1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4706 * Note that it is the caller's responsibility to ensure that the 4707 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4708 * mandated semantics for out of range shifts. 4709 */ 4710 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4711 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4712 { 4713 switch (shift_type) { 4714 case A64_SHIFT_TYPE_LSL: 4715 tcg_gen_shl_i64(dst, src, shift_amount); 4716 break; 4717 case A64_SHIFT_TYPE_LSR: 4718 tcg_gen_shr_i64(dst, src, shift_amount); 4719 break; 4720 case A64_SHIFT_TYPE_ASR: 4721 if (!sf) { 4722 tcg_gen_ext32s_i64(dst, src); 4723 } 4724 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4725 break; 4726 case A64_SHIFT_TYPE_ROR: 4727 if (sf) { 4728 tcg_gen_rotr_i64(dst, src, shift_amount); 4729 } else { 4730 TCGv_i32 t0, t1; 4731 t0 = tcg_temp_new_i32(); 4732 t1 = tcg_temp_new_i32(); 4733 tcg_gen_extrl_i64_i32(t0, src); 4734 tcg_gen_extrl_i64_i32(t1, shift_amount); 4735 tcg_gen_rotr_i32(t0, t0, t1); 4736 tcg_gen_extu_i32_i64(dst, t0); 4737 } 4738 break; 4739 default: 4740 assert(FALSE); /* all shift types should be handled */ 4741 break; 4742 } 4743 4744 if (!sf) { /* zero extend final result */ 4745 tcg_gen_ext32u_i64(dst, dst); 4746 } 4747 } 4748 4749 /* Shift a TCGv src by immediate, put result in dst. 4750 * The shift amount must be in range (this should always be true as the 4751 * relevant instructions will UNDEF on bad shift immediates). 4752 */ 4753 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4754 enum a64_shift_type shift_type, unsigned int shift_i) 4755 { 4756 assert(shift_i < (sf ? 64 : 32)); 4757 4758 if (shift_i == 0) { 4759 tcg_gen_mov_i64(dst, src); 4760 } else { 4761 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4762 } 4763 } 4764 4765 /* Logical (shifted register) 4766 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4767 * +----+-----+-----------+-------+---+------+--------+------+------+ 4768 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4769 * +----+-----+-----------+-------+---+------+--------+------+------+ 4770 */ 4771 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4772 { 4773 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4774 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4775 4776 sf = extract32(insn, 31, 1); 4777 opc = extract32(insn, 29, 2); 4778 shift_type = extract32(insn, 22, 2); 4779 invert = extract32(insn, 21, 1); 4780 rm = extract32(insn, 16, 5); 4781 shift_amount = extract32(insn, 10, 6); 4782 rn = extract32(insn, 5, 5); 4783 rd = extract32(insn, 0, 5); 4784 4785 if (!sf && (shift_amount & (1 << 5))) { 4786 unallocated_encoding(s); 4787 return; 4788 } 4789 4790 tcg_rd = cpu_reg(s, rd); 4791 4792 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4793 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4794 * register-register MOV and MVN, so it is worth special casing. 4795 */ 4796 tcg_rm = cpu_reg(s, rm); 4797 if (invert) { 4798 tcg_gen_not_i64(tcg_rd, tcg_rm); 4799 if (!sf) { 4800 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4801 } 4802 } else { 4803 if (sf) { 4804 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4805 } else { 4806 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4807 } 4808 } 4809 return; 4810 } 4811 4812 tcg_rm = read_cpu_reg(s, rm, sf); 4813 4814 if (shift_amount) { 4815 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4816 } 4817 4818 tcg_rn = cpu_reg(s, rn); 4819 4820 switch (opc | (invert << 2)) { 4821 case 0: /* AND */ 4822 case 3: /* ANDS */ 4823 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4824 break; 4825 case 1: /* ORR */ 4826 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4827 break; 4828 case 2: /* EOR */ 4829 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4830 break; 4831 case 4: /* BIC */ 4832 case 7: /* BICS */ 4833 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4834 break; 4835 case 5: /* ORN */ 4836 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4837 break; 4838 case 6: /* EON */ 4839 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4840 break; 4841 default: 4842 assert(FALSE); 4843 break; 4844 } 4845 4846 if (!sf) { 4847 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4848 } 4849 4850 if (opc == 3) { 4851 gen_logic_CC(sf, tcg_rd); 4852 } 4853 } 4854 4855 /* 4856 * Add/subtract (extended register) 4857 * 4858 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4859 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4860 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4861 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4862 * 4863 * sf: 0 -> 32bit, 1 -> 64bit 4864 * op: 0 -> add , 1 -> sub 4865 * S: 1 -> set flags 4866 * opt: 00 4867 * option: extension type (see DecodeRegExtend) 4868 * imm3: optional shift to Rm 4869 * 4870 * Rd = Rn + LSL(extend(Rm), amount) 4871 */ 4872 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4873 { 4874 int rd = extract32(insn, 0, 5); 4875 int rn = extract32(insn, 5, 5); 4876 int imm3 = extract32(insn, 10, 3); 4877 int option = extract32(insn, 13, 3); 4878 int rm = extract32(insn, 16, 5); 4879 int opt = extract32(insn, 22, 2); 4880 bool setflags = extract32(insn, 29, 1); 4881 bool sub_op = extract32(insn, 30, 1); 4882 bool sf = extract32(insn, 31, 1); 4883 4884 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4885 TCGv_i64 tcg_rd; 4886 TCGv_i64 tcg_result; 4887 4888 if (imm3 > 4 || opt != 0) { 4889 unallocated_encoding(s); 4890 return; 4891 } 4892 4893 /* non-flag setting ops may use SP */ 4894 if (!setflags) { 4895 tcg_rd = cpu_reg_sp(s, rd); 4896 } else { 4897 tcg_rd = cpu_reg(s, rd); 4898 } 4899 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4900 4901 tcg_rm = read_cpu_reg(s, rm, sf); 4902 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4903 4904 tcg_result = tcg_temp_new_i64(); 4905 4906 if (!setflags) { 4907 if (sub_op) { 4908 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4909 } else { 4910 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4911 } 4912 } else { 4913 if (sub_op) { 4914 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4915 } else { 4916 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4917 } 4918 } 4919 4920 if (sf) { 4921 tcg_gen_mov_i64(tcg_rd, tcg_result); 4922 } else { 4923 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4924 } 4925 } 4926 4927 /* 4928 * Add/subtract (shifted register) 4929 * 4930 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4931 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4932 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4933 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4934 * 4935 * sf: 0 -> 32bit, 1 -> 64bit 4936 * op: 0 -> add , 1 -> sub 4937 * S: 1 -> set flags 4938 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4939 * imm6: Shift amount to apply to Rm before the add/sub 4940 */ 4941 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4942 { 4943 int rd = extract32(insn, 0, 5); 4944 int rn = extract32(insn, 5, 5); 4945 int imm6 = extract32(insn, 10, 6); 4946 int rm = extract32(insn, 16, 5); 4947 int shift_type = extract32(insn, 22, 2); 4948 bool setflags = extract32(insn, 29, 1); 4949 bool sub_op = extract32(insn, 30, 1); 4950 bool sf = extract32(insn, 31, 1); 4951 4952 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4953 TCGv_i64 tcg_rn, tcg_rm; 4954 TCGv_i64 tcg_result; 4955 4956 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4957 unallocated_encoding(s); 4958 return; 4959 } 4960 4961 tcg_rn = read_cpu_reg(s, rn, sf); 4962 tcg_rm = read_cpu_reg(s, rm, sf); 4963 4964 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4965 4966 tcg_result = tcg_temp_new_i64(); 4967 4968 if (!setflags) { 4969 if (sub_op) { 4970 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4971 } else { 4972 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4973 } 4974 } else { 4975 if (sub_op) { 4976 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4977 } else { 4978 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4979 } 4980 } 4981 4982 if (sf) { 4983 tcg_gen_mov_i64(tcg_rd, tcg_result); 4984 } else { 4985 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4986 } 4987 } 4988 4989 /* Data-processing (3 source) 4990 * 4991 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4992 * +--+------+-----------+------+------+----+------+------+------+ 4993 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4994 * +--+------+-----------+------+------+----+------+------+------+ 4995 */ 4996 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4997 { 4998 int rd = extract32(insn, 0, 5); 4999 int rn = extract32(insn, 5, 5); 5000 int ra = extract32(insn, 10, 5); 5001 int rm = extract32(insn, 16, 5); 5002 int op_id = (extract32(insn, 29, 3) << 4) | 5003 (extract32(insn, 21, 3) << 1) | 5004 extract32(insn, 15, 1); 5005 bool sf = extract32(insn, 31, 1); 5006 bool is_sub = extract32(op_id, 0, 1); 5007 bool is_high = extract32(op_id, 2, 1); 5008 bool is_signed = false; 5009 TCGv_i64 tcg_op1; 5010 TCGv_i64 tcg_op2; 5011 TCGv_i64 tcg_tmp; 5012 5013 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5014 switch (op_id) { 5015 case 0x42: /* SMADDL */ 5016 case 0x43: /* SMSUBL */ 5017 case 0x44: /* SMULH */ 5018 is_signed = true; 5019 break; 5020 case 0x0: /* MADD (32bit) */ 5021 case 0x1: /* MSUB (32bit) */ 5022 case 0x40: /* MADD (64bit) */ 5023 case 0x41: /* MSUB (64bit) */ 5024 case 0x4a: /* UMADDL */ 5025 case 0x4b: /* UMSUBL */ 5026 case 0x4c: /* UMULH */ 5027 break; 5028 default: 5029 unallocated_encoding(s); 5030 return; 5031 } 5032 5033 if (is_high) { 5034 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5035 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5036 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5037 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5038 5039 if (is_signed) { 5040 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5041 } else { 5042 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5043 } 5044 return; 5045 } 5046 5047 tcg_op1 = tcg_temp_new_i64(); 5048 tcg_op2 = tcg_temp_new_i64(); 5049 tcg_tmp = tcg_temp_new_i64(); 5050 5051 if (op_id < 0x42) { 5052 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5053 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5054 } else { 5055 if (is_signed) { 5056 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5057 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5058 } else { 5059 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5060 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5061 } 5062 } 5063 5064 if (ra == 31 && !is_sub) { 5065 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5066 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5067 } else { 5068 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5069 if (is_sub) { 5070 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5071 } else { 5072 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5073 } 5074 } 5075 5076 if (!sf) { 5077 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5078 } 5079 } 5080 5081 /* Add/subtract (with carry) 5082 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5083 * +--+--+--+------------------------+------+-------------+------+-----+ 5084 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5085 * +--+--+--+------------------------+------+-------------+------+-----+ 5086 */ 5087 5088 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5089 { 5090 unsigned int sf, op, setflags, rm, rn, rd; 5091 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5092 5093 sf = extract32(insn, 31, 1); 5094 op = extract32(insn, 30, 1); 5095 setflags = extract32(insn, 29, 1); 5096 rm = extract32(insn, 16, 5); 5097 rn = extract32(insn, 5, 5); 5098 rd = extract32(insn, 0, 5); 5099 5100 tcg_rd = cpu_reg(s, rd); 5101 tcg_rn = cpu_reg(s, rn); 5102 5103 if (op) { 5104 tcg_y = tcg_temp_new_i64(); 5105 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5106 } else { 5107 tcg_y = cpu_reg(s, rm); 5108 } 5109 5110 if (setflags) { 5111 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5112 } else { 5113 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5114 } 5115 } 5116 5117 /* 5118 * Rotate right into flags 5119 * 31 30 29 21 15 10 5 4 0 5120 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5121 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5122 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5123 */ 5124 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5125 { 5126 int mask = extract32(insn, 0, 4); 5127 int o2 = extract32(insn, 4, 1); 5128 int rn = extract32(insn, 5, 5); 5129 int imm6 = extract32(insn, 15, 6); 5130 int sf_op_s = extract32(insn, 29, 3); 5131 TCGv_i64 tcg_rn; 5132 TCGv_i32 nzcv; 5133 5134 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5135 unallocated_encoding(s); 5136 return; 5137 } 5138 5139 tcg_rn = read_cpu_reg(s, rn, 1); 5140 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5141 5142 nzcv = tcg_temp_new_i32(); 5143 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5144 5145 if (mask & 8) { /* N */ 5146 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5147 } 5148 if (mask & 4) { /* Z */ 5149 tcg_gen_not_i32(cpu_ZF, nzcv); 5150 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5151 } 5152 if (mask & 2) { /* C */ 5153 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5154 } 5155 if (mask & 1) { /* V */ 5156 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5157 } 5158 } 5159 5160 /* 5161 * Evaluate into flags 5162 * 31 30 29 21 15 14 10 5 4 0 5163 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5164 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5165 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5166 */ 5167 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5168 { 5169 int o3_mask = extract32(insn, 0, 5); 5170 int rn = extract32(insn, 5, 5); 5171 int o2 = extract32(insn, 15, 6); 5172 int sz = extract32(insn, 14, 1); 5173 int sf_op_s = extract32(insn, 29, 3); 5174 TCGv_i32 tmp; 5175 int shift; 5176 5177 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5178 !dc_isar_feature(aa64_condm_4, s)) { 5179 unallocated_encoding(s); 5180 return; 5181 } 5182 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5183 5184 tmp = tcg_temp_new_i32(); 5185 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5186 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5187 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5188 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5189 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5190 } 5191 5192 /* Conditional compare (immediate / register) 5193 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5194 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5195 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5196 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5197 * [1] y [0] [0] 5198 */ 5199 static void disas_cc(DisasContext *s, uint32_t insn) 5200 { 5201 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5202 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5203 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5204 DisasCompare c; 5205 5206 if (!extract32(insn, 29, 1)) { 5207 unallocated_encoding(s); 5208 return; 5209 } 5210 if (insn & (1 << 10 | 1 << 4)) { 5211 unallocated_encoding(s); 5212 return; 5213 } 5214 sf = extract32(insn, 31, 1); 5215 op = extract32(insn, 30, 1); 5216 is_imm = extract32(insn, 11, 1); 5217 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5218 cond = extract32(insn, 12, 4); 5219 rn = extract32(insn, 5, 5); 5220 nzcv = extract32(insn, 0, 4); 5221 5222 /* Set T0 = !COND. */ 5223 tcg_t0 = tcg_temp_new_i32(); 5224 arm_test_cc(&c, cond); 5225 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5226 5227 /* Load the arguments for the new comparison. */ 5228 if (is_imm) { 5229 tcg_y = tcg_temp_new_i64(); 5230 tcg_gen_movi_i64(tcg_y, y); 5231 } else { 5232 tcg_y = cpu_reg(s, y); 5233 } 5234 tcg_rn = cpu_reg(s, rn); 5235 5236 /* Set the flags for the new comparison. */ 5237 tcg_tmp = tcg_temp_new_i64(); 5238 if (op) { 5239 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5240 } else { 5241 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5242 } 5243 5244 /* If COND was false, force the flags to #nzcv. Compute two masks 5245 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5246 * For tcg hosts that support ANDC, we can make do with just T1. 5247 * In either case, allow the tcg optimizer to delete any unused mask. 5248 */ 5249 tcg_t1 = tcg_temp_new_i32(); 5250 tcg_t2 = tcg_temp_new_i32(); 5251 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5252 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5253 5254 if (nzcv & 8) { /* N */ 5255 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5256 } else { 5257 if (TCG_TARGET_HAS_andc_i32) { 5258 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5259 } else { 5260 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5261 } 5262 } 5263 if (nzcv & 4) { /* Z */ 5264 if (TCG_TARGET_HAS_andc_i32) { 5265 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5266 } else { 5267 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5268 } 5269 } else { 5270 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5271 } 5272 if (nzcv & 2) { /* C */ 5273 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5274 } else { 5275 if (TCG_TARGET_HAS_andc_i32) { 5276 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5277 } else { 5278 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5279 } 5280 } 5281 if (nzcv & 1) { /* V */ 5282 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5283 } else { 5284 if (TCG_TARGET_HAS_andc_i32) { 5285 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5286 } else { 5287 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5288 } 5289 } 5290 } 5291 5292 /* Conditional select 5293 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5294 * +----+----+---+-----------------+------+------+-----+------+------+ 5295 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5296 * +----+----+---+-----------------+------+------+-----+------+------+ 5297 */ 5298 static void disas_cond_select(DisasContext *s, uint32_t insn) 5299 { 5300 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5301 TCGv_i64 tcg_rd, zero; 5302 DisasCompare64 c; 5303 5304 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5305 /* S == 1 or op2<1> == 1 */ 5306 unallocated_encoding(s); 5307 return; 5308 } 5309 sf = extract32(insn, 31, 1); 5310 else_inv = extract32(insn, 30, 1); 5311 rm = extract32(insn, 16, 5); 5312 cond = extract32(insn, 12, 4); 5313 else_inc = extract32(insn, 10, 1); 5314 rn = extract32(insn, 5, 5); 5315 rd = extract32(insn, 0, 5); 5316 5317 tcg_rd = cpu_reg(s, rd); 5318 5319 a64_test_cc(&c, cond); 5320 zero = tcg_constant_i64(0); 5321 5322 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5323 /* CSET & CSETM. */ 5324 if (else_inv) { 5325 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5326 tcg_rd, c.value, zero); 5327 } else { 5328 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5329 tcg_rd, c.value, zero); 5330 } 5331 } else { 5332 TCGv_i64 t_true = cpu_reg(s, rn); 5333 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5334 if (else_inv && else_inc) { 5335 tcg_gen_neg_i64(t_false, t_false); 5336 } else if (else_inv) { 5337 tcg_gen_not_i64(t_false, t_false); 5338 } else if (else_inc) { 5339 tcg_gen_addi_i64(t_false, t_false, 1); 5340 } 5341 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5342 } 5343 5344 if (!sf) { 5345 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5346 } 5347 } 5348 5349 static void handle_clz(DisasContext *s, unsigned int sf, 5350 unsigned int rn, unsigned int rd) 5351 { 5352 TCGv_i64 tcg_rd, tcg_rn; 5353 tcg_rd = cpu_reg(s, rd); 5354 tcg_rn = cpu_reg(s, rn); 5355 5356 if (sf) { 5357 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5358 } else { 5359 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5360 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5361 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5362 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5363 } 5364 } 5365 5366 static void handle_cls(DisasContext *s, unsigned int sf, 5367 unsigned int rn, unsigned int rd) 5368 { 5369 TCGv_i64 tcg_rd, tcg_rn; 5370 tcg_rd = cpu_reg(s, rd); 5371 tcg_rn = cpu_reg(s, rn); 5372 5373 if (sf) { 5374 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5375 } else { 5376 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5377 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5378 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5379 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5380 } 5381 } 5382 5383 static void handle_rbit(DisasContext *s, unsigned int sf, 5384 unsigned int rn, unsigned int rd) 5385 { 5386 TCGv_i64 tcg_rd, tcg_rn; 5387 tcg_rd = cpu_reg(s, rd); 5388 tcg_rn = cpu_reg(s, rn); 5389 5390 if (sf) { 5391 gen_helper_rbit64(tcg_rd, tcg_rn); 5392 } else { 5393 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5394 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5395 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5396 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5397 } 5398 } 5399 5400 /* REV with sf==1, opcode==3 ("REV64") */ 5401 static void handle_rev64(DisasContext *s, unsigned int sf, 5402 unsigned int rn, unsigned int rd) 5403 { 5404 if (!sf) { 5405 unallocated_encoding(s); 5406 return; 5407 } 5408 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5409 } 5410 5411 /* REV with sf==0, opcode==2 5412 * REV32 (sf==1, opcode==2) 5413 */ 5414 static void handle_rev32(DisasContext *s, unsigned int sf, 5415 unsigned int rn, unsigned int rd) 5416 { 5417 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5418 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5419 5420 if (sf) { 5421 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5422 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5423 } else { 5424 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5425 } 5426 } 5427 5428 /* REV16 (opcode==1) */ 5429 static void handle_rev16(DisasContext *s, unsigned int sf, 5430 unsigned int rn, unsigned int rd) 5431 { 5432 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5433 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5434 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5435 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5436 5437 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5438 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5439 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5440 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5441 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5442 } 5443 5444 /* Data-processing (1 source) 5445 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5446 * +----+---+---+-----------------+---------+--------+------+------+ 5447 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5448 * +----+---+---+-----------------+---------+--------+------+------+ 5449 */ 5450 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5451 { 5452 unsigned int sf, opcode, opcode2, rn, rd; 5453 TCGv_i64 tcg_rd; 5454 5455 if (extract32(insn, 29, 1)) { 5456 unallocated_encoding(s); 5457 return; 5458 } 5459 5460 sf = extract32(insn, 31, 1); 5461 opcode = extract32(insn, 10, 6); 5462 opcode2 = extract32(insn, 16, 5); 5463 rn = extract32(insn, 5, 5); 5464 rd = extract32(insn, 0, 5); 5465 5466 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5467 5468 switch (MAP(sf, opcode2, opcode)) { 5469 case MAP(0, 0x00, 0x00): /* RBIT */ 5470 case MAP(1, 0x00, 0x00): 5471 handle_rbit(s, sf, rn, rd); 5472 break; 5473 case MAP(0, 0x00, 0x01): /* REV16 */ 5474 case MAP(1, 0x00, 0x01): 5475 handle_rev16(s, sf, rn, rd); 5476 break; 5477 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5478 case MAP(1, 0x00, 0x02): 5479 handle_rev32(s, sf, rn, rd); 5480 break; 5481 case MAP(1, 0x00, 0x03): /* REV64 */ 5482 handle_rev64(s, sf, rn, rd); 5483 break; 5484 case MAP(0, 0x00, 0x04): /* CLZ */ 5485 case MAP(1, 0x00, 0x04): 5486 handle_clz(s, sf, rn, rd); 5487 break; 5488 case MAP(0, 0x00, 0x05): /* CLS */ 5489 case MAP(1, 0x00, 0x05): 5490 handle_cls(s, sf, rn, rd); 5491 break; 5492 case MAP(1, 0x01, 0x00): /* PACIA */ 5493 if (s->pauth_active) { 5494 tcg_rd = cpu_reg(s, rd); 5495 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5496 } else if (!dc_isar_feature(aa64_pauth, s)) { 5497 goto do_unallocated; 5498 } 5499 break; 5500 case MAP(1, 0x01, 0x01): /* PACIB */ 5501 if (s->pauth_active) { 5502 tcg_rd = cpu_reg(s, rd); 5503 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5504 } else if (!dc_isar_feature(aa64_pauth, s)) { 5505 goto do_unallocated; 5506 } 5507 break; 5508 case MAP(1, 0x01, 0x02): /* PACDA */ 5509 if (s->pauth_active) { 5510 tcg_rd = cpu_reg(s, rd); 5511 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5512 } else if (!dc_isar_feature(aa64_pauth, s)) { 5513 goto do_unallocated; 5514 } 5515 break; 5516 case MAP(1, 0x01, 0x03): /* PACDB */ 5517 if (s->pauth_active) { 5518 tcg_rd = cpu_reg(s, rd); 5519 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5520 } else if (!dc_isar_feature(aa64_pauth, s)) { 5521 goto do_unallocated; 5522 } 5523 break; 5524 case MAP(1, 0x01, 0x04): /* AUTIA */ 5525 if (s->pauth_active) { 5526 tcg_rd = cpu_reg(s, rd); 5527 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5528 } else if (!dc_isar_feature(aa64_pauth, s)) { 5529 goto do_unallocated; 5530 } 5531 break; 5532 case MAP(1, 0x01, 0x05): /* AUTIB */ 5533 if (s->pauth_active) { 5534 tcg_rd = cpu_reg(s, rd); 5535 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5536 } else if (!dc_isar_feature(aa64_pauth, s)) { 5537 goto do_unallocated; 5538 } 5539 break; 5540 case MAP(1, 0x01, 0x06): /* AUTDA */ 5541 if (s->pauth_active) { 5542 tcg_rd = cpu_reg(s, rd); 5543 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5544 } else if (!dc_isar_feature(aa64_pauth, s)) { 5545 goto do_unallocated; 5546 } 5547 break; 5548 case MAP(1, 0x01, 0x07): /* AUTDB */ 5549 if (s->pauth_active) { 5550 tcg_rd = cpu_reg(s, rd); 5551 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5552 } else if (!dc_isar_feature(aa64_pauth, s)) { 5553 goto do_unallocated; 5554 } 5555 break; 5556 case MAP(1, 0x01, 0x08): /* PACIZA */ 5557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5558 goto do_unallocated; 5559 } else if (s->pauth_active) { 5560 tcg_rd = cpu_reg(s, rd); 5561 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5562 } 5563 break; 5564 case MAP(1, 0x01, 0x09): /* PACIZB */ 5565 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5566 goto do_unallocated; 5567 } else if (s->pauth_active) { 5568 tcg_rd = cpu_reg(s, rd); 5569 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5570 } 5571 break; 5572 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5573 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5574 goto do_unallocated; 5575 } else if (s->pauth_active) { 5576 tcg_rd = cpu_reg(s, rd); 5577 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5578 } 5579 break; 5580 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5581 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5582 goto do_unallocated; 5583 } else if (s->pauth_active) { 5584 tcg_rd = cpu_reg(s, rd); 5585 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5586 } 5587 break; 5588 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5589 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5590 goto do_unallocated; 5591 } else if (s->pauth_active) { 5592 tcg_rd = cpu_reg(s, rd); 5593 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5594 } 5595 break; 5596 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5597 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5598 goto do_unallocated; 5599 } else if (s->pauth_active) { 5600 tcg_rd = cpu_reg(s, rd); 5601 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5602 } 5603 break; 5604 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5605 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5606 goto do_unallocated; 5607 } else if (s->pauth_active) { 5608 tcg_rd = cpu_reg(s, rd); 5609 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5610 } 5611 break; 5612 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5613 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5614 goto do_unallocated; 5615 } else if (s->pauth_active) { 5616 tcg_rd = cpu_reg(s, rd); 5617 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5618 } 5619 break; 5620 case MAP(1, 0x01, 0x10): /* XPACI */ 5621 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5622 goto do_unallocated; 5623 } else if (s->pauth_active) { 5624 tcg_rd = cpu_reg(s, rd); 5625 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5626 } 5627 break; 5628 case MAP(1, 0x01, 0x11): /* XPACD */ 5629 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5630 goto do_unallocated; 5631 } else if (s->pauth_active) { 5632 tcg_rd = cpu_reg(s, rd); 5633 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5634 } 5635 break; 5636 default: 5637 do_unallocated: 5638 unallocated_encoding(s); 5639 break; 5640 } 5641 5642 #undef MAP 5643 } 5644 5645 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5646 unsigned int rm, unsigned int rn, unsigned int rd) 5647 { 5648 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5649 tcg_rd = cpu_reg(s, rd); 5650 5651 if (!sf && is_signed) { 5652 tcg_n = tcg_temp_new_i64(); 5653 tcg_m = tcg_temp_new_i64(); 5654 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5655 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5656 } else { 5657 tcg_n = read_cpu_reg(s, rn, sf); 5658 tcg_m = read_cpu_reg(s, rm, sf); 5659 } 5660 5661 if (is_signed) { 5662 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5663 } else { 5664 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5665 } 5666 5667 if (!sf) { /* zero extend final result */ 5668 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5669 } 5670 } 5671 5672 /* LSLV, LSRV, ASRV, RORV */ 5673 static void handle_shift_reg(DisasContext *s, 5674 enum a64_shift_type shift_type, unsigned int sf, 5675 unsigned int rm, unsigned int rn, unsigned int rd) 5676 { 5677 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5678 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5679 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5680 5681 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5682 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5683 } 5684 5685 /* CRC32[BHWX], CRC32C[BHWX] */ 5686 static void handle_crc32(DisasContext *s, 5687 unsigned int sf, unsigned int sz, bool crc32c, 5688 unsigned int rm, unsigned int rn, unsigned int rd) 5689 { 5690 TCGv_i64 tcg_acc, tcg_val; 5691 TCGv_i32 tcg_bytes; 5692 5693 if (!dc_isar_feature(aa64_crc32, s) 5694 || (sf == 1 && sz != 3) 5695 || (sf == 0 && sz == 3)) { 5696 unallocated_encoding(s); 5697 return; 5698 } 5699 5700 if (sz == 3) { 5701 tcg_val = cpu_reg(s, rm); 5702 } else { 5703 uint64_t mask; 5704 switch (sz) { 5705 case 0: 5706 mask = 0xFF; 5707 break; 5708 case 1: 5709 mask = 0xFFFF; 5710 break; 5711 case 2: 5712 mask = 0xFFFFFFFF; 5713 break; 5714 default: 5715 g_assert_not_reached(); 5716 } 5717 tcg_val = tcg_temp_new_i64(); 5718 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5719 } 5720 5721 tcg_acc = cpu_reg(s, rn); 5722 tcg_bytes = tcg_constant_i32(1 << sz); 5723 5724 if (crc32c) { 5725 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5726 } else { 5727 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5728 } 5729 } 5730 5731 /* Data-processing (2 source) 5732 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5733 * +----+---+---+-----------------+------+--------+------+------+ 5734 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5735 * +----+---+---+-----------------+------+--------+------+------+ 5736 */ 5737 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5738 { 5739 unsigned int sf, rm, opcode, rn, rd, setflag; 5740 sf = extract32(insn, 31, 1); 5741 setflag = extract32(insn, 29, 1); 5742 rm = extract32(insn, 16, 5); 5743 opcode = extract32(insn, 10, 6); 5744 rn = extract32(insn, 5, 5); 5745 rd = extract32(insn, 0, 5); 5746 5747 if (setflag && opcode != 0) { 5748 unallocated_encoding(s); 5749 return; 5750 } 5751 5752 switch (opcode) { 5753 case 0: /* SUBP(S) */ 5754 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5755 goto do_unallocated; 5756 } else { 5757 TCGv_i64 tcg_n, tcg_m, tcg_d; 5758 5759 tcg_n = read_cpu_reg_sp(s, rn, true); 5760 tcg_m = read_cpu_reg_sp(s, rm, true); 5761 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5762 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5763 tcg_d = cpu_reg(s, rd); 5764 5765 if (setflag) { 5766 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5767 } else { 5768 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5769 } 5770 } 5771 break; 5772 case 2: /* UDIV */ 5773 handle_div(s, false, sf, rm, rn, rd); 5774 break; 5775 case 3: /* SDIV */ 5776 handle_div(s, true, sf, rm, rn, rd); 5777 break; 5778 case 4: /* IRG */ 5779 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5780 goto do_unallocated; 5781 } 5782 if (s->ata[0]) { 5783 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5784 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5785 } else { 5786 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5787 cpu_reg_sp(s, rn)); 5788 } 5789 break; 5790 case 5: /* GMI */ 5791 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5792 goto do_unallocated; 5793 } else { 5794 TCGv_i64 t = tcg_temp_new_i64(); 5795 5796 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5797 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5798 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5799 } 5800 break; 5801 case 8: /* LSLV */ 5802 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5803 break; 5804 case 9: /* LSRV */ 5805 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5806 break; 5807 case 10: /* ASRV */ 5808 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5809 break; 5810 case 11: /* RORV */ 5811 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5812 break; 5813 case 12: /* PACGA */ 5814 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5815 goto do_unallocated; 5816 } 5817 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5818 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5819 break; 5820 case 16: 5821 case 17: 5822 case 18: 5823 case 19: 5824 case 20: 5825 case 21: 5826 case 22: 5827 case 23: /* CRC32 */ 5828 { 5829 int sz = extract32(opcode, 0, 2); 5830 bool crc32c = extract32(opcode, 2, 1); 5831 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5832 break; 5833 } 5834 default: 5835 do_unallocated: 5836 unallocated_encoding(s); 5837 break; 5838 } 5839 } 5840 5841 /* 5842 * Data processing - register 5843 * 31 30 29 28 25 21 20 16 10 0 5844 * +--+---+--+---+-------+-----+-------+-------+---------+ 5845 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5846 * +--+---+--+---+-------+-----+-------+-------+---------+ 5847 */ 5848 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5849 { 5850 int op0 = extract32(insn, 30, 1); 5851 int op1 = extract32(insn, 28, 1); 5852 int op2 = extract32(insn, 21, 4); 5853 int op3 = extract32(insn, 10, 6); 5854 5855 if (!op1) { 5856 if (op2 & 8) { 5857 if (op2 & 1) { 5858 /* Add/sub (extended register) */ 5859 disas_add_sub_ext_reg(s, insn); 5860 } else { 5861 /* Add/sub (shifted register) */ 5862 disas_add_sub_reg(s, insn); 5863 } 5864 } else { 5865 /* Logical (shifted register) */ 5866 disas_logic_reg(s, insn); 5867 } 5868 return; 5869 } 5870 5871 switch (op2) { 5872 case 0x0: 5873 switch (op3) { 5874 case 0x00: /* Add/subtract (with carry) */ 5875 disas_adc_sbc(s, insn); 5876 break; 5877 5878 case 0x01: /* Rotate right into flags */ 5879 case 0x21: 5880 disas_rotate_right_into_flags(s, insn); 5881 break; 5882 5883 case 0x02: /* Evaluate into flags */ 5884 case 0x12: 5885 case 0x22: 5886 case 0x32: 5887 disas_evaluate_into_flags(s, insn); 5888 break; 5889 5890 default: 5891 goto do_unallocated; 5892 } 5893 break; 5894 5895 case 0x2: /* Conditional compare */ 5896 disas_cc(s, insn); /* both imm and reg forms */ 5897 break; 5898 5899 case 0x4: /* Conditional select */ 5900 disas_cond_select(s, insn); 5901 break; 5902 5903 case 0x6: /* Data-processing */ 5904 if (op0) { /* (1 source) */ 5905 disas_data_proc_1src(s, insn); 5906 } else { /* (2 source) */ 5907 disas_data_proc_2src(s, insn); 5908 } 5909 break; 5910 case 0x8 ... 0xf: /* (3 source) */ 5911 disas_data_proc_3src(s, insn); 5912 break; 5913 5914 default: 5915 do_unallocated: 5916 unallocated_encoding(s); 5917 break; 5918 } 5919 } 5920 5921 static void handle_fp_compare(DisasContext *s, int size, 5922 unsigned int rn, unsigned int rm, 5923 bool cmp_with_zero, bool signal_all_nans) 5924 { 5925 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5926 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5927 5928 if (size == MO_64) { 5929 TCGv_i64 tcg_vn, tcg_vm; 5930 5931 tcg_vn = read_fp_dreg(s, rn); 5932 if (cmp_with_zero) { 5933 tcg_vm = tcg_constant_i64(0); 5934 } else { 5935 tcg_vm = read_fp_dreg(s, rm); 5936 } 5937 if (signal_all_nans) { 5938 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5939 } else { 5940 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5941 } 5942 } else { 5943 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5944 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5945 5946 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5947 if (cmp_with_zero) { 5948 tcg_gen_movi_i32(tcg_vm, 0); 5949 } else { 5950 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5951 } 5952 5953 switch (size) { 5954 case MO_32: 5955 if (signal_all_nans) { 5956 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5957 } else { 5958 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5959 } 5960 break; 5961 case MO_16: 5962 if (signal_all_nans) { 5963 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5964 } else { 5965 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5966 } 5967 break; 5968 default: 5969 g_assert_not_reached(); 5970 } 5971 } 5972 5973 gen_set_nzcv(tcg_flags); 5974 } 5975 5976 /* Floating point compare 5977 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5978 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5979 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5980 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5981 */ 5982 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5983 { 5984 unsigned int mos, type, rm, op, rn, opc, op2r; 5985 int size; 5986 5987 mos = extract32(insn, 29, 3); 5988 type = extract32(insn, 22, 2); 5989 rm = extract32(insn, 16, 5); 5990 op = extract32(insn, 14, 2); 5991 rn = extract32(insn, 5, 5); 5992 opc = extract32(insn, 3, 2); 5993 op2r = extract32(insn, 0, 3); 5994 5995 if (mos || op || op2r) { 5996 unallocated_encoding(s); 5997 return; 5998 } 5999 6000 switch (type) { 6001 case 0: 6002 size = MO_32; 6003 break; 6004 case 1: 6005 size = MO_64; 6006 break; 6007 case 3: 6008 size = MO_16; 6009 if (dc_isar_feature(aa64_fp16, s)) { 6010 break; 6011 } 6012 /* fallthru */ 6013 default: 6014 unallocated_encoding(s); 6015 return; 6016 } 6017 6018 if (!fp_access_check(s)) { 6019 return; 6020 } 6021 6022 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6023 } 6024 6025 /* Floating point conditional compare 6026 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6027 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6028 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6029 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6030 */ 6031 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6032 { 6033 unsigned int mos, type, rm, cond, rn, op, nzcv; 6034 TCGLabel *label_continue = NULL; 6035 int size; 6036 6037 mos = extract32(insn, 29, 3); 6038 type = extract32(insn, 22, 2); 6039 rm = extract32(insn, 16, 5); 6040 cond = extract32(insn, 12, 4); 6041 rn = extract32(insn, 5, 5); 6042 op = extract32(insn, 4, 1); 6043 nzcv = extract32(insn, 0, 4); 6044 6045 if (mos) { 6046 unallocated_encoding(s); 6047 return; 6048 } 6049 6050 switch (type) { 6051 case 0: 6052 size = MO_32; 6053 break; 6054 case 1: 6055 size = MO_64; 6056 break; 6057 case 3: 6058 size = MO_16; 6059 if (dc_isar_feature(aa64_fp16, s)) { 6060 break; 6061 } 6062 /* fallthru */ 6063 default: 6064 unallocated_encoding(s); 6065 return; 6066 } 6067 6068 if (!fp_access_check(s)) { 6069 return; 6070 } 6071 6072 if (cond < 0x0e) { /* not always */ 6073 TCGLabel *label_match = gen_new_label(); 6074 label_continue = gen_new_label(); 6075 arm_gen_test_cc(cond, label_match); 6076 /* nomatch: */ 6077 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6078 tcg_gen_br(label_continue); 6079 gen_set_label(label_match); 6080 } 6081 6082 handle_fp_compare(s, size, rn, rm, false, op); 6083 6084 if (cond < 0x0e) { 6085 gen_set_label(label_continue); 6086 } 6087 } 6088 6089 /* Floating point conditional select 6090 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6091 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6092 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6093 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6094 */ 6095 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6096 { 6097 unsigned int mos, type, rm, cond, rn, rd; 6098 TCGv_i64 t_true, t_false; 6099 DisasCompare64 c; 6100 MemOp sz; 6101 6102 mos = extract32(insn, 29, 3); 6103 type = extract32(insn, 22, 2); 6104 rm = extract32(insn, 16, 5); 6105 cond = extract32(insn, 12, 4); 6106 rn = extract32(insn, 5, 5); 6107 rd = extract32(insn, 0, 5); 6108 6109 if (mos) { 6110 unallocated_encoding(s); 6111 return; 6112 } 6113 6114 switch (type) { 6115 case 0: 6116 sz = MO_32; 6117 break; 6118 case 1: 6119 sz = MO_64; 6120 break; 6121 case 3: 6122 sz = MO_16; 6123 if (dc_isar_feature(aa64_fp16, s)) { 6124 break; 6125 } 6126 /* fallthru */ 6127 default: 6128 unallocated_encoding(s); 6129 return; 6130 } 6131 6132 if (!fp_access_check(s)) { 6133 return; 6134 } 6135 6136 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6137 t_true = tcg_temp_new_i64(); 6138 t_false = tcg_temp_new_i64(); 6139 read_vec_element(s, t_true, rn, 0, sz); 6140 read_vec_element(s, t_false, rm, 0, sz); 6141 6142 a64_test_cc(&c, cond); 6143 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6144 t_true, t_false); 6145 6146 /* Note that sregs & hregs write back zeros to the high bits, 6147 and we've already done the zero-extension. */ 6148 write_fp_dreg(s, rd, t_true); 6149 } 6150 6151 /* Floating-point data-processing (1 source) - half precision */ 6152 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6153 { 6154 TCGv_ptr fpst = NULL; 6155 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6156 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6157 6158 switch (opcode) { 6159 case 0x0: /* FMOV */ 6160 tcg_gen_mov_i32(tcg_res, tcg_op); 6161 break; 6162 case 0x1: /* FABS */ 6163 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6164 break; 6165 case 0x2: /* FNEG */ 6166 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6167 break; 6168 case 0x3: /* FSQRT */ 6169 fpst = fpstatus_ptr(FPST_FPCR_F16); 6170 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6171 break; 6172 case 0x8: /* FRINTN */ 6173 case 0x9: /* FRINTP */ 6174 case 0xa: /* FRINTM */ 6175 case 0xb: /* FRINTZ */ 6176 case 0xc: /* FRINTA */ 6177 { 6178 TCGv_i32 tcg_rmode; 6179 6180 fpst = fpstatus_ptr(FPST_FPCR_F16); 6181 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6182 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6183 gen_restore_rmode(tcg_rmode, fpst); 6184 break; 6185 } 6186 case 0xe: /* FRINTX */ 6187 fpst = fpstatus_ptr(FPST_FPCR_F16); 6188 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6189 break; 6190 case 0xf: /* FRINTI */ 6191 fpst = fpstatus_ptr(FPST_FPCR_F16); 6192 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6193 break; 6194 default: 6195 g_assert_not_reached(); 6196 } 6197 6198 write_fp_sreg(s, rd, tcg_res); 6199 } 6200 6201 /* Floating-point data-processing (1 source) - single precision */ 6202 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6203 { 6204 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6205 TCGv_i32 tcg_op, tcg_res; 6206 TCGv_ptr fpst; 6207 int rmode = -1; 6208 6209 tcg_op = read_fp_sreg(s, rn); 6210 tcg_res = tcg_temp_new_i32(); 6211 6212 switch (opcode) { 6213 case 0x0: /* FMOV */ 6214 tcg_gen_mov_i32(tcg_res, tcg_op); 6215 goto done; 6216 case 0x1: /* FABS */ 6217 gen_helper_vfp_abss(tcg_res, tcg_op); 6218 goto done; 6219 case 0x2: /* FNEG */ 6220 gen_helper_vfp_negs(tcg_res, tcg_op); 6221 goto done; 6222 case 0x3: /* FSQRT */ 6223 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6224 goto done; 6225 case 0x6: /* BFCVT */ 6226 gen_fpst = gen_helper_bfcvt; 6227 break; 6228 case 0x8: /* FRINTN */ 6229 case 0x9: /* FRINTP */ 6230 case 0xa: /* FRINTM */ 6231 case 0xb: /* FRINTZ */ 6232 case 0xc: /* FRINTA */ 6233 rmode = opcode & 7; 6234 gen_fpst = gen_helper_rints; 6235 break; 6236 case 0xe: /* FRINTX */ 6237 gen_fpst = gen_helper_rints_exact; 6238 break; 6239 case 0xf: /* FRINTI */ 6240 gen_fpst = gen_helper_rints; 6241 break; 6242 case 0x10: /* FRINT32Z */ 6243 rmode = FPROUNDING_ZERO; 6244 gen_fpst = gen_helper_frint32_s; 6245 break; 6246 case 0x11: /* FRINT32X */ 6247 gen_fpst = gen_helper_frint32_s; 6248 break; 6249 case 0x12: /* FRINT64Z */ 6250 rmode = FPROUNDING_ZERO; 6251 gen_fpst = gen_helper_frint64_s; 6252 break; 6253 case 0x13: /* FRINT64X */ 6254 gen_fpst = gen_helper_frint64_s; 6255 break; 6256 default: 6257 g_assert_not_reached(); 6258 } 6259 6260 fpst = fpstatus_ptr(FPST_FPCR); 6261 if (rmode >= 0) { 6262 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6263 gen_fpst(tcg_res, tcg_op, fpst); 6264 gen_restore_rmode(tcg_rmode, fpst); 6265 } else { 6266 gen_fpst(tcg_res, tcg_op, fpst); 6267 } 6268 6269 done: 6270 write_fp_sreg(s, rd, tcg_res); 6271 } 6272 6273 /* Floating-point data-processing (1 source) - double precision */ 6274 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6275 { 6276 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6277 TCGv_i64 tcg_op, tcg_res; 6278 TCGv_ptr fpst; 6279 int rmode = -1; 6280 6281 switch (opcode) { 6282 case 0x0: /* FMOV */ 6283 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6284 return; 6285 } 6286 6287 tcg_op = read_fp_dreg(s, rn); 6288 tcg_res = tcg_temp_new_i64(); 6289 6290 switch (opcode) { 6291 case 0x1: /* FABS */ 6292 gen_helper_vfp_absd(tcg_res, tcg_op); 6293 goto done; 6294 case 0x2: /* FNEG */ 6295 gen_helper_vfp_negd(tcg_res, tcg_op); 6296 goto done; 6297 case 0x3: /* FSQRT */ 6298 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6299 goto done; 6300 case 0x8: /* FRINTN */ 6301 case 0x9: /* FRINTP */ 6302 case 0xa: /* FRINTM */ 6303 case 0xb: /* FRINTZ */ 6304 case 0xc: /* FRINTA */ 6305 rmode = opcode & 7; 6306 gen_fpst = gen_helper_rintd; 6307 break; 6308 case 0xe: /* FRINTX */ 6309 gen_fpst = gen_helper_rintd_exact; 6310 break; 6311 case 0xf: /* FRINTI */ 6312 gen_fpst = gen_helper_rintd; 6313 break; 6314 case 0x10: /* FRINT32Z */ 6315 rmode = FPROUNDING_ZERO; 6316 gen_fpst = gen_helper_frint32_d; 6317 break; 6318 case 0x11: /* FRINT32X */ 6319 gen_fpst = gen_helper_frint32_d; 6320 break; 6321 case 0x12: /* FRINT64Z */ 6322 rmode = FPROUNDING_ZERO; 6323 gen_fpst = gen_helper_frint64_d; 6324 break; 6325 case 0x13: /* FRINT64X */ 6326 gen_fpst = gen_helper_frint64_d; 6327 break; 6328 default: 6329 g_assert_not_reached(); 6330 } 6331 6332 fpst = fpstatus_ptr(FPST_FPCR); 6333 if (rmode >= 0) { 6334 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6335 gen_fpst(tcg_res, tcg_op, fpst); 6336 gen_restore_rmode(tcg_rmode, fpst); 6337 } else { 6338 gen_fpst(tcg_res, tcg_op, fpst); 6339 } 6340 6341 done: 6342 write_fp_dreg(s, rd, tcg_res); 6343 } 6344 6345 static void handle_fp_fcvt(DisasContext *s, int opcode, 6346 int rd, int rn, int dtype, int ntype) 6347 { 6348 switch (ntype) { 6349 case 0x0: 6350 { 6351 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6352 if (dtype == 1) { 6353 /* Single to double */ 6354 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6355 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6356 write_fp_dreg(s, rd, tcg_rd); 6357 } else { 6358 /* Single to half */ 6359 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6360 TCGv_i32 ahp = get_ahp_flag(); 6361 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6362 6363 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6364 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6365 write_fp_sreg(s, rd, tcg_rd); 6366 } 6367 break; 6368 } 6369 case 0x1: 6370 { 6371 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6372 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6373 if (dtype == 0) { 6374 /* Double to single */ 6375 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6376 } else { 6377 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6378 TCGv_i32 ahp = get_ahp_flag(); 6379 /* Double to half */ 6380 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6381 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6382 } 6383 write_fp_sreg(s, rd, tcg_rd); 6384 break; 6385 } 6386 case 0x3: 6387 { 6388 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6389 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6390 TCGv_i32 tcg_ahp = get_ahp_flag(); 6391 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6392 if (dtype == 0) { 6393 /* Half to single */ 6394 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6395 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6396 write_fp_sreg(s, rd, tcg_rd); 6397 } else { 6398 /* Half to double */ 6399 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6400 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6401 write_fp_dreg(s, rd, tcg_rd); 6402 } 6403 break; 6404 } 6405 default: 6406 g_assert_not_reached(); 6407 } 6408 } 6409 6410 /* Floating point data-processing (1 source) 6411 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6412 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6413 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6414 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6415 */ 6416 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6417 { 6418 int mos = extract32(insn, 29, 3); 6419 int type = extract32(insn, 22, 2); 6420 int opcode = extract32(insn, 15, 6); 6421 int rn = extract32(insn, 5, 5); 6422 int rd = extract32(insn, 0, 5); 6423 6424 if (mos) { 6425 goto do_unallocated; 6426 } 6427 6428 switch (opcode) { 6429 case 0x4: case 0x5: case 0x7: 6430 { 6431 /* FCVT between half, single and double precision */ 6432 int dtype = extract32(opcode, 0, 2); 6433 if (type == 2 || dtype == type) { 6434 goto do_unallocated; 6435 } 6436 if (!fp_access_check(s)) { 6437 return; 6438 } 6439 6440 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6441 break; 6442 } 6443 6444 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6445 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6446 goto do_unallocated; 6447 } 6448 /* fall through */ 6449 case 0x0 ... 0x3: 6450 case 0x8 ... 0xc: 6451 case 0xe ... 0xf: 6452 /* 32-to-32 and 64-to-64 ops */ 6453 switch (type) { 6454 case 0: 6455 if (!fp_access_check(s)) { 6456 return; 6457 } 6458 handle_fp_1src_single(s, opcode, rd, rn); 6459 break; 6460 case 1: 6461 if (!fp_access_check(s)) { 6462 return; 6463 } 6464 handle_fp_1src_double(s, opcode, rd, rn); 6465 break; 6466 case 3: 6467 if (!dc_isar_feature(aa64_fp16, s)) { 6468 goto do_unallocated; 6469 } 6470 6471 if (!fp_access_check(s)) { 6472 return; 6473 } 6474 handle_fp_1src_half(s, opcode, rd, rn); 6475 break; 6476 default: 6477 goto do_unallocated; 6478 } 6479 break; 6480 6481 case 0x6: 6482 switch (type) { 6483 case 1: /* BFCVT */ 6484 if (!dc_isar_feature(aa64_bf16, s)) { 6485 goto do_unallocated; 6486 } 6487 if (!fp_access_check(s)) { 6488 return; 6489 } 6490 handle_fp_1src_single(s, opcode, rd, rn); 6491 break; 6492 default: 6493 goto do_unallocated; 6494 } 6495 break; 6496 6497 default: 6498 do_unallocated: 6499 unallocated_encoding(s); 6500 break; 6501 } 6502 } 6503 6504 /* Floating-point data-processing (2 source) - single precision */ 6505 static void handle_fp_2src_single(DisasContext *s, int opcode, 6506 int rd, int rn, int rm) 6507 { 6508 TCGv_i32 tcg_op1; 6509 TCGv_i32 tcg_op2; 6510 TCGv_i32 tcg_res; 6511 TCGv_ptr fpst; 6512 6513 tcg_res = tcg_temp_new_i32(); 6514 fpst = fpstatus_ptr(FPST_FPCR); 6515 tcg_op1 = read_fp_sreg(s, rn); 6516 tcg_op2 = read_fp_sreg(s, rm); 6517 6518 switch (opcode) { 6519 case 0x0: /* FMUL */ 6520 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6521 break; 6522 case 0x1: /* FDIV */ 6523 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6524 break; 6525 case 0x2: /* FADD */ 6526 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6527 break; 6528 case 0x3: /* FSUB */ 6529 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6530 break; 6531 case 0x4: /* FMAX */ 6532 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6533 break; 6534 case 0x5: /* FMIN */ 6535 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6536 break; 6537 case 0x6: /* FMAXNM */ 6538 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x7: /* FMINNM */ 6541 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x8: /* FNMUL */ 6544 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6545 gen_helper_vfp_negs(tcg_res, tcg_res); 6546 break; 6547 } 6548 6549 write_fp_sreg(s, rd, tcg_res); 6550 } 6551 6552 /* Floating-point data-processing (2 source) - double precision */ 6553 static void handle_fp_2src_double(DisasContext *s, int opcode, 6554 int rd, int rn, int rm) 6555 { 6556 TCGv_i64 tcg_op1; 6557 TCGv_i64 tcg_op2; 6558 TCGv_i64 tcg_res; 6559 TCGv_ptr fpst; 6560 6561 tcg_res = tcg_temp_new_i64(); 6562 fpst = fpstatus_ptr(FPST_FPCR); 6563 tcg_op1 = read_fp_dreg(s, rn); 6564 tcg_op2 = read_fp_dreg(s, rm); 6565 6566 switch (opcode) { 6567 case 0x0: /* FMUL */ 6568 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6569 break; 6570 case 0x1: /* FDIV */ 6571 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6572 break; 6573 case 0x2: /* FADD */ 6574 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6575 break; 6576 case 0x3: /* FSUB */ 6577 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6578 break; 6579 case 0x4: /* FMAX */ 6580 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6581 break; 6582 case 0x5: /* FMIN */ 6583 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6584 break; 6585 case 0x6: /* FMAXNM */ 6586 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6587 break; 6588 case 0x7: /* FMINNM */ 6589 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6590 break; 6591 case 0x8: /* FNMUL */ 6592 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6593 gen_helper_vfp_negd(tcg_res, tcg_res); 6594 break; 6595 } 6596 6597 write_fp_dreg(s, rd, tcg_res); 6598 } 6599 6600 /* Floating-point data-processing (2 source) - half precision */ 6601 static void handle_fp_2src_half(DisasContext *s, int opcode, 6602 int rd, int rn, int rm) 6603 { 6604 TCGv_i32 tcg_op1; 6605 TCGv_i32 tcg_op2; 6606 TCGv_i32 tcg_res; 6607 TCGv_ptr fpst; 6608 6609 tcg_res = tcg_temp_new_i32(); 6610 fpst = fpstatus_ptr(FPST_FPCR_F16); 6611 tcg_op1 = read_fp_hreg(s, rn); 6612 tcg_op2 = read_fp_hreg(s, rm); 6613 6614 switch (opcode) { 6615 case 0x0: /* FMUL */ 6616 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6617 break; 6618 case 0x1: /* FDIV */ 6619 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6620 break; 6621 case 0x2: /* FADD */ 6622 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6623 break; 6624 case 0x3: /* FSUB */ 6625 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6626 break; 6627 case 0x4: /* FMAX */ 6628 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6629 break; 6630 case 0x5: /* FMIN */ 6631 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6632 break; 6633 case 0x6: /* FMAXNM */ 6634 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6635 break; 6636 case 0x7: /* FMINNM */ 6637 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6638 break; 6639 case 0x8: /* FNMUL */ 6640 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6641 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6642 break; 6643 default: 6644 g_assert_not_reached(); 6645 } 6646 6647 write_fp_sreg(s, rd, tcg_res); 6648 } 6649 6650 /* Floating point data-processing (2 source) 6651 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6652 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6653 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6654 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6655 */ 6656 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6657 { 6658 int mos = extract32(insn, 29, 3); 6659 int type = extract32(insn, 22, 2); 6660 int rd = extract32(insn, 0, 5); 6661 int rn = extract32(insn, 5, 5); 6662 int rm = extract32(insn, 16, 5); 6663 int opcode = extract32(insn, 12, 4); 6664 6665 if (opcode > 8 || mos) { 6666 unallocated_encoding(s); 6667 return; 6668 } 6669 6670 switch (type) { 6671 case 0: 6672 if (!fp_access_check(s)) { 6673 return; 6674 } 6675 handle_fp_2src_single(s, opcode, rd, rn, rm); 6676 break; 6677 case 1: 6678 if (!fp_access_check(s)) { 6679 return; 6680 } 6681 handle_fp_2src_double(s, opcode, rd, rn, rm); 6682 break; 6683 case 3: 6684 if (!dc_isar_feature(aa64_fp16, s)) { 6685 unallocated_encoding(s); 6686 return; 6687 } 6688 if (!fp_access_check(s)) { 6689 return; 6690 } 6691 handle_fp_2src_half(s, opcode, rd, rn, rm); 6692 break; 6693 default: 6694 unallocated_encoding(s); 6695 } 6696 } 6697 6698 /* Floating-point data-processing (3 source) - single precision */ 6699 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6700 int rd, int rn, int rm, int ra) 6701 { 6702 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6703 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6704 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6705 6706 tcg_op1 = read_fp_sreg(s, rn); 6707 tcg_op2 = read_fp_sreg(s, rm); 6708 tcg_op3 = read_fp_sreg(s, ra); 6709 6710 /* These are fused multiply-add, and must be done as one 6711 * floating point operation with no rounding between the 6712 * multiplication and addition steps. 6713 * NB that doing the negations here as separate steps is 6714 * correct : an input NaN should come out with its sign bit 6715 * flipped if it is a negated-input. 6716 */ 6717 if (o1 == true) { 6718 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6719 } 6720 6721 if (o0 != o1) { 6722 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6723 } 6724 6725 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6726 6727 write_fp_sreg(s, rd, tcg_res); 6728 } 6729 6730 /* Floating-point data-processing (3 source) - double precision */ 6731 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6732 int rd, int rn, int rm, int ra) 6733 { 6734 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6735 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6736 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6737 6738 tcg_op1 = read_fp_dreg(s, rn); 6739 tcg_op2 = read_fp_dreg(s, rm); 6740 tcg_op3 = read_fp_dreg(s, ra); 6741 6742 /* These are fused multiply-add, and must be done as one 6743 * floating point operation with no rounding between the 6744 * multiplication and addition steps. 6745 * NB that doing the negations here as separate steps is 6746 * correct : an input NaN should come out with its sign bit 6747 * flipped if it is a negated-input. 6748 */ 6749 if (o1 == true) { 6750 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6751 } 6752 6753 if (o0 != o1) { 6754 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6755 } 6756 6757 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6758 6759 write_fp_dreg(s, rd, tcg_res); 6760 } 6761 6762 /* Floating-point data-processing (3 source) - half precision */ 6763 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6764 int rd, int rn, int rm, int ra) 6765 { 6766 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6767 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6768 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6769 6770 tcg_op1 = read_fp_hreg(s, rn); 6771 tcg_op2 = read_fp_hreg(s, rm); 6772 tcg_op3 = read_fp_hreg(s, ra); 6773 6774 /* These are fused multiply-add, and must be done as one 6775 * floating point operation with no rounding between the 6776 * multiplication and addition steps. 6777 * NB that doing the negations here as separate steps is 6778 * correct : an input NaN should come out with its sign bit 6779 * flipped if it is a negated-input. 6780 */ 6781 if (o1 == true) { 6782 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6783 } 6784 6785 if (o0 != o1) { 6786 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6787 } 6788 6789 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6790 6791 write_fp_sreg(s, rd, tcg_res); 6792 } 6793 6794 /* Floating point data-processing (3 source) 6795 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6796 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6797 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6798 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6799 */ 6800 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6801 { 6802 int mos = extract32(insn, 29, 3); 6803 int type = extract32(insn, 22, 2); 6804 int rd = extract32(insn, 0, 5); 6805 int rn = extract32(insn, 5, 5); 6806 int ra = extract32(insn, 10, 5); 6807 int rm = extract32(insn, 16, 5); 6808 bool o0 = extract32(insn, 15, 1); 6809 bool o1 = extract32(insn, 21, 1); 6810 6811 if (mos) { 6812 unallocated_encoding(s); 6813 return; 6814 } 6815 6816 switch (type) { 6817 case 0: 6818 if (!fp_access_check(s)) { 6819 return; 6820 } 6821 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6822 break; 6823 case 1: 6824 if (!fp_access_check(s)) { 6825 return; 6826 } 6827 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6828 break; 6829 case 3: 6830 if (!dc_isar_feature(aa64_fp16, s)) { 6831 unallocated_encoding(s); 6832 return; 6833 } 6834 if (!fp_access_check(s)) { 6835 return; 6836 } 6837 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6838 break; 6839 default: 6840 unallocated_encoding(s); 6841 } 6842 } 6843 6844 /* Floating point immediate 6845 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6846 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6847 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6848 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6849 */ 6850 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6851 { 6852 int rd = extract32(insn, 0, 5); 6853 int imm5 = extract32(insn, 5, 5); 6854 int imm8 = extract32(insn, 13, 8); 6855 int type = extract32(insn, 22, 2); 6856 int mos = extract32(insn, 29, 3); 6857 uint64_t imm; 6858 MemOp sz; 6859 6860 if (mos || imm5) { 6861 unallocated_encoding(s); 6862 return; 6863 } 6864 6865 switch (type) { 6866 case 0: 6867 sz = MO_32; 6868 break; 6869 case 1: 6870 sz = MO_64; 6871 break; 6872 case 3: 6873 sz = MO_16; 6874 if (dc_isar_feature(aa64_fp16, s)) { 6875 break; 6876 } 6877 /* fallthru */ 6878 default: 6879 unallocated_encoding(s); 6880 return; 6881 } 6882 6883 if (!fp_access_check(s)) { 6884 return; 6885 } 6886 6887 imm = vfp_expand_imm(sz, imm8); 6888 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6889 } 6890 6891 /* Handle floating point <=> fixed point conversions. Note that we can 6892 * also deal with fp <=> integer conversions as a special case (scale == 64) 6893 * OPTME: consider handling that special case specially or at least skipping 6894 * the call to scalbn in the helpers for zero shifts. 6895 */ 6896 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6897 bool itof, int rmode, int scale, int sf, int type) 6898 { 6899 bool is_signed = !(opcode & 1); 6900 TCGv_ptr tcg_fpstatus; 6901 TCGv_i32 tcg_shift, tcg_single; 6902 TCGv_i64 tcg_double; 6903 6904 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6905 6906 tcg_shift = tcg_constant_i32(64 - scale); 6907 6908 if (itof) { 6909 TCGv_i64 tcg_int = cpu_reg(s, rn); 6910 if (!sf) { 6911 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6912 6913 if (is_signed) { 6914 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6915 } else { 6916 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6917 } 6918 6919 tcg_int = tcg_extend; 6920 } 6921 6922 switch (type) { 6923 case 1: /* float64 */ 6924 tcg_double = tcg_temp_new_i64(); 6925 if (is_signed) { 6926 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6927 tcg_shift, tcg_fpstatus); 6928 } else { 6929 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6930 tcg_shift, tcg_fpstatus); 6931 } 6932 write_fp_dreg(s, rd, tcg_double); 6933 break; 6934 6935 case 0: /* float32 */ 6936 tcg_single = tcg_temp_new_i32(); 6937 if (is_signed) { 6938 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6939 tcg_shift, tcg_fpstatus); 6940 } else { 6941 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6942 tcg_shift, tcg_fpstatus); 6943 } 6944 write_fp_sreg(s, rd, tcg_single); 6945 break; 6946 6947 case 3: /* float16 */ 6948 tcg_single = tcg_temp_new_i32(); 6949 if (is_signed) { 6950 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6951 tcg_shift, tcg_fpstatus); 6952 } else { 6953 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6954 tcg_shift, tcg_fpstatus); 6955 } 6956 write_fp_sreg(s, rd, tcg_single); 6957 break; 6958 6959 default: 6960 g_assert_not_reached(); 6961 } 6962 } else { 6963 TCGv_i64 tcg_int = cpu_reg(s, rd); 6964 TCGv_i32 tcg_rmode; 6965 6966 if (extract32(opcode, 2, 1)) { 6967 /* There are too many rounding modes to all fit into rmode, 6968 * so FCVTA[US] is a special case. 6969 */ 6970 rmode = FPROUNDING_TIEAWAY; 6971 } 6972 6973 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6974 6975 switch (type) { 6976 case 1: /* float64 */ 6977 tcg_double = read_fp_dreg(s, rn); 6978 if (is_signed) { 6979 if (!sf) { 6980 gen_helper_vfp_tosld(tcg_int, tcg_double, 6981 tcg_shift, tcg_fpstatus); 6982 } else { 6983 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6984 tcg_shift, tcg_fpstatus); 6985 } 6986 } else { 6987 if (!sf) { 6988 gen_helper_vfp_tould(tcg_int, tcg_double, 6989 tcg_shift, tcg_fpstatus); 6990 } else { 6991 gen_helper_vfp_touqd(tcg_int, tcg_double, 6992 tcg_shift, tcg_fpstatus); 6993 } 6994 } 6995 if (!sf) { 6996 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6997 } 6998 break; 6999 7000 case 0: /* float32 */ 7001 tcg_single = read_fp_sreg(s, rn); 7002 if (sf) { 7003 if (is_signed) { 7004 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7005 tcg_shift, tcg_fpstatus); 7006 } else { 7007 gen_helper_vfp_touqs(tcg_int, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } 7010 } else { 7011 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7012 if (is_signed) { 7013 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7014 tcg_shift, tcg_fpstatus); 7015 } else { 7016 gen_helper_vfp_touls(tcg_dest, tcg_single, 7017 tcg_shift, tcg_fpstatus); 7018 } 7019 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7020 } 7021 break; 7022 7023 case 3: /* float16 */ 7024 tcg_single = read_fp_sreg(s, rn); 7025 if (sf) { 7026 if (is_signed) { 7027 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7028 tcg_shift, tcg_fpstatus); 7029 } else { 7030 gen_helper_vfp_touqh(tcg_int, tcg_single, 7031 tcg_shift, tcg_fpstatus); 7032 } 7033 } else { 7034 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7035 if (is_signed) { 7036 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7037 tcg_shift, tcg_fpstatus); 7038 } else { 7039 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7040 tcg_shift, tcg_fpstatus); 7041 } 7042 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7043 } 7044 break; 7045 7046 default: 7047 g_assert_not_reached(); 7048 } 7049 7050 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7051 } 7052 } 7053 7054 /* Floating point <-> fixed point conversions 7055 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7056 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7057 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7058 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7059 */ 7060 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7061 { 7062 int rd = extract32(insn, 0, 5); 7063 int rn = extract32(insn, 5, 5); 7064 int scale = extract32(insn, 10, 6); 7065 int opcode = extract32(insn, 16, 3); 7066 int rmode = extract32(insn, 19, 2); 7067 int type = extract32(insn, 22, 2); 7068 bool sbit = extract32(insn, 29, 1); 7069 bool sf = extract32(insn, 31, 1); 7070 bool itof; 7071 7072 if (sbit || (!sf && scale < 32)) { 7073 unallocated_encoding(s); 7074 return; 7075 } 7076 7077 switch (type) { 7078 case 0: /* float32 */ 7079 case 1: /* float64 */ 7080 break; 7081 case 3: /* float16 */ 7082 if (dc_isar_feature(aa64_fp16, s)) { 7083 break; 7084 } 7085 /* fallthru */ 7086 default: 7087 unallocated_encoding(s); 7088 return; 7089 } 7090 7091 switch ((rmode << 3) | opcode) { 7092 case 0x2: /* SCVTF */ 7093 case 0x3: /* UCVTF */ 7094 itof = true; 7095 break; 7096 case 0x18: /* FCVTZS */ 7097 case 0x19: /* FCVTZU */ 7098 itof = false; 7099 break; 7100 default: 7101 unallocated_encoding(s); 7102 return; 7103 } 7104 7105 if (!fp_access_check(s)) { 7106 return; 7107 } 7108 7109 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7110 } 7111 7112 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7113 { 7114 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7115 * without conversion. 7116 */ 7117 7118 if (itof) { 7119 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7120 TCGv_i64 tmp; 7121 7122 switch (type) { 7123 case 0: 7124 /* 32 bit */ 7125 tmp = tcg_temp_new_i64(); 7126 tcg_gen_ext32u_i64(tmp, tcg_rn); 7127 write_fp_dreg(s, rd, tmp); 7128 break; 7129 case 1: 7130 /* 64 bit */ 7131 write_fp_dreg(s, rd, tcg_rn); 7132 break; 7133 case 2: 7134 /* 64 bit to top half. */ 7135 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7136 clear_vec_high(s, true, rd); 7137 break; 7138 case 3: 7139 /* 16 bit */ 7140 tmp = tcg_temp_new_i64(); 7141 tcg_gen_ext16u_i64(tmp, tcg_rn); 7142 write_fp_dreg(s, rd, tmp); 7143 break; 7144 default: 7145 g_assert_not_reached(); 7146 } 7147 } else { 7148 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7149 7150 switch (type) { 7151 case 0: 7152 /* 32 bit */ 7153 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7154 break; 7155 case 1: 7156 /* 64 bit */ 7157 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7158 break; 7159 case 2: 7160 /* 64 bits from top half */ 7161 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7162 break; 7163 case 3: 7164 /* 16 bit */ 7165 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7166 break; 7167 default: 7168 g_assert_not_reached(); 7169 } 7170 } 7171 } 7172 7173 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7174 { 7175 TCGv_i64 t = read_fp_dreg(s, rn); 7176 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7177 7178 gen_helper_fjcvtzs(t, t, fpstatus); 7179 7180 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7181 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7182 tcg_gen_movi_i32(cpu_CF, 0); 7183 tcg_gen_movi_i32(cpu_NF, 0); 7184 tcg_gen_movi_i32(cpu_VF, 0); 7185 } 7186 7187 /* Floating point <-> integer conversions 7188 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7189 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7190 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7191 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7192 */ 7193 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7194 { 7195 int rd = extract32(insn, 0, 5); 7196 int rn = extract32(insn, 5, 5); 7197 int opcode = extract32(insn, 16, 3); 7198 int rmode = extract32(insn, 19, 2); 7199 int type = extract32(insn, 22, 2); 7200 bool sbit = extract32(insn, 29, 1); 7201 bool sf = extract32(insn, 31, 1); 7202 bool itof = false; 7203 7204 if (sbit) { 7205 goto do_unallocated; 7206 } 7207 7208 switch (opcode) { 7209 case 2: /* SCVTF */ 7210 case 3: /* UCVTF */ 7211 itof = true; 7212 /* fallthru */ 7213 case 4: /* FCVTAS */ 7214 case 5: /* FCVTAU */ 7215 if (rmode != 0) { 7216 goto do_unallocated; 7217 } 7218 /* fallthru */ 7219 case 0: /* FCVT[NPMZ]S */ 7220 case 1: /* FCVT[NPMZ]U */ 7221 switch (type) { 7222 case 0: /* float32 */ 7223 case 1: /* float64 */ 7224 break; 7225 case 3: /* float16 */ 7226 if (!dc_isar_feature(aa64_fp16, s)) { 7227 goto do_unallocated; 7228 } 7229 break; 7230 default: 7231 goto do_unallocated; 7232 } 7233 if (!fp_access_check(s)) { 7234 return; 7235 } 7236 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7237 break; 7238 7239 default: 7240 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7241 case 0b01100110: /* FMOV half <-> 32-bit int */ 7242 case 0b01100111: 7243 case 0b11100110: /* FMOV half <-> 64-bit int */ 7244 case 0b11100111: 7245 if (!dc_isar_feature(aa64_fp16, s)) { 7246 goto do_unallocated; 7247 } 7248 /* fallthru */ 7249 case 0b00000110: /* FMOV 32-bit */ 7250 case 0b00000111: 7251 case 0b10100110: /* FMOV 64-bit */ 7252 case 0b10100111: 7253 case 0b11001110: /* FMOV top half of 128-bit */ 7254 case 0b11001111: 7255 if (!fp_access_check(s)) { 7256 return; 7257 } 7258 itof = opcode & 1; 7259 handle_fmov(s, rd, rn, type, itof); 7260 break; 7261 7262 case 0b00111110: /* FJCVTZS */ 7263 if (!dc_isar_feature(aa64_jscvt, s)) { 7264 goto do_unallocated; 7265 } else if (fp_access_check(s)) { 7266 handle_fjcvtzs(s, rd, rn); 7267 } 7268 break; 7269 7270 default: 7271 do_unallocated: 7272 unallocated_encoding(s); 7273 return; 7274 } 7275 break; 7276 } 7277 } 7278 7279 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7280 * 31 30 29 28 25 24 0 7281 * +---+---+---+---------+-----------------------------+ 7282 * | | 0 | | 1 1 1 1 | | 7283 * +---+---+---+---------+-----------------------------+ 7284 */ 7285 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7286 { 7287 if (extract32(insn, 24, 1)) { 7288 /* Floating point data-processing (3 source) */ 7289 disas_fp_3src(s, insn); 7290 } else if (extract32(insn, 21, 1) == 0) { 7291 /* Floating point to fixed point conversions */ 7292 disas_fp_fixed_conv(s, insn); 7293 } else { 7294 switch (extract32(insn, 10, 2)) { 7295 case 1: 7296 /* Floating point conditional compare */ 7297 disas_fp_ccomp(s, insn); 7298 break; 7299 case 2: 7300 /* Floating point data-processing (2 source) */ 7301 disas_fp_2src(s, insn); 7302 break; 7303 case 3: 7304 /* Floating point conditional select */ 7305 disas_fp_csel(s, insn); 7306 break; 7307 case 0: 7308 switch (ctz32(extract32(insn, 12, 4))) { 7309 case 0: /* [15:12] == xxx1 */ 7310 /* Floating point immediate */ 7311 disas_fp_imm(s, insn); 7312 break; 7313 case 1: /* [15:12] == xx10 */ 7314 /* Floating point compare */ 7315 disas_fp_compare(s, insn); 7316 break; 7317 case 2: /* [15:12] == x100 */ 7318 /* Floating point data-processing (1 source) */ 7319 disas_fp_1src(s, insn); 7320 break; 7321 case 3: /* [15:12] == 1000 */ 7322 unallocated_encoding(s); 7323 break; 7324 default: /* [15:12] == 0000 */ 7325 /* Floating point <-> integer conversions */ 7326 disas_fp_int_conv(s, insn); 7327 break; 7328 } 7329 break; 7330 } 7331 } 7332 } 7333 7334 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7335 int pos) 7336 { 7337 /* Extract 64 bits from the middle of two concatenated 64 bit 7338 * vector register slices left:right. The extracted bits start 7339 * at 'pos' bits into the right (least significant) side. 7340 * We return the result in tcg_right, and guarantee not to 7341 * trash tcg_left. 7342 */ 7343 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7344 assert(pos > 0 && pos < 64); 7345 7346 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7347 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7348 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7349 } 7350 7351 /* EXT 7352 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7353 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7354 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7355 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7356 */ 7357 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7358 { 7359 int is_q = extract32(insn, 30, 1); 7360 int op2 = extract32(insn, 22, 2); 7361 int imm4 = extract32(insn, 11, 4); 7362 int rm = extract32(insn, 16, 5); 7363 int rn = extract32(insn, 5, 5); 7364 int rd = extract32(insn, 0, 5); 7365 int pos = imm4 << 3; 7366 TCGv_i64 tcg_resl, tcg_resh; 7367 7368 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7369 unallocated_encoding(s); 7370 return; 7371 } 7372 7373 if (!fp_access_check(s)) { 7374 return; 7375 } 7376 7377 tcg_resh = tcg_temp_new_i64(); 7378 tcg_resl = tcg_temp_new_i64(); 7379 7380 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7381 * either extracting 128 bits from a 128:128 concatenation, or 7382 * extracting 64 bits from a 64:64 concatenation. 7383 */ 7384 if (!is_q) { 7385 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7386 if (pos != 0) { 7387 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7388 do_ext64(s, tcg_resh, tcg_resl, pos); 7389 } 7390 } else { 7391 TCGv_i64 tcg_hh; 7392 typedef struct { 7393 int reg; 7394 int elt; 7395 } EltPosns; 7396 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7397 EltPosns *elt = eltposns; 7398 7399 if (pos >= 64) { 7400 elt++; 7401 pos -= 64; 7402 } 7403 7404 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7405 elt++; 7406 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7407 elt++; 7408 if (pos != 0) { 7409 do_ext64(s, tcg_resh, tcg_resl, pos); 7410 tcg_hh = tcg_temp_new_i64(); 7411 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7412 do_ext64(s, tcg_hh, tcg_resh, pos); 7413 } 7414 } 7415 7416 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7417 if (is_q) { 7418 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7419 } 7420 clear_vec_high(s, is_q, rd); 7421 } 7422 7423 /* TBL/TBX 7424 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7425 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7426 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7427 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7428 */ 7429 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7430 { 7431 int op2 = extract32(insn, 22, 2); 7432 int is_q = extract32(insn, 30, 1); 7433 int rm = extract32(insn, 16, 5); 7434 int rn = extract32(insn, 5, 5); 7435 int rd = extract32(insn, 0, 5); 7436 int is_tbx = extract32(insn, 12, 1); 7437 int len = (extract32(insn, 13, 2) + 1) * 16; 7438 7439 if (op2 != 0) { 7440 unallocated_encoding(s); 7441 return; 7442 } 7443 7444 if (!fp_access_check(s)) { 7445 return; 7446 } 7447 7448 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7449 vec_full_reg_offset(s, rm), tcg_env, 7450 is_q ? 16 : 8, vec_full_reg_size(s), 7451 (len << 6) | (is_tbx << 5) | rn, 7452 gen_helper_simd_tblx); 7453 } 7454 7455 /* ZIP/UZP/TRN 7456 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7457 * +---+---+-------------+------+---+------+---+------------------+------+ 7458 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7459 * +---+---+-------------+------+---+------+---+------------------+------+ 7460 */ 7461 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7462 { 7463 int rd = extract32(insn, 0, 5); 7464 int rn = extract32(insn, 5, 5); 7465 int rm = extract32(insn, 16, 5); 7466 int size = extract32(insn, 22, 2); 7467 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7468 * bit 2 indicates 1 vs 2 variant of the insn. 7469 */ 7470 int opcode = extract32(insn, 12, 2); 7471 bool part = extract32(insn, 14, 1); 7472 bool is_q = extract32(insn, 30, 1); 7473 int esize = 8 << size; 7474 int i; 7475 int datasize = is_q ? 128 : 64; 7476 int elements = datasize / esize; 7477 TCGv_i64 tcg_res[2], tcg_ele; 7478 7479 if (opcode == 0 || (size == 3 && !is_q)) { 7480 unallocated_encoding(s); 7481 return; 7482 } 7483 7484 if (!fp_access_check(s)) { 7485 return; 7486 } 7487 7488 tcg_res[0] = tcg_temp_new_i64(); 7489 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7490 tcg_ele = tcg_temp_new_i64(); 7491 7492 for (i = 0; i < elements; i++) { 7493 int o, w; 7494 7495 switch (opcode) { 7496 case 1: /* UZP1/2 */ 7497 { 7498 int midpoint = elements / 2; 7499 if (i < midpoint) { 7500 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7501 } else { 7502 read_vec_element(s, tcg_ele, rm, 7503 2 * (i - midpoint) + part, size); 7504 } 7505 break; 7506 } 7507 case 2: /* TRN1/2 */ 7508 if (i & 1) { 7509 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7510 } else { 7511 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7512 } 7513 break; 7514 case 3: /* ZIP1/2 */ 7515 { 7516 int base = part * elements / 2; 7517 if (i & 1) { 7518 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7519 } else { 7520 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7521 } 7522 break; 7523 } 7524 default: 7525 g_assert_not_reached(); 7526 } 7527 7528 w = (i * esize) / 64; 7529 o = (i * esize) % 64; 7530 if (o == 0) { 7531 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7532 } else { 7533 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7534 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7535 } 7536 } 7537 7538 for (i = 0; i <= is_q; ++i) { 7539 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7540 } 7541 clear_vec_high(s, is_q, rd); 7542 } 7543 7544 /* 7545 * do_reduction_op helper 7546 * 7547 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7548 * important for correct NaN propagation that we do these 7549 * operations in exactly the order specified by the pseudocode. 7550 * 7551 * This is a recursive function, TCG temps should be freed by the 7552 * calling function once it is done with the values. 7553 */ 7554 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7555 int esize, int size, int vmap, TCGv_ptr fpst) 7556 { 7557 if (esize == size) { 7558 int element; 7559 MemOp msize = esize == 16 ? MO_16 : MO_32; 7560 TCGv_i32 tcg_elem; 7561 7562 /* We should have one register left here */ 7563 assert(ctpop8(vmap) == 1); 7564 element = ctz32(vmap); 7565 assert(element < 8); 7566 7567 tcg_elem = tcg_temp_new_i32(); 7568 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7569 return tcg_elem; 7570 } else { 7571 int bits = size / 2; 7572 int shift = ctpop8(vmap) / 2; 7573 int vmap_lo = (vmap >> shift) & vmap; 7574 int vmap_hi = (vmap & ~vmap_lo); 7575 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7576 7577 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7578 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7579 tcg_res = tcg_temp_new_i32(); 7580 7581 switch (fpopcode) { 7582 case 0x0c: /* fmaxnmv half-precision */ 7583 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7584 break; 7585 case 0x0f: /* fmaxv half-precision */ 7586 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7587 break; 7588 case 0x1c: /* fminnmv half-precision */ 7589 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7590 break; 7591 case 0x1f: /* fminv half-precision */ 7592 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7593 break; 7594 case 0x2c: /* fmaxnmv */ 7595 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7596 break; 7597 case 0x2f: /* fmaxv */ 7598 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7599 break; 7600 case 0x3c: /* fminnmv */ 7601 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7602 break; 7603 case 0x3f: /* fminv */ 7604 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7605 break; 7606 default: 7607 g_assert_not_reached(); 7608 } 7609 return tcg_res; 7610 } 7611 } 7612 7613 /* AdvSIMD across lanes 7614 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7615 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7616 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7617 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7618 */ 7619 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7620 { 7621 int rd = extract32(insn, 0, 5); 7622 int rn = extract32(insn, 5, 5); 7623 int size = extract32(insn, 22, 2); 7624 int opcode = extract32(insn, 12, 5); 7625 bool is_q = extract32(insn, 30, 1); 7626 bool is_u = extract32(insn, 29, 1); 7627 bool is_fp = false; 7628 bool is_min = false; 7629 int esize; 7630 int elements; 7631 int i; 7632 TCGv_i64 tcg_res, tcg_elt; 7633 7634 switch (opcode) { 7635 case 0x1b: /* ADDV */ 7636 if (is_u) { 7637 unallocated_encoding(s); 7638 return; 7639 } 7640 /* fall through */ 7641 case 0x3: /* SADDLV, UADDLV */ 7642 case 0xa: /* SMAXV, UMAXV */ 7643 case 0x1a: /* SMINV, UMINV */ 7644 if (size == 3 || (size == 2 && !is_q)) { 7645 unallocated_encoding(s); 7646 return; 7647 } 7648 break; 7649 case 0xc: /* FMAXNMV, FMINNMV */ 7650 case 0xf: /* FMAXV, FMINV */ 7651 /* Bit 1 of size field encodes min vs max and the actual size 7652 * depends on the encoding of the U bit. If not set (and FP16 7653 * enabled) then we do half-precision float instead of single 7654 * precision. 7655 */ 7656 is_min = extract32(size, 1, 1); 7657 is_fp = true; 7658 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7659 size = 1; 7660 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7661 unallocated_encoding(s); 7662 return; 7663 } else { 7664 size = 2; 7665 } 7666 break; 7667 default: 7668 unallocated_encoding(s); 7669 return; 7670 } 7671 7672 if (!fp_access_check(s)) { 7673 return; 7674 } 7675 7676 esize = 8 << size; 7677 elements = (is_q ? 128 : 64) / esize; 7678 7679 tcg_res = tcg_temp_new_i64(); 7680 tcg_elt = tcg_temp_new_i64(); 7681 7682 /* These instructions operate across all lanes of a vector 7683 * to produce a single result. We can guarantee that a 64 7684 * bit intermediate is sufficient: 7685 * + for [US]ADDLV the maximum element size is 32 bits, and 7686 * the result type is 64 bits 7687 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7688 * same as the element size, which is 32 bits at most 7689 * For the integer operations we can choose to work at 64 7690 * or 32 bits and truncate at the end; for simplicity 7691 * we use 64 bits always. The floating point 7692 * ops do require 32 bit intermediates, though. 7693 */ 7694 if (!is_fp) { 7695 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7696 7697 for (i = 1; i < elements; i++) { 7698 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7699 7700 switch (opcode) { 7701 case 0x03: /* SADDLV / UADDLV */ 7702 case 0x1b: /* ADDV */ 7703 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7704 break; 7705 case 0x0a: /* SMAXV / UMAXV */ 7706 if (is_u) { 7707 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7708 } else { 7709 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7710 } 7711 break; 7712 case 0x1a: /* SMINV / UMINV */ 7713 if (is_u) { 7714 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7715 } else { 7716 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7717 } 7718 break; 7719 default: 7720 g_assert_not_reached(); 7721 } 7722 7723 } 7724 } else { 7725 /* Floating point vector reduction ops which work across 32 7726 * bit (single) or 16 bit (half-precision) intermediates. 7727 * Note that correct NaN propagation requires that we do these 7728 * operations in exactly the order specified by the pseudocode. 7729 */ 7730 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7731 int fpopcode = opcode | is_min << 4 | is_u << 5; 7732 int vmap = (1 << elements) - 1; 7733 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7734 (is_q ? 128 : 64), vmap, fpst); 7735 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7736 } 7737 7738 /* Now truncate the result to the width required for the final output */ 7739 if (opcode == 0x03) { 7740 /* SADDLV, UADDLV: result is 2*esize */ 7741 size++; 7742 } 7743 7744 switch (size) { 7745 case 0: 7746 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7747 break; 7748 case 1: 7749 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7750 break; 7751 case 2: 7752 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7753 break; 7754 case 3: 7755 break; 7756 default: 7757 g_assert_not_reached(); 7758 } 7759 7760 write_fp_dreg(s, rd, tcg_res); 7761 } 7762 7763 /* DUP (Element, Vector) 7764 * 7765 * 31 30 29 21 20 16 15 10 9 5 4 0 7766 * +---+---+-------------------+--------+-------------+------+------+ 7767 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7768 * +---+---+-------------------+--------+-------------+------+------+ 7769 * 7770 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7771 */ 7772 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7773 int imm5) 7774 { 7775 int size = ctz32(imm5); 7776 int index; 7777 7778 if (size > 3 || (size == 3 && !is_q)) { 7779 unallocated_encoding(s); 7780 return; 7781 } 7782 7783 if (!fp_access_check(s)) { 7784 return; 7785 } 7786 7787 index = imm5 >> (size + 1); 7788 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7789 vec_reg_offset(s, rn, index, size), 7790 is_q ? 16 : 8, vec_full_reg_size(s)); 7791 } 7792 7793 /* DUP (element, scalar) 7794 * 31 21 20 16 15 10 9 5 4 0 7795 * +-----------------------+--------+-------------+------+------+ 7796 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7797 * +-----------------------+--------+-------------+------+------+ 7798 */ 7799 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7800 int imm5) 7801 { 7802 int size = ctz32(imm5); 7803 int index; 7804 TCGv_i64 tmp; 7805 7806 if (size > 3) { 7807 unallocated_encoding(s); 7808 return; 7809 } 7810 7811 if (!fp_access_check(s)) { 7812 return; 7813 } 7814 7815 index = imm5 >> (size + 1); 7816 7817 /* This instruction just extracts the specified element and 7818 * zero-extends it into the bottom of the destination register. 7819 */ 7820 tmp = tcg_temp_new_i64(); 7821 read_vec_element(s, tmp, rn, index, size); 7822 write_fp_dreg(s, rd, tmp); 7823 } 7824 7825 /* DUP (General) 7826 * 7827 * 31 30 29 21 20 16 15 10 9 5 4 0 7828 * +---+---+-------------------+--------+-------------+------+------+ 7829 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7830 * +---+---+-------------------+--------+-------------+------+------+ 7831 * 7832 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7833 */ 7834 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7835 int imm5) 7836 { 7837 int size = ctz32(imm5); 7838 uint32_t dofs, oprsz, maxsz; 7839 7840 if (size > 3 || ((size == 3) && !is_q)) { 7841 unallocated_encoding(s); 7842 return; 7843 } 7844 7845 if (!fp_access_check(s)) { 7846 return; 7847 } 7848 7849 dofs = vec_full_reg_offset(s, rd); 7850 oprsz = is_q ? 16 : 8; 7851 maxsz = vec_full_reg_size(s); 7852 7853 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7854 } 7855 7856 /* INS (Element) 7857 * 7858 * 31 21 20 16 15 14 11 10 9 5 4 0 7859 * +-----------------------+--------+------------+---+------+------+ 7860 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7861 * +-----------------------+--------+------------+---+------+------+ 7862 * 7863 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7864 * index: encoded in imm5<4:size+1> 7865 */ 7866 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7867 int imm4, int imm5) 7868 { 7869 int size = ctz32(imm5); 7870 int src_index, dst_index; 7871 TCGv_i64 tmp; 7872 7873 if (size > 3) { 7874 unallocated_encoding(s); 7875 return; 7876 } 7877 7878 if (!fp_access_check(s)) { 7879 return; 7880 } 7881 7882 dst_index = extract32(imm5, 1+size, 5); 7883 src_index = extract32(imm4, size, 4); 7884 7885 tmp = tcg_temp_new_i64(); 7886 7887 read_vec_element(s, tmp, rn, src_index, size); 7888 write_vec_element(s, tmp, rd, dst_index, size); 7889 7890 /* INS is considered a 128-bit write for SVE. */ 7891 clear_vec_high(s, true, rd); 7892 } 7893 7894 7895 /* INS (General) 7896 * 7897 * 31 21 20 16 15 10 9 5 4 0 7898 * +-----------------------+--------+-------------+------+------+ 7899 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7900 * +-----------------------+--------+-------------+------+------+ 7901 * 7902 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7903 * index: encoded in imm5<4:size+1> 7904 */ 7905 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7906 { 7907 int size = ctz32(imm5); 7908 int idx; 7909 7910 if (size > 3) { 7911 unallocated_encoding(s); 7912 return; 7913 } 7914 7915 if (!fp_access_check(s)) { 7916 return; 7917 } 7918 7919 idx = extract32(imm5, 1 + size, 4 - size); 7920 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7921 7922 /* INS is considered a 128-bit write for SVE. */ 7923 clear_vec_high(s, true, rd); 7924 } 7925 7926 /* 7927 * UMOV (General) 7928 * SMOV (General) 7929 * 7930 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7931 * +---+---+-------------------+--------+-------------+------+------+ 7932 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7933 * +---+---+-------------------+--------+-------------+------+------+ 7934 * 7935 * U: unsigned when set 7936 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7937 */ 7938 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7939 int rn, int rd, int imm5) 7940 { 7941 int size = ctz32(imm5); 7942 int element; 7943 TCGv_i64 tcg_rd; 7944 7945 /* Check for UnallocatedEncodings */ 7946 if (is_signed) { 7947 if (size > 2 || (size == 2 && !is_q)) { 7948 unallocated_encoding(s); 7949 return; 7950 } 7951 } else { 7952 if (size > 3 7953 || (size < 3 && is_q) 7954 || (size == 3 && !is_q)) { 7955 unallocated_encoding(s); 7956 return; 7957 } 7958 } 7959 7960 if (!fp_access_check(s)) { 7961 return; 7962 } 7963 7964 element = extract32(imm5, 1+size, 4); 7965 7966 tcg_rd = cpu_reg(s, rd); 7967 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7968 if (is_signed && !is_q) { 7969 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7970 } 7971 } 7972 7973 /* AdvSIMD copy 7974 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7975 * +---+---+----+-----------------+------+---+------+---+------+------+ 7976 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7977 * +---+---+----+-----------------+------+---+------+---+------+------+ 7978 */ 7979 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7980 { 7981 int rd = extract32(insn, 0, 5); 7982 int rn = extract32(insn, 5, 5); 7983 int imm4 = extract32(insn, 11, 4); 7984 int op = extract32(insn, 29, 1); 7985 int is_q = extract32(insn, 30, 1); 7986 int imm5 = extract32(insn, 16, 5); 7987 7988 if (op) { 7989 if (is_q) { 7990 /* INS (element) */ 7991 handle_simd_inse(s, rd, rn, imm4, imm5); 7992 } else { 7993 unallocated_encoding(s); 7994 } 7995 } else { 7996 switch (imm4) { 7997 case 0: 7998 /* DUP (element - vector) */ 7999 handle_simd_dupe(s, is_q, rd, rn, imm5); 8000 break; 8001 case 1: 8002 /* DUP (general) */ 8003 handle_simd_dupg(s, is_q, rd, rn, imm5); 8004 break; 8005 case 3: 8006 if (is_q) { 8007 /* INS (general) */ 8008 handle_simd_insg(s, rd, rn, imm5); 8009 } else { 8010 unallocated_encoding(s); 8011 } 8012 break; 8013 case 5: 8014 case 7: 8015 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8016 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8017 break; 8018 default: 8019 unallocated_encoding(s); 8020 break; 8021 } 8022 } 8023 } 8024 8025 /* AdvSIMD modified immediate 8026 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8027 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8028 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8029 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8030 * 8031 * There are a number of operations that can be carried out here: 8032 * MOVI - move (shifted) imm into register 8033 * MVNI - move inverted (shifted) imm into register 8034 * ORR - bitwise OR of (shifted) imm with register 8035 * BIC - bitwise clear of (shifted) imm with register 8036 * With ARMv8.2 we also have: 8037 * FMOV half-precision 8038 */ 8039 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8040 { 8041 int rd = extract32(insn, 0, 5); 8042 int cmode = extract32(insn, 12, 4); 8043 int o2 = extract32(insn, 11, 1); 8044 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8045 bool is_neg = extract32(insn, 29, 1); 8046 bool is_q = extract32(insn, 30, 1); 8047 uint64_t imm = 0; 8048 8049 if (o2) { 8050 if (cmode != 0xf || is_neg) { 8051 unallocated_encoding(s); 8052 return; 8053 } 8054 /* FMOV (vector, immediate) - half-precision */ 8055 if (!dc_isar_feature(aa64_fp16, s)) { 8056 unallocated_encoding(s); 8057 return; 8058 } 8059 imm = vfp_expand_imm(MO_16, abcdefgh); 8060 /* now duplicate across the lanes */ 8061 imm = dup_const(MO_16, imm); 8062 } else { 8063 if (cmode == 0xf && is_neg && !is_q) { 8064 unallocated_encoding(s); 8065 return; 8066 } 8067 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8068 } 8069 8070 if (!fp_access_check(s)) { 8071 return; 8072 } 8073 8074 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8075 /* MOVI or MVNI, with MVNI negation handled above. */ 8076 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8077 vec_full_reg_size(s), imm); 8078 } else { 8079 /* ORR or BIC, with BIC negation to AND handled above. */ 8080 if (is_neg) { 8081 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8082 } else { 8083 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8084 } 8085 } 8086 } 8087 8088 /* AdvSIMD scalar copy 8089 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8090 * +-----+----+-----------------+------+---+------+---+------+------+ 8091 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8092 * +-----+----+-----------------+------+---+------+---+------+------+ 8093 */ 8094 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8095 { 8096 int rd = extract32(insn, 0, 5); 8097 int rn = extract32(insn, 5, 5); 8098 int imm4 = extract32(insn, 11, 4); 8099 int imm5 = extract32(insn, 16, 5); 8100 int op = extract32(insn, 29, 1); 8101 8102 if (op != 0 || imm4 != 0) { 8103 unallocated_encoding(s); 8104 return; 8105 } 8106 8107 /* DUP (element, scalar) */ 8108 handle_simd_dupes(s, rd, rn, imm5); 8109 } 8110 8111 /* AdvSIMD scalar pairwise 8112 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8113 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8114 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8115 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8116 */ 8117 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8118 { 8119 int u = extract32(insn, 29, 1); 8120 int size = extract32(insn, 22, 2); 8121 int opcode = extract32(insn, 12, 5); 8122 int rn = extract32(insn, 5, 5); 8123 int rd = extract32(insn, 0, 5); 8124 TCGv_ptr fpst; 8125 8126 /* For some ops (the FP ones), size[1] is part of the encoding. 8127 * For ADDP strictly it is not but size[1] is always 1 for valid 8128 * encodings. 8129 */ 8130 opcode |= (extract32(size, 1, 1) << 5); 8131 8132 switch (opcode) { 8133 case 0x3b: /* ADDP */ 8134 if (u || size != 3) { 8135 unallocated_encoding(s); 8136 return; 8137 } 8138 if (!fp_access_check(s)) { 8139 return; 8140 } 8141 8142 fpst = NULL; 8143 break; 8144 case 0xc: /* FMAXNMP */ 8145 case 0xd: /* FADDP */ 8146 case 0xf: /* FMAXP */ 8147 case 0x2c: /* FMINNMP */ 8148 case 0x2f: /* FMINP */ 8149 /* FP op, size[0] is 32 or 64 bit*/ 8150 if (!u) { 8151 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8152 unallocated_encoding(s); 8153 return; 8154 } else { 8155 size = MO_16; 8156 } 8157 } else { 8158 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8159 } 8160 8161 if (!fp_access_check(s)) { 8162 return; 8163 } 8164 8165 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8166 break; 8167 default: 8168 unallocated_encoding(s); 8169 return; 8170 } 8171 8172 if (size == MO_64) { 8173 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8174 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8175 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8176 8177 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8178 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8179 8180 switch (opcode) { 8181 case 0x3b: /* ADDP */ 8182 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8183 break; 8184 case 0xc: /* FMAXNMP */ 8185 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8186 break; 8187 case 0xd: /* FADDP */ 8188 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8189 break; 8190 case 0xf: /* FMAXP */ 8191 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8192 break; 8193 case 0x2c: /* FMINNMP */ 8194 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8195 break; 8196 case 0x2f: /* FMINP */ 8197 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8198 break; 8199 default: 8200 g_assert_not_reached(); 8201 } 8202 8203 write_fp_dreg(s, rd, tcg_res); 8204 } else { 8205 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8206 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8207 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8208 8209 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8210 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8211 8212 if (size == MO_16) { 8213 switch (opcode) { 8214 case 0xc: /* FMAXNMP */ 8215 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8216 break; 8217 case 0xd: /* FADDP */ 8218 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8219 break; 8220 case 0xf: /* FMAXP */ 8221 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8222 break; 8223 case 0x2c: /* FMINNMP */ 8224 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8225 break; 8226 case 0x2f: /* FMINP */ 8227 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8228 break; 8229 default: 8230 g_assert_not_reached(); 8231 } 8232 } else { 8233 switch (opcode) { 8234 case 0xc: /* FMAXNMP */ 8235 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8236 break; 8237 case 0xd: /* FADDP */ 8238 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8239 break; 8240 case 0xf: /* FMAXP */ 8241 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8242 break; 8243 case 0x2c: /* FMINNMP */ 8244 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8245 break; 8246 case 0x2f: /* FMINP */ 8247 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8248 break; 8249 default: 8250 g_assert_not_reached(); 8251 } 8252 } 8253 8254 write_fp_sreg(s, rd, tcg_res); 8255 } 8256 } 8257 8258 /* 8259 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8260 * 8261 * This code is handles the common shifting code and is used by both 8262 * the vector and scalar code. 8263 */ 8264 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8265 TCGv_i64 tcg_rnd, bool accumulate, 8266 bool is_u, int size, int shift) 8267 { 8268 bool extended_result = false; 8269 bool round = tcg_rnd != NULL; 8270 int ext_lshift = 0; 8271 TCGv_i64 tcg_src_hi; 8272 8273 if (round && size == 3) { 8274 extended_result = true; 8275 ext_lshift = 64 - shift; 8276 tcg_src_hi = tcg_temp_new_i64(); 8277 } else if (shift == 64) { 8278 if (!accumulate && is_u) { 8279 /* result is zero */ 8280 tcg_gen_movi_i64(tcg_res, 0); 8281 return; 8282 } 8283 } 8284 8285 /* Deal with the rounding step */ 8286 if (round) { 8287 if (extended_result) { 8288 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8289 if (!is_u) { 8290 /* take care of sign extending tcg_res */ 8291 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8292 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8293 tcg_src, tcg_src_hi, 8294 tcg_rnd, tcg_zero); 8295 } else { 8296 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8297 tcg_src, tcg_zero, 8298 tcg_rnd, tcg_zero); 8299 } 8300 } else { 8301 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8302 } 8303 } 8304 8305 /* Now do the shift right */ 8306 if (round && extended_result) { 8307 /* extended case, >64 bit precision required */ 8308 if (ext_lshift == 0) { 8309 /* special case, only high bits matter */ 8310 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8311 } else { 8312 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8313 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8314 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8315 } 8316 } else { 8317 if (is_u) { 8318 if (shift == 64) { 8319 /* essentially shifting in 64 zeros */ 8320 tcg_gen_movi_i64(tcg_src, 0); 8321 } else { 8322 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8323 } 8324 } else { 8325 if (shift == 64) { 8326 /* effectively extending the sign-bit */ 8327 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8328 } else { 8329 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8330 } 8331 } 8332 } 8333 8334 if (accumulate) { 8335 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8336 } else { 8337 tcg_gen_mov_i64(tcg_res, tcg_src); 8338 } 8339 } 8340 8341 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8342 static void handle_scalar_simd_shri(DisasContext *s, 8343 bool is_u, int immh, int immb, 8344 int opcode, int rn, int rd) 8345 { 8346 const int size = 3; 8347 int immhb = immh << 3 | immb; 8348 int shift = 2 * (8 << size) - immhb; 8349 bool accumulate = false; 8350 bool round = false; 8351 bool insert = false; 8352 TCGv_i64 tcg_rn; 8353 TCGv_i64 tcg_rd; 8354 TCGv_i64 tcg_round; 8355 8356 if (!extract32(immh, 3, 1)) { 8357 unallocated_encoding(s); 8358 return; 8359 } 8360 8361 if (!fp_access_check(s)) { 8362 return; 8363 } 8364 8365 switch (opcode) { 8366 case 0x02: /* SSRA / USRA (accumulate) */ 8367 accumulate = true; 8368 break; 8369 case 0x04: /* SRSHR / URSHR (rounding) */ 8370 round = true; 8371 break; 8372 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8373 accumulate = round = true; 8374 break; 8375 case 0x08: /* SRI */ 8376 insert = true; 8377 break; 8378 } 8379 8380 if (round) { 8381 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8382 } else { 8383 tcg_round = NULL; 8384 } 8385 8386 tcg_rn = read_fp_dreg(s, rn); 8387 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8388 8389 if (insert) { 8390 /* shift count same as element size is valid but does nothing; 8391 * special case to avoid potential shift by 64. 8392 */ 8393 int esize = 8 << size; 8394 if (shift != esize) { 8395 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8396 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8397 } 8398 } else { 8399 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8400 accumulate, is_u, size, shift); 8401 } 8402 8403 write_fp_dreg(s, rd, tcg_rd); 8404 } 8405 8406 /* SHL/SLI - Scalar shift left */ 8407 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8408 int immh, int immb, int opcode, 8409 int rn, int rd) 8410 { 8411 int size = 32 - clz32(immh) - 1; 8412 int immhb = immh << 3 | immb; 8413 int shift = immhb - (8 << size); 8414 TCGv_i64 tcg_rn; 8415 TCGv_i64 tcg_rd; 8416 8417 if (!extract32(immh, 3, 1)) { 8418 unallocated_encoding(s); 8419 return; 8420 } 8421 8422 if (!fp_access_check(s)) { 8423 return; 8424 } 8425 8426 tcg_rn = read_fp_dreg(s, rn); 8427 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8428 8429 if (insert) { 8430 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8431 } else { 8432 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8433 } 8434 8435 write_fp_dreg(s, rd, tcg_rd); 8436 } 8437 8438 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8439 * (signed/unsigned) narrowing */ 8440 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8441 bool is_u_shift, bool is_u_narrow, 8442 int immh, int immb, int opcode, 8443 int rn, int rd) 8444 { 8445 int immhb = immh << 3 | immb; 8446 int size = 32 - clz32(immh) - 1; 8447 int esize = 8 << size; 8448 int shift = (2 * esize) - immhb; 8449 int elements = is_scalar ? 1 : (64 / esize); 8450 bool round = extract32(opcode, 0, 1); 8451 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8452 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8453 TCGv_i32 tcg_rd_narrowed; 8454 TCGv_i64 tcg_final; 8455 8456 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8457 { gen_helper_neon_narrow_sat_s8, 8458 gen_helper_neon_unarrow_sat8 }, 8459 { gen_helper_neon_narrow_sat_s16, 8460 gen_helper_neon_unarrow_sat16 }, 8461 { gen_helper_neon_narrow_sat_s32, 8462 gen_helper_neon_unarrow_sat32 }, 8463 { NULL, NULL }, 8464 }; 8465 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8466 gen_helper_neon_narrow_sat_u8, 8467 gen_helper_neon_narrow_sat_u16, 8468 gen_helper_neon_narrow_sat_u32, 8469 NULL 8470 }; 8471 NeonGenNarrowEnvFn *narrowfn; 8472 8473 int i; 8474 8475 assert(size < 4); 8476 8477 if (extract32(immh, 3, 1)) { 8478 unallocated_encoding(s); 8479 return; 8480 } 8481 8482 if (!fp_access_check(s)) { 8483 return; 8484 } 8485 8486 if (is_u_shift) { 8487 narrowfn = unsigned_narrow_fns[size]; 8488 } else { 8489 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8490 } 8491 8492 tcg_rn = tcg_temp_new_i64(); 8493 tcg_rd = tcg_temp_new_i64(); 8494 tcg_rd_narrowed = tcg_temp_new_i32(); 8495 tcg_final = tcg_temp_new_i64(); 8496 8497 if (round) { 8498 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8499 } else { 8500 tcg_round = NULL; 8501 } 8502 8503 for (i = 0; i < elements; i++) { 8504 read_vec_element(s, tcg_rn, rn, i, ldop); 8505 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8506 false, is_u_shift, size+1, shift); 8507 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8508 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8509 if (i == 0) { 8510 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8511 } else { 8512 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8513 } 8514 } 8515 8516 if (!is_q) { 8517 write_vec_element(s, tcg_final, rd, 0, MO_64); 8518 } else { 8519 write_vec_element(s, tcg_final, rd, 1, MO_64); 8520 } 8521 clear_vec_high(s, is_q, rd); 8522 } 8523 8524 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8525 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8526 bool src_unsigned, bool dst_unsigned, 8527 int immh, int immb, int rn, int rd) 8528 { 8529 int immhb = immh << 3 | immb; 8530 int size = 32 - clz32(immh) - 1; 8531 int shift = immhb - (8 << size); 8532 int pass; 8533 8534 assert(immh != 0); 8535 assert(!(scalar && is_q)); 8536 8537 if (!scalar) { 8538 if (!is_q && extract32(immh, 3, 1)) { 8539 unallocated_encoding(s); 8540 return; 8541 } 8542 8543 /* Since we use the variable-shift helpers we must 8544 * replicate the shift count into each element of 8545 * the tcg_shift value. 8546 */ 8547 switch (size) { 8548 case 0: 8549 shift |= shift << 8; 8550 /* fall through */ 8551 case 1: 8552 shift |= shift << 16; 8553 break; 8554 case 2: 8555 case 3: 8556 break; 8557 default: 8558 g_assert_not_reached(); 8559 } 8560 } 8561 8562 if (!fp_access_check(s)) { 8563 return; 8564 } 8565 8566 if (size == 3) { 8567 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8568 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8569 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8570 { NULL, gen_helper_neon_qshl_u64 }, 8571 }; 8572 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8573 int maxpass = is_q ? 2 : 1; 8574 8575 for (pass = 0; pass < maxpass; pass++) { 8576 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8577 8578 read_vec_element(s, tcg_op, rn, pass, MO_64); 8579 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8580 write_vec_element(s, tcg_op, rd, pass, MO_64); 8581 } 8582 clear_vec_high(s, is_q, rd); 8583 } else { 8584 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8585 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8586 { 8587 { gen_helper_neon_qshl_s8, 8588 gen_helper_neon_qshl_s16, 8589 gen_helper_neon_qshl_s32 }, 8590 { gen_helper_neon_qshlu_s8, 8591 gen_helper_neon_qshlu_s16, 8592 gen_helper_neon_qshlu_s32 } 8593 }, { 8594 { NULL, NULL, NULL }, 8595 { gen_helper_neon_qshl_u8, 8596 gen_helper_neon_qshl_u16, 8597 gen_helper_neon_qshl_u32 } 8598 } 8599 }; 8600 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8601 MemOp memop = scalar ? size : MO_32; 8602 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8603 8604 for (pass = 0; pass < maxpass; pass++) { 8605 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8606 8607 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8608 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8609 if (scalar) { 8610 switch (size) { 8611 case 0: 8612 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8613 break; 8614 case 1: 8615 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8616 break; 8617 case 2: 8618 break; 8619 default: 8620 g_assert_not_reached(); 8621 } 8622 write_fp_sreg(s, rd, tcg_op); 8623 } else { 8624 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8625 } 8626 } 8627 8628 if (!scalar) { 8629 clear_vec_high(s, is_q, rd); 8630 } 8631 } 8632 } 8633 8634 /* Common vector code for handling integer to FP conversion */ 8635 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8636 int elements, int is_signed, 8637 int fracbits, int size) 8638 { 8639 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8640 TCGv_i32 tcg_shift = NULL; 8641 8642 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8643 int pass; 8644 8645 if (fracbits || size == MO_64) { 8646 tcg_shift = tcg_constant_i32(fracbits); 8647 } 8648 8649 if (size == MO_64) { 8650 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8651 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8652 8653 for (pass = 0; pass < elements; pass++) { 8654 read_vec_element(s, tcg_int64, rn, pass, mop); 8655 8656 if (is_signed) { 8657 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8658 tcg_shift, tcg_fpst); 8659 } else { 8660 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8661 tcg_shift, tcg_fpst); 8662 } 8663 if (elements == 1) { 8664 write_fp_dreg(s, rd, tcg_double); 8665 } else { 8666 write_vec_element(s, tcg_double, rd, pass, MO_64); 8667 } 8668 } 8669 } else { 8670 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8671 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8672 8673 for (pass = 0; pass < elements; pass++) { 8674 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8675 8676 switch (size) { 8677 case MO_32: 8678 if (fracbits) { 8679 if (is_signed) { 8680 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8681 tcg_shift, tcg_fpst); 8682 } else { 8683 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8684 tcg_shift, tcg_fpst); 8685 } 8686 } else { 8687 if (is_signed) { 8688 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8689 } else { 8690 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8691 } 8692 } 8693 break; 8694 case MO_16: 8695 if (fracbits) { 8696 if (is_signed) { 8697 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8698 tcg_shift, tcg_fpst); 8699 } else { 8700 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8701 tcg_shift, tcg_fpst); 8702 } 8703 } else { 8704 if (is_signed) { 8705 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8706 } else { 8707 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8708 } 8709 } 8710 break; 8711 default: 8712 g_assert_not_reached(); 8713 } 8714 8715 if (elements == 1) { 8716 write_fp_sreg(s, rd, tcg_float); 8717 } else { 8718 write_vec_element_i32(s, tcg_float, rd, pass, size); 8719 } 8720 } 8721 } 8722 8723 clear_vec_high(s, elements << size == 16, rd); 8724 } 8725 8726 /* UCVTF/SCVTF - Integer to FP conversion */ 8727 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8728 bool is_q, bool is_u, 8729 int immh, int immb, int opcode, 8730 int rn, int rd) 8731 { 8732 int size, elements, fracbits; 8733 int immhb = immh << 3 | immb; 8734 8735 if (immh & 8) { 8736 size = MO_64; 8737 if (!is_scalar && !is_q) { 8738 unallocated_encoding(s); 8739 return; 8740 } 8741 } else if (immh & 4) { 8742 size = MO_32; 8743 } else if (immh & 2) { 8744 size = MO_16; 8745 if (!dc_isar_feature(aa64_fp16, s)) { 8746 unallocated_encoding(s); 8747 return; 8748 } 8749 } else { 8750 /* immh == 0 would be a failure of the decode logic */ 8751 g_assert(immh == 1); 8752 unallocated_encoding(s); 8753 return; 8754 } 8755 8756 if (is_scalar) { 8757 elements = 1; 8758 } else { 8759 elements = (8 << is_q) >> size; 8760 } 8761 fracbits = (16 << size) - immhb; 8762 8763 if (!fp_access_check(s)) { 8764 return; 8765 } 8766 8767 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8768 } 8769 8770 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8771 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8772 bool is_q, bool is_u, 8773 int immh, int immb, int rn, int rd) 8774 { 8775 int immhb = immh << 3 | immb; 8776 int pass, size, fracbits; 8777 TCGv_ptr tcg_fpstatus; 8778 TCGv_i32 tcg_rmode, tcg_shift; 8779 8780 if (immh & 0x8) { 8781 size = MO_64; 8782 if (!is_scalar && !is_q) { 8783 unallocated_encoding(s); 8784 return; 8785 } 8786 } else if (immh & 0x4) { 8787 size = MO_32; 8788 } else if (immh & 0x2) { 8789 size = MO_16; 8790 if (!dc_isar_feature(aa64_fp16, s)) { 8791 unallocated_encoding(s); 8792 return; 8793 } 8794 } else { 8795 /* Should have split out AdvSIMD modified immediate earlier. */ 8796 assert(immh == 1); 8797 unallocated_encoding(s); 8798 return; 8799 } 8800 8801 if (!fp_access_check(s)) { 8802 return; 8803 } 8804 8805 assert(!(is_scalar && is_q)); 8806 8807 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8808 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8809 fracbits = (16 << size) - immhb; 8810 tcg_shift = tcg_constant_i32(fracbits); 8811 8812 if (size == MO_64) { 8813 int maxpass = is_scalar ? 1 : 2; 8814 8815 for (pass = 0; pass < maxpass; pass++) { 8816 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8817 8818 read_vec_element(s, tcg_op, rn, pass, MO_64); 8819 if (is_u) { 8820 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8821 } else { 8822 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8823 } 8824 write_vec_element(s, tcg_op, rd, pass, MO_64); 8825 } 8826 clear_vec_high(s, is_q, rd); 8827 } else { 8828 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8829 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8830 8831 switch (size) { 8832 case MO_16: 8833 if (is_u) { 8834 fn = gen_helper_vfp_touhh; 8835 } else { 8836 fn = gen_helper_vfp_toshh; 8837 } 8838 break; 8839 case MO_32: 8840 if (is_u) { 8841 fn = gen_helper_vfp_touls; 8842 } else { 8843 fn = gen_helper_vfp_tosls; 8844 } 8845 break; 8846 default: 8847 g_assert_not_reached(); 8848 } 8849 8850 for (pass = 0; pass < maxpass; pass++) { 8851 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8852 8853 read_vec_element_i32(s, tcg_op, rn, pass, size); 8854 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8855 if (is_scalar) { 8856 if (size == MO_16 && !is_u) { 8857 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8858 } 8859 write_fp_sreg(s, rd, tcg_op); 8860 } else { 8861 write_vec_element_i32(s, tcg_op, rd, pass, size); 8862 } 8863 } 8864 if (!is_scalar) { 8865 clear_vec_high(s, is_q, rd); 8866 } 8867 } 8868 8869 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8870 } 8871 8872 /* AdvSIMD scalar shift by immediate 8873 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8874 * +-----+---+-------------+------+------+--------+---+------+------+ 8875 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8876 * +-----+---+-------------+------+------+--------+---+------+------+ 8877 * 8878 * This is the scalar version so it works on a fixed sized registers 8879 */ 8880 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8881 { 8882 int rd = extract32(insn, 0, 5); 8883 int rn = extract32(insn, 5, 5); 8884 int opcode = extract32(insn, 11, 5); 8885 int immb = extract32(insn, 16, 3); 8886 int immh = extract32(insn, 19, 4); 8887 bool is_u = extract32(insn, 29, 1); 8888 8889 if (immh == 0) { 8890 unallocated_encoding(s); 8891 return; 8892 } 8893 8894 switch (opcode) { 8895 case 0x08: /* SRI */ 8896 if (!is_u) { 8897 unallocated_encoding(s); 8898 return; 8899 } 8900 /* fall through */ 8901 case 0x00: /* SSHR / USHR */ 8902 case 0x02: /* SSRA / USRA */ 8903 case 0x04: /* SRSHR / URSHR */ 8904 case 0x06: /* SRSRA / URSRA */ 8905 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8906 break; 8907 case 0x0a: /* SHL / SLI */ 8908 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8909 break; 8910 case 0x1c: /* SCVTF, UCVTF */ 8911 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8912 opcode, rn, rd); 8913 break; 8914 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8915 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8916 if (!is_u) { 8917 unallocated_encoding(s); 8918 return; 8919 } 8920 handle_vec_simd_sqshrn(s, true, false, false, true, 8921 immh, immb, opcode, rn, rd); 8922 break; 8923 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8924 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8925 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8926 immh, immb, opcode, rn, rd); 8927 break; 8928 case 0xc: /* SQSHLU */ 8929 if (!is_u) { 8930 unallocated_encoding(s); 8931 return; 8932 } 8933 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8934 break; 8935 case 0xe: /* SQSHL, UQSHL */ 8936 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8937 break; 8938 case 0x1f: /* FCVTZS, FCVTZU */ 8939 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8940 break; 8941 default: 8942 unallocated_encoding(s); 8943 break; 8944 } 8945 } 8946 8947 /* AdvSIMD scalar three different 8948 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8949 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8950 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8951 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8952 */ 8953 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8954 { 8955 bool is_u = extract32(insn, 29, 1); 8956 int size = extract32(insn, 22, 2); 8957 int opcode = extract32(insn, 12, 4); 8958 int rm = extract32(insn, 16, 5); 8959 int rn = extract32(insn, 5, 5); 8960 int rd = extract32(insn, 0, 5); 8961 8962 if (is_u) { 8963 unallocated_encoding(s); 8964 return; 8965 } 8966 8967 switch (opcode) { 8968 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8969 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8970 case 0xd: /* SQDMULL, SQDMULL2 */ 8971 if (size == 0 || size == 3) { 8972 unallocated_encoding(s); 8973 return; 8974 } 8975 break; 8976 default: 8977 unallocated_encoding(s); 8978 return; 8979 } 8980 8981 if (!fp_access_check(s)) { 8982 return; 8983 } 8984 8985 if (size == 2) { 8986 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8987 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8988 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8989 8990 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8991 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8992 8993 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8994 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8995 8996 switch (opcode) { 8997 case 0xd: /* SQDMULL, SQDMULL2 */ 8998 break; 8999 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9000 tcg_gen_neg_i64(tcg_res, tcg_res); 9001 /* fall through */ 9002 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9003 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9004 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9005 tcg_res, tcg_op1); 9006 break; 9007 default: 9008 g_assert_not_reached(); 9009 } 9010 9011 write_fp_dreg(s, rd, tcg_res); 9012 } else { 9013 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9014 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9015 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9016 9017 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9018 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9019 9020 switch (opcode) { 9021 case 0xd: /* SQDMULL, SQDMULL2 */ 9022 break; 9023 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9024 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9025 /* fall through */ 9026 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9027 { 9028 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9029 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9030 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9031 tcg_res, tcg_op3); 9032 break; 9033 } 9034 default: 9035 g_assert_not_reached(); 9036 } 9037 9038 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9039 write_fp_dreg(s, rd, tcg_res); 9040 } 9041 } 9042 9043 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9044 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9045 { 9046 /* Handle 64x64->64 opcodes which are shared between the scalar 9047 * and vector 3-same groups. We cover every opcode where size == 3 9048 * is valid in either the three-reg-same (integer, not pairwise) 9049 * or scalar-three-reg-same groups. 9050 */ 9051 TCGCond cond; 9052 9053 switch (opcode) { 9054 case 0x1: /* SQADD */ 9055 if (u) { 9056 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9057 } else { 9058 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9059 } 9060 break; 9061 case 0x5: /* SQSUB */ 9062 if (u) { 9063 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9064 } else { 9065 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9066 } 9067 break; 9068 case 0x6: /* CMGT, CMHI */ 9069 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9070 do_cmop: 9071 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9072 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9073 break; 9074 case 0x7: /* CMGE, CMHS */ 9075 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9076 goto do_cmop; 9077 case 0x11: /* CMTST, CMEQ */ 9078 if (u) { 9079 cond = TCG_COND_EQ; 9080 goto do_cmop; 9081 } 9082 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9083 break; 9084 case 0x8: /* SSHL, USHL */ 9085 if (u) { 9086 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9087 } else { 9088 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9089 } 9090 break; 9091 case 0x9: /* SQSHL, UQSHL */ 9092 if (u) { 9093 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9094 } else { 9095 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9096 } 9097 break; 9098 case 0xa: /* SRSHL, URSHL */ 9099 if (u) { 9100 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9101 } else { 9102 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9103 } 9104 break; 9105 case 0xb: /* SQRSHL, UQRSHL */ 9106 if (u) { 9107 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9108 } else { 9109 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9110 } 9111 break; 9112 case 0x10: /* ADD, SUB */ 9113 if (u) { 9114 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9115 } else { 9116 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9117 } 9118 break; 9119 default: 9120 g_assert_not_reached(); 9121 } 9122 } 9123 9124 /* Handle the 3-same-operands float operations; shared by the scalar 9125 * and vector encodings. The caller must filter out any encodings 9126 * not allocated for the encoding it is dealing with. 9127 */ 9128 static void handle_3same_float(DisasContext *s, int size, int elements, 9129 int fpopcode, int rd, int rn, int rm) 9130 { 9131 int pass; 9132 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9133 9134 for (pass = 0; pass < elements; pass++) { 9135 if (size) { 9136 /* Double */ 9137 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9138 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9139 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9140 9141 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9142 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9143 9144 switch (fpopcode) { 9145 case 0x39: /* FMLS */ 9146 /* As usual for ARM, separate negation for fused multiply-add */ 9147 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9148 /* fall through */ 9149 case 0x19: /* FMLA */ 9150 read_vec_element(s, tcg_res, rd, pass, MO_64); 9151 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9152 tcg_res, fpst); 9153 break; 9154 case 0x18: /* FMAXNM */ 9155 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x1a: /* FADD */ 9158 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x1b: /* FMULX */ 9161 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x1c: /* FCMEQ */ 9164 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x1e: /* FMAX */ 9167 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x1f: /* FRECPS */ 9170 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 case 0x38: /* FMINNM */ 9173 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9174 break; 9175 case 0x3a: /* FSUB */ 9176 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9177 break; 9178 case 0x3e: /* FMIN */ 9179 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9180 break; 9181 case 0x3f: /* FRSQRTS */ 9182 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9183 break; 9184 case 0x5b: /* FMUL */ 9185 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9186 break; 9187 case 0x5c: /* FCMGE */ 9188 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9189 break; 9190 case 0x5d: /* FACGE */ 9191 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9192 break; 9193 case 0x5f: /* FDIV */ 9194 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9195 break; 9196 case 0x7a: /* FABD */ 9197 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9198 gen_helper_vfp_absd(tcg_res, tcg_res); 9199 break; 9200 case 0x7c: /* FCMGT */ 9201 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9202 break; 9203 case 0x7d: /* FACGT */ 9204 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9205 break; 9206 default: 9207 g_assert_not_reached(); 9208 } 9209 9210 write_vec_element(s, tcg_res, rd, pass, MO_64); 9211 } else { 9212 /* Single */ 9213 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9214 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9215 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9216 9217 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9218 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9219 9220 switch (fpopcode) { 9221 case 0x39: /* FMLS */ 9222 /* As usual for ARM, separate negation for fused multiply-add */ 9223 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9224 /* fall through */ 9225 case 0x19: /* FMLA */ 9226 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9227 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9228 tcg_res, fpst); 9229 break; 9230 case 0x1a: /* FADD */ 9231 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x1b: /* FMULX */ 9234 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x1c: /* FCMEQ */ 9237 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x1e: /* FMAX */ 9240 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9241 break; 9242 case 0x1f: /* FRECPS */ 9243 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x18: /* FMAXNM */ 9246 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9247 break; 9248 case 0x38: /* FMINNM */ 9249 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9250 break; 9251 case 0x3a: /* FSUB */ 9252 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9253 break; 9254 case 0x3e: /* FMIN */ 9255 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9256 break; 9257 case 0x3f: /* FRSQRTS */ 9258 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9259 break; 9260 case 0x5b: /* FMUL */ 9261 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9262 break; 9263 case 0x5c: /* FCMGE */ 9264 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9265 break; 9266 case 0x5d: /* FACGE */ 9267 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9268 break; 9269 case 0x5f: /* FDIV */ 9270 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9271 break; 9272 case 0x7a: /* FABD */ 9273 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9274 gen_helper_vfp_abss(tcg_res, tcg_res); 9275 break; 9276 case 0x7c: /* FCMGT */ 9277 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9278 break; 9279 case 0x7d: /* FACGT */ 9280 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9281 break; 9282 default: 9283 g_assert_not_reached(); 9284 } 9285 9286 if (elements == 1) { 9287 /* scalar single so clear high part */ 9288 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9289 9290 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9291 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9292 } else { 9293 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9294 } 9295 } 9296 } 9297 9298 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9299 } 9300 9301 /* AdvSIMD scalar three same 9302 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9303 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9304 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9305 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9306 */ 9307 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9308 { 9309 int rd = extract32(insn, 0, 5); 9310 int rn = extract32(insn, 5, 5); 9311 int opcode = extract32(insn, 11, 5); 9312 int rm = extract32(insn, 16, 5); 9313 int size = extract32(insn, 22, 2); 9314 bool u = extract32(insn, 29, 1); 9315 TCGv_i64 tcg_rd; 9316 9317 if (opcode >= 0x18) { 9318 /* Floating point: U, size[1] and opcode indicate operation */ 9319 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9320 switch (fpopcode) { 9321 case 0x1b: /* FMULX */ 9322 case 0x1f: /* FRECPS */ 9323 case 0x3f: /* FRSQRTS */ 9324 case 0x5d: /* FACGE */ 9325 case 0x7d: /* FACGT */ 9326 case 0x1c: /* FCMEQ */ 9327 case 0x5c: /* FCMGE */ 9328 case 0x7c: /* FCMGT */ 9329 case 0x7a: /* FABD */ 9330 break; 9331 default: 9332 unallocated_encoding(s); 9333 return; 9334 } 9335 9336 if (!fp_access_check(s)) { 9337 return; 9338 } 9339 9340 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9341 return; 9342 } 9343 9344 switch (opcode) { 9345 case 0x1: /* SQADD, UQADD */ 9346 case 0x5: /* SQSUB, UQSUB */ 9347 case 0x9: /* SQSHL, UQSHL */ 9348 case 0xb: /* SQRSHL, UQRSHL */ 9349 break; 9350 case 0x8: /* SSHL, USHL */ 9351 case 0xa: /* SRSHL, URSHL */ 9352 case 0x6: /* CMGT, CMHI */ 9353 case 0x7: /* CMGE, CMHS */ 9354 case 0x11: /* CMTST, CMEQ */ 9355 case 0x10: /* ADD, SUB (vector) */ 9356 if (size != 3) { 9357 unallocated_encoding(s); 9358 return; 9359 } 9360 break; 9361 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9362 if (size != 1 && size != 2) { 9363 unallocated_encoding(s); 9364 return; 9365 } 9366 break; 9367 default: 9368 unallocated_encoding(s); 9369 return; 9370 } 9371 9372 if (!fp_access_check(s)) { 9373 return; 9374 } 9375 9376 tcg_rd = tcg_temp_new_i64(); 9377 9378 if (size == 3) { 9379 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9380 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9381 9382 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9383 } else { 9384 /* Do a single operation on the lowest element in the vector. 9385 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9386 * no side effects for all these operations. 9387 * OPTME: special-purpose helpers would avoid doing some 9388 * unnecessary work in the helper for the 8 and 16 bit cases. 9389 */ 9390 NeonGenTwoOpEnvFn *genenvfn; 9391 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9392 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9393 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9394 9395 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9396 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9397 9398 switch (opcode) { 9399 case 0x1: /* SQADD, UQADD */ 9400 { 9401 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9402 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9403 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9404 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9405 }; 9406 genenvfn = fns[size][u]; 9407 break; 9408 } 9409 case 0x5: /* SQSUB, UQSUB */ 9410 { 9411 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9412 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9413 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9414 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9415 }; 9416 genenvfn = fns[size][u]; 9417 break; 9418 } 9419 case 0x9: /* SQSHL, UQSHL */ 9420 { 9421 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9422 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9423 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9424 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9425 }; 9426 genenvfn = fns[size][u]; 9427 break; 9428 } 9429 case 0xb: /* SQRSHL, UQRSHL */ 9430 { 9431 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9432 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9433 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9434 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9435 }; 9436 genenvfn = fns[size][u]; 9437 break; 9438 } 9439 case 0x16: /* SQDMULH, SQRDMULH */ 9440 { 9441 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9442 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9443 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9444 }; 9445 assert(size == 1 || size == 2); 9446 genenvfn = fns[size - 1][u]; 9447 break; 9448 } 9449 default: 9450 g_assert_not_reached(); 9451 } 9452 9453 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9454 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9455 } 9456 9457 write_fp_dreg(s, rd, tcg_rd); 9458 } 9459 9460 /* AdvSIMD scalar three same FP16 9461 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9462 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9463 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9464 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9465 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9466 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9467 */ 9468 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9469 uint32_t insn) 9470 { 9471 int rd = extract32(insn, 0, 5); 9472 int rn = extract32(insn, 5, 5); 9473 int opcode = extract32(insn, 11, 3); 9474 int rm = extract32(insn, 16, 5); 9475 bool u = extract32(insn, 29, 1); 9476 bool a = extract32(insn, 23, 1); 9477 int fpopcode = opcode | (a << 3) | (u << 4); 9478 TCGv_ptr fpst; 9479 TCGv_i32 tcg_op1; 9480 TCGv_i32 tcg_op2; 9481 TCGv_i32 tcg_res; 9482 9483 switch (fpopcode) { 9484 case 0x03: /* FMULX */ 9485 case 0x04: /* FCMEQ (reg) */ 9486 case 0x07: /* FRECPS */ 9487 case 0x0f: /* FRSQRTS */ 9488 case 0x14: /* FCMGE (reg) */ 9489 case 0x15: /* FACGE */ 9490 case 0x1a: /* FABD */ 9491 case 0x1c: /* FCMGT (reg) */ 9492 case 0x1d: /* FACGT */ 9493 break; 9494 default: 9495 unallocated_encoding(s); 9496 return; 9497 } 9498 9499 if (!dc_isar_feature(aa64_fp16, s)) { 9500 unallocated_encoding(s); 9501 } 9502 9503 if (!fp_access_check(s)) { 9504 return; 9505 } 9506 9507 fpst = fpstatus_ptr(FPST_FPCR_F16); 9508 9509 tcg_op1 = read_fp_hreg(s, rn); 9510 tcg_op2 = read_fp_hreg(s, rm); 9511 tcg_res = tcg_temp_new_i32(); 9512 9513 switch (fpopcode) { 9514 case 0x03: /* FMULX */ 9515 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9516 break; 9517 case 0x04: /* FCMEQ (reg) */ 9518 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9519 break; 9520 case 0x07: /* FRECPS */ 9521 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9522 break; 9523 case 0x0f: /* FRSQRTS */ 9524 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9525 break; 9526 case 0x14: /* FCMGE (reg) */ 9527 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9528 break; 9529 case 0x15: /* FACGE */ 9530 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9531 break; 9532 case 0x1a: /* FABD */ 9533 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9534 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9535 break; 9536 case 0x1c: /* FCMGT (reg) */ 9537 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9538 break; 9539 case 0x1d: /* FACGT */ 9540 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9541 break; 9542 default: 9543 g_assert_not_reached(); 9544 } 9545 9546 write_fp_sreg(s, rd, tcg_res); 9547 } 9548 9549 /* AdvSIMD scalar three same extra 9550 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9551 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9552 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9553 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9554 */ 9555 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9556 uint32_t insn) 9557 { 9558 int rd = extract32(insn, 0, 5); 9559 int rn = extract32(insn, 5, 5); 9560 int opcode = extract32(insn, 11, 4); 9561 int rm = extract32(insn, 16, 5); 9562 int size = extract32(insn, 22, 2); 9563 bool u = extract32(insn, 29, 1); 9564 TCGv_i32 ele1, ele2, ele3; 9565 TCGv_i64 res; 9566 bool feature; 9567 9568 switch (u * 16 + opcode) { 9569 case 0x10: /* SQRDMLAH (vector) */ 9570 case 0x11: /* SQRDMLSH (vector) */ 9571 if (size != 1 && size != 2) { 9572 unallocated_encoding(s); 9573 return; 9574 } 9575 feature = dc_isar_feature(aa64_rdm, s); 9576 break; 9577 default: 9578 unallocated_encoding(s); 9579 return; 9580 } 9581 if (!feature) { 9582 unallocated_encoding(s); 9583 return; 9584 } 9585 if (!fp_access_check(s)) { 9586 return; 9587 } 9588 9589 /* Do a single operation on the lowest element in the vector. 9590 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9591 * with no side effects for all these operations. 9592 * OPTME: special-purpose helpers would avoid doing some 9593 * unnecessary work in the helper for the 16 bit cases. 9594 */ 9595 ele1 = tcg_temp_new_i32(); 9596 ele2 = tcg_temp_new_i32(); 9597 ele3 = tcg_temp_new_i32(); 9598 9599 read_vec_element_i32(s, ele1, rn, 0, size); 9600 read_vec_element_i32(s, ele2, rm, 0, size); 9601 read_vec_element_i32(s, ele3, rd, 0, size); 9602 9603 switch (opcode) { 9604 case 0x0: /* SQRDMLAH */ 9605 if (size == 1) { 9606 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9607 } else { 9608 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9609 } 9610 break; 9611 case 0x1: /* SQRDMLSH */ 9612 if (size == 1) { 9613 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9614 } else { 9615 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9616 } 9617 break; 9618 default: 9619 g_assert_not_reached(); 9620 } 9621 9622 res = tcg_temp_new_i64(); 9623 tcg_gen_extu_i32_i64(res, ele3); 9624 write_fp_dreg(s, rd, res); 9625 } 9626 9627 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9628 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9629 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9630 { 9631 /* Handle 64->64 opcodes which are shared between the scalar and 9632 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9633 * is valid in either group and also the double-precision fp ops. 9634 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9635 * requires them. 9636 */ 9637 TCGCond cond; 9638 9639 switch (opcode) { 9640 case 0x4: /* CLS, CLZ */ 9641 if (u) { 9642 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9643 } else { 9644 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9645 } 9646 break; 9647 case 0x5: /* NOT */ 9648 /* This opcode is shared with CNT and RBIT but we have earlier 9649 * enforced that size == 3 if and only if this is the NOT insn. 9650 */ 9651 tcg_gen_not_i64(tcg_rd, tcg_rn); 9652 break; 9653 case 0x7: /* SQABS, SQNEG */ 9654 if (u) { 9655 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9656 } else { 9657 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9658 } 9659 break; 9660 case 0xa: /* CMLT */ 9661 cond = TCG_COND_LT; 9662 do_cmop: 9663 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9664 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9665 break; 9666 case 0x8: /* CMGT, CMGE */ 9667 cond = u ? TCG_COND_GE : TCG_COND_GT; 9668 goto do_cmop; 9669 case 0x9: /* CMEQ, CMLE */ 9670 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9671 goto do_cmop; 9672 case 0xb: /* ABS, NEG */ 9673 if (u) { 9674 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9675 } else { 9676 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9677 } 9678 break; 9679 case 0x2f: /* FABS */ 9680 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9681 break; 9682 case 0x6f: /* FNEG */ 9683 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9684 break; 9685 case 0x7f: /* FSQRT */ 9686 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9687 break; 9688 case 0x1a: /* FCVTNS */ 9689 case 0x1b: /* FCVTMS */ 9690 case 0x1c: /* FCVTAS */ 9691 case 0x3a: /* FCVTPS */ 9692 case 0x3b: /* FCVTZS */ 9693 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9694 break; 9695 case 0x5a: /* FCVTNU */ 9696 case 0x5b: /* FCVTMU */ 9697 case 0x5c: /* FCVTAU */ 9698 case 0x7a: /* FCVTPU */ 9699 case 0x7b: /* FCVTZU */ 9700 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9701 break; 9702 case 0x18: /* FRINTN */ 9703 case 0x19: /* FRINTM */ 9704 case 0x38: /* FRINTP */ 9705 case 0x39: /* FRINTZ */ 9706 case 0x58: /* FRINTA */ 9707 case 0x79: /* FRINTI */ 9708 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9709 break; 9710 case 0x59: /* FRINTX */ 9711 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9712 break; 9713 case 0x1e: /* FRINT32Z */ 9714 case 0x5e: /* FRINT32X */ 9715 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9716 break; 9717 case 0x1f: /* FRINT64Z */ 9718 case 0x5f: /* FRINT64X */ 9719 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9720 break; 9721 default: 9722 g_assert_not_reached(); 9723 } 9724 } 9725 9726 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9727 bool is_scalar, bool is_u, bool is_q, 9728 int size, int rn, int rd) 9729 { 9730 bool is_double = (size == MO_64); 9731 TCGv_ptr fpst; 9732 9733 if (!fp_access_check(s)) { 9734 return; 9735 } 9736 9737 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9738 9739 if (is_double) { 9740 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9741 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9742 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9743 NeonGenTwoDoubleOpFn *genfn; 9744 bool swap = false; 9745 int pass; 9746 9747 switch (opcode) { 9748 case 0x2e: /* FCMLT (zero) */ 9749 swap = true; 9750 /* fallthrough */ 9751 case 0x2c: /* FCMGT (zero) */ 9752 genfn = gen_helper_neon_cgt_f64; 9753 break; 9754 case 0x2d: /* FCMEQ (zero) */ 9755 genfn = gen_helper_neon_ceq_f64; 9756 break; 9757 case 0x6d: /* FCMLE (zero) */ 9758 swap = true; 9759 /* fall through */ 9760 case 0x6c: /* FCMGE (zero) */ 9761 genfn = gen_helper_neon_cge_f64; 9762 break; 9763 default: 9764 g_assert_not_reached(); 9765 } 9766 9767 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9768 read_vec_element(s, tcg_op, rn, pass, MO_64); 9769 if (swap) { 9770 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9771 } else { 9772 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9773 } 9774 write_vec_element(s, tcg_res, rd, pass, MO_64); 9775 } 9776 9777 clear_vec_high(s, !is_scalar, rd); 9778 } else { 9779 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9780 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9781 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9782 NeonGenTwoSingleOpFn *genfn; 9783 bool swap = false; 9784 int pass, maxpasses; 9785 9786 if (size == MO_16) { 9787 switch (opcode) { 9788 case 0x2e: /* FCMLT (zero) */ 9789 swap = true; 9790 /* fall through */ 9791 case 0x2c: /* FCMGT (zero) */ 9792 genfn = gen_helper_advsimd_cgt_f16; 9793 break; 9794 case 0x2d: /* FCMEQ (zero) */ 9795 genfn = gen_helper_advsimd_ceq_f16; 9796 break; 9797 case 0x6d: /* FCMLE (zero) */ 9798 swap = true; 9799 /* fall through */ 9800 case 0x6c: /* FCMGE (zero) */ 9801 genfn = gen_helper_advsimd_cge_f16; 9802 break; 9803 default: 9804 g_assert_not_reached(); 9805 } 9806 } else { 9807 switch (opcode) { 9808 case 0x2e: /* FCMLT (zero) */ 9809 swap = true; 9810 /* fall through */ 9811 case 0x2c: /* FCMGT (zero) */ 9812 genfn = gen_helper_neon_cgt_f32; 9813 break; 9814 case 0x2d: /* FCMEQ (zero) */ 9815 genfn = gen_helper_neon_ceq_f32; 9816 break; 9817 case 0x6d: /* FCMLE (zero) */ 9818 swap = true; 9819 /* fall through */ 9820 case 0x6c: /* FCMGE (zero) */ 9821 genfn = gen_helper_neon_cge_f32; 9822 break; 9823 default: 9824 g_assert_not_reached(); 9825 } 9826 } 9827 9828 if (is_scalar) { 9829 maxpasses = 1; 9830 } else { 9831 int vector_size = 8 << is_q; 9832 maxpasses = vector_size >> size; 9833 } 9834 9835 for (pass = 0; pass < maxpasses; pass++) { 9836 read_vec_element_i32(s, tcg_op, rn, pass, size); 9837 if (swap) { 9838 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9839 } else { 9840 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9841 } 9842 if (is_scalar) { 9843 write_fp_sreg(s, rd, tcg_res); 9844 } else { 9845 write_vec_element_i32(s, tcg_res, rd, pass, size); 9846 } 9847 } 9848 9849 if (!is_scalar) { 9850 clear_vec_high(s, is_q, rd); 9851 } 9852 } 9853 } 9854 9855 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9856 bool is_scalar, bool is_u, bool is_q, 9857 int size, int rn, int rd) 9858 { 9859 bool is_double = (size == 3); 9860 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9861 9862 if (is_double) { 9863 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9864 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9865 int pass; 9866 9867 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9868 read_vec_element(s, tcg_op, rn, pass, MO_64); 9869 switch (opcode) { 9870 case 0x3d: /* FRECPE */ 9871 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9872 break; 9873 case 0x3f: /* FRECPX */ 9874 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9875 break; 9876 case 0x7d: /* FRSQRTE */ 9877 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9878 break; 9879 default: 9880 g_assert_not_reached(); 9881 } 9882 write_vec_element(s, tcg_res, rd, pass, MO_64); 9883 } 9884 clear_vec_high(s, !is_scalar, rd); 9885 } else { 9886 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9887 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9888 int pass, maxpasses; 9889 9890 if (is_scalar) { 9891 maxpasses = 1; 9892 } else { 9893 maxpasses = is_q ? 4 : 2; 9894 } 9895 9896 for (pass = 0; pass < maxpasses; pass++) { 9897 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9898 9899 switch (opcode) { 9900 case 0x3c: /* URECPE */ 9901 gen_helper_recpe_u32(tcg_res, tcg_op); 9902 break; 9903 case 0x3d: /* FRECPE */ 9904 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9905 break; 9906 case 0x3f: /* FRECPX */ 9907 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9908 break; 9909 case 0x7d: /* FRSQRTE */ 9910 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9911 break; 9912 default: 9913 g_assert_not_reached(); 9914 } 9915 9916 if (is_scalar) { 9917 write_fp_sreg(s, rd, tcg_res); 9918 } else { 9919 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9920 } 9921 } 9922 if (!is_scalar) { 9923 clear_vec_high(s, is_q, rd); 9924 } 9925 } 9926 } 9927 9928 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9929 int opcode, bool u, bool is_q, 9930 int size, int rn, int rd) 9931 { 9932 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9933 * in the source becomes a size element in the destination). 9934 */ 9935 int pass; 9936 TCGv_i32 tcg_res[2]; 9937 int destelt = is_q ? 2 : 0; 9938 int passes = scalar ? 1 : 2; 9939 9940 if (scalar) { 9941 tcg_res[1] = tcg_constant_i32(0); 9942 } 9943 9944 for (pass = 0; pass < passes; pass++) { 9945 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9946 NeonGenNarrowFn *genfn = NULL; 9947 NeonGenNarrowEnvFn *genenvfn = NULL; 9948 9949 if (scalar) { 9950 read_vec_element(s, tcg_op, rn, pass, size + 1); 9951 } else { 9952 read_vec_element(s, tcg_op, rn, pass, MO_64); 9953 } 9954 tcg_res[pass] = tcg_temp_new_i32(); 9955 9956 switch (opcode) { 9957 case 0x12: /* XTN, SQXTUN */ 9958 { 9959 static NeonGenNarrowFn * const xtnfns[3] = { 9960 gen_helper_neon_narrow_u8, 9961 gen_helper_neon_narrow_u16, 9962 tcg_gen_extrl_i64_i32, 9963 }; 9964 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9965 gen_helper_neon_unarrow_sat8, 9966 gen_helper_neon_unarrow_sat16, 9967 gen_helper_neon_unarrow_sat32, 9968 }; 9969 if (u) { 9970 genenvfn = sqxtunfns[size]; 9971 } else { 9972 genfn = xtnfns[size]; 9973 } 9974 break; 9975 } 9976 case 0x14: /* SQXTN, UQXTN */ 9977 { 9978 static NeonGenNarrowEnvFn * const fns[3][2] = { 9979 { gen_helper_neon_narrow_sat_s8, 9980 gen_helper_neon_narrow_sat_u8 }, 9981 { gen_helper_neon_narrow_sat_s16, 9982 gen_helper_neon_narrow_sat_u16 }, 9983 { gen_helper_neon_narrow_sat_s32, 9984 gen_helper_neon_narrow_sat_u32 }, 9985 }; 9986 genenvfn = fns[size][u]; 9987 break; 9988 } 9989 case 0x16: /* FCVTN, FCVTN2 */ 9990 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9991 if (size == 2) { 9992 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9993 } else { 9994 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9995 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9996 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9997 TCGv_i32 ahp = get_ahp_flag(); 9998 9999 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10000 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10001 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10002 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10003 } 10004 break; 10005 case 0x36: /* BFCVTN, BFCVTN2 */ 10006 { 10007 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10008 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10009 } 10010 break; 10011 case 0x56: /* FCVTXN, FCVTXN2 */ 10012 /* 64 bit to 32 bit float conversion 10013 * with von Neumann rounding (round to odd) 10014 */ 10015 assert(size == 2); 10016 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10017 break; 10018 default: 10019 g_assert_not_reached(); 10020 } 10021 10022 if (genfn) { 10023 genfn(tcg_res[pass], tcg_op); 10024 } else if (genenvfn) { 10025 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10026 } 10027 } 10028 10029 for (pass = 0; pass < 2; pass++) { 10030 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10031 } 10032 clear_vec_high(s, is_q, rd); 10033 } 10034 10035 /* Remaining saturating accumulating ops */ 10036 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10037 bool is_q, int size, int rn, int rd) 10038 { 10039 bool is_double = (size == 3); 10040 10041 if (is_double) { 10042 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10043 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10044 int pass; 10045 10046 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10047 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10048 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10049 10050 if (is_u) { /* USQADD */ 10051 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10052 } else { /* SUQADD */ 10053 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10054 } 10055 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10056 } 10057 clear_vec_high(s, !is_scalar, rd); 10058 } else { 10059 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10060 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10061 int pass, maxpasses; 10062 10063 if (is_scalar) { 10064 maxpasses = 1; 10065 } else { 10066 maxpasses = is_q ? 4 : 2; 10067 } 10068 10069 for (pass = 0; pass < maxpasses; pass++) { 10070 if (is_scalar) { 10071 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10072 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10073 } else { 10074 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10075 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10076 } 10077 10078 if (is_u) { /* USQADD */ 10079 switch (size) { 10080 case 0: 10081 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10082 break; 10083 case 1: 10084 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10085 break; 10086 case 2: 10087 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10088 break; 10089 default: 10090 g_assert_not_reached(); 10091 } 10092 } else { /* SUQADD */ 10093 switch (size) { 10094 case 0: 10095 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10096 break; 10097 case 1: 10098 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10099 break; 10100 case 2: 10101 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10102 break; 10103 default: 10104 g_assert_not_reached(); 10105 } 10106 } 10107 10108 if (is_scalar) { 10109 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10110 } 10111 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10112 } 10113 clear_vec_high(s, is_q, rd); 10114 } 10115 } 10116 10117 /* AdvSIMD scalar two reg misc 10118 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10119 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10120 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10121 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10122 */ 10123 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10124 { 10125 int rd = extract32(insn, 0, 5); 10126 int rn = extract32(insn, 5, 5); 10127 int opcode = extract32(insn, 12, 5); 10128 int size = extract32(insn, 22, 2); 10129 bool u = extract32(insn, 29, 1); 10130 bool is_fcvt = false; 10131 int rmode; 10132 TCGv_i32 tcg_rmode; 10133 TCGv_ptr tcg_fpstatus; 10134 10135 switch (opcode) { 10136 case 0x3: /* USQADD / SUQADD*/ 10137 if (!fp_access_check(s)) { 10138 return; 10139 } 10140 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10141 return; 10142 case 0x7: /* SQABS / SQNEG */ 10143 break; 10144 case 0xa: /* CMLT */ 10145 if (u) { 10146 unallocated_encoding(s); 10147 return; 10148 } 10149 /* fall through */ 10150 case 0x8: /* CMGT, CMGE */ 10151 case 0x9: /* CMEQ, CMLE */ 10152 case 0xb: /* ABS, NEG */ 10153 if (size != 3) { 10154 unallocated_encoding(s); 10155 return; 10156 } 10157 break; 10158 case 0x12: /* SQXTUN */ 10159 if (!u) { 10160 unallocated_encoding(s); 10161 return; 10162 } 10163 /* fall through */ 10164 case 0x14: /* SQXTN, UQXTN */ 10165 if (size == 3) { 10166 unallocated_encoding(s); 10167 return; 10168 } 10169 if (!fp_access_check(s)) { 10170 return; 10171 } 10172 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10173 return; 10174 case 0xc ... 0xf: 10175 case 0x16 ... 0x1d: 10176 case 0x1f: 10177 /* Floating point: U, size[1] and opcode indicate operation; 10178 * size[0] indicates single or double precision. 10179 */ 10180 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10181 size = extract32(size, 0, 1) ? 3 : 2; 10182 switch (opcode) { 10183 case 0x2c: /* FCMGT (zero) */ 10184 case 0x2d: /* FCMEQ (zero) */ 10185 case 0x2e: /* FCMLT (zero) */ 10186 case 0x6c: /* FCMGE (zero) */ 10187 case 0x6d: /* FCMLE (zero) */ 10188 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10189 return; 10190 case 0x1d: /* SCVTF */ 10191 case 0x5d: /* UCVTF */ 10192 { 10193 bool is_signed = (opcode == 0x1d); 10194 if (!fp_access_check(s)) { 10195 return; 10196 } 10197 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10198 return; 10199 } 10200 case 0x3d: /* FRECPE */ 10201 case 0x3f: /* FRECPX */ 10202 case 0x7d: /* FRSQRTE */ 10203 if (!fp_access_check(s)) { 10204 return; 10205 } 10206 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10207 return; 10208 case 0x1a: /* FCVTNS */ 10209 case 0x1b: /* FCVTMS */ 10210 case 0x3a: /* FCVTPS */ 10211 case 0x3b: /* FCVTZS */ 10212 case 0x5a: /* FCVTNU */ 10213 case 0x5b: /* FCVTMU */ 10214 case 0x7a: /* FCVTPU */ 10215 case 0x7b: /* FCVTZU */ 10216 is_fcvt = true; 10217 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10218 break; 10219 case 0x1c: /* FCVTAS */ 10220 case 0x5c: /* FCVTAU */ 10221 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10222 is_fcvt = true; 10223 rmode = FPROUNDING_TIEAWAY; 10224 break; 10225 case 0x56: /* FCVTXN, FCVTXN2 */ 10226 if (size == 2) { 10227 unallocated_encoding(s); 10228 return; 10229 } 10230 if (!fp_access_check(s)) { 10231 return; 10232 } 10233 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10234 return; 10235 default: 10236 unallocated_encoding(s); 10237 return; 10238 } 10239 break; 10240 default: 10241 unallocated_encoding(s); 10242 return; 10243 } 10244 10245 if (!fp_access_check(s)) { 10246 return; 10247 } 10248 10249 if (is_fcvt) { 10250 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10251 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10252 } else { 10253 tcg_fpstatus = NULL; 10254 tcg_rmode = NULL; 10255 } 10256 10257 if (size == 3) { 10258 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10259 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10260 10261 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10262 write_fp_dreg(s, rd, tcg_rd); 10263 } else { 10264 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10265 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10266 10267 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10268 10269 switch (opcode) { 10270 case 0x7: /* SQABS, SQNEG */ 10271 { 10272 NeonGenOneOpEnvFn *genfn; 10273 static NeonGenOneOpEnvFn * const fns[3][2] = { 10274 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10275 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10276 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10277 }; 10278 genfn = fns[size][u]; 10279 genfn(tcg_rd, tcg_env, tcg_rn); 10280 break; 10281 } 10282 case 0x1a: /* FCVTNS */ 10283 case 0x1b: /* FCVTMS */ 10284 case 0x1c: /* FCVTAS */ 10285 case 0x3a: /* FCVTPS */ 10286 case 0x3b: /* FCVTZS */ 10287 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10288 tcg_fpstatus); 10289 break; 10290 case 0x5a: /* FCVTNU */ 10291 case 0x5b: /* FCVTMU */ 10292 case 0x5c: /* FCVTAU */ 10293 case 0x7a: /* FCVTPU */ 10294 case 0x7b: /* FCVTZU */ 10295 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10296 tcg_fpstatus); 10297 break; 10298 default: 10299 g_assert_not_reached(); 10300 } 10301 10302 write_fp_sreg(s, rd, tcg_rd); 10303 } 10304 10305 if (is_fcvt) { 10306 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10307 } 10308 } 10309 10310 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10311 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10312 int immh, int immb, int opcode, int rn, int rd) 10313 { 10314 int size = 32 - clz32(immh) - 1; 10315 int immhb = immh << 3 | immb; 10316 int shift = 2 * (8 << size) - immhb; 10317 GVecGen2iFn *gvec_fn; 10318 10319 if (extract32(immh, 3, 1) && !is_q) { 10320 unallocated_encoding(s); 10321 return; 10322 } 10323 tcg_debug_assert(size <= 3); 10324 10325 if (!fp_access_check(s)) { 10326 return; 10327 } 10328 10329 switch (opcode) { 10330 case 0x02: /* SSRA / USRA (accumulate) */ 10331 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10332 break; 10333 10334 case 0x08: /* SRI */ 10335 gvec_fn = gen_gvec_sri; 10336 break; 10337 10338 case 0x00: /* SSHR / USHR */ 10339 if (is_u) { 10340 if (shift == 8 << size) { 10341 /* Shift count the same size as element size produces zero. */ 10342 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10343 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10344 return; 10345 } 10346 gvec_fn = tcg_gen_gvec_shri; 10347 } else { 10348 /* Shift count the same size as element size produces all sign. */ 10349 if (shift == 8 << size) { 10350 shift -= 1; 10351 } 10352 gvec_fn = tcg_gen_gvec_sari; 10353 } 10354 break; 10355 10356 case 0x04: /* SRSHR / URSHR (rounding) */ 10357 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10358 break; 10359 10360 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10361 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10362 break; 10363 10364 default: 10365 g_assert_not_reached(); 10366 } 10367 10368 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10369 } 10370 10371 /* SHL/SLI - Vector shift left */ 10372 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10373 int immh, int immb, int opcode, int rn, int rd) 10374 { 10375 int size = 32 - clz32(immh) - 1; 10376 int immhb = immh << 3 | immb; 10377 int shift = immhb - (8 << size); 10378 10379 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10380 assert(size >= 0 && size <= 3); 10381 10382 if (extract32(immh, 3, 1) && !is_q) { 10383 unallocated_encoding(s); 10384 return; 10385 } 10386 10387 if (!fp_access_check(s)) { 10388 return; 10389 } 10390 10391 if (insert) { 10392 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10393 } else { 10394 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10395 } 10396 } 10397 10398 /* USHLL/SHLL - Vector shift left with widening */ 10399 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10400 int immh, int immb, int opcode, int rn, int rd) 10401 { 10402 int size = 32 - clz32(immh) - 1; 10403 int immhb = immh << 3 | immb; 10404 int shift = immhb - (8 << size); 10405 int dsize = 64; 10406 int esize = 8 << size; 10407 int elements = dsize/esize; 10408 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10409 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10410 int i; 10411 10412 if (size >= 3) { 10413 unallocated_encoding(s); 10414 return; 10415 } 10416 10417 if (!fp_access_check(s)) { 10418 return; 10419 } 10420 10421 /* For the LL variants the store is larger than the load, 10422 * so if rd == rn we would overwrite parts of our input. 10423 * So load everything right now and use shifts in the main loop. 10424 */ 10425 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10426 10427 for (i = 0; i < elements; i++) { 10428 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10429 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10430 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10431 write_vec_element(s, tcg_rd, rd, i, size + 1); 10432 } 10433 } 10434 10435 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10436 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10437 int immh, int immb, int opcode, int rn, int rd) 10438 { 10439 int immhb = immh << 3 | immb; 10440 int size = 32 - clz32(immh) - 1; 10441 int dsize = 64; 10442 int esize = 8 << size; 10443 int elements = dsize/esize; 10444 int shift = (2 * esize) - immhb; 10445 bool round = extract32(opcode, 0, 1); 10446 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10447 TCGv_i64 tcg_round; 10448 int i; 10449 10450 if (extract32(immh, 3, 1)) { 10451 unallocated_encoding(s); 10452 return; 10453 } 10454 10455 if (!fp_access_check(s)) { 10456 return; 10457 } 10458 10459 tcg_rn = tcg_temp_new_i64(); 10460 tcg_rd = tcg_temp_new_i64(); 10461 tcg_final = tcg_temp_new_i64(); 10462 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10463 10464 if (round) { 10465 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10466 } else { 10467 tcg_round = NULL; 10468 } 10469 10470 for (i = 0; i < elements; i++) { 10471 read_vec_element(s, tcg_rn, rn, i, size+1); 10472 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10473 false, true, size+1, shift); 10474 10475 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10476 } 10477 10478 if (!is_q) { 10479 write_vec_element(s, tcg_final, rd, 0, MO_64); 10480 } else { 10481 write_vec_element(s, tcg_final, rd, 1, MO_64); 10482 } 10483 10484 clear_vec_high(s, is_q, rd); 10485 } 10486 10487 10488 /* AdvSIMD shift by immediate 10489 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10490 * +---+---+---+-------------+------+------+--------+---+------+------+ 10491 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10492 * +---+---+---+-------------+------+------+--------+---+------+------+ 10493 */ 10494 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10495 { 10496 int rd = extract32(insn, 0, 5); 10497 int rn = extract32(insn, 5, 5); 10498 int opcode = extract32(insn, 11, 5); 10499 int immb = extract32(insn, 16, 3); 10500 int immh = extract32(insn, 19, 4); 10501 bool is_u = extract32(insn, 29, 1); 10502 bool is_q = extract32(insn, 30, 1); 10503 10504 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10505 assert(immh != 0); 10506 10507 switch (opcode) { 10508 case 0x08: /* SRI */ 10509 if (!is_u) { 10510 unallocated_encoding(s); 10511 return; 10512 } 10513 /* fall through */ 10514 case 0x00: /* SSHR / USHR */ 10515 case 0x02: /* SSRA / USRA (accumulate) */ 10516 case 0x04: /* SRSHR / URSHR (rounding) */ 10517 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10518 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10519 break; 10520 case 0x0a: /* SHL / SLI */ 10521 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10522 break; 10523 case 0x10: /* SHRN */ 10524 case 0x11: /* RSHRN / SQRSHRUN */ 10525 if (is_u) { 10526 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10527 opcode, rn, rd); 10528 } else { 10529 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10530 } 10531 break; 10532 case 0x12: /* SQSHRN / UQSHRN */ 10533 case 0x13: /* SQRSHRN / UQRSHRN */ 10534 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10535 opcode, rn, rd); 10536 break; 10537 case 0x14: /* SSHLL / USHLL */ 10538 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10539 break; 10540 case 0x1c: /* SCVTF / UCVTF */ 10541 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10542 opcode, rn, rd); 10543 break; 10544 case 0xc: /* SQSHLU */ 10545 if (!is_u) { 10546 unallocated_encoding(s); 10547 return; 10548 } 10549 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10550 break; 10551 case 0xe: /* SQSHL, UQSHL */ 10552 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10553 break; 10554 case 0x1f: /* FCVTZS/ FCVTZU */ 10555 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10556 return; 10557 default: 10558 unallocated_encoding(s); 10559 return; 10560 } 10561 } 10562 10563 /* Generate code to do a "long" addition or subtraction, ie one done in 10564 * TCGv_i64 on vector lanes twice the width specified by size. 10565 */ 10566 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10567 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10568 { 10569 static NeonGenTwo64OpFn * const fns[3][2] = { 10570 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10571 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10572 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10573 }; 10574 NeonGenTwo64OpFn *genfn; 10575 assert(size < 3); 10576 10577 genfn = fns[size][is_sub]; 10578 genfn(tcg_res, tcg_op1, tcg_op2); 10579 } 10580 10581 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10582 int opcode, int rd, int rn, int rm) 10583 { 10584 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10585 TCGv_i64 tcg_res[2]; 10586 int pass, accop; 10587 10588 tcg_res[0] = tcg_temp_new_i64(); 10589 tcg_res[1] = tcg_temp_new_i64(); 10590 10591 /* Does this op do an adding accumulate, a subtracting accumulate, 10592 * or no accumulate at all? 10593 */ 10594 switch (opcode) { 10595 case 5: 10596 case 8: 10597 case 9: 10598 accop = 1; 10599 break; 10600 case 10: 10601 case 11: 10602 accop = -1; 10603 break; 10604 default: 10605 accop = 0; 10606 break; 10607 } 10608 10609 if (accop != 0) { 10610 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10611 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10612 } 10613 10614 /* size == 2 means two 32x32->64 operations; this is worth special 10615 * casing because we can generally handle it inline. 10616 */ 10617 if (size == 2) { 10618 for (pass = 0; pass < 2; pass++) { 10619 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10620 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10621 TCGv_i64 tcg_passres; 10622 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10623 10624 int elt = pass + is_q * 2; 10625 10626 read_vec_element(s, tcg_op1, rn, elt, memop); 10627 read_vec_element(s, tcg_op2, rm, elt, memop); 10628 10629 if (accop == 0) { 10630 tcg_passres = tcg_res[pass]; 10631 } else { 10632 tcg_passres = tcg_temp_new_i64(); 10633 } 10634 10635 switch (opcode) { 10636 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10637 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10638 break; 10639 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10640 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10641 break; 10642 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10643 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10644 { 10645 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10646 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10647 10648 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10649 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10650 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10651 tcg_passres, 10652 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10653 break; 10654 } 10655 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10656 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10657 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10658 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10659 break; 10660 case 9: /* SQDMLAL, SQDMLAL2 */ 10661 case 11: /* SQDMLSL, SQDMLSL2 */ 10662 case 13: /* SQDMULL, SQDMULL2 */ 10663 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10664 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10665 tcg_passres, tcg_passres); 10666 break; 10667 default: 10668 g_assert_not_reached(); 10669 } 10670 10671 if (opcode == 9 || opcode == 11) { 10672 /* saturating accumulate ops */ 10673 if (accop < 0) { 10674 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10675 } 10676 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10677 tcg_res[pass], tcg_passres); 10678 } else if (accop > 0) { 10679 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10680 } else if (accop < 0) { 10681 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10682 } 10683 } 10684 } else { 10685 /* size 0 or 1, generally helper functions */ 10686 for (pass = 0; pass < 2; pass++) { 10687 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10688 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10689 TCGv_i64 tcg_passres; 10690 int elt = pass + is_q * 2; 10691 10692 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10693 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10694 10695 if (accop == 0) { 10696 tcg_passres = tcg_res[pass]; 10697 } else { 10698 tcg_passres = tcg_temp_new_i64(); 10699 } 10700 10701 switch (opcode) { 10702 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10703 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10704 { 10705 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10706 static NeonGenWidenFn * const widenfns[2][2] = { 10707 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10708 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10709 }; 10710 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10711 10712 widenfn(tcg_op2_64, tcg_op2); 10713 widenfn(tcg_passres, tcg_op1); 10714 gen_neon_addl(size, (opcode == 2), tcg_passres, 10715 tcg_passres, tcg_op2_64); 10716 break; 10717 } 10718 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10719 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10720 if (size == 0) { 10721 if (is_u) { 10722 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10723 } else { 10724 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10725 } 10726 } else { 10727 if (is_u) { 10728 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10729 } else { 10730 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10731 } 10732 } 10733 break; 10734 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10735 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10736 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10737 if (size == 0) { 10738 if (is_u) { 10739 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10740 } else { 10741 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10742 } 10743 } else { 10744 if (is_u) { 10745 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10746 } else { 10747 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10748 } 10749 } 10750 break; 10751 case 9: /* SQDMLAL, SQDMLAL2 */ 10752 case 11: /* SQDMLSL, SQDMLSL2 */ 10753 case 13: /* SQDMULL, SQDMULL2 */ 10754 assert(size == 1); 10755 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10756 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10757 tcg_passres, tcg_passres); 10758 break; 10759 default: 10760 g_assert_not_reached(); 10761 } 10762 10763 if (accop != 0) { 10764 if (opcode == 9 || opcode == 11) { 10765 /* saturating accumulate ops */ 10766 if (accop < 0) { 10767 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10768 } 10769 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10770 tcg_res[pass], 10771 tcg_passres); 10772 } else { 10773 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10774 tcg_res[pass], tcg_passres); 10775 } 10776 } 10777 } 10778 } 10779 10780 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10781 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10782 } 10783 10784 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10785 int opcode, int rd, int rn, int rm) 10786 { 10787 TCGv_i64 tcg_res[2]; 10788 int part = is_q ? 2 : 0; 10789 int pass; 10790 10791 for (pass = 0; pass < 2; pass++) { 10792 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10793 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10794 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10795 static NeonGenWidenFn * const widenfns[3][2] = { 10796 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10797 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10798 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10799 }; 10800 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10801 10802 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10803 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10804 widenfn(tcg_op2_wide, tcg_op2); 10805 tcg_res[pass] = tcg_temp_new_i64(); 10806 gen_neon_addl(size, (opcode == 3), 10807 tcg_res[pass], tcg_op1, tcg_op2_wide); 10808 } 10809 10810 for (pass = 0; pass < 2; pass++) { 10811 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10812 } 10813 } 10814 10815 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10816 { 10817 tcg_gen_addi_i64(in, in, 1U << 31); 10818 tcg_gen_extrh_i64_i32(res, in); 10819 } 10820 10821 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10822 int opcode, int rd, int rn, int rm) 10823 { 10824 TCGv_i32 tcg_res[2]; 10825 int part = is_q ? 2 : 0; 10826 int pass; 10827 10828 for (pass = 0; pass < 2; pass++) { 10829 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10830 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10831 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10832 static NeonGenNarrowFn * const narrowfns[3][2] = { 10833 { gen_helper_neon_narrow_high_u8, 10834 gen_helper_neon_narrow_round_high_u8 }, 10835 { gen_helper_neon_narrow_high_u16, 10836 gen_helper_neon_narrow_round_high_u16 }, 10837 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10838 }; 10839 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10840 10841 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10842 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10843 10844 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10845 10846 tcg_res[pass] = tcg_temp_new_i32(); 10847 gennarrow(tcg_res[pass], tcg_wideres); 10848 } 10849 10850 for (pass = 0; pass < 2; pass++) { 10851 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10852 } 10853 clear_vec_high(s, is_q, rd); 10854 } 10855 10856 /* AdvSIMD three different 10857 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10858 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10859 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10860 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10861 */ 10862 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10863 { 10864 /* Instructions in this group fall into three basic classes 10865 * (in each case with the operation working on each element in 10866 * the input vectors): 10867 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10868 * 128 bit input) 10869 * (2) wide 64 x 128 -> 128 10870 * (3) narrowing 128 x 128 -> 64 10871 * Here we do initial decode, catch unallocated cases and 10872 * dispatch to separate functions for each class. 10873 */ 10874 int is_q = extract32(insn, 30, 1); 10875 int is_u = extract32(insn, 29, 1); 10876 int size = extract32(insn, 22, 2); 10877 int opcode = extract32(insn, 12, 4); 10878 int rm = extract32(insn, 16, 5); 10879 int rn = extract32(insn, 5, 5); 10880 int rd = extract32(insn, 0, 5); 10881 10882 switch (opcode) { 10883 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10884 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10885 /* 64 x 128 -> 128 */ 10886 if (size == 3) { 10887 unallocated_encoding(s); 10888 return; 10889 } 10890 if (!fp_access_check(s)) { 10891 return; 10892 } 10893 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10894 break; 10895 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10896 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10897 /* 128 x 128 -> 64 */ 10898 if (size == 3) { 10899 unallocated_encoding(s); 10900 return; 10901 } 10902 if (!fp_access_check(s)) { 10903 return; 10904 } 10905 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10906 break; 10907 case 14: /* PMULL, PMULL2 */ 10908 if (is_u) { 10909 unallocated_encoding(s); 10910 return; 10911 } 10912 switch (size) { 10913 case 0: /* PMULL.P8 */ 10914 if (!fp_access_check(s)) { 10915 return; 10916 } 10917 /* The Q field specifies lo/hi half input for this insn. */ 10918 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10919 gen_helper_neon_pmull_h); 10920 break; 10921 10922 case 3: /* PMULL.P64 */ 10923 if (!dc_isar_feature(aa64_pmull, s)) { 10924 unallocated_encoding(s); 10925 return; 10926 } 10927 if (!fp_access_check(s)) { 10928 return; 10929 } 10930 /* The Q field specifies lo/hi half input for this insn. */ 10931 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10932 gen_helper_gvec_pmull_q); 10933 break; 10934 10935 default: 10936 unallocated_encoding(s); 10937 break; 10938 } 10939 return; 10940 case 9: /* SQDMLAL, SQDMLAL2 */ 10941 case 11: /* SQDMLSL, SQDMLSL2 */ 10942 case 13: /* SQDMULL, SQDMULL2 */ 10943 if (is_u || size == 0) { 10944 unallocated_encoding(s); 10945 return; 10946 } 10947 /* fall through */ 10948 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10949 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10950 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10951 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10952 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10953 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10954 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10955 /* 64 x 64 -> 128 */ 10956 if (size == 3) { 10957 unallocated_encoding(s); 10958 return; 10959 } 10960 if (!fp_access_check(s)) { 10961 return; 10962 } 10963 10964 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10965 break; 10966 default: 10967 /* opcode 15 not allocated */ 10968 unallocated_encoding(s); 10969 break; 10970 } 10971 } 10972 10973 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10974 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10975 { 10976 int rd = extract32(insn, 0, 5); 10977 int rn = extract32(insn, 5, 5); 10978 int rm = extract32(insn, 16, 5); 10979 int size = extract32(insn, 22, 2); 10980 bool is_u = extract32(insn, 29, 1); 10981 bool is_q = extract32(insn, 30, 1); 10982 10983 if (!fp_access_check(s)) { 10984 return; 10985 } 10986 10987 switch (size + 4 * is_u) { 10988 case 0: /* AND */ 10989 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10990 return; 10991 case 1: /* BIC */ 10992 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10993 return; 10994 case 2: /* ORR */ 10995 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10996 return; 10997 case 3: /* ORN */ 10998 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10999 return; 11000 case 4: /* EOR */ 11001 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11002 return; 11003 11004 case 5: /* BSL bitwise select */ 11005 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11006 return; 11007 case 6: /* BIT, bitwise insert if true */ 11008 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11009 return; 11010 case 7: /* BIF, bitwise insert if false */ 11011 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11012 return; 11013 11014 default: 11015 g_assert_not_reached(); 11016 } 11017 } 11018 11019 /* Pairwise op subgroup of C3.6.16. 11020 * 11021 * This is called directly or via the handle_3same_float for float pairwise 11022 * operations where the opcode and size are calculated differently. 11023 */ 11024 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11025 int size, int rn, int rm, int rd) 11026 { 11027 TCGv_ptr fpst; 11028 int pass; 11029 11030 /* Floating point operations need fpst */ 11031 if (opcode >= 0x58) { 11032 fpst = fpstatus_ptr(FPST_FPCR); 11033 } else { 11034 fpst = NULL; 11035 } 11036 11037 if (!fp_access_check(s)) { 11038 return; 11039 } 11040 11041 /* These operations work on the concatenated rm:rn, with each pair of 11042 * adjacent elements being operated on to produce an element in the result. 11043 */ 11044 if (size == 3) { 11045 TCGv_i64 tcg_res[2]; 11046 11047 for (pass = 0; pass < 2; pass++) { 11048 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11049 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11050 int passreg = (pass == 0) ? rn : rm; 11051 11052 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11053 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11054 tcg_res[pass] = tcg_temp_new_i64(); 11055 11056 switch (opcode) { 11057 case 0x17: /* ADDP */ 11058 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11059 break; 11060 case 0x58: /* FMAXNMP */ 11061 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11062 break; 11063 case 0x5a: /* FADDP */ 11064 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11065 break; 11066 case 0x5e: /* FMAXP */ 11067 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11068 break; 11069 case 0x78: /* FMINNMP */ 11070 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11071 break; 11072 case 0x7e: /* FMINP */ 11073 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11074 break; 11075 default: 11076 g_assert_not_reached(); 11077 } 11078 } 11079 11080 for (pass = 0; pass < 2; pass++) { 11081 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11082 } 11083 } else { 11084 int maxpass = is_q ? 4 : 2; 11085 TCGv_i32 tcg_res[4]; 11086 11087 for (pass = 0; pass < maxpass; pass++) { 11088 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11089 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11090 NeonGenTwoOpFn *genfn = NULL; 11091 int passreg = pass < (maxpass / 2) ? rn : rm; 11092 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11093 11094 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11095 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11096 tcg_res[pass] = tcg_temp_new_i32(); 11097 11098 switch (opcode) { 11099 case 0x17: /* ADDP */ 11100 { 11101 static NeonGenTwoOpFn * const fns[3] = { 11102 gen_helper_neon_padd_u8, 11103 gen_helper_neon_padd_u16, 11104 tcg_gen_add_i32, 11105 }; 11106 genfn = fns[size]; 11107 break; 11108 } 11109 case 0x14: /* SMAXP, UMAXP */ 11110 { 11111 static NeonGenTwoOpFn * const fns[3][2] = { 11112 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11113 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11114 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11115 }; 11116 genfn = fns[size][u]; 11117 break; 11118 } 11119 case 0x15: /* SMINP, UMINP */ 11120 { 11121 static NeonGenTwoOpFn * const fns[3][2] = { 11122 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11123 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11124 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11125 }; 11126 genfn = fns[size][u]; 11127 break; 11128 } 11129 /* The FP operations are all on single floats (32 bit) */ 11130 case 0x58: /* FMAXNMP */ 11131 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11132 break; 11133 case 0x5a: /* FADDP */ 11134 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11135 break; 11136 case 0x5e: /* FMAXP */ 11137 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11138 break; 11139 case 0x78: /* FMINNMP */ 11140 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11141 break; 11142 case 0x7e: /* FMINP */ 11143 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11144 break; 11145 default: 11146 g_assert_not_reached(); 11147 } 11148 11149 /* FP ops called directly, otherwise call now */ 11150 if (genfn) { 11151 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11152 } 11153 } 11154 11155 for (pass = 0; pass < maxpass; pass++) { 11156 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11157 } 11158 clear_vec_high(s, is_q, rd); 11159 } 11160 } 11161 11162 /* Floating point op subgroup of C3.6.16. */ 11163 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11164 { 11165 /* For floating point ops, the U, size[1] and opcode bits 11166 * together indicate the operation. size[0] indicates single 11167 * or double. 11168 */ 11169 int fpopcode = extract32(insn, 11, 5) 11170 | (extract32(insn, 23, 1) << 5) 11171 | (extract32(insn, 29, 1) << 6); 11172 int is_q = extract32(insn, 30, 1); 11173 int size = extract32(insn, 22, 1); 11174 int rm = extract32(insn, 16, 5); 11175 int rn = extract32(insn, 5, 5); 11176 int rd = extract32(insn, 0, 5); 11177 11178 int datasize = is_q ? 128 : 64; 11179 int esize = 32 << size; 11180 int elements = datasize / esize; 11181 11182 if (size == 1 && !is_q) { 11183 unallocated_encoding(s); 11184 return; 11185 } 11186 11187 switch (fpopcode) { 11188 case 0x58: /* FMAXNMP */ 11189 case 0x5a: /* FADDP */ 11190 case 0x5e: /* FMAXP */ 11191 case 0x78: /* FMINNMP */ 11192 case 0x7e: /* FMINP */ 11193 if (size && !is_q) { 11194 unallocated_encoding(s); 11195 return; 11196 } 11197 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11198 rn, rm, rd); 11199 return; 11200 case 0x1b: /* FMULX */ 11201 case 0x1f: /* FRECPS */ 11202 case 0x3f: /* FRSQRTS */ 11203 case 0x5d: /* FACGE */ 11204 case 0x7d: /* FACGT */ 11205 case 0x19: /* FMLA */ 11206 case 0x39: /* FMLS */ 11207 case 0x18: /* FMAXNM */ 11208 case 0x1a: /* FADD */ 11209 case 0x1c: /* FCMEQ */ 11210 case 0x1e: /* FMAX */ 11211 case 0x38: /* FMINNM */ 11212 case 0x3a: /* FSUB */ 11213 case 0x3e: /* FMIN */ 11214 case 0x5b: /* FMUL */ 11215 case 0x5c: /* FCMGE */ 11216 case 0x5f: /* FDIV */ 11217 case 0x7a: /* FABD */ 11218 case 0x7c: /* FCMGT */ 11219 if (!fp_access_check(s)) { 11220 return; 11221 } 11222 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11223 return; 11224 11225 case 0x1d: /* FMLAL */ 11226 case 0x3d: /* FMLSL */ 11227 case 0x59: /* FMLAL2 */ 11228 case 0x79: /* FMLSL2 */ 11229 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11230 unallocated_encoding(s); 11231 return; 11232 } 11233 if (fp_access_check(s)) { 11234 int is_s = extract32(insn, 23, 1); 11235 int is_2 = extract32(insn, 29, 1); 11236 int data = (is_2 << 1) | is_s; 11237 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11238 vec_full_reg_offset(s, rn), 11239 vec_full_reg_offset(s, rm), tcg_env, 11240 is_q ? 16 : 8, vec_full_reg_size(s), 11241 data, gen_helper_gvec_fmlal_a64); 11242 } 11243 return; 11244 11245 default: 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 } 11250 11251 /* Integer op subgroup of C3.6.16. */ 11252 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11253 { 11254 int is_q = extract32(insn, 30, 1); 11255 int u = extract32(insn, 29, 1); 11256 int size = extract32(insn, 22, 2); 11257 int opcode = extract32(insn, 11, 5); 11258 int rm = extract32(insn, 16, 5); 11259 int rn = extract32(insn, 5, 5); 11260 int rd = extract32(insn, 0, 5); 11261 int pass; 11262 TCGCond cond; 11263 11264 switch (opcode) { 11265 case 0x13: /* MUL, PMUL */ 11266 if (u && size != 0) { 11267 unallocated_encoding(s); 11268 return; 11269 } 11270 /* fall through */ 11271 case 0x0: /* SHADD, UHADD */ 11272 case 0x2: /* SRHADD, URHADD */ 11273 case 0x4: /* SHSUB, UHSUB */ 11274 case 0xc: /* SMAX, UMAX */ 11275 case 0xd: /* SMIN, UMIN */ 11276 case 0xe: /* SABD, UABD */ 11277 case 0xf: /* SABA, UABA */ 11278 case 0x12: /* MLA, MLS */ 11279 if (size == 3) { 11280 unallocated_encoding(s); 11281 return; 11282 } 11283 break; 11284 case 0x16: /* SQDMULH, SQRDMULH */ 11285 if (size == 0 || size == 3) { 11286 unallocated_encoding(s); 11287 return; 11288 } 11289 break; 11290 default: 11291 if (size == 3 && !is_q) { 11292 unallocated_encoding(s); 11293 return; 11294 } 11295 break; 11296 } 11297 11298 if (!fp_access_check(s)) { 11299 return; 11300 } 11301 11302 switch (opcode) { 11303 case 0x01: /* SQADD, UQADD */ 11304 if (u) { 11305 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11306 } else { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11308 } 11309 return; 11310 case 0x05: /* SQSUB, UQSUB */ 11311 if (u) { 11312 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11313 } else { 11314 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11315 } 11316 return; 11317 case 0x08: /* SSHL, USHL */ 11318 if (u) { 11319 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11320 } else { 11321 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11322 } 11323 return; 11324 case 0x0c: /* SMAX, UMAX */ 11325 if (u) { 11326 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11327 } else { 11328 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11329 } 11330 return; 11331 case 0x0d: /* SMIN, UMIN */ 11332 if (u) { 11333 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11334 } else { 11335 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11336 } 11337 return; 11338 case 0xe: /* SABD, UABD */ 11339 if (u) { 11340 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11341 } else { 11342 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11343 } 11344 return; 11345 case 0xf: /* SABA, UABA */ 11346 if (u) { 11347 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11348 } else { 11349 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11350 } 11351 return; 11352 case 0x10: /* ADD, SUB */ 11353 if (u) { 11354 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11355 } else { 11356 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11357 } 11358 return; 11359 case 0x13: /* MUL, PMUL */ 11360 if (!u) { /* MUL */ 11361 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11362 } else { /* PMUL */ 11363 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11364 } 11365 return; 11366 case 0x12: /* MLA, MLS */ 11367 if (u) { 11368 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11369 } else { 11370 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11371 } 11372 return; 11373 case 0x16: /* SQDMULH, SQRDMULH */ 11374 { 11375 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11376 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11377 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11378 }; 11379 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11380 } 11381 return; 11382 case 0x11: 11383 if (!u) { /* CMTST */ 11384 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11385 return; 11386 } 11387 /* else CMEQ */ 11388 cond = TCG_COND_EQ; 11389 goto do_gvec_cmp; 11390 case 0x06: /* CMGT, CMHI */ 11391 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11392 goto do_gvec_cmp; 11393 case 0x07: /* CMGE, CMHS */ 11394 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11395 do_gvec_cmp: 11396 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11397 vec_full_reg_offset(s, rn), 11398 vec_full_reg_offset(s, rm), 11399 is_q ? 16 : 8, vec_full_reg_size(s)); 11400 return; 11401 } 11402 11403 if (size == 3) { 11404 assert(is_q); 11405 for (pass = 0; pass < 2; pass++) { 11406 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11407 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11408 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11409 11410 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11411 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11412 11413 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11414 11415 write_vec_element(s, tcg_res, rd, pass, MO_64); 11416 } 11417 } else { 11418 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11419 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11420 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11421 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11422 NeonGenTwoOpFn *genfn = NULL; 11423 NeonGenTwoOpEnvFn *genenvfn = NULL; 11424 11425 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11426 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11427 11428 switch (opcode) { 11429 case 0x0: /* SHADD, UHADD */ 11430 { 11431 static NeonGenTwoOpFn * const fns[3][2] = { 11432 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11433 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11434 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11435 }; 11436 genfn = fns[size][u]; 11437 break; 11438 } 11439 case 0x2: /* SRHADD, URHADD */ 11440 { 11441 static NeonGenTwoOpFn * const fns[3][2] = { 11442 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11443 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11444 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11445 }; 11446 genfn = fns[size][u]; 11447 break; 11448 } 11449 case 0x4: /* SHSUB, UHSUB */ 11450 { 11451 static NeonGenTwoOpFn * const fns[3][2] = { 11452 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11453 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11454 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11455 }; 11456 genfn = fns[size][u]; 11457 break; 11458 } 11459 case 0x9: /* SQSHL, UQSHL */ 11460 { 11461 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11462 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11463 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11464 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11465 }; 11466 genenvfn = fns[size][u]; 11467 break; 11468 } 11469 case 0xa: /* SRSHL, URSHL */ 11470 { 11471 static NeonGenTwoOpFn * const fns[3][2] = { 11472 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11473 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11474 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11475 }; 11476 genfn = fns[size][u]; 11477 break; 11478 } 11479 case 0xb: /* SQRSHL, UQRSHL */ 11480 { 11481 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11482 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11483 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11484 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11485 }; 11486 genenvfn = fns[size][u]; 11487 break; 11488 } 11489 default: 11490 g_assert_not_reached(); 11491 } 11492 11493 if (genenvfn) { 11494 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11495 } else { 11496 genfn(tcg_res, tcg_op1, tcg_op2); 11497 } 11498 11499 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11500 } 11501 } 11502 clear_vec_high(s, is_q, rd); 11503 } 11504 11505 /* AdvSIMD three same 11506 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11507 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11508 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11509 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11510 */ 11511 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11512 { 11513 int opcode = extract32(insn, 11, 5); 11514 11515 switch (opcode) { 11516 case 0x3: /* logic ops */ 11517 disas_simd_3same_logic(s, insn); 11518 break; 11519 case 0x17: /* ADDP */ 11520 case 0x14: /* SMAXP, UMAXP */ 11521 case 0x15: /* SMINP, UMINP */ 11522 { 11523 /* Pairwise operations */ 11524 int is_q = extract32(insn, 30, 1); 11525 int u = extract32(insn, 29, 1); 11526 int size = extract32(insn, 22, 2); 11527 int rm = extract32(insn, 16, 5); 11528 int rn = extract32(insn, 5, 5); 11529 int rd = extract32(insn, 0, 5); 11530 if (opcode == 0x17) { 11531 if (u || (size == 3 && !is_q)) { 11532 unallocated_encoding(s); 11533 return; 11534 } 11535 } else { 11536 if (size == 3) { 11537 unallocated_encoding(s); 11538 return; 11539 } 11540 } 11541 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11542 break; 11543 } 11544 case 0x18 ... 0x31: 11545 /* floating point ops, sz[1] and U are part of opcode */ 11546 disas_simd_3same_float(s, insn); 11547 break; 11548 default: 11549 disas_simd_3same_int(s, insn); 11550 break; 11551 } 11552 } 11553 11554 /* 11555 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11556 * 11557 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11558 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11559 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11560 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11561 * 11562 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11563 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11564 * 11565 */ 11566 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11567 { 11568 int opcode = extract32(insn, 11, 3); 11569 int u = extract32(insn, 29, 1); 11570 int a = extract32(insn, 23, 1); 11571 int is_q = extract32(insn, 30, 1); 11572 int rm = extract32(insn, 16, 5); 11573 int rn = extract32(insn, 5, 5); 11574 int rd = extract32(insn, 0, 5); 11575 /* 11576 * For these floating point ops, the U, a and opcode bits 11577 * together indicate the operation. 11578 */ 11579 int fpopcode = opcode | (a << 3) | (u << 4); 11580 int datasize = is_q ? 128 : 64; 11581 int elements = datasize / 16; 11582 bool pairwise; 11583 TCGv_ptr fpst; 11584 int pass; 11585 11586 switch (fpopcode) { 11587 case 0x0: /* FMAXNM */ 11588 case 0x1: /* FMLA */ 11589 case 0x2: /* FADD */ 11590 case 0x3: /* FMULX */ 11591 case 0x4: /* FCMEQ */ 11592 case 0x6: /* FMAX */ 11593 case 0x7: /* FRECPS */ 11594 case 0x8: /* FMINNM */ 11595 case 0x9: /* FMLS */ 11596 case 0xa: /* FSUB */ 11597 case 0xe: /* FMIN */ 11598 case 0xf: /* FRSQRTS */ 11599 case 0x13: /* FMUL */ 11600 case 0x14: /* FCMGE */ 11601 case 0x15: /* FACGE */ 11602 case 0x17: /* FDIV */ 11603 case 0x1a: /* FABD */ 11604 case 0x1c: /* FCMGT */ 11605 case 0x1d: /* FACGT */ 11606 pairwise = false; 11607 break; 11608 case 0x10: /* FMAXNMP */ 11609 case 0x12: /* FADDP */ 11610 case 0x16: /* FMAXP */ 11611 case 0x18: /* FMINNMP */ 11612 case 0x1e: /* FMINP */ 11613 pairwise = true; 11614 break; 11615 default: 11616 unallocated_encoding(s); 11617 return; 11618 } 11619 11620 if (!dc_isar_feature(aa64_fp16, s)) { 11621 unallocated_encoding(s); 11622 return; 11623 } 11624 11625 if (!fp_access_check(s)) { 11626 return; 11627 } 11628 11629 fpst = fpstatus_ptr(FPST_FPCR_F16); 11630 11631 if (pairwise) { 11632 int maxpass = is_q ? 8 : 4; 11633 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11634 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11635 TCGv_i32 tcg_res[8]; 11636 11637 for (pass = 0; pass < maxpass; pass++) { 11638 int passreg = pass < (maxpass / 2) ? rn : rm; 11639 int passelt = (pass << 1) & (maxpass - 1); 11640 11641 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11642 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11643 tcg_res[pass] = tcg_temp_new_i32(); 11644 11645 switch (fpopcode) { 11646 case 0x10: /* FMAXNMP */ 11647 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11648 fpst); 11649 break; 11650 case 0x12: /* FADDP */ 11651 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11652 break; 11653 case 0x16: /* FMAXP */ 11654 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11655 break; 11656 case 0x18: /* FMINNMP */ 11657 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11658 fpst); 11659 break; 11660 case 0x1e: /* FMINP */ 11661 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11662 break; 11663 default: 11664 g_assert_not_reached(); 11665 } 11666 } 11667 11668 for (pass = 0; pass < maxpass; pass++) { 11669 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11670 } 11671 } else { 11672 for (pass = 0; pass < elements; pass++) { 11673 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11674 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11675 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11676 11677 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11678 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11679 11680 switch (fpopcode) { 11681 case 0x0: /* FMAXNM */ 11682 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0x1: /* FMLA */ 11685 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11686 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11687 fpst); 11688 break; 11689 case 0x2: /* FADD */ 11690 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11691 break; 11692 case 0x3: /* FMULX */ 11693 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x4: /* FCMEQ */ 11696 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11697 break; 11698 case 0x6: /* FMAX */ 11699 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x7: /* FRECPS */ 11702 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11703 break; 11704 case 0x8: /* FMINNM */ 11705 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11706 break; 11707 case 0x9: /* FMLS */ 11708 /* As usual for ARM, separate negation for fused multiply-add */ 11709 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11710 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11711 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11712 fpst); 11713 break; 11714 case 0xa: /* FSUB */ 11715 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11716 break; 11717 case 0xe: /* FMIN */ 11718 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11719 break; 11720 case 0xf: /* FRSQRTS */ 11721 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11722 break; 11723 case 0x13: /* FMUL */ 11724 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11725 break; 11726 case 0x14: /* FCMGE */ 11727 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11728 break; 11729 case 0x15: /* FACGE */ 11730 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11731 break; 11732 case 0x17: /* FDIV */ 11733 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11734 break; 11735 case 0x1a: /* FABD */ 11736 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11737 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11738 break; 11739 case 0x1c: /* FCMGT */ 11740 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11741 break; 11742 case 0x1d: /* FACGT */ 11743 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11744 break; 11745 default: 11746 g_assert_not_reached(); 11747 } 11748 11749 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11750 } 11751 } 11752 11753 clear_vec_high(s, is_q, rd); 11754 } 11755 11756 /* AdvSIMD three same extra 11757 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11758 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11759 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11760 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11761 */ 11762 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11763 { 11764 int rd = extract32(insn, 0, 5); 11765 int rn = extract32(insn, 5, 5); 11766 int opcode = extract32(insn, 11, 4); 11767 int rm = extract32(insn, 16, 5); 11768 int size = extract32(insn, 22, 2); 11769 bool u = extract32(insn, 29, 1); 11770 bool is_q = extract32(insn, 30, 1); 11771 bool feature; 11772 int rot; 11773 11774 switch (u * 16 + opcode) { 11775 case 0x10: /* SQRDMLAH (vector) */ 11776 case 0x11: /* SQRDMLSH (vector) */ 11777 if (size != 1 && size != 2) { 11778 unallocated_encoding(s); 11779 return; 11780 } 11781 feature = dc_isar_feature(aa64_rdm, s); 11782 break; 11783 case 0x02: /* SDOT (vector) */ 11784 case 0x12: /* UDOT (vector) */ 11785 if (size != MO_32) { 11786 unallocated_encoding(s); 11787 return; 11788 } 11789 feature = dc_isar_feature(aa64_dp, s); 11790 break; 11791 case 0x03: /* USDOT */ 11792 if (size != MO_32) { 11793 unallocated_encoding(s); 11794 return; 11795 } 11796 feature = dc_isar_feature(aa64_i8mm, s); 11797 break; 11798 case 0x04: /* SMMLA */ 11799 case 0x14: /* UMMLA */ 11800 case 0x05: /* USMMLA */ 11801 if (!is_q || size != MO_32) { 11802 unallocated_encoding(s); 11803 return; 11804 } 11805 feature = dc_isar_feature(aa64_i8mm, s); 11806 break; 11807 case 0x18: /* FCMLA, #0 */ 11808 case 0x19: /* FCMLA, #90 */ 11809 case 0x1a: /* FCMLA, #180 */ 11810 case 0x1b: /* FCMLA, #270 */ 11811 case 0x1c: /* FCADD, #90 */ 11812 case 0x1e: /* FCADD, #270 */ 11813 if (size == 0 11814 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11815 || (size == 3 && !is_q)) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 feature = dc_isar_feature(aa64_fcma, s); 11820 break; 11821 case 0x1d: /* BFMMLA */ 11822 if (size != MO_16 || !is_q) { 11823 unallocated_encoding(s); 11824 return; 11825 } 11826 feature = dc_isar_feature(aa64_bf16, s); 11827 break; 11828 case 0x1f: 11829 switch (size) { 11830 case 1: /* BFDOT */ 11831 case 3: /* BFMLAL{B,T} */ 11832 feature = dc_isar_feature(aa64_bf16, s); 11833 break; 11834 default: 11835 unallocated_encoding(s); 11836 return; 11837 } 11838 break; 11839 default: 11840 unallocated_encoding(s); 11841 return; 11842 } 11843 if (!feature) { 11844 unallocated_encoding(s); 11845 return; 11846 } 11847 if (!fp_access_check(s)) { 11848 return; 11849 } 11850 11851 switch (opcode) { 11852 case 0x0: /* SQRDMLAH (vector) */ 11853 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11854 return; 11855 11856 case 0x1: /* SQRDMLSH (vector) */ 11857 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11858 return; 11859 11860 case 0x2: /* SDOT / UDOT */ 11861 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11862 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11863 return; 11864 11865 case 0x3: /* USDOT */ 11866 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11867 return; 11868 11869 case 0x04: /* SMMLA, UMMLA */ 11870 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11871 u ? gen_helper_gvec_ummla_b 11872 : gen_helper_gvec_smmla_b); 11873 return; 11874 case 0x05: /* USMMLA */ 11875 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11876 return; 11877 11878 case 0x8: /* FCMLA, #0 */ 11879 case 0x9: /* FCMLA, #90 */ 11880 case 0xa: /* FCMLA, #180 */ 11881 case 0xb: /* FCMLA, #270 */ 11882 rot = extract32(opcode, 0, 2); 11883 switch (size) { 11884 case 1: 11885 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11886 gen_helper_gvec_fcmlah); 11887 break; 11888 case 2: 11889 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11890 gen_helper_gvec_fcmlas); 11891 break; 11892 case 3: 11893 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11894 gen_helper_gvec_fcmlad); 11895 break; 11896 default: 11897 g_assert_not_reached(); 11898 } 11899 return; 11900 11901 case 0xc: /* FCADD, #90 */ 11902 case 0xe: /* FCADD, #270 */ 11903 rot = extract32(opcode, 1, 1); 11904 switch (size) { 11905 case 1: 11906 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11907 gen_helper_gvec_fcaddh); 11908 break; 11909 case 2: 11910 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11911 gen_helper_gvec_fcadds); 11912 break; 11913 case 3: 11914 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11915 gen_helper_gvec_fcaddd); 11916 break; 11917 default: 11918 g_assert_not_reached(); 11919 } 11920 return; 11921 11922 case 0xd: /* BFMMLA */ 11923 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11924 return; 11925 case 0xf: 11926 switch (size) { 11927 case 1: /* BFDOT */ 11928 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11929 break; 11930 case 3: /* BFMLAL{B,T} */ 11931 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11932 gen_helper_gvec_bfmlal); 11933 break; 11934 default: 11935 g_assert_not_reached(); 11936 } 11937 return; 11938 11939 default: 11940 g_assert_not_reached(); 11941 } 11942 } 11943 11944 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11945 int size, int rn, int rd) 11946 { 11947 /* Handle 2-reg-misc ops which are widening (so each size element 11948 * in the source becomes a 2*size element in the destination. 11949 * The only instruction like this is FCVTL. 11950 */ 11951 int pass; 11952 11953 if (size == 3) { 11954 /* 32 -> 64 bit fp conversion */ 11955 TCGv_i64 tcg_res[2]; 11956 int srcelt = is_q ? 2 : 0; 11957 11958 for (pass = 0; pass < 2; pass++) { 11959 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11960 tcg_res[pass] = tcg_temp_new_i64(); 11961 11962 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11963 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11964 } 11965 for (pass = 0; pass < 2; pass++) { 11966 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11967 } 11968 } else { 11969 /* 16 -> 32 bit fp conversion */ 11970 int srcelt = is_q ? 4 : 0; 11971 TCGv_i32 tcg_res[4]; 11972 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11973 TCGv_i32 ahp = get_ahp_flag(); 11974 11975 for (pass = 0; pass < 4; pass++) { 11976 tcg_res[pass] = tcg_temp_new_i32(); 11977 11978 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11979 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11980 fpst, ahp); 11981 } 11982 for (pass = 0; pass < 4; pass++) { 11983 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11984 } 11985 } 11986 } 11987 11988 static void handle_rev(DisasContext *s, int opcode, bool u, 11989 bool is_q, int size, int rn, int rd) 11990 { 11991 int op = (opcode << 1) | u; 11992 int opsz = op + size; 11993 int grp_size = 3 - opsz; 11994 int dsize = is_q ? 128 : 64; 11995 int i; 11996 11997 if (opsz >= 3) { 11998 unallocated_encoding(s); 11999 return; 12000 } 12001 12002 if (!fp_access_check(s)) { 12003 return; 12004 } 12005 12006 if (size == 0) { 12007 /* Special case bytes, use bswap op on each group of elements */ 12008 int groups = dsize / (8 << grp_size); 12009 12010 for (i = 0; i < groups; i++) { 12011 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12012 12013 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12014 switch (grp_size) { 12015 case MO_16: 12016 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12017 break; 12018 case MO_32: 12019 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12020 break; 12021 case MO_64: 12022 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12023 break; 12024 default: 12025 g_assert_not_reached(); 12026 } 12027 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12028 } 12029 clear_vec_high(s, is_q, rd); 12030 } else { 12031 int revmask = (1 << grp_size) - 1; 12032 int esize = 8 << size; 12033 int elements = dsize / esize; 12034 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12035 TCGv_i64 tcg_rd[2]; 12036 12037 for (i = 0; i < 2; i++) { 12038 tcg_rd[i] = tcg_temp_new_i64(); 12039 tcg_gen_movi_i64(tcg_rd[i], 0); 12040 } 12041 12042 for (i = 0; i < elements; i++) { 12043 int e_rev = (i & 0xf) ^ revmask; 12044 int w = (e_rev * esize) / 64; 12045 int o = (e_rev * esize) % 64; 12046 12047 read_vec_element(s, tcg_rn, rn, i, size); 12048 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12049 } 12050 12051 for (i = 0; i < 2; i++) { 12052 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12053 } 12054 clear_vec_high(s, true, rd); 12055 } 12056 } 12057 12058 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12059 bool is_q, int size, int rn, int rd) 12060 { 12061 /* Implement the pairwise operations from 2-misc: 12062 * SADDLP, UADDLP, SADALP, UADALP. 12063 * These all add pairs of elements in the input to produce a 12064 * double-width result element in the output (possibly accumulating). 12065 */ 12066 bool accum = (opcode == 0x6); 12067 int maxpass = is_q ? 2 : 1; 12068 int pass; 12069 TCGv_i64 tcg_res[2]; 12070 12071 if (size == 2) { 12072 /* 32 + 32 -> 64 op */ 12073 MemOp memop = size + (u ? 0 : MO_SIGN); 12074 12075 for (pass = 0; pass < maxpass; pass++) { 12076 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12077 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12078 12079 tcg_res[pass] = tcg_temp_new_i64(); 12080 12081 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12082 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12083 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12084 if (accum) { 12085 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12086 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12087 } 12088 } 12089 } else { 12090 for (pass = 0; pass < maxpass; pass++) { 12091 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12092 NeonGenOne64OpFn *genfn; 12093 static NeonGenOne64OpFn * const fns[2][2] = { 12094 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12095 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12096 }; 12097 12098 genfn = fns[size][u]; 12099 12100 tcg_res[pass] = tcg_temp_new_i64(); 12101 12102 read_vec_element(s, tcg_op, rn, pass, MO_64); 12103 genfn(tcg_res[pass], tcg_op); 12104 12105 if (accum) { 12106 read_vec_element(s, tcg_op, rd, pass, MO_64); 12107 if (size == 0) { 12108 gen_helper_neon_addl_u16(tcg_res[pass], 12109 tcg_res[pass], tcg_op); 12110 } else { 12111 gen_helper_neon_addl_u32(tcg_res[pass], 12112 tcg_res[pass], tcg_op); 12113 } 12114 } 12115 } 12116 } 12117 if (!is_q) { 12118 tcg_res[1] = tcg_constant_i64(0); 12119 } 12120 for (pass = 0; pass < 2; pass++) { 12121 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12122 } 12123 } 12124 12125 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12126 { 12127 /* Implement SHLL and SHLL2 */ 12128 int pass; 12129 int part = is_q ? 2 : 0; 12130 TCGv_i64 tcg_res[2]; 12131 12132 for (pass = 0; pass < 2; pass++) { 12133 static NeonGenWidenFn * const widenfns[3] = { 12134 gen_helper_neon_widen_u8, 12135 gen_helper_neon_widen_u16, 12136 tcg_gen_extu_i32_i64, 12137 }; 12138 NeonGenWidenFn *widenfn = widenfns[size]; 12139 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12140 12141 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12142 tcg_res[pass] = tcg_temp_new_i64(); 12143 widenfn(tcg_res[pass], tcg_op); 12144 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12145 } 12146 12147 for (pass = 0; pass < 2; pass++) { 12148 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12149 } 12150 } 12151 12152 /* AdvSIMD two reg misc 12153 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12154 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12155 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12156 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12157 */ 12158 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12159 { 12160 int size = extract32(insn, 22, 2); 12161 int opcode = extract32(insn, 12, 5); 12162 bool u = extract32(insn, 29, 1); 12163 bool is_q = extract32(insn, 30, 1); 12164 int rn = extract32(insn, 5, 5); 12165 int rd = extract32(insn, 0, 5); 12166 bool need_fpstatus = false; 12167 int rmode = -1; 12168 TCGv_i32 tcg_rmode; 12169 TCGv_ptr tcg_fpstatus; 12170 12171 switch (opcode) { 12172 case 0x0: /* REV64, REV32 */ 12173 case 0x1: /* REV16 */ 12174 handle_rev(s, opcode, u, is_q, size, rn, rd); 12175 return; 12176 case 0x5: /* CNT, NOT, RBIT */ 12177 if (u && size == 0) { 12178 /* NOT */ 12179 break; 12180 } else if (u && size == 1) { 12181 /* RBIT */ 12182 break; 12183 } else if (!u && size == 0) { 12184 /* CNT */ 12185 break; 12186 } 12187 unallocated_encoding(s); 12188 return; 12189 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12190 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12191 if (size == 3) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 if (!fp_access_check(s)) { 12196 return; 12197 } 12198 12199 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12200 return; 12201 case 0x4: /* CLS, CLZ */ 12202 if (size == 3) { 12203 unallocated_encoding(s); 12204 return; 12205 } 12206 break; 12207 case 0x2: /* SADDLP, UADDLP */ 12208 case 0x6: /* SADALP, UADALP */ 12209 if (size == 3) { 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 if (!fp_access_check(s)) { 12214 return; 12215 } 12216 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12217 return; 12218 case 0x13: /* SHLL, SHLL2 */ 12219 if (u == 0 || size == 3) { 12220 unallocated_encoding(s); 12221 return; 12222 } 12223 if (!fp_access_check(s)) { 12224 return; 12225 } 12226 handle_shll(s, is_q, size, rn, rd); 12227 return; 12228 case 0xa: /* CMLT */ 12229 if (u == 1) { 12230 unallocated_encoding(s); 12231 return; 12232 } 12233 /* fall through */ 12234 case 0x8: /* CMGT, CMGE */ 12235 case 0x9: /* CMEQ, CMLE */ 12236 case 0xb: /* ABS, NEG */ 12237 if (size == 3 && !is_q) { 12238 unallocated_encoding(s); 12239 return; 12240 } 12241 break; 12242 case 0x3: /* SUQADD, USQADD */ 12243 if (size == 3 && !is_q) { 12244 unallocated_encoding(s); 12245 return; 12246 } 12247 if (!fp_access_check(s)) { 12248 return; 12249 } 12250 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12251 return; 12252 case 0x7: /* SQABS, SQNEG */ 12253 if (size == 3 && !is_q) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 break; 12258 case 0xc ... 0xf: 12259 case 0x16 ... 0x1f: 12260 { 12261 /* Floating point: U, size[1] and opcode indicate operation; 12262 * size[0] indicates single or double precision. 12263 */ 12264 int is_double = extract32(size, 0, 1); 12265 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12266 size = is_double ? 3 : 2; 12267 switch (opcode) { 12268 case 0x2f: /* FABS */ 12269 case 0x6f: /* FNEG */ 12270 if (size == 3 && !is_q) { 12271 unallocated_encoding(s); 12272 return; 12273 } 12274 break; 12275 case 0x1d: /* SCVTF */ 12276 case 0x5d: /* UCVTF */ 12277 { 12278 bool is_signed = (opcode == 0x1d) ? true : false; 12279 int elements = is_double ? 2 : is_q ? 4 : 2; 12280 if (is_double && !is_q) { 12281 unallocated_encoding(s); 12282 return; 12283 } 12284 if (!fp_access_check(s)) { 12285 return; 12286 } 12287 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12288 return; 12289 } 12290 case 0x2c: /* FCMGT (zero) */ 12291 case 0x2d: /* FCMEQ (zero) */ 12292 case 0x2e: /* FCMLT (zero) */ 12293 case 0x6c: /* FCMGE (zero) */ 12294 case 0x6d: /* FCMLE (zero) */ 12295 if (size == 3 && !is_q) { 12296 unallocated_encoding(s); 12297 return; 12298 } 12299 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12300 return; 12301 case 0x7f: /* FSQRT */ 12302 if (size == 3 && !is_q) { 12303 unallocated_encoding(s); 12304 return; 12305 } 12306 break; 12307 case 0x1a: /* FCVTNS */ 12308 case 0x1b: /* FCVTMS */ 12309 case 0x3a: /* FCVTPS */ 12310 case 0x3b: /* FCVTZS */ 12311 case 0x5a: /* FCVTNU */ 12312 case 0x5b: /* FCVTMU */ 12313 case 0x7a: /* FCVTPU */ 12314 case 0x7b: /* FCVTZU */ 12315 need_fpstatus = true; 12316 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12317 if (size == 3 && !is_q) { 12318 unallocated_encoding(s); 12319 return; 12320 } 12321 break; 12322 case 0x5c: /* FCVTAU */ 12323 case 0x1c: /* FCVTAS */ 12324 need_fpstatus = true; 12325 rmode = FPROUNDING_TIEAWAY; 12326 if (size == 3 && !is_q) { 12327 unallocated_encoding(s); 12328 return; 12329 } 12330 break; 12331 case 0x3c: /* URECPE */ 12332 if (size == 3) { 12333 unallocated_encoding(s); 12334 return; 12335 } 12336 /* fall through */ 12337 case 0x3d: /* FRECPE */ 12338 case 0x7d: /* FRSQRTE */ 12339 if (size == 3 && !is_q) { 12340 unallocated_encoding(s); 12341 return; 12342 } 12343 if (!fp_access_check(s)) { 12344 return; 12345 } 12346 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12347 return; 12348 case 0x56: /* FCVTXN, FCVTXN2 */ 12349 if (size == 2) { 12350 unallocated_encoding(s); 12351 return; 12352 } 12353 /* fall through */ 12354 case 0x16: /* FCVTN, FCVTN2 */ 12355 /* handle_2misc_narrow does a 2*size -> size operation, but these 12356 * instructions encode the source size rather than dest size. 12357 */ 12358 if (!fp_access_check(s)) { 12359 return; 12360 } 12361 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12362 return; 12363 case 0x36: /* BFCVTN, BFCVTN2 */ 12364 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12365 unallocated_encoding(s); 12366 return; 12367 } 12368 if (!fp_access_check(s)) { 12369 return; 12370 } 12371 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12372 return; 12373 case 0x17: /* FCVTL, FCVTL2 */ 12374 if (!fp_access_check(s)) { 12375 return; 12376 } 12377 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12378 return; 12379 case 0x18: /* FRINTN */ 12380 case 0x19: /* FRINTM */ 12381 case 0x38: /* FRINTP */ 12382 case 0x39: /* FRINTZ */ 12383 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12384 /* fall through */ 12385 case 0x59: /* FRINTX */ 12386 case 0x79: /* FRINTI */ 12387 need_fpstatus = true; 12388 if (size == 3 && !is_q) { 12389 unallocated_encoding(s); 12390 return; 12391 } 12392 break; 12393 case 0x58: /* FRINTA */ 12394 rmode = FPROUNDING_TIEAWAY; 12395 need_fpstatus = true; 12396 if (size == 3 && !is_q) { 12397 unallocated_encoding(s); 12398 return; 12399 } 12400 break; 12401 case 0x7c: /* URSQRTE */ 12402 if (size == 3) { 12403 unallocated_encoding(s); 12404 return; 12405 } 12406 break; 12407 case 0x1e: /* FRINT32Z */ 12408 case 0x1f: /* FRINT64Z */ 12409 rmode = FPROUNDING_ZERO; 12410 /* fall through */ 12411 case 0x5e: /* FRINT32X */ 12412 case 0x5f: /* FRINT64X */ 12413 need_fpstatus = true; 12414 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12415 unallocated_encoding(s); 12416 return; 12417 } 12418 break; 12419 default: 12420 unallocated_encoding(s); 12421 return; 12422 } 12423 break; 12424 } 12425 default: 12426 unallocated_encoding(s); 12427 return; 12428 } 12429 12430 if (!fp_access_check(s)) { 12431 return; 12432 } 12433 12434 if (need_fpstatus || rmode >= 0) { 12435 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12436 } else { 12437 tcg_fpstatus = NULL; 12438 } 12439 if (rmode >= 0) { 12440 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12441 } else { 12442 tcg_rmode = NULL; 12443 } 12444 12445 switch (opcode) { 12446 case 0x5: 12447 if (u && size == 0) { /* NOT */ 12448 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12449 return; 12450 } 12451 break; 12452 case 0x8: /* CMGT, CMGE */ 12453 if (u) { 12454 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12455 } else { 12456 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12457 } 12458 return; 12459 case 0x9: /* CMEQ, CMLE */ 12460 if (u) { 12461 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12462 } else { 12463 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12464 } 12465 return; 12466 case 0xa: /* CMLT */ 12467 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12468 return; 12469 case 0xb: 12470 if (u) { /* ABS, NEG */ 12471 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12472 } else { 12473 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12474 } 12475 return; 12476 } 12477 12478 if (size == 3) { 12479 /* All 64-bit element operations can be shared with scalar 2misc */ 12480 int pass; 12481 12482 /* Coverity claims (size == 3 && !is_q) has been eliminated 12483 * from all paths leading to here. 12484 */ 12485 tcg_debug_assert(is_q); 12486 for (pass = 0; pass < 2; pass++) { 12487 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12488 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12489 12490 read_vec_element(s, tcg_op, rn, pass, MO_64); 12491 12492 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12493 tcg_rmode, tcg_fpstatus); 12494 12495 write_vec_element(s, tcg_res, rd, pass, MO_64); 12496 } 12497 } else { 12498 int pass; 12499 12500 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12501 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12502 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12503 12504 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12505 12506 if (size == 2) { 12507 /* Special cases for 32 bit elements */ 12508 switch (opcode) { 12509 case 0x4: /* CLS */ 12510 if (u) { 12511 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12512 } else { 12513 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12514 } 12515 break; 12516 case 0x7: /* SQABS, SQNEG */ 12517 if (u) { 12518 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12519 } else { 12520 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12521 } 12522 break; 12523 case 0x2f: /* FABS */ 12524 gen_helper_vfp_abss(tcg_res, tcg_op); 12525 break; 12526 case 0x6f: /* FNEG */ 12527 gen_helper_vfp_negs(tcg_res, tcg_op); 12528 break; 12529 case 0x7f: /* FSQRT */ 12530 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12531 break; 12532 case 0x1a: /* FCVTNS */ 12533 case 0x1b: /* FCVTMS */ 12534 case 0x1c: /* FCVTAS */ 12535 case 0x3a: /* FCVTPS */ 12536 case 0x3b: /* FCVTZS */ 12537 gen_helper_vfp_tosls(tcg_res, tcg_op, 12538 tcg_constant_i32(0), tcg_fpstatus); 12539 break; 12540 case 0x5a: /* FCVTNU */ 12541 case 0x5b: /* FCVTMU */ 12542 case 0x5c: /* FCVTAU */ 12543 case 0x7a: /* FCVTPU */ 12544 case 0x7b: /* FCVTZU */ 12545 gen_helper_vfp_touls(tcg_res, tcg_op, 12546 tcg_constant_i32(0), tcg_fpstatus); 12547 break; 12548 case 0x18: /* FRINTN */ 12549 case 0x19: /* FRINTM */ 12550 case 0x38: /* FRINTP */ 12551 case 0x39: /* FRINTZ */ 12552 case 0x58: /* FRINTA */ 12553 case 0x79: /* FRINTI */ 12554 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12555 break; 12556 case 0x59: /* FRINTX */ 12557 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12558 break; 12559 case 0x7c: /* URSQRTE */ 12560 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12561 break; 12562 case 0x1e: /* FRINT32Z */ 12563 case 0x5e: /* FRINT32X */ 12564 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12565 break; 12566 case 0x1f: /* FRINT64Z */ 12567 case 0x5f: /* FRINT64X */ 12568 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12569 break; 12570 default: 12571 g_assert_not_reached(); 12572 } 12573 } else { 12574 /* Use helpers for 8 and 16 bit elements */ 12575 switch (opcode) { 12576 case 0x5: /* CNT, RBIT */ 12577 /* For these two insns size is part of the opcode specifier 12578 * (handled earlier); they always operate on byte elements. 12579 */ 12580 if (u) { 12581 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12582 } else { 12583 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12584 } 12585 break; 12586 case 0x7: /* SQABS, SQNEG */ 12587 { 12588 NeonGenOneOpEnvFn *genfn; 12589 static NeonGenOneOpEnvFn * const fns[2][2] = { 12590 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12591 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12592 }; 12593 genfn = fns[size][u]; 12594 genfn(tcg_res, tcg_env, tcg_op); 12595 break; 12596 } 12597 case 0x4: /* CLS, CLZ */ 12598 if (u) { 12599 if (size == 0) { 12600 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12601 } else { 12602 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12603 } 12604 } else { 12605 if (size == 0) { 12606 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12607 } else { 12608 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12609 } 12610 } 12611 break; 12612 default: 12613 g_assert_not_reached(); 12614 } 12615 } 12616 12617 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12618 } 12619 } 12620 clear_vec_high(s, is_q, rd); 12621 12622 if (tcg_rmode) { 12623 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12624 } 12625 } 12626 12627 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12628 * 12629 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12630 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12631 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12632 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12633 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12634 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12635 * 12636 * This actually covers two groups where scalar access is governed by 12637 * bit 28. A bunch of the instructions (float to integral) only exist 12638 * in the vector form and are un-allocated for the scalar decode. Also 12639 * in the scalar decode Q is always 1. 12640 */ 12641 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12642 { 12643 int fpop, opcode, a, u; 12644 int rn, rd; 12645 bool is_q; 12646 bool is_scalar; 12647 bool only_in_vector = false; 12648 12649 int pass; 12650 TCGv_i32 tcg_rmode = NULL; 12651 TCGv_ptr tcg_fpstatus = NULL; 12652 bool need_fpst = true; 12653 int rmode = -1; 12654 12655 if (!dc_isar_feature(aa64_fp16, s)) { 12656 unallocated_encoding(s); 12657 return; 12658 } 12659 12660 rd = extract32(insn, 0, 5); 12661 rn = extract32(insn, 5, 5); 12662 12663 a = extract32(insn, 23, 1); 12664 u = extract32(insn, 29, 1); 12665 is_scalar = extract32(insn, 28, 1); 12666 is_q = extract32(insn, 30, 1); 12667 12668 opcode = extract32(insn, 12, 5); 12669 fpop = deposit32(opcode, 5, 1, a); 12670 fpop = deposit32(fpop, 6, 1, u); 12671 12672 switch (fpop) { 12673 case 0x1d: /* SCVTF */ 12674 case 0x5d: /* UCVTF */ 12675 { 12676 int elements; 12677 12678 if (is_scalar) { 12679 elements = 1; 12680 } else { 12681 elements = (is_q ? 8 : 4); 12682 } 12683 12684 if (!fp_access_check(s)) { 12685 return; 12686 } 12687 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12688 return; 12689 } 12690 break; 12691 case 0x2c: /* FCMGT (zero) */ 12692 case 0x2d: /* FCMEQ (zero) */ 12693 case 0x2e: /* FCMLT (zero) */ 12694 case 0x6c: /* FCMGE (zero) */ 12695 case 0x6d: /* FCMLE (zero) */ 12696 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12697 return; 12698 case 0x3d: /* FRECPE */ 12699 case 0x3f: /* FRECPX */ 12700 break; 12701 case 0x18: /* FRINTN */ 12702 only_in_vector = true; 12703 rmode = FPROUNDING_TIEEVEN; 12704 break; 12705 case 0x19: /* FRINTM */ 12706 only_in_vector = true; 12707 rmode = FPROUNDING_NEGINF; 12708 break; 12709 case 0x38: /* FRINTP */ 12710 only_in_vector = true; 12711 rmode = FPROUNDING_POSINF; 12712 break; 12713 case 0x39: /* FRINTZ */ 12714 only_in_vector = true; 12715 rmode = FPROUNDING_ZERO; 12716 break; 12717 case 0x58: /* FRINTA */ 12718 only_in_vector = true; 12719 rmode = FPROUNDING_TIEAWAY; 12720 break; 12721 case 0x59: /* FRINTX */ 12722 case 0x79: /* FRINTI */ 12723 only_in_vector = true; 12724 /* current rounding mode */ 12725 break; 12726 case 0x1a: /* FCVTNS */ 12727 rmode = FPROUNDING_TIEEVEN; 12728 break; 12729 case 0x1b: /* FCVTMS */ 12730 rmode = FPROUNDING_NEGINF; 12731 break; 12732 case 0x1c: /* FCVTAS */ 12733 rmode = FPROUNDING_TIEAWAY; 12734 break; 12735 case 0x3a: /* FCVTPS */ 12736 rmode = FPROUNDING_POSINF; 12737 break; 12738 case 0x3b: /* FCVTZS */ 12739 rmode = FPROUNDING_ZERO; 12740 break; 12741 case 0x5a: /* FCVTNU */ 12742 rmode = FPROUNDING_TIEEVEN; 12743 break; 12744 case 0x5b: /* FCVTMU */ 12745 rmode = FPROUNDING_NEGINF; 12746 break; 12747 case 0x5c: /* FCVTAU */ 12748 rmode = FPROUNDING_TIEAWAY; 12749 break; 12750 case 0x7a: /* FCVTPU */ 12751 rmode = FPROUNDING_POSINF; 12752 break; 12753 case 0x7b: /* FCVTZU */ 12754 rmode = FPROUNDING_ZERO; 12755 break; 12756 case 0x2f: /* FABS */ 12757 case 0x6f: /* FNEG */ 12758 need_fpst = false; 12759 break; 12760 case 0x7d: /* FRSQRTE */ 12761 case 0x7f: /* FSQRT (vector) */ 12762 break; 12763 default: 12764 unallocated_encoding(s); 12765 return; 12766 } 12767 12768 12769 /* Check additional constraints for the scalar encoding */ 12770 if (is_scalar) { 12771 if (!is_q) { 12772 unallocated_encoding(s); 12773 return; 12774 } 12775 /* FRINTxx is only in the vector form */ 12776 if (only_in_vector) { 12777 unallocated_encoding(s); 12778 return; 12779 } 12780 } 12781 12782 if (!fp_access_check(s)) { 12783 return; 12784 } 12785 12786 if (rmode >= 0 || need_fpst) { 12787 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12788 } 12789 12790 if (rmode >= 0) { 12791 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12792 } 12793 12794 if (is_scalar) { 12795 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12796 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12797 12798 switch (fpop) { 12799 case 0x1a: /* FCVTNS */ 12800 case 0x1b: /* FCVTMS */ 12801 case 0x1c: /* FCVTAS */ 12802 case 0x3a: /* FCVTPS */ 12803 case 0x3b: /* FCVTZS */ 12804 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12805 break; 12806 case 0x3d: /* FRECPE */ 12807 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12808 break; 12809 case 0x3f: /* FRECPX */ 12810 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12811 break; 12812 case 0x5a: /* FCVTNU */ 12813 case 0x5b: /* FCVTMU */ 12814 case 0x5c: /* FCVTAU */ 12815 case 0x7a: /* FCVTPU */ 12816 case 0x7b: /* FCVTZU */ 12817 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12818 break; 12819 case 0x6f: /* FNEG */ 12820 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12821 break; 12822 case 0x7d: /* FRSQRTE */ 12823 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12824 break; 12825 default: 12826 g_assert_not_reached(); 12827 } 12828 12829 /* limit any sign extension going on */ 12830 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12831 write_fp_sreg(s, rd, tcg_res); 12832 } else { 12833 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12834 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12835 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12836 12837 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12838 12839 switch (fpop) { 12840 case 0x1a: /* FCVTNS */ 12841 case 0x1b: /* FCVTMS */ 12842 case 0x1c: /* FCVTAS */ 12843 case 0x3a: /* FCVTPS */ 12844 case 0x3b: /* FCVTZS */ 12845 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12846 break; 12847 case 0x3d: /* FRECPE */ 12848 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12849 break; 12850 case 0x5a: /* FCVTNU */ 12851 case 0x5b: /* FCVTMU */ 12852 case 0x5c: /* FCVTAU */ 12853 case 0x7a: /* FCVTPU */ 12854 case 0x7b: /* FCVTZU */ 12855 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12856 break; 12857 case 0x18: /* FRINTN */ 12858 case 0x19: /* FRINTM */ 12859 case 0x38: /* FRINTP */ 12860 case 0x39: /* FRINTZ */ 12861 case 0x58: /* FRINTA */ 12862 case 0x79: /* FRINTI */ 12863 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12864 break; 12865 case 0x59: /* FRINTX */ 12866 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12867 break; 12868 case 0x2f: /* FABS */ 12869 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12870 break; 12871 case 0x6f: /* FNEG */ 12872 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12873 break; 12874 case 0x7d: /* FRSQRTE */ 12875 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12876 break; 12877 case 0x7f: /* FSQRT */ 12878 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12879 break; 12880 default: 12881 g_assert_not_reached(); 12882 } 12883 12884 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12885 } 12886 12887 clear_vec_high(s, is_q, rd); 12888 } 12889 12890 if (tcg_rmode) { 12891 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12892 } 12893 } 12894 12895 /* AdvSIMD scalar x indexed element 12896 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12897 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12898 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12899 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12900 * AdvSIMD vector x indexed element 12901 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12902 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12903 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12904 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12905 */ 12906 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12907 { 12908 /* This encoding has two kinds of instruction: 12909 * normal, where we perform elt x idxelt => elt for each 12910 * element in the vector 12911 * long, where we perform elt x idxelt and generate a result of 12912 * double the width of the input element 12913 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12914 */ 12915 bool is_scalar = extract32(insn, 28, 1); 12916 bool is_q = extract32(insn, 30, 1); 12917 bool u = extract32(insn, 29, 1); 12918 int size = extract32(insn, 22, 2); 12919 int l = extract32(insn, 21, 1); 12920 int m = extract32(insn, 20, 1); 12921 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12922 int rm = extract32(insn, 16, 4); 12923 int opcode = extract32(insn, 12, 4); 12924 int h = extract32(insn, 11, 1); 12925 int rn = extract32(insn, 5, 5); 12926 int rd = extract32(insn, 0, 5); 12927 bool is_long = false; 12928 int is_fp = 0; 12929 bool is_fp16 = false; 12930 int index; 12931 TCGv_ptr fpst; 12932 12933 switch (16 * u + opcode) { 12934 case 0x08: /* MUL */ 12935 case 0x10: /* MLA */ 12936 case 0x14: /* MLS */ 12937 if (is_scalar) { 12938 unallocated_encoding(s); 12939 return; 12940 } 12941 break; 12942 case 0x02: /* SMLAL, SMLAL2 */ 12943 case 0x12: /* UMLAL, UMLAL2 */ 12944 case 0x06: /* SMLSL, SMLSL2 */ 12945 case 0x16: /* UMLSL, UMLSL2 */ 12946 case 0x0a: /* SMULL, SMULL2 */ 12947 case 0x1a: /* UMULL, UMULL2 */ 12948 if (is_scalar) { 12949 unallocated_encoding(s); 12950 return; 12951 } 12952 is_long = true; 12953 break; 12954 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12955 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12956 case 0x0b: /* SQDMULL, SQDMULL2 */ 12957 is_long = true; 12958 break; 12959 case 0x0c: /* SQDMULH */ 12960 case 0x0d: /* SQRDMULH */ 12961 break; 12962 case 0x01: /* FMLA */ 12963 case 0x05: /* FMLS */ 12964 case 0x09: /* FMUL */ 12965 case 0x19: /* FMULX */ 12966 is_fp = 1; 12967 break; 12968 case 0x1d: /* SQRDMLAH */ 12969 case 0x1f: /* SQRDMLSH */ 12970 if (!dc_isar_feature(aa64_rdm, s)) { 12971 unallocated_encoding(s); 12972 return; 12973 } 12974 break; 12975 case 0x0e: /* SDOT */ 12976 case 0x1e: /* UDOT */ 12977 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12978 unallocated_encoding(s); 12979 return; 12980 } 12981 break; 12982 case 0x0f: 12983 switch (size) { 12984 case 0: /* SUDOT */ 12985 case 2: /* USDOT */ 12986 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12987 unallocated_encoding(s); 12988 return; 12989 } 12990 size = MO_32; 12991 break; 12992 case 1: /* BFDOT */ 12993 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12994 unallocated_encoding(s); 12995 return; 12996 } 12997 size = MO_32; 12998 break; 12999 case 3: /* BFMLAL{B,T} */ 13000 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13001 unallocated_encoding(s); 13002 return; 13003 } 13004 /* can't set is_fp without other incorrect size checks */ 13005 size = MO_16; 13006 break; 13007 default: 13008 unallocated_encoding(s); 13009 return; 13010 } 13011 break; 13012 case 0x11: /* FCMLA #0 */ 13013 case 0x13: /* FCMLA #90 */ 13014 case 0x15: /* FCMLA #180 */ 13015 case 0x17: /* FCMLA #270 */ 13016 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13017 unallocated_encoding(s); 13018 return; 13019 } 13020 is_fp = 2; 13021 break; 13022 case 0x00: /* FMLAL */ 13023 case 0x04: /* FMLSL */ 13024 case 0x18: /* FMLAL2 */ 13025 case 0x1c: /* FMLSL2 */ 13026 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13027 unallocated_encoding(s); 13028 return; 13029 } 13030 size = MO_16; 13031 /* is_fp, but we pass tcg_env not fp_status. */ 13032 break; 13033 default: 13034 unallocated_encoding(s); 13035 return; 13036 } 13037 13038 switch (is_fp) { 13039 case 1: /* normal fp */ 13040 /* convert insn encoded size to MemOp size */ 13041 switch (size) { 13042 case 0: /* half-precision */ 13043 size = MO_16; 13044 is_fp16 = true; 13045 break; 13046 case MO_32: /* single precision */ 13047 case MO_64: /* double precision */ 13048 break; 13049 default: 13050 unallocated_encoding(s); 13051 return; 13052 } 13053 break; 13054 13055 case 2: /* complex fp */ 13056 /* Each indexable element is a complex pair. */ 13057 size += 1; 13058 switch (size) { 13059 case MO_32: 13060 if (h && !is_q) { 13061 unallocated_encoding(s); 13062 return; 13063 } 13064 is_fp16 = true; 13065 break; 13066 case MO_64: 13067 break; 13068 default: 13069 unallocated_encoding(s); 13070 return; 13071 } 13072 break; 13073 13074 default: /* integer */ 13075 switch (size) { 13076 case MO_8: 13077 case MO_64: 13078 unallocated_encoding(s); 13079 return; 13080 } 13081 break; 13082 } 13083 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13084 unallocated_encoding(s); 13085 return; 13086 } 13087 13088 /* Given MemOp size, adjust register and indexing. */ 13089 switch (size) { 13090 case MO_16: 13091 index = h << 2 | l << 1 | m; 13092 break; 13093 case MO_32: 13094 index = h << 1 | l; 13095 rm |= m << 4; 13096 break; 13097 case MO_64: 13098 if (l || !is_q) { 13099 unallocated_encoding(s); 13100 return; 13101 } 13102 index = h; 13103 rm |= m << 4; 13104 break; 13105 default: 13106 g_assert_not_reached(); 13107 } 13108 13109 if (!fp_access_check(s)) { 13110 return; 13111 } 13112 13113 if (is_fp) { 13114 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13115 } else { 13116 fpst = NULL; 13117 } 13118 13119 switch (16 * u + opcode) { 13120 case 0x0e: /* SDOT */ 13121 case 0x1e: /* UDOT */ 13122 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13123 u ? gen_helper_gvec_udot_idx_b 13124 : gen_helper_gvec_sdot_idx_b); 13125 return; 13126 case 0x0f: 13127 switch (extract32(insn, 22, 2)) { 13128 case 0: /* SUDOT */ 13129 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13130 gen_helper_gvec_sudot_idx_b); 13131 return; 13132 case 1: /* BFDOT */ 13133 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13134 gen_helper_gvec_bfdot_idx); 13135 return; 13136 case 2: /* USDOT */ 13137 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13138 gen_helper_gvec_usdot_idx_b); 13139 return; 13140 case 3: /* BFMLAL{B,T} */ 13141 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13142 gen_helper_gvec_bfmlal_idx); 13143 return; 13144 } 13145 g_assert_not_reached(); 13146 case 0x11: /* FCMLA #0 */ 13147 case 0x13: /* FCMLA #90 */ 13148 case 0x15: /* FCMLA #180 */ 13149 case 0x17: /* FCMLA #270 */ 13150 { 13151 int rot = extract32(insn, 13, 2); 13152 int data = (index << 2) | rot; 13153 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13154 vec_full_reg_offset(s, rn), 13155 vec_full_reg_offset(s, rm), 13156 vec_full_reg_offset(s, rd), fpst, 13157 is_q ? 16 : 8, vec_full_reg_size(s), data, 13158 size == MO_64 13159 ? gen_helper_gvec_fcmlas_idx 13160 : gen_helper_gvec_fcmlah_idx); 13161 } 13162 return; 13163 13164 case 0x00: /* FMLAL */ 13165 case 0x04: /* FMLSL */ 13166 case 0x18: /* FMLAL2 */ 13167 case 0x1c: /* FMLSL2 */ 13168 { 13169 int is_s = extract32(opcode, 2, 1); 13170 int is_2 = u; 13171 int data = (index << 2) | (is_2 << 1) | is_s; 13172 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13173 vec_full_reg_offset(s, rn), 13174 vec_full_reg_offset(s, rm), tcg_env, 13175 is_q ? 16 : 8, vec_full_reg_size(s), 13176 data, gen_helper_gvec_fmlal_idx_a64); 13177 } 13178 return; 13179 13180 case 0x08: /* MUL */ 13181 if (!is_long && !is_scalar) { 13182 static gen_helper_gvec_3 * const fns[3] = { 13183 gen_helper_gvec_mul_idx_h, 13184 gen_helper_gvec_mul_idx_s, 13185 gen_helper_gvec_mul_idx_d, 13186 }; 13187 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13188 vec_full_reg_offset(s, rn), 13189 vec_full_reg_offset(s, rm), 13190 is_q ? 16 : 8, vec_full_reg_size(s), 13191 index, fns[size - 1]); 13192 return; 13193 } 13194 break; 13195 13196 case 0x10: /* MLA */ 13197 if (!is_long && !is_scalar) { 13198 static gen_helper_gvec_4 * const fns[3] = { 13199 gen_helper_gvec_mla_idx_h, 13200 gen_helper_gvec_mla_idx_s, 13201 gen_helper_gvec_mla_idx_d, 13202 }; 13203 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13204 vec_full_reg_offset(s, rn), 13205 vec_full_reg_offset(s, rm), 13206 vec_full_reg_offset(s, rd), 13207 is_q ? 16 : 8, vec_full_reg_size(s), 13208 index, fns[size - 1]); 13209 return; 13210 } 13211 break; 13212 13213 case 0x14: /* MLS */ 13214 if (!is_long && !is_scalar) { 13215 static gen_helper_gvec_4 * const fns[3] = { 13216 gen_helper_gvec_mls_idx_h, 13217 gen_helper_gvec_mls_idx_s, 13218 gen_helper_gvec_mls_idx_d, 13219 }; 13220 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13221 vec_full_reg_offset(s, rn), 13222 vec_full_reg_offset(s, rm), 13223 vec_full_reg_offset(s, rd), 13224 is_q ? 16 : 8, vec_full_reg_size(s), 13225 index, fns[size - 1]); 13226 return; 13227 } 13228 break; 13229 } 13230 13231 if (size == 3) { 13232 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13233 int pass; 13234 13235 assert(is_fp && is_q && !is_long); 13236 13237 read_vec_element(s, tcg_idx, rm, index, MO_64); 13238 13239 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13240 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13241 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13242 13243 read_vec_element(s, tcg_op, rn, pass, MO_64); 13244 13245 switch (16 * u + opcode) { 13246 case 0x05: /* FMLS */ 13247 /* As usual for ARM, separate negation for fused multiply-add */ 13248 gen_helper_vfp_negd(tcg_op, tcg_op); 13249 /* fall through */ 13250 case 0x01: /* FMLA */ 13251 read_vec_element(s, tcg_res, rd, pass, MO_64); 13252 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13253 break; 13254 case 0x09: /* FMUL */ 13255 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13256 break; 13257 case 0x19: /* FMULX */ 13258 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13259 break; 13260 default: 13261 g_assert_not_reached(); 13262 } 13263 13264 write_vec_element(s, tcg_res, rd, pass, MO_64); 13265 } 13266 13267 clear_vec_high(s, !is_scalar, rd); 13268 } else if (!is_long) { 13269 /* 32 bit floating point, or 16 or 32 bit integer. 13270 * For the 16 bit scalar case we use the usual Neon helpers and 13271 * rely on the fact that 0 op 0 == 0 with no side effects. 13272 */ 13273 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13274 int pass, maxpasses; 13275 13276 if (is_scalar) { 13277 maxpasses = 1; 13278 } else { 13279 maxpasses = is_q ? 4 : 2; 13280 } 13281 13282 read_vec_element_i32(s, tcg_idx, rm, index, size); 13283 13284 if (size == 1 && !is_scalar) { 13285 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13286 * the index into both halves of the 32 bit tcg_idx and then use 13287 * the usual Neon helpers. 13288 */ 13289 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13290 } 13291 13292 for (pass = 0; pass < maxpasses; pass++) { 13293 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13294 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13295 13296 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13297 13298 switch (16 * u + opcode) { 13299 case 0x08: /* MUL */ 13300 case 0x10: /* MLA */ 13301 case 0x14: /* MLS */ 13302 { 13303 static NeonGenTwoOpFn * const fns[2][2] = { 13304 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13305 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13306 }; 13307 NeonGenTwoOpFn *genfn; 13308 bool is_sub = opcode == 0x4; 13309 13310 if (size == 1) { 13311 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13312 } else { 13313 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13314 } 13315 if (opcode == 0x8) { 13316 break; 13317 } 13318 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13319 genfn = fns[size - 1][is_sub]; 13320 genfn(tcg_res, tcg_op, tcg_res); 13321 break; 13322 } 13323 case 0x05: /* FMLS */ 13324 case 0x01: /* FMLA */ 13325 read_vec_element_i32(s, tcg_res, rd, pass, 13326 is_scalar ? size : MO_32); 13327 switch (size) { 13328 case 1: 13329 if (opcode == 0x5) { 13330 /* As usual for ARM, separate negation for fused 13331 * multiply-add */ 13332 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13333 } 13334 if (is_scalar) { 13335 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13336 tcg_res, fpst); 13337 } else { 13338 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13339 tcg_res, fpst); 13340 } 13341 break; 13342 case 2: 13343 if (opcode == 0x5) { 13344 /* As usual for ARM, separate negation for 13345 * fused multiply-add */ 13346 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13347 } 13348 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13349 tcg_res, fpst); 13350 break; 13351 default: 13352 g_assert_not_reached(); 13353 } 13354 break; 13355 case 0x09: /* FMUL */ 13356 switch (size) { 13357 case 1: 13358 if (is_scalar) { 13359 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13360 tcg_idx, fpst); 13361 } else { 13362 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13363 tcg_idx, fpst); 13364 } 13365 break; 13366 case 2: 13367 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13368 break; 13369 default: 13370 g_assert_not_reached(); 13371 } 13372 break; 13373 case 0x19: /* FMULX */ 13374 switch (size) { 13375 case 1: 13376 if (is_scalar) { 13377 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13378 tcg_idx, fpst); 13379 } else { 13380 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13381 tcg_idx, fpst); 13382 } 13383 break; 13384 case 2: 13385 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13386 break; 13387 default: 13388 g_assert_not_reached(); 13389 } 13390 break; 13391 case 0x0c: /* SQDMULH */ 13392 if (size == 1) { 13393 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13394 tcg_op, tcg_idx); 13395 } else { 13396 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13397 tcg_op, tcg_idx); 13398 } 13399 break; 13400 case 0x0d: /* SQRDMULH */ 13401 if (size == 1) { 13402 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13403 tcg_op, tcg_idx); 13404 } else { 13405 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13406 tcg_op, tcg_idx); 13407 } 13408 break; 13409 case 0x1d: /* SQRDMLAH */ 13410 read_vec_element_i32(s, tcg_res, rd, pass, 13411 is_scalar ? size : MO_32); 13412 if (size == 1) { 13413 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13414 tcg_op, tcg_idx, tcg_res); 13415 } else { 13416 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13417 tcg_op, tcg_idx, tcg_res); 13418 } 13419 break; 13420 case 0x1f: /* SQRDMLSH */ 13421 read_vec_element_i32(s, tcg_res, rd, pass, 13422 is_scalar ? size : MO_32); 13423 if (size == 1) { 13424 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13425 tcg_op, tcg_idx, tcg_res); 13426 } else { 13427 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13428 tcg_op, tcg_idx, tcg_res); 13429 } 13430 break; 13431 default: 13432 g_assert_not_reached(); 13433 } 13434 13435 if (is_scalar) { 13436 write_fp_sreg(s, rd, tcg_res); 13437 } else { 13438 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13439 } 13440 } 13441 13442 clear_vec_high(s, is_q, rd); 13443 } else { 13444 /* long ops: 16x16->32 or 32x32->64 */ 13445 TCGv_i64 tcg_res[2]; 13446 int pass; 13447 bool satop = extract32(opcode, 0, 1); 13448 MemOp memop = MO_32; 13449 13450 if (satop || !u) { 13451 memop |= MO_SIGN; 13452 } 13453 13454 if (size == 2) { 13455 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13456 13457 read_vec_element(s, tcg_idx, rm, index, memop); 13458 13459 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13460 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13461 TCGv_i64 tcg_passres; 13462 int passelt; 13463 13464 if (is_scalar) { 13465 passelt = 0; 13466 } else { 13467 passelt = pass + (is_q * 2); 13468 } 13469 13470 read_vec_element(s, tcg_op, rn, passelt, memop); 13471 13472 tcg_res[pass] = tcg_temp_new_i64(); 13473 13474 if (opcode == 0xa || opcode == 0xb) { 13475 /* Non-accumulating ops */ 13476 tcg_passres = tcg_res[pass]; 13477 } else { 13478 tcg_passres = tcg_temp_new_i64(); 13479 } 13480 13481 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13482 13483 if (satop) { 13484 /* saturating, doubling */ 13485 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13486 tcg_passres, tcg_passres); 13487 } 13488 13489 if (opcode == 0xa || opcode == 0xb) { 13490 continue; 13491 } 13492 13493 /* Accumulating op: handle accumulate step */ 13494 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13495 13496 switch (opcode) { 13497 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13498 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13499 break; 13500 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13501 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13502 break; 13503 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13504 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13505 /* fall through */ 13506 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13507 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13508 tcg_res[pass], 13509 tcg_passres); 13510 break; 13511 default: 13512 g_assert_not_reached(); 13513 } 13514 } 13515 13516 clear_vec_high(s, !is_scalar, rd); 13517 } else { 13518 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13519 13520 assert(size == 1); 13521 read_vec_element_i32(s, tcg_idx, rm, index, size); 13522 13523 if (!is_scalar) { 13524 /* The simplest way to handle the 16x16 indexed ops is to 13525 * duplicate the index into both halves of the 32 bit tcg_idx 13526 * and then use the usual Neon helpers. 13527 */ 13528 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13529 } 13530 13531 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13532 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13533 TCGv_i64 tcg_passres; 13534 13535 if (is_scalar) { 13536 read_vec_element_i32(s, tcg_op, rn, pass, size); 13537 } else { 13538 read_vec_element_i32(s, tcg_op, rn, 13539 pass + (is_q * 2), MO_32); 13540 } 13541 13542 tcg_res[pass] = tcg_temp_new_i64(); 13543 13544 if (opcode == 0xa || opcode == 0xb) { 13545 /* Non-accumulating ops */ 13546 tcg_passres = tcg_res[pass]; 13547 } else { 13548 tcg_passres = tcg_temp_new_i64(); 13549 } 13550 13551 if (memop & MO_SIGN) { 13552 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13553 } else { 13554 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13555 } 13556 if (satop) { 13557 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13558 tcg_passres, tcg_passres); 13559 } 13560 13561 if (opcode == 0xa || opcode == 0xb) { 13562 continue; 13563 } 13564 13565 /* Accumulating op: handle accumulate step */ 13566 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13567 13568 switch (opcode) { 13569 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13570 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13571 tcg_passres); 13572 break; 13573 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13574 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13575 tcg_passres); 13576 break; 13577 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13578 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13579 /* fall through */ 13580 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13581 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13582 tcg_res[pass], 13583 tcg_passres); 13584 break; 13585 default: 13586 g_assert_not_reached(); 13587 } 13588 } 13589 13590 if (is_scalar) { 13591 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13592 } 13593 } 13594 13595 if (is_scalar) { 13596 tcg_res[1] = tcg_constant_i64(0); 13597 } 13598 13599 for (pass = 0; pass < 2; pass++) { 13600 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13601 } 13602 } 13603 } 13604 13605 /* C3.6 Data processing - SIMD, inc Crypto 13606 * 13607 * As the decode gets a little complex we are using a table based 13608 * approach for this part of the decode. 13609 */ 13610 static const AArch64DecodeTable data_proc_simd[] = { 13611 /* pattern , mask , fn */ 13612 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13613 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13614 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13615 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13616 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13617 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13618 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13619 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13620 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13621 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13622 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13623 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13624 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13625 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13626 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13627 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13628 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13629 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13630 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13631 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13632 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13633 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13634 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13635 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13636 { 0x00000000, 0x00000000, NULL } 13637 }; 13638 13639 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13640 { 13641 /* Note that this is called with all non-FP cases from 13642 * table C3-6 so it must UNDEF for entries not specifically 13643 * allocated to instructions in that table. 13644 */ 13645 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13646 if (fn) { 13647 fn(s, insn); 13648 } else { 13649 unallocated_encoding(s); 13650 } 13651 } 13652 13653 /* C3.6 Data processing - SIMD and floating point */ 13654 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13655 { 13656 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13657 disas_data_proc_fp(s, insn); 13658 } else { 13659 /* SIMD, including crypto */ 13660 disas_data_proc_simd(s, insn); 13661 } 13662 } 13663 13664 static bool trans_OK(DisasContext *s, arg_OK *a) 13665 { 13666 return true; 13667 } 13668 13669 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13670 { 13671 s->is_nonstreaming = true; 13672 return true; 13673 } 13674 13675 /** 13676 * is_guarded_page: 13677 * @env: The cpu environment 13678 * @s: The DisasContext 13679 * 13680 * Return true if the page is guarded. 13681 */ 13682 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13683 { 13684 uint64_t addr = s->base.pc_first; 13685 #ifdef CONFIG_USER_ONLY 13686 return page_get_flags(addr) & PAGE_BTI; 13687 #else 13688 CPUTLBEntryFull *full; 13689 void *host; 13690 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13691 int flags; 13692 13693 /* 13694 * We test this immediately after reading an insn, which means 13695 * that the TLB entry must be present and valid, and thus this 13696 * access will never raise an exception. 13697 */ 13698 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13699 false, &host, &full, 0); 13700 assert(!(flags & TLB_INVALID_MASK)); 13701 13702 return full->extra.arm.guarded; 13703 #endif 13704 } 13705 13706 /** 13707 * btype_destination_ok: 13708 * @insn: The instruction at the branch destination 13709 * @bt: SCTLR_ELx.BT 13710 * @btype: PSTATE.BTYPE, and is non-zero 13711 * 13712 * On a guarded page, there are a limited number of insns 13713 * that may be present at the branch target: 13714 * - branch target identifiers, 13715 * - paciasp, pacibsp, 13716 * - BRK insn 13717 * - HLT insn 13718 * Anything else causes a Branch Target Exception. 13719 * 13720 * Return true if the branch is compatible, false to raise BTITRAP. 13721 */ 13722 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13723 { 13724 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13725 /* HINT space */ 13726 switch (extract32(insn, 5, 7)) { 13727 case 0b011001: /* PACIASP */ 13728 case 0b011011: /* PACIBSP */ 13729 /* 13730 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13731 * with btype == 3. Otherwise all btype are ok. 13732 */ 13733 return !bt || btype != 3; 13734 case 0b100000: /* BTI */ 13735 /* Not compatible with any btype. */ 13736 return false; 13737 case 0b100010: /* BTI c */ 13738 /* Not compatible with btype == 3 */ 13739 return btype != 3; 13740 case 0b100100: /* BTI j */ 13741 /* Not compatible with btype == 2 */ 13742 return btype != 2; 13743 case 0b100110: /* BTI jc */ 13744 /* Compatible with any btype. */ 13745 return true; 13746 } 13747 } else { 13748 switch (insn & 0xffe0001fu) { 13749 case 0xd4200000u: /* BRK */ 13750 case 0xd4400000u: /* HLT */ 13751 /* Give priority to the breakpoint exception. */ 13752 return true; 13753 } 13754 } 13755 return false; 13756 } 13757 13758 /* C3.1 A64 instruction index by encoding */ 13759 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13760 { 13761 switch (extract32(insn, 25, 4)) { 13762 case 0x5: 13763 case 0xd: /* Data processing - register */ 13764 disas_data_proc_reg(s, insn); 13765 break; 13766 case 0x7: 13767 case 0xf: /* Data processing - SIMD and floating point */ 13768 disas_data_proc_simd_fp(s, insn); 13769 break; 13770 default: 13771 unallocated_encoding(s); 13772 break; 13773 } 13774 } 13775 13776 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13777 CPUState *cpu) 13778 { 13779 DisasContext *dc = container_of(dcbase, DisasContext, base); 13780 CPUARMState *env = cpu_env(cpu); 13781 ARMCPU *arm_cpu = env_archcpu(env); 13782 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13783 int bound, core_mmu_idx; 13784 13785 dc->isar = &arm_cpu->isar; 13786 dc->condjmp = 0; 13787 dc->pc_save = dc->base.pc_first; 13788 dc->aarch64 = true; 13789 dc->thumb = false; 13790 dc->sctlr_b = 0; 13791 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13792 dc->condexec_mask = 0; 13793 dc->condexec_cond = 0; 13794 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13795 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13796 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13797 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13798 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13799 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13800 #if !defined(CONFIG_USER_ONLY) 13801 dc->user = (dc->current_el == 0); 13802 #endif 13803 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13804 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13805 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13806 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13807 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13808 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13809 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13810 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13811 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13812 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13813 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13814 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13815 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13816 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13817 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13818 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13819 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13820 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13821 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13822 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13823 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13824 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13825 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13826 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13827 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13828 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13829 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13830 dc->vec_len = 0; 13831 dc->vec_stride = 0; 13832 dc->cp_regs = arm_cpu->cp_regs; 13833 dc->features = env->features; 13834 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13835 dc->gm_blocksize = arm_cpu->gm_blocksize; 13836 13837 #ifdef CONFIG_USER_ONLY 13838 /* In sve_probe_page, we assume TBI is enabled. */ 13839 tcg_debug_assert(dc->tbid & 1); 13840 #endif 13841 13842 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13843 13844 /* Single step state. The code-generation logic here is: 13845 * SS_ACTIVE == 0: 13846 * generate code with no special handling for single-stepping (except 13847 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13848 * this happens anyway because those changes are all system register or 13849 * PSTATE writes). 13850 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13851 * emit code for one insn 13852 * emit code to clear PSTATE.SS 13853 * emit code to generate software step exception for completed step 13854 * end TB (as usual for having generated an exception) 13855 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13856 * emit code to generate a software step exception 13857 * end the TB 13858 */ 13859 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13860 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13861 dc->is_ldex = false; 13862 13863 /* Bound the number of insns to execute to those left on the page. */ 13864 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13865 13866 /* If architectural single step active, limit to 1. */ 13867 if (dc->ss_active) { 13868 bound = 1; 13869 } 13870 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13871 } 13872 13873 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13874 { 13875 } 13876 13877 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13878 { 13879 DisasContext *dc = container_of(dcbase, DisasContext, base); 13880 target_ulong pc_arg = dc->base.pc_next; 13881 13882 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13883 pc_arg &= ~TARGET_PAGE_MASK; 13884 } 13885 tcg_gen_insn_start(pc_arg, 0, 0); 13886 dc->insn_start_updated = false; 13887 } 13888 13889 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13890 { 13891 DisasContext *s = container_of(dcbase, DisasContext, base); 13892 CPUARMState *env = cpu_env(cpu); 13893 uint64_t pc = s->base.pc_next; 13894 uint32_t insn; 13895 13896 /* Singlestep exceptions have the highest priority. */ 13897 if (s->ss_active && !s->pstate_ss) { 13898 /* Singlestep state is Active-pending. 13899 * If we're in this state at the start of a TB then either 13900 * a) we just took an exception to an EL which is being debugged 13901 * and this is the first insn in the exception handler 13902 * b) debug exceptions were masked and we just unmasked them 13903 * without changing EL (eg by clearing PSTATE.D) 13904 * In either case we're going to take a swstep exception in the 13905 * "did not step an insn" case, and so the syndrome ISV and EX 13906 * bits should be zero. 13907 */ 13908 assert(s->base.num_insns == 1); 13909 gen_swstep_exception(s, 0, 0); 13910 s->base.is_jmp = DISAS_NORETURN; 13911 s->base.pc_next = pc + 4; 13912 return; 13913 } 13914 13915 if (pc & 3) { 13916 /* 13917 * PC alignment fault. This has priority over the instruction abort 13918 * that we would receive from a translation fault via arm_ldl_code. 13919 * This should only be possible after an indirect branch, at the 13920 * start of the TB. 13921 */ 13922 assert(s->base.num_insns == 1); 13923 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13924 s->base.is_jmp = DISAS_NORETURN; 13925 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13926 return; 13927 } 13928 13929 s->pc_curr = pc; 13930 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13931 s->insn = insn; 13932 s->base.pc_next = pc + 4; 13933 13934 s->fp_access_checked = false; 13935 s->sve_access_checked = false; 13936 13937 if (s->pstate_il) { 13938 /* 13939 * Illegal execution state. This has priority over BTI 13940 * exceptions, but comes after instruction abort exceptions. 13941 */ 13942 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13943 return; 13944 } 13945 13946 if (dc_isar_feature(aa64_bti, s)) { 13947 if (s->base.num_insns == 1) { 13948 /* 13949 * At the first insn of the TB, compute s->guarded_page. 13950 * We delayed computing this until successfully reading 13951 * the first insn of the TB, above. This (mostly) ensures 13952 * that the softmmu tlb entry has been populated, and the 13953 * page table GP bit is available. 13954 * 13955 * Note that we need to compute this even if btype == 0, 13956 * because this value is used for BR instructions later 13957 * where ENV is not available. 13958 */ 13959 s->guarded_page = is_guarded_page(env, s); 13960 13961 /* First insn can have btype set to non-zero. */ 13962 tcg_debug_assert(s->btype >= 0); 13963 13964 /* 13965 * Note that the Branch Target Exception has fairly high 13966 * priority -- below debugging exceptions but above most 13967 * everything else. This allows us to handle this now 13968 * instead of waiting until the insn is otherwise decoded. 13969 */ 13970 if (s->btype != 0 13971 && s->guarded_page 13972 && !btype_destination_ok(insn, s->bt, s->btype)) { 13973 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13974 return; 13975 } 13976 } else { 13977 /* Not the first insn: btype must be 0. */ 13978 tcg_debug_assert(s->btype == 0); 13979 } 13980 } 13981 13982 s->is_nonstreaming = false; 13983 if (s->sme_trap_nonstreaming) { 13984 disas_sme_fa64(s, insn); 13985 } 13986 13987 if (!disas_a64(s, insn) && 13988 !disas_sme(s, insn) && 13989 !disas_sve(s, insn)) { 13990 disas_a64_legacy(s, insn); 13991 } 13992 13993 /* 13994 * After execution of most insns, btype is reset to 0. 13995 * Note that we set btype == -1 when the insn sets btype. 13996 */ 13997 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13998 reset_btype(s); 13999 } 14000 } 14001 14002 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14003 { 14004 DisasContext *dc = container_of(dcbase, DisasContext, base); 14005 14006 if (unlikely(dc->ss_active)) { 14007 /* Note that this means single stepping WFI doesn't halt the CPU. 14008 * For conditional branch insns this is harmless unreachable code as 14009 * gen_goto_tb() has already handled emitting the debug exception 14010 * (and thus a tb-jump is not possible when singlestepping). 14011 */ 14012 switch (dc->base.is_jmp) { 14013 default: 14014 gen_a64_update_pc(dc, 4); 14015 /* fall through */ 14016 case DISAS_EXIT: 14017 case DISAS_JUMP: 14018 gen_step_complete_exception(dc); 14019 break; 14020 case DISAS_NORETURN: 14021 break; 14022 } 14023 } else { 14024 switch (dc->base.is_jmp) { 14025 case DISAS_NEXT: 14026 case DISAS_TOO_MANY: 14027 gen_goto_tb(dc, 1, 4); 14028 break; 14029 default: 14030 case DISAS_UPDATE_EXIT: 14031 gen_a64_update_pc(dc, 4); 14032 /* fall through */ 14033 case DISAS_EXIT: 14034 tcg_gen_exit_tb(NULL, 0); 14035 break; 14036 case DISAS_UPDATE_NOCHAIN: 14037 gen_a64_update_pc(dc, 4); 14038 /* fall through */ 14039 case DISAS_JUMP: 14040 tcg_gen_lookup_and_goto_ptr(); 14041 break; 14042 case DISAS_NORETURN: 14043 case DISAS_SWI: 14044 break; 14045 case DISAS_WFE: 14046 gen_a64_update_pc(dc, 4); 14047 gen_helper_wfe(tcg_env); 14048 break; 14049 case DISAS_YIELD: 14050 gen_a64_update_pc(dc, 4); 14051 gen_helper_yield(tcg_env); 14052 break; 14053 case DISAS_WFI: 14054 /* 14055 * This is a special case because we don't want to just halt 14056 * the CPU if trying to debug across a WFI. 14057 */ 14058 gen_a64_update_pc(dc, 4); 14059 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14060 /* 14061 * The helper doesn't necessarily throw an exception, but we 14062 * must go back to the main loop to check for interrupts anyway. 14063 */ 14064 tcg_gen_exit_tb(NULL, 0); 14065 break; 14066 } 14067 } 14068 } 14069 14070 const TranslatorOps aarch64_translator_ops = { 14071 .init_disas_context = aarch64_tr_init_disas_context, 14072 .tb_start = aarch64_tr_tb_start, 14073 .insn_start = aarch64_tr_insn_start, 14074 .translate_insn = aarch64_tr_translate_insn, 14075 .tb_stop = aarch64_tr_tb_stop, 14076 }; 14077