_signed, 8469 int fracbits, int size) 8470 { 8471 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8472 TCGv_i32 tcg_shift = NULL; 8473 8474 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8475 int pass; 8476 8477 if (fracbits || size == MO_64) { 8478 tcg_shift = tcg_constant_i32(fracbits); 8479 } 8480 8481 if (size == MO_64) { 8482 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8483 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8484 8485 for (pass = 0; pass < elements; pass++) { 8486 read_vec_element(s, tcg_int64, rn, pass, mop); 8487 8488 if (is_signed) { 8489 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8490 tcg_shift, tcg_fpst); 8491 } else { 8492 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8493 tcg_shift, tcg_fpst); 8494 } 8495 if (elements == 1) { 8496 write_fp_dreg(s, rd, tcg_double); 8497 } else { 8498 write_vec_element(s, tcg_double, rd, pass, MO_64); 8499 } 8500 } 8501 } else { 8502 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8503 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8504 8505 for (pass = 0; pass < elements; pass++) { 8506 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8507 8508 switch (size) { 8509 case MO_32: 8510 if (fracbits) { 8511 if (is_signed) { 8512 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8513 tcg_shift, tcg_fpst); 8514 } else { 8515 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8516 tcg_shift, tcg_fpst); 8517 } 8518 } else { 8519 if (is_signed) { 8520 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8521 } else { 8522 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8523 } 8524 } 8525 break; 8526 case MO_16: 8527 if (fracbits) { 8528 if (is_signed) { 8529 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8530 tcg_shift, tcg_fpst); 8531 } else { 8532 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8533 tcg_shift, tcg_fpst); 8534 } 8535 } else { 8536 if (is_signed) { 8537 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8538 } else { 8539 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8540 } 8541 } 8542 break; 8543 default: 8544 g_assert_not_reached(); 8545 } 8546 8547 if (elements == 1) { 8548 write_fp_sreg(s, rd, tcg_float); 8549 } else { 8550 write_vec_element_i32(s, tcg_float, rd, pass, size); 8551 } 8552 } 8553 } 8554 8555 clear_vec_high(s, elements << size == 16, rd); 8556 } 8557 8558 /* UCVTF/SCVTF - Integer to FP conversion */ 8559 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8560 bool is_q, bool is_u, 8561 int immh, int immb, int opcode, 8562 int rn, int rd) 8563 { 8564 int size, elements, fracbits; 8565 int immhb = immh << 3 | immb; 8566 8567 if (immh & 8) { 8568 size = MO_64; 8569 if (!is_scalar && !is_q) { 8570 unallocated_encoding(s); 8571 return; 8572 } 8573 } else if (immh & 4) { 8574 size = MO_32; 8575 } else if (immh & 2) { 8576 size = MO_16; 8577 if (!dc_isar_feature(aa64_fp16, s)) { 8578 unallocated_encoding(s); 8579 return; 8580 } 8581 } else { 8582 /* immh == 0 would be a failure of the decode logic */ 8583 g_assert(immh == 1); 8584 unallocated_encoding(s); 8585 return; 8586 } 8587 8588 if (is_scalar) { 8589 elements = 1; 8590 } else { 8591 elements = (8 << is_q) >> size; 8592 } 8593 fracbits = (16 << size) - immhb; 8594 8595 if (!fp_access_check(s)) { 8596 return; 8597 } 8598 8599 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8600 } 8601 8602 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8603 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8604 bool is_q, bool is_u, 8605 int immh, int immb, int rn, int rd) 8606 { 8607 int immhb = immh << 3 | immb; 8608 int pass, size, fracbits; 8609 TCGv_ptr tcg_fpstatus; 8610 TCGv_i32 tcg_rmode, tcg_shift; 8611 8612 if (immh & 0x8) { 8613 size = MO_64; 8614 if (!is_scalar && !is_q) { 8615 unallocated_encoding(s); 8616 return; 8617 } 8618 } else if (immh & 0x4) { 8619 size = MO_32; 8620 } else if (immh & 0x2) { 8621 size = MO_16; 8622 if (!dc_isar_feature(aa64_fp16, s)) { 8623 unallocated_encoding(s); 8624 return; 8625 } 8626 } else { 8627 /* Should have split out AdvSIMD modified immediate earlier. */ 8628 assert(immh == 1); 8629 unallocated_encoding(s); 8630 return; 8631 } 8632 8633 if (!fp_access_check(s)) { 8634 return; 8635 } 8636 8637 assert(!(is_scalar && is_q)); 8638 8639 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8640 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8641 fracbits = (16 << size) - immhb; 8642 tcg_shift = tcg_constant_i32(fracbits); 8643 8644 if (size == MO_64) { 8645 int maxpass = is_scalar ? 1 : 2; 8646 8647 for (pass = 0; pass < maxpass; pass++) { 8648 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8649 8650 read_vec_element(s, tcg_op, rn, pass, MO_64); 8651 if (is_u) { 8652 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8653 } else { 8654 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8655 } 8656 write_vec_element(s, tcg_op, rd, pass, MO_64); 8657 } 8658 clear_vec_high(s, is_q, rd); 8659 } else { 8660 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8661 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8662 8663 switch (size) { 8664 case MO_16: 8665 if (is_u) { 8666 fn = gen_helper_vfp_touhh; 8667 } else { 8668 fn = gen_helper_vfp_toshh; 8669 } 8670 break; 8671 case MO_32: 8672 if (is_u) { 8673 fn = gen_helper_vfp_touls; 8674 } else { 8675 fn = gen_helper_vfp_tosls; 8676 } 8677 break; 8678 default: 8679 g_assert_not_reached(); 8680 } 8681 8682 for (pass = 0; pass < maxpass; pass++) { 8683 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8684 8685 read_vec_element_i32(s, tcg_op, rn, pass, size); 8686 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8687 if (is_scalar) { 8688 write_fp_sreg(s, rd, tcg_op); 8689 } else { 8690 write_vec_element_i32(s, tcg_op, rd, pass, size); 8691 } 8692 } 8693 if (!is_scalar) { 8694 clear_vec_high(s, is_q, rd); 8695 } 8696 } 8697 8698 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8699 } 8700 8701 /* AdvSIMD scalar shift by immediate 8702 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8703 * +-----+---+-------------+------+------+--------+---+------+------+ 8704 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8705 * +-----+---+-------------+------+------+--------+---+------+------+ 8706 * 8707 * This is the scalar version so it works on a fixed sized registers 8708 */ 8709 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8710 { 8711 int rd = extract32(insn, 0, 5); 8712 int rn = extract32(insn, 5, 5); 8713 int opcode = extract32(insn, 11, 5); 8714 int immb = extract32(insn, 16, 3); 8715 int immh = extract32(insn, 19, 4); 8716 bool is_u = extract32(insn, 29, 1); 8717 8718 if (immh == 0) { 8719 unallocated_encoding(s); 8720 return; 8721 } 8722 8723 switch (opcode) { 8724 case 0x08: /* SRI */ 8725 if (!is_u) { 8726 unallocated_encoding(s); 8727 return; 8728 } 8729 /* fall through */ 8730 case 0x00: /* SSHR / USHR */ 8731 case 0x02: /* SSRA / USRA */ 8732 case 0x04: /* SRSHR / URSHR */ 8733 case 0x06: /* SRSRA / URSRA */ 8734 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8735 break; 8736 case 0x0a: /* SHL / SLI */ 8737 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8738 break; 8739 case 0x1c: /* SCVTF, UCVTF */ 8740 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8741 opcode, rn, rd); 8742 break; 8743 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8744 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8745 if (!is_u) { 8746 unallocated_encoding(s); 8747 return; 8748 } 8749 handle_vec_simd_sqshrn(s, true, false, false, true, 8750 immh, immb, opcode, rn, rd); 8751 break; 8752 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8753 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8754 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8755 immh, immb, opcode, rn, rd); 8756 break; 8757 case 0xc: /* SQSHLU */ 8758 if (!is_u) { 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8763 break; 8764 case 0xe: /* SQSHL, UQSHL */ 8765 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8766 break; 8767 case 0x1f: /* FCVTZS, FCVTZU */ 8768 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8769 break; 8770 default: 8771 unallocated_encoding(s); 8772 break; 8773 } 8774 } 8775 8776 /* AdvSIMD scalar three different 8777 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8778 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8779 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8780 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8781 */ 8782 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8783 { 8784 bool is_u = extract32(insn, 29, 1); 8785 int size = extract32(insn, 22, 2); 8786 int opcode = extract32(insn, 12, 4); 8787 int rm = extract32(insn, 16, 5); 8788 int rn = extract32(insn, 5, 5); 8789 int rd = extract32(insn, 0, 5); 8790 8791 if (is_u) { 8792 unallocated_encoding(s); 8793 return; 8794 } 8795 8796 switch (opcode) { 8797 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8798 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8799 case 0xd: /* SQDMULL, SQDMULL2 */ 8800 if (size == 0 || size == 3) { 8801 unallocated_encoding(s); 8802 return; 8803 } 8804 break; 8805 default: 8806 unallocated_encoding(s); 8807 return; 8808 } 8809 8810 if (!fp_access_check(s)) { 8811 return; 8812 } 8813 8814 if (size == 2) { 8815 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8816 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8817 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8818 8819 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8820 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8821 8822 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8823 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8824 8825 switch (opcode) { 8826 case 0xd: /* SQDMULL, SQDMULL2 */ 8827 break; 8828 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8829 tcg_gen_neg_i64(tcg_res, tcg_res); 8830 /* fall through */ 8831 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8832 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8833 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8834 tcg_res, tcg_op1); 8835 break; 8836 default: 8837 g_assert_not_reached(); 8838 } 8839 8840 write_fp_dreg(s, rd, tcg_res); 8841 } else { 8842 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8843 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8844 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8845 8846 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8847 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8848 8849 switch (opcode) { 8850 case 0xd: /* SQDMULL, SQDMULL2 */ 8851 break; 8852 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8853 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8854 /* fall through */ 8855 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8856 { 8857 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8858 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8859 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8860 tcg_res, tcg_op3); 8861 break; 8862 } 8863 default: 8864 g_assert_not_reached(); 8865 } 8866 8867 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8868 write_fp_dreg(s, rd, tcg_res); 8869 } 8870 } 8871 8872 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8873 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8874 { 8875 /* Handle 64x64->64 opcodes which are shared between the scalar 8876 * and vector 3-same groups. We cover every opcode where size == 3 8877 * is valid in either the three-reg-same (integer, not pairwise) 8878 * or scalar-three-reg-same groups. 8879 */ 8880 TCGCond cond; 8881 8882 switch (opcode) { 8883 case 0x1: /* SQADD */ 8884 if (u) { 8885 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8886 } else { 8887 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8888 } 8889 break; 8890 case 0x5: /* SQSUB */ 8891 if (u) { 8892 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8893 } else { 8894 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8895 } 8896 break; 8897 case 0x6: /* CMGT, CMHI */ 8898 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8899 do_cmop: 8900 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8901 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8902 break; 8903 case 0x7: /* CMGE, CMHS */ 8904 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8905 goto do_cmop; 8906 case 0x11: /* CMTST, CMEQ */ 8907 if (u) { 8908 cond = TCG_COND_EQ; 8909 goto do_cmop; 8910 } 8911 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8912 break; 8913 case 0x8: /* SSHL, USHL */ 8914 if (u) { 8915 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8916 } else { 8917 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8918 } 8919 break; 8920 case 0x9: /* SQSHL, UQSHL */ 8921 if (u) { 8922 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8923 } else { 8924 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8925 } 8926 break; 8927 case 0xa: /* SRSHL, URSHL */ 8928 if (u) { 8929 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8930 } else { 8931 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8932 } 8933 break; 8934 case 0xb: /* SQRSHL, UQRSHL */ 8935 if (u) { 8936 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8937 } else { 8938 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8939 } 8940 break; 8941 case 0x10: /* ADD, SUB */ 8942 if (u) { 8943 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8944 } else { 8945 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8946 } 8947 break; 8948 default: 8949 g_assert_not_reached(); 8950 } 8951 } 8952 8953 /* Handle the 3-same-operands float operations; shared by the scalar 8954 * and vector encodings. The caller must filter out any encodings 8955 * not allocated for the encoding it is dealing with. 8956 */ 8957 static void handle_3same_float(DisasContext *s, int size, int elements, 8958 int fpopcode, int rd, int rn, int rm) 8959 { 8960 int pass; 8961 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8962 8963 for (pass = 0; pass < elements; pass++) { 8964 if (size) { 8965 /* Double */ 8966 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8967 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8968 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8969 8970 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8971 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8972 8973 switch (fpopcode) { 8974 case 0x39: /* FMLS */ 8975 /* As usual for ARM, separate negation for fused multiply-add */ 8976 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8977 /* fall through */ 8978 case 0x19: /* FMLA */ 8979 read_vec_element(s, tcg_res, rd, pass, MO_64); 8980 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8981 tcg_res, fpst); 8982 break; 8983 case 0x18: /* FMAXNM */ 8984 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8985 break; 8986 case 0x1a: /* FADD */ 8987 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 case 0x1b: /* FMULX */ 8990 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 case 0x1c: /* FCMEQ */ 8993 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8994 break; 8995 case 0x1e: /* FMAX */ 8996 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x1f: /* FRECPS */ 8999 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x38: /* FMINNM */ 9002 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x3a: /* FSUB */ 9005 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x3e: /* FMIN */ 9008 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x3f: /* FRSQRTS */ 9011 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x5b: /* FMUL */ 9014 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x5c: /* FCMGE */ 9017 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x5d: /* FACGE */ 9020 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x5f: /* FDIV */ 9023 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x7a: /* FABD */ 9026 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9027 gen_helper_vfp_absd(tcg_res, tcg_res); 9028 break; 9029 case 0x7c: /* FCMGT */ 9030 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9031 break; 9032 case 0x7d: /* FACGT */ 9033 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9034 break; 9035 default: 9036 g_assert_not_reached(); 9037 } 9038 9039 write_vec_element(s, tcg_res, rd, pass, MO_64); 9040 } else { 9041 /* Single */ 9042 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9043 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9044 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9045 9046 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9047 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9048 9049 switch (fpopcode) { 9050 case 0x39: /* FMLS */ 9051 /* As usual for ARM, separate negation for fused multiply-add */ 9052 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9053 /* fall through */ 9054 case 0x19: /* FMLA */ 9055 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9056 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9057 tcg_res, fpst); 9058 break; 9059 case 0x1a: /* FADD */ 9060 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9061 break; 9062 case 0x1b: /* FMULX */ 9063 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9064 break; 9065 case 0x1c: /* FCMEQ */ 9066 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9067 break; 9068 case 0x1e: /* FMAX */ 9069 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9070 break; 9071 case 0x1f: /* FRECPS */ 9072 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9073 break; 9074 case 0x18: /* FMAXNM */ 9075 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x38: /* FMINNM */ 9078 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 case 0x3a: /* FSUB */ 9081 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x3e: /* FMIN */ 9084 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x3f: /* FRSQRTS */ 9087 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x5b: /* FMUL */ 9090 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x5c: /* FCMGE */ 9093 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x5d: /* FACGE */ 9096 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9097 break; 9098 case 0x5f: /* FDIV */ 9099 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9100 break; 9101 case 0x7a: /* FABD */ 9102 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9103 gen_helper_vfp_abss(tcg_res, tcg_res); 9104 break; 9105 case 0x7c: /* FCMGT */ 9106 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x7d: /* FACGT */ 9109 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 default: 9112 g_assert_not_reached(); 9113 } 9114 9115 if (elements == 1) { 9116 /* scalar single so clear high part */ 9117 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9118 9119 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9120 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9121 } else { 9122 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9123 } 9124 } 9125 } 9126 9127 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9128 } 9129 9130 /* AdvSIMD scalar three same 9131 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9132 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9133 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9134 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9135 */ 9136 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9137 { 9138 int rd = extract32(insn, 0, 5); 9139 int rn = extract32(insn, 5, 5); 9140 int opcode = extract32(insn, 11, 5); 9141 int rm = extract32(insn, 16, 5); 9142 int size = extract32(insn, 22, 2); 9143 bool u = extract32(insn, 29, 1); 9144 TCGv_i64 tcg_rd; 9145 9146 if (opcode >= 0x18) { 9147 /* Floating point: U, size[1] and opcode indicate operation */ 9148 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9149 switch (fpopcode) { 9150 case 0x1b: /* FMULX */ 9151 case 0x1f: /* FRECPS */ 9152 case 0x3f: /* FRSQRTS */ 9153 case 0x5d: /* FACGE */ 9154 case 0x7d: /* FACGT */ 9155 case 0x1c: /* FCMEQ */ 9156 case 0x5c: /* FCMGE */ 9157 case 0x7c: /* FCMGT */ 9158 case 0x7a: /* FABD */ 9159 break; 9160 default: 9161 unallocated_encoding(s); 9162 return; 9163 } 9164 9165 if (!fp_access_check(s)) { 9166 return; 9167 } 9168 9169 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9170 return; 9171 } 9172 9173 switch (opcode) { 9174 case 0x1: /* SQADD, UQADD */ 9175 case 0x5: /* SQSUB, UQSUB */ 9176 case 0x9: /* SQSHL, UQSHL */ 9177 case 0xb: /* SQRSHL, UQRSHL */ 9178 break; 9179 case 0x8: /* SSHL, USHL */ 9180 case 0xa: /* SRSHL, URSHL */ 9181 case 0x6: /* CMGT, CMHI */ 9182 case 0x7: /* CMGE, CMHS */ 9183 case 0x11: /* CMTST, CMEQ */ 9184 case 0x10: /* ADD, SUB (vector) */ 9185 if (size != 3) { 9186 unallocated_encoding(s); 9187 return; 9188 } 9189 break; 9190 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9191 if (size != 1 && size != 2) { 9192 unallocated_encoding(s); 9193 return; 9194 } 9195 break; 9196 default: 9197 unallocated_encoding(s); 9198 return; 9199 } 9200 9201 if (!fp_access_check(s)) { 9202 return; 9203 } 9204 9205 tcg_rd = tcg_temp_new_i64(); 9206 9207 if (size == 3) { 9208 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9209 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9210 9211 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9212 } else { 9213 /* Do a single operation on the lowest element in the vector. 9214 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9215 * no side effects for all these operations. 9216 * OPTME: special-purpose helpers would avoid doing some 9217 * unnecessary work in the helper for the 8 and 16 bit cases. 9218 */ 9219 NeonGenTwoOpEnvFn *genenvfn; 9220 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9221 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9222 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9223 9224 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9225 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9226 9227 switch (opcode) { 9228 case 0x1: /* SQADD, UQADD */ 9229 { 9230 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9231 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9232 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9233 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9234 }; 9235 genenvfn = fns[size][u]; 9236 break; 9237 } 9238 case 0x5: /* SQSUB, UQSUB */ 9239 { 9240 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9241 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9242 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9243 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9244 }; 9245 genenvfn = fns[size][u]; 9246 break; 9247 } 9248 case 0x9: /* SQSHL, UQSHL */ 9249 { 9250 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9251 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9252 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9253 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9254 }; 9255 genenvfn = fns[size][u]; 9256 break; 9257 } 9258 case 0xb: /* SQRSHL, UQRSHL */ 9259 { 9260 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9261 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9262 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9263 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9264 }; 9265 genenvfn = fns[size][u]; 9266 break; 9267 } 9268 case 0x16: /* SQDMULH, SQRDMULH */ 9269 { 9270 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9271 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9272 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9273 }; 9274 assert(size == 1 || size == 2); 9275 genenvfn = fns[size - 1][u]; 9276 break; 9277 } 9278 default: 9279 g_assert_not_reached(); 9280 } 9281 9282 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9283 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9284 } 9285 9286 write_fp_dreg(s, rd, tcg_rd); 9287 } 9288 9289 /* AdvSIMD scalar three same FP16 9290 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9291 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9292 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9293 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9294 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9295 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9296 */ 9297 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9298 uint32_t insn) 9299 { 9300 int rd = extract32(insn, 0, 5); 9301 int rn = extract32(insn, 5, 5); 9302 int opcode = extract32(insn, 11, 3); 9303 int rm = extract32(insn, 16, 5); 9304 bool u = extract32(insn, 29, 1); 9305 bool a = extract32(insn, 23, 1); 9306 int fpopcode = opcode | (a << 3) | (u << 4); 9307 TCGv_ptr fpst; 9308 TCGv_i32 tcg_op1; 9309 TCGv_i32 tcg_op2; 9310 TCGv_i32 tcg_res; 9311 9312 switch (fpopcode) { 9313 case 0x03: /* FMULX */ 9314 case 0x04: /* FCMEQ (reg) */ 9315 case 0x07: /* FRECPS */ 9316 case 0x0f: /* FRSQRTS */ 9317 case 0x14: /* FCMGE (reg) */ 9318 case 0x15: /* FACGE */ 9319 case 0x1a: /* FABD */ 9320 case 0x1c: /* FCMGT (reg) */ 9321 case 0x1d: /* FACGT */ 9322 break; 9323 default: 9324 unallocated_encoding(s); 9325 return; 9326 } 9327 9328 if (!dc_isar_feature(aa64_fp16, s)) { 9329 unallocated_encoding(s); 9330 } 9331 9332 if (!fp_access_check(s)) { 9333 return; 9334 } 9335 9336 fpst = fpstatus_ptr(FPST_FPCR_F16); 9337 9338 tcg_op1 = read_fp_hreg(s, rn); 9339 tcg_op2 = read_fp_hreg(s, rm); 9340 tcg_res = tcg_temp_new_i32(); 9341 9342 switch (fpopcode) { 9343 case 0x03: /* FMULX */ 9344 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9345 break; 9346 case 0x04: /* FCMEQ (reg) */ 9347 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9348 break; 9349 case 0x07: /* FRECPS */ 9350 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9351 break; 9352 case 0x0f: /* FRSQRTS */ 9353 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9354 break; 9355 case 0x14: /* FCMGE (reg) */ 9356 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9357 break; 9358 case 0x15: /* FACGE */ 9359 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9360 break; 9361 case 0x1a: /* FABD */ 9362 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9363 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9364 break; 9365 case 0x1c: /* FCMGT (reg) */ 9366 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9367 break; 9368 case 0x1d: /* FACGT */ 9369 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9370 break; 9371 default: 9372 g_assert_not_reached(); 9373 } 9374 9375 write_fp_sreg(s, rd, tcg_res); 9376 } 9377 9378 /* AdvSIMD scalar three same extra 9379 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9380 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9381 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9382 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9383 */ 9384 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9385 uint32_t insn) 9386 { 9387 int rd = extract32(insn, 0, 5); 9388 int rn = extract32(insn, 5, 5); 9389 int opcode = extract32(insn, 11, 4); 9390 int rm = extract32(insn, 16, 5); 9391 int size = extract32(insn, 22, 2); 9392 bool u = extract32(insn, 29, 1); 9393 TCGv_i32 ele1, ele2, ele3; 9394 TCGv_i64 res; 9395 bool feature; 9396 9397 switch (u * 16 + opcode) { 9398 case 0x10: /* SQRDMLAH (vector) */ 9399 case 0x11: /* SQRDMLSH (vector) */ 9400 if (size != 1 && size != 2) { 9401 unallocated_encoding(s); 9402 return; 9403 } 9404 feature = dc_isar_feature(aa64_rdm, s); 9405 break; 9406 default: 9407 unallocated_encoding(s); 9408 return; 9409 } 9410 if (!feature) { 9411 unallocated_encoding(s); 9412 return; 9413 } 9414 if (!fp_access_check(s)) { 9415 return; 9416 } 9417 9418 /* Do a single operation on the lowest element in the vector. 9419 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9420 * with no side effects for all these operations. 9421 * OPTME: special-purpose helpers would avoid doing some 9422 * unnecessary work in the helper for the 16 bit cases. 9423 */ 9424 ele1 = tcg_temp_new_i32(); 9425 ele2 = tcg_temp_new_i32(); 9426 ele3 = tcg_temp_new_i32(); 9427 9428 read_vec_element_i32(s, ele1, rn, 0, size); 9429 read_vec_element_i32(s, ele2, rm, 0, size); 9430 read_vec_element_i32(s, ele3, rd, 0, size); 9431 9432 switch (opcode) { 9433 case 0x0: /* SQRDMLAH */ 9434 if (size == 1) { 9435 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9436 } else { 9437 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9438 } 9439 break; 9440 case 0x1: /* SQRDMLSH */ 9441 if (size == 1) { 9442 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9443 } else { 9444 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9445 } 9446 break; 9447 default: 9448 g_assert_not_reached(); 9449 } 9450 9451 res = tcg_temp_new_i64(); 9452 tcg_gen_extu_i32_i64(res, ele3); 9453 write_fp_dreg(s, rd, res); 9454 } 9455 9456 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9457 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9458 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9459 { 9460 /* Handle 64->64 opcodes which are shared between the scalar and 9461 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9462 * is valid in either group and also the double-precision fp ops. 9463 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9464 * requires them. 9465 */ 9466 TCGCond cond; 9467 9468 switch (opcode) { 9469 case 0x4: /* CLS, CLZ */ 9470 if (u) { 9471 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9472 } else { 9473 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9474 } 9475 break; 9476 case 0x5: /* NOT */ 9477 /* This opcode is shared with CNT and RBIT but we have earlier 9478 * enforced that size == 3 if and only if this is the NOT insn. 9479 */ 9480 tcg_gen_not_i64(tcg_rd, tcg_rn); 9481 break; 9482 case 0x7: /* SQABS, SQNEG */ 9483 if (u) { 9484 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9485 } else { 9486 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9487 } 9488 break; 9489 case 0xa: /* CMLT */ 9490 cond = TCG_COND_LT; 9491 do_cmop: 9492 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9493 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9494 break; 9495 case 0x8: /* CMGT, CMGE */ 9496 cond = u ? TCG_COND_GE : TCG_COND_GT; 9497 goto do_cmop; 9498 case 0x9: /* CMEQ, CMLE */ 9499 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9500 goto do_cmop; 9501 case 0xb: /* ABS, NEG */ 9502 if (u) { 9503 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9504 } else { 9505 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9506 } 9507 break; 9508 case 0x2f: /* FABS */ 9509 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9510 break; 9511 case 0x6f: /* FNEG */ 9512 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9513 break; 9514 case 0x7f: /* FSQRT */ 9515 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9516 break; 9517 case 0x1a: /* FCVTNS */ 9518 case 0x1b: /* FCVTMS */ 9519 case 0x1c: /* FCVTAS */ 9520 case 0x3a: /* FCVTPS */ 9521 case 0x3b: /* FCVTZS */ 9522 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9523 break; 9524 case 0x5a: /* FCVTNU */ 9525 case 0x5b: /* FCVTMU */ 9526 case 0x5c: /* FCVTAU */ 9527 case 0x7a: /* FCVTPU */ 9528 case 0x7b: /* FCVTZU */ 9529 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9530 break; 9531 case 0x18: /* FRINTN */ 9532 case 0x19: /* FRINTM */ 9533 case 0x38: /* FRINTP */ 9534 case 0x39: /* FRINTZ */ 9535 case 0x58: /* FRINTA */ 9536 case 0x79: /* FRINTI */ 9537 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9538 break; 9539 case 0x59: /* FRINTX */ 9540 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9541 break; 9542 case 0x1e: /* FRINT32Z */ 9543 case 0x5e: /* FRINT32X */ 9544 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9545 break; 9546 case 0x1f: /* FRINT64Z */ 9547 case 0x5f: /* FRINT64X */ 9548 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9549 break; 9550 default: 9551 g_assert_not_reached(); 9552 } 9553 } 9554 9555 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9556 bool is_scalar, bool is_u, bool is_q, 9557 int size, int rn, int rd) 9558 { 9559 bool is_double = (size == MO_64); 9560 TCGv_ptr fpst; 9561 9562 if (!fp_access_check(s)) { 9563 return; 9564 } 9565 9566 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9567 9568 if (is_double) { 9569 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9570 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9571 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9572 NeonGenTwoDoubleOpFn *genfn; 9573 bool swap = false; 9574 int pass; 9575 9576 switch (opcode) { 9577 case 0x2e: /* FCMLT (zero) */ 9578 swap = true; 9579 /* fallthrough */ 9580 case 0x2c: /* FCMGT (zero) */ 9581 genfn = gen_helper_neon_cgt_f64; 9582 break; 9583 case 0x2d: /* FCMEQ (zero) */ 9584 genfn = gen_helper_neon_ceq_f64; 9585 break; 9586 case 0x6d: /* FCMLE (zero) */ 9587 swap = true; 9588 /* fall through */ 9589 case 0x6c: /* FCMGE (zero) */ 9590 genfn = gen_helper_neon_cge_f64; 9591 break; 9592 default: 9593 g_assert_not_reached(); 9594 } 9595 9596 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9597 read_vec_element(s, tcg_op, rn, pass, MO_64); 9598 if (swap) { 9599 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9600 } else { 9601 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9602 } 9603 write_vec_element(s, tcg_res, rd, pass, MO_64); 9604 } 9605 9606 clear_vec_high(s, !is_scalar, rd); 9607 } else { 9608 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9609 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9610 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9611 NeonGenTwoSingleOpFn *genfn; 9612 bool swap = false; 9613 int pass, maxpasses; 9614 9615 if (size == MO_16) { 9616 switch (opcode) { 9617 case 0x2e: /* FCMLT (zero) */ 9618 swap = true; 9619 /* fall through */ 9620 case 0x2c: /* FCMGT (zero) */ 9621 genfn = gen_helper_advsimd_cgt_f16; 9622 break; 9623 case 0x2d: /* FCMEQ (zero) */ 9624 genfn = gen_helper_advsimd_ceq_f16; 9625 break; 9626 case 0x6d: /* FCMLE (zero) */ 9627 swap = true; 9628 /* fall through */ 9629 case 0x6c: /* FCMGE (zero) */ 9630 genfn = gen_helper_advsimd_cge_f16; 9631 break; 9632 default: 9633 g_assert_not_reached(); 9634 } 9635 } else { 9636 switch (opcode) { 9637 case 0x2e: /* FCMLT (zero) */ 9638 swap = true; 9639 /* fall through */ 9640 case 0x2c: /* FCMGT (zero) */ 9641 genfn = gen_helper_neon_cgt_f32; 9642 break; 9643 case 0x2d: /* FCMEQ (zero) */ 9644 genfn = gen_helper_neon_ceq_f32; 9645 break; 9646 case 0x6d: /* FCMLE (zero) */ 9647 swap = true; 9648 /* fall through */ 9649 case 0x6c: /* FCMGE (zero) */ 9650 genfn = gen_helper_neon_cge_f32; 9651 break; 9652 default: 9653 g_assert_not_reached(); 9654 } 9655 } 9656 9657 if (is_scalar) { 9658 maxpasses = 1; 9659 } else { 9660 int vector_size = 8 << is_q; 9661 maxpasses = vector_size >> size; 9662 } 9663 9664 for (pass = 0; pass < maxpasses; pass++) { 9665 read_vec_element_i32(s, tcg_op, rn, pass, size); 9666 if (swap) { 9667 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9668 } else { 9669 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9670 } 9671 if (is_scalar) { 9672 write_fp_sreg(s, rd, tcg_res); 9673 } else { 9674 write_vec_element_i32(s, tcg_res, rd, pass, size); 9675 } 9676 } 9677 9678 if (!is_scalar) { 9679 clear_vec_high(s, is_q, rd); 9680 } 9681 } 9682 } 9683 9684 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9685 bool is_scalar, bool is_u, bool is_q, 9686 int size, int rn, int rd) 9687 { 9688 bool is_double = (size == 3); 9689 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9690 9691 if (is_double) { 9692 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9693 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9694 int pass; 9695 9696 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9697 read_vec_element(s, tcg_op, rn, pass, MO_64); 9698 switch (opcode) { 9699 case 0x3d: /* FRECPE */ 9700 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9701 break; 9702 case 0x3f: /* FRECPX */ 9703 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9704 break; 9705 case 0x7d: /* FRSQRTE */ 9706 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9707 break; 9708 default: 9709 g_assert_not_reached(); 9710 } 9711 write_vec_element(s, tcg_res, rd, pass, MO_64); 9712 } 9713 clear_vec_high(s, !is_scalar, rd); 9714 } else { 9715 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9716 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9717 int pass, maxpasses; 9718 9719 if (is_scalar) { 9720 maxpasses = 1; 9721 } else { 9722 maxpasses = is_q ? 4 : 2; 9723 } 9724 9725 for (pass = 0; pass < maxpasses; pass++) { 9726 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9727 9728 switch (opcode) { 9729 case 0x3c: /* URECPE */ 9730 gen_helper_recpe_u32(tcg_res, tcg_op); 9731 break; 9732 case 0x3d: /* FRECPE */ 9733 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9734 break; 9735 case 0x3f: /* FRECPX */ 9736 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9737 break; 9738 case 0x7d: /* FRSQRTE */ 9739 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9740 break; 9741 default: 9742 g_assert_not_reached(); 9743 } 9744 9745 if (is_scalar) { 9746 write_fp_sreg(s, rd, tcg_res); 9747 } else { 9748 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9749 } 9750 } 9751 if (!is_scalar) { 9752 clear_vec_high(s, is_q, rd); 9753 } 9754 } 9755 } 9756 9757 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9758 int opcode, bool u, bool is_q, 9759 int size, int rn, int rd) 9760 { 9761 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9762 * in the source becomes a size element in the destination). 9763 */ 9764 int pass; 9765 TCGv_i32 tcg_res[2]; 9766 int destelt = is_q ? 2 : 0; 9767 int passes = scalar ? 1 : 2; 9768 9769 if (scalar) { 9770 tcg_res[1] = tcg_constant_i32(0); 9771 } 9772 9773 for (pass = 0; pass < passes; pass++) { 9774 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9775 NeonGenNarrowFn *genfn = NULL; 9776 NeonGenNarrowEnvFn *genenvfn = NULL; 9777 9778 if (scalar) { 9779 read_vec_element(s, tcg_op, rn, pass, size + 1); 9780 } else { 9781 read_vec_element(s, tcg_op, rn, pass, MO_64); 9782 } 9783 tcg_res[pass] = tcg_temp_new_i32(); 9784 9785 switch (opcode) { 9786 case 0x12: /* XTN, SQXTUN */ 9787 { 9788 static NeonGenNarrowFn * const xtnfns[3] = { 9789 gen_helper_neon_narrow_u8, 9790 gen_helper_neon_narrow_u16, 9791 tcg_gen_extrl_i64_i32, 9792 }; 9793 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9794 gen_helper_neon_unarrow_sat8, 9795 gen_helper_neon_unarrow_sat16, 9796 gen_helper_neon_unarrow_sat32, 9797 }; 9798 if (u) { 9799 genenvfn = sqxtunfns[size]; 9800 } else { 9801 genfn = xtnfns[size]; 9802 } 9803 break; 9804 } 9805 case 0x14: /* SQXTN, UQXTN */ 9806 { 9807 static NeonGenNarrowEnvFn * const fns[3][2] = { 9808 { gen_helper_neon_narrow_sat_s8, 9809 gen_helper_neon_narrow_sat_u8 }, 9810 { gen_helper_neon_narrow_sat_s16, 9811 gen_helper_neon_narrow_sat_u16 }, 9812 { gen_helper_neon_narrow_sat_s32, 9813 gen_helper_neon_narrow_sat_u32 }, 9814 }; 9815 genenvfn = fns[size][u]; 9816 break; 9817 } 9818 case 0x16: /* FCVTN, FCVTN2 */ 9819 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9820 if (size == 2) { 9821 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9822 } else { 9823 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9824 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9825 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9826 TCGv_i32 ahp = get_ahp_flag(); 9827 9828 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9829 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9830 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9831 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9832 } 9833 break; 9834 case 0x36: /* BFCVTN, BFCVTN2 */ 9835 { 9836 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9837 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9838 } 9839 break; 9840 case 0x56: /* FCVTXN, FCVTXN2 */ 9841 /* 64 bit to 32 bit float conversion 9842 * with von Neumann rounding (round to odd) 9843 */ 9844 assert(size == 2); 9845 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9846 break; 9847 default: 9848 g_assert_not_reached(); 9849 } 9850 9851 if (genfn) { 9852 genfn(tcg_res[pass], tcg_op); 9853 } else if (genenvfn) { 9854 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9855 } 9856 } 9857 9858 for (pass = 0; pass < 2; pass++) { 9859 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9860 } 9861 clear_vec_high(s, is_q, rd); 9862 } 9863 9864 /* Remaining saturating accumulating ops */ 9865 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9866 bool is_q, int size, int rn, int rd) 9867 { 9868 bool is_double = (size == 3); 9869 9870 if (is_double) { 9871 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9872 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9873 int pass; 9874 9875 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9876 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9877 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9878 9879 if (is_u) { /* USQADD */ 9880 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9881 } else { /* SUQADD */ 9882 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9883 } 9884 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9885 } 9886 clear_vec_high(s, !is_scalar, rd); 9887 } else { 9888 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9889 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9890 int pass, maxpasses; 9891 9892 if (is_scalar) { 9893 maxpasses = 1; 9894 } else { 9895 maxpasses = is_q ? 4 : 2; 9896 } 9897 9898 for (pass = 0; pass < maxpasses; pass++) { 9899 if (is_scalar) { 9900 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9901 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9902 } else { 9903 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9904 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9905 } 9906 9907 if (is_u) { /* USQADD */ 9908 switch (size) { 9909 case 0: 9910 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9911 break; 9912 case 1: 9913 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9914 break; 9915 case 2: 9916 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9917 break; 9918 default: 9919 g_assert_not_reached(); 9920 } 9921 } else { /* SUQADD */ 9922 switch (size) { 9923 case 0: 9924 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9925 break; 9926 case 1: 9927 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9928 break; 9929 case 2: 9930 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9931 break; 9932 default: 9933 g_assert_not_reached(); 9934 } 9935 } 9936 9937 if (is_scalar) { 9938 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9939 } 9940 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9941 } 9942 clear_vec_high(s, is_q, rd); 9943 } 9944 } 9945 9946 /* AdvSIMD scalar two reg misc 9947 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9948 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9949 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9950 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9951 */ 9952 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9953 { 9954 int rd = extract32(insn, 0, 5); 9955 int rn = extract32(insn, 5, 5); 9956 int opcode = extract32(insn, 12, 5); 9957 int size = extract32(insn, 22, 2); 9958 bool u = extract32(insn, 29, 1); 9959 bool is_fcvt = false; 9960 int rmode; 9961 TCGv_i32 tcg_rmode; 9962 TCGv_ptr tcg_fpstatus; 9963 9964 switch (opcode) { 9965 case 0x3: /* USQADD / SUQADD*/ 9966 if (!fp_access_check(s)) { 9967 return; 9968 } 9969 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9970 return; 9971 case 0x7: /* SQABS / SQNEG */ 9972 break; 9973 case 0xa: /* CMLT */ 9974 if (u) { 9975 unallocated_encoding(s); 9976 return; 9977 } 9978 /* fall through */ 9979 case 0x8: /* CMGT, CMGE */ 9980 case 0x9: /* CMEQ, CMLE */ 9981 case 0xb: /* ABS, NEG */ 9982 if (size != 3) { 9983 unallocated_encoding(s); 9984 return; 9985 } 9986 break; 9987 case 0x12: /* SQXTUN */ 9988 if (!u) { 9989 unallocated_encoding(s); 9990 return; 9991 } 9992 /* fall through */ 9993 case 0x14: /* SQXTN, UQXTN */ 9994 if (size == 3) { 9995 unallocated_encoding(s); 9996 return; 9997 } 9998 if (!fp_access_check(s)) { 9999 return; 10000 } 10001 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10002 return; 10003 case 0xc ... 0xf: 10004 case 0x16 ... 0x1d: 10005 case 0x1f: 10006 /* Floating point: U, size[1] and opcode indicate operation; 10007 * size[0] indicates single or double precision. 10008 */ 10009 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10010 size = extract32(size, 0, 1) ? 3 : 2; 10011 switch (opcode) { 10012 case 0x2c: /* FCMGT (zero) */ 10013 case 0x2d: /* FCMEQ (zero) */ 10014 case 0x2e: /* FCMLT (zero) */ 10015 case 0x6c: /* FCMGE (zero) */ 10016 case 0x6d: /* FCMLE (zero) */ 10017 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10018 return; 10019 case 0x1d: /* SCVTF */ 10020 case 0x5d: /* UCVTF */ 10021 { 10022 bool is_signed = (opcode == 0x1d); 10023 if (!fp_access_check(s)) { 10024 return; 10025 } 10026 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10027 return; 10028 } 10029 case 0x3d: /* FRECPE */ 10030 case 0x3f: /* FRECPX */ 10031 case 0x7d: /* FRSQRTE */ 10032 if (!fp_access_check(s)) { 10033 return; 10034 } 10035 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10036 return; 10037 case 0x1a: /* FCVTNS */ 10038 case 0x1b: /* FCVTMS */ 10039 case 0x3a: /* FCVTPS */ 10040 case 0x3b: /* FCVTZS */ 10041 case 0x5a: /* FCVTNU */ 10042 case 0x5b: /* FCVTMU */ 10043 case 0x7a: /* FCVTPU */ 10044 case 0x7b: /* FCVTZU */ 10045 is_fcvt = true; 10046 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10047 break; 10048 case 0x1c: /* FCVTAS */ 10049 case 0x5c: /* FCVTAU */ 10050 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10051 is_fcvt = true; 10052 rmode = FPROUNDING_TIEAWAY; 10053 break; 10054 case 0x56: /* FCVTXN, FCVTXN2 */ 10055 if (size == 2) { 10056 unallocated_encoding(s); 10057 return; 10058 } 10059 if (!fp_access_check(s)) { 10060 return; 10061 } 10062 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10063 return; 10064 default: 10065 unallocated_encoding(s); 10066 return; 10067 } 10068 break; 10069 default: 10070 unallocated_encoding(s); 10071 return; 10072 } 10073 10074 if (!fp_access_check(s)) { 10075 return; 10076 } 10077 10078 if (is_fcvt) { 10079 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10080 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10081 } else { 10082 tcg_fpstatus = NULL; 10083 tcg_rmode = NULL; 10084 } 10085 10086 if (size == 3) { 10087 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10088 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10089 10090 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10091 write_fp_dreg(s, rd, tcg_rd); 10092 } else { 10093 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10094 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10095 10096 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10097 10098 switch (opcode) { 10099 case 0x7: /* SQABS, SQNEG */ 10100 { 10101 NeonGenOneOpEnvFn *genfn; 10102 static NeonGenOneOpEnvFn * const fns[3][2] = { 10103 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10104 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10105 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10106 }; 10107 genfn = fns[size][u]; 10108 genfn(tcg_rd, tcg_env, tcg_rn); 10109 break; 10110 } 10111 case 0x1a: /* FCVTNS */ 10112 case 0x1b: /* FCVTMS */ 10113 case 0x1c: /* FCVTAS */ 10114 case 0x3a: /* FCVTPS */ 10115 case 0x3b: /* FCVTZS */ 10116 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10117 tcg_fpstatus); 10118 break; 10119 case 0x5a: /* FCVTNU */ 10120 case 0x5b: /* FCVTMU */ 10121 case 0x5c: /* FCVTAU */ 10122 case 0x7a: /* FCVTPU */ 10123 case 0x7b: /* FCVTZU */ 10124 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10125 tcg_fpstatus); 10126 break; 10127 default: 10128 g_assert_not_reached(); 10129 } 10130 10131 write_fp_sreg(s, rd, tcg_rd); 10132 } 10133 10134 if (is_fcvt) { 10135 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10136 } 10137 } 10138 10139 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10140 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10141 int immh, int immb, int opcode, int rn, int rd) 10142 { 10143 int size = 32 - clz32(immh) - 1; 10144 int immhb = immh << 3 | immb; 10145 int shift = 2 * (8 << size) - immhb; 10146 GVecGen2iFn *gvec_fn; 10147 10148 if (extract32(immh, 3, 1) && !is_q) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 tcg_debug_assert(size <= 3); 10153 10154 if (!fp_access_check(s)) { 10155 return; 10156 } 10157 10158 switch (opcode) { 10159 case 0x02: /* SSRA / USRA (accumulate) */ 10160 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10161 break; 10162 10163 case 0x08: /* SRI */ 10164 gvec_fn = gen_gvec_sri; 10165 break; 10166 10167 case 0x00: /* SSHR / USHR */ 10168 if (is_u) { 10169 if (shift == 8 << size) { 10170 /* Shift count the same size as element size produces zero. */ 10171 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10172 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10173 return; 10174 } 10175 gvec_fn = tcg_gen_gvec_shri; 10176 } else { 10177 /* Shift count the same size as element size produces all sign. */ 10178 if (shift == 8 << size) { 10179 shift -= 1; 10180 } 10181 gvec_fn = tcg_gen_gvec_sari; 10182 } 10183 break; 10184 10185 case 0x04: /* SRSHR / URSHR (rounding) */ 10186 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10187 break; 10188 10189 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10190 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10191 break; 10192 10193 default: 10194 g_assert_not_reached(); 10195 } 10196 10197 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10198 } 10199 10200 /* SHL/SLI - Vector shift left */ 10201 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10202 int immh, int immb, int opcode, int rn, int rd) 10203 { 10204 int size = 32 - clz32(immh) - 1; 10205 int immhb = immh << 3 | immb; 10206 int shift = immhb - (8 << size); 10207 10208 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10209 assert(size >= 0 && size <= 3); 10210 10211 if (extract32(immh, 3, 1) && !is_q) { 10212 unallocated_encoding(s); 10213 return; 10214 } 10215 10216 if (!fp_access_check(s)) { 10217 return; 10218 } 10219 10220 if (insert) { 10221 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10222 } else { 10223 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10224 } 10225 } 10226 10227 /* USHLL/SHLL - Vector shift left with widening */ 10228 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10229 int immh, int immb, int opcode, int rn, int rd) 10230 { 10231 int size = 32 - clz32(immh) - 1; 10232 int immhb = immh << 3 | immb; 10233 int shift = immhb - (8 << size); 10234 int dsize = 64; 10235 int esize = 8 << size; 10236 int elements = dsize/esize; 10237 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10238 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10239 int i; 10240 10241 if (size >= 3) { 10242 unallocated_encoding(s); 10243 return; 10244 } 10245 10246 if (!fp_access_check(s)) { 10247 return; 10248 } 10249 10250 /* For the LL variants the store is larger than the load, 10251 * so if rd == rn we would overwrite parts of our input. 10252 * So load everything right now and use shifts in the main loop. 10253 */ 10254 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10255 10256 for (i = 0; i < elements; i++) { 10257 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10258 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10259 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10260 write_vec_element(s, tcg_rd, rd, i, size + 1); 10261 } 10262 } 10263 10264 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10265 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10266 int immh, int immb, int opcode, int rn, int rd) 10267 { 10268 int immhb = immh << 3 | immb; 10269 int size = 32 - clz32(immh) - 1; 10270 int dsize = 64; 10271 int esize = 8 << size; 10272 int elements = dsize/esize; 10273 int shift = (2 * esize) - immhb; 10274 bool round = extract32(opcode, 0, 1); 10275 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10276 TCGv_i64 tcg_round; 10277 int i; 10278 10279 if (extract32(immh, 3, 1)) { 10280 unallocated_encoding(s); 10281 return; 10282 } 10283 10284 if (!fp_access_check(s)) { 10285 return; 10286 } 10287 10288 tcg_rn = tcg_temp_new_i64(); 10289 tcg_rd = tcg_temp_new_i64(); 10290 tcg_final = tcg_temp_new_i64(); 10291 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10292 10293 if (round) { 10294 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10295 } else { 10296 tcg_round = NULL; 10297 } 10298 10299 for (i = 0; i < elements; i++) { 10300 read_vec_element(s, tcg_rn, rn, i, size+1); 10301 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10302 false, true, size+1, shift); 10303 10304 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10305 } 10306 10307 if (!is_q) { 10308 write_vec_element(s, tcg_final, rd, 0, MO_64); 10309 } else { 10310 write_vec_element(s, tcg_final, rd, 1, MO_64); 10311 } 10312 10313 clear_vec_high(s, is_q, rd); 10314 } 10315 10316 10317 /* AdvSIMD shift by immediate 10318 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10319 * +---+---+---+-------------+------+------+--------+---+------+------+ 10320 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10321 * +---+---+---+-------------+------+------+--------+---+------+------+ 10322 */ 10323 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10324 { 10325 int rd = extract32(insn, 0, 5); 10326 int rn = extract32(insn, 5, 5); 10327 int opcode = extract32(insn, 11, 5); 10328 int immb = extract32(insn, 16, 3); 10329 int immh = extract32(insn, 19, 4); 10330 bool is_u = extract32(insn, 29, 1); 10331 bool is_q = extract32(insn, 30, 1); 10332 10333 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10334 assert(immh != 0); 10335 10336 switch (opcode) { 10337 case 0x08: /* SRI */ 10338 if (!is_u) { 10339 unallocated_encoding(s); 10340 return; 10341 } 10342 /* fall through */ 10343 case 0x00: /* SSHR / USHR */ 10344 case 0x02: /* SSRA / USRA (accumulate) */ 10345 case 0x04: /* SRSHR / URSHR (rounding) */ 10346 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10347 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10348 break; 10349 case 0x0a: /* SHL / SLI */ 10350 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10351 break; 10352 case 0x10: /* SHRN */ 10353 case 0x11: /* RSHRN / SQRSHRUN */ 10354 if (is_u) { 10355 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10356 opcode, rn, rd); 10357 } else { 10358 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10359 } 10360 break; 10361 case 0x12: /* SQSHRN / UQSHRN */ 10362 case 0x13: /* SQRSHRN / UQRSHRN */ 10363 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10364 opcode, rn, rd); 10365 break; 10366 case 0x14: /* SSHLL / USHLL */ 10367 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10368 break; 10369 case 0x1c: /* SCVTF / UCVTF */ 10370 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10371 opcode, rn, rd); 10372 break; 10373 case 0xc: /* SQSHLU */ 10374 if (!is_u) { 10375 unallocated_encoding(s); 10376 return; 10377 } 10378 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10379 break; 10380 case 0xe: /* SQSHL, UQSHL */ 10381 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10382 break; 10383 case 0x1f: /* FCVTZS/ FCVTZU */ 10384 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10385 return; 10386 default: 10387 unallocated_encoding(s); 10388 return; 10389 } 10390 } 10391 10392 /* Generate code to do a "long" addition or subtraction, ie one done in 10393 * TCGv_i64 on vector lanes twice the width specified by size. 10394 */ 10395 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10396 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10397 { 10398 static NeonGenTwo64OpFn * const fns[3][2] = { 10399 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10400 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10401 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10402 }; 10403 NeonGenTwo64OpFn *genfn; 10404 assert(size < 3); 10405 10406 genfn = fns[size][is_sub]; 10407 genfn(tcg_res, tcg_op1, tcg_op2); 10408 } 10409 10410 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10411 int opcode, int rd, int rn, int rm) 10412 { 10413 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10414 TCGv_i64 tcg_res[2]; 10415 int pass, accop; 10416 10417 tcg_res[0] = tcg_temp_new_i64(); 10418 tcg_res[1] = tcg_temp_new_i64(); 10419 10420 /* Does this op do an adding accumulate, a subtracting accumulate, 10421 * or no accumulate at all? 10422 */ 10423 switch (opcode) { 10424 case 5: 10425 case 8: 10426 case 9: 10427 accop = 1; 10428 break; 10429 case 10: 10430 case 11: 10431 accop = -1; 10432 break; 10433 default: 10434 accop = 0; 10435 break; 10436 } 10437 10438 if (accop != 0) { 10439 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10440 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10441 } 10442 10443 /* size == 2 means two 32x32->64 operations; this is worth special 10444 * casing because we can generally handle it inline. 10445 */ 10446 if (size == 2) { 10447 for (pass = 0; pass < 2; pass++) { 10448 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10449 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10450 TCGv_i64 tcg_passres; 10451 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10452 10453 int elt = pass + is_q * 2; 10454 10455 read_vec_element(s, tcg_op1, rn, elt, memop); 10456 read_vec_element(s, tcg_op2, rm, elt, memop); 10457 10458 if (accop == 0) { 10459 tcg_passres = tcg_res[pass]; 10460 } else { 10461 tcg_passres = tcg_temp_new_i64(); 10462 } 10463 10464 switch (opcode) { 10465 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10466 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10467 break; 10468 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10469 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10470 break; 10471 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10472 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10473 { 10474 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10475 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10476 10477 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10478 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10479 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10480 tcg_passres, 10481 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10482 break; 10483 } 10484 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10485 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10486 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10487 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10488 break; 10489 case 9: /* SQDMLAL, SQDMLAL2 */ 10490 case 11: /* SQDMLSL, SQDMLSL2 */ 10491 case 13: /* SQDMULL, SQDMULL2 */ 10492 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10493 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10494 tcg_passres, tcg_passres); 10495 break; 10496 default: 10497 g_assert_not_reached(); 10498 } 10499 10500 if (opcode == 9 || opcode == 11) { 10501 /* saturating accumulate ops */ 10502 if (accop < 0) { 10503 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10504 } 10505 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10506 tcg_res[pass], tcg_passres); 10507 } else if (accop > 0) { 10508 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10509 } else if (accop < 0) { 10510 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10511 } 10512 } 10513 } else { 10514 /* size 0 or 1, generally helper functions */ 10515 for (pass = 0; pass < 2; pass++) { 10516 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10517 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10518 TCGv_i64 tcg_passres; 10519 int elt = pass + is_q * 2; 10520 10521 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10522 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10523 10524 if (accop == 0) { 10525 tcg_passres = tcg_res[pass]; 10526 } else { 10527 tcg_passres = tcg_temp_new_i64(); 10528 } 10529 10530 switch (opcode) { 10531 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10532 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10533 { 10534 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10535 static NeonGenWidenFn * const widenfns[2][2] = { 10536 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10537 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10538 }; 10539 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10540 10541 widenfn(tcg_op2_64, tcg_op2); 10542 widenfn(tcg_passres, tcg_op1); 10543 gen_neon_addl(size, (opcode == 2), tcg_passres, 10544 tcg_passres, tcg_op2_64); 10545 break; 10546 } 10547 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10548 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10549 if (size == 0) { 10550 if (is_u) { 10551 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10552 } else { 10553 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10554 } 10555 } else { 10556 if (is_u) { 10557 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10558 } else { 10559 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10560 } 10561 } 10562 break; 10563 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10564 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10565 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10566 if (size == 0) { 10567 if (is_u) { 10568 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10569 } else { 10570 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10571 } 10572 } else { 10573 if (is_u) { 10574 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10575 } else { 10576 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10577 } 10578 } 10579 break; 10580 case 9: /* SQDMLAL, SQDMLAL2 */ 10581 case 11: /* SQDMLSL, SQDMLSL2 */ 10582 case 13: /* SQDMULL, SQDMULL2 */ 10583 assert(size == 1); 10584 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10585 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10586 tcg_passres, tcg_passres); 10587 break; 10588 default: 10589 g_assert_not_reached(); 10590 } 10591 10592 if (accop != 0) { 10593 if (opcode == 9 || opcode == 11) { 10594 /* saturating accumulate ops */ 10595 if (accop < 0) { 10596 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10597 } 10598 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10599 tcg_res[pass], 10600 tcg_passres); 10601 } else { 10602 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10603 tcg_res[pass], tcg_passres); 10604 } 10605 } 10606 } 10607 } 10608 10609 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10610 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10611 } 10612 10613 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10614 int opcode, int rd, int rn, int rm) 10615 { 10616 TCGv_i64 tcg_res[2]; 10617 int part = is_q ? 2 : 0; 10618 int pass; 10619 10620 for (pass = 0; pass < 2; pass++) { 10621 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10622 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10623 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10624 static NeonGenWidenFn * const widenfns[3][2] = { 10625 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10626 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10627 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10628 }; 10629 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10630 10631 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10632 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10633 widenfn(tcg_op2_wide, tcg_op2); 10634 tcg_res[pass] = tcg_temp_new_i64(); 10635 gen_neon_addl(size, (opcode == 3), 10636 tcg_res[pass], tcg_op1, tcg_op2_wide); 10637 } 10638 10639 for (pass = 0; pass < 2; pass++) { 10640 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10641 } 10642 } 10643 10644 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10645 { 10646 tcg_gen_addi_i64(in, in, 1U << 31); 10647 tcg_gen_extrh_i64_i32(res, in); 10648 } 10649 10650 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10651 int opcode, int rd, int rn, int rm) 10652 { 10653 TCGv_i32 tcg_res[2]; 10654 int part = is_q ? 2 : 0; 10655 int pass; 10656 10657 for (pass = 0; pass < 2; pass++) { 10658 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10659 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10660 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10661 static NeonGenNarrowFn * const narrowfns[3][2] = { 10662 { gen_helper_neon_narrow_high_u8, 10663 gen_helper_neon_narrow_round_high_u8 }, 10664 { gen_helper_neon_narrow_high_u16, 10665 gen_helper_neon_narrow_round_high_u16 }, 10666 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10667 }; 10668 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10669 10670 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10671 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10672 10673 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10674 10675 tcg_res[pass] = tcg_temp_new_i32(); 10676 gennarrow(tcg_res[pass], tcg_wideres); 10677 } 10678 10679 for (pass = 0; pass < 2; pass++) { 10680 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10681 } 10682 clear_vec_high(s, is_q, rd); 10683 } 10684 10685 /* AdvSIMD three different 10686 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10687 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10688 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10689 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10690 */ 10691 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10692 { 10693 /* Instructions in this group fall into three basic classes 10694 * (in each case with the operation working on each element in 10695 * the input vectors): 10696 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10697 * 128 bit input) 10698 * (2) wide 64 x 128 -> 128 10699 * (3) narrowing 128 x 128 -> 64 10700 * Here we do initial decode, catch unallocated cases and 10701 * dispatch to separate functions for each class. 10702 */ 10703 int is_q = extract32(insn, 30, 1); 10704 int is_u = extract32(insn, 29, 1); 10705 int size = extract32(insn, 22, 2); 10706 int opcode = extract32(insn, 12, 4); 10707 int rm = extract32(insn, 16, 5); 10708 int rn = extract32(insn, 5, 5); 10709 int rd = extract32(insn, 0, 5); 10710 10711 switch (opcode) { 10712 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10713 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10714 /* 64 x 128 -> 128 */ 10715 if (size == 3) { 10716 unallocated_encoding(s); 10717 return; 10718 } 10719 if (!fp_access_check(s)) { 10720 return; 10721 } 10722 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10723 break; 10724 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10725 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10726 /* 128 x 128 -> 64 */ 10727 if (size == 3) { 10728 unallocated_encoding(s); 10729 return; 10730 } 10731 if (!fp_access_check(s)) { 10732 return; 10733 } 10734 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10735 break; 10736 case 14: /* PMULL, PMULL2 */ 10737 if (is_u) { 10738 unallocated_encoding(s); 10739 return; 10740 } 10741 switch (size) { 10742 case 0: /* PMULL.P8 */ 10743 if (!fp_access_check(s)) { 10744 return; 10745 } 10746 /* The Q field specifies lo/hi half input for this insn. */ 10747 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10748 gen_helper_neon_pmull_h); 10749 break; 10750 10751 case 3: /* PMULL.P64 */ 10752 if (!dc_isar_feature(aa64_pmull, s)) { 10753 unallocated_encoding(s); 10754 return; 10755 } 10756 if (!fp_access_check(s)) { 10757 return; 10758 } 10759 /* The Q field specifies lo/hi half input for this insn. */ 10760 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10761 gen_helper_gvec_pmull_q); 10762 break; 10763 10764 default: 10765 unallocated_encoding(s); 10766 break; 10767 } 10768 return; 10769 case 9: /* SQDMLAL, SQDMLAL2 */ 10770 case 11: /* SQDMLSL, SQDMLSL2 */ 10771 case 13: /* SQDMULL, SQDMULL2 */ 10772 if (is_u || size == 0) { 10773 unallocated_encoding(s); 10774 return; 10775 } 10776 /* fall through */ 10777 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10778 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10779 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10780 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10781 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10782 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10783 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10784 /* 64 x 64 -> 128 */ 10785 if (size == 3) { 10786 unallocated_encoding(s); 10787 return; 10788 } 10789 if (!fp_access_check(s)) { 10790 return; 10791 } 10792 10793 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10794 break; 10795 default: 10796 /* opcode 15 not allocated */ 10797 unallocated_encoding(s); 10798 break; 10799 } 10800 } 10801 10802 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10803 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10804 { 10805 int rd = extract32(insn, 0, 5); 10806 int rn = extract32(insn, 5, 5); 10807 int rm = extract32(insn, 16, 5); 10808 int size = extract32(insn, 22, 2); 10809 bool is_u = extract32(insn, 29, 1); 10810 bool is_q = extract32(insn, 30, 1); 10811 10812 if (!fp_access_check(s)) { 10813 return; 10814 } 10815 10816 switch (size + 4 * is_u) { 10817 case 0: /* AND */ 10818 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10819 return; 10820 case 1: /* BIC */ 10821 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10822 return; 10823 case 2: /* ORR */ 10824 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10825 return; 10826 case 3: /* ORN */ 10827 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10828 return; 10829 case 4: /* EOR */ 10830 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10831 return; 10832 10833 case 5: /* BSL bitwise select */ 10834 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10835 return; 10836 case 6: /* BIT, bitwise insert if true */ 10837 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10838 return; 10839 case 7: /* BIF, bitwise insert if false */ 10840 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10841 return; 10842 10843 default: 10844 g_assert_not_reached(); 10845 } 10846 } 10847 10848 /* Pairwise op subgroup of C3.6.16. 10849 * 10850 * This is called directly or via the handle_3same_float for float pairwise 10851 * operations where the opcode and size are calculated differently. 10852 */ 10853 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10854 int size, int rn, int rm, int rd) 10855 { 10856 TCGv_ptr fpst; 10857 int pass; 10858 10859 /* Floating point operations need fpst */ 10860 if (opcode >= 0x58) { 10861 fpst = fpstatus_ptr(FPST_FPCR); 10862 } else { 10863 fpst = NULL; 10864 } 10865 10866 if (!fp_access_check(s)) { 10867 return; 10868 } 10869 10870 /* These operations work on the concatenated rm:rn, with each pair of 10871 * adjacent elements being operated on to produce an element in the result. 10872 */ 10873 if (size == 3) { 10874 TCGv_i64 tcg_res[2]; 10875 10876 for (pass = 0; pass < 2; pass++) { 10877 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10878 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10879 int passreg = (pass == 0) ? rn : rm; 10880 10881 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10882 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10883 tcg_res[pass] = tcg_temp_new_i64(); 10884 10885 switch (opcode) { 10886 case 0x17: /* ADDP */ 10887 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10888 break; 10889 case 0x58: /* FMAXNMP */ 10890 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10891 break; 10892 case 0x5a: /* FADDP */ 10893 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10894 break; 10895 case 0x5e: /* FMAXP */ 10896 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10897 break; 10898 case 0x78: /* FMINNMP */ 10899 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10900 break; 10901 case 0x7e: /* FMINP */ 10902 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10903 break; 10904 default: 10905 g_assert_not_reached(); 10906 } 10907 } 10908 10909 for (pass = 0; pass < 2; pass++) { 10910 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10911 } 10912 } else { 10913 int maxpass = is_q ? 4 : 2; 10914 TCGv_i32 tcg_res[4]; 10915 10916 for (pass = 0; pass < maxpass; pass++) { 10917 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10918 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10919 NeonGenTwoOpFn *genfn = NULL; 10920 int passreg = pass < (maxpass / 2) ? rn : rm; 10921 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10922 10923 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10924 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10925 tcg_res[pass] = tcg_temp_new_i32(); 10926 10927 switch (opcode) { 10928 case 0x17: /* ADDP */ 10929 { 10930 static NeonGenTwoOpFn * const fns[3] = { 10931 gen_helper_neon_padd_u8, 10932 gen_helper_neon_padd_u16, 10933 tcg_gen_add_i32, 10934 }; 10935 genfn = fns[size]; 10936 break; 10937 } 10938 case 0x14: /* SMAXP, UMAXP */ 10939 { 10940 static NeonGenTwoOpFn * const fns[3][2] = { 10941 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10942 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10943 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10944 }; 10945 genfn = fns[size][u]; 10946 break; 10947 } 10948 case 0x15: /* SMINP, UMINP */ 10949 { 10950 static NeonGenTwoOpFn * const fns[3][2] = { 10951 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10952 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10953 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10954 }; 10955 genfn = fns[size][u]; 10956 break; 10957 } 10958 /* The FP operations are all on single floats (32 bit) */ 10959 case 0x58: /* FMAXNMP */ 10960 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10961 break; 10962 case 0x5a: /* FADDP */ 10963 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10964 break; 10965 case 0x5e: /* FMAXP */ 10966 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10967 break; 10968 case 0x78: /* FMINNMP */ 10969 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10970 break; 10971 case 0x7e: /* FMINP */ 10972 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10973 break; 10974 default: 10975 g_assert_not_reached(); 10976 } 10977 10978 /* FP ops called directly, otherwise call now */ 10979 if (genfn) { 10980 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10981 } 10982 } 10983 10984 for (pass = 0; pass < maxpass; pass++) { 10985 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10986 } 10987 clear_vec_high(s, is_q, rd); 10988 } 10989 } 10990 10991 /* Floating point op subgroup of C3.6.16. */ 10992 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10993 { 10994 /* For floating point ops, the U, size[1] and opcode bits 10995 * together indicate the operation. size[0] indicates single 10996 * or double. 10997 */ 10998 int fpopcode = extract32(insn, 11, 5) 10999 | (extract32(insn, 23, 1) << 5) 11000 | (extract32(insn, 29, 1) << 6); 11001 int is_q = extract32(insn, 30, 1); 11002 int size = extract32(insn, 22, 1); 11003 int rm = extract32(insn, 16, 5); 11004 int rn = extract32(insn, 5, 5); 11005 int rd = extract32(insn, 0, 5); 11006 11007 int datasize = is_q ? 128 : 64; 11008 int esize = 32 << size; 11009 int elements = datasize / esize; 11010 11011 if (size == 1 && !is_q) { 11012 unallocated_encoding(s); 11013 return; 11014 } 11015 11016 switch (fpopcode) { 11017 case 0x58: /* FMAXNMP */ 11018 case 0x5a: /* FADDP */ 11019 case 0x5e: /* FMAXP */ 11020 case 0x78: /* FMINNMP */ 11021 case 0x7e: /* FMINP */ 11022 if (size && !is_q) { 11023 unallocated_encoding(s); 11024 return; 11025 } 11026 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11027 rn, rm, rd); 11028 return; 11029 case 0x1b: /* FMULX */ 11030 case 0x1f: /* FRECPS */ 11031 case 0x3f: /* FRSQRTS */ 11032 case 0x5d: /* FACGE */ 11033 case 0x7d: /* FACGT */ 11034 case 0x19: /* FMLA */ 11035 case 0x39: /* FMLS */ 11036 case 0x18: /* FMAXNM */ 11037 case 0x1a: /* FADD */ 11038 case 0x1c: /* FCMEQ */ 11039 case 0x1e: /* FMAX */ 11040 case 0x38: /* FMINNM */ 11041 case 0x3a: /* FSUB */ 11042 case 0x3e: /* FMIN */ 11043 case 0x5b: /* FMUL */ 11044 case 0x5c: /* FCMGE */ 11045 case 0x5f: /* FDIV */ 11046 case 0x7a: /* FABD */ 11047 case 0x7c: /* FCMGT */ 11048 if (!fp_access_check(s)) { 11049 return; 11050 } 11051 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11052 return; 11053 11054 case 0x1d: /* FMLAL */ 11055 case 0x3d: /* FMLSL */ 11056 case 0x59: /* FMLAL2 */ 11057 case 0x79: /* FMLSL2 */ 11058 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11059 unallocated_encoding(s); 11060 return; 11061 } 11062 if (fp_access_check(s)) { 11063 int is_s = extract32(insn, 23, 1); 11064 int is_2 = extract32(insn, 29, 1); 11065 int data = (is_2 << 1) | is_s; 11066 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11067 vec_full_reg_offset(s, rn), 11068 vec_full_reg_offset(s, rm), tcg_env, 11069 is_q ? 16 : 8, vec_full_reg_size(s), 11070 data, gen_helper_gvec_fmlal_a64); 11071 } 11072 return; 11073 11074 default: 11075 unallocated_encoding(s); 11076 return; 11077 } 11078 } 11079 11080 /* Integer op subgroup of C3.6.16. */ 11081 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11082 { 11083 int is_q = extract32(insn, 30, 1); 11084 int u = extract32(insn, 29, 1); 11085 int size = extract32(insn, 22, 2); 11086 int opcode = extract32(insn, 11, 5); 11087 int rm = extract32(insn, 16, 5); 11088 int rn = extract32(insn, 5, 5); 11089 int rd = extract32(insn, 0, 5); 11090 int pass; 11091 TCGCond cond; 11092 11093 switch (opcode) { 11094 case 0x13: /* MUL, PMUL */ 11095 if (u && size != 0) { 11096 unallocated_encoding(s); 11097 return; 11098 } 11099 /* fall through */ 11100 case 0x0: /* SHADD, UHADD */ 11101 case 0x2: /* SRHADD, URHADD */ 11102 case 0x4: /* SHSUB, UHSUB */ 11103 case 0xc: /* SMAX, UMAX */ 11104 case 0xd: /* SMIN, UMIN */ 11105 case 0xe: /* SABD, UABD */ 11106 case 0xf: /* SABA, UABA */ 11107 case 0x12: /* MLA, MLS */ 11108 if (size == 3) { 11109 unallocated_encoding(s); 11110 return; 11111 } 11112 break; 11113 case 0x16: /* SQDMULH, SQRDMULH */ 11114 if (size == 0 || size == 3) { 11115 unallocated_encoding(s); 11116 return; 11117 } 11118 break; 11119 default: 11120 if (size == 3 && !is_q) { 11121 unallocated_encoding(s); 11122 return; 11123 } 11124 break; 11125 } 11126 11127 if (!fp_access_check(s)) { 11128 return; 11129 } 11130 11131 switch (opcode) { 11132 case 0x01: /* SQADD, UQADD */ 11133 if (u) { 11134 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11135 } else { 11136 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11137 } 11138 return; 11139 case 0x05: /* SQSUB, UQSUB */ 11140 if (u) { 11141 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11142 } else { 11143 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11144 } 11145 return; 11146 case 0x08: /* SSHL, USHL */ 11147 if (u) { 11148 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11149 } else { 11150 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11151 } 11152 return; 11153 case 0x0c: /* SMAX, UMAX */ 11154 if (u) { 11155 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11156 } else { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11158 } 11159 return; 11160 case 0x0d: /* SMIN, UMIN */ 11161 if (u) { 11162 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11163 } else { 11164 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11165 } 11166 return; 11167 case 0xe: /* SABD, UABD */ 11168 if (u) { 11169 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11170 } else { 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11172 } 11173 return; 11174 case 0xf: /* SABA, UABA */ 11175 if (u) { 11176 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11177 } else { 11178 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11179 } 11180 return; 11181 case 0x10: /* ADD, SUB */ 11182 if (u) { 11183 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11184 } else { 11185 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11186 } 11187 return; 11188 case 0x13: /* MUL, PMUL */ 11189 if (!u) { /* MUL */ 11190 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11191 } else { /* PMUL */ 11192 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11193 } 11194 return; 11195 case 0x12: /* MLA, MLS */ 11196 if (u) { 11197 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11198 } else { 11199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11200 } 11201 return; 11202 case 0x16: /* SQDMULH, SQRDMULH */ 11203 { 11204 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11205 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11206 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11207 }; 11208 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11209 } 11210 return; 11211 case 0x11: 11212 if (!u) { /* CMTST */ 11213 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11214 return; 11215 } 11216 /* else CMEQ */ 11217 cond = TCG_COND_EQ; 11218 goto do_gvec_cmp; 11219 case 0x06: /* CMGT, CMHI */ 11220 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11221 goto do_gvec_cmp; 11222 case 0x07: /* CMGE, CMHS */ 11223 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11224 do_gvec_cmp: 11225 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11226 vec_full_reg_offset(s, rn), 11227 vec_full_reg_offset(s, rm), 11228 is_q ? 16 : 8, vec_full_reg_size(s)); 11229 return; 11230 } 11231 11232 if (size == 3) { 11233 assert(is_q); 11234 for (pass = 0; pass < 2; pass++) { 11235 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11236 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11237 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11238 11239 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11240 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11241 11242 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11243 11244 write_vec_element(s, tcg_res, rd, pass, MO_64); 11245 } 11246 } else { 11247 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11248 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11249 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11250 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11251 NeonGenTwoOpFn *genfn = NULL; 11252 NeonGenTwoOpEnvFn *genenvfn = NULL; 11253 11254 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11255 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11256 11257 switch (opcode) { 11258 case 0x0: /* SHADD, UHADD */ 11259 { 11260 static NeonGenTwoOpFn * const fns[3][2] = { 11261 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11262 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11263 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11264 }; 11265 genfn = fns[size][u]; 11266 break; 11267 } 11268 case 0x2: /* SRHADD, URHADD */ 11269 { 11270 static NeonGenTwoOpFn * const fns[3][2] = { 11271 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11272 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11273 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11274 }; 11275 genfn = fns[size][u]; 11276 break; 11277 } 11278 case 0x4: /* SHSUB, UHSUB */ 11279 { 11280 static NeonGenTwoOpFn * const fns[3][2] = { 11281 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11282 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11283 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11284 }; 11285 genfn = fns[size][u]; 11286 break; 11287 } 11288 case 0x9: /* SQSHL, UQSHL */ 11289 { 11290 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11291 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11292 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11293 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11294 }; 11295 genenvfn = fns[size][u]; 11296 break; 11297 } 11298 case 0xa: /* SRSHL, URSHL */ 11299 { 11300 static NeonGenTwoOpFn * const fns[3][2] = { 11301 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11302 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11303 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11304 }; 11305 genfn = fns[size][u]; 11306 break; 11307 } 11308 case 0xb: /* SQRSHL, UQRSHL */ 11309 { 11310 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11311 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11312 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11313 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11314 }; 11315 genenvfn = fns[size][u]; 11316 break; 11317 } 11318 default: 11319 g_assert_not_reached(); 11320 } 11321 11322 if (genenvfn) { 11323 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11324 } else { 11325 genfn(tcg_res, tcg_op1, tcg_op2); 11326 } 11327 11328 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11329 } 11330 } 11331 clear_vec_high(s, is_q, rd); 11332 } 11333 11334 /* AdvSIMD three same 11335 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11336 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11337 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11338 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11339 */ 11340 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11341 { 11342 int opcode = extract32(insn, 11, 5); 11343 11344 switch (opcode) { 11345 case 0x3: /* logic ops */ 11346 disas_simd_3same_logic(s, insn); 11347 break; 11348 case 0x17: /* ADDP */ 11349 case 0x14: /* SMAXP, UMAXP */ 11350 case 0x15: /* SMINP, UMINP */ 11351 { 11352 /* Pairwise operations */ 11353 int is_q = extract32(insn, 30, 1); 11354 int u = extract32(insn, 29, 1); 11355 int size = extract32(insn, 22, 2); 11356 int rm = extract32(insn, 16, 5); 11357 int rn = extract32(insn, 5, 5); 11358 int rd = extract32(insn, 0, 5); 11359 if (opcode == 0x17) { 11360 if (u || (size == 3 && !is_q)) { 11361 unallocated_encoding(s); 11362 return; 11363 } 11364 } else { 11365 if (size == 3) { 11366 unallocated_encoding(s); 11367 return; 11368 } 11369 } 11370 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11371 break; 11372 } 11373 case 0x18 ... 0x31: 11374 /* floating point ops, sz[1] and U are part of opcode */ 11375 disas_simd_3same_float(s, insn); 11376 break; 11377 default: 11378 disas_simd_3same_int(s, insn); 11379 break; 11380 } 11381 } 11382 11383 /* 11384 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11385 * 11386 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11387 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11388 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11389 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11390 * 11391 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11392 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11393 * 11394 */ 11395 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11396 { 11397 int opcode = extract32(insn, 11, 3); 11398 int u = extract32(insn, 29, 1); 11399 int a = extract32(insn, 23, 1); 11400 int is_q = extract32(insn, 30, 1); 11401 int rm = extract32(insn, 16, 5); 11402 int rn = extract32(insn, 5, 5); 11403 int rd = extract32(insn, 0, 5); 11404 /* 11405 * For these floating point ops, the U, a and opcode bits 11406 * together indicate the operation. 11407 */ 11408 int fpopcode = opcode | (a << 3) | (u << 4); 11409 int datasize = is_q ? 128 : 64; 11410 int elements = datasize / 16; 11411 bool pairwise; 11412 TCGv_ptr fpst; 11413 int pass; 11414 11415 switch (fpopcode) { 11416 case 0x0: /* FMAXNM */ 11417 case 0x1: /* FMLA */ 11418 case 0x2: /* FADD */ 11419 case 0x3: /* FMULX */ 11420 case 0x4: /* FCMEQ */ 11421 case 0x6: /* FMAX */ 11422 case 0x7: /* FRECPS */ 11423 case 0x8: /* FMINNM */ 11424 case 0x9: /* FMLS */ 11425 case 0xa: /* FSUB */ 11426 case 0xe: /* FMIN */ 11427 case 0xf: /* FRSQRTS */ 11428 case 0x13: /* FMUL */ 11429 case 0x14: /* FCMGE */ 11430 case 0x15: /* FACGE */ 11431 case 0x17: /* FDIV */ 11432 case 0x1a: /* FABD */ 11433 case 0x1c: /* FCMGT */ 11434 case 0x1d: /* FACGT */ 11435 pairwise = false; 11436 break; 11437 case 0x10: /* FMAXNMP */ 11438 case 0x12: /* FADDP */ 11439 case 0x16: /* FMAXP */ 11440 case 0x18: /* FMINNMP */ 11441 case 0x1e: /* FMINP */ 11442 pairwise = true; 11443 break; 11444 default: 11445 unallocated_encoding(s); 11446 return; 11447 } 11448 11449 if (!dc_isar_feature(aa64_fp16, s)) { 11450 unallocated_encoding(s); 11451 return; 11452 } 11453 11454 if (!fp_access_check(s)) { 11455 return; 11456 } 11457 11458 fpst = fpstatus_ptr(FPST_FPCR_F16); 11459 11460 if (pairwise) { 11461 int maxpass = is_q ? 8 : 4; 11462 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11463 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11464 TCGv_i32 tcg_res[8]; 11465 11466 for (pass = 0; pass < maxpass; pass++) { 11467 int passreg = pass < (maxpass / 2) ? rn : rm; 11468 int passelt = (pass << 1) & (maxpass - 1); 11469 11470 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11471 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11472 tcg_res[pass] = tcg_temp_new_i32(); 11473 11474 switch (fpopcode) { 11475 case 0x10: /* FMAXNMP */ 11476 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11477 fpst); 11478 break; 11479 case 0x12: /* FADDP */ 11480 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11481 break; 11482 case 0x16: /* FMAXP */ 11483 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11484 break; 11485 case 0x18: /* FMINNMP */ 11486 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11487 fpst); 11488 break; 11489 case 0x1e: /* FMINP */ 11490 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11491 break; 11492 default: 11493 g_assert_not_reached(); 11494 } 11495 } 11496 11497 for (pass = 0; pass < maxpass; pass++) { 11498 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11499 } 11500 } else { 11501 for (pass = 0; pass < elements; pass++) { 11502 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11503 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11504 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11505 11506 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11507 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11508 11509 switch (fpopcode) { 11510 case 0x0: /* FMAXNM */ 11511 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11512 break; 11513 case 0x1: /* FMLA */ 11514 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11515 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11516 fpst); 11517 break; 11518 case 0x2: /* FADD */ 11519 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11520 break; 11521 case 0x3: /* FMULX */ 11522 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11523 break; 11524 case 0x4: /* FCMEQ */ 11525 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11526 break; 11527 case 0x6: /* FMAX */ 11528 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11529 break; 11530 case 0x7: /* FRECPS */ 11531 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11532 break; 11533 case 0x8: /* FMINNM */ 11534 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11535 break; 11536 case 0x9: /* FMLS */ 11537 /* As usual for ARM, separate negation for fused multiply-add */ 11538 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11539 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11540 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11541 fpst); 11542 break; 11543 case 0xa: /* FSUB */ 11544 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0xe: /* FMIN */ 11547 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11548 break; 11549 case 0xf: /* FRSQRTS */ 11550 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11551 break; 11552 case 0x13: /* FMUL */ 11553 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11554 break; 11555 case 0x14: /* FCMGE */ 11556 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11557 break; 11558 case 0x15: /* FACGE */ 11559 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11560 break; 11561 case 0x17: /* FDIV */ 11562 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11563 break; 11564 case 0x1a: /* FABD */ 11565 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11566 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11567 break; 11568 case 0x1c: /* FCMGT */ 11569 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0x1d: /* FACGT */ 11572 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 default: 11575 g_assert_not_reached(); 11576 } 11577 11578 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11579 } 11580 } 11581 11582 clear_vec_high(s, is_q, rd); 11583 } 11584 11585 /* AdvSIMD three same extra 11586 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11587 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11588 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11589 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11590 */ 11591 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11592 { 11593 int rd = extract32(insn, 0, 5); 11594 int rn = extract32(insn, 5, 5); 11595 int opcode = extract32(insn, 11, 4); 11596 int rm = extract32(insn, 16, 5); 11597 int size = extract32(insn, 22, 2); 11598 bool u = extract32(insn, 29, 1); 11599 bool is_q = extract32(insn, 30, 1); 11600 bool feature; 11601 int rot; 11602 11603 switch (u * 16 + opcode) { 11604 case 0x10: /* SQRDMLAH (vector) */ 11605 case 0x11: /* SQRDMLSH (vector) */ 11606 if (size != 1 && size != 2) { 11607 unallocated_encoding(s); 11608 return; 11609 } 11610 feature = dc_isar_feature(aa64_rdm, s); 11611 break; 11612 case 0x02: /* SDOT (vector) */ 11613 case 0x12: /* UDOT (vector) */ 11614 if (size != MO_32) { 11615 unallocated_encoding(s); 11616 return; 11617 } 11618 feature = dc_isar_feature(aa64_dp, s); 11619 break; 11620 case 0x03: /* USDOT */ 11621 if (size != MO_32) { 11622 unallocated_encoding(s); 11623 return; 11624 } 11625 feature = dc_isar_feature(aa64_i8mm, s); 11626 break; 11627 case 0x04: /* SMMLA */ 11628 case 0x14: /* UMMLA */ 11629 case 0x05: /* USMMLA */ 11630 if (!is_q || size != MO_32) { 11631 unallocated_encoding(s); 11632 return; 11633 } 11634 feature = dc_isar_feature(aa64_i8mm, s); 11635 break; 11636 case 0x18: /* FCMLA, #0 */ 11637 case 0x19: /* FCMLA, #90 */ 11638 case 0x1a: /* FCMLA, #180 */ 11639 case 0x1b: /* FCMLA, #270 */ 11640 case 0x1c: /* FCADD, #90 */ 11641 case 0x1e: /* FCADD, #270 */ 11642 if (size == 0 11643 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11644 || (size == 3 && !is_q)) { 11645 unallocated_encoding(s); 11646 return; 11647 } 11648 feature = dc_isar_feature(aa64_fcma, s); 11649 break; 11650 case 0x1d: /* BFMMLA */ 11651 if (size != MO_16 || !is_q) { 11652 unallocated_encoding(s); 11653 return; 11654 } 11655 feature = dc_isar_feature(aa64_bf16, s); 11656 break; 11657 case 0x1f: 11658 switch (size) { 11659 case 1: /* BFDOT */ 11660 case 3: /* BFMLAL{B,T} */ 11661 feature = dc_isar_feature(aa64_bf16, s); 11662 break; 11663 default: 11664 unallocated_encoding(s); 11665 return; 11666 } 11667 break; 11668 default: 11669 unallocated_encoding(s); 11670 return; 11671 } 11672 if (!feature) { 11673 unallocated_encoding(s); 11674 return; 11675 } 11676 if (!fp_access_check(s)) { 11677 return; 11678 } 11679 11680 switch (opcode) { 11681 case 0x0: /* SQRDMLAH (vector) */ 11682 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11683 return; 11684 11685 case 0x1: /* SQRDMLSH (vector) */ 11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11687 return; 11688 11689 case 0x2: /* SDOT / UDOT */ 11690 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11691 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11692 return; 11693 11694 case 0x3: /* USDOT */ 11695 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11696 return; 11697 11698 case 0x04: /* SMMLA, UMMLA */ 11699 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11700 u ? gen_helper_gvec_ummla_b 11701 : gen_helper_gvec_smmla_b); 11702 return; 11703 case 0x05: /* USMMLA */ 11704 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11705 return; 11706 11707 case 0x8: /* FCMLA, #0 */ 11708 case 0x9: /* FCMLA, #90 */ 11709 case 0xa: /* FCMLA, #180 */ 11710 case 0xb: /* FCMLA, #270 */ 11711 rot = extract32(opcode, 0, 2); 11712 switch (size) { 11713 case 1: 11714 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11715 gen_helper_gvec_fcmlah); 11716 break; 11717 case 2: 11718 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11719 gen_helper_gvec_fcmlas); 11720 break; 11721 case 3: 11722 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11723 gen_helper_gvec_fcmlad); 11724 break; 11725 default: 11726 g_assert_not_reached(); 11727 } 11728 return; 11729 11730 case 0xc: /* FCADD, #90 */ 11731 case 0xe: /* FCADD, #270 */ 11732 rot = extract32(opcode, 1, 1); 11733 switch (size) { 11734 case 1: 11735 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11736 gen_helper_gvec_fcaddh); 11737 break; 11738 case 2: 11739 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11740 gen_helper_gvec_fcadds); 11741 break; 11742 case 3: 11743 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11744 gen_helper_gvec_fcaddd); 11745 break; 11746 default: 11747 g_assert_not_reached(); 11748 } 11749 return; 11750 11751 case 0xd: /* BFMMLA */ 11752 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11753 return; 11754 case 0xf: 11755 switch (size) { 11756 case 1: /* BFDOT */ 11757 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11758 break; 11759 case 3: /* BFMLAL{B,T} */ 11760 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11761 gen_helper_gvec_bfmlal); 11762 break; 11763 default: 11764 g_assert_not_reached(); 11765 } 11766 return; 11767 11768 default: 11769 g_assert_not_reached(); 11770 } 11771 } 11772 11773 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11774 int size, int rn, int rd) 11775 { 11776 /* Handle 2-reg-misc ops which are widening (so each size element 11777 * in the source becomes a 2*size element in the destination. 11778 * The only instruction like this is FCVTL. 11779 */ 11780 int pass; 11781 11782 if (size == 3) { 11783 /* 32 -> 64 bit fp conversion */ 11784 TCGv_i64 tcg_res[2]; 11785 int srcelt = is_q ? 2 : 0; 11786 11787 for (pass = 0; pass < 2; pass++) { 11788 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11789 tcg_res[pass] = tcg_temp_new_i64(); 11790 11791 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11792 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11793 } 11794 for (pass = 0; pass < 2; pass++) { 11795 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11796 } 11797 } else { 11798 /* 16 -> 32 bit fp conversion */ 11799 int srcelt = is_q ? 4 : 0; 11800 TCGv_i32 tcg_res[4]; 11801 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11802 TCGv_i32 ahp = get_ahp_flag(); 11803 11804 for (pass = 0; pass < 4; pass++) { 11805 tcg_res[pass] = tcg_temp_new_i32(); 11806 11807 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11808 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11809 fpst, ahp); 11810 } 11811 for (pass = 0; pass < 4; pass++) { 11812 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11813 } 11814 } 11815 } 11816 11817 static void handle_rev(DisasContext *s, int opcode, bool u, 11818 bool is_q, int size, int rn, int rd) 11819 { 11820 int op = (opcode << 1) | u; 11821 int opsz = op + size; 11822 int grp_size = 3 - opsz; 11823 int dsize = is_q ? 128 : 64; 11824 int i; 11825 11826 if (opsz >= 3) { 11827 unallocated_encoding(s); 11828 return; 11829 } 11830 11831 if (!fp_access_check(s)) { 11832 return; 11833 } 11834 11835 if (size == 0) { 11836 /* Special case bytes, use bswap op on each group of elements */ 11837 int groups = dsize / (8 << grp_size); 11838 11839 for (i = 0; i < groups; i++) { 11840 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11841 11842 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11843 switch (grp_size) { 11844 case MO_16: 11845 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11846 break; 11847 case MO_32: 11848 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11849 break; 11850 case MO_64: 11851 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11852 break; 11853 default: 11854 g_assert_not_reached(); 11855 } 11856 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11857 } 11858 clear_vec_high(s, is_q, rd); 11859 } else { 11860 int revmask = (1 << grp_size) - 1; 11861 int esize = 8 << size; 11862 int elements = dsize / esize; 11863 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11864 TCGv_i64 tcg_rd[2]; 11865 11866 for (i = 0; i < 2; i++) { 11867 tcg_rd[i] = tcg_temp_new_i64(); 11868 tcg_gen_movi_i64(tcg_rd[i], 0); 11869 } 11870 11871 for (i = 0; i < elements; i++) { 11872 int e_rev = (i & 0xf) ^ revmask; 11873 int w = (e_rev * esize) / 64; 11874 int o = (e_rev * esize) % 64; 11875 11876 read_vec_element(s, tcg_rn, rn, i, size); 11877 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11878 } 11879 11880 for (i = 0; i < 2; i++) { 11881 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11882 } 11883 clear_vec_high(s, true, rd); 11884 } 11885 } 11886 11887 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11888 bool is_q, int size, int rn, int rd) 11889 { 11890 /* Implement the pairwise operations from 2-misc: 11891 * SADDLP, UADDLP, SADALP, UADALP. 11892 * These all add pairs of elements in the input to produce a 11893 * double-width result element in the output (possibly accumulating). 11894 */ 11895 bool accum = (opcode == 0x6); 11896 int maxpass = is_q ? 2 : 1; 11897 int pass; 11898 TCGv_i64 tcg_res[2]; 11899 11900 if (size == 2) { 11901 /* 32 + 32 -> 64 op */ 11902 MemOp memop = size + (u ? 0 : MO_SIGN); 11903 11904 for (pass = 0; pass < maxpass; pass++) { 11905 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11906 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11907 11908 tcg_res[pass] = tcg_temp_new_i64(); 11909 11910 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11911 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11912 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11913 if (accum) { 11914 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11915 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11916 } 11917 } 11918 } else { 11919 for (pass = 0; pass < maxpass; pass++) { 11920 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11921 NeonGenOne64OpFn *genfn; 11922 static NeonGenOne64OpFn * const fns[2][2] = { 11923 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11924 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11925 }; 11926 11927 genfn = fns[size][u]; 11928 11929 tcg_res[pass] = tcg_temp_new_i64(); 11930 11931 read_vec_element(s, tcg_op, rn, pass, MO_64); 11932 genfn(tcg_res[pass], tcg_op); 11933 11934 if (accum) { 11935 read_vec_element(s, tcg_op, rd, pass, MO_64); 11936 if (size == 0) { 11937 gen_helper_neon_addl_u16(tcg_res[pass], 11938 tcg_res[pass], tcg_op); 11939 } else { 11940 gen_helper_neon_addl_u32(tcg_res[pass], 11941 tcg_res[pass], tcg_op); 11942 } 11943 } 11944 } 11945 } 11946 if (!is_q) { 11947 tcg_res[1] = tcg_constant_i64(0); 11948 } 11949 for (pass = 0; pass < 2; pass++) { 11950 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11951 } 11952 } 11953 11954 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11955 { 11956 /* Implement SHLL and SHLL2 */ 11957 int pass; 11958 int part = is_q ? 2 : 0; 11959 TCGv_i64 tcg_res[2]; 11960 11961 for (pass = 0; pass < 2; pass++) { 11962 static NeonGenWidenFn * const widenfns[3] = { 11963 gen_helper_neon_widen_u8, 11964 gen_helper_neon_widen_u16, 11965 tcg_gen_extu_i32_i64, 11966 }; 11967 NeonGenWidenFn *widenfn = widenfns[size]; 11968 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11969 11970 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11971 tcg_res[pass] = tcg_temp_new_i64(); 11972 widenfn(tcg_res[pass], tcg_op); 11973 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11974 } 11975 11976 for (pass = 0; pass < 2; pass++) { 11977 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11978 } 11979 } 11980 11981 /* AdvSIMD two reg misc 11982 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11983 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11984 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11985 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11986 */ 11987 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11988 { 11989 int size = extract32(insn, 22, 2); 11990 int opcode = extract32(insn, 12, 5); 11991 bool u = extract32(insn, 29, 1); 11992 bool is_q = extract32(insn, 30, 1); 11993 int rn = extract32(insn, 5, 5); 11994 int rd = extract32(insn, 0, 5); 11995 bool need_fpstatus = false; 11996 int rmode = -1; 11997 TCGv_i32 tcg_rmode; 11998 TCGv_ptr tcg_fpstatus; 11999 12000 switch (opcode) { 12001 case 0x0: /* REV64, REV32 */ 12002 case 0x1: /* REV16 */ 12003 handle_rev(s, opcode, u, is_q, size, rn, rd); 12004 return; 12005 case 0x5: /* CNT, NOT, RBIT */ 12006 if (u && size == 0) { 12007 /* NOT */ 12008 break; 12009 } else if (u && size == 1) { 12010 /* RBIT */ 12011 break; 12012 } else if (!u && size == 0) { 12013 /* CNT */ 12014 break; 12015 } 12016 unallocated_encoding(s); 12017 return; 12018 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12019 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12020 if (size == 3) { 12021 unallocated_encoding(s); 12022 return; 12023 } 12024 if (!fp_access_check(s)) { 12025 return; 12026 } 12027 12028 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12029 return; 12030 case 0x4: /* CLS, CLZ */ 12031 if (size == 3) { 12032 unallocated_encoding(s); 12033 return; 12034 } 12035 break; 12036 case 0x2: /* SADDLP, UADDLP */ 12037 case 0x6: /* SADALP, UADALP */ 12038 if (size == 3) { 12039 unallocated_encoding(s); 12040 return; 12041 } 12042 if (!fp_access_check(s)) { 12043 return; 12044 } 12045 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12046 return; 12047 case 0x13: /* SHLL, SHLL2 */ 12048 if (u == 0 || size == 3) { 12049 unallocated_encoding(s); 12050 return; 12051 } 12052 if (!fp_access_check(s)) { 12053 return; 12054 } 12055 handle_shll(s, is_q, size, rn, rd); 12056 return; 12057 case 0xa: /* CMLT */ 12058 if (u == 1) { 12059 unallocated_encoding(s); 12060 return; 12061 } 12062 /* fall through */ 12063 case 0x8: /* CMGT, CMGE */ 12064 case 0x9: /* CMEQ, CMLE */ 12065 case 0xb: /* ABS, NEG */ 12066 if (size == 3 && !is_q) { 12067 unallocated_encoding(s); 12068 return; 12069 } 12070 break; 12071 case 0x3: /* SUQADD, USQADD */ 12072 if (size == 3 && !is_q) { 12073 unallocated_encoding(s); 12074 return; 12075 } 12076 if (!fp_access_check(s)) { 12077 return; 12078 } 12079 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12080 return; 12081 case 0x7: /* SQABS, SQNEG */ 12082 if (size == 3 && !is_q) { 12083 unallocated_encoding(s); 12084 return; 12085 } 12086 break; 12087 case 0xc ... 0xf: 12088 case 0x16 ... 0x1f: 12089 { 12090 /* Floating point: U, size[1] and opcode indicate operation; 12091 * size[0] indicates single or double precision. 12092 */ 12093 int is_double = extract32(size, 0, 1); 12094 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12095 size = is_double ? 3 : 2; 12096 switch (opcode) { 12097 case 0x2f: /* FABS */ 12098 case 0x6f: /* FNEG */ 12099 if (size == 3 && !is_q) { 12100 unallocated_encoding(s); 12101 return; 12102 } 12103 break; 12104 case 0x1d: /* SCVTF */ 12105 case 0x5d: /* UCVTF */ 12106 { 12107 bool is_signed = (opcode == 0x1d) ? true : false; 12108 int elements = is_double ? 2 : is_q ? 4 : 2; 12109 if (is_double && !is_q) { 12110 unallocated_encoding(s); 12111 return; 12112 } 12113 if (!fp_access_check(s)) { 12114 return; 12115 } 12116 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12117 return; 12118 } 12119 case 0x2c: /* FCMGT (zero) */ 12120 case 0x2d: /* FCMEQ (zero) */ 12121 case 0x2e: /* FCMLT (zero) */ 12122 case 0x6c: /* FCMGE (zero) */ 12123 case 0x6d: /* FCMLE (zero) */ 12124 if (size == 3 && !is_q) { 12125 unallocated_encoding(s); 12126 return; 12127 } 12128 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12129 return; 12130 case 0x7f: /* FSQRT */ 12131 if (size == 3 && !is_q) { 12132 unallocated_encoding(s); 12133 return; 12134 } 12135 break; 12136 case 0x1a: /* FCVTNS */ 12137 case 0x1b: /* FCVTMS */ 12138 case 0x3a: /* FCVTPS */ 12139 case 0x3b: /* FCVTZS */ 12140 case 0x5a: /* FCVTNU */ 12141 case 0x5b: /* FCVTMU */ 12142 case 0x7a: /* FCVTPU */ 12143 case 0x7b: /* FCVTZU */ 12144 need_fpstatus = true; 12145 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12146 if (size == 3 && !is_q) { 12147 unallocated_encoding(s); 12148 return; 12149 } 12150 break; 12151 case 0x5c: /* FCVTAU */ 12152 case 0x1c: /* FCVTAS */ 12153 need_fpstatus = true; 12154 rmode = FPROUNDING_TIEAWAY; 12155 if (size == 3 && !is_q) { 12156 unallocated_encoding(s); 12157 return; 12158 } 12159 break; 12160 case 0x3c: /* URECPE */ 12161 if (size == 3) { 12162 unallocated_encoding(s); 12163 return; 12164 } 12165 /* fall through */ 12166 case 0x3d: /* FRECPE */ 12167 case 0x7d: /* FRSQRTE */ 12168 if (size == 3 && !is_q) { 12169 unallocated_encoding(s); 12170 return; 12171 } 12172 if (!fp_access_check(s)) { 12173 return; 12174 } 12175 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12176 return; 12177 case 0x56: /* FCVTXN, FCVTXN2 */ 12178 if (size == 2) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 /* fall through */ 12183 case 0x16: /* FCVTN, FCVTN2 */ 12184 /* handle_2misc_narrow does a 2*size -> size operation, but these 12185 * instructions encode the source size rather than dest size. 12186 */ 12187 if (!fp_access_check(s)) { 12188 return; 12189 } 12190 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12191 return; 12192 case 0x36: /* BFCVTN, BFCVTN2 */ 12193 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12194 unallocated_encoding(s); 12195 return; 12196 } 12197 if (!fp_access_check(s)) { 12198 return; 12199 } 12200 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12201 return; 12202 case 0x17: /* FCVTL, FCVTL2 */ 12203 if (!fp_access_check(s)) { 12204 return; 12205 } 12206 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12207 return; 12208 case 0x18: /* FRINTN */ 12209 case 0x19: /* FRINTM */ 12210 case 0x38: /* FRINTP */ 12211 case 0x39: /* FRINTZ */ 12212 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12213 /* fall through */ 12214 case 0x59: /* FRINTX */ 12215 case 0x79: /* FRINTI */ 12216 need_fpstatus = true; 12217 if (size == 3 && !is_q) { 12218 unallocated_encoding(s); 12219 return; 12220 } 12221 break; 12222 case 0x58: /* FRINTA */ 12223 rmode = FPROUNDING_TIEAWAY; 12224 need_fpstatus = true; 12225 if (size == 3 && !is_q) { 12226 unallocated_encoding(s); 12227 return; 12228 } 12229 break; 12230 case 0x7c: /* URSQRTE */ 12231 if (size == 3) { 12232 unallocated_encoding(s); 12233 return; 12234 } 12235 break; 12236 case 0x1e: /* FRINT32Z */ 12237 case 0x1f: /* FRINT64Z */ 12238 rmode = FPROUNDING_ZERO; 12239 /* fall through */ 12240 case 0x5e: /* FRINT32X */ 12241 case 0x5f: /* FRINT64X */ 12242 need_fpstatus = true; 12243 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12244 unallocated_encoding(s); 12245 return; 12246 } 12247 break; 12248 default: 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 break; 12253 } 12254 default: 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 12259 if (!fp_access_check(s)) { 12260 return; 12261 } 12262 12263 if (need_fpstatus || rmode >= 0) { 12264 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12265 } else { 12266 tcg_fpstatus = NULL; 12267 } 12268 if (rmode >= 0) { 12269 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12270 } else { 12271 tcg_rmode = NULL; 12272 } 12273 12274 switch (opcode) { 12275 case 0x5: 12276 if (u && size == 0) { /* NOT */ 12277 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12278 return; 12279 } 12280 break; 12281 case 0x8: /* CMGT, CMGE */ 12282 if (u) { 12283 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12284 } else { 12285 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12286 } 12287 return; 12288 case 0x9: /* CMEQ, CMLE */ 12289 if (u) { 12290 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12291 } else { 12292 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12293 } 12294 return; 12295 case 0xa: /* CMLT */ 12296 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12297 return; 12298 case 0xb: 12299 if (u) { /* ABS, NEG */ 12300 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12301 } else { 12302 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12303 } 12304 return; 12305 } 12306 12307 if (size == 3) { 12308 /* All 64-bit element operations can be shared with scalar 2misc */ 12309 int pass; 12310 12311 /* Coverity claims (size == 3 && !is_q) has been eliminated 12312 * from all paths leading to here. 12313 */ 12314 tcg_debug_assert(is_q); 12315 for (pass = 0; pass < 2; pass++) { 12316 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12317 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12318 12319 read_vec_element(s, tcg_op, rn, pass, MO_64); 12320 12321 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12322 tcg_rmode, tcg_fpstatus); 12323 12324 write_vec_element(s, tcg_res, rd, pass, MO_64); 12325 } 12326 } else { 12327 int pass; 12328 12329 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12330 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12331 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12332 12333 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12334 12335 if (size == 2) { 12336 /* Special cases for 32 bit elements */ 12337 switch (opcode) { 12338 case 0x4: /* CLS */ 12339 if (u) { 12340 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12341 } else { 12342 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12343 } 12344 break; 12345 case 0x7: /* SQABS, SQNEG */ 12346 if (u) { 12347 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12348 } else { 12349 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12350 } 12351 break; 12352 case 0x2f: /* FABS */ 12353 gen_helper_vfp_abss(tcg_res, tcg_op); 12354 break; 12355 case 0x6f: /* FNEG */ 12356 gen_helper_vfp_negs(tcg_res, tcg_op); 12357 break; 12358 case 0x7f: /* FSQRT */ 12359 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12360 break; 12361 case 0x1a: /* FCVTNS */ 12362 case 0x1b: /* FCVTMS */ 12363 case 0x1c: /* FCVTAS */ 12364 case 0x3a: /* FCVTPS */ 12365 case 0x3b: /* FCVTZS */ 12366 gen_helper_vfp_tosls(tcg_res, tcg_op, 12367 tcg_constant_i32(0), tcg_fpstatus); 12368 break; 12369 case 0x5a: /* FCVTNU */ 12370 case 0x5b: /* FCVTMU */ 12371 case 0x5c: /* FCVTAU */ 12372 case 0x7a: /* FCVTPU */ 12373 case 0x7b: /* FCVTZU */ 12374 gen_helper_vfp_touls(tcg_res, tcg_op, 12375 tcg_constant_i32(0), tcg_fpstatus); 12376 break; 12377 case 0x18: /* FRINTN */ 12378 case 0x19: /* FRINTM */ 12379 case 0x38: /* FRINTP */ 12380 case 0x39: /* FRINTZ */ 12381 case 0x58: /* FRINTA */ 12382 case 0x79: /* FRINTI */ 12383 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12384 break; 12385 case 0x59: /* FRINTX */ 12386 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12387 break; 12388 case 0x7c: /* URSQRTE */ 12389 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12390 break; 12391 case 0x1e: /* FRINT32Z */ 12392 case 0x5e: /* FRINT32X */ 12393 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12394 break; 12395 case 0x1f: /* FRINT64Z */ 12396 case 0x5f: /* FRINT64X */ 12397 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12398 break; 12399 default: 12400 g_assert_not_reached(); 12401 } 12402 } else { 12403 /* Use helpers for 8 and 16 bit elements */ 12404 switch (opcode) { 12405 case 0x5: /* CNT, RBIT */ 12406 /* For these two insns size is part of the opcode specifier 12407 * (handled earlier); they always operate on byte elements. 12408 */ 12409 if (u) { 12410 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12411 } else { 12412 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12413 } 12414 break; 12415 case 0x7: /* SQABS, SQNEG */ 12416 { 12417 NeonGenOneOpEnvFn *genfn; 12418 static NeonGenOneOpEnvFn * const fns[2][2] = { 12419 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12420 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12421 }; 12422 genfn = fns[size][u]; 12423 genfn(tcg_res, tcg_env, tcg_op); 12424 break; 12425 } 12426 case 0x4: /* CLS, CLZ */ 12427 if (u) { 12428 if (size == 0) { 12429 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12430 } else { 12431 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12432 } 12433 } else { 12434 if (size == 0) { 12435 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12436 } else { 12437 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12438 } 12439 } 12440 break; 12441 default: 12442 g_assert_not_reached(); 12443 } 12444 } 12445 12446 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12447 } 12448 } 12449 clear_vec_high(s, is_q, rd); 12450 12451 if (tcg_rmode) { 12452 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12453 } 12454 } 12455 12456 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12457 * 12458 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12459 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12460 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12461 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12462 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12463 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12464 * 12465 * This actually covers two groups where scalar access is governed by 12466 * bit 28. A bunch of the instructions (float to integral) only exist 12467 * in the vector form and are un-allocated for the scalar decode. Also 12468 * in the scalar decode Q is always 1. 12469 */ 12470 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12471 { 12472 int fpop, opcode, a, u; 12473 int rn, rd; 12474 bool is_q; 12475 bool is_scalar; 12476 bool only_in_vector = false; 12477 12478 int pass; 12479 TCGv_i32 tcg_rmode = NULL; 12480 TCGv_ptr tcg_fpstatus = NULL; 12481 bool need_fpst = true; 12482 int rmode = -1; 12483 12484 if (!dc_isar_feature(aa64_fp16, s)) { 12485 unallocated_encoding(s); 12486 return; 12487 } 12488 12489 rd = extract32(insn, 0, 5); 12490 rn = extract32(insn, 5, 5); 12491 12492 a = extract32(insn, 23, 1); 12493 u = extract32(insn, 29, 1); 12494 is_scalar = extract32(insn, 28, 1); 12495 is_q = extract32(insn, 30, 1); 12496 12497 opcode = extract32(insn, 12, 5); 12498 fpop = deposit32(opcode, 5, 1, a); 12499 fpop = deposit32(fpop, 6, 1, u); 12500 12501 switch (fpop) { 12502 case 0x1d: /* SCVTF */ 12503 case 0x5d: /* UCVTF */ 12504 { 12505 int elements; 12506 12507 if (is_scalar) { 12508 elements = 1; 12509 } else { 12510 elements = (is_q ? 8 : 4); 12511 } 12512 12513 if (!fp_access_check(s)) { 12514 return; 12515 } 12516 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12517 return; 12518 } 12519 break; 12520 case 0x2c: /* FCMGT (zero) */ 12521 case 0x2d: /* FCMEQ (zero) */ 12522 case 0x2e: /* FCMLT (zero) */ 12523 case 0x6c: /* FCMGE (zero) */ 12524 case 0x6d: /* FCMLE (zero) */ 12525 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12526 return; 12527 case 0x3d: /* FRECPE */ 12528 case 0x3f: /* FRECPX */ 12529 break; 12530 case 0x18: /* FRINTN */ 12531 only_in_vector = true; 12532 rmode = FPROUNDING_TIEEVEN; 12533 break; 12534 case 0x19: /* FRINTM */ 12535 only_in_vector = true; 12536 rmode = FPROUNDING_NEGINF; 12537 break; 12538 case 0x38: /* FRINTP */ 12539 only_in_vector = true; 12540 rmode = FPROUNDING_POSINF; 12541 break; 12542 case 0x39: /* FRINTZ */ 12543 only_in_vector = true; 12544 rmode = FPROUNDING_ZERO; 12545 break; 12546 case 0x58: /* FRINTA */ 12547 only_in_vector = true; 12548 rmode = FPROUNDING_TIEAWAY; 12549 break; 12550 case 0x59: /* FRINTX */ 12551 case 0x79: /* FRINTI */ 12552 only_in_vector = true; 12553 /* current rounding mode */ 12554 break; 12555 case 0x1a: /* FCVTNS */ 12556 rmode = FPROUNDING_TIEEVEN; 12557 break; 12558 case 0x1b: /* FCVTMS */ 12559 rmode = FPROUNDING_NEGINF; 12560 break; 12561 case 0x1c: /* FCVTAS */ 12562 rmode = FPROUNDING_TIEAWAY; 12563 break; 12564 case 0x3a: /* FCVTPS */ 12565 rmode = FPROUNDING_POSINF; 12566 break; 12567 case 0x3b: /* FCVTZS */ 12568 rmode = FPROUNDING_ZERO; 12569 break; 12570 case 0x5a: /* FCVTNU */ 12571 rmode = FPROUNDING_TIEEVEN; 12572 break; 12573 case 0x5b: /* FCVTMU */ 12574 rmode = FPROUNDING_NEGINF; 12575 break; 12576 case 0x5c: /* FCVTAU */ 12577 rmode = FPROUNDING_TIEAWAY; 12578 break; 12579 case 0x7a: /* FCVTPU */ 12580 rmode = FPROUNDING_POSINF; 12581 break; 12582 case 0x7b: /* FCVTZU */ 12583 rmode = FPROUNDING_ZERO; 12584 break; 12585 case 0x2f: /* FABS */ 12586 case 0x6f: /* FNEG */ 12587 need_fpst = false; 12588 break; 12589 case 0x7d: /* FRSQRTE */ 12590 case 0x7f: /* FSQRT (vector) */ 12591 break; 12592 default: 12593 unallocated_encoding(s); 12594 return; 12595 } 12596 12597 12598 /* Check additional constraints for the scalar encoding */ 12599 if (is_scalar) { 12600 if (!is_q) { 12601 unallocated_encoding(s); 12602 return; 12603 } 12604 /* FRINTxx is only in the vector form */ 12605 if (only_in_vector) { 12606 unallocated_encoding(s); 12607 return; 12608 } 12609 } 12610 12611 if (!fp_access_check(s)) { 12612 return; 12613 } 12614 12615 if (rmode >= 0 || need_fpst) { 12616 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12617 } 12618 12619 if (rmode >= 0) { 12620 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12621 } 12622 12623 if (is_scalar) { 12624 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12625 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12626 12627 switch (fpop) { 12628 case 0x1a: /* FCVTNS */ 12629 case 0x1b: /* FCVTMS */ 12630 case 0x1c: /* FCVTAS */ 12631 case 0x3a: /* FCVTPS */ 12632 case 0x3b: /* FCVTZS */ 12633 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12634 break; 12635 case 0x3d: /* FRECPE */ 12636 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12637 break; 12638 case 0x3f: /* FRECPX */ 12639 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12640 break; 12641 case 0x5a: /* FCVTNU */ 12642 case 0x5b: /* FCVTMU */ 12643 case 0x5c: /* FCVTAU */ 12644 case 0x7a: /* FCVTPU */ 12645 case 0x7b: /* FCVTZU */ 12646 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12647 break; 12648 case 0x6f: /* FNEG */ 12649 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12650 break; 12651 case 0x7d: /* FRSQRTE */ 12652 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12653 break; 12654 default: 12655 g_assert_not_reached(); 12656 } 12657 12658 /* limit any sign extension going on */ 12659 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12660 write_fp_sreg(s, rd, tcg_res); 12661 } else { 12662 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12663 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12664 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12665 12666 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12667 12668 switch (fpop) { 12669 case 0x1a: /* FCVTNS */ 12670 case 0x1b: /* FCVTMS */ 12671 case 0x1c: /* FCVTAS */ 12672 case 0x3a: /* FCVTPS */ 12673 case 0x3b: /* FCVTZS */ 12674 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12675 break; 12676 case 0x3d: /* FRECPE */ 12677 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12678 break; 12679 case 0x5a: /* FCVTNU */ 12680 case 0x5b: /* FCVTMU */ 12681 case 0x5c: /* FCVTAU */ 12682 case 0x7a: /* FCVTPU */ 12683 case 0x7b: /* FCVTZU */ 12684 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12685 break; 12686 case 0x18: /* FRINTN */ 12687 case 0x19: /* FRINTM */ 12688 case 0x38: /* FRINTP */ 12689 case 0x39: /* FRINTZ */ 12690 case 0x58: /* FRINTA */ 12691 case 0x79: /* FRINTI */ 12692 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12693 break; 12694 case 0x59: /* FRINTX */ 12695 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12696 break; 12697 case 0x2f: /* FABS */ 12698 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12699 break; 12700 case 0x6f: /* FNEG */ 12701 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12702 break; 12703 case 0x7d: /* FRSQRTE */ 12704 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12705 break; 12706 case 0x7f: /* FSQRT */ 12707 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12708 break; 12709 default: 12710 g_assert_not_reached(); 12711 } 12712 12713 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12714 } 12715 12716 clear_vec_high(s, is_q, rd); 12717 } 12718 12719 if (tcg_rmode) { 12720 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12721 } 12722 } 12723 12724 /* AdvSIMD scalar x indexed element 12725 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12726 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12727 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12728 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12729 * AdvSIMD vector x indexed element 12730 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12731 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12732 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12733 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12734 */ 12735 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12736 { 12737 /* This encoding has two kinds of instruction: 12738 * normal, where we perform elt x idxelt => elt for each 12739 * element in the vector 12740 * long, where we perform elt x idxelt and generate a result of 12741 * double the width of the input element 12742 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12743 */ 12744 bool is_scalar = extract32(insn, 28, 1); 12745 bool is_q = extract32(insn, 30, 1); 12746 bool u = extract32(insn, 29, 1); 12747 int size = extract32(insn, 22, 2); 12748 int l = extract32(insn, 21, 1); 12749 int m = extract32(insn, 20, 1); 12750 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12751 int rm = extract32(insn, 16, 4); 12752 int opcode = extract32(insn, 12, 4); 12753 int h = extract32(insn, 11, 1); 12754 int rn = extract32(insn, 5, 5); 12755 int rd = extract32(insn, 0, 5); 12756 bool is_long = false; 12757 int is_fp = 0; 12758 bool is_fp16 = false; 12759 int index; 12760 TCGv_ptr fpst; 12761 12762 switch (16 * u + opcode) { 12763 case 0x08: /* MUL */ 12764 case 0x10: /* MLA */ 12765 case 0x14: /* MLS */ 12766 if (is_scalar) { 12767 unallocated_encoding(s); 12768 return; 12769 } 12770 break; 12771 case 0x02: /* SMLAL, SMLAL2 */ 12772 case 0x12: /* UMLAL, UMLAL2 */ 12773 case 0x06: /* SMLSL, SMLSL2 */ 12774 case 0x16: /* UMLSL, UMLSL2 */ 12775 case 0x0a: /* SMULL, SMULL2 */ 12776 case 0x1a: /* UMULL, UMULL2 */ 12777 if (is_scalar) { 12778 unallocated_encoding(s); 12779 return; 12780 } 12781 is_long = true; 12782 break; 12783 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12784 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12785 case 0x0b: /* SQDMULL, SQDMULL2 */ 12786 is_long = true; 12787 break; 12788 case 0x0c: /* SQDMULH */ 12789 case 0x0d: /* SQRDMULH */ 12790 break; 12791 case 0x01: /* FMLA */ 12792 case 0x05: /* FMLS */ 12793 case 0x09: /* FMUL */ 12794 case 0x19: /* FMULX */ 12795 is_fp = 1; 12796 break; 12797 case 0x1d: /* SQRDMLAH */ 12798 case 0x1f: /* SQRDMLSH */ 12799 if (!dc_isar_feature(aa64_rdm, s)) { 12800 unallocated_encoding(s); 12801 return; 12802 } 12803 break; 12804 case 0x0e: /* SDOT */ 12805 case 0x1e: /* UDOT */ 12806 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12807 unallocated_encoding(s); 12808 return; 12809 } 12810 break; 12811 case 0x0f: 12812 switch (size) { 12813 case 0: /* SUDOT */ 12814 case 2: /* USDOT */ 12815 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12816 unallocated_encoding(s); 12817 return; 12818 } 12819 size = MO_32; 12820 break; 12821 case 1: /* BFDOT */ 12822 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 size = MO_32; 12827 break; 12828 case 3: /* BFMLAL{B,T} */ 12829 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12830 unallocated_encoding(s); 12831 return; 12832 } 12833 /* can't set is_fp without other incorrect size checks */ 12834 size = MO_16; 12835 break; 12836 default: 12837 unallocated_encoding(s); 12838 return; 12839 } 12840 break; 12841 case 0x11: /* FCMLA #0 */ 12842 case 0x13: /* FCMLA #90 */ 12843 case 0x15: /* FCMLA #180 */ 12844 case 0x17: /* FCMLA #270 */ 12845 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12846 unallocated_encoding(s); 12847 return; 12848 } 12849 is_fp = 2; 12850 break; 12851 case 0x00: /* FMLAL */ 12852 case 0x04: /* FMLSL */ 12853 case 0x18: /* FMLAL2 */ 12854 case 0x1c: /* FMLSL2 */ 12855 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12856 unallocated_encoding(s); 12857 return; 12858 } 12859 size = MO_16; 12860 /* is_fp, but we pass tcg_env not fp_status. */ 12861 break; 12862 default: 12863 unallocated_encoding(s); 12864 return; 12865 } 12866 12867 switch (is_fp) { 12868 case 1: /* normal fp */ 12869 /* convert insn encoded size to MemOp size */ 12870 switch (size) { 12871 case 0: /* half-precision */ 12872 size = MO_16; 12873 is_fp16 = true; 12874 break; 12875 case MO_32: /* single precision */ 12876 case MO_64: /* double precision */ 12877 break; 12878 default: 12879 unallocated_encoding(s); 12880 return; 12881 } 12882 break; 12883 12884 case 2: /* complex fp */ 12885 /* Each indexable element is a complex pair. */ 12886 size += 1; 12887 switch (size) { 12888 case MO_32: 12889 if (h && !is_q) { 12890 unallocated_encoding(s); 12891 return; 12892 } 12893 is_fp16 = true; 12894 break; 12895 case MO_64: 12896 break; 12897 default: 12898 unallocated_encoding(s); 12899 return; 12900 } 12901 break; 12902 12903 default: /* integer */ 12904 switch (size) { 12905 case MO_8: 12906 case MO_64: 12907 unallocated_encoding(s); 12908 return; 12909 } 12910 break; 12911 } 12912 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12913 unallocated_encoding(s); 12914 return; 12915 } 12916 12917 /* Given MemOp size, adjust register and indexing. */ 12918 switch (size) { 12919 case MO_16: 12920 index = h << 2 | l << 1 | m; 12921 break; 12922 case MO_32: 12923 index = h << 1 | l; 12924 rm |= m << 4; 12925 break; 12926 case MO_64: 12927 if (l || !is_q) { 12928 unallocated_encoding(s); 12929 return; 12930 } 12931 index = h; 12932 rm |= m << 4; 12933 break; 12934 default: 12935 g_assert_not_reached(); 12936 } 12937 12938 if (!fp_access_check(s)) { 12939 return; 12940 } 12941 12942 if (is_fp) { 12943 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12944 } else { 12945 fpst = NULL; 12946 } 12947 12948 switch (16 * u + opcode) { 12949 case 0x0e: /* SDOT */ 12950 case 0x1e: /* UDOT */ 12951 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12952 u ? gen_helper_gvec_udot_idx_b 12953 : gen_helper_gvec_sdot_idx_b); 12954 return; 12955 case 0x0f: 12956 switch (extract32(insn, 22, 2)) { 12957 case 0: /* SUDOT */ 12958 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12959 gen_helper_gvec_sudot_idx_b); 12960 return; 12961 case 1: /* BFDOT */ 12962 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12963 gen_helper_gvec_bfdot_idx); 12964 return; 12965 case 2: /* USDOT */ 12966 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12967 gen_helper_gvec_usdot_idx_b); 12968 return; 12969 case 3: /* BFMLAL{B,T} */ 12970 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12971 gen_helper_gvec_bfmlal_idx); 12972 return; 12973 } 12974 g_assert_not_reached(); 12975 case 0x11: /* FCMLA #0 */ 12976 case 0x13: /* FCMLA #90 */ 12977 case 0x15: /* FCMLA #180 */ 12978 case 0x17: /* FCMLA #270 */ 12979 { 12980 int rot = extract32(insn, 13, 2); 12981 int data = (index << 2) | rot; 12982 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12983 vec_full_reg_offset(s, rn), 12984 vec_full_reg_offset(s, rm), 12985 vec_full_reg_offset(s, rd), fpst, 12986 is_q ? 16 : 8, vec_full_reg_size(s), data, 12987 size == MO_64 12988 ? gen_helper_gvec_fcmlas_idx 12989 : gen_helper_gvec_fcmlah_idx); 12990 } 12991 return; 12992 12993 case 0x00: /* FMLAL */ 12994 case 0x04: /* FMLSL */ 12995 case 0x18: /* FMLAL2 */ 12996 case 0x1c: /* FMLSL2 */ 12997 { 12998 int is_s = extract32(opcode, 2, 1); 12999 int is_2 = u; 13000 int data = (index << 2) | (is_2 << 1) | is_s; 13001 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13002 vec_full_reg_offset(s, rn), 13003 vec_full_reg_offset(s, rm), tcg_env, 13004 is_q ? 16 : 8, vec_full_reg_size(s), 13005 data, gen_helper_gvec_fmlal_idx_a64); 13006 } 13007 return; 13008 13009 case 0x08: /* MUL */ 13010 if (!is_long && !is_scalar) { 13011 static gen_helper_gvec_3 * const fns[3] = { 13012 gen_helper_gvec_mul_idx_h, 13013 gen_helper_gvec_mul_idx_s, 13014 gen_helper_gvec_mul_idx_d, 13015 }; 13016 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13017 vec_full_reg_offset(s, rn), 13018 vec_full_reg_offset(s, rm), 13019 is_q ? 16 : 8, vec_full_reg_size(s), 13020 index, fns[size - 1]); 13021 return; 13022 } 13023 break; 13024 13025 case 0x10: /* MLA */ 13026 if (!is_long && !is_scalar) { 13027 static gen_helper_gvec_4 * const fns[3] = { 13028 gen_helper_gvec_mla_idx_h, 13029 gen_helper_gvec_mla_idx_s, 13030 gen_helper_gvec_mla_idx_d, 13031 }; 13032 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13033 vec_full_reg_offset(s, rn), 13034 vec_full_reg_offset(s, rm), 13035 vec_full_reg_offset(s, rd), 13036 is_q ? 16 : 8, vec_full_reg_size(s), 13037 index, fns[size - 1]); 13038 return; 13039 } 13040 break; 13041 13042 case 0x14: /* MLS */ 13043 if (!is_long && !is_scalar) { 13044 static gen_helper_gvec_4 * const fns[3] = { 13045 gen_helper_gvec_mls_idx_h, 13046 gen_helper_gvec_mls_idx_s, 13047 gen_helper_gvec_mls_idx_d, 13048 }; 13049 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13050 vec_full_reg_offset(s, rn), 13051 vec_full_reg_offset(s, rm), 13052 vec_full_reg_offset(s, rd), 13053 is_q ? 16 : 8, vec_full_reg_size(s), 13054 index, fns[size - 1]); 13055 return; 13056 } 13057 break; 13058 } 13059 13060 if (size == 3) { 13061 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13062 int pass; 13063 13064 assert(is_fp && is_q && !is_long); 13065 13066 read_vec_element(s, tcg_idx, rm, index, MO_64); 13067 13068 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13069 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13070 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13071 13072 read_vec_element(s, tcg_op, rn, pass, MO_64); 13073 13074 switch (16 * u + opcode) { 13075 case 0x05: /* FMLS */ 13076 /* As usual for ARM, separate negation for fused multiply-add */ 13077 gen_helper_vfp_negd(tcg_op, tcg_op); 13078 /* fall through */ 13079 case 0x01: /* FMLA */ 13080 read_vec_element(s, tcg_res, rd, pass, MO_64); 13081 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13082 break; 13083 case 0x09: /* FMUL */ 13084 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13085 break; 13086 case 0x19: /* FMULX */ 13087 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13088 break; 13089 default: 13090 g_assert_not_reached(); 13091 } 13092 13093 write_vec_element(s, tcg_res, rd, pass, MO_64); 13094 } 13095 13096 clear_vec_high(s, !is_scalar, rd); 13097 } else if (!is_long) { 13098 /* 32 bit floating point, or 16 or 32 bit integer. 13099 * For the 16 bit scalar case we use the usual Neon helpers and 13100 * rely on the fact that 0 op 0 == 0 with no side effects. 13101 */ 13102 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13103 int pass, maxpasses; 13104 13105 if (is_scalar) { 13106 maxpasses = 1; 13107 } else { 13108 maxpasses = is_q ? 4 : 2; 13109 } 13110 13111 read_vec_element_i32(s, tcg_idx, rm, index, size); 13112 13113 if (size == 1 && !is_scalar) { 13114 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13115 * the index into both halves of the 32 bit tcg_idx and then use 13116 * the usual Neon helpers. 13117 */ 13118 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13119 } 13120 13121 for (pass = 0; pass < maxpasses; pass++) { 13122 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13123 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13124 13125 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13126 13127 switch (16 * u + opcode) { 13128 case 0x08: /* MUL */ 13129 case 0x10: /* MLA */ 13130 case 0x14: /* MLS */ 13131 { 13132 static NeonGenTwoOpFn * const fns[2][2] = { 13133 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13134 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13135 }; 13136 NeonGenTwoOpFn *genfn; 13137 bool is_sub = opcode == 0x4; 13138 13139 if (size == 1) { 13140 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13141 } else { 13142 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13143 } 13144 if (opcode == 0x8) { 13145 break; 13146 } 13147 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13148 genfn = fns[size - 1][is_sub]; 13149 genfn(tcg_res, tcg_op, tcg_res); 13150 break; 13151 } 13152 case 0x05: /* FMLS */ 13153 case 0x01: /* FMLA */ 13154 read_vec_element_i32(s, tcg_res, rd, pass, 13155 is_scalar ? size : MO_32); 13156 switch (size) { 13157 case 1: 13158 if (opcode == 0x5) { 13159 /* As usual for ARM, separate negation for fused 13160 * multiply-add */ 13161 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13162 } 13163 if (is_scalar) { 13164 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13165 tcg_res, fpst); 13166 } else { 13167 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13168 tcg_res, fpst); 13169 } 13170 break; 13171 case 2: 13172 if (opcode == 0x5) { 13173 /* As usual for ARM, separate negation for 13174 * fused multiply-add */ 13175 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13176 } 13177 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13178 tcg_res, fpst); 13179 break; 13180 default: 13181 g_assert_not_reached(); 13182 } 13183 break; 13184 case 0x09: /* FMUL */ 13185 switch (size) { 13186 case 1: 13187 if (is_scalar) { 13188 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13189 tcg_idx, fpst); 13190 } else { 13191 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13192 tcg_idx, fpst); 13193 } 13194 break; 13195 case 2: 13196 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13197 break; 13198 default: 13199 g_assert_not_reached(); 13200 } 13201 break; 13202 case 0x19: /* FMULX */ 13203 switch (size) { 13204 case 1: 13205 if (is_scalar) { 13206 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13207 tcg_idx, fpst); 13208 } else { 13209 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13210 tcg_idx, fpst); 13211 } 13212 break; 13213 case 2: 13214 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13215 break; 13216 default: 13217 g_assert_not_reached(); 13218 } 13219 break; 13220 case 0x0c: /* SQDMULH */ 13221 if (size == 1) { 13222 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13223 tcg_op, tcg_idx); 13224 } else { 13225 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13226 tcg_op, tcg_idx); 13227 } 13228 break; 13229 case 0x0d: /* SQRDMULH */ 13230 if (size == 1) { 13231 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13232 tcg_op, tcg_idx); 13233 } else { 13234 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13235 tcg_op, tcg_idx); 13236 } 13237 break; 13238 case 0x1d: /* SQRDMLAH */ 13239 read_vec_element_i32(s, tcg_res, rd, pass, 13240 is_scalar ? size : MO_32); 13241 if (size == 1) { 13242 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13243 tcg_op, tcg_idx, tcg_res); 13244 } else { 13245 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13246 tcg_op, tcg_idx, tcg_res); 13247 } 13248 break; 13249 case 0x1f: /* SQRDMLSH */ 13250 read_vec_element_i32(s, tcg_res, rd, pass, 13251 is_scalar ? size : MO_32); 13252 if (size == 1) { 13253 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13254 tcg_op, tcg_idx, tcg_res); 13255 } else { 13256 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13257 tcg_op, tcg_idx, tcg_res); 13258 } 13259 break; 13260 default: 13261 g_assert_not_reached(); 13262 } 13263 13264 if (is_scalar) { 13265 write_fp_sreg(s, rd, tcg_res); 13266 } else { 13267 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13268 } 13269 } 13270 13271 clear_vec_high(s, is_q, rd); 13272 } else { 13273 /* long ops: 16x16->32 or 32x32->64 */ 13274 TCGv_i64 tcg_res[2]; 13275 int pass; 13276 bool satop = extract32(opcode, 0, 1); 13277 MemOp memop = MO_32; 13278 13279 if (satop || !u) { 13280 memop |= MO_SIGN; 13281 } 13282 13283 if (size == 2) { 13284 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13285 13286 read_vec_element(s, tcg_idx, rm, index, memop); 13287 13288 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13289 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13290 TCGv_i64 tcg_passres; 13291 int passelt; 13292 13293 if (is_scalar) { 13294 passelt = 0; 13295 } else { 13296 passelt = pass + (is_q * 2); 13297 } 13298 13299 read_vec_element(s, tcg_op, rn, passelt, memop); 13300 13301 tcg_res[pass] = tcg_temp_new_i64(); 13302 13303 if (opcode == 0xa || opcode == 0xb) { 13304 /* Non-accumulating ops */ 13305 tcg_passres = tcg_res[pass]; 13306 } else { 13307 tcg_passres = tcg_temp_new_i64(); 13308 } 13309 13310 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13311 13312 if (satop) { 13313 /* saturating, doubling */ 13314 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13315 tcg_passres, tcg_passres); 13316 } 13317 13318 if (opcode == 0xa || opcode == 0xb) { 13319 continue; 13320 } 13321 13322 /* Accumulating op: handle accumulate step */ 13323 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13324 13325 switch (opcode) { 13326 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13327 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13328 break; 13329 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13330 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13331 break; 13332 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13333 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13334 /* fall through */ 13335 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13336 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13337 tcg_res[pass], 13338 tcg_passres); 13339 break; 13340 default: 13341 g_assert_not_reached(); 13342 } 13343 } 13344 13345 clear_vec_high(s, !is_scalar, rd); 13346 } else { 13347 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13348 13349 assert(size == 1); 13350 read_vec_element_i32(s, tcg_idx, rm, index, size); 13351 13352 if (!is_scalar) { 13353 /* The simplest way to handle the 16x16 indexed ops is to 13354 * duplicate the index into both halves of the 32 bit tcg_idx 13355 * and then use the usual Neon helpers. 13356 */ 13357 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13358 } 13359 13360 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13361 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13362 TCGv_i64 tcg_passres; 13363 13364 if (is_scalar) { 13365 read_vec_element_i32(s, tcg_op, rn, pass, size); 13366 } else { 13367 read_vec_element_i32(s, tcg_op, rn, 13368 pass + (is_q * 2), MO_32); 13369 } 13370 13371 tcg_res[pass] = tcg_temp_new_i64(); 13372 13373 if (opcode == 0xa || opcode == 0xb) { 13374 /* Non-accumulating ops */ 13375 tcg_passres = tcg_res[pass]; 13376 } else { 13377 tcg_passres = tcg_temp_new_i64(); 13378 } 13379 13380 if (memop & MO_SIGN) { 13381 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13382 } else { 13383 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13384 } 13385 if (satop) { 13386 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13387 tcg_passres, tcg_passres); 13388 } 13389 13390 if (opcode == 0xa || opcode == 0xb) { 13391 continue; 13392 } 13393 13394 /* Accumulating op: handle accumulate step */ 13395 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13396 13397 switch (opcode) { 13398 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13399 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13400 tcg_passres); 13401 break; 13402 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13403 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13404 tcg_passres); 13405 break; 13406 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13407 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13408 /* fall through */ 13409 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13410 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13411 tcg_res[pass], 13412 tcg_passres); 13413 break; 13414 default: 13415 g_assert_not_reached(); 13416 } 13417 } 13418 13419 if (is_scalar) { 13420 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13421 } 13422 } 13423 13424 if (is_scalar) { 13425 tcg_res[1] = tcg_constant_i64(0); 13426 } 13427 13428 for (pass = 0; pass < 2; pass++) { 13429 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13430 } 13431 } 13432 } 13433 13434 /* Crypto AES 13435 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13436 * +-----------------+------+-----------+--------+-----+------+------+ 13437 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13438 * +-----------------+------+-----------+--------+-----+------+------+ 13439 */ 13440 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13441 { 13442 int size = extract32(insn, 22, 2); 13443 int opcode = extract32(insn, 12, 5); 13444 int rn = extract32(insn, 5, 5); 13445 int rd = extract32(insn, 0, 5); 13446 gen_helper_gvec_2 *genfn2 = NULL; 13447 gen_helper_gvec_3 *genfn3 = NULL; 13448 13449 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13450 unallocated_encoding(s); 13451 return; 13452 } 13453 13454 switch (opcode) { 13455 case 0x4: /* AESE */ 13456 genfn3 = gen_helper_crypto_aese; 13457 break; 13458 case 0x6: /* AESMC */ 13459 genfn2 = gen_helper_crypto_aesmc; 13460 break; 13461 case 0x5: /* AESD */ 13462 genfn3 = gen_helper_crypto_aesd; 13463 break; 13464 case 0x7: /* AESIMC */ 13465 genfn2 = gen_helper_crypto_aesimc; 13466 break; 13467 default: 13468 unallocated_encoding(s); 13469 return; 13470 } 13471 13472 if (!fp_access_check(s)) { 13473 return; 13474 } 13475 if (genfn2) { 13476 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13477 } else { 13478 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13479 } 13480 } 13481 13482 /* Crypto three-reg SHA 13483 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13484 * +-----------------+------+---+------+---+--------+-----+------+------+ 13485 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13486 * +-----------------+------+---+------+---+--------+-----+------+------+ 13487 */ 13488 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13489 { 13490 int size = extract32(insn, 22, 2); 13491 int opcode = extract32(insn, 12, 3); 13492 int rm = extract32(insn, 16, 5); 13493 int rn = extract32(insn, 5, 5); 13494 int rd = extract32(insn, 0, 5); 13495 gen_helper_gvec_3 *genfn; 13496 bool feature; 13497 13498 if (size != 0) { 13499 unallocated_encoding(s); 13500 return; 13501 } 13502 13503 switch (opcode) { 13504 case 0: /* SHA1C */ 13505 genfn = gen_helper_crypto_sha1c; 13506 feature = dc_isar_feature(aa64_sha1, s); 13507 break; 13508 case 1: /* SHA1P */ 13509 genfn = gen_helper_crypto_sha1p; 13510 feature = dc_isar_feature(aa64_sha1, s); 13511 break; 13512 case 2: /* SHA1M */ 13513 genfn = gen_helper_crypto_sha1m; 13514 feature = dc_isar_feature(aa64_sha1, s); 13515 break; 13516 case 3: /* SHA1SU0 */ 13517 genfn = gen_helper_crypto_sha1su0; 13518 feature = dc_isar_feature(aa64_sha1, s); 13519 break; 13520 case 4: /* SHA256H */ 13521 genfn = gen_helper_crypto_sha256h; 13522 feature = dc_isar_feature(aa64_sha256, s); 13523 break; 13524 case 5: /* SHA256H2 */ 13525 genfn = gen_helper_crypto_sha256h2; 13526 feature = dc_isar_feature(aa64_sha256, s); 13527 break; 13528 case 6: /* SHA256SU1 */ 13529 genfn = gen_helper_crypto_sha256su1; 13530 feature = dc_isar_feature(aa64_sha256, s); 13531 break; 13532 default: 13533 unallocated_encoding(s); 13534 return; 13535 } 13536 13537 if (!feature) { 13538 unallocated_encoding(s); 13539 return; 13540 } 13541 13542 if (!fp_access_check(s)) { 13543 return; 13544 } 13545 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13546 } 13547 13548 /* Crypto two-reg SHA 13549 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13550 * +-----------------+------+-----------+--------+-----+------+------+ 13551 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13552 * +-----------------+------+-----------+--------+-----+------+------+ 13553 */ 13554 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13555 { 13556 int size = extract32(insn, 22, 2); 13557 int opcode = extract32(insn, 12, 5); 13558 int rn = extract32(insn, 5, 5); 13559 int rd = extract32(insn, 0, 5); 13560 gen_helper_gvec_2 *genfn; 13561 bool feature; 13562 13563 if (size != 0) { 13564 unallocated_encoding(s); 13565 return; 13566 } 13567 13568 switch (opcode) { 13569 case 0: /* SHA1H */ 13570 feature = dc_isar_feature(aa64_sha1, s); 13571 genfn = gen_helper_crypto_sha1h; 13572 break; 13573 case 1: /* SHA1SU1 */ 13574 feature = dc_isar_feature(aa64_sha1, s); 13575 genfn = gen_helper_crypto_sha1su1; 13576 break; 13577 case 2: /* SHA256SU0 */ 13578 feature = dc_isar_feature(aa64_sha256, s); 13579 genfn = gen_helper_crypto_sha256su0; 13580 break; 13581 default: 13582 unallocated_encoding(s); 13583 return; 13584 } 13585 13586 if (!feature) { 13587 unallocated_encoding(s); 13588 return; 13589 } 13590 13591 if (!fp_access_check(s)) { 13592 return; 13593 } 13594 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13595 } 13596 13597 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13598 { 13599 tcg_gen_rotli_i64(d, m, 1); 13600 tcg_gen_xor_i64(d, d, n); 13601 } 13602 13603 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13604 { 13605 tcg_gen_rotli_vec(vece, d, m, 1); 13606 tcg_gen_xor_vec(vece, d, d, n); 13607 } 13608 13609 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13610 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13611 { 13612 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13613 static const GVecGen3 op = { 13614 .fni8 = gen_rax1_i64, 13615 .fniv = gen_rax1_vec, 13616 .opt_opc = vecop_list, 13617 .fno = gen_helper_crypto_rax1, 13618 .vece = MO_64, 13619 }; 13620 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13621 } 13622 13623 /* Crypto three-reg SHA512 13624 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13625 * +-----------------------+------+---+---+-----+--------+------+------+ 13626 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13627 * +-----------------------+------+---+---+-----+--------+------+------+ 13628 */ 13629 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13630 { 13631 int opcode = extract32(insn, 10, 2); 13632 int o = extract32(insn, 14, 1); 13633 int rm = extract32(insn, 16, 5); 13634 int rn = extract32(insn, 5, 5); 13635 int rd = extract32(insn, 0, 5); 13636 bool feature; 13637 gen_helper_gvec_3 *oolfn = NULL; 13638 GVecGen3Fn *gvecfn = NULL; 13639 13640 if (o == 0) { 13641 switch (opcode) { 13642 case 0: /* SHA512H */ 13643 feature = dc_isar_feature(aa64_sha512, s); 13644 oolfn = gen_helper_crypto_sha512h; 13645 break; 13646 case 1: /* SHA512H2 */ 13647 feature = dc_isar_feature(aa64_sha512, s); 13648 oolfn = gen_helper_crypto_sha512h2; 13649 break; 13650 case 2: /* SHA512SU1 */ 13651 feature = dc_isar_feature(aa64_sha512, s); 13652 oolfn = gen_helper_crypto_sha512su1; 13653 break; 13654 case 3: /* RAX1 */ 13655 feature = dc_isar_feature(aa64_sha3, s); 13656 gvecfn = gen_gvec_rax1; 13657 break; 13658 default: 13659 g_assert_not_reached(); 13660 } 13661 } else { 13662 switch (opcode) { 13663 case 0: /* SM3PARTW1 */ 13664 feature = dc_isar_feature(aa64_sm3, s); 13665 oolfn = gen_helper_crypto_sm3partw1; 13666 break; 13667 case 1: /* SM3PARTW2 */ 13668 feature = dc_isar_feature(aa64_sm3, s); 13669 oolfn = gen_helper_crypto_sm3partw2; 13670 break; 13671 case 2: /* SM4EKEY */ 13672 feature = dc_isar_feature(aa64_sm4, s); 13673 oolfn = gen_helper_crypto_sm4ekey; 13674 break; 13675 default: 13676 unallocated_encoding(s); 13677 return; 13678 } 13679 } 13680 13681 if (!feature) { 13682 unallocated_encoding(s); 13683 return; 13684 } 13685 13686 if (!fp_access_check(s)) { 13687 return; 13688 } 13689 13690 if (oolfn) { 13691 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13692 } else { 13693 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13694 } 13695 } 13696 13697 /* Crypto two-reg SHA512 13698 * 31 12 11 10 9 5 4 0 13699 * +-----------------------------------------+--------+------+------+ 13700 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13701 * +-----------------------------------------+--------+------+------+ 13702 */ 13703 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13704 { 13705 int opcode = extract32(insn, 10, 2); 13706 int rn = extract32(insn, 5, 5); 13707 int rd = extract32(insn, 0, 5); 13708 bool feature; 13709 13710 switch (opcode) { 13711 case 0: /* SHA512SU0 */ 13712 feature = dc_isar_feature(aa64_sha512, s); 13713 break; 13714 case 1: /* SM4E */ 13715 feature = dc_isar_feature(aa64_sm4, s); 13716 break; 13717 default: 13718 unallocated_encoding(s); 13719 return; 13720 } 13721 13722 if (!feature) { 13723 unallocated_encoding(s); 13724 return; 13725 } 13726 13727 if (!fp_access_check(s)) { 13728 return; 13729 } 13730 13731 switch (opcode) { 13732 case 0: /* SHA512SU0 */ 13733 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13734 break; 13735 case 1: /* SM4E */ 13736 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13737 break; 13738 default: 13739 g_assert_not_reached(); 13740 } 13741 } 13742 13743 /* Crypto four-register 13744 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13745 * +-------------------+-----+------+---+------+------+------+ 13746 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13747 * +-------------------+-----+------+---+------+------+------+ 13748 */ 13749 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13750 { 13751 int op0 = extract32(insn, 21, 2); 13752 int rm = extract32(insn, 16, 5); 13753 int ra = extract32(insn, 10, 5); 13754 int rn = extract32(insn, 5, 5); 13755 int rd = extract32(insn, 0, 5); 13756 bool feature; 13757 13758 switch (op0) { 13759 case 0: /* EOR3 */ 13760 case 1: /* BCAX */ 13761 feature = dc_isar_feature(aa64_sha3, s); 13762 break; 13763 case 2: /* SM3SS1 */ 13764 feature = dc_isar_feature(aa64_sm3, s); 13765 break; 13766 default: 13767 unallocated_encoding(s); 13768 return; 13769 } 13770 13771 if (!feature) { 13772 unallocated_encoding(s); 13773 return; 13774 } 13775 13776 if (!fp_access_check(s)) { 13777 return; 13778 } 13779 13780 if (op0 < 2) { 13781 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13782 int pass; 13783 13784 tcg_op1 = tcg_temp_new_i64(); 13785 tcg_op2 = tcg_temp_new_i64(); 13786 tcg_op3 = tcg_temp_new_i64(); 13787 tcg_res[0] = tcg_temp_new_i64(); 13788 tcg_res[1] = tcg_temp_new_i64(); 13789 13790 for (pass = 0; pass < 2; pass++) { 13791 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13792 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13793 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13794 13795 if (op0 == 0) { 13796 /* EOR3 */ 13797 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13798 } else { 13799 /* BCAX */ 13800 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13801 } 13802 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13803 } 13804 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13805 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13806 } else { 13807 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13808 13809 tcg_op1 = tcg_temp_new_i32(); 13810 tcg_op2 = tcg_temp_new_i32(); 13811 tcg_op3 = tcg_temp_new_i32(); 13812 tcg_res = tcg_temp_new_i32(); 13813 tcg_zero = tcg_constant_i32(0); 13814 13815 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13816 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13817 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13818 13819 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13820 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13821 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13822 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13823 13824 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13825 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13826 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13827 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13828 } 13829 } 13830 13831 /* Crypto XAR 13832 * 31 21 20 16 15 10 9 5 4 0 13833 * +-----------------------+------+--------+------+------+ 13834 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13835 * +-----------------------+------+--------+------+------+ 13836 */ 13837 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13838 { 13839 int rm = extract32(insn, 16, 5); 13840 int imm6 = extract32(insn, 10, 6); 13841 int rn = extract32(insn, 5, 5); 13842 int rd = extract32(insn, 0, 5); 13843 13844 if (!dc_isar_feature(aa64_sha3, s)) { 13845 unallocated_encoding(s); 13846 return; 13847 } 13848 13849 if (!fp_access_check(s)) { 13850 return; 13851 } 13852 13853 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13854 vec_full_reg_offset(s, rn), 13855 vec_full_reg_offset(s, rm), imm6, 16, 13856 vec_full_reg_size(s)); 13857 } 13858 13859 /* Crypto three-reg imm2 13860 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13861 * +-----------------------+------+-----+------+--------+------+------+ 13862 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13863 * +-----------------------+------+-----+------+--------+------+------+ 13864 */ 13865 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13866 { 13867 static gen_helper_gvec_3 * const fns[4] = { 13868 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13869 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13870 }; 13871 int opcode = extract32(insn, 10, 2); 13872 int imm2 = extract32(insn, 12, 2); 13873 int rm = extract32(insn, 16, 5); 13874 int rn = extract32(insn, 5, 5); 13875 int rd = extract32(insn, 0, 5); 13876 13877 if (!dc_isar_feature(aa64_sm3, s)) { 13878 unallocated_encoding(s); 13879 return; 13880 } 13881 13882 if (!fp_access_check(s)) { 13883 return; 13884 } 13885 13886 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13887 } 13888 13889 /* C3.6 Data processing - SIMD, inc Crypto 13890 * 13891 * As the decode gets a little complex we are using a table based 13892 * approach for this part of the decode. 13893 */ 13894 static const AArch64DecodeTable data_proc_simd[] = { 13895 /* pattern , mask , fn */ 13896 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13897 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13898 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13899 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13900 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13901 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13902 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13903 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13904 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13905 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13906 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13907 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13908 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13909 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13910 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13911 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13912 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13913 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13914 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13915 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13916 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13917 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13918 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13919 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13920 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13921 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13922 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13923 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13924 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13925 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13926 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13927 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13928 { 0x00000000, 0x00000000, NULL } 13929 }; 13930 13931 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13932 { 13933 /* Note that this is called with all non-FP cases from 13934 * table C3-6 so it must UNDEF for entries not specifically 13935 * allocated to instructions in that table. 13936 */ 13937 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13938 if (fn) { 13939 fn(s, insn); 13940 } else { 13941 unallocated_encoding(s); 13942 } 13943 } 13944 13945 /* C3.6 Data processing - SIMD and floating point */ 13946 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13947 { 13948 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13949 disas_data_proc_fp(s, insn); 13950 } else { 13951 /* SIMD, including crypto */ 13952 disas_data_proc_simd(s, insn); 13953 } 13954 } 13955 13956 static bool trans_OK(DisasContext *s, arg_OK *a) 13957 { 13958 return true; 13959 } 13960 13961 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13962 { 13963 s->is_nonstreaming = true; 13964 return true; 13965 } 13966 13967 /** 13968 * is_guarded_page: 13969 * @env: The cpu environment 13970 * @s: The DisasContext 13971 * 13972 * Return true if the page is guarded. 13973 */ 13974 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13975 { 13976 uint64_t addr = s->base.pc_first; 13977 #ifdef CONFIG_USER_ONLY 13978 return page_get_flags(addr) & PAGE_BTI; 13979 #else 13980 CPUTLBEntryFull *full; 13981 void *host; 13982 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13983 int flags; 13984 13985 /* 13986 * We test this immediately after reading an insn, which means 13987 * that the TLB entry must be present and valid, and thus this 13988 * access will never raise an exception. 13989 */ 13990 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13991 false, &host, &full, 0); 13992 assert(!(flags & TLB_INVALID_MASK)); 13993 13994 return full->extra.arm.guarded; 13995 #endif 13996 } 13997 13998 /** 13999 * btype_destination_ok: 14000 * @insn: The instruction at the branch destination 14001 * @bt: SCTLR_ELx.BT 14002 * @btype: PSTATE.BTYPE, and is non-zero 14003 * 14004 * On a guarded page, there are a limited number of insns 14005 * that may be present at the branch target: 14006 * - branch target identifiers, 14007 * - paciasp, pacibsp, 14008 * - BRK insn 14009 * - HLT insn 14010 * Anything else causes a Branch Target Exception. 14011 * 14012 * Return true if the branch is compatible, false to raise BTITRAP. 14013 */ 14014 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14015 { 14016 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14017 /* HINT space */ 14018 switch (extract32(insn, 5, 7)) { 14019 case 0b011001: /* PACIASP */ 14020 case 0b011011: /* PACIBSP */ 14021 /* 14022 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14023 * with btype == 3. Otherwise all btype are ok. 14024 */ 14025 return !bt || btype != 3; 14026 case 0b100000: /* BTI */ 14027 /* Not compatible with any btype. */ 14028 return false; 14029 case 0b100010: /* BTI c */ 14030 /* Not compatible with btype == 3 */ 14031 return btype != 3; 14032 case 0b100100: /* BTI j */ 14033 /* Not compatible with btype == 2 */ 14034 return btype != 2; 14035 case 0b100110: /* BTI jc */ 14036 /* Compatible with any btype. */ 14037 return true; 14038 } 14039 } else { 14040 switch (insn & 0xffe0001fu) { 14041 case 0xd4200000u: /* BRK */ 14042 case 0xd4400000u: /* HLT */ 14043 /* Give priority to the breakpoint exception. */ 14044 return true; 14045 } 14046 } 14047 return false; 14048 } 14049 14050 /* C3.1 A64 instruction index by encoding */ 14051 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14052 { 14053 switch (extract32(insn, 25, 4)) { 14054 case 0x5: 14055 case 0xd: /* Data processing - register */ 14056 disas_data_proc_reg(s, insn); 14057 break; 14058 case 0x7: 14059 case 0xf: /* Data processing - SIMD and floating point */ 14060 disas_data_proc_simd_fp(s, insn); 14061 break; 14062 default: 14063 unallocated_encoding(s); 14064 break; 14065 } 14066 } 14067 14068 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14069 CPUState *cpu) 14070 { 14071 DisasContext *dc = container_of(dcbase, DisasContext, base); 14072 CPUARMState *env = cpu_env(cpu); 14073 ARMCPU *arm_cpu = env_archcpu(env); 14074 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14075 int bound, core_mmu_idx; 14076 14077 dc->isar = &arm_cpu->isar; 14078 dc->condjmp = 0; 14079 dc->pc_save = dc->base.pc_first; 14080 dc->aarch64 = true; 14081 dc->thumb = false; 14082 dc->sctlr_b = 0; 14083 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14084 dc->condexec_mask = 0; 14085 dc->condexec_cond = 0; 14086 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14087 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14088 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14089 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14090 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14091 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14092 #if !defined(CONFIG_USER_ONLY) 14093 dc->user = (dc->current_el == 0); 14094 #endif 14095 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14096 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14097 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14098 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14099 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14100 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14101 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14102 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14103 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14104 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14105 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14106 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14107 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14108 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14109 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14110 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14111 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14112 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14113 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14114 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14115 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14116 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14117 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14118 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 14119 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 14120 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 14121 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 14122 dc->vec_len = 0; 14123 dc->vec_stride = 0; 14124 dc->cp_regs = arm_cpu->cp_regs; 14125 dc->features = env->features; 14126 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14127 dc->gm_blocksize = arm_cpu->gm_blocksize; 14128 14129 #ifdef CONFIG_USER_ONLY 14130 /* In sve_probe_page, we assume TBI is enabled. */ 14131 tcg_debug_assert(dc->tbid & 1); 14132 #endif 14133 14134 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14135 14136 /* Single step state. The code-generation logic here is: 14137 * SS_ACTIVE == 0: 14138 * generate code with no special handling for single-stepping (except 14139 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14140 * this happens anyway because those changes are all system register or 14141 * PSTATE writes). 14142 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14143 * emit code for one insn 14144 * emit code to clear PSTATE.SS 14145 * emit code to generate software step exception for completed step 14146 * end TB (as usual for having generated an exception) 14147 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14148 * emit code to generate a software step exception 14149 * end the TB 14150 */ 14151 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14152 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14153 dc->is_ldex = false; 14154 14155 /* Bound the number of insns to execute to those left on the page. */ 14156 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14157 14158 /* If architectural single step active, limit to 1. */ 14159 if (dc->ss_active) { 14160 bound = 1; 14161 } 14162 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14163 } 14164 14165 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14166 { 14167 } 14168 14169 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14170 { 14171 DisasContext *dc = container_of(dcbase, DisasContext, base); 14172 target_ulong pc_arg = dc->base.pc_next; 14173 14174 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14175 pc_arg &= ~TARGET_PAGE_MASK; 14176 } 14177 tcg_gen_insn_start(pc_arg, 0, 0); 14178 dc->insn_start = tcg_last_op(); 14179 } 14180 14181 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14182 { 14183 DisasContext *s = container_of(dcbase, DisasContext, base); 14184 CPUARMState *env = cpu_env(cpu); 14185 uint64_t pc = s->base.pc_next; 14186 uint32_t insn; 14187 14188 /* Singlestep exceptions have the highest priority. */ 14189 if (s->ss_active && !s->pstate_ss) { 14190 /* Singlestep state is Active-pending. 14191 * If we're in this state at the start of a TB then either 14192 * a) we just took an exception to an EL which is being debugged 14193 * and this is the first insn in the exception handler 14194 * b) debug exceptions were masked and we just unmasked them 14195 * without changing EL (eg by clearing PSTATE.D) 14196 * In either case we're going to take a swstep exception in the 14197 * "did not step an insn" case, and so the syndrome ISV and EX 14198 * bits should be zero. 14199 */ 14200 assert(s->base.num_insns == 1); 14201 gen_swstep_exception(s, 0, 0); 14202 s->base.is_jmp = DISAS_NORETURN; 14203 s->base.pc_next = pc + 4; 14204 return; 14205 } 14206 14207 if (pc & 3) { 14208 /* 14209 * PC alignment fault. This has priority over the instruction abort 14210 * that we would receive from a translation fault via arm_ldl_code. 14211 * This should only be possible after an indirect branch, at the 14212 * start of the TB. 14213 */ 14214 assert(s->base.num_insns == 1); 14215 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14216 s->base.is_jmp = DISAS_NORETURN; 14217 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14218 return; 14219 } 14220 14221 s->pc_curr = pc; 14222 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14223 s->insn = insn; 14224 s->base.pc_next = pc + 4; 14225 14226 s->fp_access_checked = false; 14227 s->sve_access_checked = false; 14228 14229 if (s->pstate_il) { 14230 /* 14231 * Illegal execution state. This has priority over BTI 14232 * exceptions, but comes after instruction abort exceptions. 14233 */ 14234 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14235 return; 14236 } 14237 14238 if (dc_isar_feature(aa64_bti, s)) { 14239 if (s->base.num_insns == 1) { 14240 /* 14241 * At the first insn of the TB, compute s->guarded_page. 14242 * We delayed computing this until successfully reading 14243 * the first insn of the TB, above. This (mostly) ensures 14244 * that the softmmu tlb entry has been populated, and the 14245 * page table GP bit is available. 14246 * 14247 * Note that we need to compute this even if btype == 0, 14248 * because this value is used for BR instructions later 14249 * where ENV is not available. 14250 */ 14251 s->guarded_page = is_guarded_page(env, s); 14252 14253 /* First insn can have btype set to non-zero. */ 14254 tcg_debug_assert(s->btype >= 0); 14255 14256 /* 14257 * Note that the Branch Target Exception has fairly high 14258 * priority -- below debugging exceptions but above most 14259 * everything else. This allows us to handle this now 14260 * instead of waiting until the insn is otherwise decoded. 14261 */ 14262 if (s->btype != 0 14263 && s->guarded_page 14264 && !btype_destination_ok(insn, s->bt, s->btype)) { 14265 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14266 return; 14267 } 14268 } else { 14269 /* Not the first insn: btype must be 0. */ 14270 tcg_debug_assert(s->btype == 0); 14271 } 14272 } 14273 14274 s->is_nonstreaming = false; 14275 if (s->sme_trap_nonstreaming) { 14276 disas_sme_fa64(s, insn); 14277 } 14278 14279 if (!disas_a64(s, insn) && 14280 !disas_sme(s, insn) && 14281 !disas_sve(s, insn)) { 14282 disas_a64_legacy(s, insn); 14283 } 14284 14285 /* 14286 * After execution of most insns, btype is reset to 0. 14287 * Note that we set btype == -1 when the insn sets btype. 14288 */ 14289 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14290 reset_btype(s); 14291 } 14292 } 14293 14294 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14295 { 14296 DisasContext *dc = container_of(dcbase, DisasContext, base); 14297 14298 if (unlikely(dc->ss_active)) { 14299 /* Note that this means single stepping WFI doesn't halt the CPU. 14300 * For conditional branch insns this is harmless unreachable code as 14301 * gen_goto_tb() has already handled emitting the debug exception 14302 * (and thus a tb-jump is not possible when singlestepping). 14303 */ 14304 switch (dc->base.is_jmp) { 14305 default: 14306 gen_a64_update_pc(dc, 4); 14307 /* fall through */ 14308 case DISAS_EXIT: 14309 case DISAS_JUMP: 14310 gen_step_complete_exception(dc); 14311 break; 14312 case DISAS_NORETURN: 14313 break; 14314 } 14315 } else { 14316 switch (dc->base.is_jmp) { 14317 case DISAS_NEXT: 14318 case DISAS_TOO_MANY: 14319 gen_goto_tb(dc, 1, 4); 14320 break; 14321 default: 14322 case DISAS_UPDATE_EXIT: 14323 gen_a64_update_pc(dc, 4); 14324 /* fall through */ 14325 case DISAS_EXIT: 14326 tcg_gen_exit_tb(NULL, 0); 14327 break; 14328 case DISAS_UPDATE_NOCHAIN: 14329 gen_a64_update_pc(dc, 4); 14330 /* fall through */ 14331 case DISAS_JUMP: 14332 tcg_gen_lookup_and_goto_ptr(); 14333 break; 14334 case DISAS_NORETURN: 14335 case DISAS_SWI: 14336 break; 14337 case DISAS_WFE: 14338 gen_a64_update_pc(dc, 4); 14339 gen_helper_wfe(tcg_env); 14340 break; 14341 case DISAS_YIELD: 14342 gen_a64_update_pc(dc, 4); 14343 gen_helper_yield(tcg_env); 14344 break; 14345 case DISAS_WFI: 14346 /* 14347 * This is a special case because we don't want to just halt 14348 * the CPU if trying to debug across a WFI. 14349 */ 14350 gen_a64_update_pc(dc, 4); 14351 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14352 /* 14353 * The helper doesn't necessarily throw an exception, but we 14354 * must go back to the main loop to check for interrupts anyway. 14355 */ 14356 tcg_gen_exit_tb(NULL, 0); 14357 break; 14358 } 14359 } 14360 } 14361 14362 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14363 CPUState *cpu, FILE *logfile) 14364 { 14365 DisasContext *dc = container_of(dcbase, DisasContext, base); 14366 14367 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14368 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14369 } 14370 14371 const TranslatorOps aarch64_translator_ops = { 14372 .init_disas_context = aarch64_tr_init_disas_context, 14373 .tb_start = aarch64_tr_tb_start, 14374 .insn_start = aarch64_tr_insn_start, 14375 .translate_insn = aarch64_tr_translate_insn, 14376 .tb_stop = aarch64_tr_tb_stop, 14377 .disas_log = aarch64_tr_disas_log, 14378 }; 14379