1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 return true; 1819 } 1820 1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1822 { 1823 /* We handle DSB and DMB the same way */ 1824 TCGBar bar; 1825 1826 switch (a->types) { 1827 case 1: /* MBReqTypes_Reads */ 1828 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1829 break; 1830 case 2: /* MBReqTypes_Writes */ 1831 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1832 break; 1833 default: /* MBReqTypes_All */ 1834 bar = TCG_BAR_SC | TCG_MO_ALL; 1835 break; 1836 } 1837 tcg_gen_mb(bar); 1838 return true; 1839 } 1840 1841 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1842 { 1843 /* 1844 * We need to break the TB after this insn to execute 1845 * self-modifying code correctly and also to take 1846 * any pending interrupts immediately. 1847 */ 1848 reset_btype(s); 1849 gen_goto_tb(s, 0, 4); 1850 return true; 1851 } 1852 1853 static bool trans_SB(DisasContext *s, arg_SB *a) 1854 { 1855 if (!dc_isar_feature(aa64_sb, s)) { 1856 return false; 1857 } 1858 /* 1859 * TODO: There is no speculation barrier opcode for TCG; 1860 * MB and end the TB instead. 1861 */ 1862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1863 gen_goto_tb(s, 0, 4); 1864 return true; 1865 } 1866 1867 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1868 { 1869 if (!dc_isar_feature(aa64_condm_4, s)) { 1870 return false; 1871 } 1872 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1873 return true; 1874 } 1875 1876 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1877 { 1878 TCGv_i32 z; 1879 1880 if (!dc_isar_feature(aa64_condm_5, s)) { 1881 return false; 1882 } 1883 1884 z = tcg_temp_new_i32(); 1885 1886 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1887 1888 /* 1889 * (!C & !Z) << 31 1890 * (!(C | Z)) << 31 1891 * ~((C | Z) << 31) 1892 * ~-(C | Z) 1893 * (C | Z) - 1 1894 */ 1895 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1896 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1897 1898 /* !(Z & C) */ 1899 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1900 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1901 1902 /* (!C & Z) << 31 -> -(Z & ~C) */ 1903 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1904 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1905 1906 /* C | Z */ 1907 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1908 1909 return true; 1910 } 1911 1912 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1913 { 1914 if (!dc_isar_feature(aa64_condm_5, s)) { 1915 return false; 1916 } 1917 1918 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1919 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1920 1921 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1922 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1923 1924 tcg_gen_movi_i32(cpu_NF, 0); 1925 tcg_gen_movi_i32(cpu_VF, 0); 1926 1927 return true; 1928 } 1929 1930 /* MSR (immediate) - move immediate to processor state field */ 1931 static void handle_msr_i(DisasContext *s, uint32_t insn, 1932 unsigned int op1, unsigned int op2, unsigned int crm) 1933 { 1934 int op = op1 << 3 | op2; 1935 1936 /* End the TB by default, chaining is ok. */ 1937 s->base.is_jmp = DISAS_TOO_MANY; 1938 1939 switch (op) { 1940 case 0x03: /* UAO */ 1941 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1942 goto do_unallocated; 1943 } 1944 if (crm & 1) { 1945 set_pstate_bits(PSTATE_UAO); 1946 } else { 1947 clear_pstate_bits(PSTATE_UAO); 1948 } 1949 gen_rebuild_hflags(s); 1950 break; 1951 1952 case 0x04: /* PAN */ 1953 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1954 goto do_unallocated; 1955 } 1956 if (crm & 1) { 1957 set_pstate_bits(PSTATE_PAN); 1958 } else { 1959 clear_pstate_bits(PSTATE_PAN); 1960 } 1961 gen_rebuild_hflags(s); 1962 break; 1963 1964 case 0x05: /* SPSel */ 1965 if (s->current_el == 0) { 1966 goto do_unallocated; 1967 } 1968 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1969 break; 1970 1971 case 0x19: /* SSBS */ 1972 if (!dc_isar_feature(aa64_ssbs, s)) { 1973 goto do_unallocated; 1974 } 1975 if (crm & 1) { 1976 set_pstate_bits(PSTATE_SSBS); 1977 } else { 1978 clear_pstate_bits(PSTATE_SSBS); 1979 } 1980 /* Don't need to rebuild hflags since SSBS is a nop */ 1981 break; 1982 1983 case 0x1a: /* DIT */ 1984 if (!dc_isar_feature(aa64_dit, s)) { 1985 goto do_unallocated; 1986 } 1987 if (crm & 1) { 1988 set_pstate_bits(PSTATE_DIT); 1989 } else { 1990 clear_pstate_bits(PSTATE_DIT); 1991 } 1992 /* There's no need to rebuild hflags because DIT is a nop */ 1993 break; 1994 1995 case 0x1e: /* DAIFSet */ 1996 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1997 break; 1998 1999 case 0x1f: /* DAIFClear */ 2000 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 2001 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 2002 s->base.is_jmp = DISAS_UPDATE_EXIT; 2003 break; 2004 2005 case 0x1c: /* TCO */ 2006 if (dc_isar_feature(aa64_mte, s)) { 2007 /* Full MTE is enabled -- set the TCO bit as directed. */ 2008 if (crm & 1) { 2009 set_pstate_bits(PSTATE_TCO); 2010 } else { 2011 clear_pstate_bits(PSTATE_TCO); 2012 } 2013 gen_rebuild_hflags(s); 2014 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2015 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2016 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2017 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2018 s->base.is_jmp = DISAS_NEXT; 2019 } else { 2020 goto do_unallocated; 2021 } 2022 break; 2023 2024 case 0x1b: /* SVCR* */ 2025 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2026 goto do_unallocated; 2027 } 2028 if (sme_access_check(s)) { 2029 int old = s->pstate_sm | (s->pstate_za << 1); 2030 int new = (crm & 1) * 3; 2031 int msk = (crm >> 1) & 3; 2032 2033 if ((old ^ new) & msk) { 2034 /* At least one bit changes. */ 2035 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2036 tcg_constant_i32(msk)); 2037 } else { 2038 s->base.is_jmp = DISAS_NEXT; 2039 } 2040 } 2041 break; 2042 2043 default: 2044 do_unallocated: 2045 unallocated_encoding(s); 2046 return; 2047 } 2048 } 2049 2050 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2051 { 2052 TCGv_i32 tmp = tcg_temp_new_i32(); 2053 TCGv_i32 nzcv = tcg_temp_new_i32(); 2054 2055 /* build bit 31, N */ 2056 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2057 /* build bit 30, Z */ 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2059 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2060 /* build bit 29, C */ 2061 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2062 /* build bit 28, V */ 2063 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2064 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2065 /* generate result */ 2066 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2067 } 2068 2069 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2070 { 2071 TCGv_i32 nzcv = tcg_temp_new_i32(); 2072 2073 /* take NZCV from R[t] */ 2074 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2075 2076 /* bit 31, N */ 2077 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2078 /* bit 30, Z */ 2079 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2080 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2081 /* bit 29, C */ 2082 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2083 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2084 /* bit 28, V */ 2085 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2086 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2087 } 2088 2089 static void gen_sysreg_undef(DisasContext *s, bool isread, 2090 uint8_t op0, uint8_t op1, uint8_t op2, 2091 uint8_t crn, uint8_t crm, uint8_t rt) 2092 { 2093 /* 2094 * Generate code to emit an UNDEF with correct syndrome 2095 * information for a failed system register access. 2096 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2097 * but if FEAT_IDST is implemented then read accesses to registers 2098 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2099 * syndrome. 2100 */ 2101 uint32_t syndrome; 2102 2103 if (isread && dc_isar_feature(aa64_ids, s) && 2104 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2105 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2106 } else { 2107 syndrome = syn_uncategorized(); 2108 } 2109 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2110 } 2111 2112 /* MRS - move from system register 2113 * MSR (register) - move to system register 2114 * SYS 2115 * SYSL 2116 * These are all essentially the same insn in 'read' and 'write' 2117 * versions, with varying op0 fields. 2118 */ 2119 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2120 unsigned int op0, unsigned int op1, unsigned int op2, 2121 unsigned int crn, unsigned int crm, unsigned int rt) 2122 { 2123 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2124 crn, crm, op0, op1, op2); 2125 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2126 bool need_exit_tb = false; 2127 TCGv_ptr tcg_ri = NULL; 2128 TCGv_i64 tcg_rt; 2129 2130 if (!ri) { 2131 /* Unknown register; this might be a guest error or a QEMU 2132 * unimplemented feature. 2133 */ 2134 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2135 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2136 isread ? "read" : "write", op0, op1, crn, crm, op2); 2137 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2138 return; 2139 } 2140 2141 /* Check access permissions */ 2142 if (!cp_access_ok(s->current_el, ri, isread)) { 2143 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2144 return; 2145 } 2146 2147 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2148 /* Emit code to perform further access permissions checks at 2149 * runtime; this may result in an exception. 2150 */ 2151 uint32_t syndrome; 2152 2153 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2154 gen_a64_update_pc(s, 0); 2155 tcg_ri = tcg_temp_new_ptr(); 2156 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2157 tcg_constant_i32(key), 2158 tcg_constant_i32(syndrome), 2159 tcg_constant_i32(isread)); 2160 } else if (ri->type & ARM_CP_RAISES_EXC) { 2161 /* 2162 * The readfn or writefn might raise an exception; 2163 * synchronize the CPU state in case it does. 2164 */ 2165 gen_a64_update_pc(s, 0); 2166 } 2167 2168 /* Handle special cases first */ 2169 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2170 case 0: 2171 break; 2172 case ARM_CP_NOP: 2173 return; 2174 case ARM_CP_NZCV: 2175 tcg_rt = cpu_reg(s, rt); 2176 if (isread) { 2177 gen_get_nzcv(tcg_rt); 2178 } else { 2179 gen_set_nzcv(tcg_rt); 2180 } 2181 return; 2182 case ARM_CP_CURRENTEL: 2183 /* Reads as current EL value from pstate, which is 2184 * guaranteed to be constant by the tb flags. 2185 */ 2186 tcg_rt = cpu_reg(s, rt); 2187 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2188 return; 2189 case ARM_CP_DC_ZVA: 2190 /* Writes clear the aligned block of memory which rt points into. */ 2191 if (s->mte_active[0]) { 2192 int desc = 0; 2193 2194 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2195 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2196 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2197 2198 tcg_rt = tcg_temp_new_i64(); 2199 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2200 tcg_constant_i32(desc), cpu_reg(s, rt)); 2201 } else { 2202 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2203 } 2204 gen_helper_dc_zva(cpu_env, tcg_rt); 2205 return; 2206 case ARM_CP_DC_GVA: 2207 { 2208 TCGv_i64 clean_addr, tag; 2209 2210 /* 2211 * DC_GVA, like DC_ZVA, requires that we supply the original 2212 * pointer for an invalid page. Probe that address first. 2213 */ 2214 tcg_rt = cpu_reg(s, rt); 2215 clean_addr = clean_data_tbi(s, tcg_rt); 2216 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2217 2218 if (s->ata) { 2219 /* Extract the tag from the register to match STZGM. */ 2220 tag = tcg_temp_new_i64(); 2221 tcg_gen_shri_i64(tag, tcg_rt, 56); 2222 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2223 } 2224 } 2225 return; 2226 case ARM_CP_DC_GZVA: 2227 { 2228 TCGv_i64 clean_addr, tag; 2229 2230 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2231 tcg_rt = cpu_reg(s, rt); 2232 clean_addr = clean_data_tbi(s, tcg_rt); 2233 gen_helper_dc_zva(cpu_env, clean_addr); 2234 2235 if (s->ata) { 2236 /* Extract the tag from the register to match STZGM. */ 2237 tag = tcg_temp_new_i64(); 2238 tcg_gen_shri_i64(tag, tcg_rt, 56); 2239 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2240 } 2241 } 2242 return; 2243 default: 2244 g_assert_not_reached(); 2245 } 2246 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2247 return; 2248 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2249 return; 2250 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2251 return; 2252 } 2253 2254 if (ri->type & ARM_CP_IO) { 2255 /* I/O operations must end the TB here (whether read or write) */ 2256 need_exit_tb = translator_io_start(&s->base); 2257 } 2258 2259 tcg_rt = cpu_reg(s, rt); 2260 2261 if (isread) { 2262 if (ri->type & ARM_CP_CONST) { 2263 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2264 } else if (ri->readfn) { 2265 if (!tcg_ri) { 2266 tcg_ri = gen_lookup_cp_reg(key); 2267 } 2268 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2269 } else { 2270 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2271 } 2272 } else { 2273 if (ri->type & ARM_CP_CONST) { 2274 /* If not forbidden by access permissions, treat as WI */ 2275 return; 2276 } else if (ri->writefn) { 2277 if (!tcg_ri) { 2278 tcg_ri = gen_lookup_cp_reg(key); 2279 } 2280 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2281 } else { 2282 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2283 } 2284 } 2285 2286 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2287 /* 2288 * A write to any coprocessor regiser that ends a TB 2289 * must rebuild the hflags for the next TB. 2290 */ 2291 gen_rebuild_hflags(s); 2292 /* 2293 * We default to ending the TB on a coprocessor register write, 2294 * but allow this to be suppressed by the register definition 2295 * (usually only necessary to work around guest bugs). 2296 */ 2297 need_exit_tb = true; 2298 } 2299 if (need_exit_tb) { 2300 s->base.is_jmp = DISAS_UPDATE_EXIT; 2301 } 2302 } 2303 2304 /* System 2305 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2306 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2307 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2308 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2309 */ 2310 static void disas_system(DisasContext *s, uint32_t insn) 2311 { 2312 unsigned int l, op0, op1, crn, crm, op2, rt; 2313 l = extract32(insn, 21, 1); 2314 op0 = extract32(insn, 19, 2); 2315 op1 = extract32(insn, 16, 3); 2316 crn = extract32(insn, 12, 4); 2317 crm = extract32(insn, 8, 4); 2318 op2 = extract32(insn, 5, 3); 2319 rt = extract32(insn, 0, 5); 2320 2321 if (op0 == 0) { 2322 if (l || rt != 31) { 2323 unallocated_encoding(s); 2324 return; 2325 } 2326 switch (crn) { 2327 case 4: /* MSR (immediate) */ 2328 handle_msr_i(s, insn, op1, op2, crm); 2329 break; 2330 default: 2331 unallocated_encoding(s); 2332 break; 2333 } 2334 return; 2335 } 2336 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2337 } 2338 2339 /* Exception generation 2340 * 2341 * 31 24 23 21 20 5 4 2 1 0 2342 * +-----------------+-----+------------------------+-----+----+ 2343 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2344 * +-----------------------+------------------------+----------+ 2345 */ 2346 static void disas_exc(DisasContext *s, uint32_t insn) 2347 { 2348 int opc = extract32(insn, 21, 3); 2349 int op2_ll = extract32(insn, 0, 5); 2350 int imm16 = extract32(insn, 5, 16); 2351 uint32_t syndrome; 2352 2353 switch (opc) { 2354 case 0: 2355 /* For SVC, HVC and SMC we advance the single-step state 2356 * machine before taking the exception. This is architecturally 2357 * mandated, to ensure that single-stepping a system call 2358 * instruction works properly. 2359 */ 2360 switch (op2_ll) { 2361 case 1: /* SVC */ 2362 syndrome = syn_aa64_svc(imm16); 2363 if (s->fgt_svc) { 2364 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2365 break; 2366 } 2367 gen_ss_advance(s); 2368 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2369 break; 2370 case 2: /* HVC */ 2371 if (s->current_el == 0) { 2372 unallocated_encoding(s); 2373 break; 2374 } 2375 /* The pre HVC helper handles cases when HVC gets trapped 2376 * as an undefined insn by runtime configuration. 2377 */ 2378 gen_a64_update_pc(s, 0); 2379 gen_helper_pre_hvc(cpu_env); 2380 gen_ss_advance(s); 2381 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2382 break; 2383 case 3: /* SMC */ 2384 if (s->current_el == 0) { 2385 unallocated_encoding(s); 2386 break; 2387 } 2388 gen_a64_update_pc(s, 0); 2389 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2390 gen_ss_advance(s); 2391 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2392 break; 2393 default: 2394 unallocated_encoding(s); 2395 break; 2396 } 2397 break; 2398 case 1: 2399 if (op2_ll != 0) { 2400 unallocated_encoding(s); 2401 break; 2402 } 2403 /* BRK */ 2404 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2405 break; 2406 case 2: 2407 if (op2_ll != 0) { 2408 unallocated_encoding(s); 2409 break; 2410 } 2411 /* HLT. This has two purposes. 2412 * Architecturally, it is an external halting debug instruction. 2413 * Since QEMU doesn't implement external debug, we treat this as 2414 * it is required for halting debug disabled: it will UNDEF. 2415 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2416 */ 2417 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2418 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2419 } else { 2420 unallocated_encoding(s); 2421 } 2422 break; 2423 case 5: 2424 if (op2_ll < 1 || op2_ll > 3) { 2425 unallocated_encoding(s); 2426 break; 2427 } 2428 /* DCPS1, DCPS2, DCPS3 */ 2429 unallocated_encoding(s); 2430 break; 2431 default: 2432 unallocated_encoding(s); 2433 break; 2434 } 2435 } 2436 2437 /* Branches, exception generating and system instructions */ 2438 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2439 { 2440 switch (extract32(insn, 25, 7)) { 2441 case 0x6a: /* Exception generation / System */ 2442 if (insn & (1 << 24)) { 2443 if (extract32(insn, 22, 2) == 0) { 2444 disas_system(s, insn); 2445 } else { 2446 unallocated_encoding(s); 2447 } 2448 } else { 2449 disas_exc(s, insn); 2450 } 2451 break; 2452 default: 2453 unallocated_encoding(s); 2454 break; 2455 } 2456 } 2457 2458 /* 2459 * Load/Store exclusive instructions are implemented by remembering 2460 * the value/address loaded, and seeing if these are the same 2461 * when the store is performed. This is not actually the architecturally 2462 * mandated semantics, but it works for typical guest code sequences 2463 * and avoids having to monitor regular stores. 2464 * 2465 * The store exclusive uses the atomic cmpxchg primitives to avoid 2466 * races in multi-threaded linux-user and when MTTCG softmmu is 2467 * enabled. 2468 */ 2469 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2470 int size, bool is_pair) 2471 { 2472 int idx = get_mem_index(s); 2473 TCGv_i64 dirty_addr, clean_addr; 2474 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2475 2476 s->is_ldex = true; 2477 dirty_addr = cpu_reg_sp(s, rn); 2478 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2479 2480 g_assert(size <= 3); 2481 if (is_pair) { 2482 g_assert(size >= 2); 2483 if (size == 2) { 2484 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2485 if (s->be_data == MO_LE) { 2486 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2487 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2488 } else { 2489 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2490 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2491 } 2492 } else { 2493 TCGv_i128 t16 = tcg_temp_new_i128(); 2494 2495 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2496 2497 if (s->be_data == MO_LE) { 2498 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2499 cpu_exclusive_high, t16); 2500 } else { 2501 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2502 cpu_exclusive_val, t16); 2503 } 2504 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2505 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2506 } 2507 } else { 2508 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2509 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2510 } 2511 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2512 } 2513 2514 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2515 int rn, int size, int is_pair) 2516 { 2517 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2518 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2519 * [addr] = {Rt}; 2520 * if (is_pair) { 2521 * [addr + datasize] = {Rt2}; 2522 * } 2523 * {Rd} = 0; 2524 * } else { 2525 * {Rd} = 1; 2526 * } 2527 * env->exclusive_addr = -1; 2528 */ 2529 TCGLabel *fail_label = gen_new_label(); 2530 TCGLabel *done_label = gen_new_label(); 2531 TCGv_i64 tmp, clean_addr; 2532 MemOp memop; 2533 2534 /* 2535 * FIXME: We are out of spec here. We have recorded only the address 2536 * from load_exclusive, not the entire range, and we assume that the 2537 * size of the access on both sides match. The architecture allows the 2538 * store to be smaller than the load, so long as the stored bytes are 2539 * within the range recorded by the load. 2540 */ 2541 2542 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2543 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2544 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2545 2546 /* 2547 * The write, and any associated faults, only happen if the virtual 2548 * and physical addresses pass the exclusive monitor check. These 2549 * faults are exceedingly unlikely, because normally the guest uses 2550 * the exact same address register for the load_exclusive, and we 2551 * would have recognized these faults there. 2552 * 2553 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2554 * unaligned 4-byte write within the range of an aligned 8-byte load. 2555 * With LSE2, the store would need to cross a 16-byte boundary when the 2556 * load did not, which would mean the store is outside the range 2557 * recorded for the monitor, which would have failed a corrected monitor 2558 * check above. For now, we assume no size change and retain the 2559 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2560 * 2561 * It is possible to trigger an MTE fault, by performing the load with 2562 * a virtual address with a valid tag and performing the store with the 2563 * same virtual address and a different invalid tag. 2564 */ 2565 memop = size + is_pair; 2566 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2567 memop |= MO_ALIGN; 2568 } 2569 memop = finalize_memop(s, memop); 2570 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2571 2572 tmp = tcg_temp_new_i64(); 2573 if (is_pair) { 2574 if (size == 2) { 2575 if (s->be_data == MO_LE) { 2576 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2577 } else { 2578 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2579 } 2580 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2581 cpu_exclusive_val, tmp, 2582 get_mem_index(s), memop); 2583 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2584 } else { 2585 TCGv_i128 t16 = tcg_temp_new_i128(); 2586 TCGv_i128 c16 = tcg_temp_new_i128(); 2587 TCGv_i64 a, b; 2588 2589 if (s->be_data == MO_LE) { 2590 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2591 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2592 cpu_exclusive_high); 2593 } else { 2594 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2595 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2596 cpu_exclusive_val); 2597 } 2598 2599 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2600 get_mem_index(s), memop); 2601 2602 a = tcg_temp_new_i64(); 2603 b = tcg_temp_new_i64(); 2604 if (s->be_data == MO_LE) { 2605 tcg_gen_extr_i128_i64(a, b, t16); 2606 } else { 2607 tcg_gen_extr_i128_i64(b, a, t16); 2608 } 2609 2610 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2611 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2612 tcg_gen_or_i64(tmp, a, b); 2613 2614 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2615 } 2616 } else { 2617 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2618 cpu_reg(s, rt), get_mem_index(s), memop); 2619 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2620 } 2621 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2622 tcg_gen_br(done_label); 2623 2624 gen_set_label(fail_label); 2625 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2626 gen_set_label(done_label); 2627 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2628 } 2629 2630 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2631 int rn, int size) 2632 { 2633 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2634 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2635 int memidx = get_mem_index(s); 2636 TCGv_i64 clean_addr; 2637 MemOp memop; 2638 2639 if (rn == 31) { 2640 gen_check_sp_alignment(s); 2641 } 2642 memop = check_atomic_align(s, rn, size); 2643 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2644 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2645 memidx, memop); 2646 } 2647 2648 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2649 int rn, int size) 2650 { 2651 TCGv_i64 s1 = cpu_reg(s, rs); 2652 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2653 TCGv_i64 t1 = cpu_reg(s, rt); 2654 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2655 TCGv_i64 clean_addr; 2656 int memidx = get_mem_index(s); 2657 MemOp memop; 2658 2659 if (rn == 31) { 2660 gen_check_sp_alignment(s); 2661 } 2662 2663 /* This is a single atomic access, despite the "pair". */ 2664 memop = check_atomic_align(s, rn, size + 1); 2665 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2666 2667 if (size == 2) { 2668 TCGv_i64 cmp = tcg_temp_new_i64(); 2669 TCGv_i64 val = tcg_temp_new_i64(); 2670 2671 if (s->be_data == MO_LE) { 2672 tcg_gen_concat32_i64(val, t1, t2); 2673 tcg_gen_concat32_i64(cmp, s1, s2); 2674 } else { 2675 tcg_gen_concat32_i64(val, t2, t1); 2676 tcg_gen_concat32_i64(cmp, s2, s1); 2677 } 2678 2679 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2680 2681 if (s->be_data == MO_LE) { 2682 tcg_gen_extr32_i64(s1, s2, cmp); 2683 } else { 2684 tcg_gen_extr32_i64(s2, s1, cmp); 2685 } 2686 } else { 2687 TCGv_i128 cmp = tcg_temp_new_i128(); 2688 TCGv_i128 val = tcg_temp_new_i128(); 2689 2690 if (s->be_data == MO_LE) { 2691 tcg_gen_concat_i64_i128(val, t1, t2); 2692 tcg_gen_concat_i64_i128(cmp, s1, s2); 2693 } else { 2694 tcg_gen_concat_i64_i128(val, t2, t1); 2695 tcg_gen_concat_i64_i128(cmp, s2, s1); 2696 } 2697 2698 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2699 2700 if (s->be_data == MO_LE) { 2701 tcg_gen_extr_i128_i64(s1, s2, cmp); 2702 } else { 2703 tcg_gen_extr_i128_i64(s2, s1, cmp); 2704 } 2705 } 2706 } 2707 2708 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2709 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2710 */ 2711 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2712 { 2713 int opc0 = extract32(opc, 0, 1); 2714 int regsize; 2715 2716 if (is_signed) { 2717 regsize = opc0 ? 32 : 64; 2718 } else { 2719 regsize = size == 3 ? 64 : 32; 2720 } 2721 return regsize == 64; 2722 } 2723 2724 /* Load/store exclusive 2725 * 2726 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2727 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2728 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2729 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2730 * 2731 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2732 * L: 0 -> store, 1 -> load 2733 * o2: 0 -> exclusive, 1 -> not 2734 * o1: 0 -> single register, 1 -> register pair 2735 * o0: 1 -> load-acquire/store-release, 0 -> not 2736 */ 2737 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2738 { 2739 int rt = extract32(insn, 0, 5); 2740 int rn = extract32(insn, 5, 5); 2741 int rt2 = extract32(insn, 10, 5); 2742 int rs = extract32(insn, 16, 5); 2743 int is_lasr = extract32(insn, 15, 1); 2744 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2745 int size = extract32(insn, 30, 2); 2746 TCGv_i64 clean_addr; 2747 MemOp memop; 2748 2749 switch (o2_L_o1_o0) { 2750 case 0x0: /* STXR */ 2751 case 0x1: /* STLXR */ 2752 if (rn == 31) { 2753 gen_check_sp_alignment(s); 2754 } 2755 if (is_lasr) { 2756 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2757 } 2758 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2759 return; 2760 2761 case 0x4: /* LDXR */ 2762 case 0x5: /* LDAXR */ 2763 if (rn == 31) { 2764 gen_check_sp_alignment(s); 2765 } 2766 gen_load_exclusive(s, rt, rt2, rn, size, false); 2767 if (is_lasr) { 2768 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2769 } 2770 return; 2771 2772 case 0x8: /* STLLR */ 2773 if (!dc_isar_feature(aa64_lor, s)) { 2774 break; 2775 } 2776 /* StoreLORelease is the same as Store-Release for QEMU. */ 2777 /* fall through */ 2778 case 0x9: /* STLR */ 2779 /* Generate ISS for non-exclusive accesses including LASR. */ 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2784 memop = check_ordered_align(s, rn, 0, true, size); 2785 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2786 true, rn != 31, memop); 2787 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2788 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2789 return; 2790 2791 case 0xc: /* LDLAR */ 2792 if (!dc_isar_feature(aa64_lor, s)) { 2793 break; 2794 } 2795 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2796 /* fall through */ 2797 case 0xd: /* LDAR */ 2798 /* Generate ISS for non-exclusive accesses including LASR. */ 2799 if (rn == 31) { 2800 gen_check_sp_alignment(s); 2801 } 2802 memop = check_ordered_align(s, rn, 0, false, size); 2803 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2804 false, rn != 31, memop); 2805 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2806 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2807 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2808 return; 2809 2810 case 0x2: case 0x3: /* CASP / STXP */ 2811 if (size & 2) { /* STXP / STLXP */ 2812 if (rn == 31) { 2813 gen_check_sp_alignment(s); 2814 } 2815 if (is_lasr) { 2816 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2817 } 2818 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2819 return; 2820 } 2821 if (rt2 == 31 2822 && ((rt | rs) & 1) == 0 2823 && dc_isar_feature(aa64_atomics, s)) { 2824 /* CASP / CASPL */ 2825 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2826 return; 2827 } 2828 break; 2829 2830 case 0x6: case 0x7: /* CASPA / LDXP */ 2831 if (size & 2) { /* LDXP / LDAXP */ 2832 if (rn == 31) { 2833 gen_check_sp_alignment(s); 2834 } 2835 gen_load_exclusive(s, rt, rt2, rn, size, true); 2836 if (is_lasr) { 2837 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2838 } 2839 return; 2840 } 2841 if (rt2 == 31 2842 && ((rt | rs) & 1) == 0 2843 && dc_isar_feature(aa64_atomics, s)) { 2844 /* CASPA / CASPAL */ 2845 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2846 return; 2847 } 2848 break; 2849 2850 case 0xa: /* CAS */ 2851 case 0xb: /* CASL */ 2852 case 0xe: /* CASA */ 2853 case 0xf: /* CASAL */ 2854 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2855 gen_compare_and_swap(s, rs, rt, rn, size); 2856 return; 2857 } 2858 break; 2859 } 2860 unallocated_encoding(s); 2861 } 2862 2863 /* 2864 * Load register (literal) 2865 * 2866 * 31 30 29 27 26 25 24 23 5 4 0 2867 * +-----+-------+---+-----+-------------------+-------+ 2868 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2869 * +-----+-------+---+-----+-------------------+-------+ 2870 * 2871 * V: 1 -> vector (simd/fp) 2872 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2873 * 10-> 32 bit signed, 11 -> prefetch 2874 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2875 */ 2876 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2877 { 2878 int rt = extract32(insn, 0, 5); 2879 int64_t imm = sextract32(insn, 5, 19) << 2; 2880 bool is_vector = extract32(insn, 26, 1); 2881 int opc = extract32(insn, 30, 2); 2882 bool is_signed = false; 2883 int size = 2; 2884 TCGv_i64 tcg_rt, clean_addr; 2885 MemOp memop; 2886 2887 if (is_vector) { 2888 if (opc == 3) { 2889 unallocated_encoding(s); 2890 return; 2891 } 2892 size = 2 + opc; 2893 if (!fp_access_check(s)) { 2894 return; 2895 } 2896 memop = finalize_memop_asimd(s, size); 2897 } else { 2898 if (opc == 3) { 2899 /* PRFM (literal) : prefetch */ 2900 return; 2901 } 2902 size = 2 + extract32(opc, 0, 1); 2903 is_signed = extract32(opc, 1, 1); 2904 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2905 } 2906 2907 tcg_rt = cpu_reg(s, rt); 2908 2909 clean_addr = tcg_temp_new_i64(); 2910 gen_pc_plus_diff(s, clean_addr, imm); 2911 2912 if (is_vector) { 2913 do_fp_ld(s, rt, clean_addr, memop); 2914 } else { 2915 /* Only unsigned 32bit loads target 32bit registers. */ 2916 bool iss_sf = opc != 0; 2917 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2918 } 2919 } 2920 2921 /* 2922 * LDNP (Load Pair - non-temporal hint) 2923 * LDP (Load Pair - non vector) 2924 * LDPSW (Load Pair Signed Word - non vector) 2925 * STNP (Store Pair - non-temporal hint) 2926 * STP (Store Pair - non vector) 2927 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2928 * LDP (Load Pair of SIMD&FP) 2929 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2930 * STP (Store Pair of SIMD&FP) 2931 * 2932 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2933 * +-----+-------+---+---+-------+---+-----------------------------+ 2934 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2935 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2936 * 2937 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2938 * LDPSW/STGP 01 2939 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2940 * V: 0 -> GPR, 1 -> Vector 2941 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2942 * 10 -> signed offset, 11 -> pre-index 2943 * L: 0 -> Store 1 -> Load 2944 * 2945 * Rt, Rt2 = GPR or SIMD registers to be stored 2946 * Rn = general purpose register containing address 2947 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2948 */ 2949 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2950 { 2951 int rt = extract32(insn, 0, 5); 2952 int rn = extract32(insn, 5, 5); 2953 int rt2 = extract32(insn, 10, 5); 2954 uint64_t offset = sextract64(insn, 15, 7); 2955 int index = extract32(insn, 23, 2); 2956 bool is_vector = extract32(insn, 26, 1); 2957 bool is_load = extract32(insn, 22, 1); 2958 int opc = extract32(insn, 30, 2); 2959 bool is_signed = false; 2960 bool postindex = false; 2961 bool wback = false; 2962 bool set_tag = false; 2963 TCGv_i64 clean_addr, dirty_addr; 2964 MemOp mop; 2965 int size; 2966 2967 if (opc == 3) { 2968 unallocated_encoding(s); 2969 return; 2970 } 2971 2972 if (is_vector) { 2973 size = 2 + opc; 2974 } else if (opc == 1 && !is_load) { 2975 /* STGP */ 2976 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2977 unallocated_encoding(s); 2978 return; 2979 } 2980 size = 3; 2981 set_tag = true; 2982 } else { 2983 size = 2 + extract32(opc, 1, 1); 2984 is_signed = extract32(opc, 0, 1); 2985 if (!is_load && is_signed) { 2986 unallocated_encoding(s); 2987 return; 2988 } 2989 } 2990 2991 switch (index) { 2992 case 1: /* post-index */ 2993 postindex = true; 2994 wback = true; 2995 break; 2996 case 0: 2997 /* signed offset with "non-temporal" hint. Since we don't emulate 2998 * caches we don't care about hints to the cache system about 2999 * data access patterns, and handle this identically to plain 3000 * signed offset. 3001 */ 3002 if (is_signed) { 3003 /* There is no non-temporal-hint version of LDPSW */ 3004 unallocated_encoding(s); 3005 return; 3006 } 3007 postindex = false; 3008 break; 3009 case 2: /* signed offset, rn not updated */ 3010 postindex = false; 3011 break; 3012 case 3: /* pre-index */ 3013 postindex = false; 3014 wback = true; 3015 break; 3016 } 3017 3018 if (is_vector && !fp_access_check(s)) { 3019 return; 3020 } 3021 3022 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3023 3024 if (rn == 31) { 3025 gen_check_sp_alignment(s); 3026 } 3027 3028 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3029 if (!postindex) { 3030 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3031 } 3032 3033 if (set_tag) { 3034 if (!s->ata) { 3035 /* 3036 * TODO: We could rely on the stores below, at least for 3037 * system mode, if we arrange to add MO_ALIGN_16. 3038 */ 3039 gen_helper_stg_stub(cpu_env, dirty_addr); 3040 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3041 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3042 } else { 3043 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3044 } 3045 } 3046 3047 if (is_vector) { 3048 mop = finalize_memop_asimd(s, size); 3049 } else { 3050 mop = finalize_memop(s, size); 3051 } 3052 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3053 (wback || rn != 31) && !set_tag, 3054 2 << size, mop); 3055 3056 if (is_vector) { 3057 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3058 if (is_load) { 3059 do_fp_ld(s, rt, clean_addr, mop); 3060 } else { 3061 do_fp_st(s, rt, clean_addr, mop); 3062 } 3063 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3064 if (is_load) { 3065 do_fp_ld(s, rt2, clean_addr, mop); 3066 } else { 3067 do_fp_st(s, rt2, clean_addr, mop); 3068 } 3069 } else { 3070 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3071 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3072 3073 /* 3074 * We built mop above for the single logical access -- rebuild it 3075 * now for the paired operation. 3076 * 3077 * With LSE2, non-sign-extending pairs are treated atomically if 3078 * aligned, and if unaligned one of the pair will be completely 3079 * within a 16-byte block and that element will be atomic. 3080 * Otherwise each element is separately atomic. 3081 * In all cases, issue one operation with the correct atomicity. 3082 * 3083 * This treats sign-extending loads like zero-extending loads, 3084 * since that reuses the most code below. 3085 */ 3086 mop = size + 1; 3087 if (s->align_mem) { 3088 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3089 } 3090 mop = finalize_memop_pair(s, mop); 3091 3092 if (is_load) { 3093 if (size == 2) { 3094 int o2 = s->be_data == MO_LE ? 32 : 0; 3095 int o1 = o2 ^ 32; 3096 3097 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3098 if (is_signed) { 3099 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3100 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3101 } else { 3102 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3103 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3104 } 3105 } else { 3106 TCGv_i128 tmp = tcg_temp_new_i128(); 3107 3108 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3109 if (s->be_data == MO_LE) { 3110 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3111 } else { 3112 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3113 } 3114 } 3115 } else { 3116 if (size == 2) { 3117 TCGv_i64 tmp = tcg_temp_new_i64(); 3118 3119 if (s->be_data == MO_LE) { 3120 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3121 } else { 3122 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3123 } 3124 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3125 } else { 3126 TCGv_i128 tmp = tcg_temp_new_i128(); 3127 3128 if (s->be_data == MO_LE) { 3129 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3130 } else { 3131 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3132 } 3133 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3134 } 3135 } 3136 } 3137 3138 if (wback) { 3139 if (postindex) { 3140 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3141 } 3142 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3143 } 3144 } 3145 3146 /* 3147 * Load/store (immediate post-indexed) 3148 * Load/store (immediate pre-indexed) 3149 * Load/store (unscaled immediate) 3150 * 3151 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3152 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3153 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3154 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3155 * 3156 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3157 10 -> unprivileged 3158 * V = 0 -> non-vector 3159 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3160 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3161 */ 3162 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3163 int opc, 3164 int size, 3165 int rt, 3166 bool is_vector) 3167 { 3168 int rn = extract32(insn, 5, 5); 3169 int imm9 = sextract32(insn, 12, 9); 3170 int idx = extract32(insn, 10, 2); 3171 bool is_signed = false; 3172 bool is_store = false; 3173 bool is_extended = false; 3174 bool is_unpriv = (idx == 2); 3175 bool iss_valid; 3176 bool post_index; 3177 bool writeback; 3178 int memidx; 3179 MemOp memop; 3180 TCGv_i64 clean_addr, dirty_addr; 3181 3182 if (is_vector) { 3183 size |= (opc & 2) << 1; 3184 if (size > 4 || is_unpriv) { 3185 unallocated_encoding(s); 3186 return; 3187 } 3188 is_store = ((opc & 1) == 0); 3189 if (!fp_access_check(s)) { 3190 return; 3191 } 3192 memop = finalize_memop_asimd(s, size); 3193 } else { 3194 if (size == 3 && opc == 2) { 3195 /* PRFM - prefetch */ 3196 if (idx != 0) { 3197 unallocated_encoding(s); 3198 return; 3199 } 3200 return; 3201 } 3202 if (opc == 3 && size > 1) { 3203 unallocated_encoding(s); 3204 return; 3205 } 3206 is_store = (opc == 0); 3207 is_signed = !is_store && extract32(opc, 1, 1); 3208 is_extended = (size < 3) && extract32(opc, 0, 1); 3209 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3210 } 3211 3212 switch (idx) { 3213 case 0: 3214 case 2: 3215 post_index = false; 3216 writeback = false; 3217 break; 3218 case 1: 3219 post_index = true; 3220 writeback = true; 3221 break; 3222 case 3: 3223 post_index = false; 3224 writeback = true; 3225 break; 3226 default: 3227 g_assert_not_reached(); 3228 } 3229 3230 iss_valid = !is_vector && !writeback; 3231 3232 if (rn == 31) { 3233 gen_check_sp_alignment(s); 3234 } 3235 3236 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3237 if (!post_index) { 3238 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3239 } 3240 3241 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3242 3243 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3244 writeback || rn != 31, 3245 memop, is_unpriv, memidx); 3246 3247 if (is_vector) { 3248 if (is_store) { 3249 do_fp_st(s, rt, clean_addr, memop); 3250 } else { 3251 do_fp_ld(s, rt, clean_addr, memop); 3252 } 3253 } else { 3254 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3255 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3256 3257 if (is_store) { 3258 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3259 iss_valid, rt, iss_sf, false); 3260 } else { 3261 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3262 is_extended, memidx, 3263 iss_valid, rt, iss_sf, false); 3264 } 3265 } 3266 3267 if (writeback) { 3268 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3269 if (post_index) { 3270 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3271 } 3272 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3273 } 3274 } 3275 3276 /* 3277 * Load/store (register offset) 3278 * 3279 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3280 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3281 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3282 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3283 * 3284 * For non-vector: 3285 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3286 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3287 * For vector: 3288 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3289 * opc<0>: 0 -> store, 1 -> load 3290 * V: 1 -> vector/simd 3291 * opt: extend encoding (see DecodeRegExtend) 3292 * S: if S=1 then scale (essentially index by sizeof(size)) 3293 * Rt: register to transfer into/out of 3294 * Rn: address register or SP for base 3295 * Rm: offset register or ZR for offset 3296 */ 3297 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3298 int opc, 3299 int size, 3300 int rt, 3301 bool is_vector) 3302 { 3303 int rn = extract32(insn, 5, 5); 3304 int shift = extract32(insn, 12, 1); 3305 int rm = extract32(insn, 16, 5); 3306 int opt = extract32(insn, 13, 3); 3307 bool is_signed = false; 3308 bool is_store = false; 3309 bool is_extended = false; 3310 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3311 MemOp memop; 3312 3313 if (extract32(opt, 1, 1) == 0) { 3314 unallocated_encoding(s); 3315 return; 3316 } 3317 3318 if (is_vector) { 3319 size |= (opc & 2) << 1; 3320 if (size > 4) { 3321 unallocated_encoding(s); 3322 return; 3323 } 3324 is_store = !extract32(opc, 0, 1); 3325 if (!fp_access_check(s)) { 3326 return; 3327 } 3328 memop = finalize_memop_asimd(s, size); 3329 } else { 3330 if (size == 3 && opc == 2) { 3331 /* PRFM - prefetch */ 3332 return; 3333 } 3334 if (opc == 3 && size > 1) { 3335 unallocated_encoding(s); 3336 return; 3337 } 3338 is_store = (opc == 0); 3339 is_signed = !is_store && extract32(opc, 1, 1); 3340 is_extended = (size < 3) && extract32(opc, 0, 1); 3341 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3342 } 3343 3344 if (rn == 31) { 3345 gen_check_sp_alignment(s); 3346 } 3347 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3348 3349 tcg_rm = read_cpu_reg(s, rm, 1); 3350 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3351 3352 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3353 3354 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3355 3356 if (is_vector) { 3357 if (is_store) { 3358 do_fp_st(s, rt, clean_addr, memop); 3359 } else { 3360 do_fp_ld(s, rt, clean_addr, memop); 3361 } 3362 } else { 3363 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3364 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3365 3366 if (is_store) { 3367 do_gpr_st(s, tcg_rt, clean_addr, memop, 3368 true, rt, iss_sf, false); 3369 } else { 3370 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3371 is_extended, true, rt, iss_sf, false); 3372 } 3373 } 3374 } 3375 3376 /* 3377 * Load/store (unsigned immediate) 3378 * 3379 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3380 * +----+-------+---+-----+-----+------------+-------+------+ 3381 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3382 * +----+-------+---+-----+-----+------------+-------+------+ 3383 * 3384 * For non-vector: 3385 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3386 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3387 * For vector: 3388 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3389 * opc<0>: 0 -> store, 1 -> load 3390 * Rn: base address register (inc SP) 3391 * Rt: target register 3392 */ 3393 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3394 int opc, 3395 int size, 3396 int rt, 3397 bool is_vector) 3398 { 3399 int rn = extract32(insn, 5, 5); 3400 unsigned int imm12 = extract32(insn, 10, 12); 3401 unsigned int offset; 3402 TCGv_i64 clean_addr, dirty_addr; 3403 bool is_store; 3404 bool is_signed = false; 3405 bool is_extended = false; 3406 MemOp memop; 3407 3408 if (is_vector) { 3409 size |= (opc & 2) << 1; 3410 if (size > 4) { 3411 unallocated_encoding(s); 3412 return; 3413 } 3414 is_store = !extract32(opc, 0, 1); 3415 if (!fp_access_check(s)) { 3416 return; 3417 } 3418 memop = finalize_memop_asimd(s, size); 3419 } else { 3420 if (size == 3 && opc == 2) { 3421 /* PRFM - prefetch */ 3422 return; 3423 } 3424 if (opc == 3 && size > 1) { 3425 unallocated_encoding(s); 3426 return; 3427 } 3428 is_store = (opc == 0); 3429 is_signed = !is_store && extract32(opc, 1, 1); 3430 is_extended = (size < 3) && extract32(opc, 0, 1); 3431 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3432 } 3433 3434 if (rn == 31) { 3435 gen_check_sp_alignment(s); 3436 } 3437 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3438 offset = imm12 << size; 3439 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3440 3441 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3442 3443 if (is_vector) { 3444 if (is_store) { 3445 do_fp_st(s, rt, clean_addr, memop); 3446 } else { 3447 do_fp_ld(s, rt, clean_addr, memop); 3448 } 3449 } else { 3450 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3451 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3452 if (is_store) { 3453 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3454 } else { 3455 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3456 is_extended, true, rt, iss_sf, false); 3457 } 3458 } 3459 } 3460 3461 /* Atomic memory operations 3462 * 3463 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3464 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3465 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3466 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3467 * 3468 * Rt: the result register 3469 * Rn: base address or SP 3470 * Rs: the source register for the operation 3471 * V: vector flag (always 0 as of v8.3) 3472 * A: acquire flag 3473 * R: release flag 3474 */ 3475 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3476 int size, int rt, bool is_vector) 3477 { 3478 int rs = extract32(insn, 16, 5); 3479 int rn = extract32(insn, 5, 5); 3480 int o3_opc = extract32(insn, 12, 4); 3481 bool r = extract32(insn, 22, 1); 3482 bool a = extract32(insn, 23, 1); 3483 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3484 AtomicThreeOpFn *fn = NULL; 3485 MemOp mop = size; 3486 3487 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3488 unallocated_encoding(s); 3489 return; 3490 } 3491 switch (o3_opc) { 3492 case 000: /* LDADD */ 3493 fn = tcg_gen_atomic_fetch_add_i64; 3494 break; 3495 case 001: /* LDCLR */ 3496 fn = tcg_gen_atomic_fetch_and_i64; 3497 break; 3498 case 002: /* LDEOR */ 3499 fn = tcg_gen_atomic_fetch_xor_i64; 3500 break; 3501 case 003: /* LDSET */ 3502 fn = tcg_gen_atomic_fetch_or_i64; 3503 break; 3504 case 004: /* LDSMAX */ 3505 fn = tcg_gen_atomic_fetch_smax_i64; 3506 mop |= MO_SIGN; 3507 break; 3508 case 005: /* LDSMIN */ 3509 fn = tcg_gen_atomic_fetch_smin_i64; 3510 mop |= MO_SIGN; 3511 break; 3512 case 006: /* LDUMAX */ 3513 fn = tcg_gen_atomic_fetch_umax_i64; 3514 break; 3515 case 007: /* LDUMIN */ 3516 fn = tcg_gen_atomic_fetch_umin_i64; 3517 break; 3518 case 010: /* SWP */ 3519 fn = tcg_gen_atomic_xchg_i64; 3520 break; 3521 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3522 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3523 rs != 31 || a != 1 || r != 0) { 3524 unallocated_encoding(s); 3525 return; 3526 } 3527 break; 3528 default: 3529 unallocated_encoding(s); 3530 return; 3531 } 3532 3533 if (rn == 31) { 3534 gen_check_sp_alignment(s); 3535 } 3536 3537 mop = check_atomic_align(s, rn, mop); 3538 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3539 3540 if (o3_opc == 014) { 3541 /* 3542 * LDAPR* are a special case because they are a simple load, not a 3543 * fetch-and-do-something op. 3544 * The architectural consistency requirements here are weaker than 3545 * full load-acquire (we only need "load-acquire processor consistent"), 3546 * but we choose to implement them as full LDAQ. 3547 */ 3548 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3549 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3550 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3551 return; 3552 } 3553 3554 tcg_rs = read_cpu_reg(s, rs, true); 3555 tcg_rt = cpu_reg(s, rt); 3556 3557 if (o3_opc == 1) { /* LDCLR */ 3558 tcg_gen_not_i64(tcg_rs, tcg_rs); 3559 } 3560 3561 /* The tcg atomic primitives are all full barriers. Therefore we 3562 * can ignore the Acquire and Release bits of this instruction. 3563 */ 3564 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3565 3566 if (mop & MO_SIGN) { 3567 switch (size) { 3568 case MO_8: 3569 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3570 break; 3571 case MO_16: 3572 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3573 break; 3574 case MO_32: 3575 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3576 break; 3577 case MO_64: 3578 break; 3579 default: 3580 g_assert_not_reached(); 3581 } 3582 } 3583 } 3584 3585 /* 3586 * PAC memory operations 3587 * 3588 * 31 30 27 26 24 22 21 12 11 10 5 0 3589 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3590 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3591 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3592 * 3593 * Rt: the result register 3594 * Rn: base address or SP 3595 * V: vector flag (always 0 as of v8.3) 3596 * M: clear for key DA, set for key DB 3597 * W: pre-indexing flag 3598 * S: sign for imm9. 3599 */ 3600 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3601 int size, int rt, bool is_vector) 3602 { 3603 int rn = extract32(insn, 5, 5); 3604 bool is_wback = extract32(insn, 11, 1); 3605 bool use_key_a = !extract32(insn, 23, 1); 3606 int offset; 3607 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3608 MemOp memop; 3609 3610 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3611 unallocated_encoding(s); 3612 return; 3613 } 3614 3615 if (rn == 31) { 3616 gen_check_sp_alignment(s); 3617 } 3618 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3619 3620 if (s->pauth_active) { 3621 if (use_key_a) { 3622 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3623 tcg_constant_i64(0)); 3624 } else { 3625 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3626 tcg_constant_i64(0)); 3627 } 3628 } 3629 3630 /* Form the 10-bit signed, scaled offset. */ 3631 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3632 offset = sextract32(offset << size, 0, 10 + size); 3633 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3634 3635 memop = finalize_memop(s, size); 3636 3637 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3638 clean_addr = gen_mte_check1(s, dirty_addr, false, 3639 is_wback || rn != 31, memop); 3640 3641 tcg_rt = cpu_reg(s, rt); 3642 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3643 /* extend */ false, /* iss_valid */ !is_wback, 3644 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3645 3646 if (is_wback) { 3647 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3648 } 3649 } 3650 3651 /* 3652 * LDAPR/STLR (unscaled immediate) 3653 * 3654 * 31 30 24 22 21 12 10 5 0 3655 * +------+-------------+-----+---+--------+-----+----+-----+ 3656 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3657 * +------+-------------+-----+---+--------+-----+----+-----+ 3658 * 3659 * Rt: source or destination register 3660 * Rn: base register 3661 * imm9: unscaled immediate offset 3662 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3663 * size: size of load/store 3664 */ 3665 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3666 { 3667 int rt = extract32(insn, 0, 5); 3668 int rn = extract32(insn, 5, 5); 3669 int offset = sextract32(insn, 12, 9); 3670 int opc = extract32(insn, 22, 2); 3671 int size = extract32(insn, 30, 2); 3672 TCGv_i64 clean_addr, dirty_addr; 3673 bool is_store = false; 3674 bool extend = false; 3675 bool iss_sf; 3676 MemOp mop = size; 3677 3678 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3679 unallocated_encoding(s); 3680 return; 3681 } 3682 3683 switch (opc) { 3684 case 0: /* STLURB */ 3685 is_store = true; 3686 break; 3687 case 1: /* LDAPUR* */ 3688 break; 3689 case 2: /* LDAPURS* 64-bit variant */ 3690 if (size == 3) { 3691 unallocated_encoding(s); 3692 return; 3693 } 3694 mop |= MO_SIGN; 3695 break; 3696 case 3: /* LDAPURS* 32-bit variant */ 3697 if (size > 1) { 3698 unallocated_encoding(s); 3699 return; 3700 } 3701 mop |= MO_SIGN; 3702 extend = true; /* zero-extend 32->64 after signed load */ 3703 break; 3704 default: 3705 g_assert_not_reached(); 3706 } 3707 3708 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3709 3710 if (rn == 31) { 3711 gen_check_sp_alignment(s); 3712 } 3713 3714 mop = check_ordered_align(s, rn, offset, is_store, mop); 3715 3716 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3717 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3718 clean_addr = clean_data_tbi(s, dirty_addr); 3719 3720 if (is_store) { 3721 /* Store-Release semantics */ 3722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3723 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3724 } else { 3725 /* 3726 * Load-AcquirePC semantics; we implement as the slightly more 3727 * restrictive Load-Acquire. 3728 */ 3729 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3730 extend, true, rt, iss_sf, true); 3731 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3732 } 3733 } 3734 3735 /* Load/store register (all forms) */ 3736 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3737 { 3738 int rt = extract32(insn, 0, 5); 3739 int opc = extract32(insn, 22, 2); 3740 bool is_vector = extract32(insn, 26, 1); 3741 int size = extract32(insn, 30, 2); 3742 3743 switch (extract32(insn, 24, 2)) { 3744 case 0: 3745 if (extract32(insn, 21, 1) == 0) { 3746 /* Load/store register (unscaled immediate) 3747 * Load/store immediate pre/post-indexed 3748 * Load/store register unprivileged 3749 */ 3750 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3751 return; 3752 } 3753 switch (extract32(insn, 10, 2)) { 3754 case 0: 3755 disas_ldst_atomic(s, insn, size, rt, is_vector); 3756 return; 3757 case 2: 3758 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3759 return; 3760 default: 3761 disas_ldst_pac(s, insn, size, rt, is_vector); 3762 return; 3763 } 3764 break; 3765 case 1: 3766 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3767 return; 3768 } 3769 unallocated_encoding(s); 3770 } 3771 3772 /* AdvSIMD load/store multiple structures 3773 * 3774 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3775 * +---+---+---------------+---+-------------+--------+------+------+------+ 3776 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3777 * +---+---+---------------+---+-------------+--------+------+------+------+ 3778 * 3779 * AdvSIMD load/store multiple structures (post-indexed) 3780 * 3781 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3782 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3783 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3784 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3785 * 3786 * Rt: first (or only) SIMD&FP register to be transferred 3787 * Rn: base address or SP 3788 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3789 */ 3790 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3791 { 3792 int rt = extract32(insn, 0, 5); 3793 int rn = extract32(insn, 5, 5); 3794 int rm = extract32(insn, 16, 5); 3795 int size = extract32(insn, 10, 2); 3796 int opcode = extract32(insn, 12, 4); 3797 bool is_store = !extract32(insn, 22, 1); 3798 bool is_postidx = extract32(insn, 23, 1); 3799 bool is_q = extract32(insn, 30, 1); 3800 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3801 MemOp endian, align, mop; 3802 3803 int total; /* total bytes */ 3804 int elements; /* elements per vector */ 3805 int rpt; /* num iterations */ 3806 int selem; /* structure elements */ 3807 int r; 3808 3809 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3810 unallocated_encoding(s); 3811 return; 3812 } 3813 3814 if (!is_postidx && rm != 0) { 3815 unallocated_encoding(s); 3816 return; 3817 } 3818 3819 /* From the shared decode logic */ 3820 switch (opcode) { 3821 case 0x0: 3822 rpt = 1; 3823 selem = 4; 3824 break; 3825 case 0x2: 3826 rpt = 4; 3827 selem = 1; 3828 break; 3829 case 0x4: 3830 rpt = 1; 3831 selem = 3; 3832 break; 3833 case 0x6: 3834 rpt = 3; 3835 selem = 1; 3836 break; 3837 case 0x7: 3838 rpt = 1; 3839 selem = 1; 3840 break; 3841 case 0x8: 3842 rpt = 1; 3843 selem = 2; 3844 break; 3845 case 0xa: 3846 rpt = 2; 3847 selem = 1; 3848 break; 3849 default: 3850 unallocated_encoding(s); 3851 return; 3852 } 3853 3854 if (size == 3 && !is_q && selem != 1) { 3855 /* reserved */ 3856 unallocated_encoding(s); 3857 return; 3858 } 3859 3860 if (!fp_access_check(s)) { 3861 return; 3862 } 3863 3864 if (rn == 31) { 3865 gen_check_sp_alignment(s); 3866 } 3867 3868 /* For our purposes, bytes are always little-endian. */ 3869 endian = s->be_data; 3870 if (size == 0) { 3871 endian = MO_LE; 3872 } 3873 3874 total = rpt * selem * (is_q ? 16 : 8); 3875 tcg_rn = cpu_reg_sp(s, rn); 3876 3877 /* 3878 * Issue the MTE check vs the logical repeat count, before we 3879 * promote consecutive little-endian elements below. 3880 */ 3881 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3882 total, finalize_memop_asimd(s, size)); 3883 3884 /* 3885 * Consecutive little-endian elements from a single register 3886 * can be promoted to a larger little-endian operation. 3887 */ 3888 align = MO_ALIGN; 3889 if (selem == 1 && endian == MO_LE) { 3890 align = pow2_align(size); 3891 size = 3; 3892 } 3893 if (!s->align_mem) { 3894 align = 0; 3895 } 3896 mop = endian | size | align; 3897 3898 elements = (is_q ? 16 : 8) >> size; 3899 tcg_ebytes = tcg_constant_i64(1 << size); 3900 for (r = 0; r < rpt; r++) { 3901 int e; 3902 for (e = 0; e < elements; e++) { 3903 int xs; 3904 for (xs = 0; xs < selem; xs++) { 3905 int tt = (rt + r + xs) % 32; 3906 if (is_store) { 3907 do_vec_st(s, tt, e, clean_addr, mop); 3908 } else { 3909 do_vec_ld(s, tt, e, clean_addr, mop); 3910 } 3911 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3912 } 3913 } 3914 } 3915 3916 if (!is_store) { 3917 /* For non-quad operations, setting a slice of the low 3918 * 64 bits of the register clears the high 64 bits (in 3919 * the ARM ARM pseudocode this is implicit in the fact 3920 * that 'rval' is a 64 bit wide variable). 3921 * For quad operations, we might still need to zero the 3922 * high bits of SVE. 3923 */ 3924 for (r = 0; r < rpt * selem; r++) { 3925 int tt = (rt + r) % 32; 3926 clear_vec_high(s, is_q, tt); 3927 } 3928 } 3929 3930 if (is_postidx) { 3931 if (rm == 31) { 3932 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3933 } else { 3934 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3935 } 3936 } 3937 } 3938 3939 /* AdvSIMD load/store single structure 3940 * 3941 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3942 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3943 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3944 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3945 * 3946 * AdvSIMD load/store single structure (post-indexed) 3947 * 3948 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3949 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3950 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3951 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3952 * 3953 * Rt: first (or only) SIMD&FP register to be transferred 3954 * Rn: base address or SP 3955 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3956 * index = encoded in Q:S:size dependent on size 3957 * 3958 * lane_size = encoded in R, opc 3959 * transfer width = encoded in opc, S, size 3960 */ 3961 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3962 { 3963 int rt = extract32(insn, 0, 5); 3964 int rn = extract32(insn, 5, 5); 3965 int rm = extract32(insn, 16, 5); 3966 int size = extract32(insn, 10, 2); 3967 int S = extract32(insn, 12, 1); 3968 int opc = extract32(insn, 13, 3); 3969 int R = extract32(insn, 21, 1); 3970 int is_load = extract32(insn, 22, 1); 3971 int is_postidx = extract32(insn, 23, 1); 3972 int is_q = extract32(insn, 30, 1); 3973 3974 int scale = extract32(opc, 1, 2); 3975 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3976 bool replicate = false; 3977 int index = is_q << 3 | S << 2 | size; 3978 int xs, total; 3979 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3980 MemOp mop; 3981 3982 if (extract32(insn, 31, 1)) { 3983 unallocated_encoding(s); 3984 return; 3985 } 3986 if (!is_postidx && rm != 0) { 3987 unallocated_encoding(s); 3988 return; 3989 } 3990 3991 switch (scale) { 3992 case 3: 3993 if (!is_load || S) { 3994 unallocated_encoding(s); 3995 return; 3996 } 3997 scale = size; 3998 replicate = true; 3999 break; 4000 case 0: 4001 break; 4002 case 1: 4003 if (extract32(size, 0, 1)) { 4004 unallocated_encoding(s); 4005 return; 4006 } 4007 index >>= 1; 4008 break; 4009 case 2: 4010 if (extract32(size, 1, 1)) { 4011 unallocated_encoding(s); 4012 return; 4013 } 4014 if (!extract32(size, 0, 1)) { 4015 index >>= 2; 4016 } else { 4017 if (S) { 4018 unallocated_encoding(s); 4019 return; 4020 } 4021 index >>= 3; 4022 scale = 3; 4023 } 4024 break; 4025 default: 4026 g_assert_not_reached(); 4027 } 4028 4029 if (!fp_access_check(s)) { 4030 return; 4031 } 4032 4033 if (rn == 31) { 4034 gen_check_sp_alignment(s); 4035 } 4036 4037 total = selem << scale; 4038 tcg_rn = cpu_reg_sp(s, rn); 4039 4040 mop = finalize_memop_asimd(s, scale); 4041 4042 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4043 total, mop); 4044 4045 tcg_ebytes = tcg_constant_i64(1 << scale); 4046 for (xs = 0; xs < selem; xs++) { 4047 if (replicate) { 4048 /* Load and replicate to all elements */ 4049 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4050 4051 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4052 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4053 (is_q + 1) * 8, vec_full_reg_size(s), 4054 tcg_tmp); 4055 } else { 4056 /* Load/store one element per register */ 4057 if (is_load) { 4058 do_vec_ld(s, rt, index, clean_addr, mop); 4059 } else { 4060 do_vec_st(s, rt, index, clean_addr, mop); 4061 } 4062 } 4063 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4064 rt = (rt + 1) % 32; 4065 } 4066 4067 if (is_postidx) { 4068 if (rm == 31) { 4069 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4070 } else { 4071 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4072 } 4073 } 4074 } 4075 4076 /* 4077 * Load/Store memory tags 4078 * 4079 * 31 30 29 24 22 21 12 10 5 0 4080 * +-----+-------------+-----+---+------+-----+------+------+ 4081 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4082 * +-----+-------------+-----+---+------+-----+------+------+ 4083 */ 4084 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4085 { 4086 int rt = extract32(insn, 0, 5); 4087 int rn = extract32(insn, 5, 5); 4088 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4089 int op2 = extract32(insn, 10, 2); 4090 int op1 = extract32(insn, 22, 2); 4091 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4092 int index = 0; 4093 TCGv_i64 addr, clean_addr, tcg_rt; 4094 4095 /* We checked insn bits [29:24,21] in the caller. */ 4096 if (extract32(insn, 30, 2) != 3) { 4097 goto do_unallocated; 4098 } 4099 4100 /* 4101 * @index is a tri-state variable which has 3 states: 4102 * < 0 : post-index, writeback 4103 * = 0 : signed offset 4104 * > 0 : pre-index, writeback 4105 */ 4106 switch (op1) { 4107 case 0: 4108 if (op2 != 0) { 4109 /* STG */ 4110 index = op2 - 2; 4111 } else { 4112 /* STZGM */ 4113 if (s->current_el == 0 || offset != 0) { 4114 goto do_unallocated; 4115 } 4116 is_mult = is_zero = true; 4117 } 4118 break; 4119 case 1: 4120 if (op2 != 0) { 4121 /* STZG */ 4122 is_zero = true; 4123 index = op2 - 2; 4124 } else { 4125 /* LDG */ 4126 is_load = true; 4127 } 4128 break; 4129 case 2: 4130 if (op2 != 0) { 4131 /* ST2G */ 4132 is_pair = true; 4133 index = op2 - 2; 4134 } else { 4135 /* STGM */ 4136 if (s->current_el == 0 || offset != 0) { 4137 goto do_unallocated; 4138 } 4139 is_mult = true; 4140 } 4141 break; 4142 case 3: 4143 if (op2 != 0) { 4144 /* STZ2G */ 4145 is_pair = is_zero = true; 4146 index = op2 - 2; 4147 } else { 4148 /* LDGM */ 4149 if (s->current_el == 0 || offset != 0) { 4150 goto do_unallocated; 4151 } 4152 is_mult = is_load = true; 4153 } 4154 break; 4155 4156 default: 4157 do_unallocated: 4158 unallocated_encoding(s); 4159 return; 4160 } 4161 4162 if (is_mult 4163 ? !dc_isar_feature(aa64_mte, s) 4164 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4165 goto do_unallocated; 4166 } 4167 4168 if (rn == 31) { 4169 gen_check_sp_alignment(s); 4170 } 4171 4172 addr = read_cpu_reg_sp(s, rn, true); 4173 if (index >= 0) { 4174 /* pre-index or signed offset */ 4175 tcg_gen_addi_i64(addr, addr, offset); 4176 } 4177 4178 if (is_mult) { 4179 tcg_rt = cpu_reg(s, rt); 4180 4181 if (is_zero) { 4182 int size = 4 << s->dcz_blocksize; 4183 4184 if (s->ata) { 4185 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4186 } 4187 /* 4188 * The non-tags portion of STZGM is mostly like DC_ZVA, 4189 * except the alignment happens before the access. 4190 */ 4191 clean_addr = clean_data_tbi(s, addr); 4192 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4193 gen_helper_dc_zva(cpu_env, clean_addr); 4194 } else if (s->ata) { 4195 if (is_load) { 4196 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4197 } else { 4198 gen_helper_stgm(cpu_env, addr, tcg_rt); 4199 } 4200 } else { 4201 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4202 int size = 4 << GMID_EL1_BS; 4203 4204 clean_addr = clean_data_tbi(s, addr); 4205 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4206 gen_probe_access(s, clean_addr, acc, size); 4207 4208 if (is_load) { 4209 /* The result tags are zeros. */ 4210 tcg_gen_movi_i64(tcg_rt, 0); 4211 } 4212 } 4213 return; 4214 } 4215 4216 if (is_load) { 4217 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4218 tcg_rt = cpu_reg(s, rt); 4219 if (s->ata) { 4220 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4221 } else { 4222 /* 4223 * Tag access disabled: we must check for aborts on the load 4224 * load from [rn+offset], and then insert a 0 tag into rt. 4225 */ 4226 clean_addr = clean_data_tbi(s, addr); 4227 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4228 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4229 } 4230 } else { 4231 tcg_rt = cpu_reg_sp(s, rt); 4232 if (!s->ata) { 4233 /* 4234 * For STG and ST2G, we need to check alignment and probe memory. 4235 * TODO: For STZG and STZ2G, we could rely on the stores below, 4236 * at least for system mode; user-only won't enforce alignment. 4237 */ 4238 if (is_pair) { 4239 gen_helper_st2g_stub(cpu_env, addr); 4240 } else { 4241 gen_helper_stg_stub(cpu_env, addr); 4242 } 4243 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4244 if (is_pair) { 4245 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4246 } else { 4247 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4248 } 4249 } else { 4250 if (is_pair) { 4251 gen_helper_st2g(cpu_env, addr, tcg_rt); 4252 } else { 4253 gen_helper_stg(cpu_env, addr, tcg_rt); 4254 } 4255 } 4256 } 4257 4258 if (is_zero) { 4259 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4260 TCGv_i64 zero64 = tcg_constant_i64(0); 4261 TCGv_i128 zero128 = tcg_temp_new_i128(); 4262 int mem_index = get_mem_index(s); 4263 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4264 4265 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4266 4267 /* This is 1 or 2 atomic 16-byte operations. */ 4268 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4269 if (is_pair) { 4270 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4271 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4272 } 4273 } 4274 4275 if (index != 0) { 4276 /* pre-index or post-index */ 4277 if (index < 0) { 4278 /* post-index */ 4279 tcg_gen_addi_i64(addr, addr, offset); 4280 } 4281 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4282 } 4283 } 4284 4285 /* Loads and stores */ 4286 static void disas_ldst(DisasContext *s, uint32_t insn) 4287 { 4288 switch (extract32(insn, 24, 6)) { 4289 case 0x08: /* Load/store exclusive */ 4290 disas_ldst_excl(s, insn); 4291 break; 4292 case 0x18: case 0x1c: /* Load register (literal) */ 4293 disas_ld_lit(s, insn); 4294 break; 4295 case 0x28: case 0x29: 4296 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4297 disas_ldst_pair(s, insn); 4298 break; 4299 case 0x38: case 0x39: 4300 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4301 disas_ldst_reg(s, insn); 4302 break; 4303 case 0x0c: /* AdvSIMD load/store multiple structures */ 4304 disas_ldst_multiple_struct(s, insn); 4305 break; 4306 case 0x0d: /* AdvSIMD load/store single structure */ 4307 disas_ldst_single_struct(s, insn); 4308 break; 4309 case 0x19: 4310 if (extract32(insn, 21, 1) != 0) { 4311 disas_ldst_tag(s, insn); 4312 } else if (extract32(insn, 10, 2) == 0) { 4313 disas_ldst_ldapr_stlr(s, insn); 4314 } else { 4315 unallocated_encoding(s); 4316 } 4317 break; 4318 default: 4319 unallocated_encoding(s); 4320 break; 4321 } 4322 } 4323 4324 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4325 4326 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4327 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4328 { 4329 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4330 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4331 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4332 4333 fn(tcg_rd, tcg_rn, tcg_imm); 4334 if (!a->sf) { 4335 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4336 } 4337 return true; 4338 } 4339 4340 /* 4341 * PC-rel. addressing 4342 */ 4343 4344 static bool trans_ADR(DisasContext *s, arg_ri *a) 4345 { 4346 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4347 return true; 4348 } 4349 4350 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4351 { 4352 int64_t offset = (int64_t)a->imm << 12; 4353 4354 /* The page offset is ok for CF_PCREL. */ 4355 offset -= s->pc_curr & 0xfff; 4356 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4357 return true; 4358 } 4359 4360 /* 4361 * Add/subtract (immediate) 4362 */ 4363 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4364 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4365 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4366 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4367 4368 /* 4369 * Add/subtract (immediate, with tags) 4370 */ 4371 4372 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4373 bool sub_op) 4374 { 4375 TCGv_i64 tcg_rn, tcg_rd; 4376 int imm; 4377 4378 imm = a->uimm6 << LOG2_TAG_GRANULE; 4379 if (sub_op) { 4380 imm = -imm; 4381 } 4382 4383 tcg_rn = cpu_reg_sp(s, a->rn); 4384 tcg_rd = cpu_reg_sp(s, a->rd); 4385 4386 if (s->ata) { 4387 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4388 tcg_constant_i32(imm), 4389 tcg_constant_i32(a->uimm4)); 4390 } else { 4391 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4392 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4393 } 4394 return true; 4395 } 4396 4397 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4398 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4399 4400 /* The input should be a value in the bottom e bits (with higher 4401 * bits zero); returns that value replicated into every element 4402 * of size e in a 64 bit integer. 4403 */ 4404 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4405 { 4406 assert(e != 0); 4407 while (e < 64) { 4408 mask |= mask << e; 4409 e *= 2; 4410 } 4411 return mask; 4412 } 4413 4414 /* 4415 * Logical (immediate) 4416 */ 4417 4418 /* 4419 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4420 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4421 * value (ie should cause a guest UNDEF exception), and true if they are 4422 * valid, in which case the decoded bit pattern is written to result. 4423 */ 4424 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4425 unsigned int imms, unsigned int immr) 4426 { 4427 uint64_t mask; 4428 unsigned e, levels, s, r; 4429 int len; 4430 4431 assert(immn < 2 && imms < 64 && immr < 64); 4432 4433 /* The bit patterns we create here are 64 bit patterns which 4434 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4435 * 64 bits each. Each element contains the same value: a run 4436 * of between 1 and e-1 non-zero bits, rotated within the 4437 * element by between 0 and e-1 bits. 4438 * 4439 * The element size and run length are encoded into immn (1 bit) 4440 * and imms (6 bits) as follows: 4441 * 64 bit elements: immn = 1, imms = <length of run - 1> 4442 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4443 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4444 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4445 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4446 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4447 * Notice that immn = 0, imms = 11111x is the only combination 4448 * not covered by one of the above options; this is reserved. 4449 * Further, <length of run - 1> all-ones is a reserved pattern. 4450 * 4451 * In all cases the rotation is by immr % e (and immr is 6 bits). 4452 */ 4453 4454 /* First determine the element size */ 4455 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4456 if (len < 1) { 4457 /* This is the immn == 0, imms == 0x11111x case */ 4458 return false; 4459 } 4460 e = 1 << len; 4461 4462 levels = e - 1; 4463 s = imms & levels; 4464 r = immr & levels; 4465 4466 if (s == levels) { 4467 /* <length of run - 1> mustn't be all-ones. */ 4468 return false; 4469 } 4470 4471 /* Create the value of one element: s+1 set bits rotated 4472 * by r within the element (which is e bits wide)... 4473 */ 4474 mask = MAKE_64BIT_MASK(0, s + 1); 4475 if (r) { 4476 mask = (mask >> r) | (mask << (e - r)); 4477 mask &= MAKE_64BIT_MASK(0, e); 4478 } 4479 /* ...then replicate the element over the whole 64 bit value */ 4480 mask = bitfield_replicate(mask, e); 4481 *result = mask; 4482 return true; 4483 } 4484 4485 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4486 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4487 { 4488 TCGv_i64 tcg_rd, tcg_rn; 4489 uint64_t imm; 4490 4491 /* Some immediate field values are reserved. */ 4492 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4493 extract32(a->dbm, 0, 6), 4494 extract32(a->dbm, 6, 6))) { 4495 return false; 4496 } 4497 if (!a->sf) { 4498 imm &= 0xffffffffull; 4499 } 4500 4501 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4502 tcg_rn = cpu_reg(s, a->rn); 4503 4504 fn(tcg_rd, tcg_rn, imm); 4505 if (set_cc) { 4506 gen_logic_CC(a->sf, tcg_rd); 4507 } 4508 if (!a->sf) { 4509 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4510 } 4511 return true; 4512 } 4513 4514 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4515 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4516 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4517 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4518 4519 /* 4520 * Move wide (immediate) 4521 */ 4522 4523 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4524 { 4525 int pos = a->hw << 4; 4526 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4527 return true; 4528 } 4529 4530 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4531 { 4532 int pos = a->hw << 4; 4533 uint64_t imm = a->imm; 4534 4535 imm = ~(imm << pos); 4536 if (!a->sf) { 4537 imm = (uint32_t)imm; 4538 } 4539 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4540 return true; 4541 } 4542 4543 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4544 { 4545 int pos = a->hw << 4; 4546 TCGv_i64 tcg_rd, tcg_im; 4547 4548 tcg_rd = cpu_reg(s, a->rd); 4549 tcg_im = tcg_constant_i64(a->imm); 4550 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4551 if (!a->sf) { 4552 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4553 } 4554 return true; 4555 } 4556 4557 /* 4558 * Bitfield 4559 */ 4560 4561 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4562 { 4563 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4564 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4565 unsigned int bitsize = a->sf ? 64 : 32; 4566 unsigned int ri = a->immr; 4567 unsigned int si = a->imms; 4568 unsigned int pos, len; 4569 4570 if (si >= ri) { 4571 /* Wd<s-r:0> = Wn<s:r> */ 4572 len = (si - ri) + 1; 4573 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4574 if (!a->sf) { 4575 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4576 } 4577 } else { 4578 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4579 len = si + 1; 4580 pos = (bitsize - ri) & (bitsize - 1); 4581 4582 if (len < ri) { 4583 /* 4584 * Sign extend the destination field from len to fill the 4585 * balance of the word. Let the deposit below insert all 4586 * of those sign bits. 4587 */ 4588 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4589 len = ri; 4590 } 4591 4592 /* 4593 * We start with zero, and we haven't modified any bits outside 4594 * bitsize, therefore no final zero-extension is unneeded for !sf. 4595 */ 4596 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4597 } 4598 return true; 4599 } 4600 4601 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4602 { 4603 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4604 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4605 unsigned int bitsize = a->sf ? 64 : 32; 4606 unsigned int ri = a->immr; 4607 unsigned int si = a->imms; 4608 unsigned int pos, len; 4609 4610 tcg_rd = cpu_reg(s, a->rd); 4611 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4612 4613 if (si >= ri) { 4614 /* Wd<s-r:0> = Wn<s:r> */ 4615 len = (si - ri) + 1; 4616 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4617 } else { 4618 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4619 len = si + 1; 4620 pos = (bitsize - ri) & (bitsize - 1); 4621 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4622 } 4623 return true; 4624 } 4625 4626 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4627 { 4628 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4629 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4630 unsigned int bitsize = a->sf ? 64 : 32; 4631 unsigned int ri = a->immr; 4632 unsigned int si = a->imms; 4633 unsigned int pos, len; 4634 4635 tcg_rd = cpu_reg(s, a->rd); 4636 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4637 4638 if (si >= ri) { 4639 /* Wd<s-r:0> = Wn<s:r> */ 4640 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4641 len = (si - ri) + 1; 4642 pos = 0; 4643 } else { 4644 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4645 len = si + 1; 4646 pos = (bitsize - ri) & (bitsize - 1); 4647 } 4648 4649 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4650 if (!a->sf) { 4651 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4652 } 4653 return true; 4654 } 4655 4656 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4657 { 4658 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4659 4660 tcg_rd = cpu_reg(s, a->rd); 4661 4662 if (unlikely(a->imm == 0)) { 4663 /* 4664 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4665 * so an extract from bit 0 is a special case. 4666 */ 4667 if (a->sf) { 4668 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4669 } else { 4670 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4671 } 4672 } else { 4673 tcg_rm = cpu_reg(s, a->rm); 4674 tcg_rn = cpu_reg(s, a->rn); 4675 4676 if (a->sf) { 4677 /* Specialization to ROR happens in EXTRACT2. */ 4678 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4679 } else { 4680 TCGv_i32 t0 = tcg_temp_new_i32(); 4681 4682 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4683 if (a->rm == a->rn) { 4684 tcg_gen_rotri_i32(t0, t0, a->imm); 4685 } else { 4686 TCGv_i32 t1 = tcg_temp_new_i32(); 4687 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4688 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4689 } 4690 tcg_gen_extu_i32_i64(tcg_rd, t0); 4691 } 4692 } 4693 return true; 4694 } 4695 4696 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4697 * Note that it is the caller's responsibility to ensure that the 4698 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4699 * mandated semantics for out of range shifts. 4700 */ 4701 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4702 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4703 { 4704 switch (shift_type) { 4705 case A64_SHIFT_TYPE_LSL: 4706 tcg_gen_shl_i64(dst, src, shift_amount); 4707 break; 4708 case A64_SHIFT_TYPE_LSR: 4709 tcg_gen_shr_i64(dst, src, shift_amount); 4710 break; 4711 case A64_SHIFT_TYPE_ASR: 4712 if (!sf) { 4713 tcg_gen_ext32s_i64(dst, src); 4714 } 4715 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4716 break; 4717 case A64_SHIFT_TYPE_ROR: 4718 if (sf) { 4719 tcg_gen_rotr_i64(dst, src, shift_amount); 4720 } else { 4721 TCGv_i32 t0, t1; 4722 t0 = tcg_temp_new_i32(); 4723 t1 = tcg_temp_new_i32(); 4724 tcg_gen_extrl_i64_i32(t0, src); 4725 tcg_gen_extrl_i64_i32(t1, shift_amount); 4726 tcg_gen_rotr_i32(t0, t0, t1); 4727 tcg_gen_extu_i32_i64(dst, t0); 4728 } 4729 break; 4730 default: 4731 assert(FALSE); /* all shift types should be handled */ 4732 break; 4733 } 4734 4735 if (!sf) { /* zero extend final result */ 4736 tcg_gen_ext32u_i64(dst, dst); 4737 } 4738 } 4739 4740 /* Shift a TCGv src by immediate, put result in dst. 4741 * The shift amount must be in range (this should always be true as the 4742 * relevant instructions will UNDEF on bad shift immediates). 4743 */ 4744 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4745 enum a64_shift_type shift_type, unsigned int shift_i) 4746 { 4747 assert(shift_i < (sf ? 64 : 32)); 4748 4749 if (shift_i == 0) { 4750 tcg_gen_mov_i64(dst, src); 4751 } else { 4752 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4753 } 4754 } 4755 4756 /* Logical (shifted register) 4757 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4758 * +----+-----+-----------+-------+---+------+--------+------+------+ 4759 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4760 * +----+-----+-----------+-------+---+------+--------+------+------+ 4761 */ 4762 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4763 { 4764 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4765 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4766 4767 sf = extract32(insn, 31, 1); 4768 opc = extract32(insn, 29, 2); 4769 shift_type = extract32(insn, 22, 2); 4770 invert = extract32(insn, 21, 1); 4771 rm = extract32(insn, 16, 5); 4772 shift_amount = extract32(insn, 10, 6); 4773 rn = extract32(insn, 5, 5); 4774 rd = extract32(insn, 0, 5); 4775 4776 if (!sf && (shift_amount & (1 << 5))) { 4777 unallocated_encoding(s); 4778 return; 4779 } 4780 4781 tcg_rd = cpu_reg(s, rd); 4782 4783 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4784 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4785 * register-register MOV and MVN, so it is worth special casing. 4786 */ 4787 tcg_rm = cpu_reg(s, rm); 4788 if (invert) { 4789 tcg_gen_not_i64(tcg_rd, tcg_rm); 4790 if (!sf) { 4791 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4792 } 4793 } else { 4794 if (sf) { 4795 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4796 } else { 4797 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4798 } 4799 } 4800 return; 4801 } 4802 4803 tcg_rm = read_cpu_reg(s, rm, sf); 4804 4805 if (shift_amount) { 4806 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4807 } 4808 4809 tcg_rn = cpu_reg(s, rn); 4810 4811 switch (opc | (invert << 2)) { 4812 case 0: /* AND */ 4813 case 3: /* ANDS */ 4814 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4815 break; 4816 case 1: /* ORR */ 4817 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4818 break; 4819 case 2: /* EOR */ 4820 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4821 break; 4822 case 4: /* BIC */ 4823 case 7: /* BICS */ 4824 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4825 break; 4826 case 5: /* ORN */ 4827 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4828 break; 4829 case 6: /* EON */ 4830 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4831 break; 4832 default: 4833 assert(FALSE); 4834 break; 4835 } 4836 4837 if (!sf) { 4838 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4839 } 4840 4841 if (opc == 3) { 4842 gen_logic_CC(sf, tcg_rd); 4843 } 4844 } 4845 4846 /* 4847 * Add/subtract (extended register) 4848 * 4849 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4850 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4851 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4852 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4853 * 4854 * sf: 0 -> 32bit, 1 -> 64bit 4855 * op: 0 -> add , 1 -> sub 4856 * S: 1 -> set flags 4857 * opt: 00 4858 * option: extension type (see DecodeRegExtend) 4859 * imm3: optional shift to Rm 4860 * 4861 * Rd = Rn + LSL(extend(Rm), amount) 4862 */ 4863 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4864 { 4865 int rd = extract32(insn, 0, 5); 4866 int rn = extract32(insn, 5, 5); 4867 int imm3 = extract32(insn, 10, 3); 4868 int option = extract32(insn, 13, 3); 4869 int rm = extract32(insn, 16, 5); 4870 int opt = extract32(insn, 22, 2); 4871 bool setflags = extract32(insn, 29, 1); 4872 bool sub_op = extract32(insn, 30, 1); 4873 bool sf = extract32(insn, 31, 1); 4874 4875 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4876 TCGv_i64 tcg_rd; 4877 TCGv_i64 tcg_result; 4878 4879 if (imm3 > 4 || opt != 0) { 4880 unallocated_encoding(s); 4881 return; 4882 } 4883 4884 /* non-flag setting ops may use SP */ 4885 if (!setflags) { 4886 tcg_rd = cpu_reg_sp(s, rd); 4887 } else { 4888 tcg_rd = cpu_reg(s, rd); 4889 } 4890 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4891 4892 tcg_rm = read_cpu_reg(s, rm, sf); 4893 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4894 4895 tcg_result = tcg_temp_new_i64(); 4896 4897 if (!setflags) { 4898 if (sub_op) { 4899 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4900 } else { 4901 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4902 } 4903 } else { 4904 if (sub_op) { 4905 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4906 } else { 4907 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4908 } 4909 } 4910 4911 if (sf) { 4912 tcg_gen_mov_i64(tcg_rd, tcg_result); 4913 } else { 4914 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4915 } 4916 } 4917 4918 /* 4919 * Add/subtract (shifted register) 4920 * 4921 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4922 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4923 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4924 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4925 * 4926 * sf: 0 -> 32bit, 1 -> 64bit 4927 * op: 0 -> add , 1 -> sub 4928 * S: 1 -> set flags 4929 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4930 * imm6: Shift amount to apply to Rm before the add/sub 4931 */ 4932 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4933 { 4934 int rd = extract32(insn, 0, 5); 4935 int rn = extract32(insn, 5, 5); 4936 int imm6 = extract32(insn, 10, 6); 4937 int rm = extract32(insn, 16, 5); 4938 int shift_type = extract32(insn, 22, 2); 4939 bool setflags = extract32(insn, 29, 1); 4940 bool sub_op = extract32(insn, 30, 1); 4941 bool sf = extract32(insn, 31, 1); 4942 4943 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4944 TCGv_i64 tcg_rn, tcg_rm; 4945 TCGv_i64 tcg_result; 4946 4947 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4948 unallocated_encoding(s); 4949 return; 4950 } 4951 4952 tcg_rn = read_cpu_reg(s, rn, sf); 4953 tcg_rm = read_cpu_reg(s, rm, sf); 4954 4955 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4956 4957 tcg_result = tcg_temp_new_i64(); 4958 4959 if (!setflags) { 4960 if (sub_op) { 4961 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4962 } else { 4963 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4964 } 4965 } else { 4966 if (sub_op) { 4967 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4968 } else { 4969 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4970 } 4971 } 4972 4973 if (sf) { 4974 tcg_gen_mov_i64(tcg_rd, tcg_result); 4975 } else { 4976 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4977 } 4978 } 4979 4980 /* Data-processing (3 source) 4981 * 4982 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4983 * +--+------+-----------+------+------+----+------+------+------+ 4984 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4985 * +--+------+-----------+------+------+----+------+------+------+ 4986 */ 4987 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4988 { 4989 int rd = extract32(insn, 0, 5); 4990 int rn = extract32(insn, 5, 5); 4991 int ra = extract32(insn, 10, 5); 4992 int rm = extract32(insn, 16, 5); 4993 int op_id = (extract32(insn, 29, 3) << 4) | 4994 (extract32(insn, 21, 3) << 1) | 4995 extract32(insn, 15, 1); 4996 bool sf = extract32(insn, 31, 1); 4997 bool is_sub = extract32(op_id, 0, 1); 4998 bool is_high = extract32(op_id, 2, 1); 4999 bool is_signed = false; 5000 TCGv_i64 tcg_op1; 5001 TCGv_i64 tcg_op2; 5002 TCGv_i64 tcg_tmp; 5003 5004 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5005 switch (op_id) { 5006 case 0x42: /* SMADDL */ 5007 case 0x43: /* SMSUBL */ 5008 case 0x44: /* SMULH */ 5009 is_signed = true; 5010 break; 5011 case 0x0: /* MADD (32bit) */ 5012 case 0x1: /* MSUB (32bit) */ 5013 case 0x40: /* MADD (64bit) */ 5014 case 0x41: /* MSUB (64bit) */ 5015 case 0x4a: /* UMADDL */ 5016 case 0x4b: /* UMSUBL */ 5017 case 0x4c: /* UMULH */ 5018 break; 5019 default: 5020 unallocated_encoding(s); 5021 return; 5022 } 5023 5024 if (is_high) { 5025 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5026 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5027 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5028 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5029 5030 if (is_signed) { 5031 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5032 } else { 5033 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5034 } 5035 return; 5036 } 5037 5038 tcg_op1 = tcg_temp_new_i64(); 5039 tcg_op2 = tcg_temp_new_i64(); 5040 tcg_tmp = tcg_temp_new_i64(); 5041 5042 if (op_id < 0x42) { 5043 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5044 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5045 } else { 5046 if (is_signed) { 5047 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5048 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5049 } else { 5050 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5051 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5052 } 5053 } 5054 5055 if (ra == 31 && !is_sub) { 5056 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5057 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5058 } else { 5059 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5060 if (is_sub) { 5061 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5062 } else { 5063 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5064 } 5065 } 5066 5067 if (!sf) { 5068 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5069 } 5070 } 5071 5072 /* Add/subtract (with carry) 5073 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5074 * +--+--+--+------------------------+------+-------------+------+-----+ 5075 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5076 * +--+--+--+------------------------+------+-------------+------+-----+ 5077 */ 5078 5079 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5080 { 5081 unsigned int sf, op, setflags, rm, rn, rd; 5082 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5083 5084 sf = extract32(insn, 31, 1); 5085 op = extract32(insn, 30, 1); 5086 setflags = extract32(insn, 29, 1); 5087 rm = extract32(insn, 16, 5); 5088 rn = extract32(insn, 5, 5); 5089 rd = extract32(insn, 0, 5); 5090 5091 tcg_rd = cpu_reg(s, rd); 5092 tcg_rn = cpu_reg(s, rn); 5093 5094 if (op) { 5095 tcg_y = tcg_temp_new_i64(); 5096 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5097 } else { 5098 tcg_y = cpu_reg(s, rm); 5099 } 5100 5101 if (setflags) { 5102 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5103 } else { 5104 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5105 } 5106 } 5107 5108 /* 5109 * Rotate right into flags 5110 * 31 30 29 21 15 10 5 4 0 5111 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5112 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5113 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5114 */ 5115 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5116 { 5117 int mask = extract32(insn, 0, 4); 5118 int o2 = extract32(insn, 4, 1); 5119 int rn = extract32(insn, 5, 5); 5120 int imm6 = extract32(insn, 15, 6); 5121 int sf_op_s = extract32(insn, 29, 3); 5122 TCGv_i64 tcg_rn; 5123 TCGv_i32 nzcv; 5124 5125 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5126 unallocated_encoding(s); 5127 return; 5128 } 5129 5130 tcg_rn = read_cpu_reg(s, rn, 1); 5131 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5132 5133 nzcv = tcg_temp_new_i32(); 5134 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5135 5136 if (mask & 8) { /* N */ 5137 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5138 } 5139 if (mask & 4) { /* Z */ 5140 tcg_gen_not_i32(cpu_ZF, nzcv); 5141 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5142 } 5143 if (mask & 2) { /* C */ 5144 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5145 } 5146 if (mask & 1) { /* V */ 5147 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5148 } 5149 } 5150 5151 /* 5152 * Evaluate into flags 5153 * 31 30 29 21 15 14 10 5 4 0 5154 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5155 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5156 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5157 */ 5158 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5159 { 5160 int o3_mask = extract32(insn, 0, 5); 5161 int rn = extract32(insn, 5, 5); 5162 int o2 = extract32(insn, 15, 6); 5163 int sz = extract32(insn, 14, 1); 5164 int sf_op_s = extract32(insn, 29, 3); 5165 TCGv_i32 tmp; 5166 int shift; 5167 5168 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5169 !dc_isar_feature(aa64_condm_4, s)) { 5170 unallocated_encoding(s); 5171 return; 5172 } 5173 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5174 5175 tmp = tcg_temp_new_i32(); 5176 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5177 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5178 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5179 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5180 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5181 } 5182 5183 /* Conditional compare (immediate / register) 5184 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5185 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5186 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5187 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5188 * [1] y [0] [0] 5189 */ 5190 static void disas_cc(DisasContext *s, uint32_t insn) 5191 { 5192 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5193 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5194 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5195 DisasCompare c; 5196 5197 if (!extract32(insn, 29, 1)) { 5198 unallocated_encoding(s); 5199 return; 5200 } 5201 if (insn & (1 << 10 | 1 << 4)) { 5202 unallocated_encoding(s); 5203 return; 5204 } 5205 sf = extract32(insn, 31, 1); 5206 op = extract32(insn, 30, 1); 5207 is_imm = extract32(insn, 11, 1); 5208 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5209 cond = extract32(insn, 12, 4); 5210 rn = extract32(insn, 5, 5); 5211 nzcv = extract32(insn, 0, 4); 5212 5213 /* Set T0 = !COND. */ 5214 tcg_t0 = tcg_temp_new_i32(); 5215 arm_test_cc(&c, cond); 5216 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5217 5218 /* Load the arguments for the new comparison. */ 5219 if (is_imm) { 5220 tcg_y = tcg_temp_new_i64(); 5221 tcg_gen_movi_i64(tcg_y, y); 5222 } else { 5223 tcg_y = cpu_reg(s, y); 5224 } 5225 tcg_rn = cpu_reg(s, rn); 5226 5227 /* Set the flags for the new comparison. */ 5228 tcg_tmp = tcg_temp_new_i64(); 5229 if (op) { 5230 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5231 } else { 5232 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5233 } 5234 5235 /* If COND was false, force the flags to #nzcv. Compute two masks 5236 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5237 * For tcg hosts that support ANDC, we can make do with just T1. 5238 * In either case, allow the tcg optimizer to delete any unused mask. 5239 */ 5240 tcg_t1 = tcg_temp_new_i32(); 5241 tcg_t2 = tcg_temp_new_i32(); 5242 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5243 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5244 5245 if (nzcv & 8) { /* N */ 5246 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5247 } else { 5248 if (TCG_TARGET_HAS_andc_i32) { 5249 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5250 } else { 5251 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5252 } 5253 } 5254 if (nzcv & 4) { /* Z */ 5255 if (TCG_TARGET_HAS_andc_i32) { 5256 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5257 } else { 5258 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5259 } 5260 } else { 5261 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5262 } 5263 if (nzcv & 2) { /* C */ 5264 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5265 } else { 5266 if (TCG_TARGET_HAS_andc_i32) { 5267 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5268 } else { 5269 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5270 } 5271 } 5272 if (nzcv & 1) { /* V */ 5273 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5274 } else { 5275 if (TCG_TARGET_HAS_andc_i32) { 5276 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5277 } else { 5278 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5279 } 5280 } 5281 } 5282 5283 /* Conditional select 5284 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5285 * +----+----+---+-----------------+------+------+-----+------+------+ 5286 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5287 * +----+----+---+-----------------+------+------+-----+------+------+ 5288 */ 5289 static void disas_cond_select(DisasContext *s, uint32_t insn) 5290 { 5291 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5292 TCGv_i64 tcg_rd, zero; 5293 DisasCompare64 c; 5294 5295 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5296 /* S == 1 or op2<1> == 1 */ 5297 unallocated_encoding(s); 5298 return; 5299 } 5300 sf = extract32(insn, 31, 1); 5301 else_inv = extract32(insn, 30, 1); 5302 rm = extract32(insn, 16, 5); 5303 cond = extract32(insn, 12, 4); 5304 else_inc = extract32(insn, 10, 1); 5305 rn = extract32(insn, 5, 5); 5306 rd = extract32(insn, 0, 5); 5307 5308 tcg_rd = cpu_reg(s, rd); 5309 5310 a64_test_cc(&c, cond); 5311 zero = tcg_constant_i64(0); 5312 5313 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5314 /* CSET & CSETM. */ 5315 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5316 if (else_inv) { 5317 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5318 } 5319 } else { 5320 TCGv_i64 t_true = cpu_reg(s, rn); 5321 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5322 if (else_inv && else_inc) { 5323 tcg_gen_neg_i64(t_false, t_false); 5324 } else if (else_inv) { 5325 tcg_gen_not_i64(t_false, t_false); 5326 } else if (else_inc) { 5327 tcg_gen_addi_i64(t_false, t_false, 1); 5328 } 5329 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5330 } 5331 5332 if (!sf) { 5333 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5334 } 5335 } 5336 5337 static void handle_clz(DisasContext *s, unsigned int sf, 5338 unsigned int rn, unsigned int rd) 5339 { 5340 TCGv_i64 tcg_rd, tcg_rn; 5341 tcg_rd = cpu_reg(s, rd); 5342 tcg_rn = cpu_reg(s, rn); 5343 5344 if (sf) { 5345 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5346 } else { 5347 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5348 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5349 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5350 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5351 } 5352 } 5353 5354 static void handle_cls(DisasContext *s, unsigned int sf, 5355 unsigned int rn, unsigned int rd) 5356 { 5357 TCGv_i64 tcg_rd, tcg_rn; 5358 tcg_rd = cpu_reg(s, rd); 5359 tcg_rn = cpu_reg(s, rn); 5360 5361 if (sf) { 5362 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5363 } else { 5364 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5365 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5366 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5367 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5368 } 5369 } 5370 5371 static void handle_rbit(DisasContext *s, unsigned int sf, 5372 unsigned int rn, unsigned int rd) 5373 { 5374 TCGv_i64 tcg_rd, tcg_rn; 5375 tcg_rd = cpu_reg(s, rd); 5376 tcg_rn = cpu_reg(s, rn); 5377 5378 if (sf) { 5379 gen_helper_rbit64(tcg_rd, tcg_rn); 5380 } else { 5381 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5382 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5383 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5384 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5385 } 5386 } 5387 5388 /* REV with sf==1, opcode==3 ("REV64") */ 5389 static void handle_rev64(DisasContext *s, unsigned int sf, 5390 unsigned int rn, unsigned int rd) 5391 { 5392 if (!sf) { 5393 unallocated_encoding(s); 5394 return; 5395 } 5396 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5397 } 5398 5399 /* REV with sf==0, opcode==2 5400 * REV32 (sf==1, opcode==2) 5401 */ 5402 static void handle_rev32(DisasContext *s, unsigned int sf, 5403 unsigned int rn, unsigned int rd) 5404 { 5405 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5406 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5407 5408 if (sf) { 5409 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5410 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5411 } else { 5412 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5413 } 5414 } 5415 5416 /* REV16 (opcode==1) */ 5417 static void handle_rev16(DisasContext *s, unsigned int sf, 5418 unsigned int rn, unsigned int rd) 5419 { 5420 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5421 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5422 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5423 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5424 5425 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5426 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5427 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5428 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5429 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5430 } 5431 5432 /* Data-processing (1 source) 5433 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5434 * +----+---+---+-----------------+---------+--------+------+------+ 5435 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5436 * +----+---+---+-----------------+---------+--------+------+------+ 5437 */ 5438 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5439 { 5440 unsigned int sf, opcode, opcode2, rn, rd; 5441 TCGv_i64 tcg_rd; 5442 5443 if (extract32(insn, 29, 1)) { 5444 unallocated_encoding(s); 5445 return; 5446 } 5447 5448 sf = extract32(insn, 31, 1); 5449 opcode = extract32(insn, 10, 6); 5450 opcode2 = extract32(insn, 16, 5); 5451 rn = extract32(insn, 5, 5); 5452 rd = extract32(insn, 0, 5); 5453 5454 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5455 5456 switch (MAP(sf, opcode2, opcode)) { 5457 case MAP(0, 0x00, 0x00): /* RBIT */ 5458 case MAP(1, 0x00, 0x00): 5459 handle_rbit(s, sf, rn, rd); 5460 break; 5461 case MAP(0, 0x00, 0x01): /* REV16 */ 5462 case MAP(1, 0x00, 0x01): 5463 handle_rev16(s, sf, rn, rd); 5464 break; 5465 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5466 case MAP(1, 0x00, 0x02): 5467 handle_rev32(s, sf, rn, rd); 5468 break; 5469 case MAP(1, 0x00, 0x03): /* REV64 */ 5470 handle_rev64(s, sf, rn, rd); 5471 break; 5472 case MAP(0, 0x00, 0x04): /* CLZ */ 5473 case MAP(1, 0x00, 0x04): 5474 handle_clz(s, sf, rn, rd); 5475 break; 5476 case MAP(0, 0x00, 0x05): /* CLS */ 5477 case MAP(1, 0x00, 0x05): 5478 handle_cls(s, sf, rn, rd); 5479 break; 5480 case MAP(1, 0x01, 0x00): /* PACIA */ 5481 if (s->pauth_active) { 5482 tcg_rd = cpu_reg(s, rd); 5483 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5484 } else if (!dc_isar_feature(aa64_pauth, s)) { 5485 goto do_unallocated; 5486 } 5487 break; 5488 case MAP(1, 0x01, 0x01): /* PACIB */ 5489 if (s->pauth_active) { 5490 tcg_rd = cpu_reg(s, rd); 5491 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5492 } else if (!dc_isar_feature(aa64_pauth, s)) { 5493 goto do_unallocated; 5494 } 5495 break; 5496 case MAP(1, 0x01, 0x02): /* PACDA */ 5497 if (s->pauth_active) { 5498 tcg_rd = cpu_reg(s, rd); 5499 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5500 } else if (!dc_isar_feature(aa64_pauth, s)) { 5501 goto do_unallocated; 5502 } 5503 break; 5504 case MAP(1, 0x01, 0x03): /* PACDB */ 5505 if (s->pauth_active) { 5506 tcg_rd = cpu_reg(s, rd); 5507 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5508 } else if (!dc_isar_feature(aa64_pauth, s)) { 5509 goto do_unallocated; 5510 } 5511 break; 5512 case MAP(1, 0x01, 0x04): /* AUTIA */ 5513 if (s->pauth_active) { 5514 tcg_rd = cpu_reg(s, rd); 5515 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5516 } else if (!dc_isar_feature(aa64_pauth, s)) { 5517 goto do_unallocated; 5518 } 5519 break; 5520 case MAP(1, 0x01, 0x05): /* AUTIB */ 5521 if (s->pauth_active) { 5522 tcg_rd = cpu_reg(s, rd); 5523 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5524 } else if (!dc_isar_feature(aa64_pauth, s)) { 5525 goto do_unallocated; 5526 } 5527 break; 5528 case MAP(1, 0x01, 0x06): /* AUTDA */ 5529 if (s->pauth_active) { 5530 tcg_rd = cpu_reg(s, rd); 5531 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5532 } else if (!dc_isar_feature(aa64_pauth, s)) { 5533 goto do_unallocated; 5534 } 5535 break; 5536 case MAP(1, 0x01, 0x07): /* AUTDB */ 5537 if (s->pauth_active) { 5538 tcg_rd = cpu_reg(s, rd); 5539 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5540 } else if (!dc_isar_feature(aa64_pauth, s)) { 5541 goto do_unallocated; 5542 } 5543 break; 5544 case MAP(1, 0x01, 0x08): /* PACIZA */ 5545 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5546 goto do_unallocated; 5547 } else if (s->pauth_active) { 5548 tcg_rd = cpu_reg(s, rd); 5549 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5550 } 5551 break; 5552 case MAP(1, 0x01, 0x09): /* PACIZB */ 5553 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5554 goto do_unallocated; 5555 } else if (s->pauth_active) { 5556 tcg_rd = cpu_reg(s, rd); 5557 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5558 } 5559 break; 5560 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5561 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5562 goto do_unallocated; 5563 } else if (s->pauth_active) { 5564 tcg_rd = cpu_reg(s, rd); 5565 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5566 } 5567 break; 5568 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5569 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5570 goto do_unallocated; 5571 } else if (s->pauth_active) { 5572 tcg_rd = cpu_reg(s, rd); 5573 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5574 } 5575 break; 5576 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5577 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5578 goto do_unallocated; 5579 } else if (s->pauth_active) { 5580 tcg_rd = cpu_reg(s, rd); 5581 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5582 } 5583 break; 5584 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5585 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5586 goto do_unallocated; 5587 } else if (s->pauth_active) { 5588 tcg_rd = cpu_reg(s, rd); 5589 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5590 } 5591 break; 5592 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5593 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5594 goto do_unallocated; 5595 } else if (s->pauth_active) { 5596 tcg_rd = cpu_reg(s, rd); 5597 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5598 } 5599 break; 5600 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5601 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5602 goto do_unallocated; 5603 } else if (s->pauth_active) { 5604 tcg_rd = cpu_reg(s, rd); 5605 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5606 } 5607 break; 5608 case MAP(1, 0x01, 0x10): /* XPACI */ 5609 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5610 goto do_unallocated; 5611 } else if (s->pauth_active) { 5612 tcg_rd = cpu_reg(s, rd); 5613 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5614 } 5615 break; 5616 case MAP(1, 0x01, 0x11): /* XPACD */ 5617 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5618 goto do_unallocated; 5619 } else if (s->pauth_active) { 5620 tcg_rd = cpu_reg(s, rd); 5621 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5622 } 5623 break; 5624 default: 5625 do_unallocated: 5626 unallocated_encoding(s); 5627 break; 5628 } 5629 5630 #undef MAP 5631 } 5632 5633 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5634 unsigned int rm, unsigned int rn, unsigned int rd) 5635 { 5636 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5637 tcg_rd = cpu_reg(s, rd); 5638 5639 if (!sf && is_signed) { 5640 tcg_n = tcg_temp_new_i64(); 5641 tcg_m = tcg_temp_new_i64(); 5642 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5643 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5644 } else { 5645 tcg_n = read_cpu_reg(s, rn, sf); 5646 tcg_m = read_cpu_reg(s, rm, sf); 5647 } 5648 5649 if (is_signed) { 5650 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5651 } else { 5652 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5653 } 5654 5655 if (!sf) { /* zero extend final result */ 5656 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5657 } 5658 } 5659 5660 /* LSLV, LSRV, ASRV, RORV */ 5661 static void handle_shift_reg(DisasContext *s, 5662 enum a64_shift_type shift_type, unsigned int sf, 5663 unsigned int rm, unsigned int rn, unsigned int rd) 5664 { 5665 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5666 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5667 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5668 5669 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5670 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5671 } 5672 5673 /* CRC32[BHWX], CRC32C[BHWX] */ 5674 static void handle_crc32(DisasContext *s, 5675 unsigned int sf, unsigned int sz, bool crc32c, 5676 unsigned int rm, unsigned int rn, unsigned int rd) 5677 { 5678 TCGv_i64 tcg_acc, tcg_val; 5679 TCGv_i32 tcg_bytes; 5680 5681 if (!dc_isar_feature(aa64_crc32, s) 5682 || (sf == 1 && sz != 3) 5683 || (sf == 0 && sz == 3)) { 5684 unallocated_encoding(s); 5685 return; 5686 } 5687 5688 if (sz == 3) { 5689 tcg_val = cpu_reg(s, rm); 5690 } else { 5691 uint64_t mask; 5692 switch (sz) { 5693 case 0: 5694 mask = 0xFF; 5695 break; 5696 case 1: 5697 mask = 0xFFFF; 5698 break; 5699 case 2: 5700 mask = 0xFFFFFFFF; 5701 break; 5702 default: 5703 g_assert_not_reached(); 5704 } 5705 tcg_val = tcg_temp_new_i64(); 5706 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5707 } 5708 5709 tcg_acc = cpu_reg(s, rn); 5710 tcg_bytes = tcg_constant_i32(1 << sz); 5711 5712 if (crc32c) { 5713 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5714 } else { 5715 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5716 } 5717 } 5718 5719 /* Data-processing (2 source) 5720 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5721 * +----+---+---+-----------------+------+--------+------+------+ 5722 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5723 * +----+---+---+-----------------+------+--------+------+------+ 5724 */ 5725 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5726 { 5727 unsigned int sf, rm, opcode, rn, rd, setflag; 5728 sf = extract32(insn, 31, 1); 5729 setflag = extract32(insn, 29, 1); 5730 rm = extract32(insn, 16, 5); 5731 opcode = extract32(insn, 10, 6); 5732 rn = extract32(insn, 5, 5); 5733 rd = extract32(insn, 0, 5); 5734 5735 if (setflag && opcode != 0) { 5736 unallocated_encoding(s); 5737 return; 5738 } 5739 5740 switch (opcode) { 5741 case 0: /* SUBP(S) */ 5742 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5743 goto do_unallocated; 5744 } else { 5745 TCGv_i64 tcg_n, tcg_m, tcg_d; 5746 5747 tcg_n = read_cpu_reg_sp(s, rn, true); 5748 tcg_m = read_cpu_reg_sp(s, rm, true); 5749 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5750 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5751 tcg_d = cpu_reg(s, rd); 5752 5753 if (setflag) { 5754 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5755 } else { 5756 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5757 } 5758 } 5759 break; 5760 case 2: /* UDIV */ 5761 handle_div(s, false, sf, rm, rn, rd); 5762 break; 5763 case 3: /* SDIV */ 5764 handle_div(s, true, sf, rm, rn, rd); 5765 break; 5766 case 4: /* IRG */ 5767 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5768 goto do_unallocated; 5769 } 5770 if (s->ata) { 5771 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5772 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5773 } else { 5774 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5775 cpu_reg_sp(s, rn)); 5776 } 5777 break; 5778 case 5: /* GMI */ 5779 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5780 goto do_unallocated; 5781 } else { 5782 TCGv_i64 t = tcg_temp_new_i64(); 5783 5784 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5785 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5786 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5787 } 5788 break; 5789 case 8: /* LSLV */ 5790 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5791 break; 5792 case 9: /* LSRV */ 5793 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5794 break; 5795 case 10: /* ASRV */ 5796 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5797 break; 5798 case 11: /* RORV */ 5799 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5800 break; 5801 case 12: /* PACGA */ 5802 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5803 goto do_unallocated; 5804 } 5805 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5806 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5807 break; 5808 case 16: 5809 case 17: 5810 case 18: 5811 case 19: 5812 case 20: 5813 case 21: 5814 case 22: 5815 case 23: /* CRC32 */ 5816 { 5817 int sz = extract32(opcode, 0, 2); 5818 bool crc32c = extract32(opcode, 2, 1); 5819 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5820 break; 5821 } 5822 default: 5823 do_unallocated: 5824 unallocated_encoding(s); 5825 break; 5826 } 5827 } 5828 5829 /* 5830 * Data processing - register 5831 * 31 30 29 28 25 21 20 16 10 0 5832 * +--+---+--+---+-------+-----+-------+-------+---------+ 5833 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5834 * +--+---+--+---+-------+-----+-------+-------+---------+ 5835 */ 5836 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5837 { 5838 int op0 = extract32(insn, 30, 1); 5839 int op1 = extract32(insn, 28, 1); 5840 int op2 = extract32(insn, 21, 4); 5841 int op3 = extract32(insn, 10, 6); 5842 5843 if (!op1) { 5844 if (op2 & 8) { 5845 if (op2 & 1) { 5846 /* Add/sub (extended register) */ 5847 disas_add_sub_ext_reg(s, insn); 5848 } else { 5849 /* Add/sub (shifted register) */ 5850 disas_add_sub_reg(s, insn); 5851 } 5852 } else { 5853 /* Logical (shifted register) */ 5854 disas_logic_reg(s, insn); 5855 } 5856 return; 5857 } 5858 5859 switch (op2) { 5860 case 0x0: 5861 switch (op3) { 5862 case 0x00: /* Add/subtract (with carry) */ 5863 disas_adc_sbc(s, insn); 5864 break; 5865 5866 case 0x01: /* Rotate right into flags */ 5867 case 0x21: 5868 disas_rotate_right_into_flags(s, insn); 5869 break; 5870 5871 case 0x02: /* Evaluate into flags */ 5872 case 0x12: 5873 case 0x22: 5874 case 0x32: 5875 disas_evaluate_into_flags(s, insn); 5876 break; 5877 5878 default: 5879 goto do_unallocated; 5880 } 5881 break; 5882 5883 case 0x2: /* Conditional compare */ 5884 disas_cc(s, insn); /* both imm and reg forms */ 5885 break; 5886 5887 case 0x4: /* Conditional select */ 5888 disas_cond_select(s, insn); 5889 break; 5890 5891 case 0x6: /* Data-processing */ 5892 if (op0) { /* (1 source) */ 5893 disas_data_proc_1src(s, insn); 5894 } else { /* (2 source) */ 5895 disas_data_proc_2src(s, insn); 5896 } 5897 break; 5898 case 0x8 ... 0xf: /* (3 source) */ 5899 disas_data_proc_3src(s, insn); 5900 break; 5901 5902 default: 5903 do_unallocated: 5904 unallocated_encoding(s); 5905 break; 5906 } 5907 } 5908 5909 static void handle_fp_compare(DisasContext *s, int size, 5910 unsigned int rn, unsigned int rm, 5911 bool cmp_with_zero, bool signal_all_nans) 5912 { 5913 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5914 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5915 5916 if (size == MO_64) { 5917 TCGv_i64 tcg_vn, tcg_vm; 5918 5919 tcg_vn = read_fp_dreg(s, rn); 5920 if (cmp_with_zero) { 5921 tcg_vm = tcg_constant_i64(0); 5922 } else { 5923 tcg_vm = read_fp_dreg(s, rm); 5924 } 5925 if (signal_all_nans) { 5926 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5927 } else { 5928 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5929 } 5930 } else { 5931 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5932 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5933 5934 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5935 if (cmp_with_zero) { 5936 tcg_gen_movi_i32(tcg_vm, 0); 5937 } else { 5938 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5939 } 5940 5941 switch (size) { 5942 case MO_32: 5943 if (signal_all_nans) { 5944 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5945 } else { 5946 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5947 } 5948 break; 5949 case MO_16: 5950 if (signal_all_nans) { 5951 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5952 } else { 5953 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5954 } 5955 break; 5956 default: 5957 g_assert_not_reached(); 5958 } 5959 } 5960 5961 gen_set_nzcv(tcg_flags); 5962 } 5963 5964 /* Floating point compare 5965 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5966 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5967 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5968 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5969 */ 5970 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5971 { 5972 unsigned int mos, type, rm, op, rn, opc, op2r; 5973 int size; 5974 5975 mos = extract32(insn, 29, 3); 5976 type = extract32(insn, 22, 2); 5977 rm = extract32(insn, 16, 5); 5978 op = extract32(insn, 14, 2); 5979 rn = extract32(insn, 5, 5); 5980 opc = extract32(insn, 3, 2); 5981 op2r = extract32(insn, 0, 3); 5982 5983 if (mos || op || op2r) { 5984 unallocated_encoding(s); 5985 return; 5986 } 5987 5988 switch (type) { 5989 case 0: 5990 size = MO_32; 5991 break; 5992 case 1: 5993 size = MO_64; 5994 break; 5995 case 3: 5996 size = MO_16; 5997 if (dc_isar_feature(aa64_fp16, s)) { 5998 break; 5999 } 6000 /* fallthru */ 6001 default: 6002 unallocated_encoding(s); 6003 return; 6004 } 6005 6006 if (!fp_access_check(s)) { 6007 return; 6008 } 6009 6010 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6011 } 6012 6013 /* Floating point conditional compare 6014 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6015 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6016 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6017 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6018 */ 6019 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6020 { 6021 unsigned int mos, type, rm, cond, rn, op, nzcv; 6022 TCGLabel *label_continue = NULL; 6023 int size; 6024 6025 mos = extract32(insn, 29, 3); 6026 type = extract32(insn, 22, 2); 6027 rm = extract32(insn, 16, 5); 6028 cond = extract32(insn, 12, 4); 6029 rn = extract32(insn, 5, 5); 6030 op = extract32(insn, 4, 1); 6031 nzcv = extract32(insn, 0, 4); 6032 6033 if (mos) { 6034 unallocated_encoding(s); 6035 return; 6036 } 6037 6038 switch (type) { 6039 case 0: 6040 size = MO_32; 6041 break; 6042 case 1: 6043 size = MO_64; 6044 break; 6045 case 3: 6046 size = MO_16; 6047 if (dc_isar_feature(aa64_fp16, s)) { 6048 break; 6049 } 6050 /* fallthru */ 6051 default: 6052 unallocated_encoding(s); 6053 return; 6054 } 6055 6056 if (!fp_access_check(s)) { 6057 return; 6058 } 6059 6060 if (cond < 0x0e) { /* not always */ 6061 TCGLabel *label_match = gen_new_label(); 6062 label_continue = gen_new_label(); 6063 arm_gen_test_cc(cond, label_match); 6064 /* nomatch: */ 6065 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6066 tcg_gen_br(label_continue); 6067 gen_set_label(label_match); 6068 } 6069 6070 handle_fp_compare(s, size, rn, rm, false, op); 6071 6072 if (cond < 0x0e) { 6073 gen_set_label(label_continue); 6074 } 6075 } 6076 6077 /* Floating point conditional select 6078 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6079 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6080 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6081 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6082 */ 6083 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6084 { 6085 unsigned int mos, type, rm, cond, rn, rd; 6086 TCGv_i64 t_true, t_false; 6087 DisasCompare64 c; 6088 MemOp sz; 6089 6090 mos = extract32(insn, 29, 3); 6091 type = extract32(insn, 22, 2); 6092 rm = extract32(insn, 16, 5); 6093 cond = extract32(insn, 12, 4); 6094 rn = extract32(insn, 5, 5); 6095 rd = extract32(insn, 0, 5); 6096 6097 if (mos) { 6098 unallocated_encoding(s); 6099 return; 6100 } 6101 6102 switch (type) { 6103 case 0: 6104 sz = MO_32; 6105 break; 6106 case 1: 6107 sz = MO_64; 6108 break; 6109 case 3: 6110 sz = MO_16; 6111 if (dc_isar_feature(aa64_fp16, s)) { 6112 break; 6113 } 6114 /* fallthru */ 6115 default: 6116 unallocated_encoding(s); 6117 return; 6118 } 6119 6120 if (!fp_access_check(s)) { 6121 return; 6122 } 6123 6124 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6125 t_true = tcg_temp_new_i64(); 6126 t_false = tcg_temp_new_i64(); 6127 read_vec_element(s, t_true, rn, 0, sz); 6128 read_vec_element(s, t_false, rm, 0, sz); 6129 6130 a64_test_cc(&c, cond); 6131 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6132 t_true, t_false); 6133 6134 /* Note that sregs & hregs write back zeros to the high bits, 6135 and we've already done the zero-extension. */ 6136 write_fp_dreg(s, rd, t_true); 6137 } 6138 6139 /* Floating-point data-processing (1 source) - half precision */ 6140 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6141 { 6142 TCGv_ptr fpst = NULL; 6143 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6144 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6145 6146 switch (opcode) { 6147 case 0x0: /* FMOV */ 6148 tcg_gen_mov_i32(tcg_res, tcg_op); 6149 break; 6150 case 0x1: /* FABS */ 6151 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6152 break; 6153 case 0x2: /* FNEG */ 6154 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6155 break; 6156 case 0x3: /* FSQRT */ 6157 fpst = fpstatus_ptr(FPST_FPCR_F16); 6158 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6159 break; 6160 case 0x8: /* FRINTN */ 6161 case 0x9: /* FRINTP */ 6162 case 0xa: /* FRINTM */ 6163 case 0xb: /* FRINTZ */ 6164 case 0xc: /* FRINTA */ 6165 { 6166 TCGv_i32 tcg_rmode; 6167 6168 fpst = fpstatus_ptr(FPST_FPCR_F16); 6169 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6170 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6171 gen_restore_rmode(tcg_rmode, fpst); 6172 break; 6173 } 6174 case 0xe: /* FRINTX */ 6175 fpst = fpstatus_ptr(FPST_FPCR_F16); 6176 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6177 break; 6178 case 0xf: /* FRINTI */ 6179 fpst = fpstatus_ptr(FPST_FPCR_F16); 6180 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6181 break; 6182 default: 6183 g_assert_not_reached(); 6184 } 6185 6186 write_fp_sreg(s, rd, tcg_res); 6187 } 6188 6189 /* Floating-point data-processing (1 source) - single precision */ 6190 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6191 { 6192 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6193 TCGv_i32 tcg_op, tcg_res; 6194 TCGv_ptr fpst; 6195 int rmode = -1; 6196 6197 tcg_op = read_fp_sreg(s, rn); 6198 tcg_res = tcg_temp_new_i32(); 6199 6200 switch (opcode) { 6201 case 0x0: /* FMOV */ 6202 tcg_gen_mov_i32(tcg_res, tcg_op); 6203 goto done; 6204 case 0x1: /* FABS */ 6205 gen_helper_vfp_abss(tcg_res, tcg_op); 6206 goto done; 6207 case 0x2: /* FNEG */ 6208 gen_helper_vfp_negs(tcg_res, tcg_op); 6209 goto done; 6210 case 0x3: /* FSQRT */ 6211 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6212 goto done; 6213 case 0x6: /* BFCVT */ 6214 gen_fpst = gen_helper_bfcvt; 6215 break; 6216 case 0x8: /* FRINTN */ 6217 case 0x9: /* FRINTP */ 6218 case 0xa: /* FRINTM */ 6219 case 0xb: /* FRINTZ */ 6220 case 0xc: /* FRINTA */ 6221 rmode = opcode & 7; 6222 gen_fpst = gen_helper_rints; 6223 break; 6224 case 0xe: /* FRINTX */ 6225 gen_fpst = gen_helper_rints_exact; 6226 break; 6227 case 0xf: /* FRINTI */ 6228 gen_fpst = gen_helper_rints; 6229 break; 6230 case 0x10: /* FRINT32Z */ 6231 rmode = FPROUNDING_ZERO; 6232 gen_fpst = gen_helper_frint32_s; 6233 break; 6234 case 0x11: /* FRINT32X */ 6235 gen_fpst = gen_helper_frint32_s; 6236 break; 6237 case 0x12: /* FRINT64Z */ 6238 rmode = FPROUNDING_ZERO; 6239 gen_fpst = gen_helper_frint64_s; 6240 break; 6241 case 0x13: /* FRINT64X */ 6242 gen_fpst = gen_helper_frint64_s; 6243 break; 6244 default: 6245 g_assert_not_reached(); 6246 } 6247 6248 fpst = fpstatus_ptr(FPST_FPCR); 6249 if (rmode >= 0) { 6250 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6251 gen_fpst(tcg_res, tcg_op, fpst); 6252 gen_restore_rmode(tcg_rmode, fpst); 6253 } else { 6254 gen_fpst(tcg_res, tcg_op, fpst); 6255 } 6256 6257 done: 6258 write_fp_sreg(s, rd, tcg_res); 6259 } 6260 6261 /* Floating-point data-processing (1 source) - double precision */ 6262 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6263 { 6264 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6265 TCGv_i64 tcg_op, tcg_res; 6266 TCGv_ptr fpst; 6267 int rmode = -1; 6268 6269 switch (opcode) { 6270 case 0x0: /* FMOV */ 6271 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6272 return; 6273 } 6274 6275 tcg_op = read_fp_dreg(s, rn); 6276 tcg_res = tcg_temp_new_i64(); 6277 6278 switch (opcode) { 6279 case 0x1: /* FABS */ 6280 gen_helper_vfp_absd(tcg_res, tcg_op); 6281 goto done; 6282 case 0x2: /* FNEG */ 6283 gen_helper_vfp_negd(tcg_res, tcg_op); 6284 goto done; 6285 case 0x3: /* FSQRT */ 6286 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6287 goto done; 6288 case 0x8: /* FRINTN */ 6289 case 0x9: /* FRINTP */ 6290 case 0xa: /* FRINTM */ 6291 case 0xb: /* FRINTZ */ 6292 case 0xc: /* FRINTA */ 6293 rmode = opcode & 7; 6294 gen_fpst = gen_helper_rintd; 6295 break; 6296 case 0xe: /* FRINTX */ 6297 gen_fpst = gen_helper_rintd_exact; 6298 break; 6299 case 0xf: /* FRINTI */ 6300 gen_fpst = gen_helper_rintd; 6301 break; 6302 case 0x10: /* FRINT32Z */ 6303 rmode = FPROUNDING_ZERO; 6304 gen_fpst = gen_helper_frint32_d; 6305 break; 6306 case 0x11: /* FRINT32X */ 6307 gen_fpst = gen_helper_frint32_d; 6308 break; 6309 case 0x12: /* FRINT64Z */ 6310 rmode = FPROUNDING_ZERO; 6311 gen_fpst = gen_helper_frint64_d; 6312 break; 6313 case 0x13: /* FRINT64X */ 6314 gen_fpst = gen_helper_frint64_d; 6315 break; 6316 default: 6317 g_assert_not_reached(); 6318 } 6319 6320 fpst = fpstatus_ptr(FPST_FPCR); 6321 if (rmode >= 0) { 6322 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6323 gen_fpst(tcg_res, tcg_op, fpst); 6324 gen_restore_rmode(tcg_rmode, fpst); 6325 } else { 6326 gen_fpst(tcg_res, tcg_op, fpst); 6327 } 6328 6329 done: 6330 write_fp_dreg(s, rd, tcg_res); 6331 } 6332 6333 static void handle_fp_fcvt(DisasContext *s, int opcode, 6334 int rd, int rn, int dtype, int ntype) 6335 { 6336 switch (ntype) { 6337 case 0x0: 6338 { 6339 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6340 if (dtype == 1) { 6341 /* Single to double */ 6342 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6343 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6344 write_fp_dreg(s, rd, tcg_rd); 6345 } else { 6346 /* Single to half */ 6347 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6348 TCGv_i32 ahp = get_ahp_flag(); 6349 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6350 6351 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6352 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6353 write_fp_sreg(s, rd, tcg_rd); 6354 } 6355 break; 6356 } 6357 case 0x1: 6358 { 6359 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6360 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6361 if (dtype == 0) { 6362 /* Double to single */ 6363 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6364 } else { 6365 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6366 TCGv_i32 ahp = get_ahp_flag(); 6367 /* Double to half */ 6368 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6369 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6370 } 6371 write_fp_sreg(s, rd, tcg_rd); 6372 break; 6373 } 6374 case 0x3: 6375 { 6376 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6377 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6378 TCGv_i32 tcg_ahp = get_ahp_flag(); 6379 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6380 if (dtype == 0) { 6381 /* Half to single */ 6382 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6383 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6384 write_fp_sreg(s, rd, tcg_rd); 6385 } else { 6386 /* Half to double */ 6387 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6388 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6389 write_fp_dreg(s, rd, tcg_rd); 6390 } 6391 break; 6392 } 6393 default: 6394 g_assert_not_reached(); 6395 } 6396 } 6397 6398 /* Floating point data-processing (1 source) 6399 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6400 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6401 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6402 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6403 */ 6404 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6405 { 6406 int mos = extract32(insn, 29, 3); 6407 int type = extract32(insn, 22, 2); 6408 int opcode = extract32(insn, 15, 6); 6409 int rn = extract32(insn, 5, 5); 6410 int rd = extract32(insn, 0, 5); 6411 6412 if (mos) { 6413 goto do_unallocated; 6414 } 6415 6416 switch (opcode) { 6417 case 0x4: case 0x5: case 0x7: 6418 { 6419 /* FCVT between half, single and double precision */ 6420 int dtype = extract32(opcode, 0, 2); 6421 if (type == 2 || dtype == type) { 6422 goto do_unallocated; 6423 } 6424 if (!fp_access_check(s)) { 6425 return; 6426 } 6427 6428 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6429 break; 6430 } 6431 6432 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6433 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6434 goto do_unallocated; 6435 } 6436 /* fall through */ 6437 case 0x0 ... 0x3: 6438 case 0x8 ... 0xc: 6439 case 0xe ... 0xf: 6440 /* 32-to-32 and 64-to-64 ops */ 6441 switch (type) { 6442 case 0: 6443 if (!fp_access_check(s)) { 6444 return; 6445 } 6446 handle_fp_1src_single(s, opcode, rd, rn); 6447 break; 6448 case 1: 6449 if (!fp_access_check(s)) { 6450 return; 6451 } 6452 handle_fp_1src_double(s, opcode, rd, rn); 6453 break; 6454 case 3: 6455 if (!dc_isar_feature(aa64_fp16, s)) { 6456 goto do_unallocated; 6457 } 6458 6459 if (!fp_access_check(s)) { 6460 return; 6461 } 6462 handle_fp_1src_half(s, opcode, rd, rn); 6463 break; 6464 default: 6465 goto do_unallocated; 6466 } 6467 break; 6468 6469 case 0x6: 6470 switch (type) { 6471 case 1: /* BFCVT */ 6472 if (!dc_isar_feature(aa64_bf16, s)) { 6473 goto do_unallocated; 6474 } 6475 if (!fp_access_check(s)) { 6476 return; 6477 } 6478 handle_fp_1src_single(s, opcode, rd, rn); 6479 break; 6480 default: 6481 goto do_unallocated; 6482 } 6483 break; 6484 6485 default: 6486 do_unallocated: 6487 unallocated_encoding(s); 6488 break; 6489 } 6490 } 6491 6492 /* Floating-point data-processing (2 source) - single precision */ 6493 static void handle_fp_2src_single(DisasContext *s, int opcode, 6494 int rd, int rn, int rm) 6495 { 6496 TCGv_i32 tcg_op1; 6497 TCGv_i32 tcg_op2; 6498 TCGv_i32 tcg_res; 6499 TCGv_ptr fpst; 6500 6501 tcg_res = tcg_temp_new_i32(); 6502 fpst = fpstatus_ptr(FPST_FPCR); 6503 tcg_op1 = read_fp_sreg(s, rn); 6504 tcg_op2 = read_fp_sreg(s, rm); 6505 6506 switch (opcode) { 6507 case 0x0: /* FMUL */ 6508 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6509 break; 6510 case 0x1: /* FDIV */ 6511 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6512 break; 6513 case 0x2: /* FADD */ 6514 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6515 break; 6516 case 0x3: /* FSUB */ 6517 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6518 break; 6519 case 0x4: /* FMAX */ 6520 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6521 break; 6522 case 0x5: /* FMIN */ 6523 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6524 break; 6525 case 0x6: /* FMAXNM */ 6526 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6527 break; 6528 case 0x7: /* FMINNM */ 6529 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6530 break; 6531 case 0x8: /* FNMUL */ 6532 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6533 gen_helper_vfp_negs(tcg_res, tcg_res); 6534 break; 6535 } 6536 6537 write_fp_sreg(s, rd, tcg_res); 6538 } 6539 6540 /* Floating-point data-processing (2 source) - double precision */ 6541 static void handle_fp_2src_double(DisasContext *s, int opcode, 6542 int rd, int rn, int rm) 6543 { 6544 TCGv_i64 tcg_op1; 6545 TCGv_i64 tcg_op2; 6546 TCGv_i64 tcg_res; 6547 TCGv_ptr fpst; 6548 6549 tcg_res = tcg_temp_new_i64(); 6550 fpst = fpstatus_ptr(FPST_FPCR); 6551 tcg_op1 = read_fp_dreg(s, rn); 6552 tcg_op2 = read_fp_dreg(s, rm); 6553 6554 switch (opcode) { 6555 case 0x0: /* FMUL */ 6556 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6557 break; 6558 case 0x1: /* FDIV */ 6559 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6560 break; 6561 case 0x2: /* FADD */ 6562 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6563 break; 6564 case 0x3: /* FSUB */ 6565 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6566 break; 6567 case 0x4: /* FMAX */ 6568 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6569 break; 6570 case 0x5: /* FMIN */ 6571 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6572 break; 6573 case 0x6: /* FMAXNM */ 6574 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6575 break; 6576 case 0x7: /* FMINNM */ 6577 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6578 break; 6579 case 0x8: /* FNMUL */ 6580 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6581 gen_helper_vfp_negd(tcg_res, tcg_res); 6582 break; 6583 } 6584 6585 write_fp_dreg(s, rd, tcg_res); 6586 } 6587 6588 /* Floating-point data-processing (2 source) - half precision */ 6589 static void handle_fp_2src_half(DisasContext *s, int opcode, 6590 int rd, int rn, int rm) 6591 { 6592 TCGv_i32 tcg_op1; 6593 TCGv_i32 tcg_op2; 6594 TCGv_i32 tcg_res; 6595 TCGv_ptr fpst; 6596 6597 tcg_res = tcg_temp_new_i32(); 6598 fpst = fpstatus_ptr(FPST_FPCR_F16); 6599 tcg_op1 = read_fp_hreg(s, rn); 6600 tcg_op2 = read_fp_hreg(s, rm); 6601 6602 switch (opcode) { 6603 case 0x0: /* FMUL */ 6604 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6605 break; 6606 case 0x1: /* FDIV */ 6607 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6608 break; 6609 case 0x2: /* FADD */ 6610 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6611 break; 6612 case 0x3: /* FSUB */ 6613 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6614 break; 6615 case 0x4: /* FMAX */ 6616 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6617 break; 6618 case 0x5: /* FMIN */ 6619 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6620 break; 6621 case 0x6: /* FMAXNM */ 6622 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6623 break; 6624 case 0x7: /* FMINNM */ 6625 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6626 break; 6627 case 0x8: /* FNMUL */ 6628 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6629 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6630 break; 6631 default: 6632 g_assert_not_reached(); 6633 } 6634 6635 write_fp_sreg(s, rd, tcg_res); 6636 } 6637 6638 /* Floating point data-processing (2 source) 6639 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6640 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6641 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6642 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6643 */ 6644 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6645 { 6646 int mos = extract32(insn, 29, 3); 6647 int type = extract32(insn, 22, 2); 6648 int rd = extract32(insn, 0, 5); 6649 int rn = extract32(insn, 5, 5); 6650 int rm = extract32(insn, 16, 5); 6651 int opcode = extract32(insn, 12, 4); 6652 6653 if (opcode > 8 || mos) { 6654 unallocated_encoding(s); 6655 return; 6656 } 6657 6658 switch (type) { 6659 case 0: 6660 if (!fp_access_check(s)) { 6661 return; 6662 } 6663 handle_fp_2src_single(s, opcode, rd, rn, rm); 6664 break; 6665 case 1: 6666 if (!fp_access_check(s)) { 6667 return; 6668 } 6669 handle_fp_2src_double(s, opcode, rd, rn, rm); 6670 break; 6671 case 3: 6672 if (!dc_isar_feature(aa64_fp16, s)) { 6673 unallocated_encoding(s); 6674 return; 6675 } 6676 if (!fp_access_check(s)) { 6677 return; 6678 } 6679 handle_fp_2src_half(s, opcode, rd, rn, rm); 6680 break; 6681 default: 6682 unallocated_encoding(s); 6683 } 6684 } 6685 6686 /* Floating-point data-processing (3 source) - single precision */ 6687 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6688 int rd, int rn, int rm, int ra) 6689 { 6690 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6691 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6692 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6693 6694 tcg_op1 = read_fp_sreg(s, rn); 6695 tcg_op2 = read_fp_sreg(s, rm); 6696 tcg_op3 = read_fp_sreg(s, ra); 6697 6698 /* These are fused multiply-add, and must be done as one 6699 * floating point operation with no rounding between the 6700 * multiplication and addition steps. 6701 * NB that doing the negations here as separate steps is 6702 * correct : an input NaN should come out with its sign bit 6703 * flipped if it is a negated-input. 6704 */ 6705 if (o1 == true) { 6706 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6707 } 6708 6709 if (o0 != o1) { 6710 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6711 } 6712 6713 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6714 6715 write_fp_sreg(s, rd, tcg_res); 6716 } 6717 6718 /* Floating-point data-processing (3 source) - double precision */ 6719 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6720 int rd, int rn, int rm, int ra) 6721 { 6722 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6723 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6724 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6725 6726 tcg_op1 = read_fp_dreg(s, rn); 6727 tcg_op2 = read_fp_dreg(s, rm); 6728 tcg_op3 = read_fp_dreg(s, ra); 6729 6730 /* These are fused multiply-add, and must be done as one 6731 * floating point operation with no rounding between the 6732 * multiplication and addition steps. 6733 * NB that doing the negations here as separate steps is 6734 * correct : an input NaN should come out with its sign bit 6735 * flipped if it is a negated-input. 6736 */ 6737 if (o1 == true) { 6738 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6739 } 6740 6741 if (o0 != o1) { 6742 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6743 } 6744 6745 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6746 6747 write_fp_dreg(s, rd, tcg_res); 6748 } 6749 6750 /* Floating-point data-processing (3 source) - half precision */ 6751 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6752 int rd, int rn, int rm, int ra) 6753 { 6754 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6755 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6756 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6757 6758 tcg_op1 = read_fp_hreg(s, rn); 6759 tcg_op2 = read_fp_hreg(s, rm); 6760 tcg_op3 = read_fp_hreg(s, ra); 6761 6762 /* These are fused multiply-add, and must be done as one 6763 * floating point operation with no rounding between the 6764 * multiplication and addition steps. 6765 * NB that doing the negations here as separate steps is 6766 * correct : an input NaN should come out with its sign bit 6767 * flipped if it is a negated-input. 6768 */ 6769 if (o1 == true) { 6770 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6771 } 6772 6773 if (o0 != o1) { 6774 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6775 } 6776 6777 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6778 6779 write_fp_sreg(s, rd, tcg_res); 6780 } 6781 6782 /* Floating point data-processing (3 source) 6783 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6784 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6785 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6786 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6787 */ 6788 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6789 { 6790 int mos = extract32(insn, 29, 3); 6791 int type = extract32(insn, 22, 2); 6792 int rd = extract32(insn, 0, 5); 6793 int rn = extract32(insn, 5, 5); 6794 int ra = extract32(insn, 10, 5); 6795 int rm = extract32(insn, 16, 5); 6796 bool o0 = extract32(insn, 15, 1); 6797 bool o1 = extract32(insn, 21, 1); 6798 6799 if (mos) { 6800 unallocated_encoding(s); 6801 return; 6802 } 6803 6804 switch (type) { 6805 case 0: 6806 if (!fp_access_check(s)) { 6807 return; 6808 } 6809 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6810 break; 6811 case 1: 6812 if (!fp_access_check(s)) { 6813 return; 6814 } 6815 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6816 break; 6817 case 3: 6818 if (!dc_isar_feature(aa64_fp16, s)) { 6819 unallocated_encoding(s); 6820 return; 6821 } 6822 if (!fp_access_check(s)) { 6823 return; 6824 } 6825 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6826 break; 6827 default: 6828 unallocated_encoding(s); 6829 } 6830 } 6831 6832 /* Floating point immediate 6833 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6834 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6835 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6836 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6837 */ 6838 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6839 { 6840 int rd = extract32(insn, 0, 5); 6841 int imm5 = extract32(insn, 5, 5); 6842 int imm8 = extract32(insn, 13, 8); 6843 int type = extract32(insn, 22, 2); 6844 int mos = extract32(insn, 29, 3); 6845 uint64_t imm; 6846 MemOp sz; 6847 6848 if (mos || imm5) { 6849 unallocated_encoding(s); 6850 return; 6851 } 6852 6853 switch (type) { 6854 case 0: 6855 sz = MO_32; 6856 break; 6857 case 1: 6858 sz = MO_64; 6859 break; 6860 case 3: 6861 sz = MO_16; 6862 if (dc_isar_feature(aa64_fp16, s)) { 6863 break; 6864 } 6865 /* fallthru */ 6866 default: 6867 unallocated_encoding(s); 6868 return; 6869 } 6870 6871 if (!fp_access_check(s)) { 6872 return; 6873 } 6874 6875 imm = vfp_expand_imm(sz, imm8); 6876 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6877 } 6878 6879 /* Handle floating point <=> fixed point conversions. Note that we can 6880 * also deal with fp <=> integer conversions as a special case (scale == 64) 6881 * OPTME: consider handling that special case specially or at least skipping 6882 * the call to scalbn in the helpers for zero shifts. 6883 */ 6884 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6885 bool itof, int rmode, int scale, int sf, int type) 6886 { 6887 bool is_signed = !(opcode & 1); 6888 TCGv_ptr tcg_fpstatus; 6889 TCGv_i32 tcg_shift, tcg_single; 6890 TCGv_i64 tcg_double; 6891 6892 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6893 6894 tcg_shift = tcg_constant_i32(64 - scale); 6895 6896 if (itof) { 6897 TCGv_i64 tcg_int = cpu_reg(s, rn); 6898 if (!sf) { 6899 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6900 6901 if (is_signed) { 6902 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6903 } else { 6904 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6905 } 6906 6907 tcg_int = tcg_extend; 6908 } 6909 6910 switch (type) { 6911 case 1: /* float64 */ 6912 tcg_double = tcg_temp_new_i64(); 6913 if (is_signed) { 6914 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6915 tcg_shift, tcg_fpstatus); 6916 } else { 6917 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6918 tcg_shift, tcg_fpstatus); 6919 } 6920 write_fp_dreg(s, rd, tcg_double); 6921 break; 6922 6923 case 0: /* float32 */ 6924 tcg_single = tcg_temp_new_i32(); 6925 if (is_signed) { 6926 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6927 tcg_shift, tcg_fpstatus); 6928 } else { 6929 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6930 tcg_shift, tcg_fpstatus); 6931 } 6932 write_fp_sreg(s, rd, tcg_single); 6933 break; 6934 6935 case 3: /* float16 */ 6936 tcg_single = tcg_temp_new_i32(); 6937 if (is_signed) { 6938 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6939 tcg_shift, tcg_fpstatus); 6940 } else { 6941 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6942 tcg_shift, tcg_fpstatus); 6943 } 6944 write_fp_sreg(s, rd, tcg_single); 6945 break; 6946 6947 default: 6948 g_assert_not_reached(); 6949 } 6950 } else { 6951 TCGv_i64 tcg_int = cpu_reg(s, rd); 6952 TCGv_i32 tcg_rmode; 6953 6954 if (extract32(opcode, 2, 1)) { 6955 /* There are too many rounding modes to all fit into rmode, 6956 * so FCVTA[US] is a special case. 6957 */ 6958 rmode = FPROUNDING_TIEAWAY; 6959 } 6960 6961 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6962 6963 switch (type) { 6964 case 1: /* float64 */ 6965 tcg_double = read_fp_dreg(s, rn); 6966 if (is_signed) { 6967 if (!sf) { 6968 gen_helper_vfp_tosld(tcg_int, tcg_double, 6969 tcg_shift, tcg_fpstatus); 6970 } else { 6971 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6972 tcg_shift, tcg_fpstatus); 6973 } 6974 } else { 6975 if (!sf) { 6976 gen_helper_vfp_tould(tcg_int, tcg_double, 6977 tcg_shift, tcg_fpstatus); 6978 } else { 6979 gen_helper_vfp_touqd(tcg_int, tcg_double, 6980 tcg_shift, tcg_fpstatus); 6981 } 6982 } 6983 if (!sf) { 6984 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6985 } 6986 break; 6987 6988 case 0: /* float32 */ 6989 tcg_single = read_fp_sreg(s, rn); 6990 if (sf) { 6991 if (is_signed) { 6992 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6993 tcg_shift, tcg_fpstatus); 6994 } else { 6995 gen_helper_vfp_touqs(tcg_int, tcg_single, 6996 tcg_shift, tcg_fpstatus); 6997 } 6998 } else { 6999 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7000 if (is_signed) { 7001 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7002 tcg_shift, tcg_fpstatus); 7003 } else { 7004 gen_helper_vfp_touls(tcg_dest, tcg_single, 7005 tcg_shift, tcg_fpstatus); 7006 } 7007 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7008 } 7009 break; 7010 7011 case 3: /* float16 */ 7012 tcg_single = read_fp_sreg(s, rn); 7013 if (sf) { 7014 if (is_signed) { 7015 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7016 tcg_shift, tcg_fpstatus); 7017 } else { 7018 gen_helper_vfp_touqh(tcg_int, tcg_single, 7019 tcg_shift, tcg_fpstatus); 7020 } 7021 } else { 7022 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7023 if (is_signed) { 7024 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7025 tcg_shift, tcg_fpstatus); 7026 } else { 7027 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7028 tcg_shift, tcg_fpstatus); 7029 } 7030 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7031 } 7032 break; 7033 7034 default: 7035 g_assert_not_reached(); 7036 } 7037 7038 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7039 } 7040 } 7041 7042 /* Floating point <-> fixed point conversions 7043 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7044 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7045 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7046 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7047 */ 7048 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7049 { 7050 int rd = extract32(insn, 0, 5); 7051 int rn = extract32(insn, 5, 5); 7052 int scale = extract32(insn, 10, 6); 7053 int opcode = extract32(insn, 16, 3); 7054 int rmode = extract32(insn, 19, 2); 7055 int type = extract32(insn, 22, 2); 7056 bool sbit = extract32(insn, 29, 1); 7057 bool sf = extract32(insn, 31, 1); 7058 bool itof; 7059 7060 if (sbit || (!sf && scale < 32)) { 7061 unallocated_encoding(s); 7062 return; 7063 } 7064 7065 switch (type) { 7066 case 0: /* float32 */ 7067 case 1: /* float64 */ 7068 break; 7069 case 3: /* float16 */ 7070 if (dc_isar_feature(aa64_fp16, s)) { 7071 break; 7072 } 7073 /* fallthru */ 7074 default: 7075 unallocated_encoding(s); 7076 return; 7077 } 7078 7079 switch ((rmode << 3) | opcode) { 7080 case 0x2: /* SCVTF */ 7081 case 0x3: /* UCVTF */ 7082 itof = true; 7083 break; 7084 case 0x18: /* FCVTZS */ 7085 case 0x19: /* FCVTZU */ 7086 itof = false; 7087 break; 7088 default: 7089 unallocated_encoding(s); 7090 return; 7091 } 7092 7093 if (!fp_access_check(s)) { 7094 return; 7095 } 7096 7097 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7098 } 7099 7100 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7101 { 7102 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7103 * without conversion. 7104 */ 7105 7106 if (itof) { 7107 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7108 TCGv_i64 tmp; 7109 7110 switch (type) { 7111 case 0: 7112 /* 32 bit */ 7113 tmp = tcg_temp_new_i64(); 7114 tcg_gen_ext32u_i64(tmp, tcg_rn); 7115 write_fp_dreg(s, rd, tmp); 7116 break; 7117 case 1: 7118 /* 64 bit */ 7119 write_fp_dreg(s, rd, tcg_rn); 7120 break; 7121 case 2: 7122 /* 64 bit to top half. */ 7123 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7124 clear_vec_high(s, true, rd); 7125 break; 7126 case 3: 7127 /* 16 bit */ 7128 tmp = tcg_temp_new_i64(); 7129 tcg_gen_ext16u_i64(tmp, tcg_rn); 7130 write_fp_dreg(s, rd, tmp); 7131 break; 7132 default: 7133 g_assert_not_reached(); 7134 } 7135 } else { 7136 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7137 7138 switch (type) { 7139 case 0: 7140 /* 32 bit */ 7141 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7142 break; 7143 case 1: 7144 /* 64 bit */ 7145 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7146 break; 7147 case 2: 7148 /* 64 bits from top half */ 7149 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7150 break; 7151 case 3: 7152 /* 16 bit */ 7153 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7154 break; 7155 default: 7156 g_assert_not_reached(); 7157 } 7158 } 7159 } 7160 7161 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7162 { 7163 TCGv_i64 t = read_fp_dreg(s, rn); 7164 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7165 7166 gen_helper_fjcvtzs(t, t, fpstatus); 7167 7168 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7169 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7170 tcg_gen_movi_i32(cpu_CF, 0); 7171 tcg_gen_movi_i32(cpu_NF, 0); 7172 tcg_gen_movi_i32(cpu_VF, 0); 7173 } 7174 7175 /* Floating point <-> integer conversions 7176 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7177 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7178 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7179 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7180 */ 7181 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7182 { 7183 int rd = extract32(insn, 0, 5); 7184 int rn = extract32(insn, 5, 5); 7185 int opcode = extract32(insn, 16, 3); 7186 int rmode = extract32(insn, 19, 2); 7187 int type = extract32(insn, 22, 2); 7188 bool sbit = extract32(insn, 29, 1); 7189 bool sf = extract32(insn, 31, 1); 7190 bool itof = false; 7191 7192 if (sbit) { 7193 goto do_unallocated; 7194 } 7195 7196 switch (opcode) { 7197 case 2: /* SCVTF */ 7198 case 3: /* UCVTF */ 7199 itof = true; 7200 /* fallthru */ 7201 case 4: /* FCVTAS */ 7202 case 5: /* FCVTAU */ 7203 if (rmode != 0) { 7204 goto do_unallocated; 7205 } 7206 /* fallthru */ 7207 case 0: /* FCVT[NPMZ]S */ 7208 case 1: /* FCVT[NPMZ]U */ 7209 switch (type) { 7210 case 0: /* float32 */ 7211 case 1: /* float64 */ 7212 break; 7213 case 3: /* float16 */ 7214 if (!dc_isar_feature(aa64_fp16, s)) { 7215 goto do_unallocated; 7216 } 7217 break; 7218 default: 7219 goto do_unallocated; 7220 } 7221 if (!fp_access_check(s)) { 7222 return; 7223 } 7224 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7225 break; 7226 7227 default: 7228 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7229 case 0b01100110: /* FMOV half <-> 32-bit int */ 7230 case 0b01100111: 7231 case 0b11100110: /* FMOV half <-> 64-bit int */ 7232 case 0b11100111: 7233 if (!dc_isar_feature(aa64_fp16, s)) { 7234 goto do_unallocated; 7235 } 7236 /* fallthru */ 7237 case 0b00000110: /* FMOV 32-bit */ 7238 case 0b00000111: 7239 case 0b10100110: /* FMOV 64-bit */ 7240 case 0b10100111: 7241 case 0b11001110: /* FMOV top half of 128-bit */ 7242 case 0b11001111: 7243 if (!fp_access_check(s)) { 7244 return; 7245 } 7246 itof = opcode & 1; 7247 handle_fmov(s, rd, rn, type, itof); 7248 break; 7249 7250 case 0b00111110: /* FJCVTZS */ 7251 if (!dc_isar_feature(aa64_jscvt, s)) { 7252 goto do_unallocated; 7253 } else if (fp_access_check(s)) { 7254 handle_fjcvtzs(s, rd, rn); 7255 } 7256 break; 7257 7258 default: 7259 do_unallocated: 7260 unallocated_encoding(s); 7261 return; 7262 } 7263 break; 7264 } 7265 } 7266 7267 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7268 * 31 30 29 28 25 24 0 7269 * +---+---+---+---------+-----------------------------+ 7270 * | | 0 | | 1 1 1 1 | | 7271 * +---+---+---+---------+-----------------------------+ 7272 */ 7273 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7274 { 7275 if (extract32(insn, 24, 1)) { 7276 /* Floating point data-processing (3 source) */ 7277 disas_fp_3src(s, insn); 7278 } else if (extract32(insn, 21, 1) == 0) { 7279 /* Floating point to fixed point conversions */ 7280 disas_fp_fixed_conv(s, insn); 7281 } else { 7282 switch (extract32(insn, 10, 2)) { 7283 case 1: 7284 /* Floating point conditional compare */ 7285 disas_fp_ccomp(s, insn); 7286 break; 7287 case 2: 7288 /* Floating point data-processing (2 source) */ 7289 disas_fp_2src(s, insn); 7290 break; 7291 case 3: 7292 /* Floating point conditional select */ 7293 disas_fp_csel(s, insn); 7294 break; 7295 case 0: 7296 switch (ctz32(extract32(insn, 12, 4))) { 7297 case 0: /* [15:12] == xxx1 */ 7298 /* Floating point immediate */ 7299 disas_fp_imm(s, insn); 7300 break; 7301 case 1: /* [15:12] == xx10 */ 7302 /* Floating point compare */ 7303 disas_fp_compare(s, insn); 7304 break; 7305 case 2: /* [15:12] == x100 */ 7306 /* Floating point data-processing (1 source) */ 7307 disas_fp_1src(s, insn); 7308 break; 7309 case 3: /* [15:12] == 1000 */ 7310 unallocated_encoding(s); 7311 break; 7312 default: /* [15:12] == 0000 */ 7313 /* Floating point <-> integer conversions */ 7314 disas_fp_int_conv(s, insn); 7315 break; 7316 } 7317 break; 7318 } 7319 } 7320 } 7321 7322 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7323 int pos) 7324 { 7325 /* Extract 64 bits from the middle of two concatenated 64 bit 7326 * vector register slices left:right. The extracted bits start 7327 * at 'pos' bits into the right (least significant) side. 7328 * We return the result in tcg_right, and guarantee not to 7329 * trash tcg_left. 7330 */ 7331 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7332 assert(pos > 0 && pos < 64); 7333 7334 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7335 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7336 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7337 } 7338 7339 /* EXT 7340 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7341 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7342 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7343 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7344 */ 7345 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7346 { 7347 int is_q = extract32(insn, 30, 1); 7348 int op2 = extract32(insn, 22, 2); 7349 int imm4 = extract32(insn, 11, 4); 7350 int rm = extract32(insn, 16, 5); 7351 int rn = extract32(insn, 5, 5); 7352 int rd = extract32(insn, 0, 5); 7353 int pos = imm4 << 3; 7354 TCGv_i64 tcg_resl, tcg_resh; 7355 7356 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7357 unallocated_encoding(s); 7358 return; 7359 } 7360 7361 if (!fp_access_check(s)) { 7362 return; 7363 } 7364 7365 tcg_resh = tcg_temp_new_i64(); 7366 tcg_resl = tcg_temp_new_i64(); 7367 7368 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7369 * either extracting 128 bits from a 128:128 concatenation, or 7370 * extracting 64 bits from a 64:64 concatenation. 7371 */ 7372 if (!is_q) { 7373 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7374 if (pos != 0) { 7375 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7376 do_ext64(s, tcg_resh, tcg_resl, pos); 7377 } 7378 } else { 7379 TCGv_i64 tcg_hh; 7380 typedef struct { 7381 int reg; 7382 int elt; 7383 } EltPosns; 7384 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7385 EltPosns *elt = eltposns; 7386 7387 if (pos >= 64) { 7388 elt++; 7389 pos -= 64; 7390 } 7391 7392 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7393 elt++; 7394 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7395 elt++; 7396 if (pos != 0) { 7397 do_ext64(s, tcg_resh, tcg_resl, pos); 7398 tcg_hh = tcg_temp_new_i64(); 7399 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7400 do_ext64(s, tcg_hh, tcg_resh, pos); 7401 } 7402 } 7403 7404 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7405 if (is_q) { 7406 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7407 } 7408 clear_vec_high(s, is_q, rd); 7409 } 7410 7411 /* TBL/TBX 7412 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7413 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7414 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7415 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7416 */ 7417 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7418 { 7419 int op2 = extract32(insn, 22, 2); 7420 int is_q = extract32(insn, 30, 1); 7421 int rm = extract32(insn, 16, 5); 7422 int rn = extract32(insn, 5, 5); 7423 int rd = extract32(insn, 0, 5); 7424 int is_tbx = extract32(insn, 12, 1); 7425 int len = (extract32(insn, 13, 2) + 1) * 16; 7426 7427 if (op2 != 0) { 7428 unallocated_encoding(s); 7429 return; 7430 } 7431 7432 if (!fp_access_check(s)) { 7433 return; 7434 } 7435 7436 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7437 vec_full_reg_offset(s, rm), cpu_env, 7438 is_q ? 16 : 8, vec_full_reg_size(s), 7439 (len << 6) | (is_tbx << 5) | rn, 7440 gen_helper_simd_tblx); 7441 } 7442 7443 /* ZIP/UZP/TRN 7444 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7445 * +---+---+-------------+------+---+------+---+------------------+------+ 7446 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7447 * +---+---+-------------+------+---+------+---+------------------+------+ 7448 */ 7449 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7450 { 7451 int rd = extract32(insn, 0, 5); 7452 int rn = extract32(insn, 5, 5); 7453 int rm = extract32(insn, 16, 5); 7454 int size = extract32(insn, 22, 2); 7455 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7456 * bit 2 indicates 1 vs 2 variant of the insn. 7457 */ 7458 int opcode = extract32(insn, 12, 2); 7459 bool part = extract32(insn, 14, 1); 7460 bool is_q = extract32(insn, 30, 1); 7461 int esize = 8 << size; 7462 int i; 7463 int datasize = is_q ? 128 : 64; 7464 int elements = datasize / esize; 7465 TCGv_i64 tcg_res[2], tcg_ele; 7466 7467 if (opcode == 0 || (size == 3 && !is_q)) { 7468 unallocated_encoding(s); 7469 return; 7470 } 7471 7472 if (!fp_access_check(s)) { 7473 return; 7474 } 7475 7476 tcg_res[0] = tcg_temp_new_i64(); 7477 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7478 tcg_ele = tcg_temp_new_i64(); 7479 7480 for (i = 0; i < elements; i++) { 7481 int o, w; 7482 7483 switch (opcode) { 7484 case 1: /* UZP1/2 */ 7485 { 7486 int midpoint = elements / 2; 7487 if (i < midpoint) { 7488 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7489 } else { 7490 read_vec_element(s, tcg_ele, rm, 7491 2 * (i - midpoint) + part, size); 7492 } 7493 break; 7494 } 7495 case 2: /* TRN1/2 */ 7496 if (i & 1) { 7497 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7498 } else { 7499 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7500 } 7501 break; 7502 case 3: /* ZIP1/2 */ 7503 { 7504 int base = part * elements / 2; 7505 if (i & 1) { 7506 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7507 } else { 7508 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7509 } 7510 break; 7511 } 7512 default: 7513 g_assert_not_reached(); 7514 } 7515 7516 w = (i * esize) / 64; 7517 o = (i * esize) % 64; 7518 if (o == 0) { 7519 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7520 } else { 7521 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7522 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7523 } 7524 } 7525 7526 for (i = 0; i <= is_q; ++i) { 7527 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7528 } 7529 clear_vec_high(s, is_q, rd); 7530 } 7531 7532 /* 7533 * do_reduction_op helper 7534 * 7535 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7536 * important for correct NaN propagation that we do these 7537 * operations in exactly the order specified by the pseudocode. 7538 * 7539 * This is a recursive function, TCG temps should be freed by the 7540 * calling function once it is done with the values. 7541 */ 7542 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7543 int esize, int size, int vmap, TCGv_ptr fpst) 7544 { 7545 if (esize == size) { 7546 int element; 7547 MemOp msize = esize == 16 ? MO_16 : MO_32; 7548 TCGv_i32 tcg_elem; 7549 7550 /* We should have one register left here */ 7551 assert(ctpop8(vmap) == 1); 7552 element = ctz32(vmap); 7553 assert(element < 8); 7554 7555 tcg_elem = tcg_temp_new_i32(); 7556 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7557 return tcg_elem; 7558 } else { 7559 int bits = size / 2; 7560 int shift = ctpop8(vmap) / 2; 7561 int vmap_lo = (vmap >> shift) & vmap; 7562 int vmap_hi = (vmap & ~vmap_lo); 7563 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7564 7565 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7566 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7567 tcg_res = tcg_temp_new_i32(); 7568 7569 switch (fpopcode) { 7570 case 0x0c: /* fmaxnmv half-precision */ 7571 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7572 break; 7573 case 0x0f: /* fmaxv half-precision */ 7574 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7575 break; 7576 case 0x1c: /* fminnmv half-precision */ 7577 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7578 break; 7579 case 0x1f: /* fminv half-precision */ 7580 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7581 break; 7582 case 0x2c: /* fmaxnmv */ 7583 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7584 break; 7585 case 0x2f: /* fmaxv */ 7586 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7587 break; 7588 case 0x3c: /* fminnmv */ 7589 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7590 break; 7591 case 0x3f: /* fminv */ 7592 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7593 break; 7594 default: 7595 g_assert_not_reached(); 7596 } 7597 return tcg_res; 7598 } 7599 } 7600 7601 /* AdvSIMD across lanes 7602 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7603 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7604 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7605 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7606 */ 7607 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7608 { 7609 int rd = extract32(insn, 0, 5); 7610 int rn = extract32(insn, 5, 5); 7611 int size = extract32(insn, 22, 2); 7612 int opcode = extract32(insn, 12, 5); 7613 bool is_q = extract32(insn, 30, 1); 7614 bool is_u = extract32(insn, 29, 1); 7615 bool is_fp = false; 7616 bool is_min = false; 7617 int esize; 7618 int elements; 7619 int i; 7620 TCGv_i64 tcg_res, tcg_elt; 7621 7622 switch (opcode) { 7623 case 0x1b: /* ADDV */ 7624 if (is_u) { 7625 unallocated_encoding(s); 7626 return; 7627 } 7628 /* fall through */ 7629 case 0x3: /* SADDLV, UADDLV */ 7630 case 0xa: /* SMAXV, UMAXV */ 7631 case 0x1a: /* SMINV, UMINV */ 7632 if (size == 3 || (size == 2 && !is_q)) { 7633 unallocated_encoding(s); 7634 return; 7635 } 7636 break; 7637 case 0xc: /* FMAXNMV, FMINNMV */ 7638 case 0xf: /* FMAXV, FMINV */ 7639 /* Bit 1 of size field encodes min vs max and the actual size 7640 * depends on the encoding of the U bit. If not set (and FP16 7641 * enabled) then we do half-precision float instead of single 7642 * precision. 7643 */ 7644 is_min = extract32(size, 1, 1); 7645 is_fp = true; 7646 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7647 size = 1; 7648 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7649 unallocated_encoding(s); 7650 return; 7651 } else { 7652 size = 2; 7653 } 7654 break; 7655 default: 7656 unallocated_encoding(s); 7657 return; 7658 } 7659 7660 if (!fp_access_check(s)) { 7661 return; 7662 } 7663 7664 esize = 8 << size; 7665 elements = (is_q ? 128 : 64) / esize; 7666 7667 tcg_res = tcg_temp_new_i64(); 7668 tcg_elt = tcg_temp_new_i64(); 7669 7670 /* These instructions operate across all lanes of a vector 7671 * to produce a single result. We can guarantee that a 64 7672 * bit intermediate is sufficient: 7673 * + for [US]ADDLV the maximum element size is 32 bits, and 7674 * the result type is 64 bits 7675 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7676 * same as the element size, which is 32 bits at most 7677 * For the integer operations we can choose to work at 64 7678 * or 32 bits and truncate at the end; for simplicity 7679 * we use 64 bits always. The floating point 7680 * ops do require 32 bit intermediates, though. 7681 */ 7682 if (!is_fp) { 7683 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7684 7685 for (i = 1; i < elements; i++) { 7686 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7687 7688 switch (opcode) { 7689 case 0x03: /* SADDLV / UADDLV */ 7690 case 0x1b: /* ADDV */ 7691 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7692 break; 7693 case 0x0a: /* SMAXV / UMAXV */ 7694 if (is_u) { 7695 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7696 } else { 7697 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7698 } 7699 break; 7700 case 0x1a: /* SMINV / UMINV */ 7701 if (is_u) { 7702 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7703 } else { 7704 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7705 } 7706 break; 7707 default: 7708 g_assert_not_reached(); 7709 } 7710 7711 } 7712 } else { 7713 /* Floating point vector reduction ops which work across 32 7714 * bit (single) or 16 bit (half-precision) intermediates. 7715 * Note that correct NaN propagation requires that we do these 7716 * operations in exactly the order specified by the pseudocode. 7717 */ 7718 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7719 int fpopcode = opcode | is_min << 4 | is_u << 5; 7720 int vmap = (1 << elements) - 1; 7721 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7722 (is_q ? 128 : 64), vmap, fpst); 7723 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7724 } 7725 7726 /* Now truncate the result to the width required for the final output */ 7727 if (opcode == 0x03) { 7728 /* SADDLV, UADDLV: result is 2*esize */ 7729 size++; 7730 } 7731 7732 switch (size) { 7733 case 0: 7734 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7735 break; 7736 case 1: 7737 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7738 break; 7739 case 2: 7740 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7741 break; 7742 case 3: 7743 break; 7744 default: 7745 g_assert_not_reached(); 7746 } 7747 7748 write_fp_dreg(s, rd, tcg_res); 7749 } 7750 7751 /* DUP (Element, Vector) 7752 * 7753 * 31 30 29 21 20 16 15 10 9 5 4 0 7754 * +---+---+-------------------+--------+-------------+------+------+ 7755 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7756 * +---+---+-------------------+--------+-------------+------+------+ 7757 * 7758 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7759 */ 7760 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7761 int imm5) 7762 { 7763 int size = ctz32(imm5); 7764 int index; 7765 7766 if (size > 3 || (size == 3 && !is_q)) { 7767 unallocated_encoding(s); 7768 return; 7769 } 7770 7771 if (!fp_access_check(s)) { 7772 return; 7773 } 7774 7775 index = imm5 >> (size + 1); 7776 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7777 vec_reg_offset(s, rn, index, size), 7778 is_q ? 16 : 8, vec_full_reg_size(s)); 7779 } 7780 7781 /* DUP (element, scalar) 7782 * 31 21 20 16 15 10 9 5 4 0 7783 * +-----------------------+--------+-------------+------+------+ 7784 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7785 * +-----------------------+--------+-------------+------+------+ 7786 */ 7787 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7788 int imm5) 7789 { 7790 int size = ctz32(imm5); 7791 int index; 7792 TCGv_i64 tmp; 7793 7794 if (size > 3) { 7795 unallocated_encoding(s); 7796 return; 7797 } 7798 7799 if (!fp_access_check(s)) { 7800 return; 7801 } 7802 7803 index = imm5 >> (size + 1); 7804 7805 /* This instruction just extracts the specified element and 7806 * zero-extends it into the bottom of the destination register. 7807 */ 7808 tmp = tcg_temp_new_i64(); 7809 read_vec_element(s, tmp, rn, index, size); 7810 write_fp_dreg(s, rd, tmp); 7811 } 7812 7813 /* DUP (General) 7814 * 7815 * 31 30 29 21 20 16 15 10 9 5 4 0 7816 * +---+---+-------------------+--------+-------------+------+------+ 7817 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7818 * +---+---+-------------------+--------+-------------+------+------+ 7819 * 7820 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7821 */ 7822 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7823 int imm5) 7824 { 7825 int size = ctz32(imm5); 7826 uint32_t dofs, oprsz, maxsz; 7827 7828 if (size > 3 || ((size == 3) && !is_q)) { 7829 unallocated_encoding(s); 7830 return; 7831 } 7832 7833 if (!fp_access_check(s)) { 7834 return; 7835 } 7836 7837 dofs = vec_full_reg_offset(s, rd); 7838 oprsz = is_q ? 16 : 8; 7839 maxsz = vec_full_reg_size(s); 7840 7841 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7842 } 7843 7844 /* INS (Element) 7845 * 7846 * 31 21 20 16 15 14 11 10 9 5 4 0 7847 * +-----------------------+--------+------------+---+------+------+ 7848 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7849 * +-----------------------+--------+------------+---+------+------+ 7850 * 7851 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7852 * index: encoded in imm5<4:size+1> 7853 */ 7854 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7855 int imm4, int imm5) 7856 { 7857 int size = ctz32(imm5); 7858 int src_index, dst_index; 7859 TCGv_i64 tmp; 7860 7861 if (size > 3) { 7862 unallocated_encoding(s); 7863 return; 7864 } 7865 7866 if (!fp_access_check(s)) { 7867 return; 7868 } 7869 7870 dst_index = extract32(imm5, 1+size, 5); 7871 src_index = extract32(imm4, size, 4); 7872 7873 tmp = tcg_temp_new_i64(); 7874 7875 read_vec_element(s, tmp, rn, src_index, size); 7876 write_vec_element(s, tmp, rd, dst_index, size); 7877 7878 /* INS is considered a 128-bit write for SVE. */ 7879 clear_vec_high(s, true, rd); 7880 } 7881 7882 7883 /* INS (General) 7884 * 7885 * 31 21 20 16 15 10 9 5 4 0 7886 * +-----------------------+--------+-------------+------+------+ 7887 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7888 * +-----------------------+--------+-------------+------+------+ 7889 * 7890 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7891 * index: encoded in imm5<4:size+1> 7892 */ 7893 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7894 { 7895 int size = ctz32(imm5); 7896 int idx; 7897 7898 if (size > 3) { 7899 unallocated_encoding(s); 7900 return; 7901 } 7902 7903 if (!fp_access_check(s)) { 7904 return; 7905 } 7906 7907 idx = extract32(imm5, 1 + size, 4 - size); 7908 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7909 7910 /* INS is considered a 128-bit write for SVE. */ 7911 clear_vec_high(s, true, rd); 7912 } 7913 7914 /* 7915 * UMOV (General) 7916 * SMOV (General) 7917 * 7918 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7919 * +---+---+-------------------+--------+-------------+------+------+ 7920 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7921 * +---+---+-------------------+--------+-------------+------+------+ 7922 * 7923 * U: unsigned when set 7924 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7925 */ 7926 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7927 int rn, int rd, int imm5) 7928 { 7929 int size = ctz32(imm5); 7930 int element; 7931 TCGv_i64 tcg_rd; 7932 7933 /* Check for UnallocatedEncodings */ 7934 if (is_signed) { 7935 if (size > 2 || (size == 2 && !is_q)) { 7936 unallocated_encoding(s); 7937 return; 7938 } 7939 } else { 7940 if (size > 3 7941 || (size < 3 && is_q) 7942 || (size == 3 && !is_q)) { 7943 unallocated_encoding(s); 7944 return; 7945 } 7946 } 7947 7948 if (!fp_access_check(s)) { 7949 return; 7950 } 7951 7952 element = extract32(imm5, 1+size, 4); 7953 7954 tcg_rd = cpu_reg(s, rd); 7955 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7956 if (is_signed && !is_q) { 7957 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7958 } 7959 } 7960 7961 /* AdvSIMD copy 7962 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7963 * +---+---+----+-----------------+------+---+------+---+------+------+ 7964 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7965 * +---+---+----+-----------------+------+---+------+---+------+------+ 7966 */ 7967 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7968 { 7969 int rd = extract32(insn, 0, 5); 7970 int rn = extract32(insn, 5, 5); 7971 int imm4 = extract32(insn, 11, 4); 7972 int op = extract32(insn, 29, 1); 7973 int is_q = extract32(insn, 30, 1); 7974 int imm5 = extract32(insn, 16, 5); 7975 7976 if (op) { 7977 if (is_q) { 7978 /* INS (element) */ 7979 handle_simd_inse(s, rd, rn, imm4, imm5); 7980 } else { 7981 unallocated_encoding(s); 7982 } 7983 } else { 7984 switch (imm4) { 7985 case 0: 7986 /* DUP (element - vector) */ 7987 handle_simd_dupe(s, is_q, rd, rn, imm5); 7988 break; 7989 case 1: 7990 /* DUP (general) */ 7991 handle_simd_dupg(s, is_q, rd, rn, imm5); 7992 break; 7993 case 3: 7994 if (is_q) { 7995 /* INS (general) */ 7996 handle_simd_insg(s, rd, rn, imm5); 7997 } else { 7998 unallocated_encoding(s); 7999 } 8000 break; 8001 case 5: 8002 case 7: 8003 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8004 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8005 break; 8006 default: 8007 unallocated_encoding(s); 8008 break; 8009 } 8010 } 8011 } 8012 8013 /* AdvSIMD modified immediate 8014 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8015 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8016 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8017 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8018 * 8019 * There are a number of operations that can be carried out here: 8020 * MOVI - move (shifted) imm into register 8021 * MVNI - move inverted (shifted) imm into register 8022 * ORR - bitwise OR of (shifted) imm with register 8023 * BIC - bitwise clear of (shifted) imm with register 8024 * With ARMv8.2 we also have: 8025 * FMOV half-precision 8026 */ 8027 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8028 { 8029 int rd = extract32(insn, 0, 5); 8030 int cmode = extract32(insn, 12, 4); 8031 int o2 = extract32(insn, 11, 1); 8032 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8033 bool is_neg = extract32(insn, 29, 1); 8034 bool is_q = extract32(insn, 30, 1); 8035 uint64_t imm = 0; 8036 8037 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8038 /* Check for FMOV (vector, immediate) - half-precision */ 8039 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8040 unallocated_encoding(s); 8041 return; 8042 } 8043 } 8044 8045 if (!fp_access_check(s)) { 8046 return; 8047 } 8048 8049 if (cmode == 15 && o2 && !is_neg) { 8050 /* FMOV (vector, immediate) - half-precision */ 8051 imm = vfp_expand_imm(MO_16, abcdefgh); 8052 /* now duplicate across the lanes */ 8053 imm = dup_const(MO_16, imm); 8054 } else { 8055 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8056 } 8057 8058 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8059 /* MOVI or MVNI, with MVNI negation handled above. */ 8060 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8061 vec_full_reg_size(s), imm); 8062 } else { 8063 /* ORR or BIC, with BIC negation to AND handled above. */ 8064 if (is_neg) { 8065 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8066 } else { 8067 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8068 } 8069 } 8070 } 8071 8072 /* AdvSIMD scalar copy 8073 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8074 * +-----+----+-----------------+------+---+------+---+------+------+ 8075 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8076 * +-----+----+-----------------+------+---+------+---+------+------+ 8077 */ 8078 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8079 { 8080 int rd = extract32(insn, 0, 5); 8081 int rn = extract32(insn, 5, 5); 8082 int imm4 = extract32(insn, 11, 4); 8083 int imm5 = extract32(insn, 16, 5); 8084 int op = extract32(insn, 29, 1); 8085 8086 if (op != 0 || imm4 != 0) { 8087 unallocated_encoding(s); 8088 return; 8089 } 8090 8091 /* DUP (element, scalar) */ 8092 handle_simd_dupes(s, rd, rn, imm5); 8093 } 8094 8095 /* AdvSIMD scalar pairwise 8096 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8097 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8098 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8099 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8100 */ 8101 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8102 { 8103 int u = extract32(insn, 29, 1); 8104 int size = extract32(insn, 22, 2); 8105 int opcode = extract32(insn, 12, 5); 8106 int rn = extract32(insn, 5, 5); 8107 int rd = extract32(insn, 0, 5); 8108 TCGv_ptr fpst; 8109 8110 /* For some ops (the FP ones), size[1] is part of the encoding. 8111 * For ADDP strictly it is not but size[1] is always 1 for valid 8112 * encodings. 8113 */ 8114 opcode |= (extract32(size, 1, 1) << 5); 8115 8116 switch (opcode) { 8117 case 0x3b: /* ADDP */ 8118 if (u || size != 3) { 8119 unallocated_encoding(s); 8120 return; 8121 } 8122 if (!fp_access_check(s)) { 8123 return; 8124 } 8125 8126 fpst = NULL; 8127 break; 8128 case 0xc: /* FMAXNMP */ 8129 case 0xd: /* FADDP */ 8130 case 0xf: /* FMAXP */ 8131 case 0x2c: /* FMINNMP */ 8132 case 0x2f: /* FMINP */ 8133 /* FP op, size[0] is 32 or 64 bit*/ 8134 if (!u) { 8135 if (!dc_isar_feature(aa64_fp16, s)) { 8136 unallocated_encoding(s); 8137 return; 8138 } else { 8139 size = MO_16; 8140 } 8141 } else { 8142 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8143 } 8144 8145 if (!fp_access_check(s)) { 8146 return; 8147 } 8148 8149 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8150 break; 8151 default: 8152 unallocated_encoding(s); 8153 return; 8154 } 8155 8156 if (size == MO_64) { 8157 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8158 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8159 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8160 8161 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8162 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8163 8164 switch (opcode) { 8165 case 0x3b: /* ADDP */ 8166 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8167 break; 8168 case 0xc: /* FMAXNMP */ 8169 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8170 break; 8171 case 0xd: /* FADDP */ 8172 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8173 break; 8174 case 0xf: /* FMAXP */ 8175 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8176 break; 8177 case 0x2c: /* FMINNMP */ 8178 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8179 break; 8180 case 0x2f: /* FMINP */ 8181 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8182 break; 8183 default: 8184 g_assert_not_reached(); 8185 } 8186 8187 write_fp_dreg(s, rd, tcg_res); 8188 } else { 8189 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8190 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8191 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8192 8193 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8194 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8195 8196 if (size == MO_16) { 8197 switch (opcode) { 8198 case 0xc: /* FMAXNMP */ 8199 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8200 break; 8201 case 0xd: /* FADDP */ 8202 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8203 break; 8204 case 0xf: /* FMAXP */ 8205 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8206 break; 8207 case 0x2c: /* FMINNMP */ 8208 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8209 break; 8210 case 0x2f: /* FMINP */ 8211 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8212 break; 8213 default: 8214 g_assert_not_reached(); 8215 } 8216 } else { 8217 switch (opcode) { 8218 case 0xc: /* FMAXNMP */ 8219 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8220 break; 8221 case 0xd: /* FADDP */ 8222 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8223 break; 8224 case 0xf: /* FMAXP */ 8225 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8226 break; 8227 case 0x2c: /* FMINNMP */ 8228 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8229 break; 8230 case 0x2f: /* FMINP */ 8231 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8232 break; 8233 default: 8234 g_assert_not_reached(); 8235 } 8236 } 8237 8238 write_fp_sreg(s, rd, tcg_res); 8239 } 8240 } 8241 8242 /* 8243 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8244 * 8245 * This code is handles the common shifting code and is used by both 8246 * the vector and scalar code. 8247 */ 8248 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8249 TCGv_i64 tcg_rnd, bool accumulate, 8250 bool is_u, int size, int shift) 8251 { 8252 bool extended_result = false; 8253 bool round = tcg_rnd != NULL; 8254 int ext_lshift = 0; 8255 TCGv_i64 tcg_src_hi; 8256 8257 if (round && size == 3) { 8258 extended_result = true; 8259 ext_lshift = 64 - shift; 8260 tcg_src_hi = tcg_temp_new_i64(); 8261 } else if (shift == 64) { 8262 if (!accumulate && is_u) { 8263 /* result is zero */ 8264 tcg_gen_movi_i64(tcg_res, 0); 8265 return; 8266 } 8267 } 8268 8269 /* Deal with the rounding step */ 8270 if (round) { 8271 if (extended_result) { 8272 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8273 if (!is_u) { 8274 /* take care of sign extending tcg_res */ 8275 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8276 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8277 tcg_src, tcg_src_hi, 8278 tcg_rnd, tcg_zero); 8279 } else { 8280 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8281 tcg_src, tcg_zero, 8282 tcg_rnd, tcg_zero); 8283 } 8284 } else { 8285 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8286 } 8287 } 8288 8289 /* Now do the shift right */ 8290 if (round && extended_result) { 8291 /* extended case, >64 bit precision required */ 8292 if (ext_lshift == 0) { 8293 /* special case, only high bits matter */ 8294 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8295 } else { 8296 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8297 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8298 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8299 } 8300 } else { 8301 if (is_u) { 8302 if (shift == 64) { 8303 /* essentially shifting in 64 zeros */ 8304 tcg_gen_movi_i64(tcg_src, 0); 8305 } else { 8306 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8307 } 8308 } else { 8309 if (shift == 64) { 8310 /* effectively extending the sign-bit */ 8311 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8312 } else { 8313 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8314 } 8315 } 8316 } 8317 8318 if (accumulate) { 8319 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8320 } else { 8321 tcg_gen_mov_i64(tcg_res, tcg_src); 8322 } 8323 } 8324 8325 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8326 static void handle_scalar_simd_shri(DisasContext *s, 8327 bool is_u, int immh, int immb, 8328 int opcode, int rn, int rd) 8329 { 8330 const int size = 3; 8331 int immhb = immh << 3 | immb; 8332 int shift = 2 * (8 << size) - immhb; 8333 bool accumulate = false; 8334 bool round = false; 8335 bool insert = false; 8336 TCGv_i64 tcg_rn; 8337 TCGv_i64 tcg_rd; 8338 TCGv_i64 tcg_round; 8339 8340 if (!extract32(immh, 3, 1)) { 8341 unallocated_encoding(s); 8342 return; 8343 } 8344 8345 if (!fp_access_check(s)) { 8346 return; 8347 } 8348 8349 switch (opcode) { 8350 case 0x02: /* SSRA / USRA (accumulate) */ 8351 accumulate = true; 8352 break; 8353 case 0x04: /* SRSHR / URSHR (rounding) */ 8354 round = true; 8355 break; 8356 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8357 accumulate = round = true; 8358 break; 8359 case 0x08: /* SRI */ 8360 insert = true; 8361 break; 8362 } 8363 8364 if (round) { 8365 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8366 } else { 8367 tcg_round = NULL; 8368 } 8369 8370 tcg_rn = read_fp_dreg(s, rn); 8371 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8372 8373 if (insert) { 8374 /* shift count same as element size is valid but does nothing; 8375 * special case to avoid potential shift by 64. 8376 */ 8377 int esize = 8 << size; 8378 if (shift != esize) { 8379 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8380 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8381 } 8382 } else { 8383 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8384 accumulate, is_u, size, shift); 8385 } 8386 8387 write_fp_dreg(s, rd, tcg_rd); 8388 } 8389 8390 /* SHL/SLI - Scalar shift left */ 8391 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8392 int immh, int immb, int opcode, 8393 int rn, int rd) 8394 { 8395 int size = 32 - clz32(immh) - 1; 8396 int immhb = immh << 3 | immb; 8397 int shift = immhb - (8 << size); 8398 TCGv_i64 tcg_rn; 8399 TCGv_i64 tcg_rd; 8400 8401 if (!extract32(immh, 3, 1)) { 8402 unallocated_encoding(s); 8403 return; 8404 } 8405 8406 if (!fp_access_check(s)) { 8407 return; 8408 } 8409 8410 tcg_rn = read_fp_dreg(s, rn); 8411 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8412 8413 if (insert) { 8414 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8415 } else { 8416 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8417 } 8418 8419 write_fp_dreg(s, rd, tcg_rd); 8420 } 8421 8422 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8423 * (signed/unsigned) narrowing */ 8424 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8425 bool is_u_shift, bool is_u_narrow, 8426 int immh, int immb, int opcode, 8427 int rn, int rd) 8428 { 8429 int immhb = immh << 3 | immb; 8430 int size = 32 - clz32(immh) - 1; 8431 int esize = 8 << size; 8432 int shift = (2 * esize) - immhb; 8433 int elements = is_scalar ? 1 : (64 / esize); 8434 bool round = extract32(opcode, 0, 1); 8435 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8436 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8437 TCGv_i32 tcg_rd_narrowed; 8438 TCGv_i64 tcg_final; 8439 8440 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8441 { gen_helper_neon_narrow_sat_s8, 8442 gen_helper_neon_unarrow_sat8 }, 8443 { gen_helper_neon_narrow_sat_s16, 8444 gen_helper_neon_unarrow_sat16 }, 8445 { gen_helper_neon_narrow_sat_s32, 8446 gen_helper_neon_unarrow_sat32 }, 8447 { NULL, NULL }, 8448 }; 8449 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8450 gen_helper_neon_narrow_sat_u8, 8451 gen_helper_neon_narrow_sat_u16, 8452 gen_helper_neon_narrow_sat_u32, 8453 NULL 8454 }; 8455 NeonGenNarrowEnvFn *narrowfn; 8456 8457 int i; 8458 8459 assert(size < 4); 8460 8461 if (extract32(immh, 3, 1)) { 8462 unallocated_encoding(s); 8463 return; 8464 } 8465 8466 if (!fp_access_check(s)) { 8467 return; 8468 } 8469 8470 if (is_u_shift) { 8471 narrowfn = unsigned_narrow_fns[size]; 8472 } else { 8473 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8474 } 8475 8476 tcg_rn = tcg_temp_new_i64(); 8477 tcg_rd = tcg_temp_new_i64(); 8478 tcg_rd_narrowed = tcg_temp_new_i32(); 8479 tcg_final = tcg_temp_new_i64(); 8480 8481 if (round) { 8482 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8483 } else { 8484 tcg_round = NULL; 8485 } 8486 8487 for (i = 0; i < elements; i++) { 8488 read_vec_element(s, tcg_rn, rn, i, ldop); 8489 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8490 false, is_u_shift, size+1, shift); 8491 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8492 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8493 if (i == 0) { 8494 tcg_gen_mov_i64(tcg_final, tcg_rd); 8495 } else { 8496 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8497 } 8498 } 8499 8500 if (!is_q) { 8501 write_vec_element(s, tcg_final, rd, 0, MO_64); 8502 } else { 8503 write_vec_element(s, tcg_final, rd, 1, MO_64); 8504 } 8505 clear_vec_high(s, is_q, rd); 8506 } 8507 8508 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8509 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8510 bool src_unsigned, bool dst_unsigned, 8511 int immh, int immb, int rn, int rd) 8512 { 8513 int immhb = immh << 3 | immb; 8514 int size = 32 - clz32(immh) - 1; 8515 int shift = immhb - (8 << size); 8516 int pass; 8517 8518 assert(immh != 0); 8519 assert(!(scalar && is_q)); 8520 8521 if (!scalar) { 8522 if (!is_q && extract32(immh, 3, 1)) { 8523 unallocated_encoding(s); 8524 return; 8525 } 8526 8527 /* Since we use the variable-shift helpers we must 8528 * replicate the shift count into each element of 8529 * the tcg_shift value. 8530 */ 8531 switch (size) { 8532 case 0: 8533 shift |= shift << 8; 8534 /* fall through */ 8535 case 1: 8536 shift |= shift << 16; 8537 break; 8538 case 2: 8539 case 3: 8540 break; 8541 default: 8542 g_assert_not_reached(); 8543 } 8544 } 8545 8546 if (!fp_access_check(s)) { 8547 return; 8548 } 8549 8550 if (size == 3) { 8551 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8552 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8553 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8554 { NULL, gen_helper_neon_qshl_u64 }, 8555 }; 8556 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8557 int maxpass = is_q ? 2 : 1; 8558 8559 for (pass = 0; pass < maxpass; pass++) { 8560 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8561 8562 read_vec_element(s, tcg_op, rn, pass, MO_64); 8563 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8564 write_vec_element(s, tcg_op, rd, pass, MO_64); 8565 } 8566 clear_vec_high(s, is_q, rd); 8567 } else { 8568 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8569 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8570 { 8571 { gen_helper_neon_qshl_s8, 8572 gen_helper_neon_qshl_s16, 8573 gen_helper_neon_qshl_s32 }, 8574 { gen_helper_neon_qshlu_s8, 8575 gen_helper_neon_qshlu_s16, 8576 gen_helper_neon_qshlu_s32 } 8577 }, { 8578 { NULL, NULL, NULL }, 8579 { gen_helper_neon_qshl_u8, 8580 gen_helper_neon_qshl_u16, 8581 gen_helper_neon_qshl_u32 } 8582 } 8583 }; 8584 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8585 MemOp memop = scalar ? size : MO_32; 8586 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8587 8588 for (pass = 0; pass < maxpass; pass++) { 8589 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8590 8591 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8592 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8593 if (scalar) { 8594 switch (size) { 8595 case 0: 8596 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8597 break; 8598 case 1: 8599 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8600 break; 8601 case 2: 8602 break; 8603 default: 8604 g_assert_not_reached(); 8605 } 8606 write_fp_sreg(s, rd, tcg_op); 8607 } else { 8608 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8609 } 8610 } 8611 8612 if (!scalar) { 8613 clear_vec_high(s, is_q, rd); 8614 } 8615 } 8616 } 8617 8618 /* Common vector code for handling integer to FP conversion */ 8619 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8620 int elements, int is_signed, 8621 int fracbits, int size) 8622 { 8623 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8624 TCGv_i32 tcg_shift = NULL; 8625 8626 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8627 int pass; 8628 8629 if (fracbits || size == MO_64) { 8630 tcg_shift = tcg_constant_i32(fracbits); 8631 } 8632 8633 if (size == MO_64) { 8634 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8635 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8636 8637 for (pass = 0; pass < elements; pass++) { 8638 read_vec_element(s, tcg_int64, rn, pass, mop); 8639 8640 if (is_signed) { 8641 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8642 tcg_shift, tcg_fpst); 8643 } else { 8644 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8645 tcg_shift, tcg_fpst); 8646 } 8647 if (elements == 1) { 8648 write_fp_dreg(s, rd, tcg_double); 8649 } else { 8650 write_vec_element(s, tcg_double, rd, pass, MO_64); 8651 } 8652 } 8653 } else { 8654 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8655 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8656 8657 for (pass = 0; pass < elements; pass++) { 8658 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8659 8660 switch (size) { 8661 case MO_32: 8662 if (fracbits) { 8663 if (is_signed) { 8664 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8665 tcg_shift, tcg_fpst); 8666 } else { 8667 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8668 tcg_shift, tcg_fpst); 8669 } 8670 } else { 8671 if (is_signed) { 8672 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8673 } else { 8674 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8675 } 8676 } 8677 break; 8678 case MO_16: 8679 if (fracbits) { 8680 if (is_signed) { 8681 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8682 tcg_shift, tcg_fpst); 8683 } else { 8684 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8685 tcg_shift, tcg_fpst); 8686 } 8687 } else { 8688 if (is_signed) { 8689 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8690 } else { 8691 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8692 } 8693 } 8694 break; 8695 default: 8696 g_assert_not_reached(); 8697 } 8698 8699 if (elements == 1) { 8700 write_fp_sreg(s, rd, tcg_float); 8701 } else { 8702 write_vec_element_i32(s, tcg_float, rd, pass, size); 8703 } 8704 } 8705 } 8706 8707 clear_vec_high(s, elements << size == 16, rd); 8708 } 8709 8710 /* UCVTF/SCVTF - Integer to FP conversion */ 8711 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8712 bool is_q, bool is_u, 8713 int immh, int immb, int opcode, 8714 int rn, int rd) 8715 { 8716 int size, elements, fracbits; 8717 int immhb = immh << 3 | immb; 8718 8719 if (immh & 8) { 8720 size = MO_64; 8721 if (!is_scalar && !is_q) { 8722 unallocated_encoding(s); 8723 return; 8724 } 8725 } else if (immh & 4) { 8726 size = MO_32; 8727 } else if (immh & 2) { 8728 size = MO_16; 8729 if (!dc_isar_feature(aa64_fp16, s)) { 8730 unallocated_encoding(s); 8731 return; 8732 } 8733 } else { 8734 /* immh == 0 would be a failure of the decode logic */ 8735 g_assert(immh == 1); 8736 unallocated_encoding(s); 8737 return; 8738 } 8739 8740 if (is_scalar) { 8741 elements = 1; 8742 } else { 8743 elements = (8 << is_q) >> size; 8744 } 8745 fracbits = (16 << size) - immhb; 8746 8747 if (!fp_access_check(s)) { 8748 return; 8749 } 8750 8751 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8752 } 8753 8754 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8755 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8756 bool is_q, bool is_u, 8757 int immh, int immb, int rn, int rd) 8758 { 8759 int immhb = immh << 3 | immb; 8760 int pass, size, fracbits; 8761 TCGv_ptr tcg_fpstatus; 8762 TCGv_i32 tcg_rmode, tcg_shift; 8763 8764 if (immh & 0x8) { 8765 size = MO_64; 8766 if (!is_scalar && !is_q) { 8767 unallocated_encoding(s); 8768 return; 8769 } 8770 } else if (immh & 0x4) { 8771 size = MO_32; 8772 } else if (immh & 0x2) { 8773 size = MO_16; 8774 if (!dc_isar_feature(aa64_fp16, s)) { 8775 unallocated_encoding(s); 8776 return; 8777 } 8778 } else { 8779 /* Should have split out AdvSIMD modified immediate earlier. */ 8780 assert(immh == 1); 8781 unallocated_encoding(s); 8782 return; 8783 } 8784 8785 if (!fp_access_check(s)) { 8786 return; 8787 } 8788 8789 assert(!(is_scalar && is_q)); 8790 8791 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8792 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8793 fracbits = (16 << size) - immhb; 8794 tcg_shift = tcg_constant_i32(fracbits); 8795 8796 if (size == MO_64) { 8797 int maxpass = is_scalar ? 1 : 2; 8798 8799 for (pass = 0; pass < maxpass; pass++) { 8800 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8801 8802 read_vec_element(s, tcg_op, rn, pass, MO_64); 8803 if (is_u) { 8804 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8805 } else { 8806 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8807 } 8808 write_vec_element(s, tcg_op, rd, pass, MO_64); 8809 } 8810 clear_vec_high(s, is_q, rd); 8811 } else { 8812 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8813 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8814 8815 switch (size) { 8816 case MO_16: 8817 if (is_u) { 8818 fn = gen_helper_vfp_touhh; 8819 } else { 8820 fn = gen_helper_vfp_toshh; 8821 } 8822 break; 8823 case MO_32: 8824 if (is_u) { 8825 fn = gen_helper_vfp_touls; 8826 } else { 8827 fn = gen_helper_vfp_tosls; 8828 } 8829 break; 8830 default: 8831 g_assert_not_reached(); 8832 } 8833 8834 for (pass = 0; pass < maxpass; pass++) { 8835 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8836 8837 read_vec_element_i32(s, tcg_op, rn, pass, size); 8838 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8839 if (is_scalar) { 8840 write_fp_sreg(s, rd, tcg_op); 8841 } else { 8842 write_vec_element_i32(s, tcg_op, rd, pass, size); 8843 } 8844 } 8845 if (!is_scalar) { 8846 clear_vec_high(s, is_q, rd); 8847 } 8848 } 8849 8850 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8851 } 8852 8853 /* AdvSIMD scalar shift by immediate 8854 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8855 * +-----+---+-------------+------+------+--------+---+------+------+ 8856 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8857 * +-----+---+-------------+------+------+--------+---+------+------+ 8858 * 8859 * This is the scalar version so it works on a fixed sized registers 8860 */ 8861 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8862 { 8863 int rd = extract32(insn, 0, 5); 8864 int rn = extract32(insn, 5, 5); 8865 int opcode = extract32(insn, 11, 5); 8866 int immb = extract32(insn, 16, 3); 8867 int immh = extract32(insn, 19, 4); 8868 bool is_u = extract32(insn, 29, 1); 8869 8870 if (immh == 0) { 8871 unallocated_encoding(s); 8872 return; 8873 } 8874 8875 switch (opcode) { 8876 case 0x08: /* SRI */ 8877 if (!is_u) { 8878 unallocated_encoding(s); 8879 return; 8880 } 8881 /* fall through */ 8882 case 0x00: /* SSHR / USHR */ 8883 case 0x02: /* SSRA / USRA */ 8884 case 0x04: /* SRSHR / URSHR */ 8885 case 0x06: /* SRSRA / URSRA */ 8886 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8887 break; 8888 case 0x0a: /* SHL / SLI */ 8889 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8890 break; 8891 case 0x1c: /* SCVTF, UCVTF */ 8892 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8893 opcode, rn, rd); 8894 break; 8895 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8896 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8897 if (!is_u) { 8898 unallocated_encoding(s); 8899 return; 8900 } 8901 handle_vec_simd_sqshrn(s, true, false, false, true, 8902 immh, immb, opcode, rn, rd); 8903 break; 8904 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8905 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8906 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8907 immh, immb, opcode, rn, rd); 8908 break; 8909 case 0xc: /* SQSHLU */ 8910 if (!is_u) { 8911 unallocated_encoding(s); 8912 return; 8913 } 8914 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8915 break; 8916 case 0xe: /* SQSHL, UQSHL */ 8917 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8918 break; 8919 case 0x1f: /* FCVTZS, FCVTZU */ 8920 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8921 break; 8922 default: 8923 unallocated_encoding(s); 8924 break; 8925 } 8926 } 8927 8928 /* AdvSIMD scalar three different 8929 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8930 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8931 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8932 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8933 */ 8934 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8935 { 8936 bool is_u = extract32(insn, 29, 1); 8937 int size = extract32(insn, 22, 2); 8938 int opcode = extract32(insn, 12, 4); 8939 int rm = extract32(insn, 16, 5); 8940 int rn = extract32(insn, 5, 5); 8941 int rd = extract32(insn, 0, 5); 8942 8943 if (is_u) { 8944 unallocated_encoding(s); 8945 return; 8946 } 8947 8948 switch (opcode) { 8949 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8950 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8951 case 0xd: /* SQDMULL, SQDMULL2 */ 8952 if (size == 0 || size == 3) { 8953 unallocated_encoding(s); 8954 return; 8955 } 8956 break; 8957 default: 8958 unallocated_encoding(s); 8959 return; 8960 } 8961 8962 if (!fp_access_check(s)) { 8963 return; 8964 } 8965 8966 if (size == 2) { 8967 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8968 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8969 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8970 8971 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8972 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8973 8974 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8975 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8976 8977 switch (opcode) { 8978 case 0xd: /* SQDMULL, SQDMULL2 */ 8979 break; 8980 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8981 tcg_gen_neg_i64(tcg_res, tcg_res); 8982 /* fall through */ 8983 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8984 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8985 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8986 tcg_res, tcg_op1); 8987 break; 8988 default: 8989 g_assert_not_reached(); 8990 } 8991 8992 write_fp_dreg(s, rd, tcg_res); 8993 } else { 8994 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8995 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8996 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8997 8998 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8999 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 9000 9001 switch (opcode) { 9002 case 0xd: /* SQDMULL, SQDMULL2 */ 9003 break; 9004 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9005 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9006 /* fall through */ 9007 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9008 { 9009 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9010 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9011 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9012 tcg_res, tcg_op3); 9013 break; 9014 } 9015 default: 9016 g_assert_not_reached(); 9017 } 9018 9019 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9020 write_fp_dreg(s, rd, tcg_res); 9021 } 9022 } 9023 9024 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9025 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9026 { 9027 /* Handle 64x64->64 opcodes which are shared between the scalar 9028 * and vector 3-same groups. We cover every opcode where size == 3 9029 * is valid in either the three-reg-same (integer, not pairwise) 9030 * or scalar-three-reg-same groups. 9031 */ 9032 TCGCond cond; 9033 9034 switch (opcode) { 9035 case 0x1: /* SQADD */ 9036 if (u) { 9037 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9038 } else { 9039 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9040 } 9041 break; 9042 case 0x5: /* SQSUB */ 9043 if (u) { 9044 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9045 } else { 9046 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9047 } 9048 break; 9049 case 0x6: /* CMGT, CMHI */ 9050 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9051 * We implement this using setcond (test) and then negating. 9052 */ 9053 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9054 do_cmop: 9055 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9056 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9057 break; 9058 case 0x7: /* CMGE, CMHS */ 9059 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9060 goto do_cmop; 9061 case 0x11: /* CMTST, CMEQ */ 9062 if (u) { 9063 cond = TCG_COND_EQ; 9064 goto do_cmop; 9065 } 9066 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9067 break; 9068 case 0x8: /* SSHL, USHL */ 9069 if (u) { 9070 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9071 } else { 9072 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9073 } 9074 break; 9075 case 0x9: /* SQSHL, UQSHL */ 9076 if (u) { 9077 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9078 } else { 9079 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9080 } 9081 break; 9082 case 0xa: /* SRSHL, URSHL */ 9083 if (u) { 9084 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9085 } else { 9086 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9087 } 9088 break; 9089 case 0xb: /* SQRSHL, UQRSHL */ 9090 if (u) { 9091 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9092 } else { 9093 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9094 } 9095 break; 9096 case 0x10: /* ADD, SUB */ 9097 if (u) { 9098 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9099 } else { 9100 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9101 } 9102 break; 9103 default: 9104 g_assert_not_reached(); 9105 } 9106 } 9107 9108 /* Handle the 3-same-operands float operations; shared by the scalar 9109 * and vector encodings. The caller must filter out any encodings 9110 * not allocated for the encoding it is dealing with. 9111 */ 9112 static void handle_3same_float(DisasContext *s, int size, int elements, 9113 int fpopcode, int rd, int rn, int rm) 9114 { 9115 int pass; 9116 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9117 9118 for (pass = 0; pass < elements; pass++) { 9119 if (size) { 9120 /* Double */ 9121 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9122 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9123 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9124 9125 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9126 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9127 9128 switch (fpopcode) { 9129 case 0x39: /* FMLS */ 9130 /* As usual for ARM, separate negation for fused multiply-add */ 9131 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9132 /* fall through */ 9133 case 0x19: /* FMLA */ 9134 read_vec_element(s, tcg_res, rd, pass, MO_64); 9135 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9136 tcg_res, fpst); 9137 break; 9138 case 0x18: /* FMAXNM */ 9139 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9140 break; 9141 case 0x1a: /* FADD */ 9142 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9143 break; 9144 case 0x1b: /* FMULX */ 9145 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9146 break; 9147 case 0x1c: /* FCMEQ */ 9148 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9149 break; 9150 case 0x1e: /* FMAX */ 9151 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9152 break; 9153 case 0x1f: /* FRECPS */ 9154 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9155 break; 9156 case 0x38: /* FMINNM */ 9157 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9158 break; 9159 case 0x3a: /* FSUB */ 9160 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9161 break; 9162 case 0x3e: /* FMIN */ 9163 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9164 break; 9165 case 0x3f: /* FRSQRTS */ 9166 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9167 break; 9168 case 0x5b: /* FMUL */ 9169 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9170 break; 9171 case 0x5c: /* FCMGE */ 9172 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9173 break; 9174 case 0x5d: /* FACGE */ 9175 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9176 break; 9177 case 0x5f: /* FDIV */ 9178 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9179 break; 9180 case 0x7a: /* FABD */ 9181 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9182 gen_helper_vfp_absd(tcg_res, tcg_res); 9183 break; 9184 case 0x7c: /* FCMGT */ 9185 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9186 break; 9187 case 0x7d: /* FACGT */ 9188 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9189 break; 9190 default: 9191 g_assert_not_reached(); 9192 } 9193 9194 write_vec_element(s, tcg_res, rd, pass, MO_64); 9195 } else { 9196 /* Single */ 9197 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9198 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9199 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9200 9201 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9202 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9203 9204 switch (fpopcode) { 9205 case 0x39: /* FMLS */ 9206 /* As usual for ARM, separate negation for fused multiply-add */ 9207 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9208 /* fall through */ 9209 case 0x19: /* FMLA */ 9210 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9211 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9212 tcg_res, fpst); 9213 break; 9214 case 0x1a: /* FADD */ 9215 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9216 break; 9217 case 0x1b: /* FMULX */ 9218 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9219 break; 9220 case 0x1c: /* FCMEQ */ 9221 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9222 break; 9223 case 0x1e: /* FMAX */ 9224 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9225 break; 9226 case 0x1f: /* FRECPS */ 9227 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9228 break; 9229 case 0x18: /* FMAXNM */ 9230 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9231 break; 9232 case 0x38: /* FMINNM */ 9233 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9234 break; 9235 case 0x3a: /* FSUB */ 9236 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9237 break; 9238 case 0x3e: /* FMIN */ 9239 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9240 break; 9241 case 0x3f: /* FRSQRTS */ 9242 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9243 break; 9244 case 0x5b: /* FMUL */ 9245 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9246 break; 9247 case 0x5c: /* FCMGE */ 9248 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9249 break; 9250 case 0x5d: /* FACGE */ 9251 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9252 break; 9253 case 0x5f: /* FDIV */ 9254 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9255 break; 9256 case 0x7a: /* FABD */ 9257 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9258 gen_helper_vfp_abss(tcg_res, tcg_res); 9259 break; 9260 case 0x7c: /* FCMGT */ 9261 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9262 break; 9263 case 0x7d: /* FACGT */ 9264 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9265 break; 9266 default: 9267 g_assert_not_reached(); 9268 } 9269 9270 if (elements == 1) { 9271 /* scalar single so clear high part */ 9272 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9273 9274 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9275 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9276 } else { 9277 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9278 } 9279 } 9280 } 9281 9282 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9283 } 9284 9285 /* AdvSIMD scalar three same 9286 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9287 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9288 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9289 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9290 */ 9291 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9292 { 9293 int rd = extract32(insn, 0, 5); 9294 int rn = extract32(insn, 5, 5); 9295 int opcode = extract32(insn, 11, 5); 9296 int rm = extract32(insn, 16, 5); 9297 int size = extract32(insn, 22, 2); 9298 bool u = extract32(insn, 29, 1); 9299 TCGv_i64 tcg_rd; 9300 9301 if (opcode >= 0x18) { 9302 /* Floating point: U, size[1] and opcode indicate operation */ 9303 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9304 switch (fpopcode) { 9305 case 0x1b: /* FMULX */ 9306 case 0x1f: /* FRECPS */ 9307 case 0x3f: /* FRSQRTS */ 9308 case 0x5d: /* FACGE */ 9309 case 0x7d: /* FACGT */ 9310 case 0x1c: /* FCMEQ */ 9311 case 0x5c: /* FCMGE */ 9312 case 0x7c: /* FCMGT */ 9313 case 0x7a: /* FABD */ 9314 break; 9315 default: 9316 unallocated_encoding(s); 9317 return; 9318 } 9319 9320 if (!fp_access_check(s)) { 9321 return; 9322 } 9323 9324 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9325 return; 9326 } 9327 9328 switch (opcode) { 9329 case 0x1: /* SQADD, UQADD */ 9330 case 0x5: /* SQSUB, UQSUB */ 9331 case 0x9: /* SQSHL, UQSHL */ 9332 case 0xb: /* SQRSHL, UQRSHL */ 9333 break; 9334 case 0x8: /* SSHL, USHL */ 9335 case 0xa: /* SRSHL, URSHL */ 9336 case 0x6: /* CMGT, CMHI */ 9337 case 0x7: /* CMGE, CMHS */ 9338 case 0x11: /* CMTST, CMEQ */ 9339 case 0x10: /* ADD, SUB (vector) */ 9340 if (size != 3) { 9341 unallocated_encoding(s); 9342 return; 9343 } 9344 break; 9345 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9346 if (size != 1 && size != 2) { 9347 unallocated_encoding(s); 9348 return; 9349 } 9350 break; 9351 default: 9352 unallocated_encoding(s); 9353 return; 9354 } 9355 9356 if (!fp_access_check(s)) { 9357 return; 9358 } 9359 9360 tcg_rd = tcg_temp_new_i64(); 9361 9362 if (size == 3) { 9363 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9364 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9365 9366 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9367 } else { 9368 /* Do a single operation on the lowest element in the vector. 9369 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9370 * no side effects for all these operations. 9371 * OPTME: special-purpose helpers would avoid doing some 9372 * unnecessary work in the helper for the 8 and 16 bit cases. 9373 */ 9374 NeonGenTwoOpEnvFn *genenvfn; 9375 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9376 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9377 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9378 9379 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9380 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9381 9382 switch (opcode) { 9383 case 0x1: /* SQADD, UQADD */ 9384 { 9385 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9386 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9387 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9388 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9389 }; 9390 genenvfn = fns[size][u]; 9391 break; 9392 } 9393 case 0x5: /* SQSUB, UQSUB */ 9394 { 9395 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9396 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9397 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9398 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9399 }; 9400 genenvfn = fns[size][u]; 9401 break; 9402 } 9403 case 0x9: /* SQSHL, UQSHL */ 9404 { 9405 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9406 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9407 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9408 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9409 }; 9410 genenvfn = fns[size][u]; 9411 break; 9412 } 9413 case 0xb: /* SQRSHL, UQRSHL */ 9414 { 9415 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9416 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9417 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9418 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9419 }; 9420 genenvfn = fns[size][u]; 9421 break; 9422 } 9423 case 0x16: /* SQDMULH, SQRDMULH */ 9424 { 9425 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9426 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9427 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9428 }; 9429 assert(size == 1 || size == 2); 9430 genenvfn = fns[size - 1][u]; 9431 break; 9432 } 9433 default: 9434 g_assert_not_reached(); 9435 } 9436 9437 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9438 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9439 } 9440 9441 write_fp_dreg(s, rd, tcg_rd); 9442 } 9443 9444 /* AdvSIMD scalar three same FP16 9445 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9446 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9447 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9448 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9449 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9450 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9451 */ 9452 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9453 uint32_t insn) 9454 { 9455 int rd = extract32(insn, 0, 5); 9456 int rn = extract32(insn, 5, 5); 9457 int opcode = extract32(insn, 11, 3); 9458 int rm = extract32(insn, 16, 5); 9459 bool u = extract32(insn, 29, 1); 9460 bool a = extract32(insn, 23, 1); 9461 int fpopcode = opcode | (a << 3) | (u << 4); 9462 TCGv_ptr fpst; 9463 TCGv_i32 tcg_op1; 9464 TCGv_i32 tcg_op2; 9465 TCGv_i32 tcg_res; 9466 9467 switch (fpopcode) { 9468 case 0x03: /* FMULX */ 9469 case 0x04: /* FCMEQ (reg) */ 9470 case 0x07: /* FRECPS */ 9471 case 0x0f: /* FRSQRTS */ 9472 case 0x14: /* FCMGE (reg) */ 9473 case 0x15: /* FACGE */ 9474 case 0x1a: /* FABD */ 9475 case 0x1c: /* FCMGT (reg) */ 9476 case 0x1d: /* FACGT */ 9477 break; 9478 default: 9479 unallocated_encoding(s); 9480 return; 9481 } 9482 9483 if (!dc_isar_feature(aa64_fp16, s)) { 9484 unallocated_encoding(s); 9485 } 9486 9487 if (!fp_access_check(s)) { 9488 return; 9489 } 9490 9491 fpst = fpstatus_ptr(FPST_FPCR_F16); 9492 9493 tcg_op1 = read_fp_hreg(s, rn); 9494 tcg_op2 = read_fp_hreg(s, rm); 9495 tcg_res = tcg_temp_new_i32(); 9496 9497 switch (fpopcode) { 9498 case 0x03: /* FMULX */ 9499 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9500 break; 9501 case 0x04: /* FCMEQ (reg) */ 9502 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9503 break; 9504 case 0x07: /* FRECPS */ 9505 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9506 break; 9507 case 0x0f: /* FRSQRTS */ 9508 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9509 break; 9510 case 0x14: /* FCMGE (reg) */ 9511 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9512 break; 9513 case 0x15: /* FACGE */ 9514 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9515 break; 9516 case 0x1a: /* FABD */ 9517 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9518 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9519 break; 9520 case 0x1c: /* FCMGT (reg) */ 9521 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9522 break; 9523 case 0x1d: /* FACGT */ 9524 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9525 break; 9526 default: 9527 g_assert_not_reached(); 9528 } 9529 9530 write_fp_sreg(s, rd, tcg_res); 9531 } 9532 9533 /* AdvSIMD scalar three same extra 9534 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9535 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9536 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9537 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9538 */ 9539 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9540 uint32_t insn) 9541 { 9542 int rd = extract32(insn, 0, 5); 9543 int rn = extract32(insn, 5, 5); 9544 int opcode = extract32(insn, 11, 4); 9545 int rm = extract32(insn, 16, 5); 9546 int size = extract32(insn, 22, 2); 9547 bool u = extract32(insn, 29, 1); 9548 TCGv_i32 ele1, ele2, ele3; 9549 TCGv_i64 res; 9550 bool feature; 9551 9552 switch (u * 16 + opcode) { 9553 case 0x10: /* SQRDMLAH (vector) */ 9554 case 0x11: /* SQRDMLSH (vector) */ 9555 if (size != 1 && size != 2) { 9556 unallocated_encoding(s); 9557 return; 9558 } 9559 feature = dc_isar_feature(aa64_rdm, s); 9560 break; 9561 default: 9562 unallocated_encoding(s); 9563 return; 9564 } 9565 if (!feature) { 9566 unallocated_encoding(s); 9567 return; 9568 } 9569 if (!fp_access_check(s)) { 9570 return; 9571 } 9572 9573 /* Do a single operation on the lowest element in the vector. 9574 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9575 * with no side effects for all these operations. 9576 * OPTME: special-purpose helpers would avoid doing some 9577 * unnecessary work in the helper for the 16 bit cases. 9578 */ 9579 ele1 = tcg_temp_new_i32(); 9580 ele2 = tcg_temp_new_i32(); 9581 ele3 = tcg_temp_new_i32(); 9582 9583 read_vec_element_i32(s, ele1, rn, 0, size); 9584 read_vec_element_i32(s, ele2, rm, 0, size); 9585 read_vec_element_i32(s, ele3, rd, 0, size); 9586 9587 switch (opcode) { 9588 case 0x0: /* SQRDMLAH */ 9589 if (size == 1) { 9590 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9591 } else { 9592 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9593 } 9594 break; 9595 case 0x1: /* SQRDMLSH */ 9596 if (size == 1) { 9597 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9598 } else { 9599 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9600 } 9601 break; 9602 default: 9603 g_assert_not_reached(); 9604 } 9605 9606 res = tcg_temp_new_i64(); 9607 tcg_gen_extu_i32_i64(res, ele3); 9608 write_fp_dreg(s, rd, res); 9609 } 9610 9611 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9612 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9613 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9614 { 9615 /* Handle 64->64 opcodes which are shared between the scalar and 9616 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9617 * is valid in either group and also the double-precision fp ops. 9618 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9619 * requires them. 9620 */ 9621 TCGCond cond; 9622 9623 switch (opcode) { 9624 case 0x4: /* CLS, CLZ */ 9625 if (u) { 9626 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9627 } else { 9628 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9629 } 9630 break; 9631 case 0x5: /* NOT */ 9632 /* This opcode is shared with CNT and RBIT but we have earlier 9633 * enforced that size == 3 if and only if this is the NOT insn. 9634 */ 9635 tcg_gen_not_i64(tcg_rd, tcg_rn); 9636 break; 9637 case 0x7: /* SQABS, SQNEG */ 9638 if (u) { 9639 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9640 } else { 9641 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9642 } 9643 break; 9644 case 0xa: /* CMLT */ 9645 /* 64 bit integer comparison against zero, result is 9646 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9647 * subtracting 1. 9648 */ 9649 cond = TCG_COND_LT; 9650 do_cmop: 9651 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9652 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9653 break; 9654 case 0x8: /* CMGT, CMGE */ 9655 cond = u ? TCG_COND_GE : TCG_COND_GT; 9656 goto do_cmop; 9657 case 0x9: /* CMEQ, CMLE */ 9658 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9659 goto do_cmop; 9660 case 0xb: /* ABS, NEG */ 9661 if (u) { 9662 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9663 } else { 9664 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9665 } 9666 break; 9667 case 0x2f: /* FABS */ 9668 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9669 break; 9670 case 0x6f: /* FNEG */ 9671 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9672 break; 9673 case 0x7f: /* FSQRT */ 9674 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9675 break; 9676 case 0x1a: /* FCVTNS */ 9677 case 0x1b: /* FCVTMS */ 9678 case 0x1c: /* FCVTAS */ 9679 case 0x3a: /* FCVTPS */ 9680 case 0x3b: /* FCVTZS */ 9681 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9682 break; 9683 case 0x5a: /* FCVTNU */ 9684 case 0x5b: /* FCVTMU */ 9685 case 0x5c: /* FCVTAU */ 9686 case 0x7a: /* FCVTPU */ 9687 case 0x7b: /* FCVTZU */ 9688 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9689 break; 9690 case 0x18: /* FRINTN */ 9691 case 0x19: /* FRINTM */ 9692 case 0x38: /* FRINTP */ 9693 case 0x39: /* FRINTZ */ 9694 case 0x58: /* FRINTA */ 9695 case 0x79: /* FRINTI */ 9696 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9697 break; 9698 case 0x59: /* FRINTX */ 9699 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9700 break; 9701 case 0x1e: /* FRINT32Z */ 9702 case 0x5e: /* FRINT32X */ 9703 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9704 break; 9705 case 0x1f: /* FRINT64Z */ 9706 case 0x5f: /* FRINT64X */ 9707 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9708 break; 9709 default: 9710 g_assert_not_reached(); 9711 } 9712 } 9713 9714 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9715 bool is_scalar, bool is_u, bool is_q, 9716 int size, int rn, int rd) 9717 { 9718 bool is_double = (size == MO_64); 9719 TCGv_ptr fpst; 9720 9721 if (!fp_access_check(s)) { 9722 return; 9723 } 9724 9725 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9726 9727 if (is_double) { 9728 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9729 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9730 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9731 NeonGenTwoDoubleOpFn *genfn; 9732 bool swap = false; 9733 int pass; 9734 9735 switch (opcode) { 9736 case 0x2e: /* FCMLT (zero) */ 9737 swap = true; 9738 /* fallthrough */ 9739 case 0x2c: /* FCMGT (zero) */ 9740 genfn = gen_helper_neon_cgt_f64; 9741 break; 9742 case 0x2d: /* FCMEQ (zero) */ 9743 genfn = gen_helper_neon_ceq_f64; 9744 break; 9745 case 0x6d: /* FCMLE (zero) */ 9746 swap = true; 9747 /* fall through */ 9748 case 0x6c: /* FCMGE (zero) */ 9749 genfn = gen_helper_neon_cge_f64; 9750 break; 9751 default: 9752 g_assert_not_reached(); 9753 } 9754 9755 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9756 read_vec_element(s, tcg_op, rn, pass, MO_64); 9757 if (swap) { 9758 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9759 } else { 9760 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9761 } 9762 write_vec_element(s, tcg_res, rd, pass, MO_64); 9763 } 9764 9765 clear_vec_high(s, !is_scalar, rd); 9766 } else { 9767 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9768 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9769 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9770 NeonGenTwoSingleOpFn *genfn; 9771 bool swap = false; 9772 int pass, maxpasses; 9773 9774 if (size == MO_16) { 9775 switch (opcode) { 9776 case 0x2e: /* FCMLT (zero) */ 9777 swap = true; 9778 /* fall through */ 9779 case 0x2c: /* FCMGT (zero) */ 9780 genfn = gen_helper_advsimd_cgt_f16; 9781 break; 9782 case 0x2d: /* FCMEQ (zero) */ 9783 genfn = gen_helper_advsimd_ceq_f16; 9784 break; 9785 case 0x6d: /* FCMLE (zero) */ 9786 swap = true; 9787 /* fall through */ 9788 case 0x6c: /* FCMGE (zero) */ 9789 genfn = gen_helper_advsimd_cge_f16; 9790 break; 9791 default: 9792 g_assert_not_reached(); 9793 } 9794 } else { 9795 switch (opcode) { 9796 case 0x2e: /* FCMLT (zero) */ 9797 swap = true; 9798 /* fall through */ 9799 case 0x2c: /* FCMGT (zero) */ 9800 genfn = gen_helper_neon_cgt_f32; 9801 break; 9802 case 0x2d: /* FCMEQ (zero) */ 9803 genfn = gen_helper_neon_ceq_f32; 9804 break; 9805 case 0x6d: /* FCMLE (zero) */ 9806 swap = true; 9807 /* fall through */ 9808 case 0x6c: /* FCMGE (zero) */ 9809 genfn = gen_helper_neon_cge_f32; 9810 break; 9811 default: 9812 g_assert_not_reached(); 9813 } 9814 } 9815 9816 if (is_scalar) { 9817 maxpasses = 1; 9818 } else { 9819 int vector_size = 8 << is_q; 9820 maxpasses = vector_size >> size; 9821 } 9822 9823 for (pass = 0; pass < maxpasses; pass++) { 9824 read_vec_element_i32(s, tcg_op, rn, pass, size); 9825 if (swap) { 9826 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9827 } else { 9828 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9829 } 9830 if (is_scalar) { 9831 write_fp_sreg(s, rd, tcg_res); 9832 } else { 9833 write_vec_element_i32(s, tcg_res, rd, pass, size); 9834 } 9835 } 9836 9837 if (!is_scalar) { 9838 clear_vec_high(s, is_q, rd); 9839 } 9840 } 9841 } 9842 9843 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9844 bool is_scalar, bool is_u, bool is_q, 9845 int size, int rn, int rd) 9846 { 9847 bool is_double = (size == 3); 9848 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9849 9850 if (is_double) { 9851 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9852 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9853 int pass; 9854 9855 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9856 read_vec_element(s, tcg_op, rn, pass, MO_64); 9857 switch (opcode) { 9858 case 0x3d: /* FRECPE */ 9859 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9860 break; 9861 case 0x3f: /* FRECPX */ 9862 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9863 break; 9864 case 0x7d: /* FRSQRTE */ 9865 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9866 break; 9867 default: 9868 g_assert_not_reached(); 9869 } 9870 write_vec_element(s, tcg_res, rd, pass, MO_64); 9871 } 9872 clear_vec_high(s, !is_scalar, rd); 9873 } else { 9874 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9875 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9876 int pass, maxpasses; 9877 9878 if (is_scalar) { 9879 maxpasses = 1; 9880 } else { 9881 maxpasses = is_q ? 4 : 2; 9882 } 9883 9884 for (pass = 0; pass < maxpasses; pass++) { 9885 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9886 9887 switch (opcode) { 9888 case 0x3c: /* URECPE */ 9889 gen_helper_recpe_u32(tcg_res, tcg_op); 9890 break; 9891 case 0x3d: /* FRECPE */ 9892 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9893 break; 9894 case 0x3f: /* FRECPX */ 9895 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9896 break; 9897 case 0x7d: /* FRSQRTE */ 9898 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9899 break; 9900 default: 9901 g_assert_not_reached(); 9902 } 9903 9904 if (is_scalar) { 9905 write_fp_sreg(s, rd, tcg_res); 9906 } else { 9907 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9908 } 9909 } 9910 if (!is_scalar) { 9911 clear_vec_high(s, is_q, rd); 9912 } 9913 } 9914 } 9915 9916 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9917 int opcode, bool u, bool is_q, 9918 int size, int rn, int rd) 9919 { 9920 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9921 * in the source becomes a size element in the destination). 9922 */ 9923 int pass; 9924 TCGv_i32 tcg_res[2]; 9925 int destelt = is_q ? 2 : 0; 9926 int passes = scalar ? 1 : 2; 9927 9928 if (scalar) { 9929 tcg_res[1] = tcg_constant_i32(0); 9930 } 9931 9932 for (pass = 0; pass < passes; pass++) { 9933 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9934 NeonGenNarrowFn *genfn = NULL; 9935 NeonGenNarrowEnvFn *genenvfn = NULL; 9936 9937 if (scalar) { 9938 read_vec_element(s, tcg_op, rn, pass, size + 1); 9939 } else { 9940 read_vec_element(s, tcg_op, rn, pass, MO_64); 9941 } 9942 tcg_res[pass] = tcg_temp_new_i32(); 9943 9944 switch (opcode) { 9945 case 0x12: /* XTN, SQXTUN */ 9946 { 9947 static NeonGenNarrowFn * const xtnfns[3] = { 9948 gen_helper_neon_narrow_u8, 9949 gen_helper_neon_narrow_u16, 9950 tcg_gen_extrl_i64_i32, 9951 }; 9952 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9953 gen_helper_neon_unarrow_sat8, 9954 gen_helper_neon_unarrow_sat16, 9955 gen_helper_neon_unarrow_sat32, 9956 }; 9957 if (u) { 9958 genenvfn = sqxtunfns[size]; 9959 } else { 9960 genfn = xtnfns[size]; 9961 } 9962 break; 9963 } 9964 case 0x14: /* SQXTN, UQXTN */ 9965 { 9966 static NeonGenNarrowEnvFn * const fns[3][2] = { 9967 { gen_helper_neon_narrow_sat_s8, 9968 gen_helper_neon_narrow_sat_u8 }, 9969 { gen_helper_neon_narrow_sat_s16, 9970 gen_helper_neon_narrow_sat_u16 }, 9971 { gen_helper_neon_narrow_sat_s32, 9972 gen_helper_neon_narrow_sat_u32 }, 9973 }; 9974 genenvfn = fns[size][u]; 9975 break; 9976 } 9977 case 0x16: /* FCVTN, FCVTN2 */ 9978 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9979 if (size == 2) { 9980 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9981 } else { 9982 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9983 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9984 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9985 TCGv_i32 ahp = get_ahp_flag(); 9986 9987 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9988 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9989 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9990 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9991 } 9992 break; 9993 case 0x36: /* BFCVTN, BFCVTN2 */ 9994 { 9995 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9996 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9997 } 9998 break; 9999 case 0x56: /* FCVTXN, FCVTXN2 */ 10000 /* 64 bit to 32 bit float conversion 10001 * with von Neumann rounding (round to odd) 10002 */ 10003 assert(size == 2); 10004 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10005 break; 10006 default: 10007 g_assert_not_reached(); 10008 } 10009 10010 if (genfn) { 10011 genfn(tcg_res[pass], tcg_op); 10012 } else if (genenvfn) { 10013 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10014 } 10015 } 10016 10017 for (pass = 0; pass < 2; pass++) { 10018 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10019 } 10020 clear_vec_high(s, is_q, rd); 10021 } 10022 10023 /* Remaining saturating accumulating ops */ 10024 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10025 bool is_q, int size, int rn, int rd) 10026 { 10027 bool is_double = (size == 3); 10028 10029 if (is_double) { 10030 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10031 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10032 int pass; 10033 10034 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10035 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10036 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10037 10038 if (is_u) { /* USQADD */ 10039 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10040 } else { /* SUQADD */ 10041 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10042 } 10043 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10044 } 10045 clear_vec_high(s, !is_scalar, rd); 10046 } else { 10047 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10048 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10049 int pass, maxpasses; 10050 10051 if (is_scalar) { 10052 maxpasses = 1; 10053 } else { 10054 maxpasses = is_q ? 4 : 2; 10055 } 10056 10057 for (pass = 0; pass < maxpasses; pass++) { 10058 if (is_scalar) { 10059 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10060 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10061 } else { 10062 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10063 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10064 } 10065 10066 if (is_u) { /* USQADD */ 10067 switch (size) { 10068 case 0: 10069 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10070 break; 10071 case 1: 10072 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10073 break; 10074 case 2: 10075 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10076 break; 10077 default: 10078 g_assert_not_reached(); 10079 } 10080 } else { /* SUQADD */ 10081 switch (size) { 10082 case 0: 10083 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10084 break; 10085 case 1: 10086 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10087 break; 10088 case 2: 10089 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10090 break; 10091 default: 10092 g_assert_not_reached(); 10093 } 10094 } 10095 10096 if (is_scalar) { 10097 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10098 } 10099 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10100 } 10101 clear_vec_high(s, is_q, rd); 10102 } 10103 } 10104 10105 /* AdvSIMD scalar two reg misc 10106 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10107 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10108 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10109 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10110 */ 10111 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10112 { 10113 int rd = extract32(insn, 0, 5); 10114 int rn = extract32(insn, 5, 5); 10115 int opcode = extract32(insn, 12, 5); 10116 int size = extract32(insn, 22, 2); 10117 bool u = extract32(insn, 29, 1); 10118 bool is_fcvt = false; 10119 int rmode; 10120 TCGv_i32 tcg_rmode; 10121 TCGv_ptr tcg_fpstatus; 10122 10123 switch (opcode) { 10124 case 0x3: /* USQADD / SUQADD*/ 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10129 return; 10130 case 0x7: /* SQABS / SQNEG */ 10131 break; 10132 case 0xa: /* CMLT */ 10133 if (u) { 10134 unallocated_encoding(s); 10135 return; 10136 } 10137 /* fall through */ 10138 case 0x8: /* CMGT, CMGE */ 10139 case 0x9: /* CMEQ, CMLE */ 10140 case 0xb: /* ABS, NEG */ 10141 if (size != 3) { 10142 unallocated_encoding(s); 10143 return; 10144 } 10145 break; 10146 case 0x12: /* SQXTUN */ 10147 if (!u) { 10148 unallocated_encoding(s); 10149 return; 10150 } 10151 /* fall through */ 10152 case 0x14: /* SQXTN, UQXTN */ 10153 if (size == 3) { 10154 unallocated_encoding(s); 10155 return; 10156 } 10157 if (!fp_access_check(s)) { 10158 return; 10159 } 10160 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10161 return; 10162 case 0xc ... 0xf: 10163 case 0x16 ... 0x1d: 10164 case 0x1f: 10165 /* Floating point: U, size[1] and opcode indicate operation; 10166 * size[0] indicates single or double precision. 10167 */ 10168 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10169 size = extract32(size, 0, 1) ? 3 : 2; 10170 switch (opcode) { 10171 case 0x2c: /* FCMGT (zero) */ 10172 case 0x2d: /* FCMEQ (zero) */ 10173 case 0x2e: /* FCMLT (zero) */ 10174 case 0x6c: /* FCMGE (zero) */ 10175 case 0x6d: /* FCMLE (zero) */ 10176 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10177 return; 10178 case 0x1d: /* SCVTF */ 10179 case 0x5d: /* UCVTF */ 10180 { 10181 bool is_signed = (opcode == 0x1d); 10182 if (!fp_access_check(s)) { 10183 return; 10184 } 10185 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10186 return; 10187 } 10188 case 0x3d: /* FRECPE */ 10189 case 0x3f: /* FRECPX */ 10190 case 0x7d: /* FRSQRTE */ 10191 if (!fp_access_check(s)) { 10192 return; 10193 } 10194 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10195 return; 10196 case 0x1a: /* FCVTNS */ 10197 case 0x1b: /* FCVTMS */ 10198 case 0x3a: /* FCVTPS */ 10199 case 0x3b: /* FCVTZS */ 10200 case 0x5a: /* FCVTNU */ 10201 case 0x5b: /* FCVTMU */ 10202 case 0x7a: /* FCVTPU */ 10203 case 0x7b: /* FCVTZU */ 10204 is_fcvt = true; 10205 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10206 break; 10207 case 0x1c: /* FCVTAS */ 10208 case 0x5c: /* FCVTAU */ 10209 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10210 is_fcvt = true; 10211 rmode = FPROUNDING_TIEAWAY; 10212 break; 10213 case 0x56: /* FCVTXN, FCVTXN2 */ 10214 if (size == 2) { 10215 unallocated_encoding(s); 10216 return; 10217 } 10218 if (!fp_access_check(s)) { 10219 return; 10220 } 10221 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10222 return; 10223 default: 10224 unallocated_encoding(s); 10225 return; 10226 } 10227 break; 10228 default: 10229 unallocated_encoding(s); 10230 return; 10231 } 10232 10233 if (!fp_access_check(s)) { 10234 return; 10235 } 10236 10237 if (is_fcvt) { 10238 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10239 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10240 } else { 10241 tcg_fpstatus = NULL; 10242 tcg_rmode = NULL; 10243 } 10244 10245 if (size == 3) { 10246 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10247 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10248 10249 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10250 write_fp_dreg(s, rd, tcg_rd); 10251 } else { 10252 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10253 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10254 10255 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10256 10257 switch (opcode) { 10258 case 0x7: /* SQABS, SQNEG */ 10259 { 10260 NeonGenOneOpEnvFn *genfn; 10261 static NeonGenOneOpEnvFn * const fns[3][2] = { 10262 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10263 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10264 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10265 }; 10266 genfn = fns[size][u]; 10267 genfn(tcg_rd, cpu_env, tcg_rn); 10268 break; 10269 } 10270 case 0x1a: /* FCVTNS */ 10271 case 0x1b: /* FCVTMS */ 10272 case 0x1c: /* FCVTAS */ 10273 case 0x3a: /* FCVTPS */ 10274 case 0x3b: /* FCVTZS */ 10275 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10276 tcg_fpstatus); 10277 break; 10278 case 0x5a: /* FCVTNU */ 10279 case 0x5b: /* FCVTMU */ 10280 case 0x5c: /* FCVTAU */ 10281 case 0x7a: /* FCVTPU */ 10282 case 0x7b: /* FCVTZU */ 10283 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10284 tcg_fpstatus); 10285 break; 10286 default: 10287 g_assert_not_reached(); 10288 } 10289 10290 write_fp_sreg(s, rd, tcg_rd); 10291 } 10292 10293 if (is_fcvt) { 10294 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10295 } 10296 } 10297 10298 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10299 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10300 int immh, int immb, int opcode, int rn, int rd) 10301 { 10302 int size = 32 - clz32(immh) - 1; 10303 int immhb = immh << 3 | immb; 10304 int shift = 2 * (8 << size) - immhb; 10305 GVecGen2iFn *gvec_fn; 10306 10307 if (extract32(immh, 3, 1) && !is_q) { 10308 unallocated_encoding(s); 10309 return; 10310 } 10311 tcg_debug_assert(size <= 3); 10312 10313 if (!fp_access_check(s)) { 10314 return; 10315 } 10316 10317 switch (opcode) { 10318 case 0x02: /* SSRA / USRA (accumulate) */ 10319 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10320 break; 10321 10322 case 0x08: /* SRI */ 10323 gvec_fn = gen_gvec_sri; 10324 break; 10325 10326 case 0x00: /* SSHR / USHR */ 10327 if (is_u) { 10328 if (shift == 8 << size) { 10329 /* Shift count the same size as element size produces zero. */ 10330 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10331 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10332 return; 10333 } 10334 gvec_fn = tcg_gen_gvec_shri; 10335 } else { 10336 /* Shift count the same size as element size produces all sign. */ 10337 if (shift == 8 << size) { 10338 shift -= 1; 10339 } 10340 gvec_fn = tcg_gen_gvec_sari; 10341 } 10342 break; 10343 10344 case 0x04: /* SRSHR / URSHR (rounding) */ 10345 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10346 break; 10347 10348 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10349 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10350 break; 10351 10352 default: 10353 g_assert_not_reached(); 10354 } 10355 10356 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10357 } 10358 10359 /* SHL/SLI - Vector shift left */ 10360 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10361 int immh, int immb, int opcode, int rn, int rd) 10362 { 10363 int size = 32 - clz32(immh) - 1; 10364 int immhb = immh << 3 | immb; 10365 int shift = immhb - (8 << size); 10366 10367 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10368 assert(size >= 0 && size <= 3); 10369 10370 if (extract32(immh, 3, 1) && !is_q) { 10371 unallocated_encoding(s); 10372 return; 10373 } 10374 10375 if (!fp_access_check(s)) { 10376 return; 10377 } 10378 10379 if (insert) { 10380 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10381 } else { 10382 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10383 } 10384 } 10385 10386 /* USHLL/SHLL - Vector shift left with widening */ 10387 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10388 int immh, int immb, int opcode, int rn, int rd) 10389 { 10390 int size = 32 - clz32(immh) - 1; 10391 int immhb = immh << 3 | immb; 10392 int shift = immhb - (8 << size); 10393 int dsize = 64; 10394 int esize = 8 << size; 10395 int elements = dsize/esize; 10396 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10397 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10398 int i; 10399 10400 if (size >= 3) { 10401 unallocated_encoding(s); 10402 return; 10403 } 10404 10405 if (!fp_access_check(s)) { 10406 return; 10407 } 10408 10409 /* For the LL variants the store is larger than the load, 10410 * so if rd == rn we would overwrite parts of our input. 10411 * So load everything right now and use shifts in the main loop. 10412 */ 10413 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10414 10415 for (i = 0; i < elements; i++) { 10416 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10417 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10418 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10419 write_vec_element(s, tcg_rd, rd, i, size + 1); 10420 } 10421 } 10422 10423 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10424 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10425 int immh, int immb, int opcode, int rn, int rd) 10426 { 10427 int immhb = immh << 3 | immb; 10428 int size = 32 - clz32(immh) - 1; 10429 int dsize = 64; 10430 int esize = 8 << size; 10431 int elements = dsize/esize; 10432 int shift = (2 * esize) - immhb; 10433 bool round = extract32(opcode, 0, 1); 10434 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10435 TCGv_i64 tcg_round; 10436 int i; 10437 10438 if (extract32(immh, 3, 1)) { 10439 unallocated_encoding(s); 10440 return; 10441 } 10442 10443 if (!fp_access_check(s)) { 10444 return; 10445 } 10446 10447 tcg_rn = tcg_temp_new_i64(); 10448 tcg_rd = tcg_temp_new_i64(); 10449 tcg_final = tcg_temp_new_i64(); 10450 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10451 10452 if (round) { 10453 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10454 } else { 10455 tcg_round = NULL; 10456 } 10457 10458 for (i = 0; i < elements; i++) { 10459 read_vec_element(s, tcg_rn, rn, i, size+1); 10460 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10461 false, true, size+1, shift); 10462 10463 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10464 } 10465 10466 if (!is_q) { 10467 write_vec_element(s, tcg_final, rd, 0, MO_64); 10468 } else { 10469 write_vec_element(s, tcg_final, rd, 1, MO_64); 10470 } 10471 10472 clear_vec_high(s, is_q, rd); 10473 } 10474 10475 10476 /* AdvSIMD shift by immediate 10477 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10478 * +---+---+---+-------------+------+------+--------+---+------+------+ 10479 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10480 * +---+---+---+-------------+------+------+--------+---+------+------+ 10481 */ 10482 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10483 { 10484 int rd = extract32(insn, 0, 5); 10485 int rn = extract32(insn, 5, 5); 10486 int opcode = extract32(insn, 11, 5); 10487 int immb = extract32(insn, 16, 3); 10488 int immh = extract32(insn, 19, 4); 10489 bool is_u = extract32(insn, 29, 1); 10490 bool is_q = extract32(insn, 30, 1); 10491 10492 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10493 assert(immh != 0); 10494 10495 switch (opcode) { 10496 case 0x08: /* SRI */ 10497 if (!is_u) { 10498 unallocated_encoding(s); 10499 return; 10500 } 10501 /* fall through */ 10502 case 0x00: /* SSHR / USHR */ 10503 case 0x02: /* SSRA / USRA (accumulate) */ 10504 case 0x04: /* SRSHR / URSHR (rounding) */ 10505 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10506 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10507 break; 10508 case 0x0a: /* SHL / SLI */ 10509 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10510 break; 10511 case 0x10: /* SHRN */ 10512 case 0x11: /* RSHRN / SQRSHRUN */ 10513 if (is_u) { 10514 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10515 opcode, rn, rd); 10516 } else { 10517 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10518 } 10519 break; 10520 case 0x12: /* SQSHRN / UQSHRN */ 10521 case 0x13: /* SQRSHRN / UQRSHRN */ 10522 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10523 opcode, rn, rd); 10524 break; 10525 case 0x14: /* SSHLL / USHLL */ 10526 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10527 break; 10528 case 0x1c: /* SCVTF / UCVTF */ 10529 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10530 opcode, rn, rd); 10531 break; 10532 case 0xc: /* SQSHLU */ 10533 if (!is_u) { 10534 unallocated_encoding(s); 10535 return; 10536 } 10537 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10538 break; 10539 case 0xe: /* SQSHL, UQSHL */ 10540 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10541 break; 10542 case 0x1f: /* FCVTZS/ FCVTZU */ 10543 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10544 return; 10545 default: 10546 unallocated_encoding(s); 10547 return; 10548 } 10549 } 10550 10551 /* Generate code to do a "long" addition or subtraction, ie one done in 10552 * TCGv_i64 on vector lanes twice the width specified by size. 10553 */ 10554 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10555 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10556 { 10557 static NeonGenTwo64OpFn * const fns[3][2] = { 10558 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10559 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10560 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10561 }; 10562 NeonGenTwo64OpFn *genfn; 10563 assert(size < 3); 10564 10565 genfn = fns[size][is_sub]; 10566 genfn(tcg_res, tcg_op1, tcg_op2); 10567 } 10568 10569 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10570 int opcode, int rd, int rn, int rm) 10571 { 10572 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10573 TCGv_i64 tcg_res[2]; 10574 int pass, accop; 10575 10576 tcg_res[0] = tcg_temp_new_i64(); 10577 tcg_res[1] = tcg_temp_new_i64(); 10578 10579 /* Does this op do an adding accumulate, a subtracting accumulate, 10580 * or no accumulate at all? 10581 */ 10582 switch (opcode) { 10583 case 5: 10584 case 8: 10585 case 9: 10586 accop = 1; 10587 break; 10588 case 10: 10589 case 11: 10590 accop = -1; 10591 break; 10592 default: 10593 accop = 0; 10594 break; 10595 } 10596 10597 if (accop != 0) { 10598 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10599 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10600 } 10601 10602 /* size == 2 means two 32x32->64 operations; this is worth special 10603 * casing because we can generally handle it inline. 10604 */ 10605 if (size == 2) { 10606 for (pass = 0; pass < 2; pass++) { 10607 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10608 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10609 TCGv_i64 tcg_passres; 10610 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10611 10612 int elt = pass + is_q * 2; 10613 10614 read_vec_element(s, tcg_op1, rn, elt, memop); 10615 read_vec_element(s, tcg_op2, rm, elt, memop); 10616 10617 if (accop == 0) { 10618 tcg_passres = tcg_res[pass]; 10619 } else { 10620 tcg_passres = tcg_temp_new_i64(); 10621 } 10622 10623 switch (opcode) { 10624 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10625 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10626 break; 10627 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10628 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10629 break; 10630 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10631 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10632 { 10633 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10634 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10635 10636 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10637 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10638 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10639 tcg_passres, 10640 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10641 break; 10642 } 10643 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10644 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10645 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10646 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10647 break; 10648 case 9: /* SQDMLAL, SQDMLAL2 */ 10649 case 11: /* SQDMLSL, SQDMLSL2 */ 10650 case 13: /* SQDMULL, SQDMULL2 */ 10651 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10652 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10653 tcg_passres, tcg_passres); 10654 break; 10655 default: 10656 g_assert_not_reached(); 10657 } 10658 10659 if (opcode == 9 || opcode == 11) { 10660 /* saturating accumulate ops */ 10661 if (accop < 0) { 10662 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10663 } 10664 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10665 tcg_res[pass], tcg_passres); 10666 } else if (accop > 0) { 10667 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10668 } else if (accop < 0) { 10669 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10670 } 10671 } 10672 } else { 10673 /* size 0 or 1, generally helper functions */ 10674 for (pass = 0; pass < 2; pass++) { 10675 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10676 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10677 TCGv_i64 tcg_passres; 10678 int elt = pass + is_q * 2; 10679 10680 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10681 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10682 10683 if (accop == 0) { 10684 tcg_passres = tcg_res[pass]; 10685 } else { 10686 tcg_passres = tcg_temp_new_i64(); 10687 } 10688 10689 switch (opcode) { 10690 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10691 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10692 { 10693 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10694 static NeonGenWidenFn * const widenfns[2][2] = { 10695 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10696 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10697 }; 10698 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10699 10700 widenfn(tcg_op2_64, tcg_op2); 10701 widenfn(tcg_passres, tcg_op1); 10702 gen_neon_addl(size, (opcode == 2), tcg_passres, 10703 tcg_passres, tcg_op2_64); 10704 break; 10705 } 10706 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10707 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10708 if (size == 0) { 10709 if (is_u) { 10710 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10711 } else { 10712 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10713 } 10714 } else { 10715 if (is_u) { 10716 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10717 } else { 10718 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10719 } 10720 } 10721 break; 10722 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10723 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10724 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10725 if (size == 0) { 10726 if (is_u) { 10727 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10728 } else { 10729 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10730 } 10731 } else { 10732 if (is_u) { 10733 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10734 } else { 10735 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10736 } 10737 } 10738 break; 10739 case 9: /* SQDMLAL, SQDMLAL2 */ 10740 case 11: /* SQDMLSL, SQDMLSL2 */ 10741 case 13: /* SQDMULL, SQDMULL2 */ 10742 assert(size == 1); 10743 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10744 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10745 tcg_passres, tcg_passres); 10746 break; 10747 default: 10748 g_assert_not_reached(); 10749 } 10750 10751 if (accop != 0) { 10752 if (opcode == 9 || opcode == 11) { 10753 /* saturating accumulate ops */ 10754 if (accop < 0) { 10755 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10756 } 10757 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10758 tcg_res[pass], 10759 tcg_passres); 10760 } else { 10761 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10762 tcg_res[pass], tcg_passres); 10763 } 10764 } 10765 } 10766 } 10767 10768 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10769 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10770 } 10771 10772 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10773 int opcode, int rd, int rn, int rm) 10774 { 10775 TCGv_i64 tcg_res[2]; 10776 int part = is_q ? 2 : 0; 10777 int pass; 10778 10779 for (pass = 0; pass < 2; pass++) { 10780 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10781 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10782 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10783 static NeonGenWidenFn * const widenfns[3][2] = { 10784 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10785 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10786 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10787 }; 10788 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10789 10790 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10791 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10792 widenfn(tcg_op2_wide, tcg_op2); 10793 tcg_res[pass] = tcg_temp_new_i64(); 10794 gen_neon_addl(size, (opcode == 3), 10795 tcg_res[pass], tcg_op1, tcg_op2_wide); 10796 } 10797 10798 for (pass = 0; pass < 2; pass++) { 10799 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10800 } 10801 } 10802 10803 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10804 { 10805 tcg_gen_addi_i64(in, in, 1U << 31); 10806 tcg_gen_extrh_i64_i32(res, in); 10807 } 10808 10809 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10810 int opcode, int rd, int rn, int rm) 10811 { 10812 TCGv_i32 tcg_res[2]; 10813 int part = is_q ? 2 : 0; 10814 int pass; 10815 10816 for (pass = 0; pass < 2; pass++) { 10817 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10818 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10819 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10820 static NeonGenNarrowFn * const narrowfns[3][2] = { 10821 { gen_helper_neon_narrow_high_u8, 10822 gen_helper_neon_narrow_round_high_u8 }, 10823 { gen_helper_neon_narrow_high_u16, 10824 gen_helper_neon_narrow_round_high_u16 }, 10825 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10826 }; 10827 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10828 10829 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10830 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10831 10832 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10833 10834 tcg_res[pass] = tcg_temp_new_i32(); 10835 gennarrow(tcg_res[pass], tcg_wideres); 10836 } 10837 10838 for (pass = 0; pass < 2; pass++) { 10839 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10840 } 10841 clear_vec_high(s, is_q, rd); 10842 } 10843 10844 /* AdvSIMD three different 10845 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10846 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10847 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10848 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10849 */ 10850 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10851 { 10852 /* Instructions in this group fall into three basic classes 10853 * (in each case with the operation working on each element in 10854 * the input vectors): 10855 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10856 * 128 bit input) 10857 * (2) wide 64 x 128 -> 128 10858 * (3) narrowing 128 x 128 -> 64 10859 * Here we do initial decode, catch unallocated cases and 10860 * dispatch to separate functions for each class. 10861 */ 10862 int is_q = extract32(insn, 30, 1); 10863 int is_u = extract32(insn, 29, 1); 10864 int size = extract32(insn, 22, 2); 10865 int opcode = extract32(insn, 12, 4); 10866 int rm = extract32(insn, 16, 5); 10867 int rn = extract32(insn, 5, 5); 10868 int rd = extract32(insn, 0, 5); 10869 10870 switch (opcode) { 10871 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10872 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10873 /* 64 x 128 -> 128 */ 10874 if (size == 3) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 if (!fp_access_check(s)) { 10879 return; 10880 } 10881 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10882 break; 10883 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10884 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10885 /* 128 x 128 -> 64 */ 10886 if (size == 3) { 10887 unallocated_encoding(s); 10888 return; 10889 } 10890 if (!fp_access_check(s)) { 10891 return; 10892 } 10893 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10894 break; 10895 case 14: /* PMULL, PMULL2 */ 10896 if (is_u) { 10897 unallocated_encoding(s); 10898 return; 10899 } 10900 switch (size) { 10901 case 0: /* PMULL.P8 */ 10902 if (!fp_access_check(s)) { 10903 return; 10904 } 10905 /* The Q field specifies lo/hi half input for this insn. */ 10906 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10907 gen_helper_neon_pmull_h); 10908 break; 10909 10910 case 3: /* PMULL.P64 */ 10911 if (!dc_isar_feature(aa64_pmull, s)) { 10912 unallocated_encoding(s); 10913 return; 10914 } 10915 if (!fp_access_check(s)) { 10916 return; 10917 } 10918 /* The Q field specifies lo/hi half input for this insn. */ 10919 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10920 gen_helper_gvec_pmull_q); 10921 break; 10922 10923 default: 10924 unallocated_encoding(s); 10925 break; 10926 } 10927 return; 10928 case 9: /* SQDMLAL, SQDMLAL2 */ 10929 case 11: /* SQDMLSL, SQDMLSL2 */ 10930 case 13: /* SQDMULL, SQDMULL2 */ 10931 if (is_u || size == 0) { 10932 unallocated_encoding(s); 10933 return; 10934 } 10935 /* fall through */ 10936 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10937 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10938 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10939 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10940 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10941 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10942 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10943 /* 64 x 64 -> 128 */ 10944 if (size == 3) { 10945 unallocated_encoding(s); 10946 return; 10947 } 10948 if (!fp_access_check(s)) { 10949 return; 10950 } 10951 10952 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10953 break; 10954 default: 10955 /* opcode 15 not allocated */ 10956 unallocated_encoding(s); 10957 break; 10958 } 10959 } 10960 10961 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10962 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10963 { 10964 int rd = extract32(insn, 0, 5); 10965 int rn = extract32(insn, 5, 5); 10966 int rm = extract32(insn, 16, 5); 10967 int size = extract32(insn, 22, 2); 10968 bool is_u = extract32(insn, 29, 1); 10969 bool is_q = extract32(insn, 30, 1); 10970 10971 if (!fp_access_check(s)) { 10972 return; 10973 } 10974 10975 switch (size + 4 * is_u) { 10976 case 0: /* AND */ 10977 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10978 return; 10979 case 1: /* BIC */ 10980 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10981 return; 10982 case 2: /* ORR */ 10983 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10984 return; 10985 case 3: /* ORN */ 10986 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10987 return; 10988 case 4: /* EOR */ 10989 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10990 return; 10991 10992 case 5: /* BSL bitwise select */ 10993 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10994 return; 10995 case 6: /* BIT, bitwise insert if true */ 10996 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10997 return; 10998 case 7: /* BIF, bitwise insert if false */ 10999 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11000 return; 11001 11002 default: 11003 g_assert_not_reached(); 11004 } 11005 } 11006 11007 /* Pairwise op subgroup of C3.6.16. 11008 * 11009 * This is called directly or via the handle_3same_float for float pairwise 11010 * operations where the opcode and size are calculated differently. 11011 */ 11012 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11013 int size, int rn, int rm, int rd) 11014 { 11015 TCGv_ptr fpst; 11016 int pass; 11017 11018 /* Floating point operations need fpst */ 11019 if (opcode >= 0x58) { 11020 fpst = fpstatus_ptr(FPST_FPCR); 11021 } else { 11022 fpst = NULL; 11023 } 11024 11025 if (!fp_access_check(s)) { 11026 return; 11027 } 11028 11029 /* These operations work on the concatenated rm:rn, with each pair of 11030 * adjacent elements being operated on to produce an element in the result. 11031 */ 11032 if (size == 3) { 11033 TCGv_i64 tcg_res[2]; 11034 11035 for (pass = 0; pass < 2; pass++) { 11036 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11037 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11038 int passreg = (pass == 0) ? rn : rm; 11039 11040 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11041 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11042 tcg_res[pass] = tcg_temp_new_i64(); 11043 11044 switch (opcode) { 11045 case 0x17: /* ADDP */ 11046 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11047 break; 11048 case 0x58: /* FMAXNMP */ 11049 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11050 break; 11051 case 0x5a: /* FADDP */ 11052 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11053 break; 11054 case 0x5e: /* FMAXP */ 11055 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11056 break; 11057 case 0x78: /* FMINNMP */ 11058 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11059 break; 11060 case 0x7e: /* FMINP */ 11061 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11062 break; 11063 default: 11064 g_assert_not_reached(); 11065 } 11066 } 11067 11068 for (pass = 0; pass < 2; pass++) { 11069 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11070 } 11071 } else { 11072 int maxpass = is_q ? 4 : 2; 11073 TCGv_i32 tcg_res[4]; 11074 11075 for (pass = 0; pass < maxpass; pass++) { 11076 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11077 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11078 NeonGenTwoOpFn *genfn = NULL; 11079 int passreg = pass < (maxpass / 2) ? rn : rm; 11080 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11081 11082 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11083 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11084 tcg_res[pass] = tcg_temp_new_i32(); 11085 11086 switch (opcode) { 11087 case 0x17: /* ADDP */ 11088 { 11089 static NeonGenTwoOpFn * const fns[3] = { 11090 gen_helper_neon_padd_u8, 11091 gen_helper_neon_padd_u16, 11092 tcg_gen_add_i32, 11093 }; 11094 genfn = fns[size]; 11095 break; 11096 } 11097 case 0x14: /* SMAXP, UMAXP */ 11098 { 11099 static NeonGenTwoOpFn * const fns[3][2] = { 11100 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11101 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11102 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11103 }; 11104 genfn = fns[size][u]; 11105 break; 11106 } 11107 case 0x15: /* SMINP, UMINP */ 11108 { 11109 static NeonGenTwoOpFn * const fns[3][2] = { 11110 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11111 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11112 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11113 }; 11114 genfn = fns[size][u]; 11115 break; 11116 } 11117 /* The FP operations are all on single floats (32 bit) */ 11118 case 0x58: /* FMAXNMP */ 11119 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11120 break; 11121 case 0x5a: /* FADDP */ 11122 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11123 break; 11124 case 0x5e: /* FMAXP */ 11125 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11126 break; 11127 case 0x78: /* FMINNMP */ 11128 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11129 break; 11130 case 0x7e: /* FMINP */ 11131 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11132 break; 11133 default: 11134 g_assert_not_reached(); 11135 } 11136 11137 /* FP ops called directly, otherwise call now */ 11138 if (genfn) { 11139 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11140 } 11141 } 11142 11143 for (pass = 0; pass < maxpass; pass++) { 11144 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11145 } 11146 clear_vec_high(s, is_q, rd); 11147 } 11148 } 11149 11150 /* Floating point op subgroup of C3.6.16. */ 11151 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11152 { 11153 /* For floating point ops, the U, size[1] and opcode bits 11154 * together indicate the operation. size[0] indicates single 11155 * or double. 11156 */ 11157 int fpopcode = extract32(insn, 11, 5) 11158 | (extract32(insn, 23, 1) << 5) 11159 | (extract32(insn, 29, 1) << 6); 11160 int is_q = extract32(insn, 30, 1); 11161 int size = extract32(insn, 22, 1); 11162 int rm = extract32(insn, 16, 5); 11163 int rn = extract32(insn, 5, 5); 11164 int rd = extract32(insn, 0, 5); 11165 11166 int datasize = is_q ? 128 : 64; 11167 int esize = 32 << size; 11168 int elements = datasize / esize; 11169 11170 if (size == 1 && !is_q) { 11171 unallocated_encoding(s); 11172 return; 11173 } 11174 11175 switch (fpopcode) { 11176 case 0x58: /* FMAXNMP */ 11177 case 0x5a: /* FADDP */ 11178 case 0x5e: /* FMAXP */ 11179 case 0x78: /* FMINNMP */ 11180 case 0x7e: /* FMINP */ 11181 if (size && !is_q) { 11182 unallocated_encoding(s); 11183 return; 11184 } 11185 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11186 rn, rm, rd); 11187 return; 11188 case 0x1b: /* FMULX */ 11189 case 0x1f: /* FRECPS */ 11190 case 0x3f: /* FRSQRTS */ 11191 case 0x5d: /* FACGE */ 11192 case 0x7d: /* FACGT */ 11193 case 0x19: /* FMLA */ 11194 case 0x39: /* FMLS */ 11195 case 0x18: /* FMAXNM */ 11196 case 0x1a: /* FADD */ 11197 case 0x1c: /* FCMEQ */ 11198 case 0x1e: /* FMAX */ 11199 case 0x38: /* FMINNM */ 11200 case 0x3a: /* FSUB */ 11201 case 0x3e: /* FMIN */ 11202 case 0x5b: /* FMUL */ 11203 case 0x5c: /* FCMGE */ 11204 case 0x5f: /* FDIV */ 11205 case 0x7a: /* FABD */ 11206 case 0x7c: /* FCMGT */ 11207 if (!fp_access_check(s)) { 11208 return; 11209 } 11210 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11211 return; 11212 11213 case 0x1d: /* FMLAL */ 11214 case 0x3d: /* FMLSL */ 11215 case 0x59: /* FMLAL2 */ 11216 case 0x79: /* FMLSL2 */ 11217 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11218 unallocated_encoding(s); 11219 return; 11220 } 11221 if (fp_access_check(s)) { 11222 int is_s = extract32(insn, 23, 1); 11223 int is_2 = extract32(insn, 29, 1); 11224 int data = (is_2 << 1) | is_s; 11225 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11226 vec_full_reg_offset(s, rn), 11227 vec_full_reg_offset(s, rm), cpu_env, 11228 is_q ? 16 : 8, vec_full_reg_size(s), 11229 data, gen_helper_gvec_fmlal_a64); 11230 } 11231 return; 11232 11233 default: 11234 unallocated_encoding(s); 11235 return; 11236 } 11237 } 11238 11239 /* Integer op subgroup of C3.6.16. */ 11240 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11241 { 11242 int is_q = extract32(insn, 30, 1); 11243 int u = extract32(insn, 29, 1); 11244 int size = extract32(insn, 22, 2); 11245 int opcode = extract32(insn, 11, 5); 11246 int rm = extract32(insn, 16, 5); 11247 int rn = extract32(insn, 5, 5); 11248 int rd = extract32(insn, 0, 5); 11249 int pass; 11250 TCGCond cond; 11251 11252 switch (opcode) { 11253 case 0x13: /* MUL, PMUL */ 11254 if (u && size != 0) { 11255 unallocated_encoding(s); 11256 return; 11257 } 11258 /* fall through */ 11259 case 0x0: /* SHADD, UHADD */ 11260 case 0x2: /* SRHADD, URHADD */ 11261 case 0x4: /* SHSUB, UHSUB */ 11262 case 0xc: /* SMAX, UMAX */ 11263 case 0xd: /* SMIN, UMIN */ 11264 case 0xe: /* SABD, UABD */ 11265 case 0xf: /* SABA, UABA */ 11266 case 0x12: /* MLA, MLS */ 11267 if (size == 3) { 11268 unallocated_encoding(s); 11269 return; 11270 } 11271 break; 11272 case 0x16: /* SQDMULH, SQRDMULH */ 11273 if (size == 0 || size == 3) { 11274 unallocated_encoding(s); 11275 return; 11276 } 11277 break; 11278 default: 11279 if (size == 3 && !is_q) { 11280 unallocated_encoding(s); 11281 return; 11282 } 11283 break; 11284 } 11285 11286 if (!fp_access_check(s)) { 11287 return; 11288 } 11289 11290 switch (opcode) { 11291 case 0x01: /* SQADD, UQADD */ 11292 if (u) { 11293 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11294 } else { 11295 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11296 } 11297 return; 11298 case 0x05: /* SQSUB, UQSUB */ 11299 if (u) { 11300 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11301 } else { 11302 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11303 } 11304 return; 11305 case 0x08: /* SSHL, USHL */ 11306 if (u) { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11308 } else { 11309 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11310 } 11311 return; 11312 case 0x0c: /* SMAX, UMAX */ 11313 if (u) { 11314 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11315 } else { 11316 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11317 } 11318 return; 11319 case 0x0d: /* SMIN, UMIN */ 11320 if (u) { 11321 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11322 } else { 11323 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11324 } 11325 return; 11326 case 0xe: /* SABD, UABD */ 11327 if (u) { 11328 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11329 } else { 11330 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11331 } 11332 return; 11333 case 0xf: /* SABA, UABA */ 11334 if (u) { 11335 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11336 } else { 11337 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11338 } 11339 return; 11340 case 0x10: /* ADD, SUB */ 11341 if (u) { 11342 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11343 } else { 11344 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11345 } 11346 return; 11347 case 0x13: /* MUL, PMUL */ 11348 if (!u) { /* MUL */ 11349 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11350 } else { /* PMUL */ 11351 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11352 } 11353 return; 11354 case 0x12: /* MLA, MLS */ 11355 if (u) { 11356 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11357 } else { 11358 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11359 } 11360 return; 11361 case 0x16: /* SQDMULH, SQRDMULH */ 11362 { 11363 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11364 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11365 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11366 }; 11367 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11368 } 11369 return; 11370 case 0x11: 11371 if (!u) { /* CMTST */ 11372 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11373 return; 11374 } 11375 /* else CMEQ */ 11376 cond = TCG_COND_EQ; 11377 goto do_gvec_cmp; 11378 case 0x06: /* CMGT, CMHI */ 11379 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11380 goto do_gvec_cmp; 11381 case 0x07: /* CMGE, CMHS */ 11382 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11383 do_gvec_cmp: 11384 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11385 vec_full_reg_offset(s, rn), 11386 vec_full_reg_offset(s, rm), 11387 is_q ? 16 : 8, vec_full_reg_size(s)); 11388 return; 11389 } 11390 11391 if (size == 3) { 11392 assert(is_q); 11393 for (pass = 0; pass < 2; pass++) { 11394 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11395 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11396 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11397 11398 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11399 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11400 11401 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11402 11403 write_vec_element(s, tcg_res, rd, pass, MO_64); 11404 } 11405 } else { 11406 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11407 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11408 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11409 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11410 NeonGenTwoOpFn *genfn = NULL; 11411 NeonGenTwoOpEnvFn *genenvfn = NULL; 11412 11413 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11414 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11415 11416 switch (opcode) { 11417 case 0x0: /* SHADD, UHADD */ 11418 { 11419 static NeonGenTwoOpFn * const fns[3][2] = { 11420 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11421 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11422 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11423 }; 11424 genfn = fns[size][u]; 11425 break; 11426 } 11427 case 0x2: /* SRHADD, URHADD */ 11428 { 11429 static NeonGenTwoOpFn * const fns[3][2] = { 11430 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11431 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11432 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11433 }; 11434 genfn = fns[size][u]; 11435 break; 11436 } 11437 case 0x4: /* SHSUB, UHSUB */ 11438 { 11439 static NeonGenTwoOpFn * const fns[3][2] = { 11440 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11441 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11442 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11443 }; 11444 genfn = fns[size][u]; 11445 break; 11446 } 11447 case 0x9: /* SQSHL, UQSHL */ 11448 { 11449 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11450 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11451 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11452 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11453 }; 11454 genenvfn = fns[size][u]; 11455 break; 11456 } 11457 case 0xa: /* SRSHL, URSHL */ 11458 { 11459 static NeonGenTwoOpFn * const fns[3][2] = { 11460 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11461 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11462 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11463 }; 11464 genfn = fns[size][u]; 11465 break; 11466 } 11467 case 0xb: /* SQRSHL, UQRSHL */ 11468 { 11469 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11470 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11471 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11472 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11473 }; 11474 genenvfn = fns[size][u]; 11475 break; 11476 } 11477 default: 11478 g_assert_not_reached(); 11479 } 11480 11481 if (genenvfn) { 11482 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11483 } else { 11484 genfn(tcg_res, tcg_op1, tcg_op2); 11485 } 11486 11487 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11488 } 11489 } 11490 clear_vec_high(s, is_q, rd); 11491 } 11492 11493 /* AdvSIMD three same 11494 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11495 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11496 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11497 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11498 */ 11499 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11500 { 11501 int opcode = extract32(insn, 11, 5); 11502 11503 switch (opcode) { 11504 case 0x3: /* logic ops */ 11505 disas_simd_3same_logic(s, insn); 11506 break; 11507 case 0x17: /* ADDP */ 11508 case 0x14: /* SMAXP, UMAXP */ 11509 case 0x15: /* SMINP, UMINP */ 11510 { 11511 /* Pairwise operations */ 11512 int is_q = extract32(insn, 30, 1); 11513 int u = extract32(insn, 29, 1); 11514 int size = extract32(insn, 22, 2); 11515 int rm = extract32(insn, 16, 5); 11516 int rn = extract32(insn, 5, 5); 11517 int rd = extract32(insn, 0, 5); 11518 if (opcode == 0x17) { 11519 if (u || (size == 3 && !is_q)) { 11520 unallocated_encoding(s); 11521 return; 11522 } 11523 } else { 11524 if (size == 3) { 11525 unallocated_encoding(s); 11526 return; 11527 } 11528 } 11529 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11530 break; 11531 } 11532 case 0x18 ... 0x31: 11533 /* floating point ops, sz[1] and U are part of opcode */ 11534 disas_simd_3same_float(s, insn); 11535 break; 11536 default: 11537 disas_simd_3same_int(s, insn); 11538 break; 11539 } 11540 } 11541 11542 /* 11543 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11544 * 11545 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11546 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11547 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11548 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11549 * 11550 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11551 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11552 * 11553 */ 11554 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11555 { 11556 int opcode = extract32(insn, 11, 3); 11557 int u = extract32(insn, 29, 1); 11558 int a = extract32(insn, 23, 1); 11559 int is_q = extract32(insn, 30, 1); 11560 int rm = extract32(insn, 16, 5); 11561 int rn = extract32(insn, 5, 5); 11562 int rd = extract32(insn, 0, 5); 11563 /* 11564 * For these floating point ops, the U, a and opcode bits 11565 * together indicate the operation. 11566 */ 11567 int fpopcode = opcode | (a << 3) | (u << 4); 11568 int datasize = is_q ? 128 : 64; 11569 int elements = datasize / 16; 11570 bool pairwise; 11571 TCGv_ptr fpst; 11572 int pass; 11573 11574 switch (fpopcode) { 11575 case 0x0: /* FMAXNM */ 11576 case 0x1: /* FMLA */ 11577 case 0x2: /* FADD */ 11578 case 0x3: /* FMULX */ 11579 case 0x4: /* FCMEQ */ 11580 case 0x6: /* FMAX */ 11581 case 0x7: /* FRECPS */ 11582 case 0x8: /* FMINNM */ 11583 case 0x9: /* FMLS */ 11584 case 0xa: /* FSUB */ 11585 case 0xe: /* FMIN */ 11586 case 0xf: /* FRSQRTS */ 11587 case 0x13: /* FMUL */ 11588 case 0x14: /* FCMGE */ 11589 case 0x15: /* FACGE */ 11590 case 0x17: /* FDIV */ 11591 case 0x1a: /* FABD */ 11592 case 0x1c: /* FCMGT */ 11593 case 0x1d: /* FACGT */ 11594 pairwise = false; 11595 break; 11596 case 0x10: /* FMAXNMP */ 11597 case 0x12: /* FADDP */ 11598 case 0x16: /* FMAXP */ 11599 case 0x18: /* FMINNMP */ 11600 case 0x1e: /* FMINP */ 11601 pairwise = true; 11602 break; 11603 default: 11604 unallocated_encoding(s); 11605 return; 11606 } 11607 11608 if (!dc_isar_feature(aa64_fp16, s)) { 11609 unallocated_encoding(s); 11610 return; 11611 } 11612 11613 if (!fp_access_check(s)) { 11614 return; 11615 } 11616 11617 fpst = fpstatus_ptr(FPST_FPCR_F16); 11618 11619 if (pairwise) { 11620 int maxpass = is_q ? 8 : 4; 11621 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11622 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11623 TCGv_i32 tcg_res[8]; 11624 11625 for (pass = 0; pass < maxpass; pass++) { 11626 int passreg = pass < (maxpass / 2) ? rn : rm; 11627 int passelt = (pass << 1) & (maxpass - 1); 11628 11629 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11630 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11631 tcg_res[pass] = tcg_temp_new_i32(); 11632 11633 switch (fpopcode) { 11634 case 0x10: /* FMAXNMP */ 11635 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11636 fpst); 11637 break; 11638 case 0x12: /* FADDP */ 11639 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11640 break; 11641 case 0x16: /* FMAXP */ 11642 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11643 break; 11644 case 0x18: /* FMINNMP */ 11645 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11646 fpst); 11647 break; 11648 case 0x1e: /* FMINP */ 11649 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11650 break; 11651 default: 11652 g_assert_not_reached(); 11653 } 11654 } 11655 11656 for (pass = 0; pass < maxpass; pass++) { 11657 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11658 } 11659 } else { 11660 for (pass = 0; pass < elements; pass++) { 11661 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11662 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11663 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11664 11665 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11666 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11667 11668 switch (fpopcode) { 11669 case 0x0: /* FMAXNM */ 11670 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11671 break; 11672 case 0x1: /* FMLA */ 11673 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11674 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11675 fpst); 11676 break; 11677 case 0x2: /* FADD */ 11678 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11679 break; 11680 case 0x3: /* FMULX */ 11681 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11682 break; 11683 case 0x4: /* FCMEQ */ 11684 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11685 break; 11686 case 0x6: /* FMAX */ 11687 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11688 break; 11689 case 0x7: /* FRECPS */ 11690 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11691 break; 11692 case 0x8: /* FMINNM */ 11693 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x9: /* FMLS */ 11696 /* As usual for ARM, separate negation for fused multiply-add */ 11697 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11698 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11699 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11700 fpst); 11701 break; 11702 case 0xa: /* FSUB */ 11703 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11704 break; 11705 case 0xe: /* FMIN */ 11706 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11707 break; 11708 case 0xf: /* FRSQRTS */ 11709 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11710 break; 11711 case 0x13: /* FMUL */ 11712 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11713 break; 11714 case 0x14: /* FCMGE */ 11715 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11716 break; 11717 case 0x15: /* FACGE */ 11718 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11719 break; 11720 case 0x17: /* FDIV */ 11721 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11722 break; 11723 case 0x1a: /* FABD */ 11724 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11725 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11726 break; 11727 case 0x1c: /* FCMGT */ 11728 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11729 break; 11730 case 0x1d: /* FACGT */ 11731 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11732 break; 11733 default: 11734 g_assert_not_reached(); 11735 } 11736 11737 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11738 } 11739 } 11740 11741 clear_vec_high(s, is_q, rd); 11742 } 11743 11744 /* AdvSIMD three same extra 11745 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11746 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11747 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11748 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11749 */ 11750 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11751 { 11752 int rd = extract32(insn, 0, 5); 11753 int rn = extract32(insn, 5, 5); 11754 int opcode = extract32(insn, 11, 4); 11755 int rm = extract32(insn, 16, 5); 11756 int size = extract32(insn, 22, 2); 11757 bool u = extract32(insn, 29, 1); 11758 bool is_q = extract32(insn, 30, 1); 11759 bool feature; 11760 int rot; 11761 11762 switch (u * 16 + opcode) { 11763 case 0x10: /* SQRDMLAH (vector) */ 11764 case 0x11: /* SQRDMLSH (vector) */ 11765 if (size != 1 && size != 2) { 11766 unallocated_encoding(s); 11767 return; 11768 } 11769 feature = dc_isar_feature(aa64_rdm, s); 11770 break; 11771 case 0x02: /* SDOT (vector) */ 11772 case 0x12: /* UDOT (vector) */ 11773 if (size != MO_32) { 11774 unallocated_encoding(s); 11775 return; 11776 } 11777 feature = dc_isar_feature(aa64_dp, s); 11778 break; 11779 case 0x03: /* USDOT */ 11780 if (size != MO_32) { 11781 unallocated_encoding(s); 11782 return; 11783 } 11784 feature = dc_isar_feature(aa64_i8mm, s); 11785 break; 11786 case 0x04: /* SMMLA */ 11787 case 0x14: /* UMMLA */ 11788 case 0x05: /* USMMLA */ 11789 if (!is_q || size != MO_32) { 11790 unallocated_encoding(s); 11791 return; 11792 } 11793 feature = dc_isar_feature(aa64_i8mm, s); 11794 break; 11795 case 0x18: /* FCMLA, #0 */ 11796 case 0x19: /* FCMLA, #90 */ 11797 case 0x1a: /* FCMLA, #180 */ 11798 case 0x1b: /* FCMLA, #270 */ 11799 case 0x1c: /* FCADD, #90 */ 11800 case 0x1e: /* FCADD, #270 */ 11801 if (size == 0 11802 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11803 || (size == 3 && !is_q)) { 11804 unallocated_encoding(s); 11805 return; 11806 } 11807 feature = dc_isar_feature(aa64_fcma, s); 11808 break; 11809 case 0x1d: /* BFMMLA */ 11810 if (size != MO_16 || !is_q) { 11811 unallocated_encoding(s); 11812 return; 11813 } 11814 feature = dc_isar_feature(aa64_bf16, s); 11815 break; 11816 case 0x1f: 11817 switch (size) { 11818 case 1: /* BFDOT */ 11819 case 3: /* BFMLAL{B,T} */ 11820 feature = dc_isar_feature(aa64_bf16, s); 11821 break; 11822 default: 11823 unallocated_encoding(s); 11824 return; 11825 } 11826 break; 11827 default: 11828 unallocated_encoding(s); 11829 return; 11830 } 11831 if (!feature) { 11832 unallocated_encoding(s); 11833 return; 11834 } 11835 if (!fp_access_check(s)) { 11836 return; 11837 } 11838 11839 switch (opcode) { 11840 case 0x0: /* SQRDMLAH (vector) */ 11841 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11842 return; 11843 11844 case 0x1: /* SQRDMLSH (vector) */ 11845 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11846 return; 11847 11848 case 0x2: /* SDOT / UDOT */ 11849 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11850 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11851 return; 11852 11853 case 0x3: /* USDOT */ 11854 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11855 return; 11856 11857 case 0x04: /* SMMLA, UMMLA */ 11858 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11859 u ? gen_helper_gvec_ummla_b 11860 : gen_helper_gvec_smmla_b); 11861 return; 11862 case 0x05: /* USMMLA */ 11863 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11864 return; 11865 11866 case 0x8: /* FCMLA, #0 */ 11867 case 0x9: /* FCMLA, #90 */ 11868 case 0xa: /* FCMLA, #180 */ 11869 case 0xb: /* FCMLA, #270 */ 11870 rot = extract32(opcode, 0, 2); 11871 switch (size) { 11872 case 1: 11873 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11874 gen_helper_gvec_fcmlah); 11875 break; 11876 case 2: 11877 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11878 gen_helper_gvec_fcmlas); 11879 break; 11880 case 3: 11881 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11882 gen_helper_gvec_fcmlad); 11883 break; 11884 default: 11885 g_assert_not_reached(); 11886 } 11887 return; 11888 11889 case 0xc: /* FCADD, #90 */ 11890 case 0xe: /* FCADD, #270 */ 11891 rot = extract32(opcode, 1, 1); 11892 switch (size) { 11893 case 1: 11894 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11895 gen_helper_gvec_fcaddh); 11896 break; 11897 case 2: 11898 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11899 gen_helper_gvec_fcadds); 11900 break; 11901 case 3: 11902 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11903 gen_helper_gvec_fcaddd); 11904 break; 11905 default: 11906 g_assert_not_reached(); 11907 } 11908 return; 11909 11910 case 0xd: /* BFMMLA */ 11911 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11912 return; 11913 case 0xf: 11914 switch (size) { 11915 case 1: /* BFDOT */ 11916 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11917 break; 11918 case 3: /* BFMLAL{B,T} */ 11919 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11920 gen_helper_gvec_bfmlal); 11921 break; 11922 default: 11923 g_assert_not_reached(); 11924 } 11925 return; 11926 11927 default: 11928 g_assert_not_reached(); 11929 } 11930 } 11931 11932 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11933 int size, int rn, int rd) 11934 { 11935 /* Handle 2-reg-misc ops which are widening (so each size element 11936 * in the source becomes a 2*size element in the destination. 11937 * The only instruction like this is FCVTL. 11938 */ 11939 int pass; 11940 11941 if (size == 3) { 11942 /* 32 -> 64 bit fp conversion */ 11943 TCGv_i64 tcg_res[2]; 11944 int srcelt = is_q ? 2 : 0; 11945 11946 for (pass = 0; pass < 2; pass++) { 11947 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11948 tcg_res[pass] = tcg_temp_new_i64(); 11949 11950 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11951 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11952 } 11953 for (pass = 0; pass < 2; pass++) { 11954 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11955 } 11956 } else { 11957 /* 16 -> 32 bit fp conversion */ 11958 int srcelt = is_q ? 4 : 0; 11959 TCGv_i32 tcg_res[4]; 11960 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11961 TCGv_i32 ahp = get_ahp_flag(); 11962 11963 for (pass = 0; pass < 4; pass++) { 11964 tcg_res[pass] = tcg_temp_new_i32(); 11965 11966 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11967 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11968 fpst, ahp); 11969 } 11970 for (pass = 0; pass < 4; pass++) { 11971 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11972 } 11973 } 11974 } 11975 11976 static void handle_rev(DisasContext *s, int opcode, bool u, 11977 bool is_q, int size, int rn, int rd) 11978 { 11979 int op = (opcode << 1) | u; 11980 int opsz = op + size; 11981 int grp_size = 3 - opsz; 11982 int dsize = is_q ? 128 : 64; 11983 int i; 11984 11985 if (opsz >= 3) { 11986 unallocated_encoding(s); 11987 return; 11988 } 11989 11990 if (!fp_access_check(s)) { 11991 return; 11992 } 11993 11994 if (size == 0) { 11995 /* Special case bytes, use bswap op on each group of elements */ 11996 int groups = dsize / (8 << grp_size); 11997 11998 for (i = 0; i < groups; i++) { 11999 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12000 12001 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12002 switch (grp_size) { 12003 case MO_16: 12004 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12005 break; 12006 case MO_32: 12007 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12008 break; 12009 case MO_64: 12010 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12011 break; 12012 default: 12013 g_assert_not_reached(); 12014 } 12015 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12016 } 12017 clear_vec_high(s, is_q, rd); 12018 } else { 12019 int revmask = (1 << grp_size) - 1; 12020 int esize = 8 << size; 12021 int elements = dsize / esize; 12022 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12023 TCGv_i64 tcg_rd[2]; 12024 12025 for (i = 0; i < 2; i++) { 12026 tcg_rd[i] = tcg_temp_new_i64(); 12027 tcg_gen_movi_i64(tcg_rd[i], 0); 12028 } 12029 12030 for (i = 0; i < elements; i++) { 12031 int e_rev = (i & 0xf) ^ revmask; 12032 int w = (e_rev * esize) / 64; 12033 int o = (e_rev * esize) % 64; 12034 12035 read_vec_element(s, tcg_rn, rn, i, size); 12036 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12037 } 12038 12039 for (i = 0; i < 2; i++) { 12040 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12041 } 12042 clear_vec_high(s, true, rd); 12043 } 12044 } 12045 12046 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12047 bool is_q, int size, int rn, int rd) 12048 { 12049 /* Implement the pairwise operations from 2-misc: 12050 * SADDLP, UADDLP, SADALP, UADALP. 12051 * These all add pairs of elements in the input to produce a 12052 * double-width result element in the output (possibly accumulating). 12053 */ 12054 bool accum = (opcode == 0x6); 12055 int maxpass = is_q ? 2 : 1; 12056 int pass; 12057 TCGv_i64 tcg_res[2]; 12058 12059 if (size == 2) { 12060 /* 32 + 32 -> 64 op */ 12061 MemOp memop = size + (u ? 0 : MO_SIGN); 12062 12063 for (pass = 0; pass < maxpass; pass++) { 12064 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12065 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12066 12067 tcg_res[pass] = tcg_temp_new_i64(); 12068 12069 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12070 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12071 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12072 if (accum) { 12073 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12074 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12075 } 12076 } 12077 } else { 12078 for (pass = 0; pass < maxpass; pass++) { 12079 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12080 NeonGenOne64OpFn *genfn; 12081 static NeonGenOne64OpFn * const fns[2][2] = { 12082 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12083 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12084 }; 12085 12086 genfn = fns[size][u]; 12087 12088 tcg_res[pass] = tcg_temp_new_i64(); 12089 12090 read_vec_element(s, tcg_op, rn, pass, MO_64); 12091 genfn(tcg_res[pass], tcg_op); 12092 12093 if (accum) { 12094 read_vec_element(s, tcg_op, rd, pass, MO_64); 12095 if (size == 0) { 12096 gen_helper_neon_addl_u16(tcg_res[pass], 12097 tcg_res[pass], tcg_op); 12098 } else { 12099 gen_helper_neon_addl_u32(tcg_res[pass], 12100 tcg_res[pass], tcg_op); 12101 } 12102 } 12103 } 12104 } 12105 if (!is_q) { 12106 tcg_res[1] = tcg_constant_i64(0); 12107 } 12108 for (pass = 0; pass < 2; pass++) { 12109 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12110 } 12111 } 12112 12113 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12114 { 12115 /* Implement SHLL and SHLL2 */ 12116 int pass; 12117 int part = is_q ? 2 : 0; 12118 TCGv_i64 tcg_res[2]; 12119 12120 for (pass = 0; pass < 2; pass++) { 12121 static NeonGenWidenFn * const widenfns[3] = { 12122 gen_helper_neon_widen_u8, 12123 gen_helper_neon_widen_u16, 12124 tcg_gen_extu_i32_i64, 12125 }; 12126 NeonGenWidenFn *widenfn = widenfns[size]; 12127 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12128 12129 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12130 tcg_res[pass] = tcg_temp_new_i64(); 12131 widenfn(tcg_res[pass], tcg_op); 12132 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12133 } 12134 12135 for (pass = 0; pass < 2; pass++) { 12136 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12137 } 12138 } 12139 12140 /* AdvSIMD two reg misc 12141 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12142 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12143 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12144 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12145 */ 12146 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12147 { 12148 int size = extract32(insn, 22, 2); 12149 int opcode = extract32(insn, 12, 5); 12150 bool u = extract32(insn, 29, 1); 12151 bool is_q = extract32(insn, 30, 1); 12152 int rn = extract32(insn, 5, 5); 12153 int rd = extract32(insn, 0, 5); 12154 bool need_fpstatus = false; 12155 int rmode = -1; 12156 TCGv_i32 tcg_rmode; 12157 TCGv_ptr tcg_fpstatus; 12158 12159 switch (opcode) { 12160 case 0x0: /* REV64, REV32 */ 12161 case 0x1: /* REV16 */ 12162 handle_rev(s, opcode, u, is_q, size, rn, rd); 12163 return; 12164 case 0x5: /* CNT, NOT, RBIT */ 12165 if (u && size == 0) { 12166 /* NOT */ 12167 break; 12168 } else if (u && size == 1) { 12169 /* RBIT */ 12170 break; 12171 } else if (!u && size == 0) { 12172 /* CNT */ 12173 break; 12174 } 12175 unallocated_encoding(s); 12176 return; 12177 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12178 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12179 if (size == 3) { 12180 unallocated_encoding(s); 12181 return; 12182 } 12183 if (!fp_access_check(s)) { 12184 return; 12185 } 12186 12187 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12188 return; 12189 case 0x4: /* CLS, CLZ */ 12190 if (size == 3) { 12191 unallocated_encoding(s); 12192 return; 12193 } 12194 break; 12195 case 0x2: /* SADDLP, UADDLP */ 12196 case 0x6: /* SADALP, UADALP */ 12197 if (size == 3) { 12198 unallocated_encoding(s); 12199 return; 12200 } 12201 if (!fp_access_check(s)) { 12202 return; 12203 } 12204 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12205 return; 12206 case 0x13: /* SHLL, SHLL2 */ 12207 if (u == 0 || size == 3) { 12208 unallocated_encoding(s); 12209 return; 12210 } 12211 if (!fp_access_check(s)) { 12212 return; 12213 } 12214 handle_shll(s, is_q, size, rn, rd); 12215 return; 12216 case 0xa: /* CMLT */ 12217 if (u == 1) { 12218 unallocated_encoding(s); 12219 return; 12220 } 12221 /* fall through */ 12222 case 0x8: /* CMGT, CMGE */ 12223 case 0x9: /* CMEQ, CMLE */ 12224 case 0xb: /* ABS, NEG */ 12225 if (size == 3 && !is_q) { 12226 unallocated_encoding(s); 12227 return; 12228 } 12229 break; 12230 case 0x3: /* SUQADD, USQADD */ 12231 if (size == 3 && !is_q) { 12232 unallocated_encoding(s); 12233 return; 12234 } 12235 if (!fp_access_check(s)) { 12236 return; 12237 } 12238 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12239 return; 12240 case 0x7: /* SQABS, SQNEG */ 12241 if (size == 3 && !is_q) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 break; 12246 case 0xc ... 0xf: 12247 case 0x16 ... 0x1f: 12248 { 12249 /* Floating point: U, size[1] and opcode indicate operation; 12250 * size[0] indicates single or double precision. 12251 */ 12252 int is_double = extract32(size, 0, 1); 12253 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12254 size = is_double ? 3 : 2; 12255 switch (opcode) { 12256 case 0x2f: /* FABS */ 12257 case 0x6f: /* FNEG */ 12258 if (size == 3 && !is_q) { 12259 unallocated_encoding(s); 12260 return; 12261 } 12262 break; 12263 case 0x1d: /* SCVTF */ 12264 case 0x5d: /* UCVTF */ 12265 { 12266 bool is_signed = (opcode == 0x1d) ? true : false; 12267 int elements = is_double ? 2 : is_q ? 4 : 2; 12268 if (is_double && !is_q) { 12269 unallocated_encoding(s); 12270 return; 12271 } 12272 if (!fp_access_check(s)) { 12273 return; 12274 } 12275 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12276 return; 12277 } 12278 case 0x2c: /* FCMGT (zero) */ 12279 case 0x2d: /* FCMEQ (zero) */ 12280 case 0x2e: /* FCMLT (zero) */ 12281 case 0x6c: /* FCMGE (zero) */ 12282 case 0x6d: /* FCMLE (zero) */ 12283 if (size == 3 && !is_q) { 12284 unallocated_encoding(s); 12285 return; 12286 } 12287 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12288 return; 12289 case 0x7f: /* FSQRT */ 12290 if (size == 3 && !is_q) { 12291 unallocated_encoding(s); 12292 return; 12293 } 12294 break; 12295 case 0x1a: /* FCVTNS */ 12296 case 0x1b: /* FCVTMS */ 12297 case 0x3a: /* FCVTPS */ 12298 case 0x3b: /* FCVTZS */ 12299 case 0x5a: /* FCVTNU */ 12300 case 0x5b: /* FCVTMU */ 12301 case 0x7a: /* FCVTPU */ 12302 case 0x7b: /* FCVTZU */ 12303 need_fpstatus = true; 12304 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12305 if (size == 3 && !is_q) { 12306 unallocated_encoding(s); 12307 return; 12308 } 12309 break; 12310 case 0x5c: /* FCVTAU */ 12311 case 0x1c: /* FCVTAS */ 12312 need_fpstatus = true; 12313 rmode = FPROUNDING_TIEAWAY; 12314 if (size == 3 && !is_q) { 12315 unallocated_encoding(s); 12316 return; 12317 } 12318 break; 12319 case 0x3c: /* URECPE */ 12320 if (size == 3) { 12321 unallocated_encoding(s); 12322 return; 12323 } 12324 /* fall through */ 12325 case 0x3d: /* FRECPE */ 12326 case 0x7d: /* FRSQRTE */ 12327 if (size == 3 && !is_q) { 12328 unallocated_encoding(s); 12329 return; 12330 } 12331 if (!fp_access_check(s)) { 12332 return; 12333 } 12334 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12335 return; 12336 case 0x56: /* FCVTXN, FCVTXN2 */ 12337 if (size == 2) { 12338 unallocated_encoding(s); 12339 return; 12340 } 12341 /* fall through */ 12342 case 0x16: /* FCVTN, FCVTN2 */ 12343 /* handle_2misc_narrow does a 2*size -> size operation, but these 12344 * instructions encode the source size rather than dest size. 12345 */ 12346 if (!fp_access_check(s)) { 12347 return; 12348 } 12349 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12350 return; 12351 case 0x36: /* BFCVTN, BFCVTN2 */ 12352 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12353 unallocated_encoding(s); 12354 return; 12355 } 12356 if (!fp_access_check(s)) { 12357 return; 12358 } 12359 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12360 return; 12361 case 0x17: /* FCVTL, FCVTL2 */ 12362 if (!fp_access_check(s)) { 12363 return; 12364 } 12365 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12366 return; 12367 case 0x18: /* FRINTN */ 12368 case 0x19: /* FRINTM */ 12369 case 0x38: /* FRINTP */ 12370 case 0x39: /* FRINTZ */ 12371 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12372 /* fall through */ 12373 case 0x59: /* FRINTX */ 12374 case 0x79: /* FRINTI */ 12375 need_fpstatus = true; 12376 if (size == 3 && !is_q) { 12377 unallocated_encoding(s); 12378 return; 12379 } 12380 break; 12381 case 0x58: /* FRINTA */ 12382 rmode = FPROUNDING_TIEAWAY; 12383 need_fpstatus = true; 12384 if (size == 3 && !is_q) { 12385 unallocated_encoding(s); 12386 return; 12387 } 12388 break; 12389 case 0x7c: /* URSQRTE */ 12390 if (size == 3) { 12391 unallocated_encoding(s); 12392 return; 12393 } 12394 break; 12395 case 0x1e: /* FRINT32Z */ 12396 case 0x1f: /* FRINT64Z */ 12397 rmode = FPROUNDING_ZERO; 12398 /* fall through */ 12399 case 0x5e: /* FRINT32X */ 12400 case 0x5f: /* FRINT64X */ 12401 need_fpstatus = true; 12402 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12403 unallocated_encoding(s); 12404 return; 12405 } 12406 break; 12407 default: 12408 unallocated_encoding(s); 12409 return; 12410 } 12411 break; 12412 } 12413 default: 12414 unallocated_encoding(s); 12415 return; 12416 } 12417 12418 if (!fp_access_check(s)) { 12419 return; 12420 } 12421 12422 if (need_fpstatus || rmode >= 0) { 12423 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12424 } else { 12425 tcg_fpstatus = NULL; 12426 } 12427 if (rmode >= 0) { 12428 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12429 } else { 12430 tcg_rmode = NULL; 12431 } 12432 12433 switch (opcode) { 12434 case 0x5: 12435 if (u && size == 0) { /* NOT */ 12436 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12437 return; 12438 } 12439 break; 12440 case 0x8: /* CMGT, CMGE */ 12441 if (u) { 12442 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12443 } else { 12444 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12445 } 12446 return; 12447 case 0x9: /* CMEQ, CMLE */ 12448 if (u) { 12449 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12450 } else { 12451 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12452 } 12453 return; 12454 case 0xa: /* CMLT */ 12455 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12456 return; 12457 case 0xb: 12458 if (u) { /* ABS, NEG */ 12459 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12460 } else { 12461 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12462 } 12463 return; 12464 } 12465 12466 if (size == 3) { 12467 /* All 64-bit element operations can be shared with scalar 2misc */ 12468 int pass; 12469 12470 /* Coverity claims (size == 3 && !is_q) has been eliminated 12471 * from all paths leading to here. 12472 */ 12473 tcg_debug_assert(is_q); 12474 for (pass = 0; pass < 2; pass++) { 12475 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12476 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12477 12478 read_vec_element(s, tcg_op, rn, pass, MO_64); 12479 12480 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12481 tcg_rmode, tcg_fpstatus); 12482 12483 write_vec_element(s, tcg_res, rd, pass, MO_64); 12484 } 12485 } else { 12486 int pass; 12487 12488 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12489 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12490 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12491 12492 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12493 12494 if (size == 2) { 12495 /* Special cases for 32 bit elements */ 12496 switch (opcode) { 12497 case 0x4: /* CLS */ 12498 if (u) { 12499 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12500 } else { 12501 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12502 } 12503 break; 12504 case 0x7: /* SQABS, SQNEG */ 12505 if (u) { 12506 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12507 } else { 12508 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12509 } 12510 break; 12511 case 0x2f: /* FABS */ 12512 gen_helper_vfp_abss(tcg_res, tcg_op); 12513 break; 12514 case 0x6f: /* FNEG */ 12515 gen_helper_vfp_negs(tcg_res, tcg_op); 12516 break; 12517 case 0x7f: /* FSQRT */ 12518 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12519 break; 12520 case 0x1a: /* FCVTNS */ 12521 case 0x1b: /* FCVTMS */ 12522 case 0x1c: /* FCVTAS */ 12523 case 0x3a: /* FCVTPS */ 12524 case 0x3b: /* FCVTZS */ 12525 gen_helper_vfp_tosls(tcg_res, tcg_op, 12526 tcg_constant_i32(0), tcg_fpstatus); 12527 break; 12528 case 0x5a: /* FCVTNU */ 12529 case 0x5b: /* FCVTMU */ 12530 case 0x5c: /* FCVTAU */ 12531 case 0x7a: /* FCVTPU */ 12532 case 0x7b: /* FCVTZU */ 12533 gen_helper_vfp_touls(tcg_res, tcg_op, 12534 tcg_constant_i32(0), tcg_fpstatus); 12535 break; 12536 case 0x18: /* FRINTN */ 12537 case 0x19: /* FRINTM */ 12538 case 0x38: /* FRINTP */ 12539 case 0x39: /* FRINTZ */ 12540 case 0x58: /* FRINTA */ 12541 case 0x79: /* FRINTI */ 12542 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12543 break; 12544 case 0x59: /* FRINTX */ 12545 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12546 break; 12547 case 0x7c: /* URSQRTE */ 12548 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12549 break; 12550 case 0x1e: /* FRINT32Z */ 12551 case 0x5e: /* FRINT32X */ 12552 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12553 break; 12554 case 0x1f: /* FRINT64Z */ 12555 case 0x5f: /* FRINT64X */ 12556 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12557 break; 12558 default: 12559 g_assert_not_reached(); 12560 } 12561 } else { 12562 /* Use helpers for 8 and 16 bit elements */ 12563 switch (opcode) { 12564 case 0x5: /* CNT, RBIT */ 12565 /* For these two insns size is part of the opcode specifier 12566 * (handled earlier); they always operate on byte elements. 12567 */ 12568 if (u) { 12569 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12570 } else { 12571 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12572 } 12573 break; 12574 case 0x7: /* SQABS, SQNEG */ 12575 { 12576 NeonGenOneOpEnvFn *genfn; 12577 static NeonGenOneOpEnvFn * const fns[2][2] = { 12578 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12579 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12580 }; 12581 genfn = fns[size][u]; 12582 genfn(tcg_res, cpu_env, tcg_op); 12583 break; 12584 } 12585 case 0x4: /* CLS, CLZ */ 12586 if (u) { 12587 if (size == 0) { 12588 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12589 } else { 12590 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12591 } 12592 } else { 12593 if (size == 0) { 12594 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12595 } else { 12596 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12597 } 12598 } 12599 break; 12600 default: 12601 g_assert_not_reached(); 12602 } 12603 } 12604 12605 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12606 } 12607 } 12608 clear_vec_high(s, is_q, rd); 12609 12610 if (tcg_rmode) { 12611 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12612 } 12613 } 12614 12615 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12616 * 12617 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12618 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12619 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12620 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12621 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12622 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12623 * 12624 * This actually covers two groups where scalar access is governed by 12625 * bit 28. A bunch of the instructions (float to integral) only exist 12626 * in the vector form and are un-allocated for the scalar decode. Also 12627 * in the scalar decode Q is always 1. 12628 */ 12629 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12630 { 12631 int fpop, opcode, a, u; 12632 int rn, rd; 12633 bool is_q; 12634 bool is_scalar; 12635 bool only_in_vector = false; 12636 12637 int pass; 12638 TCGv_i32 tcg_rmode = NULL; 12639 TCGv_ptr tcg_fpstatus = NULL; 12640 bool need_fpst = true; 12641 int rmode = -1; 12642 12643 if (!dc_isar_feature(aa64_fp16, s)) { 12644 unallocated_encoding(s); 12645 return; 12646 } 12647 12648 rd = extract32(insn, 0, 5); 12649 rn = extract32(insn, 5, 5); 12650 12651 a = extract32(insn, 23, 1); 12652 u = extract32(insn, 29, 1); 12653 is_scalar = extract32(insn, 28, 1); 12654 is_q = extract32(insn, 30, 1); 12655 12656 opcode = extract32(insn, 12, 5); 12657 fpop = deposit32(opcode, 5, 1, a); 12658 fpop = deposit32(fpop, 6, 1, u); 12659 12660 switch (fpop) { 12661 case 0x1d: /* SCVTF */ 12662 case 0x5d: /* UCVTF */ 12663 { 12664 int elements; 12665 12666 if (is_scalar) { 12667 elements = 1; 12668 } else { 12669 elements = (is_q ? 8 : 4); 12670 } 12671 12672 if (!fp_access_check(s)) { 12673 return; 12674 } 12675 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12676 return; 12677 } 12678 break; 12679 case 0x2c: /* FCMGT (zero) */ 12680 case 0x2d: /* FCMEQ (zero) */ 12681 case 0x2e: /* FCMLT (zero) */ 12682 case 0x6c: /* FCMGE (zero) */ 12683 case 0x6d: /* FCMLE (zero) */ 12684 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12685 return; 12686 case 0x3d: /* FRECPE */ 12687 case 0x3f: /* FRECPX */ 12688 break; 12689 case 0x18: /* FRINTN */ 12690 only_in_vector = true; 12691 rmode = FPROUNDING_TIEEVEN; 12692 break; 12693 case 0x19: /* FRINTM */ 12694 only_in_vector = true; 12695 rmode = FPROUNDING_NEGINF; 12696 break; 12697 case 0x38: /* FRINTP */ 12698 only_in_vector = true; 12699 rmode = FPROUNDING_POSINF; 12700 break; 12701 case 0x39: /* FRINTZ */ 12702 only_in_vector = true; 12703 rmode = FPROUNDING_ZERO; 12704 break; 12705 case 0x58: /* FRINTA */ 12706 only_in_vector = true; 12707 rmode = FPROUNDING_TIEAWAY; 12708 break; 12709 case 0x59: /* FRINTX */ 12710 case 0x79: /* FRINTI */ 12711 only_in_vector = true; 12712 /* current rounding mode */ 12713 break; 12714 case 0x1a: /* FCVTNS */ 12715 rmode = FPROUNDING_TIEEVEN; 12716 break; 12717 case 0x1b: /* FCVTMS */ 12718 rmode = FPROUNDING_NEGINF; 12719 break; 12720 case 0x1c: /* FCVTAS */ 12721 rmode = FPROUNDING_TIEAWAY; 12722 break; 12723 case 0x3a: /* FCVTPS */ 12724 rmode = FPROUNDING_POSINF; 12725 break; 12726 case 0x3b: /* FCVTZS */ 12727 rmode = FPROUNDING_ZERO; 12728 break; 12729 case 0x5a: /* FCVTNU */ 12730 rmode = FPROUNDING_TIEEVEN; 12731 break; 12732 case 0x5b: /* FCVTMU */ 12733 rmode = FPROUNDING_NEGINF; 12734 break; 12735 case 0x5c: /* FCVTAU */ 12736 rmode = FPROUNDING_TIEAWAY; 12737 break; 12738 case 0x7a: /* FCVTPU */ 12739 rmode = FPROUNDING_POSINF; 12740 break; 12741 case 0x7b: /* FCVTZU */ 12742 rmode = FPROUNDING_ZERO; 12743 break; 12744 case 0x2f: /* FABS */ 12745 case 0x6f: /* FNEG */ 12746 need_fpst = false; 12747 break; 12748 case 0x7d: /* FRSQRTE */ 12749 case 0x7f: /* FSQRT (vector) */ 12750 break; 12751 default: 12752 unallocated_encoding(s); 12753 return; 12754 } 12755 12756 12757 /* Check additional constraints for the scalar encoding */ 12758 if (is_scalar) { 12759 if (!is_q) { 12760 unallocated_encoding(s); 12761 return; 12762 } 12763 /* FRINTxx is only in the vector form */ 12764 if (only_in_vector) { 12765 unallocated_encoding(s); 12766 return; 12767 } 12768 } 12769 12770 if (!fp_access_check(s)) { 12771 return; 12772 } 12773 12774 if (rmode >= 0 || need_fpst) { 12775 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12776 } 12777 12778 if (rmode >= 0) { 12779 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12780 } 12781 12782 if (is_scalar) { 12783 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12784 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12785 12786 switch (fpop) { 12787 case 0x1a: /* FCVTNS */ 12788 case 0x1b: /* FCVTMS */ 12789 case 0x1c: /* FCVTAS */ 12790 case 0x3a: /* FCVTPS */ 12791 case 0x3b: /* FCVTZS */ 12792 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12793 break; 12794 case 0x3d: /* FRECPE */ 12795 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12796 break; 12797 case 0x3f: /* FRECPX */ 12798 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12799 break; 12800 case 0x5a: /* FCVTNU */ 12801 case 0x5b: /* FCVTMU */ 12802 case 0x5c: /* FCVTAU */ 12803 case 0x7a: /* FCVTPU */ 12804 case 0x7b: /* FCVTZU */ 12805 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12806 break; 12807 case 0x6f: /* FNEG */ 12808 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12809 break; 12810 case 0x7d: /* FRSQRTE */ 12811 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12812 break; 12813 default: 12814 g_assert_not_reached(); 12815 } 12816 12817 /* limit any sign extension going on */ 12818 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12819 write_fp_sreg(s, rd, tcg_res); 12820 } else { 12821 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12822 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12823 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12824 12825 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12826 12827 switch (fpop) { 12828 case 0x1a: /* FCVTNS */ 12829 case 0x1b: /* FCVTMS */ 12830 case 0x1c: /* FCVTAS */ 12831 case 0x3a: /* FCVTPS */ 12832 case 0x3b: /* FCVTZS */ 12833 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12834 break; 12835 case 0x3d: /* FRECPE */ 12836 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12837 break; 12838 case 0x5a: /* FCVTNU */ 12839 case 0x5b: /* FCVTMU */ 12840 case 0x5c: /* FCVTAU */ 12841 case 0x7a: /* FCVTPU */ 12842 case 0x7b: /* FCVTZU */ 12843 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12844 break; 12845 case 0x18: /* FRINTN */ 12846 case 0x19: /* FRINTM */ 12847 case 0x38: /* FRINTP */ 12848 case 0x39: /* FRINTZ */ 12849 case 0x58: /* FRINTA */ 12850 case 0x79: /* FRINTI */ 12851 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12852 break; 12853 case 0x59: /* FRINTX */ 12854 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12855 break; 12856 case 0x2f: /* FABS */ 12857 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12858 break; 12859 case 0x6f: /* FNEG */ 12860 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12861 break; 12862 case 0x7d: /* FRSQRTE */ 12863 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12864 break; 12865 case 0x7f: /* FSQRT */ 12866 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12867 break; 12868 default: 12869 g_assert_not_reached(); 12870 } 12871 12872 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12873 } 12874 12875 clear_vec_high(s, is_q, rd); 12876 } 12877 12878 if (tcg_rmode) { 12879 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12880 } 12881 } 12882 12883 /* AdvSIMD scalar x indexed element 12884 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12885 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12886 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12887 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12888 * AdvSIMD vector x indexed element 12889 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12890 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12891 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12892 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12893 */ 12894 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12895 { 12896 /* This encoding has two kinds of instruction: 12897 * normal, where we perform elt x idxelt => elt for each 12898 * element in the vector 12899 * long, where we perform elt x idxelt and generate a result of 12900 * double the width of the input element 12901 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12902 */ 12903 bool is_scalar = extract32(insn, 28, 1); 12904 bool is_q = extract32(insn, 30, 1); 12905 bool u = extract32(insn, 29, 1); 12906 int size = extract32(insn, 22, 2); 12907 int l = extract32(insn, 21, 1); 12908 int m = extract32(insn, 20, 1); 12909 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12910 int rm = extract32(insn, 16, 4); 12911 int opcode = extract32(insn, 12, 4); 12912 int h = extract32(insn, 11, 1); 12913 int rn = extract32(insn, 5, 5); 12914 int rd = extract32(insn, 0, 5); 12915 bool is_long = false; 12916 int is_fp = 0; 12917 bool is_fp16 = false; 12918 int index; 12919 TCGv_ptr fpst; 12920 12921 switch (16 * u + opcode) { 12922 case 0x08: /* MUL */ 12923 case 0x10: /* MLA */ 12924 case 0x14: /* MLS */ 12925 if (is_scalar) { 12926 unallocated_encoding(s); 12927 return; 12928 } 12929 break; 12930 case 0x02: /* SMLAL, SMLAL2 */ 12931 case 0x12: /* UMLAL, UMLAL2 */ 12932 case 0x06: /* SMLSL, SMLSL2 */ 12933 case 0x16: /* UMLSL, UMLSL2 */ 12934 case 0x0a: /* SMULL, SMULL2 */ 12935 case 0x1a: /* UMULL, UMULL2 */ 12936 if (is_scalar) { 12937 unallocated_encoding(s); 12938 return; 12939 } 12940 is_long = true; 12941 break; 12942 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12943 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12944 case 0x0b: /* SQDMULL, SQDMULL2 */ 12945 is_long = true; 12946 break; 12947 case 0x0c: /* SQDMULH */ 12948 case 0x0d: /* SQRDMULH */ 12949 break; 12950 case 0x01: /* FMLA */ 12951 case 0x05: /* FMLS */ 12952 case 0x09: /* FMUL */ 12953 case 0x19: /* FMULX */ 12954 is_fp = 1; 12955 break; 12956 case 0x1d: /* SQRDMLAH */ 12957 case 0x1f: /* SQRDMLSH */ 12958 if (!dc_isar_feature(aa64_rdm, s)) { 12959 unallocated_encoding(s); 12960 return; 12961 } 12962 break; 12963 case 0x0e: /* SDOT */ 12964 case 0x1e: /* UDOT */ 12965 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12966 unallocated_encoding(s); 12967 return; 12968 } 12969 break; 12970 case 0x0f: 12971 switch (size) { 12972 case 0: /* SUDOT */ 12973 case 2: /* USDOT */ 12974 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12975 unallocated_encoding(s); 12976 return; 12977 } 12978 size = MO_32; 12979 break; 12980 case 1: /* BFDOT */ 12981 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12982 unallocated_encoding(s); 12983 return; 12984 } 12985 size = MO_32; 12986 break; 12987 case 3: /* BFMLAL{B,T} */ 12988 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12989 unallocated_encoding(s); 12990 return; 12991 } 12992 /* can't set is_fp without other incorrect size checks */ 12993 size = MO_16; 12994 break; 12995 default: 12996 unallocated_encoding(s); 12997 return; 12998 } 12999 break; 13000 case 0x11: /* FCMLA #0 */ 13001 case 0x13: /* FCMLA #90 */ 13002 case 0x15: /* FCMLA #180 */ 13003 case 0x17: /* FCMLA #270 */ 13004 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13005 unallocated_encoding(s); 13006 return; 13007 } 13008 is_fp = 2; 13009 break; 13010 case 0x00: /* FMLAL */ 13011 case 0x04: /* FMLSL */ 13012 case 0x18: /* FMLAL2 */ 13013 case 0x1c: /* FMLSL2 */ 13014 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13015 unallocated_encoding(s); 13016 return; 13017 } 13018 size = MO_16; 13019 /* is_fp, but we pass cpu_env not fp_status. */ 13020 break; 13021 default: 13022 unallocated_encoding(s); 13023 return; 13024 } 13025 13026 switch (is_fp) { 13027 case 1: /* normal fp */ 13028 /* convert insn encoded size to MemOp size */ 13029 switch (size) { 13030 case 0: /* half-precision */ 13031 size = MO_16; 13032 is_fp16 = true; 13033 break; 13034 case MO_32: /* single precision */ 13035 case MO_64: /* double precision */ 13036 break; 13037 default: 13038 unallocated_encoding(s); 13039 return; 13040 } 13041 break; 13042 13043 case 2: /* complex fp */ 13044 /* Each indexable element is a complex pair. */ 13045 size += 1; 13046 switch (size) { 13047 case MO_32: 13048 if (h && !is_q) { 13049 unallocated_encoding(s); 13050 return; 13051 } 13052 is_fp16 = true; 13053 break; 13054 case MO_64: 13055 break; 13056 default: 13057 unallocated_encoding(s); 13058 return; 13059 } 13060 break; 13061 13062 default: /* integer */ 13063 switch (size) { 13064 case MO_8: 13065 case MO_64: 13066 unallocated_encoding(s); 13067 return; 13068 } 13069 break; 13070 } 13071 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13072 unallocated_encoding(s); 13073 return; 13074 } 13075 13076 /* Given MemOp size, adjust register and indexing. */ 13077 switch (size) { 13078 case MO_16: 13079 index = h << 2 | l << 1 | m; 13080 break; 13081 case MO_32: 13082 index = h << 1 | l; 13083 rm |= m << 4; 13084 break; 13085 case MO_64: 13086 if (l || !is_q) { 13087 unallocated_encoding(s); 13088 return; 13089 } 13090 index = h; 13091 rm |= m << 4; 13092 break; 13093 default: 13094 g_assert_not_reached(); 13095 } 13096 13097 if (!fp_access_check(s)) { 13098 return; 13099 } 13100 13101 if (is_fp) { 13102 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13103 } else { 13104 fpst = NULL; 13105 } 13106 13107 switch (16 * u + opcode) { 13108 case 0x0e: /* SDOT */ 13109 case 0x1e: /* UDOT */ 13110 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13111 u ? gen_helper_gvec_udot_idx_b 13112 : gen_helper_gvec_sdot_idx_b); 13113 return; 13114 case 0x0f: 13115 switch (extract32(insn, 22, 2)) { 13116 case 0: /* SUDOT */ 13117 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13118 gen_helper_gvec_sudot_idx_b); 13119 return; 13120 case 1: /* BFDOT */ 13121 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13122 gen_helper_gvec_bfdot_idx); 13123 return; 13124 case 2: /* USDOT */ 13125 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13126 gen_helper_gvec_usdot_idx_b); 13127 return; 13128 case 3: /* BFMLAL{B,T} */ 13129 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13130 gen_helper_gvec_bfmlal_idx); 13131 return; 13132 } 13133 g_assert_not_reached(); 13134 case 0x11: /* FCMLA #0 */ 13135 case 0x13: /* FCMLA #90 */ 13136 case 0x15: /* FCMLA #180 */ 13137 case 0x17: /* FCMLA #270 */ 13138 { 13139 int rot = extract32(insn, 13, 2); 13140 int data = (index << 2) | rot; 13141 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13142 vec_full_reg_offset(s, rn), 13143 vec_full_reg_offset(s, rm), 13144 vec_full_reg_offset(s, rd), fpst, 13145 is_q ? 16 : 8, vec_full_reg_size(s), data, 13146 size == MO_64 13147 ? gen_helper_gvec_fcmlas_idx 13148 : gen_helper_gvec_fcmlah_idx); 13149 } 13150 return; 13151 13152 case 0x00: /* FMLAL */ 13153 case 0x04: /* FMLSL */ 13154 case 0x18: /* FMLAL2 */ 13155 case 0x1c: /* FMLSL2 */ 13156 { 13157 int is_s = extract32(opcode, 2, 1); 13158 int is_2 = u; 13159 int data = (index << 2) | (is_2 << 1) | is_s; 13160 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13161 vec_full_reg_offset(s, rn), 13162 vec_full_reg_offset(s, rm), cpu_env, 13163 is_q ? 16 : 8, vec_full_reg_size(s), 13164 data, gen_helper_gvec_fmlal_idx_a64); 13165 } 13166 return; 13167 13168 case 0x08: /* MUL */ 13169 if (!is_long && !is_scalar) { 13170 static gen_helper_gvec_3 * const fns[3] = { 13171 gen_helper_gvec_mul_idx_h, 13172 gen_helper_gvec_mul_idx_s, 13173 gen_helper_gvec_mul_idx_d, 13174 }; 13175 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13176 vec_full_reg_offset(s, rn), 13177 vec_full_reg_offset(s, rm), 13178 is_q ? 16 : 8, vec_full_reg_size(s), 13179 index, fns[size - 1]); 13180 return; 13181 } 13182 break; 13183 13184 case 0x10: /* MLA */ 13185 if (!is_long && !is_scalar) { 13186 static gen_helper_gvec_4 * const fns[3] = { 13187 gen_helper_gvec_mla_idx_h, 13188 gen_helper_gvec_mla_idx_s, 13189 gen_helper_gvec_mla_idx_d, 13190 }; 13191 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13192 vec_full_reg_offset(s, rn), 13193 vec_full_reg_offset(s, rm), 13194 vec_full_reg_offset(s, rd), 13195 is_q ? 16 : 8, vec_full_reg_size(s), 13196 index, fns[size - 1]); 13197 return; 13198 } 13199 break; 13200 13201 case 0x14: /* MLS */ 13202 if (!is_long && !is_scalar) { 13203 static gen_helper_gvec_4 * const fns[3] = { 13204 gen_helper_gvec_mls_idx_h, 13205 gen_helper_gvec_mls_idx_s, 13206 gen_helper_gvec_mls_idx_d, 13207 }; 13208 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13209 vec_full_reg_offset(s, rn), 13210 vec_full_reg_offset(s, rm), 13211 vec_full_reg_offset(s, rd), 13212 is_q ? 16 : 8, vec_full_reg_size(s), 13213 index, fns[size - 1]); 13214 return; 13215 } 13216 break; 13217 } 13218 13219 if (size == 3) { 13220 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13221 int pass; 13222 13223 assert(is_fp && is_q && !is_long); 13224 13225 read_vec_element(s, tcg_idx, rm, index, MO_64); 13226 13227 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13228 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13229 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13230 13231 read_vec_element(s, tcg_op, rn, pass, MO_64); 13232 13233 switch (16 * u + opcode) { 13234 case 0x05: /* FMLS */ 13235 /* As usual for ARM, separate negation for fused multiply-add */ 13236 gen_helper_vfp_negd(tcg_op, tcg_op); 13237 /* fall through */ 13238 case 0x01: /* FMLA */ 13239 read_vec_element(s, tcg_res, rd, pass, MO_64); 13240 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13241 break; 13242 case 0x09: /* FMUL */ 13243 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13244 break; 13245 case 0x19: /* FMULX */ 13246 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13247 break; 13248 default: 13249 g_assert_not_reached(); 13250 } 13251 13252 write_vec_element(s, tcg_res, rd, pass, MO_64); 13253 } 13254 13255 clear_vec_high(s, !is_scalar, rd); 13256 } else if (!is_long) { 13257 /* 32 bit floating point, or 16 or 32 bit integer. 13258 * For the 16 bit scalar case we use the usual Neon helpers and 13259 * rely on the fact that 0 op 0 == 0 with no side effects. 13260 */ 13261 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13262 int pass, maxpasses; 13263 13264 if (is_scalar) { 13265 maxpasses = 1; 13266 } else { 13267 maxpasses = is_q ? 4 : 2; 13268 } 13269 13270 read_vec_element_i32(s, tcg_idx, rm, index, size); 13271 13272 if (size == 1 && !is_scalar) { 13273 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13274 * the index into both halves of the 32 bit tcg_idx and then use 13275 * the usual Neon helpers. 13276 */ 13277 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13278 } 13279 13280 for (pass = 0; pass < maxpasses; pass++) { 13281 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13282 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13283 13284 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13285 13286 switch (16 * u + opcode) { 13287 case 0x08: /* MUL */ 13288 case 0x10: /* MLA */ 13289 case 0x14: /* MLS */ 13290 { 13291 static NeonGenTwoOpFn * const fns[2][2] = { 13292 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13293 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13294 }; 13295 NeonGenTwoOpFn *genfn; 13296 bool is_sub = opcode == 0x4; 13297 13298 if (size == 1) { 13299 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13300 } else { 13301 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13302 } 13303 if (opcode == 0x8) { 13304 break; 13305 } 13306 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13307 genfn = fns[size - 1][is_sub]; 13308 genfn(tcg_res, tcg_op, tcg_res); 13309 break; 13310 } 13311 case 0x05: /* FMLS */ 13312 case 0x01: /* FMLA */ 13313 read_vec_element_i32(s, tcg_res, rd, pass, 13314 is_scalar ? size : MO_32); 13315 switch (size) { 13316 case 1: 13317 if (opcode == 0x5) { 13318 /* As usual for ARM, separate negation for fused 13319 * multiply-add */ 13320 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13321 } 13322 if (is_scalar) { 13323 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13324 tcg_res, fpst); 13325 } else { 13326 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13327 tcg_res, fpst); 13328 } 13329 break; 13330 case 2: 13331 if (opcode == 0x5) { 13332 /* As usual for ARM, separate negation for 13333 * fused multiply-add */ 13334 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13335 } 13336 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13337 tcg_res, fpst); 13338 break; 13339 default: 13340 g_assert_not_reached(); 13341 } 13342 break; 13343 case 0x09: /* FMUL */ 13344 switch (size) { 13345 case 1: 13346 if (is_scalar) { 13347 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13348 tcg_idx, fpst); 13349 } else { 13350 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13351 tcg_idx, fpst); 13352 } 13353 break; 13354 case 2: 13355 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13356 break; 13357 default: 13358 g_assert_not_reached(); 13359 } 13360 break; 13361 case 0x19: /* FMULX */ 13362 switch (size) { 13363 case 1: 13364 if (is_scalar) { 13365 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13366 tcg_idx, fpst); 13367 } else { 13368 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13369 tcg_idx, fpst); 13370 } 13371 break; 13372 case 2: 13373 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13374 break; 13375 default: 13376 g_assert_not_reached(); 13377 } 13378 break; 13379 case 0x0c: /* SQDMULH */ 13380 if (size == 1) { 13381 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13382 tcg_op, tcg_idx); 13383 } else { 13384 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13385 tcg_op, tcg_idx); 13386 } 13387 break; 13388 case 0x0d: /* SQRDMULH */ 13389 if (size == 1) { 13390 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13391 tcg_op, tcg_idx); 13392 } else { 13393 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13394 tcg_op, tcg_idx); 13395 } 13396 break; 13397 case 0x1d: /* SQRDMLAH */ 13398 read_vec_element_i32(s, tcg_res, rd, pass, 13399 is_scalar ? size : MO_32); 13400 if (size == 1) { 13401 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13402 tcg_op, tcg_idx, tcg_res); 13403 } else { 13404 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13405 tcg_op, tcg_idx, tcg_res); 13406 } 13407 break; 13408 case 0x1f: /* SQRDMLSH */ 13409 read_vec_element_i32(s, tcg_res, rd, pass, 13410 is_scalar ? size : MO_32); 13411 if (size == 1) { 13412 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13413 tcg_op, tcg_idx, tcg_res); 13414 } else { 13415 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13416 tcg_op, tcg_idx, tcg_res); 13417 } 13418 break; 13419 default: 13420 g_assert_not_reached(); 13421 } 13422 13423 if (is_scalar) { 13424 write_fp_sreg(s, rd, tcg_res); 13425 } else { 13426 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13427 } 13428 } 13429 13430 clear_vec_high(s, is_q, rd); 13431 } else { 13432 /* long ops: 16x16->32 or 32x32->64 */ 13433 TCGv_i64 tcg_res[2]; 13434 int pass; 13435 bool satop = extract32(opcode, 0, 1); 13436 MemOp memop = MO_32; 13437 13438 if (satop || !u) { 13439 memop |= MO_SIGN; 13440 } 13441 13442 if (size == 2) { 13443 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13444 13445 read_vec_element(s, tcg_idx, rm, index, memop); 13446 13447 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13448 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13449 TCGv_i64 tcg_passres; 13450 int passelt; 13451 13452 if (is_scalar) { 13453 passelt = 0; 13454 } else { 13455 passelt = pass + (is_q * 2); 13456 } 13457 13458 read_vec_element(s, tcg_op, rn, passelt, memop); 13459 13460 tcg_res[pass] = tcg_temp_new_i64(); 13461 13462 if (opcode == 0xa || opcode == 0xb) { 13463 /* Non-accumulating ops */ 13464 tcg_passres = tcg_res[pass]; 13465 } else { 13466 tcg_passres = tcg_temp_new_i64(); 13467 } 13468 13469 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13470 13471 if (satop) { 13472 /* saturating, doubling */ 13473 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13474 tcg_passres, tcg_passres); 13475 } 13476 13477 if (opcode == 0xa || opcode == 0xb) { 13478 continue; 13479 } 13480 13481 /* Accumulating op: handle accumulate step */ 13482 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13483 13484 switch (opcode) { 13485 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13486 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13487 break; 13488 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13489 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13490 break; 13491 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13492 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13493 /* fall through */ 13494 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13495 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13496 tcg_res[pass], 13497 tcg_passres); 13498 break; 13499 default: 13500 g_assert_not_reached(); 13501 } 13502 } 13503 13504 clear_vec_high(s, !is_scalar, rd); 13505 } else { 13506 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13507 13508 assert(size == 1); 13509 read_vec_element_i32(s, tcg_idx, rm, index, size); 13510 13511 if (!is_scalar) { 13512 /* The simplest way to handle the 16x16 indexed ops is to 13513 * duplicate the index into both halves of the 32 bit tcg_idx 13514 * and then use the usual Neon helpers. 13515 */ 13516 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13517 } 13518 13519 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13520 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13521 TCGv_i64 tcg_passres; 13522 13523 if (is_scalar) { 13524 read_vec_element_i32(s, tcg_op, rn, pass, size); 13525 } else { 13526 read_vec_element_i32(s, tcg_op, rn, 13527 pass + (is_q * 2), MO_32); 13528 } 13529 13530 tcg_res[pass] = tcg_temp_new_i64(); 13531 13532 if (opcode == 0xa || opcode == 0xb) { 13533 /* Non-accumulating ops */ 13534 tcg_passres = tcg_res[pass]; 13535 } else { 13536 tcg_passres = tcg_temp_new_i64(); 13537 } 13538 13539 if (memop & MO_SIGN) { 13540 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13541 } else { 13542 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13543 } 13544 if (satop) { 13545 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13546 tcg_passres, tcg_passres); 13547 } 13548 13549 if (opcode == 0xa || opcode == 0xb) { 13550 continue; 13551 } 13552 13553 /* Accumulating op: handle accumulate step */ 13554 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13555 13556 switch (opcode) { 13557 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13558 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13559 tcg_passres); 13560 break; 13561 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13562 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13563 tcg_passres); 13564 break; 13565 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13566 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13567 /* fall through */ 13568 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13569 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13570 tcg_res[pass], 13571 tcg_passres); 13572 break; 13573 default: 13574 g_assert_not_reached(); 13575 } 13576 } 13577 13578 if (is_scalar) { 13579 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13580 } 13581 } 13582 13583 if (is_scalar) { 13584 tcg_res[1] = tcg_constant_i64(0); 13585 } 13586 13587 for (pass = 0; pass < 2; pass++) { 13588 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13589 } 13590 } 13591 } 13592 13593 /* Crypto AES 13594 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13595 * +-----------------+------+-----------+--------+-----+------+------+ 13596 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13597 * +-----------------+------+-----------+--------+-----+------+------+ 13598 */ 13599 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13600 { 13601 int size = extract32(insn, 22, 2); 13602 int opcode = extract32(insn, 12, 5); 13603 int rn = extract32(insn, 5, 5); 13604 int rd = extract32(insn, 0, 5); 13605 int decrypt; 13606 gen_helper_gvec_2 *genfn2 = NULL; 13607 gen_helper_gvec_3 *genfn3 = NULL; 13608 13609 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13610 unallocated_encoding(s); 13611 return; 13612 } 13613 13614 switch (opcode) { 13615 case 0x4: /* AESE */ 13616 decrypt = 0; 13617 genfn3 = gen_helper_crypto_aese; 13618 break; 13619 case 0x6: /* AESMC */ 13620 decrypt = 0; 13621 genfn2 = gen_helper_crypto_aesmc; 13622 break; 13623 case 0x5: /* AESD */ 13624 decrypt = 1; 13625 genfn3 = gen_helper_crypto_aese; 13626 break; 13627 case 0x7: /* AESIMC */ 13628 decrypt = 1; 13629 genfn2 = gen_helper_crypto_aesmc; 13630 break; 13631 default: 13632 unallocated_encoding(s); 13633 return; 13634 } 13635 13636 if (!fp_access_check(s)) { 13637 return; 13638 } 13639 if (genfn2) { 13640 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13641 } else { 13642 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13643 } 13644 } 13645 13646 /* Crypto three-reg SHA 13647 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13648 * +-----------------+------+---+------+---+--------+-----+------+------+ 13649 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13650 * +-----------------+------+---+------+---+--------+-----+------+------+ 13651 */ 13652 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13653 { 13654 int size = extract32(insn, 22, 2); 13655 int opcode = extract32(insn, 12, 3); 13656 int rm = extract32(insn, 16, 5); 13657 int rn = extract32(insn, 5, 5); 13658 int rd = extract32(insn, 0, 5); 13659 gen_helper_gvec_3 *genfn; 13660 bool feature; 13661 13662 if (size != 0) { 13663 unallocated_encoding(s); 13664 return; 13665 } 13666 13667 switch (opcode) { 13668 case 0: /* SHA1C */ 13669 genfn = gen_helper_crypto_sha1c; 13670 feature = dc_isar_feature(aa64_sha1, s); 13671 break; 13672 case 1: /* SHA1P */ 13673 genfn = gen_helper_crypto_sha1p; 13674 feature = dc_isar_feature(aa64_sha1, s); 13675 break; 13676 case 2: /* SHA1M */ 13677 genfn = gen_helper_crypto_sha1m; 13678 feature = dc_isar_feature(aa64_sha1, s); 13679 break; 13680 case 3: /* SHA1SU0 */ 13681 genfn = gen_helper_crypto_sha1su0; 13682 feature = dc_isar_feature(aa64_sha1, s); 13683 break; 13684 case 4: /* SHA256H */ 13685 genfn = gen_helper_crypto_sha256h; 13686 feature = dc_isar_feature(aa64_sha256, s); 13687 break; 13688 case 5: /* SHA256H2 */ 13689 genfn = gen_helper_crypto_sha256h2; 13690 feature = dc_isar_feature(aa64_sha256, s); 13691 break; 13692 case 6: /* SHA256SU1 */ 13693 genfn = gen_helper_crypto_sha256su1; 13694 feature = dc_isar_feature(aa64_sha256, s); 13695 break; 13696 default: 13697 unallocated_encoding(s); 13698 return; 13699 } 13700 13701 if (!feature) { 13702 unallocated_encoding(s); 13703 return; 13704 } 13705 13706 if (!fp_access_check(s)) { 13707 return; 13708 } 13709 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13710 } 13711 13712 /* Crypto two-reg SHA 13713 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13714 * +-----------------+------+-----------+--------+-----+------+------+ 13715 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13716 * +-----------------+------+-----------+--------+-----+------+------+ 13717 */ 13718 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13719 { 13720 int size = extract32(insn, 22, 2); 13721 int opcode = extract32(insn, 12, 5); 13722 int rn = extract32(insn, 5, 5); 13723 int rd = extract32(insn, 0, 5); 13724 gen_helper_gvec_2 *genfn; 13725 bool feature; 13726 13727 if (size != 0) { 13728 unallocated_encoding(s); 13729 return; 13730 } 13731 13732 switch (opcode) { 13733 case 0: /* SHA1H */ 13734 feature = dc_isar_feature(aa64_sha1, s); 13735 genfn = gen_helper_crypto_sha1h; 13736 break; 13737 case 1: /* SHA1SU1 */ 13738 feature = dc_isar_feature(aa64_sha1, s); 13739 genfn = gen_helper_crypto_sha1su1; 13740 break; 13741 case 2: /* SHA256SU0 */ 13742 feature = dc_isar_feature(aa64_sha256, s); 13743 genfn = gen_helper_crypto_sha256su0; 13744 break; 13745 default: 13746 unallocated_encoding(s); 13747 return; 13748 } 13749 13750 if (!feature) { 13751 unallocated_encoding(s); 13752 return; 13753 } 13754 13755 if (!fp_access_check(s)) { 13756 return; 13757 } 13758 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13759 } 13760 13761 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13762 { 13763 tcg_gen_rotli_i64(d, m, 1); 13764 tcg_gen_xor_i64(d, d, n); 13765 } 13766 13767 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13768 { 13769 tcg_gen_rotli_vec(vece, d, m, 1); 13770 tcg_gen_xor_vec(vece, d, d, n); 13771 } 13772 13773 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13774 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13775 { 13776 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13777 static const GVecGen3 op = { 13778 .fni8 = gen_rax1_i64, 13779 .fniv = gen_rax1_vec, 13780 .opt_opc = vecop_list, 13781 .fno = gen_helper_crypto_rax1, 13782 .vece = MO_64, 13783 }; 13784 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13785 } 13786 13787 /* Crypto three-reg SHA512 13788 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13789 * +-----------------------+------+---+---+-----+--------+------+------+ 13790 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13791 * +-----------------------+------+---+---+-----+--------+------+------+ 13792 */ 13793 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13794 { 13795 int opcode = extract32(insn, 10, 2); 13796 int o = extract32(insn, 14, 1); 13797 int rm = extract32(insn, 16, 5); 13798 int rn = extract32(insn, 5, 5); 13799 int rd = extract32(insn, 0, 5); 13800 bool feature; 13801 gen_helper_gvec_3 *oolfn = NULL; 13802 GVecGen3Fn *gvecfn = NULL; 13803 13804 if (o == 0) { 13805 switch (opcode) { 13806 case 0: /* SHA512H */ 13807 feature = dc_isar_feature(aa64_sha512, s); 13808 oolfn = gen_helper_crypto_sha512h; 13809 break; 13810 case 1: /* SHA512H2 */ 13811 feature = dc_isar_feature(aa64_sha512, s); 13812 oolfn = gen_helper_crypto_sha512h2; 13813 break; 13814 case 2: /* SHA512SU1 */ 13815 feature = dc_isar_feature(aa64_sha512, s); 13816 oolfn = gen_helper_crypto_sha512su1; 13817 break; 13818 case 3: /* RAX1 */ 13819 feature = dc_isar_feature(aa64_sha3, s); 13820 gvecfn = gen_gvec_rax1; 13821 break; 13822 default: 13823 g_assert_not_reached(); 13824 } 13825 } else { 13826 switch (opcode) { 13827 case 0: /* SM3PARTW1 */ 13828 feature = dc_isar_feature(aa64_sm3, s); 13829 oolfn = gen_helper_crypto_sm3partw1; 13830 break; 13831 case 1: /* SM3PARTW2 */ 13832 feature = dc_isar_feature(aa64_sm3, s); 13833 oolfn = gen_helper_crypto_sm3partw2; 13834 break; 13835 case 2: /* SM4EKEY */ 13836 feature = dc_isar_feature(aa64_sm4, s); 13837 oolfn = gen_helper_crypto_sm4ekey; 13838 break; 13839 default: 13840 unallocated_encoding(s); 13841 return; 13842 } 13843 } 13844 13845 if (!feature) { 13846 unallocated_encoding(s); 13847 return; 13848 } 13849 13850 if (!fp_access_check(s)) { 13851 return; 13852 } 13853 13854 if (oolfn) { 13855 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13856 } else { 13857 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13858 } 13859 } 13860 13861 /* Crypto two-reg SHA512 13862 * 31 12 11 10 9 5 4 0 13863 * +-----------------------------------------+--------+------+------+ 13864 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13865 * +-----------------------------------------+--------+------+------+ 13866 */ 13867 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13868 { 13869 int opcode = extract32(insn, 10, 2); 13870 int rn = extract32(insn, 5, 5); 13871 int rd = extract32(insn, 0, 5); 13872 bool feature; 13873 13874 switch (opcode) { 13875 case 0: /* SHA512SU0 */ 13876 feature = dc_isar_feature(aa64_sha512, s); 13877 break; 13878 case 1: /* SM4E */ 13879 feature = dc_isar_feature(aa64_sm4, s); 13880 break; 13881 default: 13882 unallocated_encoding(s); 13883 return; 13884 } 13885 13886 if (!feature) { 13887 unallocated_encoding(s); 13888 return; 13889 } 13890 13891 if (!fp_access_check(s)) { 13892 return; 13893 } 13894 13895 switch (opcode) { 13896 case 0: /* SHA512SU0 */ 13897 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13898 break; 13899 case 1: /* SM4E */ 13900 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13901 break; 13902 default: 13903 g_assert_not_reached(); 13904 } 13905 } 13906 13907 /* Crypto four-register 13908 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13909 * +-------------------+-----+------+---+------+------+------+ 13910 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13911 * +-------------------+-----+------+---+------+------+------+ 13912 */ 13913 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13914 { 13915 int op0 = extract32(insn, 21, 2); 13916 int rm = extract32(insn, 16, 5); 13917 int ra = extract32(insn, 10, 5); 13918 int rn = extract32(insn, 5, 5); 13919 int rd = extract32(insn, 0, 5); 13920 bool feature; 13921 13922 switch (op0) { 13923 case 0: /* EOR3 */ 13924 case 1: /* BCAX */ 13925 feature = dc_isar_feature(aa64_sha3, s); 13926 break; 13927 case 2: /* SM3SS1 */ 13928 feature = dc_isar_feature(aa64_sm3, s); 13929 break; 13930 default: 13931 unallocated_encoding(s); 13932 return; 13933 } 13934 13935 if (!feature) { 13936 unallocated_encoding(s); 13937 return; 13938 } 13939 13940 if (!fp_access_check(s)) { 13941 return; 13942 } 13943 13944 if (op0 < 2) { 13945 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13946 int pass; 13947 13948 tcg_op1 = tcg_temp_new_i64(); 13949 tcg_op2 = tcg_temp_new_i64(); 13950 tcg_op3 = tcg_temp_new_i64(); 13951 tcg_res[0] = tcg_temp_new_i64(); 13952 tcg_res[1] = tcg_temp_new_i64(); 13953 13954 for (pass = 0; pass < 2; pass++) { 13955 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13956 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13957 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13958 13959 if (op0 == 0) { 13960 /* EOR3 */ 13961 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13962 } else { 13963 /* BCAX */ 13964 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13965 } 13966 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13967 } 13968 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13969 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13970 } else { 13971 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13972 13973 tcg_op1 = tcg_temp_new_i32(); 13974 tcg_op2 = tcg_temp_new_i32(); 13975 tcg_op3 = tcg_temp_new_i32(); 13976 tcg_res = tcg_temp_new_i32(); 13977 tcg_zero = tcg_constant_i32(0); 13978 13979 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13980 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13981 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13982 13983 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13984 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13985 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13986 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13987 13988 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13989 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13990 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13991 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13992 } 13993 } 13994 13995 /* Crypto XAR 13996 * 31 21 20 16 15 10 9 5 4 0 13997 * +-----------------------+------+--------+------+------+ 13998 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13999 * +-----------------------+------+--------+------+------+ 14000 */ 14001 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 14002 { 14003 int rm = extract32(insn, 16, 5); 14004 int imm6 = extract32(insn, 10, 6); 14005 int rn = extract32(insn, 5, 5); 14006 int rd = extract32(insn, 0, 5); 14007 14008 if (!dc_isar_feature(aa64_sha3, s)) { 14009 unallocated_encoding(s); 14010 return; 14011 } 14012 14013 if (!fp_access_check(s)) { 14014 return; 14015 } 14016 14017 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14018 vec_full_reg_offset(s, rn), 14019 vec_full_reg_offset(s, rm), imm6, 16, 14020 vec_full_reg_size(s)); 14021 } 14022 14023 /* Crypto three-reg imm2 14024 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14025 * +-----------------------+------+-----+------+--------+------+------+ 14026 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14027 * +-----------------------+------+-----+------+--------+------+------+ 14028 */ 14029 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14030 { 14031 static gen_helper_gvec_3 * const fns[4] = { 14032 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14033 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14034 }; 14035 int opcode = extract32(insn, 10, 2); 14036 int imm2 = extract32(insn, 12, 2); 14037 int rm = extract32(insn, 16, 5); 14038 int rn = extract32(insn, 5, 5); 14039 int rd = extract32(insn, 0, 5); 14040 14041 if (!dc_isar_feature(aa64_sm3, s)) { 14042 unallocated_encoding(s); 14043 return; 14044 } 14045 14046 if (!fp_access_check(s)) { 14047 return; 14048 } 14049 14050 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14051 } 14052 14053 /* C3.6 Data processing - SIMD, inc Crypto 14054 * 14055 * As the decode gets a little complex we are using a table based 14056 * approach for this part of the decode. 14057 */ 14058 static const AArch64DecodeTable data_proc_simd[] = { 14059 /* pattern , mask , fn */ 14060 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14061 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14062 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14063 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14064 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14065 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14066 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14067 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14068 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14069 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14070 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14071 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14072 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14073 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14074 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14075 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14076 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14077 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14078 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14079 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14080 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14081 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14082 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14083 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14084 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14085 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14086 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14087 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14088 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14089 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14090 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14091 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14092 { 0x00000000, 0x00000000, NULL } 14093 }; 14094 14095 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14096 { 14097 /* Note that this is called with all non-FP cases from 14098 * table C3-6 so it must UNDEF for entries not specifically 14099 * allocated to instructions in that table. 14100 */ 14101 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14102 if (fn) { 14103 fn(s, insn); 14104 } else { 14105 unallocated_encoding(s); 14106 } 14107 } 14108 14109 /* C3.6 Data processing - SIMD and floating point */ 14110 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14111 { 14112 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14113 disas_data_proc_fp(s, insn); 14114 } else { 14115 /* SIMD, including crypto */ 14116 disas_data_proc_simd(s, insn); 14117 } 14118 } 14119 14120 static bool trans_OK(DisasContext *s, arg_OK *a) 14121 { 14122 return true; 14123 } 14124 14125 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14126 { 14127 s->is_nonstreaming = true; 14128 return true; 14129 } 14130 14131 /** 14132 * is_guarded_page: 14133 * @env: The cpu environment 14134 * @s: The DisasContext 14135 * 14136 * Return true if the page is guarded. 14137 */ 14138 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14139 { 14140 uint64_t addr = s->base.pc_first; 14141 #ifdef CONFIG_USER_ONLY 14142 return page_get_flags(addr) & PAGE_BTI; 14143 #else 14144 CPUTLBEntryFull *full; 14145 void *host; 14146 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14147 int flags; 14148 14149 /* 14150 * We test this immediately after reading an insn, which means 14151 * that the TLB entry must be present and valid, and thus this 14152 * access will never raise an exception. 14153 */ 14154 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14155 false, &host, &full, 0); 14156 assert(!(flags & TLB_INVALID_MASK)); 14157 14158 return full->guarded; 14159 #endif 14160 } 14161 14162 /** 14163 * btype_destination_ok: 14164 * @insn: The instruction at the branch destination 14165 * @bt: SCTLR_ELx.BT 14166 * @btype: PSTATE.BTYPE, and is non-zero 14167 * 14168 * On a guarded page, there are a limited number of insns 14169 * that may be present at the branch target: 14170 * - branch target identifiers, 14171 * - paciasp, pacibsp, 14172 * - BRK insn 14173 * - HLT insn 14174 * Anything else causes a Branch Target Exception. 14175 * 14176 * Return true if the branch is compatible, false to raise BTITRAP. 14177 */ 14178 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14179 { 14180 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14181 /* HINT space */ 14182 switch (extract32(insn, 5, 7)) { 14183 case 0b011001: /* PACIASP */ 14184 case 0b011011: /* PACIBSP */ 14185 /* 14186 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14187 * with btype == 3. Otherwise all btype are ok. 14188 */ 14189 return !bt || btype != 3; 14190 case 0b100000: /* BTI */ 14191 /* Not compatible with any btype. */ 14192 return false; 14193 case 0b100010: /* BTI c */ 14194 /* Not compatible with btype == 3 */ 14195 return btype != 3; 14196 case 0b100100: /* BTI j */ 14197 /* Not compatible with btype == 2 */ 14198 return btype != 2; 14199 case 0b100110: /* BTI jc */ 14200 /* Compatible with any btype. */ 14201 return true; 14202 } 14203 } else { 14204 switch (insn & 0xffe0001fu) { 14205 case 0xd4200000u: /* BRK */ 14206 case 0xd4400000u: /* HLT */ 14207 /* Give priority to the breakpoint exception. */ 14208 return true; 14209 } 14210 } 14211 return false; 14212 } 14213 14214 /* C3.1 A64 instruction index by encoding */ 14215 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14216 { 14217 switch (extract32(insn, 25, 4)) { 14218 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14219 disas_b_exc_sys(s, insn); 14220 break; 14221 case 0x4: 14222 case 0x6: 14223 case 0xc: 14224 case 0xe: /* Loads and stores */ 14225 disas_ldst(s, insn); 14226 break; 14227 case 0x5: 14228 case 0xd: /* Data processing - register */ 14229 disas_data_proc_reg(s, insn); 14230 break; 14231 case 0x7: 14232 case 0xf: /* Data processing - SIMD and floating point */ 14233 disas_data_proc_simd_fp(s, insn); 14234 break; 14235 default: 14236 unallocated_encoding(s); 14237 break; 14238 } 14239 } 14240 14241 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14242 CPUState *cpu) 14243 { 14244 DisasContext *dc = container_of(dcbase, DisasContext, base); 14245 CPUARMState *env = cpu->env_ptr; 14246 ARMCPU *arm_cpu = env_archcpu(env); 14247 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14248 int bound, core_mmu_idx; 14249 14250 dc->isar = &arm_cpu->isar; 14251 dc->condjmp = 0; 14252 dc->pc_save = dc->base.pc_first; 14253 dc->aarch64 = true; 14254 dc->thumb = false; 14255 dc->sctlr_b = 0; 14256 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14257 dc->condexec_mask = 0; 14258 dc->condexec_cond = 0; 14259 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14260 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14261 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14262 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14263 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14264 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14265 #if !defined(CONFIG_USER_ONLY) 14266 dc->user = (dc->current_el == 0); 14267 #endif 14268 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14269 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14270 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14271 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14272 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14273 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14274 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14275 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14276 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14277 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14278 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14279 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14280 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14281 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14282 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14283 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14284 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14285 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14286 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14287 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14288 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14289 dc->vec_len = 0; 14290 dc->vec_stride = 0; 14291 dc->cp_regs = arm_cpu->cp_regs; 14292 dc->features = env->features; 14293 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14294 14295 #ifdef CONFIG_USER_ONLY 14296 /* In sve_probe_page, we assume TBI is enabled. */ 14297 tcg_debug_assert(dc->tbid & 1); 14298 #endif 14299 14300 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14301 14302 /* Single step state. The code-generation logic here is: 14303 * SS_ACTIVE == 0: 14304 * generate code with no special handling for single-stepping (except 14305 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14306 * this happens anyway because those changes are all system register or 14307 * PSTATE writes). 14308 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14309 * emit code for one insn 14310 * emit code to clear PSTATE.SS 14311 * emit code to generate software step exception for completed step 14312 * end TB (as usual for having generated an exception) 14313 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14314 * emit code to generate a software step exception 14315 * end the TB 14316 */ 14317 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14318 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14319 dc->is_ldex = false; 14320 14321 /* Bound the number of insns to execute to those left on the page. */ 14322 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14323 14324 /* If architectural single step active, limit to 1. */ 14325 if (dc->ss_active) { 14326 bound = 1; 14327 } 14328 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14329 } 14330 14331 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14332 { 14333 } 14334 14335 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14336 { 14337 DisasContext *dc = container_of(dcbase, DisasContext, base); 14338 target_ulong pc_arg = dc->base.pc_next; 14339 14340 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14341 pc_arg &= ~TARGET_PAGE_MASK; 14342 } 14343 tcg_gen_insn_start(pc_arg, 0, 0); 14344 dc->insn_start = tcg_last_op(); 14345 } 14346 14347 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14348 { 14349 DisasContext *s = container_of(dcbase, DisasContext, base); 14350 CPUARMState *env = cpu->env_ptr; 14351 uint64_t pc = s->base.pc_next; 14352 uint32_t insn; 14353 14354 /* Singlestep exceptions have the highest priority. */ 14355 if (s->ss_active && !s->pstate_ss) { 14356 /* Singlestep state is Active-pending. 14357 * If we're in this state at the start of a TB then either 14358 * a) we just took an exception to an EL which is being debugged 14359 * and this is the first insn in the exception handler 14360 * b) debug exceptions were masked and we just unmasked them 14361 * without changing EL (eg by clearing PSTATE.D) 14362 * In either case we're going to take a swstep exception in the 14363 * "did not step an insn" case, and so the syndrome ISV and EX 14364 * bits should be zero. 14365 */ 14366 assert(s->base.num_insns == 1); 14367 gen_swstep_exception(s, 0, 0); 14368 s->base.is_jmp = DISAS_NORETURN; 14369 s->base.pc_next = pc + 4; 14370 return; 14371 } 14372 14373 if (pc & 3) { 14374 /* 14375 * PC alignment fault. This has priority over the instruction abort 14376 * that we would receive from a translation fault via arm_ldl_code. 14377 * This should only be possible after an indirect branch, at the 14378 * start of the TB. 14379 */ 14380 assert(s->base.num_insns == 1); 14381 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14382 s->base.is_jmp = DISAS_NORETURN; 14383 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14384 return; 14385 } 14386 14387 s->pc_curr = pc; 14388 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14389 s->insn = insn; 14390 s->base.pc_next = pc + 4; 14391 14392 s->fp_access_checked = false; 14393 s->sve_access_checked = false; 14394 14395 if (s->pstate_il) { 14396 /* 14397 * Illegal execution state. This has priority over BTI 14398 * exceptions, but comes after instruction abort exceptions. 14399 */ 14400 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14401 return; 14402 } 14403 14404 if (dc_isar_feature(aa64_bti, s)) { 14405 if (s->base.num_insns == 1) { 14406 /* 14407 * At the first insn of the TB, compute s->guarded_page. 14408 * We delayed computing this until successfully reading 14409 * the first insn of the TB, above. This (mostly) ensures 14410 * that the softmmu tlb entry has been populated, and the 14411 * page table GP bit is available. 14412 * 14413 * Note that we need to compute this even if btype == 0, 14414 * because this value is used for BR instructions later 14415 * where ENV is not available. 14416 */ 14417 s->guarded_page = is_guarded_page(env, s); 14418 14419 /* First insn can have btype set to non-zero. */ 14420 tcg_debug_assert(s->btype >= 0); 14421 14422 /* 14423 * Note that the Branch Target Exception has fairly high 14424 * priority -- below debugging exceptions but above most 14425 * everything else. This allows us to handle this now 14426 * instead of waiting until the insn is otherwise decoded. 14427 */ 14428 if (s->btype != 0 14429 && s->guarded_page 14430 && !btype_destination_ok(insn, s->bt, s->btype)) { 14431 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14432 return; 14433 } 14434 } else { 14435 /* Not the first insn: btype must be 0. */ 14436 tcg_debug_assert(s->btype == 0); 14437 } 14438 } 14439 14440 s->is_nonstreaming = false; 14441 if (s->sme_trap_nonstreaming) { 14442 disas_sme_fa64(s, insn); 14443 } 14444 14445 if (!disas_a64(s, insn) && 14446 !disas_sme(s, insn) && 14447 !disas_sve(s, insn)) { 14448 disas_a64_legacy(s, insn); 14449 } 14450 14451 /* 14452 * After execution of most insns, btype is reset to 0. 14453 * Note that we set btype == -1 when the insn sets btype. 14454 */ 14455 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14456 reset_btype(s); 14457 } 14458 } 14459 14460 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14461 { 14462 DisasContext *dc = container_of(dcbase, DisasContext, base); 14463 14464 if (unlikely(dc->ss_active)) { 14465 /* Note that this means single stepping WFI doesn't halt the CPU. 14466 * For conditional branch insns this is harmless unreachable code as 14467 * gen_goto_tb() has already handled emitting the debug exception 14468 * (and thus a tb-jump is not possible when singlestepping). 14469 */ 14470 switch (dc->base.is_jmp) { 14471 default: 14472 gen_a64_update_pc(dc, 4); 14473 /* fall through */ 14474 case DISAS_EXIT: 14475 case DISAS_JUMP: 14476 gen_step_complete_exception(dc); 14477 break; 14478 case DISAS_NORETURN: 14479 break; 14480 } 14481 } else { 14482 switch (dc->base.is_jmp) { 14483 case DISAS_NEXT: 14484 case DISAS_TOO_MANY: 14485 gen_goto_tb(dc, 1, 4); 14486 break; 14487 default: 14488 case DISAS_UPDATE_EXIT: 14489 gen_a64_update_pc(dc, 4); 14490 /* fall through */ 14491 case DISAS_EXIT: 14492 tcg_gen_exit_tb(NULL, 0); 14493 break; 14494 case DISAS_UPDATE_NOCHAIN: 14495 gen_a64_update_pc(dc, 4); 14496 /* fall through */ 14497 case DISAS_JUMP: 14498 tcg_gen_lookup_and_goto_ptr(); 14499 break; 14500 case DISAS_NORETURN: 14501 case DISAS_SWI: 14502 break; 14503 case DISAS_WFE: 14504 gen_a64_update_pc(dc, 4); 14505 gen_helper_wfe(cpu_env); 14506 break; 14507 case DISAS_YIELD: 14508 gen_a64_update_pc(dc, 4); 14509 gen_helper_yield(cpu_env); 14510 break; 14511 case DISAS_WFI: 14512 /* 14513 * This is a special case because we don't want to just halt 14514 * the CPU if trying to debug across a WFI. 14515 */ 14516 gen_a64_update_pc(dc, 4); 14517 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14518 /* 14519 * The helper doesn't necessarily throw an exception, but we 14520 * must go back to the main loop to check for interrupts anyway. 14521 */ 14522 tcg_gen_exit_tb(NULL, 0); 14523 break; 14524 } 14525 } 14526 } 14527 14528 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14529 CPUState *cpu, FILE *logfile) 14530 { 14531 DisasContext *dc = container_of(dcbase, DisasContext, base); 14532 14533 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14534 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14535 } 14536 14537 const TranslatorOps aarch64_translator_ops = { 14538 .init_disas_context = aarch64_tr_init_disas_context, 14539 .tb_start = aarch64_tr_tb_start, 14540 .insn_start = aarch64_tr_insn_start, 14541 .translate_insn = aarch64_tr_translate_insn, 14542 .tb_stop = aarch64_tr_tb_stop, 14543 .disas_log = aarch64_tr_disas_log, 14544 }; 14545