1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4845 * Note that it is the caller's responsibility to ensure that the 4846 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4847 * mandated semantics for out of range shifts. 4848 */ 4849 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4850 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4851 { 4852 switch (shift_type) { 4853 case A64_SHIFT_TYPE_LSL: 4854 tcg_gen_shl_i64(dst, src, shift_amount); 4855 break; 4856 case A64_SHIFT_TYPE_LSR: 4857 tcg_gen_shr_i64(dst, src, shift_amount); 4858 break; 4859 case A64_SHIFT_TYPE_ASR: 4860 if (!sf) { 4861 tcg_gen_ext32s_i64(dst, src); 4862 } 4863 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4864 break; 4865 case A64_SHIFT_TYPE_ROR: 4866 if (sf) { 4867 tcg_gen_rotr_i64(dst, src, shift_amount); 4868 } else { 4869 TCGv_i32 t0, t1; 4870 t0 = tcg_temp_new_i32(); 4871 t1 = tcg_temp_new_i32(); 4872 tcg_gen_extrl_i64_i32(t0, src); 4873 tcg_gen_extrl_i64_i32(t1, shift_amount); 4874 tcg_gen_rotr_i32(t0, t0, t1); 4875 tcg_gen_extu_i32_i64(dst, t0); 4876 } 4877 break; 4878 default: 4879 assert(FALSE); /* all shift types should be handled */ 4880 break; 4881 } 4882 4883 if (!sf) { /* zero extend final result */ 4884 tcg_gen_ext32u_i64(dst, dst); 4885 } 4886 } 4887 4888 /* Shift a TCGv src by immediate, put result in dst. 4889 * The shift amount must be in range (this should always be true as the 4890 * relevant instructions will UNDEF on bad shift immediates). 4891 */ 4892 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4893 enum a64_shift_type shift_type, unsigned int shift_i) 4894 { 4895 assert(shift_i < (sf ? 64 : 32)); 4896 4897 if (shift_i == 0) { 4898 tcg_gen_mov_i64(dst, src); 4899 } else { 4900 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4901 } 4902 } 4903 4904 /* Logical (shifted register) 4905 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4906 * +----+-----+-----------+-------+---+------+--------+------+------+ 4907 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4908 * +----+-----+-----------+-------+---+------+--------+------+------+ 4909 */ 4910 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4911 { 4912 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4913 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4914 4915 sf = extract32(insn, 31, 1); 4916 opc = extract32(insn, 29, 2); 4917 shift_type = extract32(insn, 22, 2); 4918 invert = extract32(insn, 21, 1); 4919 rm = extract32(insn, 16, 5); 4920 shift_amount = extract32(insn, 10, 6); 4921 rn = extract32(insn, 5, 5); 4922 rd = extract32(insn, 0, 5); 4923 4924 if (!sf && (shift_amount & (1 << 5))) { 4925 unallocated_encoding(s); 4926 return; 4927 } 4928 4929 tcg_rd = cpu_reg(s, rd); 4930 4931 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4932 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4933 * register-register MOV and MVN, so it is worth special casing. 4934 */ 4935 tcg_rm = cpu_reg(s, rm); 4936 if (invert) { 4937 tcg_gen_not_i64(tcg_rd, tcg_rm); 4938 if (!sf) { 4939 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4940 } 4941 } else { 4942 if (sf) { 4943 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4944 } else { 4945 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4946 } 4947 } 4948 return; 4949 } 4950 4951 tcg_rm = read_cpu_reg(s, rm, sf); 4952 4953 if (shift_amount) { 4954 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4955 } 4956 4957 tcg_rn = cpu_reg(s, rn); 4958 4959 switch (opc | (invert << 2)) { 4960 case 0: /* AND */ 4961 case 3: /* ANDS */ 4962 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4963 break; 4964 case 1: /* ORR */ 4965 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4966 break; 4967 case 2: /* EOR */ 4968 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4969 break; 4970 case 4: /* BIC */ 4971 case 7: /* BICS */ 4972 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4973 break; 4974 case 5: /* ORN */ 4975 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4976 break; 4977 case 6: /* EON */ 4978 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4979 break; 4980 default: 4981 assert(FALSE); 4982 break; 4983 } 4984 4985 if (!sf) { 4986 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4987 } 4988 4989 if (opc == 3) { 4990 gen_logic_CC(sf, tcg_rd); 4991 } 4992 } 4993 4994 /* 4995 * Add/subtract (extended register) 4996 * 4997 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4998 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4999 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5000 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5001 * 5002 * sf: 0 -> 32bit, 1 -> 64bit 5003 * op: 0 -> add , 1 -> sub 5004 * S: 1 -> set flags 5005 * opt: 00 5006 * option: extension type (see DecodeRegExtend) 5007 * imm3: optional shift to Rm 5008 * 5009 * Rd = Rn + LSL(extend(Rm), amount) 5010 */ 5011 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5012 { 5013 int rd = extract32(insn, 0, 5); 5014 int rn = extract32(insn, 5, 5); 5015 int imm3 = extract32(insn, 10, 3); 5016 int option = extract32(insn, 13, 3); 5017 int rm = extract32(insn, 16, 5); 5018 int opt = extract32(insn, 22, 2); 5019 bool setflags = extract32(insn, 29, 1); 5020 bool sub_op = extract32(insn, 30, 1); 5021 bool sf = extract32(insn, 31, 1); 5022 5023 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5024 TCGv_i64 tcg_rd; 5025 TCGv_i64 tcg_result; 5026 5027 if (imm3 > 4 || opt != 0) { 5028 unallocated_encoding(s); 5029 return; 5030 } 5031 5032 /* non-flag setting ops may use SP */ 5033 if (!setflags) { 5034 tcg_rd = cpu_reg_sp(s, rd); 5035 } else { 5036 tcg_rd = cpu_reg(s, rd); 5037 } 5038 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5039 5040 tcg_rm = read_cpu_reg(s, rm, sf); 5041 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5042 5043 tcg_result = tcg_temp_new_i64(); 5044 5045 if (!setflags) { 5046 if (sub_op) { 5047 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5048 } else { 5049 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5050 } 5051 } else { 5052 if (sub_op) { 5053 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5054 } else { 5055 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5056 } 5057 } 5058 5059 if (sf) { 5060 tcg_gen_mov_i64(tcg_rd, tcg_result); 5061 } else { 5062 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5063 } 5064 } 5065 5066 /* 5067 * Add/subtract (shifted register) 5068 * 5069 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5070 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5071 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5072 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5073 * 5074 * sf: 0 -> 32bit, 1 -> 64bit 5075 * op: 0 -> add , 1 -> sub 5076 * S: 1 -> set flags 5077 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5078 * imm6: Shift amount to apply to Rm before the add/sub 5079 */ 5080 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5081 { 5082 int rd = extract32(insn, 0, 5); 5083 int rn = extract32(insn, 5, 5); 5084 int imm6 = extract32(insn, 10, 6); 5085 int rm = extract32(insn, 16, 5); 5086 int shift_type = extract32(insn, 22, 2); 5087 bool setflags = extract32(insn, 29, 1); 5088 bool sub_op = extract32(insn, 30, 1); 5089 bool sf = extract32(insn, 31, 1); 5090 5091 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5092 TCGv_i64 tcg_rn, tcg_rm; 5093 TCGv_i64 tcg_result; 5094 5095 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5096 unallocated_encoding(s); 5097 return; 5098 } 5099 5100 tcg_rn = read_cpu_reg(s, rn, sf); 5101 tcg_rm = read_cpu_reg(s, rm, sf); 5102 5103 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5104 5105 tcg_result = tcg_temp_new_i64(); 5106 5107 if (!setflags) { 5108 if (sub_op) { 5109 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5110 } else { 5111 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5112 } 5113 } else { 5114 if (sub_op) { 5115 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5116 } else { 5117 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5118 } 5119 } 5120 5121 if (sf) { 5122 tcg_gen_mov_i64(tcg_rd, tcg_result); 5123 } else { 5124 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5125 } 5126 } 5127 5128 /* Data-processing (3 source) 5129 * 5130 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5131 * +--+------+-----------+------+------+----+------+------+------+ 5132 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5133 * +--+------+-----------+------+------+----+------+------+------+ 5134 */ 5135 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5136 { 5137 int rd = extract32(insn, 0, 5); 5138 int rn = extract32(insn, 5, 5); 5139 int ra = extract32(insn, 10, 5); 5140 int rm = extract32(insn, 16, 5); 5141 int op_id = (extract32(insn, 29, 3) << 4) | 5142 (extract32(insn, 21, 3) << 1) | 5143 extract32(insn, 15, 1); 5144 bool sf = extract32(insn, 31, 1); 5145 bool is_sub = extract32(op_id, 0, 1); 5146 bool is_high = extract32(op_id, 2, 1); 5147 bool is_signed = false; 5148 TCGv_i64 tcg_op1; 5149 TCGv_i64 tcg_op2; 5150 TCGv_i64 tcg_tmp; 5151 5152 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5153 switch (op_id) { 5154 case 0x42: /* SMADDL */ 5155 case 0x43: /* SMSUBL */ 5156 case 0x44: /* SMULH */ 5157 is_signed = true; 5158 break; 5159 case 0x0: /* MADD (32bit) */ 5160 case 0x1: /* MSUB (32bit) */ 5161 case 0x40: /* MADD (64bit) */ 5162 case 0x41: /* MSUB (64bit) */ 5163 case 0x4a: /* UMADDL */ 5164 case 0x4b: /* UMSUBL */ 5165 case 0x4c: /* UMULH */ 5166 break; 5167 default: 5168 unallocated_encoding(s); 5169 return; 5170 } 5171 5172 if (is_high) { 5173 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5174 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5175 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5176 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5177 5178 if (is_signed) { 5179 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5180 } else { 5181 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5182 } 5183 return; 5184 } 5185 5186 tcg_op1 = tcg_temp_new_i64(); 5187 tcg_op2 = tcg_temp_new_i64(); 5188 tcg_tmp = tcg_temp_new_i64(); 5189 5190 if (op_id < 0x42) { 5191 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5192 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5193 } else { 5194 if (is_signed) { 5195 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5196 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5197 } else { 5198 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5199 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5200 } 5201 } 5202 5203 if (ra == 31 && !is_sub) { 5204 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5205 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5206 } else { 5207 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5208 if (is_sub) { 5209 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5210 } else { 5211 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5212 } 5213 } 5214 5215 if (!sf) { 5216 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5217 } 5218 } 5219 5220 /* Add/subtract (with carry) 5221 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5222 * +--+--+--+------------------------+------+-------------+------+-----+ 5223 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5224 * +--+--+--+------------------------+------+-------------+------+-----+ 5225 */ 5226 5227 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5228 { 5229 unsigned int sf, op, setflags, rm, rn, rd; 5230 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5231 5232 sf = extract32(insn, 31, 1); 5233 op = extract32(insn, 30, 1); 5234 setflags = extract32(insn, 29, 1); 5235 rm = extract32(insn, 16, 5); 5236 rn = extract32(insn, 5, 5); 5237 rd = extract32(insn, 0, 5); 5238 5239 tcg_rd = cpu_reg(s, rd); 5240 tcg_rn = cpu_reg(s, rn); 5241 5242 if (op) { 5243 tcg_y = tcg_temp_new_i64(); 5244 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5245 } else { 5246 tcg_y = cpu_reg(s, rm); 5247 } 5248 5249 if (setflags) { 5250 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5251 } else { 5252 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5253 } 5254 } 5255 5256 /* 5257 * Rotate right into flags 5258 * 31 30 29 21 15 10 5 4 0 5259 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5260 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5261 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5262 */ 5263 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5264 { 5265 int mask = extract32(insn, 0, 4); 5266 int o2 = extract32(insn, 4, 1); 5267 int rn = extract32(insn, 5, 5); 5268 int imm6 = extract32(insn, 15, 6); 5269 int sf_op_s = extract32(insn, 29, 3); 5270 TCGv_i64 tcg_rn; 5271 TCGv_i32 nzcv; 5272 5273 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5274 unallocated_encoding(s); 5275 return; 5276 } 5277 5278 tcg_rn = read_cpu_reg(s, rn, 1); 5279 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5280 5281 nzcv = tcg_temp_new_i32(); 5282 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5283 5284 if (mask & 8) { /* N */ 5285 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5286 } 5287 if (mask & 4) { /* Z */ 5288 tcg_gen_not_i32(cpu_ZF, nzcv); 5289 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5290 } 5291 if (mask & 2) { /* C */ 5292 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5293 } 5294 if (mask & 1) { /* V */ 5295 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5296 } 5297 } 5298 5299 /* 5300 * Evaluate into flags 5301 * 31 30 29 21 15 14 10 5 4 0 5302 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5303 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5304 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5305 */ 5306 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5307 { 5308 int o3_mask = extract32(insn, 0, 5); 5309 int rn = extract32(insn, 5, 5); 5310 int o2 = extract32(insn, 15, 6); 5311 int sz = extract32(insn, 14, 1); 5312 int sf_op_s = extract32(insn, 29, 3); 5313 TCGv_i32 tmp; 5314 int shift; 5315 5316 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5317 !dc_isar_feature(aa64_condm_4, s)) { 5318 unallocated_encoding(s); 5319 return; 5320 } 5321 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5322 5323 tmp = tcg_temp_new_i32(); 5324 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5325 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5326 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5327 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5328 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5329 } 5330 5331 /* Conditional compare (immediate / register) 5332 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5333 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5334 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5335 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5336 * [1] y [0] [0] 5337 */ 5338 static void disas_cc(DisasContext *s, uint32_t insn) 5339 { 5340 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5341 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5342 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5343 DisasCompare c; 5344 5345 if (!extract32(insn, 29, 1)) { 5346 unallocated_encoding(s); 5347 return; 5348 } 5349 if (insn & (1 << 10 | 1 << 4)) { 5350 unallocated_encoding(s); 5351 return; 5352 } 5353 sf = extract32(insn, 31, 1); 5354 op = extract32(insn, 30, 1); 5355 is_imm = extract32(insn, 11, 1); 5356 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5357 cond = extract32(insn, 12, 4); 5358 rn = extract32(insn, 5, 5); 5359 nzcv = extract32(insn, 0, 4); 5360 5361 /* Set T0 = !COND. */ 5362 tcg_t0 = tcg_temp_new_i32(); 5363 arm_test_cc(&c, cond); 5364 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5365 5366 /* Load the arguments for the new comparison. */ 5367 if (is_imm) { 5368 tcg_y = tcg_temp_new_i64(); 5369 tcg_gen_movi_i64(tcg_y, y); 5370 } else { 5371 tcg_y = cpu_reg(s, y); 5372 } 5373 tcg_rn = cpu_reg(s, rn); 5374 5375 /* Set the flags for the new comparison. */ 5376 tcg_tmp = tcg_temp_new_i64(); 5377 if (op) { 5378 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5379 } else { 5380 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5381 } 5382 5383 /* If COND was false, force the flags to #nzcv. Compute two masks 5384 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5385 * For tcg hosts that support ANDC, we can make do with just T1. 5386 * In either case, allow the tcg optimizer to delete any unused mask. 5387 */ 5388 tcg_t1 = tcg_temp_new_i32(); 5389 tcg_t2 = tcg_temp_new_i32(); 5390 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5391 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5392 5393 if (nzcv & 8) { /* N */ 5394 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5395 } else { 5396 if (TCG_TARGET_HAS_andc_i32) { 5397 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5398 } else { 5399 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5400 } 5401 } 5402 if (nzcv & 4) { /* Z */ 5403 if (TCG_TARGET_HAS_andc_i32) { 5404 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5405 } else { 5406 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5407 } 5408 } else { 5409 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5410 } 5411 if (nzcv & 2) { /* C */ 5412 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5413 } else { 5414 if (TCG_TARGET_HAS_andc_i32) { 5415 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5416 } else { 5417 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5418 } 5419 } 5420 if (nzcv & 1) { /* V */ 5421 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5422 } else { 5423 if (TCG_TARGET_HAS_andc_i32) { 5424 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5425 } else { 5426 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5427 } 5428 } 5429 } 5430 5431 /* Conditional select 5432 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5433 * +----+----+---+-----------------+------+------+-----+------+------+ 5434 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5435 * +----+----+---+-----------------+------+------+-----+------+------+ 5436 */ 5437 static void disas_cond_select(DisasContext *s, uint32_t insn) 5438 { 5439 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5440 TCGv_i64 tcg_rd, zero; 5441 DisasCompare64 c; 5442 5443 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5444 /* S == 1 or op2<1> == 1 */ 5445 unallocated_encoding(s); 5446 return; 5447 } 5448 sf = extract32(insn, 31, 1); 5449 else_inv = extract32(insn, 30, 1); 5450 rm = extract32(insn, 16, 5); 5451 cond = extract32(insn, 12, 4); 5452 else_inc = extract32(insn, 10, 1); 5453 rn = extract32(insn, 5, 5); 5454 rd = extract32(insn, 0, 5); 5455 5456 tcg_rd = cpu_reg(s, rd); 5457 5458 a64_test_cc(&c, cond); 5459 zero = tcg_constant_i64(0); 5460 5461 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5462 /* CSET & CSETM. */ 5463 if (else_inv) { 5464 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5465 tcg_rd, c.value, zero); 5466 } else { 5467 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5468 tcg_rd, c.value, zero); 5469 } 5470 } else { 5471 TCGv_i64 t_true = cpu_reg(s, rn); 5472 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5473 if (else_inv && else_inc) { 5474 tcg_gen_neg_i64(t_false, t_false); 5475 } else if (else_inv) { 5476 tcg_gen_not_i64(t_false, t_false); 5477 } else if (else_inc) { 5478 tcg_gen_addi_i64(t_false, t_false, 1); 5479 } 5480 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5481 } 5482 5483 if (!sf) { 5484 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5485 } 5486 } 5487 5488 static void handle_clz(DisasContext *s, unsigned int sf, 5489 unsigned int rn, unsigned int rd) 5490 { 5491 TCGv_i64 tcg_rd, tcg_rn; 5492 tcg_rd = cpu_reg(s, rd); 5493 tcg_rn = cpu_reg(s, rn); 5494 5495 if (sf) { 5496 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5497 } else { 5498 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5499 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5500 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5501 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5502 } 5503 } 5504 5505 static void handle_cls(DisasContext *s, unsigned int sf, 5506 unsigned int rn, unsigned int rd) 5507 { 5508 TCGv_i64 tcg_rd, tcg_rn; 5509 tcg_rd = cpu_reg(s, rd); 5510 tcg_rn = cpu_reg(s, rn); 5511 5512 if (sf) { 5513 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5514 } else { 5515 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5516 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5517 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5518 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5519 } 5520 } 5521 5522 static void handle_rbit(DisasContext *s, unsigned int sf, 5523 unsigned int rn, unsigned int rd) 5524 { 5525 TCGv_i64 tcg_rd, tcg_rn; 5526 tcg_rd = cpu_reg(s, rd); 5527 tcg_rn = cpu_reg(s, rn); 5528 5529 if (sf) { 5530 gen_helper_rbit64(tcg_rd, tcg_rn); 5531 } else { 5532 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5533 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5534 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5535 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5536 } 5537 } 5538 5539 /* REV with sf==1, opcode==3 ("REV64") */ 5540 static void handle_rev64(DisasContext *s, unsigned int sf, 5541 unsigned int rn, unsigned int rd) 5542 { 5543 if (!sf) { 5544 unallocated_encoding(s); 5545 return; 5546 } 5547 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5548 } 5549 5550 /* REV with sf==0, opcode==2 5551 * REV32 (sf==1, opcode==2) 5552 */ 5553 static void handle_rev32(DisasContext *s, unsigned int sf, 5554 unsigned int rn, unsigned int rd) 5555 { 5556 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5557 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5558 5559 if (sf) { 5560 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5561 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5562 } else { 5563 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5564 } 5565 } 5566 5567 /* REV16 (opcode==1) */ 5568 static void handle_rev16(DisasContext *s, unsigned int sf, 5569 unsigned int rn, unsigned int rd) 5570 { 5571 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5572 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5573 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5574 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5575 5576 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5577 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5578 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5579 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5580 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5581 } 5582 5583 /* Data-processing (1 source) 5584 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5585 * +----+---+---+-----------------+---------+--------+------+------+ 5586 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5587 * +----+---+---+-----------------+---------+--------+------+------+ 5588 */ 5589 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5590 { 5591 unsigned int sf, opcode, opcode2, rn, rd; 5592 TCGv_i64 tcg_rd; 5593 5594 if (extract32(insn, 29, 1)) { 5595 unallocated_encoding(s); 5596 return; 5597 } 5598 5599 sf = extract32(insn, 31, 1); 5600 opcode = extract32(insn, 10, 6); 5601 opcode2 = extract32(insn, 16, 5); 5602 rn = extract32(insn, 5, 5); 5603 rd = extract32(insn, 0, 5); 5604 5605 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5606 5607 switch (MAP(sf, opcode2, opcode)) { 5608 case MAP(0, 0x00, 0x00): /* RBIT */ 5609 case MAP(1, 0x00, 0x00): 5610 handle_rbit(s, sf, rn, rd); 5611 break; 5612 case MAP(0, 0x00, 0x01): /* REV16 */ 5613 case MAP(1, 0x00, 0x01): 5614 handle_rev16(s, sf, rn, rd); 5615 break; 5616 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5617 case MAP(1, 0x00, 0x02): 5618 handle_rev32(s, sf, rn, rd); 5619 break; 5620 case MAP(1, 0x00, 0x03): /* REV64 */ 5621 handle_rev64(s, sf, rn, rd); 5622 break; 5623 case MAP(0, 0x00, 0x04): /* CLZ */ 5624 case MAP(1, 0x00, 0x04): 5625 handle_clz(s, sf, rn, rd); 5626 break; 5627 case MAP(0, 0x00, 0x05): /* CLS */ 5628 case MAP(1, 0x00, 0x05): 5629 handle_cls(s, sf, rn, rd); 5630 break; 5631 case MAP(1, 0x01, 0x00): /* PACIA */ 5632 if (s->pauth_active) { 5633 tcg_rd = cpu_reg(s, rd); 5634 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5635 } else if (!dc_isar_feature(aa64_pauth, s)) { 5636 goto do_unallocated; 5637 } 5638 break; 5639 case MAP(1, 0x01, 0x01): /* PACIB */ 5640 if (s->pauth_active) { 5641 tcg_rd = cpu_reg(s, rd); 5642 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5643 } else if (!dc_isar_feature(aa64_pauth, s)) { 5644 goto do_unallocated; 5645 } 5646 break; 5647 case MAP(1, 0x01, 0x02): /* PACDA */ 5648 if (s->pauth_active) { 5649 tcg_rd = cpu_reg(s, rd); 5650 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5651 } else if (!dc_isar_feature(aa64_pauth, s)) { 5652 goto do_unallocated; 5653 } 5654 break; 5655 case MAP(1, 0x01, 0x03): /* PACDB */ 5656 if (s->pauth_active) { 5657 tcg_rd = cpu_reg(s, rd); 5658 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5659 } else if (!dc_isar_feature(aa64_pauth, s)) { 5660 goto do_unallocated; 5661 } 5662 break; 5663 case MAP(1, 0x01, 0x04): /* AUTIA */ 5664 if (s->pauth_active) { 5665 tcg_rd = cpu_reg(s, rd); 5666 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5667 } else if (!dc_isar_feature(aa64_pauth, s)) { 5668 goto do_unallocated; 5669 } 5670 break; 5671 case MAP(1, 0x01, 0x05): /* AUTIB */ 5672 if (s->pauth_active) { 5673 tcg_rd = cpu_reg(s, rd); 5674 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5675 } else if (!dc_isar_feature(aa64_pauth, s)) { 5676 goto do_unallocated; 5677 } 5678 break; 5679 case MAP(1, 0x01, 0x06): /* AUTDA */ 5680 if (s->pauth_active) { 5681 tcg_rd = cpu_reg(s, rd); 5682 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5683 } else if (!dc_isar_feature(aa64_pauth, s)) { 5684 goto do_unallocated; 5685 } 5686 break; 5687 case MAP(1, 0x01, 0x07): /* AUTDB */ 5688 if (s->pauth_active) { 5689 tcg_rd = cpu_reg(s, rd); 5690 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5691 } else if (!dc_isar_feature(aa64_pauth, s)) { 5692 goto do_unallocated; 5693 } 5694 break; 5695 case MAP(1, 0x01, 0x08): /* PACIZA */ 5696 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5697 goto do_unallocated; 5698 } else if (s->pauth_active) { 5699 tcg_rd = cpu_reg(s, rd); 5700 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5701 } 5702 break; 5703 case MAP(1, 0x01, 0x09): /* PACIZB */ 5704 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5705 goto do_unallocated; 5706 } else if (s->pauth_active) { 5707 tcg_rd = cpu_reg(s, rd); 5708 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5709 } 5710 break; 5711 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5712 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5713 goto do_unallocated; 5714 } else if (s->pauth_active) { 5715 tcg_rd = cpu_reg(s, rd); 5716 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5717 } 5718 break; 5719 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5720 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5721 goto do_unallocated; 5722 } else if (s->pauth_active) { 5723 tcg_rd = cpu_reg(s, rd); 5724 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5725 } 5726 break; 5727 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5728 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5729 goto do_unallocated; 5730 } else if (s->pauth_active) { 5731 tcg_rd = cpu_reg(s, rd); 5732 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5733 } 5734 break; 5735 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5736 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5737 goto do_unallocated; 5738 } else if (s->pauth_active) { 5739 tcg_rd = cpu_reg(s, rd); 5740 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5741 } 5742 break; 5743 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5744 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5745 goto do_unallocated; 5746 } else if (s->pauth_active) { 5747 tcg_rd = cpu_reg(s, rd); 5748 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5749 } 5750 break; 5751 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5752 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5753 goto do_unallocated; 5754 } else if (s->pauth_active) { 5755 tcg_rd = cpu_reg(s, rd); 5756 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5757 } 5758 break; 5759 case MAP(1, 0x01, 0x10): /* XPACI */ 5760 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5761 goto do_unallocated; 5762 } else if (s->pauth_active) { 5763 tcg_rd = cpu_reg(s, rd); 5764 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5765 } 5766 break; 5767 case MAP(1, 0x01, 0x11): /* XPACD */ 5768 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5769 goto do_unallocated; 5770 } else if (s->pauth_active) { 5771 tcg_rd = cpu_reg(s, rd); 5772 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5773 } 5774 break; 5775 default: 5776 do_unallocated: 5777 unallocated_encoding(s); 5778 break; 5779 } 5780 5781 #undef MAP 5782 } 5783 5784 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5785 unsigned int rm, unsigned int rn, unsigned int rd) 5786 { 5787 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5788 tcg_rd = cpu_reg(s, rd); 5789 5790 if (!sf && is_signed) { 5791 tcg_n = tcg_temp_new_i64(); 5792 tcg_m = tcg_temp_new_i64(); 5793 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5794 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5795 } else { 5796 tcg_n = read_cpu_reg(s, rn, sf); 5797 tcg_m = read_cpu_reg(s, rm, sf); 5798 } 5799 5800 if (is_signed) { 5801 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5802 } else { 5803 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5804 } 5805 5806 if (!sf) { /* zero extend final result */ 5807 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5808 } 5809 } 5810 5811 /* LSLV, LSRV, ASRV, RORV */ 5812 static void handle_shift_reg(DisasContext *s, 5813 enum a64_shift_type shift_type, unsigned int sf, 5814 unsigned int rm, unsigned int rn, unsigned int rd) 5815 { 5816 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5817 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5818 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5819 5820 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5821 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5822 } 5823 5824 /* CRC32[BHWX], CRC32C[BHWX] */ 5825 static void handle_crc32(DisasContext *s, 5826 unsigned int sf, unsigned int sz, bool crc32c, 5827 unsigned int rm, unsigned int rn, unsigned int rd) 5828 { 5829 TCGv_i64 tcg_acc, tcg_val; 5830 TCGv_i32 tcg_bytes; 5831 5832 if (!dc_isar_feature(aa64_crc32, s) 5833 || (sf == 1 && sz != 3) 5834 || (sf == 0 && sz == 3)) { 5835 unallocated_encoding(s); 5836 return; 5837 } 5838 5839 if (sz == 3) { 5840 tcg_val = cpu_reg(s, rm); 5841 } else { 5842 uint64_t mask; 5843 switch (sz) { 5844 case 0: 5845 mask = 0xFF; 5846 break; 5847 case 1: 5848 mask = 0xFFFF; 5849 break; 5850 case 2: 5851 mask = 0xFFFFFFFF; 5852 break; 5853 default: 5854 g_assert_not_reached(); 5855 } 5856 tcg_val = tcg_temp_new_i64(); 5857 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5858 } 5859 5860 tcg_acc = cpu_reg(s, rn); 5861 tcg_bytes = tcg_constant_i32(1 << sz); 5862 5863 if (crc32c) { 5864 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5865 } else { 5866 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5867 } 5868 } 5869 5870 /* Data-processing (2 source) 5871 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5872 * +----+---+---+-----------------+------+--------+------+------+ 5873 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5874 * +----+---+---+-----------------+------+--------+------+------+ 5875 */ 5876 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5877 { 5878 unsigned int sf, rm, opcode, rn, rd, setflag; 5879 sf = extract32(insn, 31, 1); 5880 setflag = extract32(insn, 29, 1); 5881 rm = extract32(insn, 16, 5); 5882 opcode = extract32(insn, 10, 6); 5883 rn = extract32(insn, 5, 5); 5884 rd = extract32(insn, 0, 5); 5885 5886 if (setflag && opcode != 0) { 5887 unallocated_encoding(s); 5888 return; 5889 } 5890 5891 switch (opcode) { 5892 case 0: /* SUBP(S) */ 5893 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5894 goto do_unallocated; 5895 } else { 5896 TCGv_i64 tcg_n, tcg_m, tcg_d; 5897 5898 tcg_n = read_cpu_reg_sp(s, rn, true); 5899 tcg_m = read_cpu_reg_sp(s, rm, true); 5900 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5901 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5902 tcg_d = cpu_reg(s, rd); 5903 5904 if (setflag) { 5905 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5906 } else { 5907 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5908 } 5909 } 5910 break; 5911 case 2: /* UDIV */ 5912 handle_div(s, false, sf, rm, rn, rd); 5913 break; 5914 case 3: /* SDIV */ 5915 handle_div(s, true, sf, rm, rn, rd); 5916 break; 5917 case 4: /* IRG */ 5918 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5919 goto do_unallocated; 5920 } 5921 if (s->ata[0]) { 5922 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5923 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5924 } else { 5925 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5926 cpu_reg_sp(s, rn)); 5927 } 5928 break; 5929 case 5: /* GMI */ 5930 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5931 goto do_unallocated; 5932 } else { 5933 TCGv_i64 t = tcg_temp_new_i64(); 5934 5935 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5936 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5937 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5938 } 5939 break; 5940 case 8: /* LSLV */ 5941 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5942 break; 5943 case 9: /* LSRV */ 5944 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5945 break; 5946 case 10: /* ASRV */ 5947 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5948 break; 5949 case 11: /* RORV */ 5950 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5951 break; 5952 case 12: /* PACGA */ 5953 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5954 goto do_unallocated; 5955 } 5956 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5957 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5958 break; 5959 case 16: 5960 case 17: 5961 case 18: 5962 case 19: 5963 case 20: 5964 case 21: 5965 case 22: 5966 case 23: /* CRC32 */ 5967 { 5968 int sz = extract32(opcode, 0, 2); 5969 bool crc32c = extract32(opcode, 2, 1); 5970 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5971 break; 5972 } 5973 default: 5974 do_unallocated: 5975 unallocated_encoding(s); 5976 break; 5977 } 5978 } 5979 5980 /* 5981 * Data processing - register 5982 * 31 30 29 28 25 21 20 16 10 0 5983 * +--+---+--+---+-------+-----+-------+-------+---------+ 5984 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5985 * +--+---+--+---+-------+-----+-------+-------+---------+ 5986 */ 5987 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5988 { 5989 int op0 = extract32(insn, 30, 1); 5990 int op1 = extract32(insn, 28, 1); 5991 int op2 = extract32(insn, 21, 4); 5992 int op3 = extract32(insn, 10, 6); 5993 5994 if (!op1) { 5995 if (op2 & 8) { 5996 if (op2 & 1) { 5997 /* Add/sub (extended register) */ 5998 disas_add_sub_ext_reg(s, insn); 5999 } else { 6000 /* Add/sub (shifted register) */ 6001 disas_add_sub_reg(s, insn); 6002 } 6003 } else { 6004 /* Logical (shifted register) */ 6005 disas_logic_reg(s, insn); 6006 } 6007 return; 6008 } 6009 6010 switch (op2) { 6011 case 0x0: 6012 switch (op3) { 6013 case 0x00: /* Add/subtract (with carry) */ 6014 disas_adc_sbc(s, insn); 6015 break; 6016 6017 case 0x01: /* Rotate right into flags */ 6018 case 0x21: 6019 disas_rotate_right_into_flags(s, insn); 6020 break; 6021 6022 case 0x02: /* Evaluate into flags */ 6023 case 0x12: 6024 case 0x22: 6025 case 0x32: 6026 disas_evaluate_into_flags(s, insn); 6027 break; 6028 6029 default: 6030 goto do_unallocated; 6031 } 6032 break; 6033 6034 case 0x2: /* Conditional compare */ 6035 disas_cc(s, insn); /* both imm and reg forms */ 6036 break; 6037 6038 case 0x4: /* Conditional select */ 6039 disas_cond_select(s, insn); 6040 break; 6041 6042 case 0x6: /* Data-processing */ 6043 if (op0) { /* (1 source) */ 6044 disas_data_proc_1src(s, insn); 6045 } else { /* (2 source) */ 6046 disas_data_proc_2src(s, insn); 6047 } 6048 break; 6049 case 0x8 ... 0xf: /* (3 source) */ 6050 disas_data_proc_3src(s, insn); 6051 break; 6052 6053 default: 6054 do_unallocated: 6055 unallocated_encoding(s); 6056 break; 6057 } 6058 } 6059 6060 static void handle_fp_compare(DisasContext *s, int size, 6061 unsigned int rn, unsigned int rm, 6062 bool cmp_with_zero, bool signal_all_nans) 6063 { 6064 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6065 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6066 6067 if (size == MO_64) { 6068 TCGv_i64 tcg_vn, tcg_vm; 6069 6070 tcg_vn = read_fp_dreg(s, rn); 6071 if (cmp_with_zero) { 6072 tcg_vm = tcg_constant_i64(0); 6073 } else { 6074 tcg_vm = read_fp_dreg(s, rm); 6075 } 6076 if (signal_all_nans) { 6077 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6078 } else { 6079 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6080 } 6081 } else { 6082 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6083 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6084 6085 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6086 if (cmp_with_zero) { 6087 tcg_gen_movi_i32(tcg_vm, 0); 6088 } else { 6089 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6090 } 6091 6092 switch (size) { 6093 case MO_32: 6094 if (signal_all_nans) { 6095 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6096 } else { 6097 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6098 } 6099 break; 6100 case MO_16: 6101 if (signal_all_nans) { 6102 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6103 } else { 6104 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6105 } 6106 break; 6107 default: 6108 g_assert_not_reached(); 6109 } 6110 } 6111 6112 gen_set_nzcv(tcg_flags); 6113 } 6114 6115 /* Floating point compare 6116 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6117 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6118 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6119 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6120 */ 6121 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6122 { 6123 unsigned int mos, type, rm, op, rn, opc, op2r; 6124 int size; 6125 6126 mos = extract32(insn, 29, 3); 6127 type = extract32(insn, 22, 2); 6128 rm = extract32(insn, 16, 5); 6129 op = extract32(insn, 14, 2); 6130 rn = extract32(insn, 5, 5); 6131 opc = extract32(insn, 3, 2); 6132 op2r = extract32(insn, 0, 3); 6133 6134 if (mos || op || op2r) { 6135 unallocated_encoding(s); 6136 return; 6137 } 6138 6139 switch (type) { 6140 case 0: 6141 size = MO_32; 6142 break; 6143 case 1: 6144 size = MO_64; 6145 break; 6146 case 3: 6147 size = MO_16; 6148 if (dc_isar_feature(aa64_fp16, s)) { 6149 break; 6150 } 6151 /* fallthru */ 6152 default: 6153 unallocated_encoding(s); 6154 return; 6155 } 6156 6157 if (!fp_access_check(s)) { 6158 return; 6159 } 6160 6161 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6162 } 6163 6164 /* Floating point conditional compare 6165 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6166 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6167 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6168 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6169 */ 6170 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6171 { 6172 unsigned int mos, type, rm, cond, rn, op, nzcv; 6173 TCGLabel *label_continue = NULL; 6174 int size; 6175 6176 mos = extract32(insn, 29, 3); 6177 type = extract32(insn, 22, 2); 6178 rm = extract32(insn, 16, 5); 6179 cond = extract32(insn, 12, 4); 6180 rn = extract32(insn, 5, 5); 6181 op = extract32(insn, 4, 1); 6182 nzcv = extract32(insn, 0, 4); 6183 6184 if (mos) { 6185 unallocated_encoding(s); 6186 return; 6187 } 6188 6189 switch (type) { 6190 case 0: 6191 size = MO_32; 6192 break; 6193 case 1: 6194 size = MO_64; 6195 break; 6196 case 3: 6197 size = MO_16; 6198 if (dc_isar_feature(aa64_fp16, s)) { 6199 break; 6200 } 6201 /* fallthru */ 6202 default: 6203 unallocated_encoding(s); 6204 return; 6205 } 6206 6207 if (!fp_access_check(s)) { 6208 return; 6209 } 6210 6211 if (cond < 0x0e) { /* not always */ 6212 TCGLabel *label_match = gen_new_label(); 6213 label_continue = gen_new_label(); 6214 arm_gen_test_cc(cond, label_match); 6215 /* nomatch: */ 6216 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6217 tcg_gen_br(label_continue); 6218 gen_set_label(label_match); 6219 } 6220 6221 handle_fp_compare(s, size, rn, rm, false, op); 6222 6223 if (cond < 0x0e) { 6224 gen_set_label(label_continue); 6225 } 6226 } 6227 6228 /* Floating point conditional select 6229 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6230 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6231 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6232 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6233 */ 6234 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6235 { 6236 unsigned int mos, type, rm, cond, rn, rd; 6237 TCGv_i64 t_true, t_false; 6238 DisasCompare64 c; 6239 MemOp sz; 6240 6241 mos = extract32(insn, 29, 3); 6242 type = extract32(insn, 22, 2); 6243 rm = extract32(insn, 16, 5); 6244 cond = extract32(insn, 12, 4); 6245 rn = extract32(insn, 5, 5); 6246 rd = extract32(insn, 0, 5); 6247 6248 if (mos) { 6249 unallocated_encoding(s); 6250 return; 6251 } 6252 6253 switch (type) { 6254 case 0: 6255 sz = MO_32; 6256 break; 6257 case 1: 6258 sz = MO_64; 6259 break; 6260 case 3: 6261 sz = MO_16; 6262 if (dc_isar_feature(aa64_fp16, s)) { 6263 break; 6264 } 6265 /* fallthru */ 6266 default: 6267 unallocated_encoding(s); 6268 return; 6269 } 6270 6271 if (!fp_access_check(s)) { 6272 return; 6273 } 6274 6275 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6276 t_true = tcg_temp_new_i64(); 6277 t_false = tcg_temp_new_i64(); 6278 read_vec_element(s, t_true, rn, 0, sz); 6279 read_vec_element(s, t_false, rm, 0, sz); 6280 6281 a64_test_cc(&c, cond); 6282 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6283 t_true, t_false); 6284 6285 /* Note that sregs & hregs write back zeros to the high bits, 6286 and we've already done the zero-extension. */ 6287 write_fp_dreg(s, rd, t_true); 6288 } 6289 6290 /* Floating-point data-processing (1 source) - half precision */ 6291 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6292 { 6293 TCGv_ptr fpst = NULL; 6294 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6295 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6296 6297 switch (opcode) { 6298 case 0x0: /* FMOV */ 6299 tcg_gen_mov_i32(tcg_res, tcg_op); 6300 break; 6301 case 0x1: /* FABS */ 6302 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6303 break; 6304 case 0x2: /* FNEG */ 6305 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6306 break; 6307 case 0x3: /* FSQRT */ 6308 fpst = fpstatus_ptr(FPST_FPCR_F16); 6309 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6310 break; 6311 case 0x8: /* FRINTN */ 6312 case 0x9: /* FRINTP */ 6313 case 0xa: /* FRINTM */ 6314 case 0xb: /* FRINTZ */ 6315 case 0xc: /* FRINTA */ 6316 { 6317 TCGv_i32 tcg_rmode; 6318 6319 fpst = fpstatus_ptr(FPST_FPCR_F16); 6320 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6321 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6322 gen_restore_rmode(tcg_rmode, fpst); 6323 break; 6324 } 6325 case 0xe: /* FRINTX */ 6326 fpst = fpstatus_ptr(FPST_FPCR_F16); 6327 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6328 break; 6329 case 0xf: /* FRINTI */ 6330 fpst = fpstatus_ptr(FPST_FPCR_F16); 6331 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6332 break; 6333 default: 6334 g_assert_not_reached(); 6335 } 6336 6337 write_fp_sreg(s, rd, tcg_res); 6338 } 6339 6340 /* Floating-point data-processing (1 source) - single precision */ 6341 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6342 { 6343 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6344 TCGv_i32 tcg_op, tcg_res; 6345 TCGv_ptr fpst; 6346 int rmode = -1; 6347 6348 tcg_op = read_fp_sreg(s, rn); 6349 tcg_res = tcg_temp_new_i32(); 6350 6351 switch (opcode) { 6352 case 0x0: /* FMOV */ 6353 tcg_gen_mov_i32(tcg_res, tcg_op); 6354 goto done; 6355 case 0x1: /* FABS */ 6356 gen_helper_vfp_abss(tcg_res, tcg_op); 6357 goto done; 6358 case 0x2: /* FNEG */ 6359 gen_helper_vfp_negs(tcg_res, tcg_op); 6360 goto done; 6361 case 0x3: /* FSQRT */ 6362 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6363 goto done; 6364 case 0x6: /* BFCVT */ 6365 gen_fpst = gen_helper_bfcvt; 6366 break; 6367 case 0x8: /* FRINTN */ 6368 case 0x9: /* FRINTP */ 6369 case 0xa: /* FRINTM */ 6370 case 0xb: /* FRINTZ */ 6371 case 0xc: /* FRINTA */ 6372 rmode = opcode & 7; 6373 gen_fpst = gen_helper_rints; 6374 break; 6375 case 0xe: /* FRINTX */ 6376 gen_fpst = gen_helper_rints_exact; 6377 break; 6378 case 0xf: /* FRINTI */ 6379 gen_fpst = gen_helper_rints; 6380 break; 6381 case 0x10: /* FRINT32Z */ 6382 rmode = FPROUNDING_ZERO; 6383 gen_fpst = gen_helper_frint32_s; 6384 break; 6385 case 0x11: /* FRINT32X */ 6386 gen_fpst = gen_helper_frint32_s; 6387 break; 6388 case 0x12: /* FRINT64Z */ 6389 rmode = FPROUNDING_ZERO; 6390 gen_fpst = gen_helper_frint64_s; 6391 break; 6392 case 0x13: /* FRINT64X */ 6393 gen_fpst = gen_helper_frint64_s; 6394 break; 6395 default: 6396 g_assert_not_reached(); 6397 } 6398 6399 fpst = fpstatus_ptr(FPST_FPCR); 6400 if (rmode >= 0) { 6401 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6402 gen_fpst(tcg_res, tcg_op, fpst); 6403 gen_restore_rmode(tcg_rmode, fpst); 6404 } else { 6405 gen_fpst(tcg_res, tcg_op, fpst); 6406 } 6407 6408 done: 6409 write_fp_sreg(s, rd, tcg_res); 6410 } 6411 6412 /* Floating-point data-processing (1 source) - double precision */ 6413 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6414 { 6415 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6416 TCGv_i64 tcg_op, tcg_res; 6417 TCGv_ptr fpst; 6418 int rmode = -1; 6419 6420 switch (opcode) { 6421 case 0x0: /* FMOV */ 6422 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6423 return; 6424 } 6425 6426 tcg_op = read_fp_dreg(s, rn); 6427 tcg_res = tcg_temp_new_i64(); 6428 6429 switch (opcode) { 6430 case 0x1: /* FABS */ 6431 gen_helper_vfp_absd(tcg_res, tcg_op); 6432 goto done; 6433 case 0x2: /* FNEG */ 6434 gen_helper_vfp_negd(tcg_res, tcg_op); 6435 goto done; 6436 case 0x3: /* FSQRT */ 6437 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6438 goto done; 6439 case 0x8: /* FRINTN */ 6440 case 0x9: /* FRINTP */ 6441 case 0xa: /* FRINTM */ 6442 case 0xb: /* FRINTZ */ 6443 case 0xc: /* FRINTA */ 6444 rmode = opcode & 7; 6445 gen_fpst = gen_helper_rintd; 6446 break; 6447 case 0xe: /* FRINTX */ 6448 gen_fpst = gen_helper_rintd_exact; 6449 break; 6450 case 0xf: /* FRINTI */ 6451 gen_fpst = gen_helper_rintd; 6452 break; 6453 case 0x10: /* FRINT32Z */ 6454 rmode = FPROUNDING_ZERO; 6455 gen_fpst = gen_helper_frint32_d; 6456 break; 6457 case 0x11: /* FRINT32X */ 6458 gen_fpst = gen_helper_frint32_d; 6459 break; 6460 case 0x12: /* FRINT64Z */ 6461 rmode = FPROUNDING_ZERO; 6462 gen_fpst = gen_helper_frint64_d; 6463 break; 6464 case 0x13: /* FRINT64X */ 6465 gen_fpst = gen_helper_frint64_d; 6466 break; 6467 default: 6468 g_assert_not_reached(); 6469 } 6470 6471 fpst = fpstatus_ptr(FPST_FPCR); 6472 if (rmode >= 0) { 6473 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6474 gen_fpst(tcg_res, tcg_op, fpst); 6475 gen_restore_rmode(tcg_rmode, fpst); 6476 } else { 6477 gen_fpst(tcg_res, tcg_op, fpst); 6478 } 6479 6480 done: 6481 write_fp_dreg(s, rd, tcg_res); 6482 } 6483 6484 static void handle_fp_fcvt(DisasContext *s, int opcode, 6485 int rd, int rn, int dtype, int ntype) 6486 { 6487 switch (ntype) { 6488 case 0x0: 6489 { 6490 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6491 if (dtype == 1) { 6492 /* Single to double */ 6493 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6494 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6495 write_fp_dreg(s, rd, tcg_rd); 6496 } else { 6497 /* Single to half */ 6498 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6499 TCGv_i32 ahp = get_ahp_flag(); 6500 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6501 6502 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6503 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6504 write_fp_sreg(s, rd, tcg_rd); 6505 } 6506 break; 6507 } 6508 case 0x1: 6509 { 6510 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6511 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6512 if (dtype == 0) { 6513 /* Double to single */ 6514 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6515 } else { 6516 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6517 TCGv_i32 ahp = get_ahp_flag(); 6518 /* Double to half */ 6519 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6520 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6521 } 6522 write_fp_sreg(s, rd, tcg_rd); 6523 break; 6524 } 6525 case 0x3: 6526 { 6527 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6528 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6529 TCGv_i32 tcg_ahp = get_ahp_flag(); 6530 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6531 if (dtype == 0) { 6532 /* Half to single */ 6533 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6534 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6535 write_fp_sreg(s, rd, tcg_rd); 6536 } else { 6537 /* Half to double */ 6538 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6539 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6540 write_fp_dreg(s, rd, tcg_rd); 6541 } 6542 break; 6543 } 6544 default: 6545 g_assert_not_reached(); 6546 } 6547 } 6548 6549 /* Floating point data-processing (1 source) 6550 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6551 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6552 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6553 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6554 */ 6555 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6556 { 6557 int mos = extract32(insn, 29, 3); 6558 int type = extract32(insn, 22, 2); 6559 int opcode = extract32(insn, 15, 6); 6560 int rn = extract32(insn, 5, 5); 6561 int rd = extract32(insn, 0, 5); 6562 6563 if (mos) { 6564 goto do_unallocated; 6565 } 6566 6567 switch (opcode) { 6568 case 0x4: case 0x5: case 0x7: 6569 { 6570 /* FCVT between half, single and double precision */ 6571 int dtype = extract32(opcode, 0, 2); 6572 if (type == 2 || dtype == type) { 6573 goto do_unallocated; 6574 } 6575 if (!fp_access_check(s)) { 6576 return; 6577 } 6578 6579 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6580 break; 6581 } 6582 6583 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6584 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6585 goto do_unallocated; 6586 } 6587 /* fall through */ 6588 case 0x0 ... 0x3: 6589 case 0x8 ... 0xc: 6590 case 0xe ... 0xf: 6591 /* 32-to-32 and 64-to-64 ops */ 6592 switch (type) { 6593 case 0: 6594 if (!fp_access_check(s)) { 6595 return; 6596 } 6597 handle_fp_1src_single(s, opcode, rd, rn); 6598 break; 6599 case 1: 6600 if (!fp_access_check(s)) { 6601 return; 6602 } 6603 handle_fp_1src_double(s, opcode, rd, rn); 6604 break; 6605 case 3: 6606 if (!dc_isar_feature(aa64_fp16, s)) { 6607 goto do_unallocated; 6608 } 6609 6610 if (!fp_access_check(s)) { 6611 return; 6612 } 6613 handle_fp_1src_half(s, opcode, rd, rn); 6614 break; 6615 default: 6616 goto do_unallocated; 6617 } 6618 break; 6619 6620 case 0x6: 6621 switch (type) { 6622 case 1: /* BFCVT */ 6623 if (!dc_isar_feature(aa64_bf16, s)) { 6624 goto do_unallocated; 6625 } 6626 if (!fp_access_check(s)) { 6627 return; 6628 } 6629 handle_fp_1src_single(s, opcode, rd, rn); 6630 break; 6631 default: 6632 goto do_unallocated; 6633 } 6634 break; 6635 6636 default: 6637 do_unallocated: 6638 unallocated_encoding(s); 6639 break; 6640 } 6641 } 6642 6643 /* Floating-point data-processing (2 source) - single precision */ 6644 static void handle_fp_2src_single(DisasContext *s, int opcode, 6645 int rd, int rn, int rm) 6646 { 6647 TCGv_i32 tcg_op1; 6648 TCGv_i32 tcg_op2; 6649 TCGv_i32 tcg_res; 6650 TCGv_ptr fpst; 6651 6652 tcg_res = tcg_temp_new_i32(); 6653 fpst = fpstatus_ptr(FPST_FPCR); 6654 tcg_op1 = read_fp_sreg(s, rn); 6655 tcg_op2 = read_fp_sreg(s, rm); 6656 6657 switch (opcode) { 6658 case 0x0: /* FMUL */ 6659 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6660 break; 6661 case 0x1: /* FDIV */ 6662 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6663 break; 6664 case 0x2: /* FADD */ 6665 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6666 break; 6667 case 0x3: /* FSUB */ 6668 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6669 break; 6670 case 0x4: /* FMAX */ 6671 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6672 break; 6673 case 0x5: /* FMIN */ 6674 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6675 break; 6676 case 0x6: /* FMAXNM */ 6677 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6678 break; 6679 case 0x7: /* FMINNM */ 6680 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6681 break; 6682 case 0x8: /* FNMUL */ 6683 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6684 gen_helper_vfp_negs(tcg_res, tcg_res); 6685 break; 6686 } 6687 6688 write_fp_sreg(s, rd, tcg_res); 6689 } 6690 6691 /* Floating-point data-processing (2 source) - double precision */ 6692 static void handle_fp_2src_double(DisasContext *s, int opcode, 6693 int rd, int rn, int rm) 6694 { 6695 TCGv_i64 tcg_op1; 6696 TCGv_i64 tcg_op2; 6697 TCGv_i64 tcg_res; 6698 TCGv_ptr fpst; 6699 6700 tcg_res = tcg_temp_new_i64(); 6701 fpst = fpstatus_ptr(FPST_FPCR); 6702 tcg_op1 = read_fp_dreg(s, rn); 6703 tcg_op2 = read_fp_dreg(s, rm); 6704 6705 switch (opcode) { 6706 case 0x0: /* FMUL */ 6707 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6708 break; 6709 case 0x1: /* FDIV */ 6710 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6711 break; 6712 case 0x2: /* FADD */ 6713 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6714 break; 6715 case 0x3: /* FSUB */ 6716 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6717 break; 6718 case 0x4: /* FMAX */ 6719 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6720 break; 6721 case 0x5: /* FMIN */ 6722 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6723 break; 6724 case 0x6: /* FMAXNM */ 6725 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6726 break; 6727 case 0x7: /* FMINNM */ 6728 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6729 break; 6730 case 0x8: /* FNMUL */ 6731 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6732 gen_helper_vfp_negd(tcg_res, tcg_res); 6733 break; 6734 } 6735 6736 write_fp_dreg(s, rd, tcg_res); 6737 } 6738 6739 /* Floating-point data-processing (2 source) - half precision */ 6740 static void handle_fp_2src_half(DisasContext *s, int opcode, 6741 int rd, int rn, int rm) 6742 { 6743 TCGv_i32 tcg_op1; 6744 TCGv_i32 tcg_op2; 6745 TCGv_i32 tcg_res; 6746 TCGv_ptr fpst; 6747 6748 tcg_res = tcg_temp_new_i32(); 6749 fpst = fpstatus_ptr(FPST_FPCR_F16); 6750 tcg_op1 = read_fp_hreg(s, rn); 6751 tcg_op2 = read_fp_hreg(s, rm); 6752 6753 switch (opcode) { 6754 case 0x0: /* FMUL */ 6755 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6756 break; 6757 case 0x1: /* FDIV */ 6758 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6759 break; 6760 case 0x2: /* FADD */ 6761 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6762 break; 6763 case 0x3: /* FSUB */ 6764 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6765 break; 6766 case 0x4: /* FMAX */ 6767 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6768 break; 6769 case 0x5: /* FMIN */ 6770 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6771 break; 6772 case 0x6: /* FMAXNM */ 6773 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6774 break; 6775 case 0x7: /* FMINNM */ 6776 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6777 break; 6778 case 0x8: /* FNMUL */ 6779 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6780 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6781 break; 6782 default: 6783 g_assert_not_reached(); 6784 } 6785 6786 write_fp_sreg(s, rd, tcg_res); 6787 } 6788 6789 /* Floating point data-processing (2 source) 6790 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6791 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6792 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6793 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6794 */ 6795 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6796 { 6797 int mos = extract32(insn, 29, 3); 6798 int type = extract32(insn, 22, 2); 6799 int rd = extract32(insn, 0, 5); 6800 int rn = extract32(insn, 5, 5); 6801 int rm = extract32(insn, 16, 5); 6802 int opcode = extract32(insn, 12, 4); 6803 6804 if (opcode > 8 || mos) { 6805 unallocated_encoding(s); 6806 return; 6807 } 6808 6809 switch (type) { 6810 case 0: 6811 if (!fp_access_check(s)) { 6812 return; 6813 } 6814 handle_fp_2src_single(s, opcode, rd, rn, rm); 6815 break; 6816 case 1: 6817 if (!fp_access_check(s)) { 6818 return; 6819 } 6820 handle_fp_2src_double(s, opcode, rd, rn, rm); 6821 break; 6822 case 3: 6823 if (!dc_isar_feature(aa64_fp16, s)) { 6824 unallocated_encoding(s); 6825 return; 6826 } 6827 if (!fp_access_check(s)) { 6828 return; 6829 } 6830 handle_fp_2src_half(s, opcode, rd, rn, rm); 6831 break; 6832 default: 6833 unallocated_encoding(s); 6834 } 6835 } 6836 6837 /* Floating-point data-processing (3 source) - single precision */ 6838 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6839 int rd, int rn, int rm, int ra) 6840 { 6841 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6842 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6843 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6844 6845 tcg_op1 = read_fp_sreg(s, rn); 6846 tcg_op2 = read_fp_sreg(s, rm); 6847 tcg_op3 = read_fp_sreg(s, ra); 6848 6849 /* These are fused multiply-add, and must be done as one 6850 * floating point operation with no rounding between the 6851 * multiplication and addition steps. 6852 * NB that doing the negations here as separate steps is 6853 * correct : an input NaN should come out with its sign bit 6854 * flipped if it is a negated-input. 6855 */ 6856 if (o1 == true) { 6857 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6858 } 6859 6860 if (o0 != o1) { 6861 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6862 } 6863 6864 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6865 6866 write_fp_sreg(s, rd, tcg_res); 6867 } 6868 6869 /* Floating-point data-processing (3 source) - double precision */ 6870 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6871 int rd, int rn, int rm, int ra) 6872 { 6873 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6874 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6875 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6876 6877 tcg_op1 = read_fp_dreg(s, rn); 6878 tcg_op2 = read_fp_dreg(s, rm); 6879 tcg_op3 = read_fp_dreg(s, ra); 6880 6881 /* These are fused multiply-add, and must be done as one 6882 * floating point operation with no rounding between the 6883 * multiplication and addition steps. 6884 * NB that doing the negations here as separate steps is 6885 * correct : an input NaN should come out with its sign bit 6886 * flipped if it is a negated-input. 6887 */ 6888 if (o1 == true) { 6889 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6890 } 6891 6892 if (o0 != o1) { 6893 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6894 } 6895 6896 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6897 6898 write_fp_dreg(s, rd, tcg_res); 6899 } 6900 6901 /* Floating-point data-processing (3 source) - half precision */ 6902 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6903 int rd, int rn, int rm, int ra) 6904 { 6905 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6906 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6907 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6908 6909 tcg_op1 = read_fp_hreg(s, rn); 6910 tcg_op2 = read_fp_hreg(s, rm); 6911 tcg_op3 = read_fp_hreg(s, ra); 6912 6913 /* These are fused multiply-add, and must be done as one 6914 * floating point operation with no rounding between the 6915 * multiplication and addition steps. 6916 * NB that doing the negations here as separate steps is 6917 * correct : an input NaN should come out with its sign bit 6918 * flipped if it is a negated-input. 6919 */ 6920 if (o1 == true) { 6921 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6922 } 6923 6924 if (o0 != o1) { 6925 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6926 } 6927 6928 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6929 6930 write_fp_sreg(s, rd, tcg_res); 6931 } 6932 6933 /* Floating point data-processing (3 source) 6934 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6935 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6936 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6937 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6938 */ 6939 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6940 { 6941 int mos = extract32(insn, 29, 3); 6942 int type = extract32(insn, 22, 2); 6943 int rd = extract32(insn, 0, 5); 6944 int rn = extract32(insn, 5, 5); 6945 int ra = extract32(insn, 10, 5); 6946 int rm = extract32(insn, 16, 5); 6947 bool o0 = extract32(insn, 15, 1); 6948 bool o1 = extract32(insn, 21, 1); 6949 6950 if (mos) { 6951 unallocated_encoding(s); 6952 return; 6953 } 6954 6955 switch (type) { 6956 case 0: 6957 if (!fp_access_check(s)) { 6958 return; 6959 } 6960 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6961 break; 6962 case 1: 6963 if (!fp_access_check(s)) { 6964 return; 6965 } 6966 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6967 break; 6968 case 3: 6969 if (!dc_isar_feature(aa64_fp16, s)) { 6970 unallocated_encoding(s); 6971 return; 6972 } 6973 if (!fp_access_check(s)) { 6974 return; 6975 } 6976 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6977 break; 6978 default: 6979 unallocated_encoding(s); 6980 } 6981 } 6982 6983 /* Floating point immediate 6984 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6985 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6986 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6987 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6988 */ 6989 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6990 { 6991 int rd = extract32(insn, 0, 5); 6992 int imm5 = extract32(insn, 5, 5); 6993 int imm8 = extract32(insn, 13, 8); 6994 int type = extract32(insn, 22, 2); 6995 int mos = extract32(insn, 29, 3); 6996 uint64_t imm; 6997 MemOp sz; 6998 6999 if (mos || imm5) { 7000 unallocated_encoding(s); 7001 return; 7002 } 7003 7004 switch (type) { 7005 case 0: 7006 sz = MO_32; 7007 break; 7008 case 1: 7009 sz = MO_64; 7010 break; 7011 case 3: 7012 sz = MO_16; 7013 if (dc_isar_feature(aa64_fp16, s)) { 7014 break; 7015 } 7016 /* fallthru */ 7017 default: 7018 unallocated_encoding(s); 7019 return; 7020 } 7021 7022 if (!fp_access_check(s)) { 7023 return; 7024 } 7025 7026 imm = vfp_expand_imm(sz, imm8); 7027 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7028 } 7029 7030 /* Handle floating point <=> fixed point conversions. Note that we can 7031 * also deal with fp <=> integer conversions as a special case (scale == 64) 7032 * OPTME: consider handling that special case specially or at least skipping 7033 * the call to scalbn in the helpers for zero shifts. 7034 */ 7035 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7036 bool itof, int rmode, int scale, int sf, int type) 7037 { 7038 bool is_signed = !(opcode & 1); 7039 TCGv_ptr tcg_fpstatus; 7040 TCGv_i32 tcg_shift, tcg_single; 7041 TCGv_i64 tcg_double; 7042 7043 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7044 7045 tcg_shift = tcg_constant_i32(64 - scale); 7046 7047 if (itof) { 7048 TCGv_i64 tcg_int = cpu_reg(s, rn); 7049 if (!sf) { 7050 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7051 7052 if (is_signed) { 7053 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7054 } else { 7055 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7056 } 7057 7058 tcg_int = tcg_extend; 7059 } 7060 7061 switch (type) { 7062 case 1: /* float64 */ 7063 tcg_double = tcg_temp_new_i64(); 7064 if (is_signed) { 7065 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7066 tcg_shift, tcg_fpstatus); 7067 } else { 7068 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7069 tcg_shift, tcg_fpstatus); 7070 } 7071 write_fp_dreg(s, rd, tcg_double); 7072 break; 7073 7074 case 0: /* float32 */ 7075 tcg_single = tcg_temp_new_i32(); 7076 if (is_signed) { 7077 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7078 tcg_shift, tcg_fpstatus); 7079 } else { 7080 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7081 tcg_shift, tcg_fpstatus); 7082 } 7083 write_fp_sreg(s, rd, tcg_single); 7084 break; 7085 7086 case 3: /* float16 */ 7087 tcg_single = tcg_temp_new_i32(); 7088 if (is_signed) { 7089 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7090 tcg_shift, tcg_fpstatus); 7091 } else { 7092 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7093 tcg_shift, tcg_fpstatus); 7094 } 7095 write_fp_sreg(s, rd, tcg_single); 7096 break; 7097 7098 default: 7099 g_assert_not_reached(); 7100 } 7101 } else { 7102 TCGv_i64 tcg_int = cpu_reg(s, rd); 7103 TCGv_i32 tcg_rmode; 7104 7105 if (extract32(opcode, 2, 1)) { 7106 /* There are too many rounding modes to all fit into rmode, 7107 * so FCVTA[US] is a special case. 7108 */ 7109 rmode = FPROUNDING_TIEAWAY; 7110 } 7111 7112 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7113 7114 switch (type) { 7115 case 1: /* float64 */ 7116 tcg_double = read_fp_dreg(s, rn); 7117 if (is_signed) { 7118 if (!sf) { 7119 gen_helper_vfp_tosld(tcg_int, tcg_double, 7120 tcg_shift, tcg_fpstatus); 7121 } else { 7122 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7123 tcg_shift, tcg_fpstatus); 7124 } 7125 } else { 7126 if (!sf) { 7127 gen_helper_vfp_tould(tcg_int, tcg_double, 7128 tcg_shift, tcg_fpstatus); 7129 } else { 7130 gen_helper_vfp_touqd(tcg_int, tcg_double, 7131 tcg_shift, tcg_fpstatus); 7132 } 7133 } 7134 if (!sf) { 7135 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7136 } 7137 break; 7138 7139 case 0: /* float32 */ 7140 tcg_single = read_fp_sreg(s, rn); 7141 if (sf) { 7142 if (is_signed) { 7143 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7144 tcg_shift, tcg_fpstatus); 7145 } else { 7146 gen_helper_vfp_touqs(tcg_int, tcg_single, 7147 tcg_shift, tcg_fpstatus); 7148 } 7149 } else { 7150 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7151 if (is_signed) { 7152 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7153 tcg_shift, tcg_fpstatus); 7154 } else { 7155 gen_helper_vfp_touls(tcg_dest, tcg_single, 7156 tcg_shift, tcg_fpstatus); 7157 } 7158 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7159 } 7160 break; 7161 7162 case 3: /* float16 */ 7163 tcg_single = read_fp_sreg(s, rn); 7164 if (sf) { 7165 if (is_signed) { 7166 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7167 tcg_shift, tcg_fpstatus); 7168 } else { 7169 gen_helper_vfp_touqh(tcg_int, tcg_single, 7170 tcg_shift, tcg_fpstatus); 7171 } 7172 } else { 7173 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7174 if (is_signed) { 7175 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7176 tcg_shift, tcg_fpstatus); 7177 } else { 7178 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7179 tcg_shift, tcg_fpstatus); 7180 } 7181 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7182 } 7183 break; 7184 7185 default: 7186 g_assert_not_reached(); 7187 } 7188 7189 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7190 } 7191 } 7192 7193 /* Floating point <-> fixed point conversions 7194 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7195 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7196 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7197 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7198 */ 7199 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7200 { 7201 int rd = extract32(insn, 0, 5); 7202 int rn = extract32(insn, 5, 5); 7203 int scale = extract32(insn, 10, 6); 7204 int opcode = extract32(insn, 16, 3); 7205 int rmode = extract32(insn, 19, 2); 7206 int type = extract32(insn, 22, 2); 7207 bool sbit = extract32(insn, 29, 1); 7208 bool sf = extract32(insn, 31, 1); 7209 bool itof; 7210 7211 if (sbit || (!sf && scale < 32)) { 7212 unallocated_encoding(s); 7213 return; 7214 } 7215 7216 switch (type) { 7217 case 0: /* float32 */ 7218 case 1: /* float64 */ 7219 break; 7220 case 3: /* float16 */ 7221 if (dc_isar_feature(aa64_fp16, s)) { 7222 break; 7223 } 7224 /* fallthru */ 7225 default: 7226 unallocated_encoding(s); 7227 return; 7228 } 7229 7230 switch ((rmode << 3) | opcode) { 7231 case 0x2: /* SCVTF */ 7232 case 0x3: /* UCVTF */ 7233 itof = true; 7234 break; 7235 case 0x18: /* FCVTZS */ 7236 case 0x19: /* FCVTZU */ 7237 itof = false; 7238 break; 7239 default: 7240 unallocated_encoding(s); 7241 return; 7242 } 7243 7244 if (!fp_access_check(s)) { 7245 return; 7246 } 7247 7248 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7249 } 7250 7251 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7252 { 7253 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7254 * without conversion. 7255 */ 7256 7257 if (itof) { 7258 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7259 TCGv_i64 tmp; 7260 7261 switch (type) { 7262 case 0: 7263 /* 32 bit */ 7264 tmp = tcg_temp_new_i64(); 7265 tcg_gen_ext32u_i64(tmp, tcg_rn); 7266 write_fp_dreg(s, rd, tmp); 7267 break; 7268 case 1: 7269 /* 64 bit */ 7270 write_fp_dreg(s, rd, tcg_rn); 7271 break; 7272 case 2: 7273 /* 64 bit to top half. */ 7274 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7275 clear_vec_high(s, true, rd); 7276 break; 7277 case 3: 7278 /* 16 bit */ 7279 tmp = tcg_temp_new_i64(); 7280 tcg_gen_ext16u_i64(tmp, tcg_rn); 7281 write_fp_dreg(s, rd, tmp); 7282 break; 7283 default: 7284 g_assert_not_reached(); 7285 } 7286 } else { 7287 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7288 7289 switch (type) { 7290 case 0: 7291 /* 32 bit */ 7292 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7293 break; 7294 case 1: 7295 /* 64 bit */ 7296 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7297 break; 7298 case 2: 7299 /* 64 bits from top half */ 7300 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7301 break; 7302 case 3: 7303 /* 16 bit */ 7304 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7305 break; 7306 default: 7307 g_assert_not_reached(); 7308 } 7309 } 7310 } 7311 7312 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7313 { 7314 TCGv_i64 t = read_fp_dreg(s, rn); 7315 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7316 7317 gen_helper_fjcvtzs(t, t, fpstatus); 7318 7319 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7320 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7321 tcg_gen_movi_i32(cpu_CF, 0); 7322 tcg_gen_movi_i32(cpu_NF, 0); 7323 tcg_gen_movi_i32(cpu_VF, 0); 7324 } 7325 7326 /* Floating point <-> integer conversions 7327 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7328 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7329 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7330 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7331 */ 7332 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7333 { 7334 int rd = extract32(insn, 0, 5); 7335 int rn = extract32(insn, 5, 5); 7336 int opcode = extract32(insn, 16, 3); 7337 int rmode = extract32(insn, 19, 2); 7338 int type = extract32(insn, 22, 2); 7339 bool sbit = extract32(insn, 29, 1); 7340 bool sf = extract32(insn, 31, 1); 7341 bool itof = false; 7342 7343 if (sbit) { 7344 goto do_unallocated; 7345 } 7346 7347 switch (opcode) { 7348 case 2: /* SCVTF */ 7349 case 3: /* UCVTF */ 7350 itof = true; 7351 /* fallthru */ 7352 case 4: /* FCVTAS */ 7353 case 5: /* FCVTAU */ 7354 if (rmode != 0) { 7355 goto do_unallocated; 7356 } 7357 /* fallthru */ 7358 case 0: /* FCVT[NPMZ]S */ 7359 case 1: /* FCVT[NPMZ]U */ 7360 switch (type) { 7361 case 0: /* float32 */ 7362 case 1: /* float64 */ 7363 break; 7364 case 3: /* float16 */ 7365 if (!dc_isar_feature(aa64_fp16, s)) { 7366 goto do_unallocated; 7367 } 7368 break; 7369 default: 7370 goto do_unallocated; 7371 } 7372 if (!fp_access_check(s)) { 7373 return; 7374 } 7375 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7376 break; 7377 7378 default: 7379 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7380 case 0b01100110: /* FMOV half <-> 32-bit int */ 7381 case 0b01100111: 7382 case 0b11100110: /* FMOV half <-> 64-bit int */ 7383 case 0b11100111: 7384 if (!dc_isar_feature(aa64_fp16, s)) { 7385 goto do_unallocated; 7386 } 7387 /* fallthru */ 7388 case 0b00000110: /* FMOV 32-bit */ 7389 case 0b00000111: 7390 case 0b10100110: /* FMOV 64-bit */ 7391 case 0b10100111: 7392 case 0b11001110: /* FMOV top half of 128-bit */ 7393 case 0b11001111: 7394 if (!fp_access_check(s)) { 7395 return; 7396 } 7397 itof = opcode & 1; 7398 handle_fmov(s, rd, rn, type, itof); 7399 break; 7400 7401 case 0b00111110: /* FJCVTZS */ 7402 if (!dc_isar_feature(aa64_jscvt, s)) { 7403 goto do_unallocated; 7404 } else if (fp_access_check(s)) { 7405 handle_fjcvtzs(s, rd, rn); 7406 } 7407 break; 7408 7409 default: 7410 do_unallocated: 7411 unallocated_encoding(s); 7412 return; 7413 } 7414 break; 7415 } 7416 } 7417 7418 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7419 * 31 30 29 28 25 24 0 7420 * +---+---+---+---------+-----------------------------+ 7421 * | | 0 | | 1 1 1 1 | | 7422 * +---+---+---+---------+-----------------------------+ 7423 */ 7424 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7425 { 7426 if (extract32(insn, 24, 1)) { 7427 /* Floating point data-processing (3 source) */ 7428 disas_fp_3src(s, insn); 7429 } else if (extract32(insn, 21, 1) == 0) { 7430 /* Floating point to fixed point conversions */ 7431 disas_fp_fixed_conv(s, insn); 7432 } else { 7433 switch (extract32(insn, 10, 2)) { 7434 case 1: 7435 /* Floating point conditional compare */ 7436 disas_fp_ccomp(s, insn); 7437 break; 7438 case 2: 7439 /* Floating point data-processing (2 source) */ 7440 disas_fp_2src(s, insn); 7441 break; 7442 case 3: 7443 /* Floating point conditional select */ 7444 disas_fp_csel(s, insn); 7445 break; 7446 case 0: 7447 switch (ctz32(extract32(insn, 12, 4))) { 7448 case 0: /* [15:12] == xxx1 */ 7449 /* Floating point immediate */ 7450 disas_fp_imm(s, insn); 7451 break; 7452 case 1: /* [15:12] == xx10 */ 7453 /* Floating point compare */ 7454 disas_fp_compare(s, insn); 7455 break; 7456 case 2: /* [15:12] == x100 */ 7457 /* Floating point data-processing (1 source) */ 7458 disas_fp_1src(s, insn); 7459 break; 7460 case 3: /* [15:12] == 1000 */ 7461 unallocated_encoding(s); 7462 break; 7463 default: /* [15:12] == 0000 */ 7464 /* Floating point <-> integer conversions */ 7465 disas_fp_int_conv(s, insn); 7466 break; 7467 } 7468 break; 7469 } 7470 } 7471 } 7472 7473 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7474 int pos) 7475 { 7476 /* Extract 64 bits from the middle of two concatenated 64 bit 7477 * vector register slices left:right. The extracted bits start 7478 * at 'pos' bits into the right (least significant) side. 7479 * We return the result in tcg_right, and guarantee not to 7480 * trash tcg_left. 7481 */ 7482 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7483 assert(pos > 0 && pos < 64); 7484 7485 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7486 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7487 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7488 } 7489 7490 /* EXT 7491 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7492 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7493 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7494 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7495 */ 7496 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7497 { 7498 int is_q = extract32(insn, 30, 1); 7499 int op2 = extract32(insn, 22, 2); 7500 int imm4 = extract32(insn, 11, 4); 7501 int rm = extract32(insn, 16, 5); 7502 int rn = extract32(insn, 5, 5); 7503 int rd = extract32(insn, 0, 5); 7504 int pos = imm4 << 3; 7505 TCGv_i64 tcg_resl, tcg_resh; 7506 7507 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7508 unallocated_encoding(s); 7509 return; 7510 } 7511 7512 if (!fp_access_check(s)) { 7513 return; 7514 } 7515 7516 tcg_resh = tcg_temp_new_i64(); 7517 tcg_resl = tcg_temp_new_i64(); 7518 7519 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7520 * either extracting 128 bits from a 128:128 concatenation, or 7521 * extracting 64 bits from a 64:64 concatenation. 7522 */ 7523 if (!is_q) { 7524 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7525 if (pos != 0) { 7526 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7527 do_ext64(s, tcg_resh, tcg_resl, pos); 7528 } 7529 } else { 7530 TCGv_i64 tcg_hh; 7531 typedef struct { 7532 int reg; 7533 int elt; 7534 } EltPosns; 7535 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7536 EltPosns *elt = eltposns; 7537 7538 if (pos >= 64) { 7539 elt++; 7540 pos -= 64; 7541 } 7542 7543 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7544 elt++; 7545 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7546 elt++; 7547 if (pos != 0) { 7548 do_ext64(s, tcg_resh, tcg_resl, pos); 7549 tcg_hh = tcg_temp_new_i64(); 7550 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7551 do_ext64(s, tcg_hh, tcg_resh, pos); 7552 } 7553 } 7554 7555 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7556 if (is_q) { 7557 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7558 } 7559 clear_vec_high(s, is_q, rd); 7560 } 7561 7562 /* TBL/TBX 7563 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7564 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7565 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7566 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7567 */ 7568 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7569 { 7570 int op2 = extract32(insn, 22, 2); 7571 int is_q = extract32(insn, 30, 1); 7572 int rm = extract32(insn, 16, 5); 7573 int rn = extract32(insn, 5, 5); 7574 int rd = extract32(insn, 0, 5); 7575 int is_tbx = extract32(insn, 12, 1); 7576 int len = (extract32(insn, 13, 2) + 1) * 16; 7577 7578 if (op2 != 0) { 7579 unallocated_encoding(s); 7580 return; 7581 } 7582 7583 if (!fp_access_check(s)) { 7584 return; 7585 } 7586 7587 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7588 vec_full_reg_offset(s, rm), tcg_env, 7589 is_q ? 16 : 8, vec_full_reg_size(s), 7590 (len << 6) | (is_tbx << 5) | rn, 7591 gen_helper_simd_tblx); 7592 } 7593 7594 /* ZIP/UZP/TRN 7595 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7596 * +---+---+-------------+------+---+------+---+------------------+------+ 7597 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7598 * +---+---+-------------+------+---+------+---+------------------+------+ 7599 */ 7600 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7601 { 7602 int rd = extract32(insn, 0, 5); 7603 int rn = extract32(insn, 5, 5); 7604 int rm = extract32(insn, 16, 5); 7605 int size = extract32(insn, 22, 2); 7606 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7607 * bit 2 indicates 1 vs 2 variant of the insn. 7608 */ 7609 int opcode = extract32(insn, 12, 2); 7610 bool part = extract32(insn, 14, 1); 7611 bool is_q = extract32(insn, 30, 1); 7612 int esize = 8 << size; 7613 int i; 7614 int datasize = is_q ? 128 : 64; 7615 int elements = datasize / esize; 7616 TCGv_i64 tcg_res[2], tcg_ele; 7617 7618 if (opcode == 0 || (size == 3 && !is_q)) { 7619 unallocated_encoding(s); 7620 return; 7621 } 7622 7623 if (!fp_access_check(s)) { 7624 return; 7625 } 7626 7627 tcg_res[0] = tcg_temp_new_i64(); 7628 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7629 tcg_ele = tcg_temp_new_i64(); 7630 7631 for (i = 0; i < elements; i++) { 7632 int o, w; 7633 7634 switch (opcode) { 7635 case 1: /* UZP1/2 */ 7636 { 7637 int midpoint = elements / 2; 7638 if (i < midpoint) { 7639 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7640 } else { 7641 read_vec_element(s, tcg_ele, rm, 7642 2 * (i - midpoint) + part, size); 7643 } 7644 break; 7645 } 7646 case 2: /* TRN1/2 */ 7647 if (i & 1) { 7648 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7649 } else { 7650 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7651 } 7652 break; 7653 case 3: /* ZIP1/2 */ 7654 { 7655 int base = part * elements / 2; 7656 if (i & 1) { 7657 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7658 } else { 7659 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7660 } 7661 break; 7662 } 7663 default: 7664 g_assert_not_reached(); 7665 } 7666 7667 w = (i * esize) / 64; 7668 o = (i * esize) % 64; 7669 if (o == 0) { 7670 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7671 } else { 7672 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7673 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7674 } 7675 } 7676 7677 for (i = 0; i <= is_q; ++i) { 7678 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7679 } 7680 clear_vec_high(s, is_q, rd); 7681 } 7682 7683 /* 7684 * do_reduction_op helper 7685 * 7686 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7687 * important for correct NaN propagation that we do these 7688 * operations in exactly the order specified by the pseudocode. 7689 * 7690 * This is a recursive function, TCG temps should be freed by the 7691 * calling function once it is done with the values. 7692 */ 7693 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7694 int esize, int size, int vmap, TCGv_ptr fpst) 7695 { 7696 if (esize == size) { 7697 int element; 7698 MemOp msize = esize == 16 ? MO_16 : MO_32; 7699 TCGv_i32 tcg_elem; 7700 7701 /* We should have one register left here */ 7702 assert(ctpop8(vmap) == 1); 7703 element = ctz32(vmap); 7704 assert(element < 8); 7705 7706 tcg_elem = tcg_temp_new_i32(); 7707 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7708 return tcg_elem; 7709 } else { 7710 int bits = size / 2; 7711 int shift = ctpop8(vmap) / 2; 7712 int vmap_lo = (vmap >> shift) & vmap; 7713 int vmap_hi = (vmap & ~vmap_lo); 7714 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7715 7716 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7717 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7718 tcg_res = tcg_temp_new_i32(); 7719 7720 switch (fpopcode) { 7721 case 0x0c: /* fmaxnmv half-precision */ 7722 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7723 break; 7724 case 0x0f: /* fmaxv half-precision */ 7725 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7726 break; 7727 case 0x1c: /* fminnmv half-precision */ 7728 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7729 break; 7730 case 0x1f: /* fminv half-precision */ 7731 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7732 break; 7733 case 0x2c: /* fmaxnmv */ 7734 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7735 break; 7736 case 0x2f: /* fmaxv */ 7737 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7738 break; 7739 case 0x3c: /* fminnmv */ 7740 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7741 break; 7742 case 0x3f: /* fminv */ 7743 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7744 break; 7745 default: 7746 g_assert_not_reached(); 7747 } 7748 return tcg_res; 7749 } 7750 } 7751 7752 /* AdvSIMD across lanes 7753 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7754 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7755 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7756 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7757 */ 7758 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7759 { 7760 int rd = extract32(insn, 0, 5); 7761 int rn = extract32(insn, 5, 5); 7762 int size = extract32(insn, 22, 2); 7763 int opcode = extract32(insn, 12, 5); 7764 bool is_q = extract32(insn, 30, 1); 7765 bool is_u = extract32(insn, 29, 1); 7766 bool is_fp = false; 7767 bool is_min = false; 7768 int esize; 7769 int elements; 7770 int i; 7771 TCGv_i64 tcg_res, tcg_elt; 7772 7773 switch (opcode) { 7774 case 0x1b: /* ADDV */ 7775 if (is_u) { 7776 unallocated_encoding(s); 7777 return; 7778 } 7779 /* fall through */ 7780 case 0x3: /* SADDLV, UADDLV */ 7781 case 0xa: /* SMAXV, UMAXV */ 7782 case 0x1a: /* SMINV, UMINV */ 7783 if (size == 3 || (size == 2 && !is_q)) { 7784 unallocated_encoding(s); 7785 return; 7786 } 7787 break; 7788 case 0xc: /* FMAXNMV, FMINNMV */ 7789 case 0xf: /* FMAXV, FMINV */ 7790 /* Bit 1 of size field encodes min vs max and the actual size 7791 * depends on the encoding of the U bit. If not set (and FP16 7792 * enabled) then we do half-precision float instead of single 7793 * precision. 7794 */ 7795 is_min = extract32(size, 1, 1); 7796 is_fp = true; 7797 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7798 size = 1; 7799 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7800 unallocated_encoding(s); 7801 return; 7802 } else { 7803 size = 2; 7804 } 7805 break; 7806 default: 7807 unallocated_encoding(s); 7808 return; 7809 } 7810 7811 if (!fp_access_check(s)) { 7812 return; 7813 } 7814 7815 esize = 8 << size; 7816 elements = (is_q ? 128 : 64) / esize; 7817 7818 tcg_res = tcg_temp_new_i64(); 7819 tcg_elt = tcg_temp_new_i64(); 7820 7821 /* These instructions operate across all lanes of a vector 7822 * to produce a single result. We can guarantee that a 64 7823 * bit intermediate is sufficient: 7824 * + for [US]ADDLV the maximum element size is 32 bits, and 7825 * the result type is 64 bits 7826 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7827 * same as the element size, which is 32 bits at most 7828 * For the integer operations we can choose to work at 64 7829 * or 32 bits and truncate at the end; for simplicity 7830 * we use 64 bits always. The floating point 7831 * ops do require 32 bit intermediates, though. 7832 */ 7833 if (!is_fp) { 7834 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7835 7836 for (i = 1; i < elements; i++) { 7837 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7838 7839 switch (opcode) { 7840 case 0x03: /* SADDLV / UADDLV */ 7841 case 0x1b: /* ADDV */ 7842 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7843 break; 7844 case 0x0a: /* SMAXV / UMAXV */ 7845 if (is_u) { 7846 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7847 } else { 7848 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7849 } 7850 break; 7851 case 0x1a: /* SMINV / UMINV */ 7852 if (is_u) { 7853 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7854 } else { 7855 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7856 } 7857 break; 7858 default: 7859 g_assert_not_reached(); 7860 } 7861 7862 } 7863 } else { 7864 /* Floating point vector reduction ops which work across 32 7865 * bit (single) or 16 bit (half-precision) intermediates. 7866 * Note that correct NaN propagation requires that we do these 7867 * operations in exactly the order specified by the pseudocode. 7868 */ 7869 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7870 int fpopcode = opcode | is_min << 4 | is_u << 5; 7871 int vmap = (1 << elements) - 1; 7872 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7873 (is_q ? 128 : 64), vmap, fpst); 7874 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7875 } 7876 7877 /* Now truncate the result to the width required for the final output */ 7878 if (opcode == 0x03) { 7879 /* SADDLV, UADDLV: result is 2*esize */ 7880 size++; 7881 } 7882 7883 switch (size) { 7884 case 0: 7885 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7886 break; 7887 case 1: 7888 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7889 break; 7890 case 2: 7891 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7892 break; 7893 case 3: 7894 break; 7895 default: 7896 g_assert_not_reached(); 7897 } 7898 7899 write_fp_dreg(s, rd, tcg_res); 7900 } 7901 7902 /* AdvSIMD modified immediate 7903 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7904 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7905 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7906 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7907 * 7908 * There are a number of operations that can be carried out here: 7909 * MOVI - move (shifted) imm into register 7910 * MVNI - move inverted (shifted) imm into register 7911 * ORR - bitwise OR of (shifted) imm with register 7912 * BIC - bitwise clear of (shifted) imm with register 7913 * With ARMv8.2 we also have: 7914 * FMOV half-precision 7915 */ 7916 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7917 { 7918 int rd = extract32(insn, 0, 5); 7919 int cmode = extract32(insn, 12, 4); 7920 int o2 = extract32(insn, 11, 1); 7921 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7922 bool is_neg = extract32(insn, 29, 1); 7923 bool is_q = extract32(insn, 30, 1); 7924 uint64_t imm = 0; 7925 7926 if (o2) { 7927 if (cmode != 0xf || is_neg) { 7928 unallocated_encoding(s); 7929 return; 7930 } 7931 /* FMOV (vector, immediate) - half-precision */ 7932 if (!dc_isar_feature(aa64_fp16, s)) { 7933 unallocated_encoding(s); 7934 return; 7935 } 7936 imm = vfp_expand_imm(MO_16, abcdefgh); 7937 /* now duplicate across the lanes */ 7938 imm = dup_const(MO_16, imm); 7939 } else { 7940 if (cmode == 0xf && is_neg && !is_q) { 7941 unallocated_encoding(s); 7942 return; 7943 } 7944 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7945 } 7946 7947 if (!fp_access_check(s)) { 7948 return; 7949 } 7950 7951 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7952 /* MOVI or MVNI, with MVNI negation handled above. */ 7953 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7954 vec_full_reg_size(s), imm); 7955 } else { 7956 /* ORR or BIC, with BIC negation to AND handled above. */ 7957 if (is_neg) { 7958 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7959 } else { 7960 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7961 } 7962 } 7963 } 7964 7965 /* AdvSIMD scalar pairwise 7966 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7967 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7968 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7969 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7970 */ 7971 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7972 { 7973 int u = extract32(insn, 29, 1); 7974 int size = extract32(insn, 22, 2); 7975 int opcode = extract32(insn, 12, 5); 7976 int rn = extract32(insn, 5, 5); 7977 int rd = extract32(insn, 0, 5); 7978 TCGv_ptr fpst; 7979 7980 /* For some ops (the FP ones), size[1] is part of the encoding. 7981 * For ADDP strictly it is not but size[1] is always 1 for valid 7982 * encodings. 7983 */ 7984 opcode |= (extract32(size, 1, 1) << 5); 7985 7986 switch (opcode) { 7987 case 0x3b: /* ADDP */ 7988 if (u || size != 3) { 7989 unallocated_encoding(s); 7990 return; 7991 } 7992 if (!fp_access_check(s)) { 7993 return; 7994 } 7995 7996 fpst = NULL; 7997 break; 7998 case 0xc: /* FMAXNMP */ 7999 case 0xd: /* FADDP */ 8000 case 0xf: /* FMAXP */ 8001 case 0x2c: /* FMINNMP */ 8002 case 0x2f: /* FMINP */ 8003 /* FP op, size[0] is 32 or 64 bit*/ 8004 if (!u) { 8005 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8006 unallocated_encoding(s); 8007 return; 8008 } else { 8009 size = MO_16; 8010 } 8011 } else { 8012 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8013 } 8014 8015 if (!fp_access_check(s)) { 8016 return; 8017 } 8018 8019 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8020 break; 8021 default: 8022 unallocated_encoding(s); 8023 return; 8024 } 8025 8026 if (size == MO_64) { 8027 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8028 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8029 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8030 8031 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8032 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8033 8034 switch (opcode) { 8035 case 0x3b: /* ADDP */ 8036 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8037 break; 8038 case 0xc: /* FMAXNMP */ 8039 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8040 break; 8041 case 0xd: /* FADDP */ 8042 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8043 break; 8044 case 0xf: /* FMAXP */ 8045 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8046 break; 8047 case 0x2c: /* FMINNMP */ 8048 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8049 break; 8050 case 0x2f: /* FMINP */ 8051 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8052 break; 8053 default: 8054 g_assert_not_reached(); 8055 } 8056 8057 write_fp_dreg(s, rd, tcg_res); 8058 } else { 8059 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8060 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8061 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8062 8063 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8064 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8065 8066 if (size == MO_16) { 8067 switch (opcode) { 8068 case 0xc: /* FMAXNMP */ 8069 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8070 break; 8071 case 0xd: /* FADDP */ 8072 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8073 break; 8074 case 0xf: /* FMAXP */ 8075 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8076 break; 8077 case 0x2c: /* FMINNMP */ 8078 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8079 break; 8080 case 0x2f: /* FMINP */ 8081 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8082 break; 8083 default: 8084 g_assert_not_reached(); 8085 } 8086 } else { 8087 switch (opcode) { 8088 case 0xc: /* FMAXNMP */ 8089 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8090 break; 8091 case 0xd: /* FADDP */ 8092 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8093 break; 8094 case 0xf: /* FMAXP */ 8095 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8096 break; 8097 case 0x2c: /* FMINNMP */ 8098 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8099 break; 8100 case 0x2f: /* FMINP */ 8101 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8102 break; 8103 default: 8104 g_assert_not_reached(); 8105 } 8106 } 8107 8108 write_fp_sreg(s, rd, tcg_res); 8109 } 8110 } 8111 8112 /* 8113 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8114 * 8115 * This code is handles the common shifting code and is used by both 8116 * the vector and scalar code. 8117 */ 8118 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8119 TCGv_i64 tcg_rnd, bool accumulate, 8120 bool is_u, int size, int shift) 8121 { 8122 bool extended_result = false; 8123 bool round = tcg_rnd != NULL; 8124 int ext_lshift = 0; 8125 TCGv_i64 tcg_src_hi; 8126 8127 if (round && size == 3) { 8128 extended_result = true; 8129 ext_lshift = 64 - shift; 8130 tcg_src_hi = tcg_temp_new_i64(); 8131 } else if (shift == 64) { 8132 if (!accumulate && is_u) { 8133 /* result is zero */ 8134 tcg_gen_movi_i64(tcg_res, 0); 8135 return; 8136 } 8137 } 8138 8139 /* Deal with the rounding step */ 8140 if (round) { 8141 if (extended_result) { 8142 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8143 if (!is_u) { 8144 /* take care of sign extending tcg_res */ 8145 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8146 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8147 tcg_src, tcg_src_hi, 8148 tcg_rnd, tcg_zero); 8149 } else { 8150 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8151 tcg_src, tcg_zero, 8152 tcg_rnd, tcg_zero); 8153 } 8154 } else { 8155 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8156 } 8157 } 8158 8159 /* Now do the shift right */ 8160 if (round && extended_result) { 8161 /* extended case, >64 bit precision required */ 8162 if (ext_lshift == 0) { 8163 /* special case, only high bits matter */ 8164 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8165 } else { 8166 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8167 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8168 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8169 } 8170 } else { 8171 if (is_u) { 8172 if (shift == 64) { 8173 /* essentially shifting in 64 zeros */ 8174 tcg_gen_movi_i64(tcg_src, 0); 8175 } else { 8176 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8177 } 8178 } else { 8179 if (shift == 64) { 8180 /* effectively extending the sign-bit */ 8181 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8182 } else { 8183 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8184 } 8185 } 8186 } 8187 8188 if (accumulate) { 8189 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8190 } else { 8191 tcg_gen_mov_i64(tcg_res, tcg_src); 8192 } 8193 } 8194 8195 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8196 static void handle_scalar_simd_shri(DisasContext *s, 8197 bool is_u, int immh, int immb, 8198 int opcode, int rn, int rd) 8199 { 8200 const int size = 3; 8201 int immhb = immh << 3 | immb; 8202 int shift = 2 * (8 << size) - immhb; 8203 bool accumulate = false; 8204 bool round = false; 8205 bool insert = false; 8206 TCGv_i64 tcg_rn; 8207 TCGv_i64 tcg_rd; 8208 TCGv_i64 tcg_round; 8209 8210 if (!extract32(immh, 3, 1)) { 8211 unallocated_encoding(s); 8212 return; 8213 } 8214 8215 if (!fp_access_check(s)) { 8216 return; 8217 } 8218 8219 switch (opcode) { 8220 case 0x02: /* SSRA / USRA (accumulate) */ 8221 accumulate = true; 8222 break; 8223 case 0x04: /* SRSHR / URSHR (rounding) */ 8224 round = true; 8225 break; 8226 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8227 accumulate = round = true; 8228 break; 8229 case 0x08: /* SRI */ 8230 insert = true; 8231 break; 8232 } 8233 8234 if (round) { 8235 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8236 } else { 8237 tcg_round = NULL; 8238 } 8239 8240 tcg_rn = read_fp_dreg(s, rn); 8241 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8242 8243 if (insert) { 8244 /* shift count same as element size is valid but does nothing; 8245 * special case to avoid potential shift by 64. 8246 */ 8247 int esize = 8 << size; 8248 if (shift != esize) { 8249 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8250 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8251 } 8252 } else { 8253 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8254 accumulate, is_u, size, shift); 8255 } 8256 8257 write_fp_dreg(s, rd, tcg_rd); 8258 } 8259 8260 /* SHL/SLI - Scalar shift left */ 8261 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8262 int immh, int immb, int opcode, 8263 int rn, int rd) 8264 { 8265 int size = 32 - clz32(immh) - 1; 8266 int immhb = immh << 3 | immb; 8267 int shift = immhb - (8 << size); 8268 TCGv_i64 tcg_rn; 8269 TCGv_i64 tcg_rd; 8270 8271 if (!extract32(immh, 3, 1)) { 8272 unallocated_encoding(s); 8273 return; 8274 } 8275 8276 if (!fp_access_check(s)) { 8277 return; 8278 } 8279 8280 tcg_rn = read_fp_dreg(s, rn); 8281 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8282 8283 if (insert) { 8284 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8285 } else { 8286 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8287 } 8288 8289 write_fp_dreg(s, rd, tcg_rd); 8290 } 8291 8292 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8293 * (signed/unsigned) narrowing */ 8294 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8295 bool is_u_shift, bool is_u_narrow, 8296 int immh, int immb, int opcode, 8297 int rn, int rd) 8298 { 8299 int immhb = immh << 3 | immb; 8300 int size = 32 - clz32(immh) - 1; 8301 int esize = 8 << size; 8302 int shift = (2 * esize) - immhb; 8303 int elements = is_scalar ? 1 : (64 / esize); 8304 bool round = extract32(opcode, 0, 1); 8305 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8306 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8307 TCGv_i32 tcg_rd_narrowed; 8308 TCGv_i64 tcg_final; 8309 8310 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8311 { gen_helper_neon_narrow_sat_s8, 8312 gen_helper_neon_unarrow_sat8 }, 8313 { gen_helper_neon_narrow_sat_s16, 8314 gen_helper_neon_unarrow_sat16 }, 8315 { gen_helper_neon_narrow_sat_s32, 8316 gen_helper_neon_unarrow_sat32 }, 8317 { NULL, NULL }, 8318 }; 8319 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8320 gen_helper_neon_narrow_sat_u8, 8321 gen_helper_neon_narrow_sat_u16, 8322 gen_helper_neon_narrow_sat_u32, 8323 NULL 8324 }; 8325 NeonGenNarrowEnvFn *narrowfn; 8326 8327 int i; 8328 8329 assert(size < 4); 8330 8331 if (extract32(immh, 3, 1)) { 8332 unallocated_encoding(s); 8333 return; 8334 } 8335 8336 if (!fp_access_check(s)) { 8337 return; 8338 } 8339 8340 if (is_u_shift) { 8341 narrowfn = unsigned_narrow_fns[size]; 8342 } else { 8343 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8344 } 8345 8346 tcg_rn = tcg_temp_new_i64(); 8347 tcg_rd = tcg_temp_new_i64(); 8348 tcg_rd_narrowed = tcg_temp_new_i32(); 8349 tcg_final = tcg_temp_new_i64(); 8350 8351 if (round) { 8352 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8353 } else { 8354 tcg_round = NULL; 8355 } 8356 8357 for (i = 0; i < elements; i++) { 8358 read_vec_element(s, tcg_rn, rn, i, ldop); 8359 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8360 false, is_u_shift, size+1, shift); 8361 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8362 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8363 if (i == 0) { 8364 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8365 } else { 8366 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8367 } 8368 } 8369 8370 if (!is_q) { 8371 write_vec_element(s, tcg_final, rd, 0, MO_64); 8372 } else { 8373 write_vec_element(s, tcg_final, rd, 1, MO_64); 8374 } 8375 clear_vec_high(s, is_q, rd); 8376 } 8377 8378 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8379 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8380 bool src_unsigned, bool dst_unsigned, 8381 int immh, int immb, int rn, int rd) 8382 { 8383 int immhb = immh << 3 | immb; 8384 int size = 32 - clz32(immh) - 1; 8385 int shift = immhb - (8 << size); 8386 int pass; 8387 8388 assert(immh != 0); 8389 assert(!(scalar && is_q)); 8390 8391 if (!scalar) { 8392 if (!is_q && extract32(immh, 3, 1)) { 8393 unallocated_encoding(s); 8394 return; 8395 } 8396 8397 /* Since we use the variable-shift helpers we must 8398 * replicate the shift count into each element of 8399 * the tcg_shift value. 8400 */ 8401 switch (size) { 8402 case 0: 8403 shift |= shift << 8; 8404 /* fall through */ 8405 case 1: 8406 shift |= shift << 16; 8407 break; 8408 case 2: 8409 case 3: 8410 break; 8411 default: 8412 g_assert_not_reached(); 8413 } 8414 } 8415 8416 if (!fp_access_check(s)) { 8417 return; 8418 } 8419 8420 if (size == 3) { 8421 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8422 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8423 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8424 { NULL, gen_helper_neon_qshl_u64 }, 8425 }; 8426 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8427 int maxpass = is_q ? 2 : 1; 8428 8429 for (pass = 0; pass < maxpass; pass++) { 8430 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8431 8432 read_vec_element(s, tcg_op, rn, pass, MO_64); 8433 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8434 write_vec_element(s, tcg_op, rd, pass, MO_64); 8435 } 8436 clear_vec_high(s, is_q, rd); 8437 } else { 8438 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8439 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8440 { 8441 { gen_helper_neon_qshl_s8, 8442 gen_helper_neon_qshl_s16, 8443 gen_helper_neon_qshl_s32 }, 8444 { gen_helper_neon_qshlu_s8, 8445 gen_helper_neon_qshlu_s16, 8446 gen_helper_neon_qshlu_s32 } 8447 }, { 8448 { NULL, NULL, NULL }, 8449 { gen_helper_neon_qshl_u8, 8450 gen_helper_neon_qshl_u16, 8451 gen_helper_neon_qshl_u32 } 8452 } 8453 }; 8454 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8455 MemOp memop = scalar ? size : MO_32; 8456 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8457 8458 for (pass = 0; pass < maxpass; pass++) { 8459 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8460 8461 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8462 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8463 if (scalar) { 8464 switch (size) { 8465 case 0: 8466 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8467 break; 8468 case 1: 8469 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8470 break; 8471 case 2: 8472 break; 8473 default: 8474 g_assert_not_reached(); 8475 } 8476 write_fp_sreg(s, rd, tcg_op); 8477 } else { 8478 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8479 } 8480 } 8481 8482 if (!scalar) { 8483 clear_vec_high(s, is_q, rd); 8484 } 8485 } 8486 } 8487 8488 /* Common vector code for handling integer to FP conversion */ 8489 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8490 int elements, int is_signed, 8491 int fracbits, int size) 8492 { 8493 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8494 TCGv_i32 tcg_shift = NULL; 8495 8496 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8497 int pass; 8498 8499 if (fracbits || size == MO_64) { 8500 tcg_shift = tcg_constant_i32(fracbits); 8501 } 8502 8503 if (size == MO_64) { 8504 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8505 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8506 8507 for (pass = 0; pass < elements; pass++) { 8508 read_vec_element(s, tcg_int64, rn, pass, mop); 8509 8510 if (is_signed) { 8511 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8512 tcg_shift, tcg_fpst); 8513 } else { 8514 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8515 tcg_shift, tcg_fpst); 8516 } 8517 if (elements == 1) { 8518 write_fp_dreg(s, rd, tcg_double); 8519 } else { 8520 write_vec_element(s, tcg_double, rd, pass, MO_64); 8521 } 8522 } 8523 } else { 8524 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8525 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8526 8527 for (pass = 0; pass < elements; pass++) { 8528 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8529 8530 switch (size) { 8531 case MO_32: 8532 if (fracbits) { 8533 if (is_signed) { 8534 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8535 tcg_shift, tcg_fpst); 8536 } else { 8537 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8538 tcg_shift, tcg_fpst); 8539 } 8540 } else { 8541 if (is_signed) { 8542 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8543 } else { 8544 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8545 } 8546 } 8547 break; 8548 case MO_16: 8549 if (fracbits) { 8550 if (is_signed) { 8551 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8552 tcg_shift, tcg_fpst); 8553 } else { 8554 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8555 tcg_shift, tcg_fpst); 8556 } 8557 } else { 8558 if (is_signed) { 8559 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8560 } else { 8561 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8562 } 8563 } 8564 break; 8565 default: 8566 g_assert_not_reached(); 8567 } 8568 8569 if (elements == 1) { 8570 write_fp_sreg(s, rd, tcg_float); 8571 } else { 8572 write_vec_element_i32(s, tcg_float, rd, pass, size); 8573 } 8574 } 8575 } 8576 8577 clear_vec_high(s, elements << size == 16, rd); 8578 } 8579 8580 /* UCVTF/SCVTF - Integer to FP conversion */ 8581 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8582 bool is_q, bool is_u, 8583 int immh, int immb, int opcode, 8584 int rn, int rd) 8585 { 8586 int size, elements, fracbits; 8587 int immhb = immh << 3 | immb; 8588 8589 if (immh & 8) { 8590 size = MO_64; 8591 if (!is_scalar && !is_q) { 8592 unallocated_encoding(s); 8593 return; 8594 } 8595 } else if (immh & 4) { 8596 size = MO_32; 8597 } else if (immh & 2) { 8598 size = MO_16; 8599 if (!dc_isar_feature(aa64_fp16, s)) { 8600 unallocated_encoding(s); 8601 return; 8602 } 8603 } else { 8604 /* immh == 0 would be a failure of the decode logic */ 8605 g_assert(immh == 1); 8606 unallocated_encoding(s); 8607 return; 8608 } 8609 8610 if (is_scalar) { 8611 elements = 1; 8612 } else { 8613 elements = (8 << is_q) >> size; 8614 } 8615 fracbits = (16 << size) - immhb; 8616 8617 if (!fp_access_check(s)) { 8618 return; 8619 } 8620 8621 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8622 } 8623 8624 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8625 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8626 bool is_q, bool is_u, 8627 int immh, int immb, int rn, int rd) 8628 { 8629 int immhb = immh << 3 | immb; 8630 int pass, size, fracbits; 8631 TCGv_ptr tcg_fpstatus; 8632 TCGv_i32 tcg_rmode, tcg_shift; 8633 8634 if (immh & 0x8) { 8635 size = MO_64; 8636 if (!is_scalar && !is_q) { 8637 unallocated_encoding(s); 8638 return; 8639 } 8640 } else if (immh & 0x4) { 8641 size = MO_32; 8642 } else if (immh & 0x2) { 8643 size = MO_16; 8644 if (!dc_isar_feature(aa64_fp16, s)) { 8645 unallocated_encoding(s); 8646 return; 8647 } 8648 } else { 8649 /* Should have split out AdvSIMD modified immediate earlier. */ 8650 assert(immh == 1); 8651 unallocated_encoding(s); 8652 return; 8653 } 8654 8655 if (!fp_access_check(s)) { 8656 return; 8657 } 8658 8659 assert(!(is_scalar && is_q)); 8660 8661 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8662 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8663 fracbits = (16 << size) - immhb; 8664 tcg_shift = tcg_constant_i32(fracbits); 8665 8666 if (size == MO_64) { 8667 int maxpass = is_scalar ? 1 : 2; 8668 8669 for (pass = 0; pass < maxpass; pass++) { 8670 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8671 8672 read_vec_element(s, tcg_op, rn, pass, MO_64); 8673 if (is_u) { 8674 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8675 } else { 8676 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8677 } 8678 write_vec_element(s, tcg_op, rd, pass, MO_64); 8679 } 8680 clear_vec_high(s, is_q, rd); 8681 } else { 8682 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8683 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8684 8685 switch (size) { 8686 case MO_16: 8687 if (is_u) { 8688 fn = gen_helper_vfp_touhh; 8689 } else { 8690 fn = gen_helper_vfp_toshh; 8691 } 8692 break; 8693 case MO_32: 8694 if (is_u) { 8695 fn = gen_helper_vfp_touls; 8696 } else { 8697 fn = gen_helper_vfp_tosls; 8698 } 8699 break; 8700 default: 8701 g_assert_not_reached(); 8702 } 8703 8704 for (pass = 0; pass < maxpass; pass++) { 8705 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8706 8707 read_vec_element_i32(s, tcg_op, rn, pass, size); 8708 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8709 if (is_scalar) { 8710 if (size == MO_16 && !is_u) { 8711 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8712 } 8713 write_fp_sreg(s, rd, tcg_op); 8714 } else { 8715 write_vec_element_i32(s, tcg_op, rd, pass, size); 8716 } 8717 } 8718 if (!is_scalar) { 8719 clear_vec_high(s, is_q, rd); 8720 } 8721 } 8722 8723 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8724 } 8725 8726 /* AdvSIMD scalar shift by immediate 8727 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8728 * +-----+---+-------------+------+------+--------+---+------+------+ 8729 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8730 * +-----+---+-------------+------+------+--------+---+------+------+ 8731 * 8732 * This is the scalar version so it works on a fixed sized registers 8733 */ 8734 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8735 { 8736 int rd = extract32(insn, 0, 5); 8737 int rn = extract32(insn, 5, 5); 8738 int opcode = extract32(insn, 11, 5); 8739 int immb = extract32(insn, 16, 3); 8740 int immh = extract32(insn, 19, 4); 8741 bool is_u = extract32(insn, 29, 1); 8742 8743 if (immh == 0) { 8744 unallocated_encoding(s); 8745 return; 8746 } 8747 8748 switch (opcode) { 8749 case 0x08: /* SRI */ 8750 if (!is_u) { 8751 unallocated_encoding(s); 8752 return; 8753 } 8754 /* fall through */ 8755 case 0x00: /* SSHR / USHR */ 8756 case 0x02: /* SSRA / USRA */ 8757 case 0x04: /* SRSHR / URSHR */ 8758 case 0x06: /* SRSRA / URSRA */ 8759 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8760 break; 8761 case 0x0a: /* SHL / SLI */ 8762 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8763 break; 8764 case 0x1c: /* SCVTF, UCVTF */ 8765 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8766 opcode, rn, rd); 8767 break; 8768 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8769 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8770 if (!is_u) { 8771 unallocated_encoding(s); 8772 return; 8773 } 8774 handle_vec_simd_sqshrn(s, true, false, false, true, 8775 immh, immb, opcode, rn, rd); 8776 break; 8777 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8778 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8779 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8780 immh, immb, opcode, rn, rd); 8781 break; 8782 case 0xc: /* SQSHLU */ 8783 if (!is_u) { 8784 unallocated_encoding(s); 8785 return; 8786 } 8787 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8788 break; 8789 case 0xe: /* SQSHL, UQSHL */ 8790 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8791 break; 8792 case 0x1f: /* FCVTZS, FCVTZU */ 8793 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8794 break; 8795 default: 8796 unallocated_encoding(s); 8797 break; 8798 } 8799 } 8800 8801 /* AdvSIMD scalar three different 8802 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8803 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8804 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8805 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8806 */ 8807 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8808 { 8809 bool is_u = extract32(insn, 29, 1); 8810 int size = extract32(insn, 22, 2); 8811 int opcode = extract32(insn, 12, 4); 8812 int rm = extract32(insn, 16, 5); 8813 int rn = extract32(insn, 5, 5); 8814 int rd = extract32(insn, 0, 5); 8815 8816 if (is_u) { 8817 unallocated_encoding(s); 8818 return; 8819 } 8820 8821 switch (opcode) { 8822 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8823 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8824 case 0xd: /* SQDMULL, SQDMULL2 */ 8825 if (size == 0 || size == 3) { 8826 unallocated_encoding(s); 8827 return; 8828 } 8829 break; 8830 default: 8831 unallocated_encoding(s); 8832 return; 8833 } 8834 8835 if (!fp_access_check(s)) { 8836 return; 8837 } 8838 8839 if (size == 2) { 8840 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8841 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8842 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8843 8844 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8845 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8846 8847 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8848 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8849 8850 switch (opcode) { 8851 case 0xd: /* SQDMULL, SQDMULL2 */ 8852 break; 8853 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8854 tcg_gen_neg_i64(tcg_res, tcg_res); 8855 /* fall through */ 8856 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8857 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8858 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8859 tcg_res, tcg_op1); 8860 break; 8861 default: 8862 g_assert_not_reached(); 8863 } 8864 8865 write_fp_dreg(s, rd, tcg_res); 8866 } else { 8867 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8868 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8869 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8870 8871 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8872 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8873 8874 switch (opcode) { 8875 case 0xd: /* SQDMULL, SQDMULL2 */ 8876 break; 8877 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8878 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8879 /* fall through */ 8880 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8881 { 8882 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8883 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8884 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8885 tcg_res, tcg_op3); 8886 break; 8887 } 8888 default: 8889 g_assert_not_reached(); 8890 } 8891 8892 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8893 write_fp_dreg(s, rd, tcg_res); 8894 } 8895 } 8896 8897 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8898 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8899 { 8900 /* Handle 64x64->64 opcodes which are shared between the scalar 8901 * and vector 3-same groups. We cover every opcode where size == 3 8902 * is valid in either the three-reg-same (integer, not pairwise) 8903 * or scalar-three-reg-same groups. 8904 */ 8905 TCGCond cond; 8906 8907 switch (opcode) { 8908 case 0x1: /* SQADD */ 8909 if (u) { 8910 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8911 } else { 8912 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8913 } 8914 break; 8915 case 0x5: /* SQSUB */ 8916 if (u) { 8917 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8918 } else { 8919 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8920 } 8921 break; 8922 case 0x6: /* CMGT, CMHI */ 8923 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8924 do_cmop: 8925 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8926 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8927 break; 8928 case 0x7: /* CMGE, CMHS */ 8929 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8930 goto do_cmop; 8931 case 0x11: /* CMTST, CMEQ */ 8932 if (u) { 8933 cond = TCG_COND_EQ; 8934 goto do_cmop; 8935 } 8936 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8937 break; 8938 case 0x8: /* SSHL, USHL */ 8939 if (u) { 8940 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8941 } else { 8942 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8943 } 8944 break; 8945 case 0x9: /* SQSHL, UQSHL */ 8946 if (u) { 8947 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8948 } else { 8949 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8950 } 8951 break; 8952 case 0xa: /* SRSHL, URSHL */ 8953 if (u) { 8954 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8955 } else { 8956 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8957 } 8958 break; 8959 case 0xb: /* SQRSHL, UQRSHL */ 8960 if (u) { 8961 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8962 } else { 8963 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8964 } 8965 break; 8966 case 0x10: /* ADD, SUB */ 8967 if (u) { 8968 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8969 } else { 8970 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8971 } 8972 break; 8973 default: 8974 g_assert_not_reached(); 8975 } 8976 } 8977 8978 /* Handle the 3-same-operands float operations; shared by the scalar 8979 * and vector encodings. The caller must filter out any encodings 8980 * not allocated for the encoding it is dealing with. 8981 */ 8982 static void handle_3same_float(DisasContext *s, int size, int elements, 8983 int fpopcode, int rd, int rn, int rm) 8984 { 8985 int pass; 8986 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8987 8988 for (pass = 0; pass < elements; pass++) { 8989 if (size) { 8990 /* Double */ 8991 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8992 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8993 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8994 8995 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8996 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8997 8998 switch (fpopcode) { 8999 case 0x39: /* FMLS */ 9000 /* As usual for ARM, separate negation for fused multiply-add */ 9001 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9002 /* fall through */ 9003 case 0x19: /* FMLA */ 9004 read_vec_element(s, tcg_res, rd, pass, MO_64); 9005 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9006 tcg_res, fpst); 9007 break; 9008 case 0x18: /* FMAXNM */ 9009 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9010 break; 9011 case 0x1a: /* FADD */ 9012 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9013 break; 9014 case 0x1b: /* FMULX */ 9015 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9016 break; 9017 case 0x1c: /* FCMEQ */ 9018 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9019 break; 9020 case 0x1e: /* FMAX */ 9021 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9022 break; 9023 case 0x1f: /* FRECPS */ 9024 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9025 break; 9026 case 0x38: /* FMINNM */ 9027 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9028 break; 9029 case 0x3a: /* FSUB */ 9030 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9031 break; 9032 case 0x3e: /* FMIN */ 9033 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9034 break; 9035 case 0x3f: /* FRSQRTS */ 9036 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9037 break; 9038 case 0x5b: /* FMUL */ 9039 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9040 break; 9041 case 0x5c: /* FCMGE */ 9042 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9043 break; 9044 case 0x5d: /* FACGE */ 9045 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9046 break; 9047 case 0x5f: /* FDIV */ 9048 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9049 break; 9050 case 0x7a: /* FABD */ 9051 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9052 gen_helper_vfp_absd(tcg_res, tcg_res); 9053 break; 9054 case 0x7c: /* FCMGT */ 9055 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9056 break; 9057 case 0x7d: /* FACGT */ 9058 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9059 break; 9060 default: 9061 g_assert_not_reached(); 9062 } 9063 9064 write_vec_element(s, tcg_res, rd, pass, MO_64); 9065 } else { 9066 /* Single */ 9067 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9068 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9069 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9070 9071 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9072 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9073 9074 switch (fpopcode) { 9075 case 0x39: /* FMLS */ 9076 /* As usual for ARM, separate negation for fused multiply-add */ 9077 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9078 /* fall through */ 9079 case 0x19: /* FMLA */ 9080 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9081 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9082 tcg_res, fpst); 9083 break; 9084 case 0x1a: /* FADD */ 9085 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x1b: /* FMULX */ 9088 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x1c: /* FCMEQ */ 9091 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x1e: /* FMAX */ 9094 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x1f: /* FRECPS */ 9097 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x18: /* FMAXNM */ 9100 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x38: /* FMINNM */ 9103 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x3a: /* FSUB */ 9106 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x3e: /* FMIN */ 9109 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x3f: /* FRSQRTS */ 9112 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x5b: /* FMUL */ 9115 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 case 0x5c: /* FCMGE */ 9118 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x5d: /* FACGE */ 9121 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x5f: /* FDIV */ 9124 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9125 break; 9126 case 0x7a: /* FABD */ 9127 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9128 gen_helper_vfp_abss(tcg_res, tcg_res); 9129 break; 9130 case 0x7c: /* FCMGT */ 9131 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 case 0x7d: /* FACGT */ 9134 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 default: 9137 g_assert_not_reached(); 9138 } 9139 9140 if (elements == 1) { 9141 /* scalar single so clear high part */ 9142 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9143 9144 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9145 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9146 } else { 9147 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9148 } 9149 } 9150 } 9151 9152 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9153 } 9154 9155 /* AdvSIMD scalar three same 9156 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9157 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9158 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9159 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9160 */ 9161 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9162 { 9163 int rd = extract32(insn, 0, 5); 9164 int rn = extract32(insn, 5, 5); 9165 int opcode = extract32(insn, 11, 5); 9166 int rm = extract32(insn, 16, 5); 9167 int size = extract32(insn, 22, 2); 9168 bool u = extract32(insn, 29, 1); 9169 TCGv_i64 tcg_rd; 9170 9171 if (opcode >= 0x18) { 9172 /* Floating point: U, size[1] and opcode indicate operation */ 9173 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9174 switch (fpopcode) { 9175 case 0x1b: /* FMULX */ 9176 case 0x1f: /* FRECPS */ 9177 case 0x3f: /* FRSQRTS */ 9178 case 0x5d: /* FACGE */ 9179 case 0x7d: /* FACGT */ 9180 case 0x1c: /* FCMEQ */ 9181 case 0x5c: /* FCMGE */ 9182 case 0x7c: /* FCMGT */ 9183 case 0x7a: /* FABD */ 9184 break; 9185 default: 9186 unallocated_encoding(s); 9187 return; 9188 } 9189 9190 if (!fp_access_check(s)) { 9191 return; 9192 } 9193 9194 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9195 return; 9196 } 9197 9198 switch (opcode) { 9199 case 0x1: /* SQADD, UQADD */ 9200 case 0x5: /* SQSUB, UQSUB */ 9201 case 0x9: /* SQSHL, UQSHL */ 9202 case 0xb: /* SQRSHL, UQRSHL */ 9203 break; 9204 case 0x8: /* SSHL, USHL */ 9205 case 0xa: /* SRSHL, URSHL */ 9206 case 0x6: /* CMGT, CMHI */ 9207 case 0x7: /* CMGE, CMHS */ 9208 case 0x11: /* CMTST, CMEQ */ 9209 case 0x10: /* ADD, SUB (vector) */ 9210 if (size != 3) { 9211 unallocated_encoding(s); 9212 return; 9213 } 9214 break; 9215 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9216 if (size != 1 && size != 2) { 9217 unallocated_encoding(s); 9218 return; 9219 } 9220 break; 9221 default: 9222 unallocated_encoding(s); 9223 return; 9224 } 9225 9226 if (!fp_access_check(s)) { 9227 return; 9228 } 9229 9230 tcg_rd = tcg_temp_new_i64(); 9231 9232 if (size == 3) { 9233 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9234 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9235 9236 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9237 } else { 9238 /* Do a single operation on the lowest element in the vector. 9239 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9240 * no side effects for all these operations. 9241 * OPTME: special-purpose helpers would avoid doing some 9242 * unnecessary work in the helper for the 8 and 16 bit cases. 9243 */ 9244 NeonGenTwoOpEnvFn *genenvfn; 9245 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9246 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9247 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9248 9249 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9250 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9251 9252 switch (opcode) { 9253 case 0x1: /* SQADD, UQADD */ 9254 { 9255 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9256 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9257 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9258 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9259 }; 9260 genenvfn = fns[size][u]; 9261 break; 9262 } 9263 case 0x5: /* SQSUB, UQSUB */ 9264 { 9265 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9266 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9267 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9268 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9269 }; 9270 genenvfn = fns[size][u]; 9271 break; 9272 } 9273 case 0x9: /* SQSHL, UQSHL */ 9274 { 9275 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9276 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9277 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9278 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9279 }; 9280 genenvfn = fns[size][u]; 9281 break; 9282 } 9283 case 0xb: /* SQRSHL, UQRSHL */ 9284 { 9285 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9286 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9287 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9288 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9289 }; 9290 genenvfn = fns[size][u]; 9291 break; 9292 } 9293 case 0x16: /* SQDMULH, SQRDMULH */ 9294 { 9295 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9296 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9297 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9298 }; 9299 assert(size == 1 || size == 2); 9300 genenvfn = fns[size - 1][u]; 9301 break; 9302 } 9303 default: 9304 g_assert_not_reached(); 9305 } 9306 9307 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9308 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9309 } 9310 9311 write_fp_dreg(s, rd, tcg_rd); 9312 } 9313 9314 /* AdvSIMD scalar three same FP16 9315 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9316 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9317 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9318 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9319 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9320 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9321 */ 9322 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9323 uint32_t insn) 9324 { 9325 int rd = extract32(insn, 0, 5); 9326 int rn = extract32(insn, 5, 5); 9327 int opcode = extract32(insn, 11, 3); 9328 int rm = extract32(insn, 16, 5); 9329 bool u = extract32(insn, 29, 1); 9330 bool a = extract32(insn, 23, 1); 9331 int fpopcode = opcode | (a << 3) | (u << 4); 9332 TCGv_ptr fpst; 9333 TCGv_i32 tcg_op1; 9334 TCGv_i32 tcg_op2; 9335 TCGv_i32 tcg_res; 9336 9337 switch (fpopcode) { 9338 case 0x03: /* FMULX */ 9339 case 0x04: /* FCMEQ (reg) */ 9340 case 0x07: /* FRECPS */ 9341 case 0x0f: /* FRSQRTS */ 9342 case 0x14: /* FCMGE (reg) */ 9343 case 0x15: /* FACGE */ 9344 case 0x1a: /* FABD */ 9345 case 0x1c: /* FCMGT (reg) */ 9346 case 0x1d: /* FACGT */ 9347 break; 9348 default: 9349 unallocated_encoding(s); 9350 return; 9351 } 9352 9353 if (!dc_isar_feature(aa64_fp16, s)) { 9354 unallocated_encoding(s); 9355 } 9356 9357 if (!fp_access_check(s)) { 9358 return; 9359 } 9360 9361 fpst = fpstatus_ptr(FPST_FPCR_F16); 9362 9363 tcg_op1 = read_fp_hreg(s, rn); 9364 tcg_op2 = read_fp_hreg(s, rm); 9365 tcg_res = tcg_temp_new_i32(); 9366 9367 switch (fpopcode) { 9368 case 0x03: /* FMULX */ 9369 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9370 break; 9371 case 0x04: /* FCMEQ (reg) */ 9372 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9373 break; 9374 case 0x07: /* FRECPS */ 9375 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9376 break; 9377 case 0x0f: /* FRSQRTS */ 9378 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9379 break; 9380 case 0x14: /* FCMGE (reg) */ 9381 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9382 break; 9383 case 0x15: /* FACGE */ 9384 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9385 break; 9386 case 0x1a: /* FABD */ 9387 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9388 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9389 break; 9390 case 0x1c: /* FCMGT (reg) */ 9391 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9392 break; 9393 case 0x1d: /* FACGT */ 9394 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9395 break; 9396 default: 9397 g_assert_not_reached(); 9398 } 9399 9400 write_fp_sreg(s, rd, tcg_res); 9401 } 9402 9403 /* AdvSIMD scalar three same extra 9404 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9405 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9406 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9407 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9408 */ 9409 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9410 uint32_t insn) 9411 { 9412 int rd = extract32(insn, 0, 5); 9413 int rn = extract32(insn, 5, 5); 9414 int opcode = extract32(insn, 11, 4); 9415 int rm = extract32(insn, 16, 5); 9416 int size = extract32(insn, 22, 2); 9417 bool u = extract32(insn, 29, 1); 9418 TCGv_i32 ele1, ele2, ele3; 9419 TCGv_i64 res; 9420 bool feature; 9421 9422 switch (u * 16 + opcode) { 9423 case 0x10: /* SQRDMLAH (vector) */ 9424 case 0x11: /* SQRDMLSH (vector) */ 9425 if (size != 1 && size != 2) { 9426 unallocated_encoding(s); 9427 return; 9428 } 9429 feature = dc_isar_feature(aa64_rdm, s); 9430 break; 9431 default: 9432 unallocated_encoding(s); 9433 return; 9434 } 9435 if (!feature) { 9436 unallocated_encoding(s); 9437 return; 9438 } 9439 if (!fp_access_check(s)) { 9440 return; 9441 } 9442 9443 /* Do a single operation on the lowest element in the vector. 9444 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9445 * with no side effects for all these operations. 9446 * OPTME: special-purpose helpers would avoid doing some 9447 * unnecessary work in the helper for the 16 bit cases. 9448 */ 9449 ele1 = tcg_temp_new_i32(); 9450 ele2 = tcg_temp_new_i32(); 9451 ele3 = tcg_temp_new_i32(); 9452 9453 read_vec_element_i32(s, ele1, rn, 0, size); 9454 read_vec_element_i32(s, ele2, rm, 0, size); 9455 read_vec_element_i32(s, ele3, rd, 0, size); 9456 9457 switch (opcode) { 9458 case 0x0: /* SQRDMLAH */ 9459 if (size == 1) { 9460 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9461 } else { 9462 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9463 } 9464 break; 9465 case 0x1: /* SQRDMLSH */ 9466 if (size == 1) { 9467 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9468 } else { 9469 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9470 } 9471 break; 9472 default: 9473 g_assert_not_reached(); 9474 } 9475 9476 res = tcg_temp_new_i64(); 9477 tcg_gen_extu_i32_i64(res, ele3); 9478 write_fp_dreg(s, rd, res); 9479 } 9480 9481 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9482 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9483 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9484 { 9485 /* Handle 64->64 opcodes which are shared between the scalar and 9486 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9487 * is valid in either group and also the double-precision fp ops. 9488 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9489 * requires them. 9490 */ 9491 TCGCond cond; 9492 9493 switch (opcode) { 9494 case 0x4: /* CLS, CLZ */ 9495 if (u) { 9496 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9497 } else { 9498 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9499 } 9500 break; 9501 case 0x5: /* NOT */ 9502 /* This opcode is shared with CNT and RBIT but we have earlier 9503 * enforced that size == 3 if and only if this is the NOT insn. 9504 */ 9505 tcg_gen_not_i64(tcg_rd, tcg_rn); 9506 break; 9507 case 0x7: /* SQABS, SQNEG */ 9508 if (u) { 9509 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9510 } else { 9511 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9512 } 9513 break; 9514 case 0xa: /* CMLT */ 9515 cond = TCG_COND_LT; 9516 do_cmop: 9517 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9518 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9519 break; 9520 case 0x8: /* CMGT, CMGE */ 9521 cond = u ? TCG_COND_GE : TCG_COND_GT; 9522 goto do_cmop; 9523 case 0x9: /* CMEQ, CMLE */ 9524 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9525 goto do_cmop; 9526 case 0xb: /* ABS, NEG */ 9527 if (u) { 9528 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9529 } else { 9530 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9531 } 9532 break; 9533 case 0x2f: /* FABS */ 9534 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9535 break; 9536 case 0x6f: /* FNEG */ 9537 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9538 break; 9539 case 0x7f: /* FSQRT */ 9540 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9541 break; 9542 case 0x1a: /* FCVTNS */ 9543 case 0x1b: /* FCVTMS */ 9544 case 0x1c: /* FCVTAS */ 9545 case 0x3a: /* FCVTPS */ 9546 case 0x3b: /* FCVTZS */ 9547 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9548 break; 9549 case 0x5a: /* FCVTNU */ 9550 case 0x5b: /* FCVTMU */ 9551 case 0x5c: /* FCVTAU */ 9552 case 0x7a: /* FCVTPU */ 9553 case 0x7b: /* FCVTZU */ 9554 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9555 break; 9556 case 0x18: /* FRINTN */ 9557 case 0x19: /* FRINTM */ 9558 case 0x38: /* FRINTP */ 9559 case 0x39: /* FRINTZ */ 9560 case 0x58: /* FRINTA */ 9561 case 0x79: /* FRINTI */ 9562 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9563 break; 9564 case 0x59: /* FRINTX */ 9565 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9566 break; 9567 case 0x1e: /* FRINT32Z */ 9568 case 0x5e: /* FRINT32X */ 9569 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9570 break; 9571 case 0x1f: /* FRINT64Z */ 9572 case 0x5f: /* FRINT64X */ 9573 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9574 break; 9575 default: 9576 g_assert_not_reached(); 9577 } 9578 } 9579 9580 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9581 bool is_scalar, bool is_u, bool is_q, 9582 int size, int rn, int rd) 9583 { 9584 bool is_double = (size == MO_64); 9585 TCGv_ptr fpst; 9586 9587 if (!fp_access_check(s)) { 9588 return; 9589 } 9590 9591 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9592 9593 if (is_double) { 9594 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9595 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9596 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9597 NeonGenTwoDoubleOpFn *genfn; 9598 bool swap = false; 9599 int pass; 9600 9601 switch (opcode) { 9602 case 0x2e: /* FCMLT (zero) */ 9603 swap = true; 9604 /* fallthrough */ 9605 case 0x2c: /* FCMGT (zero) */ 9606 genfn = gen_helper_neon_cgt_f64; 9607 break; 9608 case 0x2d: /* FCMEQ (zero) */ 9609 genfn = gen_helper_neon_ceq_f64; 9610 break; 9611 case 0x6d: /* FCMLE (zero) */ 9612 swap = true; 9613 /* fall through */ 9614 case 0x6c: /* FCMGE (zero) */ 9615 genfn = gen_helper_neon_cge_f64; 9616 break; 9617 default: 9618 g_assert_not_reached(); 9619 } 9620 9621 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9622 read_vec_element(s, tcg_op, rn, pass, MO_64); 9623 if (swap) { 9624 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9625 } else { 9626 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9627 } 9628 write_vec_element(s, tcg_res, rd, pass, MO_64); 9629 } 9630 9631 clear_vec_high(s, !is_scalar, rd); 9632 } else { 9633 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9634 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9635 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9636 NeonGenTwoSingleOpFn *genfn; 9637 bool swap = false; 9638 int pass, maxpasses; 9639 9640 if (size == MO_16) { 9641 switch (opcode) { 9642 case 0x2e: /* FCMLT (zero) */ 9643 swap = true; 9644 /* fall through */ 9645 case 0x2c: /* FCMGT (zero) */ 9646 genfn = gen_helper_advsimd_cgt_f16; 9647 break; 9648 case 0x2d: /* FCMEQ (zero) */ 9649 genfn = gen_helper_advsimd_ceq_f16; 9650 break; 9651 case 0x6d: /* FCMLE (zero) */ 9652 swap = true; 9653 /* fall through */ 9654 case 0x6c: /* FCMGE (zero) */ 9655 genfn = gen_helper_advsimd_cge_f16; 9656 break; 9657 default: 9658 g_assert_not_reached(); 9659 } 9660 } else { 9661 switch (opcode) { 9662 case 0x2e: /* FCMLT (zero) */ 9663 swap = true; 9664 /* fall through */ 9665 case 0x2c: /* FCMGT (zero) */ 9666 genfn = gen_helper_neon_cgt_f32; 9667 break; 9668 case 0x2d: /* FCMEQ (zero) */ 9669 genfn = gen_helper_neon_ceq_f32; 9670 break; 9671 case 0x6d: /* FCMLE (zero) */ 9672 swap = true; 9673 /* fall through */ 9674 case 0x6c: /* FCMGE (zero) */ 9675 genfn = gen_helper_neon_cge_f32; 9676 break; 9677 default: 9678 g_assert_not_reached(); 9679 } 9680 } 9681 9682 if (is_scalar) { 9683 maxpasses = 1; 9684 } else { 9685 int vector_size = 8 << is_q; 9686 maxpasses = vector_size >> size; 9687 } 9688 9689 for (pass = 0; pass < maxpasses; pass++) { 9690 read_vec_element_i32(s, tcg_op, rn, pass, size); 9691 if (swap) { 9692 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9693 } else { 9694 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9695 } 9696 if (is_scalar) { 9697 write_fp_sreg(s, rd, tcg_res); 9698 } else { 9699 write_vec_element_i32(s, tcg_res, rd, pass, size); 9700 } 9701 } 9702 9703 if (!is_scalar) { 9704 clear_vec_high(s, is_q, rd); 9705 } 9706 } 9707 } 9708 9709 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9710 bool is_scalar, bool is_u, bool is_q, 9711 int size, int rn, int rd) 9712 { 9713 bool is_double = (size == 3); 9714 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9715 9716 if (is_double) { 9717 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9718 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9719 int pass; 9720 9721 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9722 read_vec_element(s, tcg_op, rn, pass, MO_64); 9723 switch (opcode) { 9724 case 0x3d: /* FRECPE */ 9725 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9726 break; 9727 case 0x3f: /* FRECPX */ 9728 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9729 break; 9730 case 0x7d: /* FRSQRTE */ 9731 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9732 break; 9733 default: 9734 g_assert_not_reached(); 9735 } 9736 write_vec_element(s, tcg_res, rd, pass, MO_64); 9737 } 9738 clear_vec_high(s, !is_scalar, rd); 9739 } else { 9740 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9741 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9742 int pass, maxpasses; 9743 9744 if (is_scalar) { 9745 maxpasses = 1; 9746 } else { 9747 maxpasses = is_q ? 4 : 2; 9748 } 9749 9750 for (pass = 0; pass < maxpasses; pass++) { 9751 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9752 9753 switch (opcode) { 9754 case 0x3c: /* URECPE */ 9755 gen_helper_recpe_u32(tcg_res, tcg_op); 9756 break; 9757 case 0x3d: /* FRECPE */ 9758 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9759 break; 9760 case 0x3f: /* FRECPX */ 9761 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9762 break; 9763 case 0x7d: /* FRSQRTE */ 9764 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9765 break; 9766 default: 9767 g_assert_not_reached(); 9768 } 9769 9770 if (is_scalar) { 9771 write_fp_sreg(s, rd, tcg_res); 9772 } else { 9773 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9774 } 9775 } 9776 if (!is_scalar) { 9777 clear_vec_high(s, is_q, rd); 9778 } 9779 } 9780 } 9781 9782 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9783 int opcode, bool u, bool is_q, 9784 int size, int rn, int rd) 9785 { 9786 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9787 * in the source becomes a size element in the destination). 9788 */ 9789 int pass; 9790 TCGv_i32 tcg_res[2]; 9791 int destelt = is_q ? 2 : 0; 9792 int passes = scalar ? 1 : 2; 9793 9794 if (scalar) { 9795 tcg_res[1] = tcg_constant_i32(0); 9796 } 9797 9798 for (pass = 0; pass < passes; pass++) { 9799 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9800 NeonGenNarrowFn *genfn = NULL; 9801 NeonGenNarrowEnvFn *genenvfn = NULL; 9802 9803 if (scalar) { 9804 read_vec_element(s, tcg_op, rn, pass, size + 1); 9805 } else { 9806 read_vec_element(s, tcg_op, rn, pass, MO_64); 9807 } 9808 tcg_res[pass] = tcg_temp_new_i32(); 9809 9810 switch (opcode) { 9811 case 0x12: /* XTN, SQXTUN */ 9812 { 9813 static NeonGenNarrowFn * const xtnfns[3] = { 9814 gen_helper_neon_narrow_u8, 9815 gen_helper_neon_narrow_u16, 9816 tcg_gen_extrl_i64_i32, 9817 }; 9818 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9819 gen_helper_neon_unarrow_sat8, 9820 gen_helper_neon_unarrow_sat16, 9821 gen_helper_neon_unarrow_sat32, 9822 }; 9823 if (u) { 9824 genenvfn = sqxtunfns[size]; 9825 } else { 9826 genfn = xtnfns[size]; 9827 } 9828 break; 9829 } 9830 case 0x14: /* SQXTN, UQXTN */ 9831 { 9832 static NeonGenNarrowEnvFn * const fns[3][2] = { 9833 { gen_helper_neon_narrow_sat_s8, 9834 gen_helper_neon_narrow_sat_u8 }, 9835 { gen_helper_neon_narrow_sat_s16, 9836 gen_helper_neon_narrow_sat_u16 }, 9837 { gen_helper_neon_narrow_sat_s32, 9838 gen_helper_neon_narrow_sat_u32 }, 9839 }; 9840 genenvfn = fns[size][u]; 9841 break; 9842 } 9843 case 0x16: /* FCVTN, FCVTN2 */ 9844 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9845 if (size == 2) { 9846 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9847 } else { 9848 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9849 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9850 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9851 TCGv_i32 ahp = get_ahp_flag(); 9852 9853 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9854 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9855 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9856 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9857 } 9858 break; 9859 case 0x36: /* BFCVTN, BFCVTN2 */ 9860 { 9861 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9862 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9863 } 9864 break; 9865 case 0x56: /* FCVTXN, FCVTXN2 */ 9866 /* 64 bit to 32 bit float conversion 9867 * with von Neumann rounding (round to odd) 9868 */ 9869 assert(size == 2); 9870 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9871 break; 9872 default: 9873 g_assert_not_reached(); 9874 } 9875 9876 if (genfn) { 9877 genfn(tcg_res[pass], tcg_op); 9878 } else if (genenvfn) { 9879 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9880 } 9881 } 9882 9883 for (pass = 0; pass < 2; pass++) { 9884 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9885 } 9886 clear_vec_high(s, is_q, rd); 9887 } 9888 9889 /* Remaining saturating accumulating ops */ 9890 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9891 bool is_q, int size, int rn, int rd) 9892 { 9893 bool is_double = (size == 3); 9894 9895 if (is_double) { 9896 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9897 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9898 int pass; 9899 9900 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9901 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9902 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9903 9904 if (is_u) { /* USQADD */ 9905 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9906 } else { /* SUQADD */ 9907 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9908 } 9909 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9910 } 9911 clear_vec_high(s, !is_scalar, rd); 9912 } else { 9913 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9914 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9915 int pass, maxpasses; 9916 9917 if (is_scalar) { 9918 maxpasses = 1; 9919 } else { 9920 maxpasses = is_q ? 4 : 2; 9921 } 9922 9923 for (pass = 0; pass < maxpasses; pass++) { 9924 if (is_scalar) { 9925 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9926 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9927 } else { 9928 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9929 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9930 } 9931 9932 if (is_u) { /* USQADD */ 9933 switch (size) { 9934 case 0: 9935 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9936 break; 9937 case 1: 9938 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9939 break; 9940 case 2: 9941 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9942 break; 9943 default: 9944 g_assert_not_reached(); 9945 } 9946 } else { /* SUQADD */ 9947 switch (size) { 9948 case 0: 9949 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9950 break; 9951 case 1: 9952 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9953 break; 9954 case 2: 9955 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9956 break; 9957 default: 9958 g_assert_not_reached(); 9959 } 9960 } 9961 9962 if (is_scalar) { 9963 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9964 } 9965 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9966 } 9967 clear_vec_high(s, is_q, rd); 9968 } 9969 } 9970 9971 /* AdvSIMD scalar two reg misc 9972 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9973 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9974 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9975 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9976 */ 9977 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9978 { 9979 int rd = extract32(insn, 0, 5); 9980 int rn = extract32(insn, 5, 5); 9981 int opcode = extract32(insn, 12, 5); 9982 int size = extract32(insn, 22, 2); 9983 bool u = extract32(insn, 29, 1); 9984 bool is_fcvt = false; 9985 int rmode; 9986 TCGv_i32 tcg_rmode; 9987 TCGv_ptr tcg_fpstatus; 9988 9989 switch (opcode) { 9990 case 0x3: /* USQADD / SUQADD*/ 9991 if (!fp_access_check(s)) { 9992 return; 9993 } 9994 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9995 return; 9996 case 0x7: /* SQABS / SQNEG */ 9997 break; 9998 case 0xa: /* CMLT */ 9999 if (u) { 10000 unallocated_encoding(s); 10001 return; 10002 } 10003 /* fall through */ 10004 case 0x8: /* CMGT, CMGE */ 10005 case 0x9: /* CMEQ, CMLE */ 10006 case 0xb: /* ABS, NEG */ 10007 if (size != 3) { 10008 unallocated_encoding(s); 10009 return; 10010 } 10011 break; 10012 case 0x12: /* SQXTUN */ 10013 if (!u) { 10014 unallocated_encoding(s); 10015 return; 10016 } 10017 /* fall through */ 10018 case 0x14: /* SQXTN, UQXTN */ 10019 if (size == 3) { 10020 unallocated_encoding(s); 10021 return; 10022 } 10023 if (!fp_access_check(s)) { 10024 return; 10025 } 10026 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10027 return; 10028 case 0xc ... 0xf: 10029 case 0x16 ... 0x1d: 10030 case 0x1f: 10031 /* Floating point: U, size[1] and opcode indicate operation; 10032 * size[0] indicates single or double precision. 10033 */ 10034 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10035 size = extract32(size, 0, 1) ? 3 : 2; 10036 switch (opcode) { 10037 case 0x2c: /* FCMGT (zero) */ 10038 case 0x2d: /* FCMEQ (zero) */ 10039 case 0x2e: /* FCMLT (zero) */ 10040 case 0x6c: /* FCMGE (zero) */ 10041 case 0x6d: /* FCMLE (zero) */ 10042 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10043 return; 10044 case 0x1d: /* SCVTF */ 10045 case 0x5d: /* UCVTF */ 10046 { 10047 bool is_signed = (opcode == 0x1d); 10048 if (!fp_access_check(s)) { 10049 return; 10050 } 10051 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10052 return; 10053 } 10054 case 0x3d: /* FRECPE */ 10055 case 0x3f: /* FRECPX */ 10056 case 0x7d: /* FRSQRTE */ 10057 if (!fp_access_check(s)) { 10058 return; 10059 } 10060 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10061 return; 10062 case 0x1a: /* FCVTNS */ 10063 case 0x1b: /* FCVTMS */ 10064 case 0x3a: /* FCVTPS */ 10065 case 0x3b: /* FCVTZS */ 10066 case 0x5a: /* FCVTNU */ 10067 case 0x5b: /* FCVTMU */ 10068 case 0x7a: /* FCVTPU */ 10069 case 0x7b: /* FCVTZU */ 10070 is_fcvt = true; 10071 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10072 break; 10073 case 0x1c: /* FCVTAS */ 10074 case 0x5c: /* FCVTAU */ 10075 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10076 is_fcvt = true; 10077 rmode = FPROUNDING_TIEAWAY; 10078 break; 10079 case 0x56: /* FCVTXN, FCVTXN2 */ 10080 if (size == 2) { 10081 unallocated_encoding(s); 10082 return; 10083 } 10084 if (!fp_access_check(s)) { 10085 return; 10086 } 10087 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10088 return; 10089 default: 10090 unallocated_encoding(s); 10091 return; 10092 } 10093 break; 10094 default: 10095 unallocated_encoding(s); 10096 return; 10097 } 10098 10099 if (!fp_access_check(s)) { 10100 return; 10101 } 10102 10103 if (is_fcvt) { 10104 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10105 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10106 } else { 10107 tcg_fpstatus = NULL; 10108 tcg_rmode = NULL; 10109 } 10110 10111 if (size == 3) { 10112 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10113 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10114 10115 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10116 write_fp_dreg(s, rd, tcg_rd); 10117 } else { 10118 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10119 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10120 10121 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10122 10123 switch (opcode) { 10124 case 0x7: /* SQABS, SQNEG */ 10125 { 10126 NeonGenOneOpEnvFn *genfn; 10127 static NeonGenOneOpEnvFn * const fns[3][2] = { 10128 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10129 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10130 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10131 }; 10132 genfn = fns[size][u]; 10133 genfn(tcg_rd, tcg_env, tcg_rn); 10134 break; 10135 } 10136 case 0x1a: /* FCVTNS */ 10137 case 0x1b: /* FCVTMS */ 10138 case 0x1c: /* FCVTAS */ 10139 case 0x3a: /* FCVTPS */ 10140 case 0x3b: /* FCVTZS */ 10141 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10142 tcg_fpstatus); 10143 break; 10144 case 0x5a: /* FCVTNU */ 10145 case 0x5b: /* FCVTMU */ 10146 case 0x5c: /* FCVTAU */ 10147 case 0x7a: /* FCVTPU */ 10148 case 0x7b: /* FCVTZU */ 10149 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10150 tcg_fpstatus); 10151 break; 10152 default: 10153 g_assert_not_reached(); 10154 } 10155 10156 write_fp_sreg(s, rd, tcg_rd); 10157 } 10158 10159 if (is_fcvt) { 10160 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10161 } 10162 } 10163 10164 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10165 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10166 int immh, int immb, int opcode, int rn, int rd) 10167 { 10168 int size = 32 - clz32(immh) - 1; 10169 int immhb = immh << 3 | immb; 10170 int shift = 2 * (8 << size) - immhb; 10171 GVecGen2iFn *gvec_fn; 10172 10173 if (extract32(immh, 3, 1) && !is_q) { 10174 unallocated_encoding(s); 10175 return; 10176 } 10177 tcg_debug_assert(size <= 3); 10178 10179 if (!fp_access_check(s)) { 10180 return; 10181 } 10182 10183 switch (opcode) { 10184 case 0x02: /* SSRA / USRA (accumulate) */ 10185 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10186 break; 10187 10188 case 0x08: /* SRI */ 10189 gvec_fn = gen_gvec_sri; 10190 break; 10191 10192 case 0x00: /* SSHR / USHR */ 10193 if (is_u) { 10194 if (shift == 8 << size) { 10195 /* Shift count the same size as element size produces zero. */ 10196 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10197 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10198 return; 10199 } 10200 gvec_fn = tcg_gen_gvec_shri; 10201 } else { 10202 /* Shift count the same size as element size produces all sign. */ 10203 if (shift == 8 << size) { 10204 shift -= 1; 10205 } 10206 gvec_fn = tcg_gen_gvec_sari; 10207 } 10208 break; 10209 10210 case 0x04: /* SRSHR / URSHR (rounding) */ 10211 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10212 break; 10213 10214 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10215 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10216 break; 10217 10218 default: 10219 g_assert_not_reached(); 10220 } 10221 10222 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10223 } 10224 10225 /* SHL/SLI - Vector shift left */ 10226 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10227 int immh, int immb, int opcode, int rn, int rd) 10228 { 10229 int size = 32 - clz32(immh) - 1; 10230 int immhb = immh << 3 | immb; 10231 int shift = immhb - (8 << size); 10232 10233 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10234 assert(size >= 0 && size <= 3); 10235 10236 if (extract32(immh, 3, 1) && !is_q) { 10237 unallocated_encoding(s); 10238 return; 10239 } 10240 10241 if (!fp_access_check(s)) { 10242 return; 10243 } 10244 10245 if (insert) { 10246 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10247 } else { 10248 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10249 } 10250 } 10251 10252 /* USHLL/SHLL - Vector shift left with widening */ 10253 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10254 int immh, int immb, int opcode, int rn, int rd) 10255 { 10256 int size = 32 - clz32(immh) - 1; 10257 int immhb = immh << 3 | immb; 10258 int shift = immhb - (8 << size); 10259 int dsize = 64; 10260 int esize = 8 << size; 10261 int elements = dsize/esize; 10262 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10263 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10264 int i; 10265 10266 if (size >= 3) { 10267 unallocated_encoding(s); 10268 return; 10269 } 10270 10271 if (!fp_access_check(s)) { 10272 return; 10273 } 10274 10275 /* For the LL variants the store is larger than the load, 10276 * so if rd == rn we would overwrite parts of our input. 10277 * So load everything right now and use shifts in the main loop. 10278 */ 10279 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10280 10281 for (i = 0; i < elements; i++) { 10282 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10283 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10284 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10285 write_vec_element(s, tcg_rd, rd, i, size + 1); 10286 } 10287 } 10288 10289 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10290 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10291 int immh, int immb, int opcode, int rn, int rd) 10292 { 10293 int immhb = immh << 3 | immb; 10294 int size = 32 - clz32(immh) - 1; 10295 int dsize = 64; 10296 int esize = 8 << size; 10297 int elements = dsize/esize; 10298 int shift = (2 * esize) - immhb; 10299 bool round = extract32(opcode, 0, 1); 10300 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10301 TCGv_i64 tcg_round; 10302 int i; 10303 10304 if (extract32(immh, 3, 1)) { 10305 unallocated_encoding(s); 10306 return; 10307 } 10308 10309 if (!fp_access_check(s)) { 10310 return; 10311 } 10312 10313 tcg_rn = tcg_temp_new_i64(); 10314 tcg_rd = tcg_temp_new_i64(); 10315 tcg_final = tcg_temp_new_i64(); 10316 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10317 10318 if (round) { 10319 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10320 } else { 10321 tcg_round = NULL; 10322 } 10323 10324 for (i = 0; i < elements; i++) { 10325 read_vec_element(s, tcg_rn, rn, i, size+1); 10326 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10327 false, true, size+1, shift); 10328 10329 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10330 } 10331 10332 if (!is_q) { 10333 write_vec_element(s, tcg_final, rd, 0, MO_64); 10334 } else { 10335 write_vec_element(s, tcg_final, rd, 1, MO_64); 10336 } 10337 10338 clear_vec_high(s, is_q, rd); 10339 } 10340 10341 10342 /* AdvSIMD shift by immediate 10343 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10344 * +---+---+---+-------------+------+------+--------+---+------+------+ 10345 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10346 * +---+---+---+-------------+------+------+--------+---+------+------+ 10347 */ 10348 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10349 { 10350 int rd = extract32(insn, 0, 5); 10351 int rn = extract32(insn, 5, 5); 10352 int opcode = extract32(insn, 11, 5); 10353 int immb = extract32(insn, 16, 3); 10354 int immh = extract32(insn, 19, 4); 10355 bool is_u = extract32(insn, 29, 1); 10356 bool is_q = extract32(insn, 30, 1); 10357 10358 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10359 assert(immh != 0); 10360 10361 switch (opcode) { 10362 case 0x08: /* SRI */ 10363 if (!is_u) { 10364 unallocated_encoding(s); 10365 return; 10366 } 10367 /* fall through */ 10368 case 0x00: /* SSHR / USHR */ 10369 case 0x02: /* SSRA / USRA (accumulate) */ 10370 case 0x04: /* SRSHR / URSHR (rounding) */ 10371 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10372 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10373 break; 10374 case 0x0a: /* SHL / SLI */ 10375 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10376 break; 10377 case 0x10: /* SHRN */ 10378 case 0x11: /* RSHRN / SQRSHRUN */ 10379 if (is_u) { 10380 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10381 opcode, rn, rd); 10382 } else { 10383 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10384 } 10385 break; 10386 case 0x12: /* SQSHRN / UQSHRN */ 10387 case 0x13: /* SQRSHRN / UQRSHRN */ 10388 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10389 opcode, rn, rd); 10390 break; 10391 case 0x14: /* SSHLL / USHLL */ 10392 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10393 break; 10394 case 0x1c: /* SCVTF / UCVTF */ 10395 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10396 opcode, rn, rd); 10397 break; 10398 case 0xc: /* SQSHLU */ 10399 if (!is_u) { 10400 unallocated_encoding(s); 10401 return; 10402 } 10403 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10404 break; 10405 case 0xe: /* SQSHL, UQSHL */ 10406 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10407 break; 10408 case 0x1f: /* FCVTZS/ FCVTZU */ 10409 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10410 return; 10411 default: 10412 unallocated_encoding(s); 10413 return; 10414 } 10415 } 10416 10417 /* Generate code to do a "long" addition or subtraction, ie one done in 10418 * TCGv_i64 on vector lanes twice the width specified by size. 10419 */ 10420 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10421 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10422 { 10423 static NeonGenTwo64OpFn * const fns[3][2] = { 10424 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10425 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10426 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10427 }; 10428 NeonGenTwo64OpFn *genfn; 10429 assert(size < 3); 10430 10431 genfn = fns[size][is_sub]; 10432 genfn(tcg_res, tcg_op1, tcg_op2); 10433 } 10434 10435 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10436 int opcode, int rd, int rn, int rm) 10437 { 10438 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10439 TCGv_i64 tcg_res[2]; 10440 int pass, accop; 10441 10442 tcg_res[0] = tcg_temp_new_i64(); 10443 tcg_res[1] = tcg_temp_new_i64(); 10444 10445 /* Does this op do an adding accumulate, a subtracting accumulate, 10446 * or no accumulate at all? 10447 */ 10448 switch (opcode) { 10449 case 5: 10450 case 8: 10451 case 9: 10452 accop = 1; 10453 break; 10454 case 10: 10455 case 11: 10456 accop = -1; 10457 break; 10458 default: 10459 accop = 0; 10460 break; 10461 } 10462 10463 if (accop != 0) { 10464 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10465 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10466 } 10467 10468 /* size == 2 means two 32x32->64 operations; this is worth special 10469 * casing because we can generally handle it inline. 10470 */ 10471 if (size == 2) { 10472 for (pass = 0; pass < 2; pass++) { 10473 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10474 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10475 TCGv_i64 tcg_passres; 10476 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10477 10478 int elt = pass + is_q * 2; 10479 10480 read_vec_element(s, tcg_op1, rn, elt, memop); 10481 read_vec_element(s, tcg_op2, rm, elt, memop); 10482 10483 if (accop == 0) { 10484 tcg_passres = tcg_res[pass]; 10485 } else { 10486 tcg_passres = tcg_temp_new_i64(); 10487 } 10488 10489 switch (opcode) { 10490 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10491 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10492 break; 10493 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10494 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10495 break; 10496 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10497 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10498 { 10499 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10500 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10501 10502 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10503 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10504 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10505 tcg_passres, 10506 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10507 break; 10508 } 10509 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10510 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10511 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10512 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10513 break; 10514 case 9: /* SQDMLAL, SQDMLAL2 */ 10515 case 11: /* SQDMLSL, SQDMLSL2 */ 10516 case 13: /* SQDMULL, SQDMULL2 */ 10517 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10518 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10519 tcg_passres, tcg_passres); 10520 break; 10521 default: 10522 g_assert_not_reached(); 10523 } 10524 10525 if (opcode == 9 || opcode == 11) { 10526 /* saturating accumulate ops */ 10527 if (accop < 0) { 10528 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10529 } 10530 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10531 tcg_res[pass], tcg_passres); 10532 } else if (accop > 0) { 10533 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10534 } else if (accop < 0) { 10535 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10536 } 10537 } 10538 } else { 10539 /* size 0 or 1, generally helper functions */ 10540 for (pass = 0; pass < 2; pass++) { 10541 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10542 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10543 TCGv_i64 tcg_passres; 10544 int elt = pass + is_q * 2; 10545 10546 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10547 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10548 10549 if (accop == 0) { 10550 tcg_passres = tcg_res[pass]; 10551 } else { 10552 tcg_passres = tcg_temp_new_i64(); 10553 } 10554 10555 switch (opcode) { 10556 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10557 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10558 { 10559 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10560 static NeonGenWidenFn * const widenfns[2][2] = { 10561 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10562 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10563 }; 10564 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10565 10566 widenfn(tcg_op2_64, tcg_op2); 10567 widenfn(tcg_passres, tcg_op1); 10568 gen_neon_addl(size, (opcode == 2), tcg_passres, 10569 tcg_passres, tcg_op2_64); 10570 break; 10571 } 10572 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10573 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10574 if (size == 0) { 10575 if (is_u) { 10576 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10577 } else { 10578 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10579 } 10580 } else { 10581 if (is_u) { 10582 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10583 } else { 10584 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10585 } 10586 } 10587 break; 10588 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10589 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10590 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10591 if (size == 0) { 10592 if (is_u) { 10593 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10594 } else { 10595 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10596 } 10597 } else { 10598 if (is_u) { 10599 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10600 } else { 10601 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10602 } 10603 } 10604 break; 10605 case 9: /* SQDMLAL, SQDMLAL2 */ 10606 case 11: /* SQDMLSL, SQDMLSL2 */ 10607 case 13: /* SQDMULL, SQDMULL2 */ 10608 assert(size == 1); 10609 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10610 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10611 tcg_passres, tcg_passres); 10612 break; 10613 default: 10614 g_assert_not_reached(); 10615 } 10616 10617 if (accop != 0) { 10618 if (opcode == 9 || opcode == 11) { 10619 /* saturating accumulate ops */ 10620 if (accop < 0) { 10621 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10622 } 10623 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10624 tcg_res[pass], 10625 tcg_passres); 10626 } else { 10627 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10628 tcg_res[pass], tcg_passres); 10629 } 10630 } 10631 } 10632 } 10633 10634 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10635 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10636 } 10637 10638 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10639 int opcode, int rd, int rn, int rm) 10640 { 10641 TCGv_i64 tcg_res[2]; 10642 int part = is_q ? 2 : 0; 10643 int pass; 10644 10645 for (pass = 0; pass < 2; pass++) { 10646 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10647 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10648 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10649 static NeonGenWidenFn * const widenfns[3][2] = { 10650 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10651 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10652 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10653 }; 10654 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10655 10656 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10657 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10658 widenfn(tcg_op2_wide, tcg_op2); 10659 tcg_res[pass] = tcg_temp_new_i64(); 10660 gen_neon_addl(size, (opcode == 3), 10661 tcg_res[pass], tcg_op1, tcg_op2_wide); 10662 } 10663 10664 for (pass = 0; pass < 2; pass++) { 10665 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10666 } 10667 } 10668 10669 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10670 { 10671 tcg_gen_addi_i64(in, in, 1U << 31); 10672 tcg_gen_extrh_i64_i32(res, in); 10673 } 10674 10675 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10676 int opcode, int rd, int rn, int rm) 10677 { 10678 TCGv_i32 tcg_res[2]; 10679 int part = is_q ? 2 : 0; 10680 int pass; 10681 10682 for (pass = 0; pass < 2; pass++) { 10683 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10684 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10685 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10686 static NeonGenNarrowFn * const narrowfns[3][2] = { 10687 { gen_helper_neon_narrow_high_u8, 10688 gen_helper_neon_narrow_round_high_u8 }, 10689 { gen_helper_neon_narrow_high_u16, 10690 gen_helper_neon_narrow_round_high_u16 }, 10691 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10692 }; 10693 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10694 10695 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10696 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10697 10698 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10699 10700 tcg_res[pass] = tcg_temp_new_i32(); 10701 gennarrow(tcg_res[pass], tcg_wideres); 10702 } 10703 10704 for (pass = 0; pass < 2; pass++) { 10705 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10706 } 10707 clear_vec_high(s, is_q, rd); 10708 } 10709 10710 /* AdvSIMD three different 10711 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10712 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10713 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10714 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10715 */ 10716 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10717 { 10718 /* Instructions in this group fall into three basic classes 10719 * (in each case with the operation working on each element in 10720 * the input vectors): 10721 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10722 * 128 bit input) 10723 * (2) wide 64 x 128 -> 128 10724 * (3) narrowing 128 x 128 -> 64 10725 * Here we do initial decode, catch unallocated cases and 10726 * dispatch to separate functions for each class. 10727 */ 10728 int is_q = extract32(insn, 30, 1); 10729 int is_u = extract32(insn, 29, 1); 10730 int size = extract32(insn, 22, 2); 10731 int opcode = extract32(insn, 12, 4); 10732 int rm = extract32(insn, 16, 5); 10733 int rn = extract32(insn, 5, 5); 10734 int rd = extract32(insn, 0, 5); 10735 10736 switch (opcode) { 10737 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10738 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10739 /* 64 x 128 -> 128 */ 10740 if (size == 3) { 10741 unallocated_encoding(s); 10742 return; 10743 } 10744 if (!fp_access_check(s)) { 10745 return; 10746 } 10747 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10748 break; 10749 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10750 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10751 /* 128 x 128 -> 64 */ 10752 if (size == 3) { 10753 unallocated_encoding(s); 10754 return; 10755 } 10756 if (!fp_access_check(s)) { 10757 return; 10758 } 10759 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10760 break; 10761 case 14: /* PMULL, PMULL2 */ 10762 if (is_u) { 10763 unallocated_encoding(s); 10764 return; 10765 } 10766 switch (size) { 10767 case 0: /* PMULL.P8 */ 10768 if (!fp_access_check(s)) { 10769 return; 10770 } 10771 /* The Q field specifies lo/hi half input for this insn. */ 10772 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10773 gen_helper_neon_pmull_h); 10774 break; 10775 10776 case 3: /* PMULL.P64 */ 10777 if (!dc_isar_feature(aa64_pmull, s)) { 10778 unallocated_encoding(s); 10779 return; 10780 } 10781 if (!fp_access_check(s)) { 10782 return; 10783 } 10784 /* The Q field specifies lo/hi half input for this insn. */ 10785 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10786 gen_helper_gvec_pmull_q); 10787 break; 10788 10789 default: 10790 unallocated_encoding(s); 10791 break; 10792 } 10793 return; 10794 case 9: /* SQDMLAL, SQDMLAL2 */ 10795 case 11: /* SQDMLSL, SQDMLSL2 */ 10796 case 13: /* SQDMULL, SQDMULL2 */ 10797 if (is_u || size == 0) { 10798 unallocated_encoding(s); 10799 return; 10800 } 10801 /* fall through */ 10802 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10803 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10804 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10805 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10806 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10807 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10808 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10809 /* 64 x 64 -> 128 */ 10810 if (size == 3) { 10811 unallocated_encoding(s); 10812 return; 10813 } 10814 if (!fp_access_check(s)) { 10815 return; 10816 } 10817 10818 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10819 break; 10820 default: 10821 /* opcode 15 not allocated */ 10822 unallocated_encoding(s); 10823 break; 10824 } 10825 } 10826 10827 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10828 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10829 { 10830 int rd = extract32(insn, 0, 5); 10831 int rn = extract32(insn, 5, 5); 10832 int rm = extract32(insn, 16, 5); 10833 int size = extract32(insn, 22, 2); 10834 bool is_u = extract32(insn, 29, 1); 10835 bool is_q = extract32(insn, 30, 1); 10836 10837 if (!fp_access_check(s)) { 10838 return; 10839 } 10840 10841 switch (size + 4 * is_u) { 10842 case 0: /* AND */ 10843 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10844 return; 10845 case 1: /* BIC */ 10846 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10847 return; 10848 case 2: /* ORR */ 10849 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10850 return; 10851 case 3: /* ORN */ 10852 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10853 return; 10854 case 4: /* EOR */ 10855 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10856 return; 10857 10858 case 5: /* BSL bitwise select */ 10859 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10860 return; 10861 case 6: /* BIT, bitwise insert if true */ 10862 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10863 return; 10864 case 7: /* BIF, bitwise insert if false */ 10865 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10866 return; 10867 10868 default: 10869 g_assert_not_reached(); 10870 } 10871 } 10872 10873 /* Pairwise op subgroup of C3.6.16. 10874 * 10875 * This is called directly or via the handle_3same_float for float pairwise 10876 * operations where the opcode and size are calculated differently. 10877 */ 10878 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10879 int size, int rn, int rm, int rd) 10880 { 10881 TCGv_ptr fpst; 10882 int pass; 10883 10884 /* Floating point operations need fpst */ 10885 if (opcode >= 0x58) { 10886 fpst = fpstatus_ptr(FPST_FPCR); 10887 } else { 10888 fpst = NULL; 10889 } 10890 10891 if (!fp_access_check(s)) { 10892 return; 10893 } 10894 10895 /* These operations work on the concatenated rm:rn, with each pair of 10896 * adjacent elements being operated on to produce an element in the result. 10897 */ 10898 if (size == 3) { 10899 TCGv_i64 tcg_res[2]; 10900 10901 for (pass = 0; pass < 2; pass++) { 10902 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10903 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10904 int passreg = (pass == 0) ? rn : rm; 10905 10906 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10907 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10908 tcg_res[pass] = tcg_temp_new_i64(); 10909 10910 switch (opcode) { 10911 case 0x17: /* ADDP */ 10912 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10913 break; 10914 case 0x58: /* FMAXNMP */ 10915 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10916 break; 10917 case 0x5a: /* FADDP */ 10918 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10919 break; 10920 case 0x5e: /* FMAXP */ 10921 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10922 break; 10923 case 0x78: /* FMINNMP */ 10924 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10925 break; 10926 case 0x7e: /* FMINP */ 10927 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10928 break; 10929 default: 10930 g_assert_not_reached(); 10931 } 10932 } 10933 10934 for (pass = 0; pass < 2; pass++) { 10935 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10936 } 10937 } else { 10938 int maxpass = is_q ? 4 : 2; 10939 TCGv_i32 tcg_res[4]; 10940 10941 for (pass = 0; pass < maxpass; pass++) { 10942 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10943 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10944 NeonGenTwoOpFn *genfn = NULL; 10945 int passreg = pass < (maxpass / 2) ? rn : rm; 10946 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10947 10948 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10949 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10950 tcg_res[pass] = tcg_temp_new_i32(); 10951 10952 switch (opcode) { 10953 case 0x17: /* ADDP */ 10954 { 10955 static NeonGenTwoOpFn * const fns[3] = { 10956 gen_helper_neon_padd_u8, 10957 gen_helper_neon_padd_u16, 10958 tcg_gen_add_i32, 10959 }; 10960 genfn = fns[size]; 10961 break; 10962 } 10963 case 0x14: /* SMAXP, UMAXP */ 10964 { 10965 static NeonGenTwoOpFn * const fns[3][2] = { 10966 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10967 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10968 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10969 }; 10970 genfn = fns[size][u]; 10971 break; 10972 } 10973 case 0x15: /* SMINP, UMINP */ 10974 { 10975 static NeonGenTwoOpFn * const fns[3][2] = { 10976 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10977 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10978 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10979 }; 10980 genfn = fns[size][u]; 10981 break; 10982 } 10983 /* The FP operations are all on single floats (32 bit) */ 10984 case 0x58: /* FMAXNMP */ 10985 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10986 break; 10987 case 0x5a: /* FADDP */ 10988 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10989 break; 10990 case 0x5e: /* FMAXP */ 10991 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10992 break; 10993 case 0x78: /* FMINNMP */ 10994 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10995 break; 10996 case 0x7e: /* FMINP */ 10997 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10998 break; 10999 default: 11000 g_assert_not_reached(); 11001 } 11002 11003 /* FP ops called directly, otherwise call now */ 11004 if (genfn) { 11005 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11006 } 11007 } 11008 11009 for (pass = 0; pass < maxpass; pass++) { 11010 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11011 } 11012 clear_vec_high(s, is_q, rd); 11013 } 11014 } 11015 11016 /* Floating point op subgroup of C3.6.16. */ 11017 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11018 { 11019 /* For floating point ops, the U, size[1] and opcode bits 11020 * together indicate the operation. size[0] indicates single 11021 * or double. 11022 */ 11023 int fpopcode = extract32(insn, 11, 5) 11024 | (extract32(insn, 23, 1) << 5) 11025 | (extract32(insn, 29, 1) << 6); 11026 int is_q = extract32(insn, 30, 1); 11027 int size = extract32(insn, 22, 1); 11028 int rm = extract32(insn, 16, 5); 11029 int rn = extract32(insn, 5, 5); 11030 int rd = extract32(insn, 0, 5); 11031 11032 int datasize = is_q ? 128 : 64; 11033 int esize = 32 << size; 11034 int elements = datasize / esize; 11035 11036 if (size == 1 && !is_q) { 11037 unallocated_encoding(s); 11038 return; 11039 } 11040 11041 switch (fpopcode) { 11042 case 0x58: /* FMAXNMP */ 11043 case 0x5a: /* FADDP */ 11044 case 0x5e: /* FMAXP */ 11045 case 0x78: /* FMINNMP */ 11046 case 0x7e: /* FMINP */ 11047 if (size && !is_q) { 11048 unallocated_encoding(s); 11049 return; 11050 } 11051 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11052 rn, rm, rd); 11053 return; 11054 case 0x1b: /* FMULX */ 11055 case 0x1f: /* FRECPS */ 11056 case 0x3f: /* FRSQRTS */ 11057 case 0x5d: /* FACGE */ 11058 case 0x7d: /* FACGT */ 11059 case 0x19: /* FMLA */ 11060 case 0x39: /* FMLS */ 11061 case 0x18: /* FMAXNM */ 11062 case 0x1a: /* FADD */ 11063 case 0x1c: /* FCMEQ */ 11064 case 0x1e: /* FMAX */ 11065 case 0x38: /* FMINNM */ 11066 case 0x3a: /* FSUB */ 11067 case 0x3e: /* FMIN */ 11068 case 0x5b: /* FMUL */ 11069 case 0x5c: /* FCMGE */ 11070 case 0x5f: /* FDIV */ 11071 case 0x7a: /* FABD */ 11072 case 0x7c: /* FCMGT */ 11073 if (!fp_access_check(s)) { 11074 return; 11075 } 11076 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11077 return; 11078 11079 case 0x1d: /* FMLAL */ 11080 case 0x3d: /* FMLSL */ 11081 case 0x59: /* FMLAL2 */ 11082 case 0x79: /* FMLSL2 */ 11083 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11084 unallocated_encoding(s); 11085 return; 11086 } 11087 if (fp_access_check(s)) { 11088 int is_s = extract32(insn, 23, 1); 11089 int is_2 = extract32(insn, 29, 1); 11090 int data = (is_2 << 1) | is_s; 11091 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11092 vec_full_reg_offset(s, rn), 11093 vec_full_reg_offset(s, rm), tcg_env, 11094 is_q ? 16 : 8, vec_full_reg_size(s), 11095 data, gen_helper_gvec_fmlal_a64); 11096 } 11097 return; 11098 11099 default: 11100 unallocated_encoding(s); 11101 return; 11102 } 11103 } 11104 11105 /* Integer op subgroup of C3.6.16. */ 11106 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11107 { 11108 int is_q = extract32(insn, 30, 1); 11109 int u = extract32(insn, 29, 1); 11110 int size = extract32(insn, 22, 2); 11111 int opcode = extract32(insn, 11, 5); 11112 int rm = extract32(insn, 16, 5); 11113 int rn = extract32(insn, 5, 5); 11114 int rd = extract32(insn, 0, 5); 11115 int pass; 11116 TCGCond cond; 11117 11118 switch (opcode) { 11119 case 0x13: /* MUL, PMUL */ 11120 if (u && size != 0) { 11121 unallocated_encoding(s); 11122 return; 11123 } 11124 /* fall through */ 11125 case 0x0: /* SHADD, UHADD */ 11126 case 0x2: /* SRHADD, URHADD */ 11127 case 0x4: /* SHSUB, UHSUB */ 11128 case 0xc: /* SMAX, UMAX */ 11129 case 0xd: /* SMIN, UMIN */ 11130 case 0xe: /* SABD, UABD */ 11131 case 0xf: /* SABA, UABA */ 11132 case 0x12: /* MLA, MLS */ 11133 if (size == 3) { 11134 unallocated_encoding(s); 11135 return; 11136 } 11137 break; 11138 case 0x16: /* SQDMULH, SQRDMULH */ 11139 if (size == 0 || size == 3) { 11140 unallocated_encoding(s); 11141 return; 11142 } 11143 break; 11144 default: 11145 if (size == 3 && !is_q) { 11146 unallocated_encoding(s); 11147 return; 11148 } 11149 break; 11150 } 11151 11152 if (!fp_access_check(s)) { 11153 return; 11154 } 11155 11156 switch (opcode) { 11157 case 0x01: /* SQADD, UQADD */ 11158 if (u) { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11160 } else { 11161 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11162 } 11163 return; 11164 case 0x05: /* SQSUB, UQSUB */ 11165 if (u) { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11167 } else { 11168 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11169 } 11170 return; 11171 case 0x08: /* SSHL, USHL */ 11172 if (u) { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11174 } else { 11175 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11176 } 11177 return; 11178 case 0x0c: /* SMAX, UMAX */ 11179 if (u) { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11181 } else { 11182 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11183 } 11184 return; 11185 case 0x0d: /* SMIN, UMIN */ 11186 if (u) { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11188 } else { 11189 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11190 } 11191 return; 11192 case 0xe: /* SABD, UABD */ 11193 if (u) { 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11195 } else { 11196 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11197 } 11198 return; 11199 case 0xf: /* SABA, UABA */ 11200 if (u) { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11202 } else { 11203 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11204 } 11205 return; 11206 case 0x10: /* ADD, SUB */ 11207 if (u) { 11208 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11209 } else { 11210 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11211 } 11212 return; 11213 case 0x13: /* MUL, PMUL */ 11214 if (!u) { /* MUL */ 11215 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11216 } else { /* PMUL */ 11217 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11218 } 11219 return; 11220 case 0x12: /* MLA, MLS */ 11221 if (u) { 11222 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11223 } else { 11224 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11225 } 11226 return; 11227 case 0x16: /* SQDMULH, SQRDMULH */ 11228 { 11229 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11230 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11231 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11232 }; 11233 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11234 } 11235 return; 11236 case 0x11: 11237 if (!u) { /* CMTST */ 11238 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11239 return; 11240 } 11241 /* else CMEQ */ 11242 cond = TCG_COND_EQ; 11243 goto do_gvec_cmp; 11244 case 0x06: /* CMGT, CMHI */ 11245 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11246 goto do_gvec_cmp; 11247 case 0x07: /* CMGE, CMHS */ 11248 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11249 do_gvec_cmp: 11250 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11251 vec_full_reg_offset(s, rn), 11252 vec_full_reg_offset(s, rm), 11253 is_q ? 16 : 8, vec_full_reg_size(s)); 11254 return; 11255 } 11256 11257 if (size == 3) { 11258 assert(is_q); 11259 for (pass = 0; pass < 2; pass++) { 11260 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11261 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11262 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11263 11264 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11265 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11266 11267 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11268 11269 write_vec_element(s, tcg_res, rd, pass, MO_64); 11270 } 11271 } else { 11272 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11273 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11274 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11275 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11276 NeonGenTwoOpFn *genfn = NULL; 11277 NeonGenTwoOpEnvFn *genenvfn = NULL; 11278 11279 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11280 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11281 11282 switch (opcode) { 11283 case 0x0: /* SHADD, UHADD */ 11284 { 11285 static NeonGenTwoOpFn * const fns[3][2] = { 11286 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11287 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11288 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11289 }; 11290 genfn = fns[size][u]; 11291 break; 11292 } 11293 case 0x2: /* SRHADD, URHADD */ 11294 { 11295 static NeonGenTwoOpFn * const fns[3][2] = { 11296 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11297 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11298 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11299 }; 11300 genfn = fns[size][u]; 11301 break; 11302 } 11303 case 0x4: /* SHSUB, UHSUB */ 11304 { 11305 static NeonGenTwoOpFn * const fns[3][2] = { 11306 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11307 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11308 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11309 }; 11310 genfn = fns[size][u]; 11311 break; 11312 } 11313 case 0x9: /* SQSHL, UQSHL */ 11314 { 11315 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11316 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11317 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11318 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11319 }; 11320 genenvfn = fns[size][u]; 11321 break; 11322 } 11323 case 0xa: /* SRSHL, URSHL */ 11324 { 11325 static NeonGenTwoOpFn * const fns[3][2] = { 11326 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11327 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11328 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11329 }; 11330 genfn = fns[size][u]; 11331 break; 11332 } 11333 case 0xb: /* SQRSHL, UQRSHL */ 11334 { 11335 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11336 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11337 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11338 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11339 }; 11340 genenvfn = fns[size][u]; 11341 break; 11342 } 11343 default: 11344 g_assert_not_reached(); 11345 } 11346 11347 if (genenvfn) { 11348 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11349 } else { 11350 genfn(tcg_res, tcg_op1, tcg_op2); 11351 } 11352 11353 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11354 } 11355 } 11356 clear_vec_high(s, is_q, rd); 11357 } 11358 11359 /* AdvSIMD three same 11360 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11361 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11362 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11363 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11364 */ 11365 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11366 { 11367 int opcode = extract32(insn, 11, 5); 11368 11369 switch (opcode) { 11370 case 0x3: /* logic ops */ 11371 disas_simd_3same_logic(s, insn); 11372 break; 11373 case 0x17: /* ADDP */ 11374 case 0x14: /* SMAXP, UMAXP */ 11375 case 0x15: /* SMINP, UMINP */ 11376 { 11377 /* Pairwise operations */ 11378 int is_q = extract32(insn, 30, 1); 11379 int u = extract32(insn, 29, 1); 11380 int size = extract32(insn, 22, 2); 11381 int rm = extract32(insn, 16, 5); 11382 int rn = extract32(insn, 5, 5); 11383 int rd = extract32(insn, 0, 5); 11384 if (opcode == 0x17) { 11385 if (u || (size == 3 && !is_q)) { 11386 unallocated_encoding(s); 11387 return; 11388 } 11389 } else { 11390 if (size == 3) { 11391 unallocated_encoding(s); 11392 return; 11393 } 11394 } 11395 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11396 break; 11397 } 11398 case 0x18 ... 0x31: 11399 /* floating point ops, sz[1] and U are part of opcode */ 11400 disas_simd_3same_float(s, insn); 11401 break; 11402 default: 11403 disas_simd_3same_int(s, insn); 11404 break; 11405 } 11406 } 11407 11408 /* 11409 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11410 * 11411 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11412 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11413 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11414 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11415 * 11416 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11417 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11418 * 11419 */ 11420 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11421 { 11422 int opcode = extract32(insn, 11, 3); 11423 int u = extract32(insn, 29, 1); 11424 int a = extract32(insn, 23, 1); 11425 int is_q = extract32(insn, 30, 1); 11426 int rm = extract32(insn, 16, 5); 11427 int rn = extract32(insn, 5, 5); 11428 int rd = extract32(insn, 0, 5); 11429 /* 11430 * For these floating point ops, the U, a and opcode bits 11431 * together indicate the operation. 11432 */ 11433 int fpopcode = opcode | (a << 3) | (u << 4); 11434 int datasize = is_q ? 128 : 64; 11435 int elements = datasize / 16; 11436 bool pairwise; 11437 TCGv_ptr fpst; 11438 int pass; 11439 11440 switch (fpopcode) { 11441 case 0x0: /* FMAXNM */ 11442 case 0x1: /* FMLA */ 11443 case 0x2: /* FADD */ 11444 case 0x3: /* FMULX */ 11445 case 0x4: /* FCMEQ */ 11446 case 0x6: /* FMAX */ 11447 case 0x7: /* FRECPS */ 11448 case 0x8: /* FMINNM */ 11449 case 0x9: /* FMLS */ 11450 case 0xa: /* FSUB */ 11451 case 0xe: /* FMIN */ 11452 case 0xf: /* FRSQRTS */ 11453 case 0x13: /* FMUL */ 11454 case 0x14: /* FCMGE */ 11455 case 0x15: /* FACGE */ 11456 case 0x17: /* FDIV */ 11457 case 0x1a: /* FABD */ 11458 case 0x1c: /* FCMGT */ 11459 case 0x1d: /* FACGT */ 11460 pairwise = false; 11461 break; 11462 case 0x10: /* FMAXNMP */ 11463 case 0x12: /* FADDP */ 11464 case 0x16: /* FMAXP */ 11465 case 0x18: /* FMINNMP */ 11466 case 0x1e: /* FMINP */ 11467 pairwise = true; 11468 break; 11469 default: 11470 unallocated_encoding(s); 11471 return; 11472 } 11473 11474 if (!dc_isar_feature(aa64_fp16, s)) { 11475 unallocated_encoding(s); 11476 return; 11477 } 11478 11479 if (!fp_access_check(s)) { 11480 return; 11481 } 11482 11483 fpst = fpstatus_ptr(FPST_FPCR_F16); 11484 11485 if (pairwise) { 11486 int maxpass = is_q ? 8 : 4; 11487 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11488 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11489 TCGv_i32 tcg_res[8]; 11490 11491 for (pass = 0; pass < maxpass; pass++) { 11492 int passreg = pass < (maxpass / 2) ? rn : rm; 11493 int passelt = (pass << 1) & (maxpass - 1); 11494 11495 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11496 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11497 tcg_res[pass] = tcg_temp_new_i32(); 11498 11499 switch (fpopcode) { 11500 case 0x10: /* FMAXNMP */ 11501 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11502 fpst); 11503 break; 11504 case 0x12: /* FADDP */ 11505 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11506 break; 11507 case 0x16: /* FMAXP */ 11508 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11509 break; 11510 case 0x18: /* FMINNMP */ 11511 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11512 fpst); 11513 break; 11514 case 0x1e: /* FMINP */ 11515 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11516 break; 11517 default: 11518 g_assert_not_reached(); 11519 } 11520 } 11521 11522 for (pass = 0; pass < maxpass; pass++) { 11523 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11524 } 11525 } else { 11526 for (pass = 0; pass < elements; pass++) { 11527 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11528 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11529 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11530 11531 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11532 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11533 11534 switch (fpopcode) { 11535 case 0x0: /* FMAXNM */ 11536 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11537 break; 11538 case 0x1: /* FMLA */ 11539 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11540 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11541 fpst); 11542 break; 11543 case 0x2: /* FADD */ 11544 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0x3: /* FMULX */ 11547 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11548 break; 11549 case 0x4: /* FCMEQ */ 11550 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11551 break; 11552 case 0x6: /* FMAX */ 11553 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11554 break; 11555 case 0x7: /* FRECPS */ 11556 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11557 break; 11558 case 0x8: /* FMINNM */ 11559 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11560 break; 11561 case 0x9: /* FMLS */ 11562 /* As usual for ARM, separate negation for fused multiply-add */ 11563 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11564 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11565 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11566 fpst); 11567 break; 11568 case 0xa: /* FSUB */ 11569 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0xe: /* FMIN */ 11572 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 case 0xf: /* FRSQRTS */ 11575 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11576 break; 11577 case 0x13: /* FMUL */ 11578 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11579 break; 11580 case 0x14: /* FCMGE */ 11581 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11582 break; 11583 case 0x15: /* FACGE */ 11584 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11585 break; 11586 case 0x17: /* FDIV */ 11587 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11588 break; 11589 case 0x1a: /* FABD */ 11590 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11591 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11592 break; 11593 case 0x1c: /* FCMGT */ 11594 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11595 break; 11596 case 0x1d: /* FACGT */ 11597 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11598 break; 11599 default: 11600 g_assert_not_reached(); 11601 } 11602 11603 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11604 } 11605 } 11606 11607 clear_vec_high(s, is_q, rd); 11608 } 11609 11610 /* AdvSIMD three same extra 11611 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11612 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11613 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11614 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11615 */ 11616 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11617 { 11618 int rd = extract32(insn, 0, 5); 11619 int rn = extract32(insn, 5, 5); 11620 int opcode = extract32(insn, 11, 4); 11621 int rm = extract32(insn, 16, 5); 11622 int size = extract32(insn, 22, 2); 11623 bool u = extract32(insn, 29, 1); 11624 bool is_q = extract32(insn, 30, 1); 11625 bool feature; 11626 int rot; 11627 11628 switch (u * 16 + opcode) { 11629 case 0x10: /* SQRDMLAH (vector) */ 11630 case 0x11: /* SQRDMLSH (vector) */ 11631 if (size != 1 && size != 2) { 11632 unallocated_encoding(s); 11633 return; 11634 } 11635 feature = dc_isar_feature(aa64_rdm, s); 11636 break; 11637 case 0x02: /* SDOT (vector) */ 11638 case 0x12: /* UDOT (vector) */ 11639 if (size != MO_32) { 11640 unallocated_encoding(s); 11641 return; 11642 } 11643 feature = dc_isar_feature(aa64_dp, s); 11644 break; 11645 case 0x03: /* USDOT */ 11646 if (size != MO_32) { 11647 unallocated_encoding(s); 11648 return; 11649 } 11650 feature = dc_isar_feature(aa64_i8mm, s); 11651 break; 11652 case 0x04: /* SMMLA */ 11653 case 0x14: /* UMMLA */ 11654 case 0x05: /* USMMLA */ 11655 if (!is_q || size != MO_32) { 11656 unallocated_encoding(s); 11657 return; 11658 } 11659 feature = dc_isar_feature(aa64_i8mm, s); 11660 break; 11661 case 0x18: /* FCMLA, #0 */ 11662 case 0x19: /* FCMLA, #90 */ 11663 case 0x1a: /* FCMLA, #180 */ 11664 case 0x1b: /* FCMLA, #270 */ 11665 case 0x1c: /* FCADD, #90 */ 11666 case 0x1e: /* FCADD, #270 */ 11667 if (size == 0 11668 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11669 || (size == 3 && !is_q)) { 11670 unallocated_encoding(s); 11671 return; 11672 } 11673 feature = dc_isar_feature(aa64_fcma, s); 11674 break; 11675 case 0x1d: /* BFMMLA */ 11676 if (size != MO_16 || !is_q) { 11677 unallocated_encoding(s); 11678 return; 11679 } 11680 feature = dc_isar_feature(aa64_bf16, s); 11681 break; 11682 case 0x1f: 11683 switch (size) { 11684 case 1: /* BFDOT */ 11685 case 3: /* BFMLAL{B,T} */ 11686 feature = dc_isar_feature(aa64_bf16, s); 11687 break; 11688 default: 11689 unallocated_encoding(s); 11690 return; 11691 } 11692 break; 11693 default: 11694 unallocated_encoding(s); 11695 return; 11696 } 11697 if (!feature) { 11698 unallocated_encoding(s); 11699 return; 11700 } 11701 if (!fp_access_check(s)) { 11702 return; 11703 } 11704 11705 switch (opcode) { 11706 case 0x0: /* SQRDMLAH (vector) */ 11707 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11708 return; 11709 11710 case 0x1: /* SQRDMLSH (vector) */ 11711 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11712 return; 11713 11714 case 0x2: /* SDOT / UDOT */ 11715 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11716 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11717 return; 11718 11719 case 0x3: /* USDOT */ 11720 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11721 return; 11722 11723 case 0x04: /* SMMLA, UMMLA */ 11724 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11725 u ? gen_helper_gvec_ummla_b 11726 : gen_helper_gvec_smmla_b); 11727 return; 11728 case 0x05: /* USMMLA */ 11729 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11730 return; 11731 11732 case 0x8: /* FCMLA, #0 */ 11733 case 0x9: /* FCMLA, #90 */ 11734 case 0xa: /* FCMLA, #180 */ 11735 case 0xb: /* FCMLA, #270 */ 11736 rot = extract32(opcode, 0, 2); 11737 switch (size) { 11738 case 1: 11739 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11740 gen_helper_gvec_fcmlah); 11741 break; 11742 case 2: 11743 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11744 gen_helper_gvec_fcmlas); 11745 break; 11746 case 3: 11747 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11748 gen_helper_gvec_fcmlad); 11749 break; 11750 default: 11751 g_assert_not_reached(); 11752 } 11753 return; 11754 11755 case 0xc: /* FCADD, #90 */ 11756 case 0xe: /* FCADD, #270 */ 11757 rot = extract32(opcode, 1, 1); 11758 switch (size) { 11759 case 1: 11760 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11761 gen_helper_gvec_fcaddh); 11762 break; 11763 case 2: 11764 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11765 gen_helper_gvec_fcadds); 11766 break; 11767 case 3: 11768 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11769 gen_helper_gvec_fcaddd); 11770 break; 11771 default: 11772 g_assert_not_reached(); 11773 } 11774 return; 11775 11776 case 0xd: /* BFMMLA */ 11777 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11778 return; 11779 case 0xf: 11780 switch (size) { 11781 case 1: /* BFDOT */ 11782 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11783 break; 11784 case 3: /* BFMLAL{B,T} */ 11785 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11786 gen_helper_gvec_bfmlal); 11787 break; 11788 default: 11789 g_assert_not_reached(); 11790 } 11791 return; 11792 11793 default: 11794 g_assert_not_reached(); 11795 } 11796 } 11797 11798 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11799 int size, int rn, int rd) 11800 { 11801 /* Handle 2-reg-misc ops which are widening (so each size element 11802 * in the source becomes a 2*size element in the destination. 11803 * The only instruction like this is FCVTL. 11804 */ 11805 int pass; 11806 11807 if (size == 3) { 11808 /* 32 -> 64 bit fp conversion */ 11809 TCGv_i64 tcg_res[2]; 11810 int srcelt = is_q ? 2 : 0; 11811 11812 for (pass = 0; pass < 2; pass++) { 11813 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11814 tcg_res[pass] = tcg_temp_new_i64(); 11815 11816 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11817 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11818 } 11819 for (pass = 0; pass < 2; pass++) { 11820 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11821 } 11822 } else { 11823 /* 16 -> 32 bit fp conversion */ 11824 int srcelt = is_q ? 4 : 0; 11825 TCGv_i32 tcg_res[4]; 11826 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11827 TCGv_i32 ahp = get_ahp_flag(); 11828 11829 for (pass = 0; pass < 4; pass++) { 11830 tcg_res[pass] = tcg_temp_new_i32(); 11831 11832 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11833 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11834 fpst, ahp); 11835 } 11836 for (pass = 0; pass < 4; pass++) { 11837 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11838 } 11839 } 11840 } 11841 11842 static void handle_rev(DisasContext *s, int opcode, bool u, 11843 bool is_q, int size, int rn, int rd) 11844 { 11845 int op = (opcode << 1) | u; 11846 int opsz = op + size; 11847 int grp_size = 3 - opsz; 11848 int dsize = is_q ? 128 : 64; 11849 int i; 11850 11851 if (opsz >= 3) { 11852 unallocated_encoding(s); 11853 return; 11854 } 11855 11856 if (!fp_access_check(s)) { 11857 return; 11858 } 11859 11860 if (size == 0) { 11861 /* Special case bytes, use bswap op on each group of elements */ 11862 int groups = dsize / (8 << grp_size); 11863 11864 for (i = 0; i < groups; i++) { 11865 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11866 11867 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11868 switch (grp_size) { 11869 case MO_16: 11870 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11871 break; 11872 case MO_32: 11873 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11874 break; 11875 case MO_64: 11876 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11877 break; 11878 default: 11879 g_assert_not_reached(); 11880 } 11881 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11882 } 11883 clear_vec_high(s, is_q, rd); 11884 } else { 11885 int revmask = (1 << grp_size) - 1; 11886 int esize = 8 << size; 11887 int elements = dsize / esize; 11888 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11889 TCGv_i64 tcg_rd[2]; 11890 11891 for (i = 0; i < 2; i++) { 11892 tcg_rd[i] = tcg_temp_new_i64(); 11893 tcg_gen_movi_i64(tcg_rd[i], 0); 11894 } 11895 11896 for (i = 0; i < elements; i++) { 11897 int e_rev = (i & 0xf) ^ revmask; 11898 int w = (e_rev * esize) / 64; 11899 int o = (e_rev * esize) % 64; 11900 11901 read_vec_element(s, tcg_rn, rn, i, size); 11902 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11903 } 11904 11905 for (i = 0; i < 2; i++) { 11906 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11907 } 11908 clear_vec_high(s, true, rd); 11909 } 11910 } 11911 11912 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11913 bool is_q, int size, int rn, int rd) 11914 { 11915 /* Implement the pairwise operations from 2-misc: 11916 * SADDLP, UADDLP, SADALP, UADALP. 11917 * These all add pairs of elements in the input to produce a 11918 * double-width result element in the output (possibly accumulating). 11919 */ 11920 bool accum = (opcode == 0x6); 11921 int maxpass = is_q ? 2 : 1; 11922 int pass; 11923 TCGv_i64 tcg_res[2]; 11924 11925 if (size == 2) { 11926 /* 32 + 32 -> 64 op */ 11927 MemOp memop = size + (u ? 0 : MO_SIGN); 11928 11929 for (pass = 0; pass < maxpass; pass++) { 11930 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11931 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11932 11933 tcg_res[pass] = tcg_temp_new_i64(); 11934 11935 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11936 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11937 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11938 if (accum) { 11939 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11940 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11941 } 11942 } 11943 } else { 11944 for (pass = 0; pass < maxpass; pass++) { 11945 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11946 NeonGenOne64OpFn *genfn; 11947 static NeonGenOne64OpFn * const fns[2][2] = { 11948 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11949 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11950 }; 11951 11952 genfn = fns[size][u]; 11953 11954 tcg_res[pass] = tcg_temp_new_i64(); 11955 11956 read_vec_element(s, tcg_op, rn, pass, MO_64); 11957 genfn(tcg_res[pass], tcg_op); 11958 11959 if (accum) { 11960 read_vec_element(s, tcg_op, rd, pass, MO_64); 11961 if (size == 0) { 11962 gen_helper_neon_addl_u16(tcg_res[pass], 11963 tcg_res[pass], tcg_op); 11964 } else { 11965 gen_helper_neon_addl_u32(tcg_res[pass], 11966 tcg_res[pass], tcg_op); 11967 } 11968 } 11969 } 11970 } 11971 if (!is_q) { 11972 tcg_res[1] = tcg_constant_i64(0); 11973 } 11974 for (pass = 0; pass < 2; pass++) { 11975 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11976 } 11977 } 11978 11979 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11980 { 11981 /* Implement SHLL and SHLL2 */ 11982 int pass; 11983 int part = is_q ? 2 : 0; 11984 TCGv_i64 tcg_res[2]; 11985 11986 for (pass = 0; pass < 2; pass++) { 11987 static NeonGenWidenFn * const widenfns[3] = { 11988 gen_helper_neon_widen_u8, 11989 gen_helper_neon_widen_u16, 11990 tcg_gen_extu_i32_i64, 11991 }; 11992 NeonGenWidenFn *widenfn = widenfns[size]; 11993 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11994 11995 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11996 tcg_res[pass] = tcg_temp_new_i64(); 11997 widenfn(tcg_res[pass], tcg_op); 11998 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11999 } 12000 12001 for (pass = 0; pass < 2; pass++) { 12002 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12003 } 12004 } 12005 12006 /* AdvSIMD two reg misc 12007 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12008 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12009 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12010 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12011 */ 12012 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12013 { 12014 int size = extract32(insn, 22, 2); 12015 int opcode = extract32(insn, 12, 5); 12016 bool u = extract32(insn, 29, 1); 12017 bool is_q = extract32(insn, 30, 1); 12018 int rn = extract32(insn, 5, 5); 12019 int rd = extract32(insn, 0, 5); 12020 bool need_fpstatus = false; 12021 int rmode = -1; 12022 TCGv_i32 tcg_rmode; 12023 TCGv_ptr tcg_fpstatus; 12024 12025 switch (opcode) { 12026 case 0x0: /* REV64, REV32 */ 12027 case 0x1: /* REV16 */ 12028 handle_rev(s, opcode, u, is_q, size, rn, rd); 12029 return; 12030 case 0x5: /* CNT, NOT, RBIT */ 12031 if (u && size == 0) { 12032 /* NOT */ 12033 break; 12034 } else if (u && size == 1) { 12035 /* RBIT */ 12036 break; 12037 } else if (!u && size == 0) { 12038 /* CNT */ 12039 break; 12040 } 12041 unallocated_encoding(s); 12042 return; 12043 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12044 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12045 if (size == 3) { 12046 unallocated_encoding(s); 12047 return; 12048 } 12049 if (!fp_access_check(s)) { 12050 return; 12051 } 12052 12053 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12054 return; 12055 case 0x4: /* CLS, CLZ */ 12056 if (size == 3) { 12057 unallocated_encoding(s); 12058 return; 12059 } 12060 break; 12061 case 0x2: /* SADDLP, UADDLP */ 12062 case 0x6: /* SADALP, UADALP */ 12063 if (size == 3) { 12064 unallocated_encoding(s); 12065 return; 12066 } 12067 if (!fp_access_check(s)) { 12068 return; 12069 } 12070 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12071 return; 12072 case 0x13: /* SHLL, SHLL2 */ 12073 if (u == 0 || size == 3) { 12074 unallocated_encoding(s); 12075 return; 12076 } 12077 if (!fp_access_check(s)) { 12078 return; 12079 } 12080 handle_shll(s, is_q, size, rn, rd); 12081 return; 12082 case 0xa: /* CMLT */ 12083 if (u == 1) { 12084 unallocated_encoding(s); 12085 return; 12086 } 12087 /* fall through */ 12088 case 0x8: /* CMGT, CMGE */ 12089 case 0x9: /* CMEQ, CMLE */ 12090 case 0xb: /* ABS, NEG */ 12091 if (size == 3 && !is_q) { 12092 unallocated_encoding(s); 12093 return; 12094 } 12095 break; 12096 case 0x3: /* SUQADD, USQADD */ 12097 if (size == 3 && !is_q) { 12098 unallocated_encoding(s); 12099 return; 12100 } 12101 if (!fp_access_check(s)) { 12102 return; 12103 } 12104 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12105 return; 12106 case 0x7: /* SQABS, SQNEG */ 12107 if (size == 3 && !is_q) { 12108 unallocated_encoding(s); 12109 return; 12110 } 12111 break; 12112 case 0xc ... 0xf: 12113 case 0x16 ... 0x1f: 12114 { 12115 /* Floating point: U, size[1] and opcode indicate operation; 12116 * size[0] indicates single or double precision. 12117 */ 12118 int is_double = extract32(size, 0, 1); 12119 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12120 size = is_double ? 3 : 2; 12121 switch (opcode) { 12122 case 0x2f: /* FABS */ 12123 case 0x6f: /* FNEG */ 12124 if (size == 3 && !is_q) { 12125 unallocated_encoding(s); 12126 return; 12127 } 12128 break; 12129 case 0x1d: /* SCVTF */ 12130 case 0x5d: /* UCVTF */ 12131 { 12132 bool is_signed = (opcode == 0x1d) ? true : false; 12133 int elements = is_double ? 2 : is_q ? 4 : 2; 12134 if (is_double && !is_q) { 12135 unallocated_encoding(s); 12136 return; 12137 } 12138 if (!fp_access_check(s)) { 12139 return; 12140 } 12141 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12142 return; 12143 } 12144 case 0x2c: /* FCMGT (zero) */ 12145 case 0x2d: /* FCMEQ (zero) */ 12146 case 0x2e: /* FCMLT (zero) */ 12147 case 0x6c: /* FCMGE (zero) */ 12148 case 0x6d: /* FCMLE (zero) */ 12149 if (size == 3 && !is_q) { 12150 unallocated_encoding(s); 12151 return; 12152 } 12153 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12154 return; 12155 case 0x7f: /* FSQRT */ 12156 if (size == 3 && !is_q) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 break; 12161 case 0x1a: /* FCVTNS */ 12162 case 0x1b: /* FCVTMS */ 12163 case 0x3a: /* FCVTPS */ 12164 case 0x3b: /* FCVTZS */ 12165 case 0x5a: /* FCVTNU */ 12166 case 0x5b: /* FCVTMU */ 12167 case 0x7a: /* FCVTPU */ 12168 case 0x7b: /* FCVTZU */ 12169 need_fpstatus = true; 12170 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12171 if (size == 3 && !is_q) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 break; 12176 case 0x5c: /* FCVTAU */ 12177 case 0x1c: /* FCVTAS */ 12178 need_fpstatus = true; 12179 rmode = FPROUNDING_TIEAWAY; 12180 if (size == 3 && !is_q) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 break; 12185 case 0x3c: /* URECPE */ 12186 if (size == 3) { 12187 unallocated_encoding(s); 12188 return; 12189 } 12190 /* fall through */ 12191 case 0x3d: /* FRECPE */ 12192 case 0x7d: /* FRSQRTE */ 12193 if (size == 3 && !is_q) { 12194 unallocated_encoding(s); 12195 return; 12196 } 12197 if (!fp_access_check(s)) { 12198 return; 12199 } 12200 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12201 return; 12202 case 0x56: /* FCVTXN, FCVTXN2 */ 12203 if (size == 2) { 12204 unallocated_encoding(s); 12205 return; 12206 } 12207 /* fall through */ 12208 case 0x16: /* FCVTN, FCVTN2 */ 12209 /* handle_2misc_narrow does a 2*size -> size operation, but these 12210 * instructions encode the source size rather than dest size. 12211 */ 12212 if (!fp_access_check(s)) { 12213 return; 12214 } 12215 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12216 return; 12217 case 0x36: /* BFCVTN, BFCVTN2 */ 12218 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12219 unallocated_encoding(s); 12220 return; 12221 } 12222 if (!fp_access_check(s)) { 12223 return; 12224 } 12225 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12226 return; 12227 case 0x17: /* FCVTL, FCVTL2 */ 12228 if (!fp_access_check(s)) { 12229 return; 12230 } 12231 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12232 return; 12233 case 0x18: /* FRINTN */ 12234 case 0x19: /* FRINTM */ 12235 case 0x38: /* FRINTP */ 12236 case 0x39: /* FRINTZ */ 12237 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12238 /* fall through */ 12239 case 0x59: /* FRINTX */ 12240 case 0x79: /* FRINTI */ 12241 need_fpstatus = true; 12242 if (size == 3 && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 break; 12247 case 0x58: /* FRINTA */ 12248 rmode = FPROUNDING_TIEAWAY; 12249 need_fpstatus = true; 12250 if (size == 3 && !is_q) { 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 break; 12255 case 0x7c: /* URSQRTE */ 12256 if (size == 3) { 12257 unallocated_encoding(s); 12258 return; 12259 } 12260 break; 12261 case 0x1e: /* FRINT32Z */ 12262 case 0x1f: /* FRINT64Z */ 12263 rmode = FPROUNDING_ZERO; 12264 /* fall through */ 12265 case 0x5e: /* FRINT32X */ 12266 case 0x5f: /* FRINT64X */ 12267 need_fpstatus = true; 12268 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12269 unallocated_encoding(s); 12270 return; 12271 } 12272 break; 12273 default: 12274 unallocated_encoding(s); 12275 return; 12276 } 12277 break; 12278 } 12279 default: 12280 unallocated_encoding(s); 12281 return; 12282 } 12283 12284 if (!fp_access_check(s)) { 12285 return; 12286 } 12287 12288 if (need_fpstatus || rmode >= 0) { 12289 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12290 } else { 12291 tcg_fpstatus = NULL; 12292 } 12293 if (rmode >= 0) { 12294 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12295 } else { 12296 tcg_rmode = NULL; 12297 } 12298 12299 switch (opcode) { 12300 case 0x5: 12301 if (u && size == 0) { /* NOT */ 12302 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12303 return; 12304 } 12305 break; 12306 case 0x8: /* CMGT, CMGE */ 12307 if (u) { 12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12309 } else { 12310 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12311 } 12312 return; 12313 case 0x9: /* CMEQ, CMLE */ 12314 if (u) { 12315 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12316 } else { 12317 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12318 } 12319 return; 12320 case 0xa: /* CMLT */ 12321 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12322 return; 12323 case 0xb: 12324 if (u) { /* ABS, NEG */ 12325 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12326 } else { 12327 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12328 } 12329 return; 12330 } 12331 12332 if (size == 3) { 12333 /* All 64-bit element operations can be shared with scalar 2misc */ 12334 int pass; 12335 12336 /* Coverity claims (size == 3 && !is_q) has been eliminated 12337 * from all paths leading to here. 12338 */ 12339 tcg_debug_assert(is_q); 12340 for (pass = 0; pass < 2; pass++) { 12341 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12342 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12343 12344 read_vec_element(s, tcg_op, rn, pass, MO_64); 12345 12346 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12347 tcg_rmode, tcg_fpstatus); 12348 12349 write_vec_element(s, tcg_res, rd, pass, MO_64); 12350 } 12351 } else { 12352 int pass; 12353 12354 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12355 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12356 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12357 12358 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12359 12360 if (size == 2) { 12361 /* Special cases for 32 bit elements */ 12362 switch (opcode) { 12363 case 0x4: /* CLS */ 12364 if (u) { 12365 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12366 } else { 12367 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12368 } 12369 break; 12370 case 0x7: /* SQABS, SQNEG */ 12371 if (u) { 12372 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12373 } else { 12374 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12375 } 12376 break; 12377 case 0x2f: /* FABS */ 12378 gen_helper_vfp_abss(tcg_res, tcg_op); 12379 break; 12380 case 0x6f: /* FNEG */ 12381 gen_helper_vfp_negs(tcg_res, tcg_op); 12382 break; 12383 case 0x7f: /* FSQRT */ 12384 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12385 break; 12386 case 0x1a: /* FCVTNS */ 12387 case 0x1b: /* FCVTMS */ 12388 case 0x1c: /* FCVTAS */ 12389 case 0x3a: /* FCVTPS */ 12390 case 0x3b: /* FCVTZS */ 12391 gen_helper_vfp_tosls(tcg_res, tcg_op, 12392 tcg_constant_i32(0), tcg_fpstatus); 12393 break; 12394 case 0x5a: /* FCVTNU */ 12395 case 0x5b: /* FCVTMU */ 12396 case 0x5c: /* FCVTAU */ 12397 case 0x7a: /* FCVTPU */ 12398 case 0x7b: /* FCVTZU */ 12399 gen_helper_vfp_touls(tcg_res, tcg_op, 12400 tcg_constant_i32(0), tcg_fpstatus); 12401 break; 12402 case 0x18: /* FRINTN */ 12403 case 0x19: /* FRINTM */ 12404 case 0x38: /* FRINTP */ 12405 case 0x39: /* FRINTZ */ 12406 case 0x58: /* FRINTA */ 12407 case 0x79: /* FRINTI */ 12408 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12409 break; 12410 case 0x59: /* FRINTX */ 12411 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12412 break; 12413 case 0x7c: /* URSQRTE */ 12414 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12415 break; 12416 case 0x1e: /* FRINT32Z */ 12417 case 0x5e: /* FRINT32X */ 12418 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12419 break; 12420 case 0x1f: /* FRINT64Z */ 12421 case 0x5f: /* FRINT64X */ 12422 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12423 break; 12424 default: 12425 g_assert_not_reached(); 12426 } 12427 } else { 12428 /* Use helpers for 8 and 16 bit elements */ 12429 switch (opcode) { 12430 case 0x5: /* CNT, RBIT */ 12431 /* For these two insns size is part of the opcode specifier 12432 * (handled earlier); they always operate on byte elements. 12433 */ 12434 if (u) { 12435 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12436 } else { 12437 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12438 } 12439 break; 12440 case 0x7: /* SQABS, SQNEG */ 12441 { 12442 NeonGenOneOpEnvFn *genfn; 12443 static NeonGenOneOpEnvFn * const fns[2][2] = { 12444 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12445 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12446 }; 12447 genfn = fns[size][u]; 12448 genfn(tcg_res, tcg_env, tcg_op); 12449 break; 12450 } 12451 case 0x4: /* CLS, CLZ */ 12452 if (u) { 12453 if (size == 0) { 12454 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12455 } else { 12456 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12457 } 12458 } else { 12459 if (size == 0) { 12460 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12461 } else { 12462 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12463 } 12464 } 12465 break; 12466 default: 12467 g_assert_not_reached(); 12468 } 12469 } 12470 12471 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12472 } 12473 } 12474 clear_vec_high(s, is_q, rd); 12475 12476 if (tcg_rmode) { 12477 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12478 } 12479 } 12480 12481 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12482 * 12483 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12484 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12485 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12486 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12487 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12488 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12489 * 12490 * This actually covers two groups where scalar access is governed by 12491 * bit 28. A bunch of the instructions (float to integral) only exist 12492 * in the vector form and are un-allocated for the scalar decode. Also 12493 * in the scalar decode Q is always 1. 12494 */ 12495 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12496 { 12497 int fpop, opcode, a, u; 12498 int rn, rd; 12499 bool is_q; 12500 bool is_scalar; 12501 bool only_in_vector = false; 12502 12503 int pass; 12504 TCGv_i32 tcg_rmode = NULL; 12505 TCGv_ptr tcg_fpstatus = NULL; 12506 bool need_fpst = true; 12507 int rmode = -1; 12508 12509 if (!dc_isar_feature(aa64_fp16, s)) { 12510 unallocated_encoding(s); 12511 return; 12512 } 12513 12514 rd = extract32(insn, 0, 5); 12515 rn = extract32(insn, 5, 5); 12516 12517 a = extract32(insn, 23, 1); 12518 u = extract32(insn, 29, 1); 12519 is_scalar = extract32(insn, 28, 1); 12520 is_q = extract32(insn, 30, 1); 12521 12522 opcode = extract32(insn, 12, 5); 12523 fpop = deposit32(opcode, 5, 1, a); 12524 fpop = deposit32(fpop, 6, 1, u); 12525 12526 switch (fpop) { 12527 case 0x1d: /* SCVTF */ 12528 case 0x5d: /* UCVTF */ 12529 { 12530 int elements; 12531 12532 if (is_scalar) { 12533 elements = 1; 12534 } else { 12535 elements = (is_q ? 8 : 4); 12536 } 12537 12538 if (!fp_access_check(s)) { 12539 return; 12540 } 12541 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12542 return; 12543 } 12544 break; 12545 case 0x2c: /* FCMGT (zero) */ 12546 case 0x2d: /* FCMEQ (zero) */ 12547 case 0x2e: /* FCMLT (zero) */ 12548 case 0x6c: /* FCMGE (zero) */ 12549 case 0x6d: /* FCMLE (zero) */ 12550 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12551 return; 12552 case 0x3d: /* FRECPE */ 12553 case 0x3f: /* FRECPX */ 12554 break; 12555 case 0x18: /* FRINTN */ 12556 only_in_vector = true; 12557 rmode = FPROUNDING_TIEEVEN; 12558 break; 12559 case 0x19: /* FRINTM */ 12560 only_in_vector = true; 12561 rmode = FPROUNDING_NEGINF; 12562 break; 12563 case 0x38: /* FRINTP */ 12564 only_in_vector = true; 12565 rmode = FPROUNDING_POSINF; 12566 break; 12567 case 0x39: /* FRINTZ */ 12568 only_in_vector = true; 12569 rmode = FPROUNDING_ZERO; 12570 break; 12571 case 0x58: /* FRINTA */ 12572 only_in_vector = true; 12573 rmode = FPROUNDING_TIEAWAY; 12574 break; 12575 case 0x59: /* FRINTX */ 12576 case 0x79: /* FRINTI */ 12577 only_in_vector = true; 12578 /* current rounding mode */ 12579 break; 12580 case 0x1a: /* FCVTNS */ 12581 rmode = FPROUNDING_TIEEVEN; 12582 break; 12583 case 0x1b: /* FCVTMS */ 12584 rmode = FPROUNDING_NEGINF; 12585 break; 12586 case 0x1c: /* FCVTAS */ 12587 rmode = FPROUNDING_TIEAWAY; 12588 break; 12589 case 0x3a: /* FCVTPS */ 12590 rmode = FPROUNDING_POSINF; 12591 break; 12592 case 0x3b: /* FCVTZS */ 12593 rmode = FPROUNDING_ZERO; 12594 break; 12595 case 0x5a: /* FCVTNU */ 12596 rmode = FPROUNDING_TIEEVEN; 12597 break; 12598 case 0x5b: /* FCVTMU */ 12599 rmode = FPROUNDING_NEGINF; 12600 break; 12601 case 0x5c: /* FCVTAU */ 12602 rmode = FPROUNDING_TIEAWAY; 12603 break; 12604 case 0x7a: /* FCVTPU */ 12605 rmode = FPROUNDING_POSINF; 12606 break; 12607 case 0x7b: /* FCVTZU */ 12608 rmode = FPROUNDING_ZERO; 12609 break; 12610 case 0x2f: /* FABS */ 12611 case 0x6f: /* FNEG */ 12612 need_fpst = false; 12613 break; 12614 case 0x7d: /* FRSQRTE */ 12615 case 0x7f: /* FSQRT (vector) */ 12616 break; 12617 default: 12618 unallocated_encoding(s); 12619 return; 12620 } 12621 12622 12623 /* Check additional constraints for the scalar encoding */ 12624 if (is_scalar) { 12625 if (!is_q) { 12626 unallocated_encoding(s); 12627 return; 12628 } 12629 /* FRINTxx is only in the vector form */ 12630 if (only_in_vector) { 12631 unallocated_encoding(s); 12632 return; 12633 } 12634 } 12635 12636 if (!fp_access_check(s)) { 12637 return; 12638 } 12639 12640 if (rmode >= 0 || need_fpst) { 12641 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12642 } 12643 12644 if (rmode >= 0) { 12645 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12646 } 12647 12648 if (is_scalar) { 12649 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12650 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12651 12652 switch (fpop) { 12653 case 0x1a: /* FCVTNS */ 12654 case 0x1b: /* FCVTMS */ 12655 case 0x1c: /* FCVTAS */ 12656 case 0x3a: /* FCVTPS */ 12657 case 0x3b: /* FCVTZS */ 12658 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12659 break; 12660 case 0x3d: /* FRECPE */ 12661 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12662 break; 12663 case 0x3f: /* FRECPX */ 12664 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12665 break; 12666 case 0x5a: /* FCVTNU */ 12667 case 0x5b: /* FCVTMU */ 12668 case 0x5c: /* FCVTAU */ 12669 case 0x7a: /* FCVTPU */ 12670 case 0x7b: /* FCVTZU */ 12671 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12672 break; 12673 case 0x6f: /* FNEG */ 12674 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12675 break; 12676 case 0x7d: /* FRSQRTE */ 12677 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12678 break; 12679 default: 12680 g_assert_not_reached(); 12681 } 12682 12683 /* limit any sign extension going on */ 12684 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12685 write_fp_sreg(s, rd, tcg_res); 12686 } else { 12687 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12688 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12689 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12690 12691 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12692 12693 switch (fpop) { 12694 case 0x1a: /* FCVTNS */ 12695 case 0x1b: /* FCVTMS */ 12696 case 0x1c: /* FCVTAS */ 12697 case 0x3a: /* FCVTPS */ 12698 case 0x3b: /* FCVTZS */ 12699 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 case 0x3d: /* FRECPE */ 12702 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12703 break; 12704 case 0x5a: /* FCVTNU */ 12705 case 0x5b: /* FCVTMU */ 12706 case 0x5c: /* FCVTAU */ 12707 case 0x7a: /* FCVTPU */ 12708 case 0x7b: /* FCVTZU */ 12709 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12710 break; 12711 case 0x18: /* FRINTN */ 12712 case 0x19: /* FRINTM */ 12713 case 0x38: /* FRINTP */ 12714 case 0x39: /* FRINTZ */ 12715 case 0x58: /* FRINTA */ 12716 case 0x79: /* FRINTI */ 12717 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12718 break; 12719 case 0x59: /* FRINTX */ 12720 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12721 break; 12722 case 0x2f: /* FABS */ 12723 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12724 break; 12725 case 0x6f: /* FNEG */ 12726 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12727 break; 12728 case 0x7d: /* FRSQRTE */ 12729 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12730 break; 12731 case 0x7f: /* FSQRT */ 12732 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12733 break; 12734 default: 12735 g_assert_not_reached(); 12736 } 12737 12738 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12739 } 12740 12741 clear_vec_high(s, is_q, rd); 12742 } 12743 12744 if (tcg_rmode) { 12745 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12746 } 12747 } 12748 12749 /* AdvSIMD scalar x indexed element 12750 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12751 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12752 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12753 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12754 * AdvSIMD vector x indexed element 12755 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12756 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12757 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12758 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12759 */ 12760 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12761 { 12762 /* This encoding has two kinds of instruction: 12763 * normal, where we perform elt x idxelt => elt for each 12764 * element in the vector 12765 * long, where we perform elt x idxelt and generate a result of 12766 * double the width of the input element 12767 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12768 */ 12769 bool is_scalar = extract32(insn, 28, 1); 12770 bool is_q = extract32(insn, 30, 1); 12771 bool u = extract32(insn, 29, 1); 12772 int size = extract32(insn, 22, 2); 12773 int l = extract32(insn, 21, 1); 12774 int m = extract32(insn, 20, 1); 12775 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12776 int rm = extract32(insn, 16, 4); 12777 int opcode = extract32(insn, 12, 4); 12778 int h = extract32(insn, 11, 1); 12779 int rn = extract32(insn, 5, 5); 12780 int rd = extract32(insn, 0, 5); 12781 bool is_long = false; 12782 int is_fp = 0; 12783 bool is_fp16 = false; 12784 int index; 12785 TCGv_ptr fpst; 12786 12787 switch (16 * u + opcode) { 12788 case 0x08: /* MUL */ 12789 case 0x10: /* MLA */ 12790 case 0x14: /* MLS */ 12791 if (is_scalar) { 12792 unallocated_encoding(s); 12793 return; 12794 } 12795 break; 12796 case 0x02: /* SMLAL, SMLAL2 */ 12797 case 0x12: /* UMLAL, UMLAL2 */ 12798 case 0x06: /* SMLSL, SMLSL2 */ 12799 case 0x16: /* UMLSL, UMLSL2 */ 12800 case 0x0a: /* SMULL, SMULL2 */ 12801 case 0x1a: /* UMULL, UMULL2 */ 12802 if (is_scalar) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 is_long = true; 12807 break; 12808 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12809 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12810 case 0x0b: /* SQDMULL, SQDMULL2 */ 12811 is_long = true; 12812 break; 12813 case 0x0c: /* SQDMULH */ 12814 case 0x0d: /* SQRDMULH */ 12815 break; 12816 case 0x01: /* FMLA */ 12817 case 0x05: /* FMLS */ 12818 case 0x09: /* FMUL */ 12819 case 0x19: /* FMULX */ 12820 is_fp = 1; 12821 break; 12822 case 0x1d: /* SQRDMLAH */ 12823 case 0x1f: /* SQRDMLSH */ 12824 if (!dc_isar_feature(aa64_rdm, s)) { 12825 unallocated_encoding(s); 12826 return; 12827 } 12828 break; 12829 case 0x0e: /* SDOT */ 12830 case 0x1e: /* UDOT */ 12831 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12832 unallocated_encoding(s); 12833 return; 12834 } 12835 break; 12836 case 0x0f: 12837 switch (size) { 12838 case 0: /* SUDOT */ 12839 case 2: /* USDOT */ 12840 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12841 unallocated_encoding(s); 12842 return; 12843 } 12844 size = MO_32; 12845 break; 12846 case 1: /* BFDOT */ 12847 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12848 unallocated_encoding(s); 12849 return; 12850 } 12851 size = MO_32; 12852 break; 12853 case 3: /* BFMLAL{B,T} */ 12854 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12855 unallocated_encoding(s); 12856 return; 12857 } 12858 /* can't set is_fp without other incorrect size checks */ 12859 size = MO_16; 12860 break; 12861 default: 12862 unallocated_encoding(s); 12863 return; 12864 } 12865 break; 12866 case 0x11: /* FCMLA #0 */ 12867 case 0x13: /* FCMLA #90 */ 12868 case 0x15: /* FCMLA #180 */ 12869 case 0x17: /* FCMLA #270 */ 12870 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 is_fp = 2; 12875 break; 12876 case 0x00: /* FMLAL */ 12877 case 0x04: /* FMLSL */ 12878 case 0x18: /* FMLAL2 */ 12879 case 0x1c: /* FMLSL2 */ 12880 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12881 unallocated_encoding(s); 12882 return; 12883 } 12884 size = MO_16; 12885 /* is_fp, but we pass tcg_env not fp_status. */ 12886 break; 12887 default: 12888 unallocated_encoding(s); 12889 return; 12890 } 12891 12892 switch (is_fp) { 12893 case 1: /* normal fp */ 12894 /* convert insn encoded size to MemOp size */ 12895 switch (size) { 12896 case 0: /* half-precision */ 12897 size = MO_16; 12898 is_fp16 = true; 12899 break; 12900 case MO_32: /* single precision */ 12901 case MO_64: /* double precision */ 12902 break; 12903 default: 12904 unallocated_encoding(s); 12905 return; 12906 } 12907 break; 12908 12909 case 2: /* complex fp */ 12910 /* Each indexable element is a complex pair. */ 12911 size += 1; 12912 switch (size) { 12913 case MO_32: 12914 if (h && !is_q) { 12915 unallocated_encoding(s); 12916 return; 12917 } 12918 is_fp16 = true; 12919 break; 12920 case MO_64: 12921 break; 12922 default: 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 break; 12927 12928 default: /* integer */ 12929 switch (size) { 12930 case MO_8: 12931 case MO_64: 12932 unallocated_encoding(s); 12933 return; 12934 } 12935 break; 12936 } 12937 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12938 unallocated_encoding(s); 12939 return; 12940 } 12941 12942 /* Given MemOp size, adjust register and indexing. */ 12943 switch (size) { 12944 case MO_16: 12945 index = h << 2 | l << 1 | m; 12946 break; 12947 case MO_32: 12948 index = h << 1 | l; 12949 rm |= m << 4; 12950 break; 12951 case MO_64: 12952 if (l || !is_q) { 12953 unallocated_encoding(s); 12954 return; 12955 } 12956 index = h; 12957 rm |= m << 4; 12958 break; 12959 default: 12960 g_assert_not_reached(); 12961 } 12962 12963 if (!fp_access_check(s)) { 12964 return; 12965 } 12966 12967 if (is_fp) { 12968 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12969 } else { 12970 fpst = NULL; 12971 } 12972 12973 switch (16 * u + opcode) { 12974 case 0x0e: /* SDOT */ 12975 case 0x1e: /* UDOT */ 12976 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12977 u ? gen_helper_gvec_udot_idx_b 12978 : gen_helper_gvec_sdot_idx_b); 12979 return; 12980 case 0x0f: 12981 switch (extract32(insn, 22, 2)) { 12982 case 0: /* SUDOT */ 12983 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12984 gen_helper_gvec_sudot_idx_b); 12985 return; 12986 case 1: /* BFDOT */ 12987 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12988 gen_helper_gvec_bfdot_idx); 12989 return; 12990 case 2: /* USDOT */ 12991 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12992 gen_helper_gvec_usdot_idx_b); 12993 return; 12994 case 3: /* BFMLAL{B,T} */ 12995 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12996 gen_helper_gvec_bfmlal_idx); 12997 return; 12998 } 12999 g_assert_not_reached(); 13000 case 0x11: /* FCMLA #0 */ 13001 case 0x13: /* FCMLA #90 */ 13002 case 0x15: /* FCMLA #180 */ 13003 case 0x17: /* FCMLA #270 */ 13004 { 13005 int rot = extract32(insn, 13, 2); 13006 int data = (index << 2) | rot; 13007 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13008 vec_full_reg_offset(s, rn), 13009 vec_full_reg_offset(s, rm), 13010 vec_full_reg_offset(s, rd), fpst, 13011 is_q ? 16 : 8, vec_full_reg_size(s), data, 13012 size == MO_64 13013 ? gen_helper_gvec_fcmlas_idx 13014 : gen_helper_gvec_fcmlah_idx); 13015 } 13016 return; 13017 13018 case 0x00: /* FMLAL */ 13019 case 0x04: /* FMLSL */ 13020 case 0x18: /* FMLAL2 */ 13021 case 0x1c: /* FMLSL2 */ 13022 { 13023 int is_s = extract32(opcode, 2, 1); 13024 int is_2 = u; 13025 int data = (index << 2) | (is_2 << 1) | is_s; 13026 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13027 vec_full_reg_offset(s, rn), 13028 vec_full_reg_offset(s, rm), tcg_env, 13029 is_q ? 16 : 8, vec_full_reg_size(s), 13030 data, gen_helper_gvec_fmlal_idx_a64); 13031 } 13032 return; 13033 13034 case 0x08: /* MUL */ 13035 if (!is_long && !is_scalar) { 13036 static gen_helper_gvec_3 * const fns[3] = { 13037 gen_helper_gvec_mul_idx_h, 13038 gen_helper_gvec_mul_idx_s, 13039 gen_helper_gvec_mul_idx_d, 13040 }; 13041 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13042 vec_full_reg_offset(s, rn), 13043 vec_full_reg_offset(s, rm), 13044 is_q ? 16 : 8, vec_full_reg_size(s), 13045 index, fns[size - 1]); 13046 return; 13047 } 13048 break; 13049 13050 case 0x10: /* MLA */ 13051 if (!is_long && !is_scalar) { 13052 static gen_helper_gvec_4 * const fns[3] = { 13053 gen_helper_gvec_mla_idx_h, 13054 gen_helper_gvec_mla_idx_s, 13055 gen_helper_gvec_mla_idx_d, 13056 }; 13057 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13058 vec_full_reg_offset(s, rn), 13059 vec_full_reg_offset(s, rm), 13060 vec_full_reg_offset(s, rd), 13061 is_q ? 16 : 8, vec_full_reg_size(s), 13062 index, fns[size - 1]); 13063 return; 13064 } 13065 break; 13066 13067 case 0x14: /* MLS */ 13068 if (!is_long && !is_scalar) { 13069 static gen_helper_gvec_4 * const fns[3] = { 13070 gen_helper_gvec_mls_idx_h, 13071 gen_helper_gvec_mls_idx_s, 13072 gen_helper_gvec_mls_idx_d, 13073 }; 13074 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13075 vec_full_reg_offset(s, rn), 13076 vec_full_reg_offset(s, rm), 13077 vec_full_reg_offset(s, rd), 13078 is_q ? 16 : 8, vec_full_reg_size(s), 13079 index, fns[size - 1]); 13080 return; 13081 } 13082 break; 13083 } 13084 13085 if (size == 3) { 13086 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13087 int pass; 13088 13089 assert(is_fp && is_q && !is_long); 13090 13091 read_vec_element(s, tcg_idx, rm, index, MO_64); 13092 13093 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13094 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13095 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13096 13097 read_vec_element(s, tcg_op, rn, pass, MO_64); 13098 13099 switch (16 * u + opcode) { 13100 case 0x05: /* FMLS */ 13101 /* As usual for ARM, separate negation for fused multiply-add */ 13102 gen_helper_vfp_negd(tcg_op, tcg_op); 13103 /* fall through */ 13104 case 0x01: /* FMLA */ 13105 read_vec_element(s, tcg_res, rd, pass, MO_64); 13106 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13107 break; 13108 case 0x09: /* FMUL */ 13109 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13110 break; 13111 case 0x19: /* FMULX */ 13112 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13113 break; 13114 default: 13115 g_assert_not_reached(); 13116 } 13117 13118 write_vec_element(s, tcg_res, rd, pass, MO_64); 13119 } 13120 13121 clear_vec_high(s, !is_scalar, rd); 13122 } else if (!is_long) { 13123 /* 32 bit floating point, or 16 or 32 bit integer. 13124 * For the 16 bit scalar case we use the usual Neon helpers and 13125 * rely on the fact that 0 op 0 == 0 with no side effects. 13126 */ 13127 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13128 int pass, maxpasses; 13129 13130 if (is_scalar) { 13131 maxpasses = 1; 13132 } else { 13133 maxpasses = is_q ? 4 : 2; 13134 } 13135 13136 read_vec_element_i32(s, tcg_idx, rm, index, size); 13137 13138 if (size == 1 && !is_scalar) { 13139 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13140 * the index into both halves of the 32 bit tcg_idx and then use 13141 * the usual Neon helpers. 13142 */ 13143 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13144 } 13145 13146 for (pass = 0; pass < maxpasses; pass++) { 13147 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13148 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13149 13150 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13151 13152 switch (16 * u + opcode) { 13153 case 0x08: /* MUL */ 13154 case 0x10: /* MLA */ 13155 case 0x14: /* MLS */ 13156 { 13157 static NeonGenTwoOpFn * const fns[2][2] = { 13158 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13159 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13160 }; 13161 NeonGenTwoOpFn *genfn; 13162 bool is_sub = opcode == 0x4; 13163 13164 if (size == 1) { 13165 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13166 } else { 13167 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13168 } 13169 if (opcode == 0x8) { 13170 break; 13171 } 13172 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13173 genfn = fns[size - 1][is_sub]; 13174 genfn(tcg_res, tcg_op, tcg_res); 13175 break; 13176 } 13177 case 0x05: /* FMLS */ 13178 case 0x01: /* FMLA */ 13179 read_vec_element_i32(s, tcg_res, rd, pass, 13180 is_scalar ? size : MO_32); 13181 switch (size) { 13182 case 1: 13183 if (opcode == 0x5) { 13184 /* As usual for ARM, separate negation for fused 13185 * multiply-add */ 13186 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13187 } 13188 if (is_scalar) { 13189 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13190 tcg_res, fpst); 13191 } else { 13192 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13193 tcg_res, fpst); 13194 } 13195 break; 13196 case 2: 13197 if (opcode == 0x5) { 13198 /* As usual for ARM, separate negation for 13199 * fused multiply-add */ 13200 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13201 } 13202 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13203 tcg_res, fpst); 13204 break; 13205 default: 13206 g_assert_not_reached(); 13207 } 13208 break; 13209 case 0x09: /* FMUL */ 13210 switch (size) { 13211 case 1: 13212 if (is_scalar) { 13213 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13214 tcg_idx, fpst); 13215 } else { 13216 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13217 tcg_idx, fpst); 13218 } 13219 break; 13220 case 2: 13221 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13222 break; 13223 default: 13224 g_assert_not_reached(); 13225 } 13226 break; 13227 case 0x19: /* FMULX */ 13228 switch (size) { 13229 case 1: 13230 if (is_scalar) { 13231 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13232 tcg_idx, fpst); 13233 } else { 13234 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13235 tcg_idx, fpst); 13236 } 13237 break; 13238 case 2: 13239 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13240 break; 13241 default: 13242 g_assert_not_reached(); 13243 } 13244 break; 13245 case 0x0c: /* SQDMULH */ 13246 if (size == 1) { 13247 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13248 tcg_op, tcg_idx); 13249 } else { 13250 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13251 tcg_op, tcg_idx); 13252 } 13253 break; 13254 case 0x0d: /* SQRDMULH */ 13255 if (size == 1) { 13256 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13257 tcg_op, tcg_idx); 13258 } else { 13259 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13260 tcg_op, tcg_idx); 13261 } 13262 break; 13263 case 0x1d: /* SQRDMLAH */ 13264 read_vec_element_i32(s, tcg_res, rd, pass, 13265 is_scalar ? size : MO_32); 13266 if (size == 1) { 13267 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13268 tcg_op, tcg_idx, tcg_res); 13269 } else { 13270 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13271 tcg_op, tcg_idx, tcg_res); 13272 } 13273 break; 13274 case 0x1f: /* SQRDMLSH */ 13275 read_vec_element_i32(s, tcg_res, rd, pass, 13276 is_scalar ? size : MO_32); 13277 if (size == 1) { 13278 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13279 tcg_op, tcg_idx, tcg_res); 13280 } else { 13281 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13282 tcg_op, tcg_idx, tcg_res); 13283 } 13284 break; 13285 default: 13286 g_assert_not_reached(); 13287 } 13288 13289 if (is_scalar) { 13290 write_fp_sreg(s, rd, tcg_res); 13291 } else { 13292 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13293 } 13294 } 13295 13296 clear_vec_high(s, is_q, rd); 13297 } else { 13298 /* long ops: 16x16->32 or 32x32->64 */ 13299 TCGv_i64 tcg_res[2]; 13300 int pass; 13301 bool satop = extract32(opcode, 0, 1); 13302 MemOp memop = MO_32; 13303 13304 if (satop || !u) { 13305 memop |= MO_SIGN; 13306 } 13307 13308 if (size == 2) { 13309 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13310 13311 read_vec_element(s, tcg_idx, rm, index, memop); 13312 13313 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13314 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13315 TCGv_i64 tcg_passres; 13316 int passelt; 13317 13318 if (is_scalar) { 13319 passelt = 0; 13320 } else { 13321 passelt = pass + (is_q * 2); 13322 } 13323 13324 read_vec_element(s, tcg_op, rn, passelt, memop); 13325 13326 tcg_res[pass] = tcg_temp_new_i64(); 13327 13328 if (opcode == 0xa || opcode == 0xb) { 13329 /* Non-accumulating ops */ 13330 tcg_passres = tcg_res[pass]; 13331 } else { 13332 tcg_passres = tcg_temp_new_i64(); 13333 } 13334 13335 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13336 13337 if (satop) { 13338 /* saturating, doubling */ 13339 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13340 tcg_passres, tcg_passres); 13341 } 13342 13343 if (opcode == 0xa || opcode == 0xb) { 13344 continue; 13345 } 13346 13347 /* Accumulating op: handle accumulate step */ 13348 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13349 13350 switch (opcode) { 13351 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13352 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13353 break; 13354 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13355 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13356 break; 13357 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13358 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13359 /* fall through */ 13360 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13361 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13362 tcg_res[pass], 13363 tcg_passres); 13364 break; 13365 default: 13366 g_assert_not_reached(); 13367 } 13368 } 13369 13370 clear_vec_high(s, !is_scalar, rd); 13371 } else { 13372 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13373 13374 assert(size == 1); 13375 read_vec_element_i32(s, tcg_idx, rm, index, size); 13376 13377 if (!is_scalar) { 13378 /* The simplest way to handle the 16x16 indexed ops is to 13379 * duplicate the index into both halves of the 32 bit tcg_idx 13380 * and then use the usual Neon helpers. 13381 */ 13382 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13383 } 13384 13385 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13386 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13387 TCGv_i64 tcg_passres; 13388 13389 if (is_scalar) { 13390 read_vec_element_i32(s, tcg_op, rn, pass, size); 13391 } else { 13392 read_vec_element_i32(s, tcg_op, rn, 13393 pass + (is_q * 2), MO_32); 13394 } 13395 13396 tcg_res[pass] = tcg_temp_new_i64(); 13397 13398 if (opcode == 0xa || opcode == 0xb) { 13399 /* Non-accumulating ops */ 13400 tcg_passres = tcg_res[pass]; 13401 } else { 13402 tcg_passres = tcg_temp_new_i64(); 13403 } 13404 13405 if (memop & MO_SIGN) { 13406 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13407 } else { 13408 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13409 } 13410 if (satop) { 13411 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13412 tcg_passres, tcg_passres); 13413 } 13414 13415 if (opcode == 0xa || opcode == 0xb) { 13416 continue; 13417 } 13418 13419 /* Accumulating op: handle accumulate step */ 13420 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13421 13422 switch (opcode) { 13423 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13424 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13425 tcg_passres); 13426 break; 13427 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13428 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13429 tcg_passres); 13430 break; 13431 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13432 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13433 /* fall through */ 13434 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13435 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13436 tcg_res[pass], 13437 tcg_passres); 13438 break; 13439 default: 13440 g_assert_not_reached(); 13441 } 13442 } 13443 13444 if (is_scalar) { 13445 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13446 } 13447 } 13448 13449 if (is_scalar) { 13450 tcg_res[1] = tcg_constant_i64(0); 13451 } 13452 13453 for (pass = 0; pass < 2; pass++) { 13454 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13455 } 13456 } 13457 } 13458 13459 /* C3.6 Data processing - SIMD, inc Crypto 13460 * 13461 * As the decode gets a little complex we are using a table based 13462 * approach for this part of the decode. 13463 */ 13464 static const AArch64DecodeTable data_proc_simd[] = { 13465 /* pattern , mask , fn */ 13466 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13467 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13468 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13469 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13470 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13471 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13472 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13473 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13474 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13475 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13476 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13477 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13478 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13479 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13480 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13481 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13482 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13483 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13484 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13485 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13486 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13487 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13488 { 0x00000000, 0x00000000, NULL } 13489 }; 13490 13491 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13492 { 13493 /* Note that this is called with all non-FP cases from 13494 * table C3-6 so it must UNDEF for entries not specifically 13495 * allocated to instructions in that table. 13496 */ 13497 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13498 if (fn) { 13499 fn(s, insn); 13500 } else { 13501 unallocated_encoding(s); 13502 } 13503 } 13504 13505 /* C3.6 Data processing - SIMD and floating point */ 13506 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13507 { 13508 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13509 disas_data_proc_fp(s, insn); 13510 } else { 13511 /* SIMD, including crypto */ 13512 disas_data_proc_simd(s, insn); 13513 } 13514 } 13515 13516 static bool trans_OK(DisasContext *s, arg_OK *a) 13517 { 13518 return true; 13519 } 13520 13521 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13522 { 13523 s->is_nonstreaming = true; 13524 return true; 13525 } 13526 13527 /** 13528 * is_guarded_page: 13529 * @env: The cpu environment 13530 * @s: The DisasContext 13531 * 13532 * Return true if the page is guarded. 13533 */ 13534 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13535 { 13536 uint64_t addr = s->base.pc_first; 13537 #ifdef CONFIG_USER_ONLY 13538 return page_get_flags(addr) & PAGE_BTI; 13539 #else 13540 CPUTLBEntryFull *full; 13541 void *host; 13542 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13543 int flags; 13544 13545 /* 13546 * We test this immediately after reading an insn, which means 13547 * that the TLB entry must be present and valid, and thus this 13548 * access will never raise an exception. 13549 */ 13550 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13551 false, &host, &full, 0); 13552 assert(!(flags & TLB_INVALID_MASK)); 13553 13554 return full->extra.arm.guarded; 13555 #endif 13556 } 13557 13558 /** 13559 * btype_destination_ok: 13560 * @insn: The instruction at the branch destination 13561 * @bt: SCTLR_ELx.BT 13562 * @btype: PSTATE.BTYPE, and is non-zero 13563 * 13564 * On a guarded page, there are a limited number of insns 13565 * that may be present at the branch target: 13566 * - branch target identifiers, 13567 * - paciasp, pacibsp, 13568 * - BRK insn 13569 * - HLT insn 13570 * Anything else causes a Branch Target Exception. 13571 * 13572 * Return true if the branch is compatible, false to raise BTITRAP. 13573 */ 13574 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13575 { 13576 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13577 /* HINT space */ 13578 switch (extract32(insn, 5, 7)) { 13579 case 0b011001: /* PACIASP */ 13580 case 0b011011: /* PACIBSP */ 13581 /* 13582 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13583 * with btype == 3. Otherwise all btype are ok. 13584 */ 13585 return !bt || btype != 3; 13586 case 0b100000: /* BTI */ 13587 /* Not compatible with any btype. */ 13588 return false; 13589 case 0b100010: /* BTI c */ 13590 /* Not compatible with btype == 3 */ 13591 return btype != 3; 13592 case 0b100100: /* BTI j */ 13593 /* Not compatible with btype == 2 */ 13594 return btype != 2; 13595 case 0b100110: /* BTI jc */ 13596 /* Compatible with any btype. */ 13597 return true; 13598 } 13599 } else { 13600 switch (insn & 0xffe0001fu) { 13601 case 0xd4200000u: /* BRK */ 13602 case 0xd4400000u: /* HLT */ 13603 /* Give priority to the breakpoint exception. */ 13604 return true; 13605 } 13606 } 13607 return false; 13608 } 13609 13610 /* C3.1 A64 instruction index by encoding */ 13611 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13612 { 13613 switch (extract32(insn, 25, 4)) { 13614 case 0x5: 13615 case 0xd: /* Data processing - register */ 13616 disas_data_proc_reg(s, insn); 13617 break; 13618 case 0x7: 13619 case 0xf: /* Data processing - SIMD and floating point */ 13620 disas_data_proc_simd_fp(s, insn); 13621 break; 13622 default: 13623 unallocated_encoding(s); 13624 break; 13625 } 13626 } 13627 13628 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13629 CPUState *cpu) 13630 { 13631 DisasContext *dc = container_of(dcbase, DisasContext, base); 13632 CPUARMState *env = cpu_env(cpu); 13633 ARMCPU *arm_cpu = env_archcpu(env); 13634 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13635 int bound, core_mmu_idx; 13636 13637 dc->isar = &arm_cpu->isar; 13638 dc->condjmp = 0; 13639 dc->pc_save = dc->base.pc_first; 13640 dc->aarch64 = true; 13641 dc->thumb = false; 13642 dc->sctlr_b = 0; 13643 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13644 dc->condexec_mask = 0; 13645 dc->condexec_cond = 0; 13646 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13647 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13648 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13649 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13650 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13651 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13652 #if !defined(CONFIG_USER_ONLY) 13653 dc->user = (dc->current_el == 0); 13654 #endif 13655 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13656 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13657 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13658 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13659 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13660 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13661 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13662 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13663 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13664 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13665 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13666 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13667 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13668 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13669 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13670 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13671 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13672 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13673 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13674 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13675 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13676 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13677 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13678 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13679 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13680 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13681 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13682 dc->vec_len = 0; 13683 dc->vec_stride = 0; 13684 dc->cp_regs = arm_cpu->cp_regs; 13685 dc->features = env->features; 13686 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13687 dc->gm_blocksize = arm_cpu->gm_blocksize; 13688 13689 #ifdef CONFIG_USER_ONLY 13690 /* In sve_probe_page, we assume TBI is enabled. */ 13691 tcg_debug_assert(dc->tbid & 1); 13692 #endif 13693 13694 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13695 13696 /* Single step state. The code-generation logic here is: 13697 * SS_ACTIVE == 0: 13698 * generate code with no special handling for single-stepping (except 13699 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13700 * this happens anyway because those changes are all system register or 13701 * PSTATE writes). 13702 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13703 * emit code for one insn 13704 * emit code to clear PSTATE.SS 13705 * emit code to generate software step exception for completed step 13706 * end TB (as usual for having generated an exception) 13707 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13708 * emit code to generate a software step exception 13709 * end the TB 13710 */ 13711 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13712 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13713 dc->is_ldex = false; 13714 13715 /* Bound the number of insns to execute to those left on the page. */ 13716 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13717 13718 /* If architectural single step active, limit to 1. */ 13719 if (dc->ss_active) { 13720 bound = 1; 13721 } 13722 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13723 } 13724 13725 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13726 { 13727 } 13728 13729 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13730 { 13731 DisasContext *dc = container_of(dcbase, DisasContext, base); 13732 target_ulong pc_arg = dc->base.pc_next; 13733 13734 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13735 pc_arg &= ~TARGET_PAGE_MASK; 13736 } 13737 tcg_gen_insn_start(pc_arg, 0, 0); 13738 dc->insn_start_updated = false; 13739 } 13740 13741 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13742 { 13743 DisasContext *s = container_of(dcbase, DisasContext, base); 13744 CPUARMState *env = cpu_env(cpu); 13745 uint64_t pc = s->base.pc_next; 13746 uint32_t insn; 13747 13748 /* Singlestep exceptions have the highest priority. */ 13749 if (s->ss_active && !s->pstate_ss) { 13750 /* Singlestep state is Active-pending. 13751 * If we're in this state at the start of a TB then either 13752 * a) we just took an exception to an EL which is being debugged 13753 * and this is the first insn in the exception handler 13754 * b) debug exceptions were masked and we just unmasked them 13755 * without changing EL (eg by clearing PSTATE.D) 13756 * In either case we're going to take a swstep exception in the 13757 * "did not step an insn" case, and so the syndrome ISV and EX 13758 * bits should be zero. 13759 */ 13760 assert(s->base.num_insns == 1); 13761 gen_swstep_exception(s, 0, 0); 13762 s->base.is_jmp = DISAS_NORETURN; 13763 s->base.pc_next = pc + 4; 13764 return; 13765 } 13766 13767 if (pc & 3) { 13768 /* 13769 * PC alignment fault. This has priority over the instruction abort 13770 * that we would receive from a translation fault via arm_ldl_code. 13771 * This should only be possible after an indirect branch, at the 13772 * start of the TB. 13773 */ 13774 assert(s->base.num_insns == 1); 13775 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13776 s->base.is_jmp = DISAS_NORETURN; 13777 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13778 return; 13779 } 13780 13781 s->pc_curr = pc; 13782 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13783 s->insn = insn; 13784 s->base.pc_next = pc + 4; 13785 13786 s->fp_access_checked = false; 13787 s->sve_access_checked = false; 13788 13789 if (s->pstate_il) { 13790 /* 13791 * Illegal execution state. This has priority over BTI 13792 * exceptions, but comes after instruction abort exceptions. 13793 */ 13794 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13795 return; 13796 } 13797 13798 if (dc_isar_feature(aa64_bti, s)) { 13799 if (s->base.num_insns == 1) { 13800 /* 13801 * At the first insn of the TB, compute s->guarded_page. 13802 * We delayed computing this until successfully reading 13803 * the first insn of the TB, above. This (mostly) ensures 13804 * that the softmmu tlb entry has been populated, and the 13805 * page table GP bit is available. 13806 * 13807 * Note that we need to compute this even if btype == 0, 13808 * because this value is used for BR instructions later 13809 * where ENV is not available. 13810 */ 13811 s->guarded_page = is_guarded_page(env, s); 13812 13813 /* First insn can have btype set to non-zero. */ 13814 tcg_debug_assert(s->btype >= 0); 13815 13816 /* 13817 * Note that the Branch Target Exception has fairly high 13818 * priority -- below debugging exceptions but above most 13819 * everything else. This allows us to handle this now 13820 * instead of waiting until the insn is otherwise decoded. 13821 */ 13822 if (s->btype != 0 13823 && s->guarded_page 13824 && !btype_destination_ok(insn, s->bt, s->btype)) { 13825 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13826 return; 13827 } 13828 } else { 13829 /* Not the first insn: btype must be 0. */ 13830 tcg_debug_assert(s->btype == 0); 13831 } 13832 } 13833 13834 s->is_nonstreaming = false; 13835 if (s->sme_trap_nonstreaming) { 13836 disas_sme_fa64(s, insn); 13837 } 13838 13839 if (!disas_a64(s, insn) && 13840 !disas_sme(s, insn) && 13841 !disas_sve(s, insn)) { 13842 disas_a64_legacy(s, insn); 13843 } 13844 13845 /* 13846 * After execution of most insns, btype is reset to 0. 13847 * Note that we set btype == -1 when the insn sets btype. 13848 */ 13849 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13850 reset_btype(s); 13851 } 13852 } 13853 13854 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13855 { 13856 DisasContext *dc = container_of(dcbase, DisasContext, base); 13857 13858 if (unlikely(dc->ss_active)) { 13859 /* Note that this means single stepping WFI doesn't halt the CPU. 13860 * For conditional branch insns this is harmless unreachable code as 13861 * gen_goto_tb() has already handled emitting the debug exception 13862 * (and thus a tb-jump is not possible when singlestepping). 13863 */ 13864 switch (dc->base.is_jmp) { 13865 default: 13866 gen_a64_update_pc(dc, 4); 13867 /* fall through */ 13868 case DISAS_EXIT: 13869 case DISAS_JUMP: 13870 gen_step_complete_exception(dc); 13871 break; 13872 case DISAS_NORETURN: 13873 break; 13874 } 13875 } else { 13876 switch (dc->base.is_jmp) { 13877 case DISAS_NEXT: 13878 case DISAS_TOO_MANY: 13879 gen_goto_tb(dc, 1, 4); 13880 break; 13881 default: 13882 case DISAS_UPDATE_EXIT: 13883 gen_a64_update_pc(dc, 4); 13884 /* fall through */ 13885 case DISAS_EXIT: 13886 tcg_gen_exit_tb(NULL, 0); 13887 break; 13888 case DISAS_UPDATE_NOCHAIN: 13889 gen_a64_update_pc(dc, 4); 13890 /* fall through */ 13891 case DISAS_JUMP: 13892 tcg_gen_lookup_and_goto_ptr(); 13893 break; 13894 case DISAS_NORETURN: 13895 case DISAS_SWI: 13896 break; 13897 case DISAS_WFE: 13898 gen_a64_update_pc(dc, 4); 13899 gen_helper_wfe(tcg_env); 13900 break; 13901 case DISAS_YIELD: 13902 gen_a64_update_pc(dc, 4); 13903 gen_helper_yield(tcg_env); 13904 break; 13905 case DISAS_WFI: 13906 /* 13907 * This is a special case because we don't want to just halt 13908 * the CPU if trying to debug across a WFI. 13909 */ 13910 gen_a64_update_pc(dc, 4); 13911 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13912 /* 13913 * The helper doesn't necessarily throw an exception, but we 13914 * must go back to the main loop to check for interrupts anyway. 13915 */ 13916 tcg_gen_exit_tb(NULL, 0); 13917 break; 13918 } 13919 } 13920 } 13921 13922 const TranslatorOps aarch64_translator_ops = { 13923 .init_disas_context = aarch64_tr_init_disas_context, 13924 .tb_start = aarch64_tr_tb_start, 13925 .insn_start = aarch64_tr_insn_start, 13926 .translate_insn = aarch64_tr_translate_insn, 13927 .tb_stop = aarch64_tr_tb_stop, 13928 }; 13929