xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision d450bd01)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Include the generated decoders.
51  */
52 
53 #include "decode-sme-fa64.c.inc"
54 #include "decode-a64.c.inc"
55 
56 /* Table based decoder typedefs - used when the relevant bits for decode
57  * are too awkwardly scattered across the instruction (eg SIMD).
58  */
59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
60 
61 typedef struct AArch64DecodeTable {
62     uint32_t pattern;
63     uint32_t mask;
64     AArch64DecodeFn *disas_fn;
65 } AArch64DecodeTable;
66 
67 /* initialize TCG globals.  */
68 void a64_translate_init(void)
69 {
70     int i;
71 
72     cpu_pc = tcg_global_mem_new_i64(cpu_env,
73                                     offsetof(CPUARMState, pc),
74                                     "pc");
75     for (i = 0; i < 32; i++) {
76         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
77                                           offsetof(CPUARMState, xregs[i]),
78                                           regnames[i]);
79     }
80 
81     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
82         offsetof(CPUARMState, exclusive_high), "exclusive_high");
83 }
84 
85 /*
86  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
87  */
88 static int get_a64_user_mem_index(DisasContext *s)
89 {
90     /*
91      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
92      * which is the usual mmu_idx for this cpu state.
93      */
94     ARMMMUIdx useridx = s->mmu_idx;
95 
96     if (s->unpriv) {
97         /*
98          * We have pre-computed the condition for AccType_UNPRIV.
99          * Therefore we should never get here with a mmu_idx for
100          * which we do not know the corresponding user mmu_idx.
101          */
102         switch (useridx) {
103         case ARMMMUIdx_E10_1:
104         case ARMMMUIdx_E10_1_PAN:
105             useridx = ARMMMUIdx_E10_0;
106             break;
107         case ARMMMUIdx_E20_2:
108         case ARMMMUIdx_E20_2_PAN:
109             useridx = ARMMMUIdx_E20_0;
110             break;
111         default:
112             g_assert_not_reached();
113         }
114     }
115     return arm_to_core_mmu_idx(useridx);
116 }
117 
118 static void set_btype_raw(int val)
119 {
120     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
121                    offsetof(CPUARMState, btype));
122 }
123 
124 static void set_btype(DisasContext *s, int val)
125 {
126     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
127     tcg_debug_assert(val >= 1 && val <= 3);
128     set_btype_raw(val);
129     s->btype = -1;
130 }
131 
132 static void reset_btype(DisasContext *s)
133 {
134     if (s->btype != 0) {
135         set_btype_raw(0);
136         s->btype = 0;
137     }
138 }
139 
140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
141 {
142     assert(s->pc_save != -1);
143     if (tb_cflags(s->base.tb) & CF_PCREL) {
144         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
145     } else {
146         tcg_gen_movi_i64(dest, s->pc_curr + diff);
147     }
148 }
149 
150 void gen_a64_update_pc(DisasContext *s, target_long diff)
151 {
152     gen_pc_plus_diff(s, cpu_pc, diff);
153     s->pc_save = s->pc_curr + diff;
154 }
155 
156 /*
157  * Handle Top Byte Ignore (TBI) bits.
158  *
159  * If address tagging is enabled via the TCR TBI bits:
160  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
161  *    then the address is zero-extended, clearing bits [63:56]
162  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163  *    and TBI1 controls addressses with bit 55 == 1.
164  *    If the appropriate TBI bit is set for the address then
165  *    the address is sign-extended from bit 55 into bits [63:56]
166  *
167  * Here We have concatenated TBI{1,0} into tbi.
168  */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170                                 TCGv_i64 src, int tbi)
171 {
172     if (tbi == 0) {
173         /* Load unmodified address */
174         tcg_gen_mov_i64(dst, src);
175     } else if (!regime_has_2_ranges(s->mmu_idx)) {
176         /* Force tag byte to all zero */
177         tcg_gen_extract_i64(dst, src, 0, 56);
178     } else {
179         /* Sign-extend from bit 55.  */
180         tcg_gen_sextract_i64(dst, src, 0, 56);
181 
182         switch (tbi) {
183         case 1:
184             /* tbi0 but !tbi1: only use the extension if positive */
185             tcg_gen_and_i64(dst, dst, src);
186             break;
187         case 2:
188             /* !tbi0 but tbi1: only use the extension if negative */
189             tcg_gen_or_i64(dst, dst, src);
190             break;
191         case 3:
192             /* tbi0 and tbi1: always use the extension */
193             break;
194         default:
195             g_assert_not_reached();
196         }
197     }
198 }
199 
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
201 {
202     /*
203      * If address tagging is enabled for instructions via the TCR TBI bits,
204      * then loading an address into the PC will clear out any tag.
205      */
206     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207     s->pc_save = -1;
208 }
209 
210 /*
211  * Handle MTE and/or TBI.
212  *
213  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
214  * for the tag to be present in the FAR_ELx register.  But for user-only
215  * mode we do not have a TLB with which to implement this, so we must
216  * remove the top byte now.
217  *
218  * Always return a fresh temporary that we can increment independently
219  * of the write-back address.
220  */
221 
222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
223 {
224     TCGv_i64 clean = tcg_temp_new_i64();
225 #ifdef CONFIG_USER_ONLY
226     gen_top_byte_ignore(s, clean, addr, s->tbid);
227 #else
228     tcg_gen_mov_i64(clean, addr);
229 #endif
230     return clean;
231 }
232 
233 /* Insert a zero tag into src, with the result at dst. */
234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
235 {
236     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
237 }
238 
239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
240                              MMUAccessType acc, int log2_size)
241 {
242     gen_helper_probe_access(cpu_env, ptr,
243                             tcg_constant_i32(acc),
244                             tcg_constant_i32(get_mem_index(s)),
245                             tcg_constant_i32(1 << log2_size));
246 }
247 
248 /*
249  * For MTE, check a single logical or atomic access.  This probes a single
250  * address, the exact one specified.  The size and alignment of the access
251  * is not relevant to MTE, per se, but watchpoints do require the size,
252  * and we want to recognize those before making any other changes to state.
253  */
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255                                       bool is_write, bool tag_checked,
256                                       int log2_size, bool is_unpriv,
257                                       int core_idx)
258 {
259     if (tag_checked && s->mte_active[is_unpriv]) {
260         TCGv_i64 ret;
261         int desc = 0;
262 
263         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
264         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
265         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
266         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
267         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
268 
269         ret = tcg_temp_new_i64();
270         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
271 
272         return ret;
273     }
274     return clean_data_tbi(s, addr);
275 }
276 
277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
278                         bool tag_checked, int log2_size)
279 {
280     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
281                                  false, get_mem_index(s));
282 }
283 
284 /*
285  * For MTE, check multiple logical sequential accesses.
286  */
287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
288                         bool tag_checked, int size)
289 {
290     if (tag_checked && s->mte_active[0]) {
291         TCGv_i64 ret;
292         int desc = 0;
293 
294         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
295         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 typedef struct DisasCompare64 {
309     TCGCond cond;
310     TCGv_i64 value;
311 } DisasCompare64;
312 
313 static void a64_test_cc(DisasCompare64 *c64, int cc)
314 {
315     DisasCompare c32;
316 
317     arm_test_cc(&c32, cc);
318 
319     /*
320      * Sign-extend the 32-bit value so that the GE/LT comparisons work
321      * properly.  The NE/EQ comparisons are also fine with this choice.
322       */
323     c64->cond = c32.cond;
324     c64->value = tcg_temp_new_i64();
325     tcg_gen_ext_i32_i64(c64->value, c32.value);
326 }
327 
328 static void gen_rebuild_hflags(DisasContext *s)
329 {
330     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
331 }
332 
333 static void gen_exception_internal(int excp)
334 {
335     assert(excp_is_internal(excp));
336     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
337 }
338 
339 static void gen_exception_internal_insn(DisasContext *s, int excp)
340 {
341     gen_a64_update_pc(s, 0);
342     gen_exception_internal(excp);
343     s->base.is_jmp = DISAS_NORETURN;
344 }
345 
346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
347 {
348     gen_a64_update_pc(s, 0);
349     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
350     s->base.is_jmp = DISAS_NORETURN;
351 }
352 
353 static void gen_step_complete_exception(DisasContext *s)
354 {
355     /* We just completed step of an insn. Move from Active-not-pending
356      * to Active-pending, and then also take the swstep exception.
357      * This corresponds to making the (IMPDEF) choice to prioritize
358      * swstep exceptions over asynchronous exceptions taken to an exception
359      * level where debug is disabled. This choice has the advantage that
360      * we do not need to maintain internal state corresponding to the
361      * ISV/EX syndrome bits between completion of the step and generation
362      * of the exception, and our syndrome information is always correct.
363      */
364     gen_ss_advance(s);
365     gen_swstep_exception(s, 1, s->is_ldex);
366     s->base.is_jmp = DISAS_NORETURN;
367 }
368 
369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
370 {
371     if (s->ss_active) {
372         return false;
373     }
374     return translator_use_goto_tb(&s->base, dest);
375 }
376 
377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
378 {
379     if (use_goto_tb(s, s->pc_curr + diff)) {
380         /*
381          * For pcrel, the pc must always be up-to-date on entry to
382          * the linked TB, so that it can use simple additions for all
383          * further adjustments.  For !pcrel, the linked TB is compiled
384          * to know its full virtual address, so we can delay the
385          * update to pc to the unlinked path.  A long chain of links
386          * can thus avoid many updates to the PC.
387          */
388         if (tb_cflags(s->base.tb) & CF_PCREL) {
389             gen_a64_update_pc(s, diff);
390             tcg_gen_goto_tb(n);
391         } else {
392             tcg_gen_goto_tb(n);
393             gen_a64_update_pc(s, diff);
394         }
395         tcg_gen_exit_tb(s->base.tb, n);
396         s->base.is_jmp = DISAS_NORETURN;
397     } else {
398         gen_a64_update_pc(s, diff);
399         if (s->ss_active) {
400             gen_step_complete_exception(s);
401         } else {
402             tcg_gen_lookup_and_goto_ptr();
403             s->base.is_jmp = DISAS_NORETURN;
404         }
405     }
406 }
407 
408 /*
409  * Register access functions
410  *
411  * These functions are used for directly accessing a register in where
412  * changes to the final register value are likely to be made. If you
413  * need to use a register for temporary calculation (e.g. index type
414  * operations) use the read_* form.
415  *
416  * B1.2.1 Register mappings
417  *
418  * In instruction register encoding 31 can refer to ZR (zero register) or
419  * the SP (stack pointer) depending on context. In QEMU's case we map SP
420  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
421  * This is the point of the _sp forms.
422  */
423 TCGv_i64 cpu_reg(DisasContext *s, int reg)
424 {
425     if (reg == 31) {
426         TCGv_i64 t = tcg_temp_new_i64();
427         tcg_gen_movi_i64(t, 0);
428         return t;
429     } else {
430         return cpu_X[reg];
431     }
432 }
433 
434 /* register access for when 31 == SP */
435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
436 {
437     return cpu_X[reg];
438 }
439 
440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
441  * representing the register contents. This TCGv is an auto-freed
442  * temporary so it need not be explicitly freed, and may be modified.
443  */
444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
445 {
446     TCGv_i64 v = tcg_temp_new_i64();
447     if (reg != 31) {
448         if (sf) {
449             tcg_gen_mov_i64(v, cpu_X[reg]);
450         } else {
451             tcg_gen_ext32u_i64(v, cpu_X[reg]);
452         }
453     } else {
454         tcg_gen_movi_i64(v, 0);
455     }
456     return v;
457 }
458 
459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
460 {
461     TCGv_i64 v = tcg_temp_new_i64();
462     if (sf) {
463         tcg_gen_mov_i64(v, cpu_X[reg]);
464     } else {
465         tcg_gen_ext32u_i64(v, cpu_X[reg]);
466     }
467     return v;
468 }
469 
470 /* Return the offset into CPUARMState of a slice (from
471  * the least significant end) of FP register Qn (ie
472  * Dn, Sn, Hn or Bn).
473  * (Note that this is not the same mapping as for A32; see cpu.h)
474  */
475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
476 {
477     return vec_reg_offset(s, regno, 0, size);
478 }
479 
480 /* Offset of the high half of the 128 bit vector Qn */
481 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
482 {
483     return vec_reg_offset(s, regno, 1, MO_64);
484 }
485 
486 /* Convenience accessors for reading and writing single and double
487  * FP registers. Writing clears the upper parts of the associated
488  * 128 bit vector register, as required by the architecture.
489  * Note that unlike the GP register accessors, the values returned
490  * by the read functions must be manually freed.
491  */
492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
493 {
494     TCGv_i64 v = tcg_temp_new_i64();
495 
496     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
497     return v;
498 }
499 
500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
501 {
502     TCGv_i32 v = tcg_temp_new_i32();
503 
504     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
505     return v;
506 }
507 
508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
509 {
510     TCGv_i32 v = tcg_temp_new_i32();
511 
512     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
513     return v;
514 }
515 
516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
517  * If SVE is not enabled, then there are only 128 bits in the vector.
518  */
519 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
520 {
521     unsigned ofs = fp_reg_offset(s, rd, MO_64);
522     unsigned vsz = vec_full_reg_size(s);
523 
524     /* Nop move, with side effect of clearing the tail. */
525     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
526 }
527 
528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
529 {
530     unsigned ofs = fp_reg_offset(s, reg, MO_64);
531 
532     tcg_gen_st_i64(v, cpu_env, ofs);
533     clear_vec_high(s, false, reg);
534 }
535 
536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
537 {
538     TCGv_i64 tmp = tcg_temp_new_i64();
539 
540     tcg_gen_extu_i32_i64(tmp, v);
541     write_fp_dreg(s, reg, tmp);
542 }
543 
544 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
546                          GVecGen2Fn *gvec_fn, int vece)
547 {
548     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
549             is_q ? 16 : 8, vec_full_reg_size(s));
550 }
551 
552 /* Expand a 2-operand + immediate AdvSIMD vector operation using
553  * an expander function.
554  */
555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
556                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
557 {
558     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
559             imm, is_q ? 16 : 8, vec_full_reg_size(s));
560 }
561 
562 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
564                          GVecGen3Fn *gvec_fn, int vece)
565 {
566     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
567             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
568 }
569 
570 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
572                          int rx, GVecGen4Fn *gvec_fn, int vece)
573 {
574     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
575             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
576             is_q ? 16 : 8, vec_full_reg_size(s));
577 }
578 
579 /* Expand a 2-operand operation using an out-of-line helper.  */
580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
581                              int rn, int data, gen_helper_gvec_2 *fn)
582 {
583     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
584                        vec_full_reg_offset(s, rn),
585                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
586 }
587 
588 /* Expand a 3-operand operation using an out-of-line helper.  */
589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
590                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
591 {
592     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
593                        vec_full_reg_offset(s, rn),
594                        vec_full_reg_offset(s, rm),
595                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
596 }
597 
598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
599  * an out-of-line helper.
600  */
601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
602                               int rm, bool is_fp16, int data,
603                               gen_helper_gvec_3_ptr *fn)
604 {
605     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
606     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
607                        vec_full_reg_offset(s, rn),
608                        vec_full_reg_offset(s, rm), fpst,
609                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
610 }
611 
612 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
614                             int rm, gen_helper_gvec_3_ptr *fn)
615 {
616     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
617 
618     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
619     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
620                        vec_full_reg_offset(s, rn),
621                        vec_full_reg_offset(s, rm), qc_ptr,
622                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
623 }
624 
625 /* Expand a 4-operand operation using an out-of-line helper.  */
626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
627                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
628 {
629     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
630                        vec_full_reg_offset(s, rn),
631                        vec_full_reg_offset(s, rm),
632                        vec_full_reg_offset(s, ra),
633                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
634 }
635 
636 /*
637  * Expand a 4-operand + fpstatus pointer + simd data value operation using
638  * an out-of-line helper.
639  */
640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
641                               int rm, int ra, bool is_fp16, int data,
642                               gen_helper_gvec_4_ptr *fn)
643 {
644     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
645     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
646                        vec_full_reg_offset(s, rn),
647                        vec_full_reg_offset(s, rm),
648                        vec_full_reg_offset(s, ra), fpst,
649                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
650 }
651 
652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
653  * than the 32 bit equivalent.
654  */
655 static inline void gen_set_NZ64(TCGv_i64 result)
656 {
657     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
658     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
659 }
660 
661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
662 static inline void gen_logic_CC(int sf, TCGv_i64 result)
663 {
664     if (sf) {
665         gen_set_NZ64(result);
666     } else {
667         tcg_gen_extrl_i64_i32(cpu_ZF, result);
668         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
669     }
670     tcg_gen_movi_i32(cpu_CF, 0);
671     tcg_gen_movi_i32(cpu_VF, 0);
672 }
673 
674 /* dest = T0 + T1; compute C, N, V and Z flags */
675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
676 {
677     TCGv_i64 result, flag, tmp;
678     result = tcg_temp_new_i64();
679     flag = tcg_temp_new_i64();
680     tmp = tcg_temp_new_i64();
681 
682     tcg_gen_movi_i64(tmp, 0);
683     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
684 
685     tcg_gen_extrl_i64_i32(cpu_CF, flag);
686 
687     gen_set_NZ64(result);
688 
689     tcg_gen_xor_i64(flag, result, t0);
690     tcg_gen_xor_i64(tmp, t0, t1);
691     tcg_gen_andc_i64(flag, flag, tmp);
692     tcg_gen_extrh_i64_i32(cpu_VF, flag);
693 
694     tcg_gen_mov_i64(dest, result);
695 }
696 
697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
698 {
699     TCGv_i32 t0_32 = tcg_temp_new_i32();
700     TCGv_i32 t1_32 = tcg_temp_new_i32();
701     TCGv_i32 tmp = tcg_temp_new_i32();
702 
703     tcg_gen_movi_i32(tmp, 0);
704     tcg_gen_extrl_i64_i32(t0_32, t0);
705     tcg_gen_extrl_i64_i32(t1_32, t1);
706     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
707     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
708     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
709     tcg_gen_xor_i32(tmp, t0_32, t1_32);
710     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
711     tcg_gen_extu_i32_i64(dest, cpu_NF);
712 }
713 
714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
715 {
716     if (sf) {
717         gen_add64_CC(dest, t0, t1);
718     } else {
719         gen_add32_CC(dest, t0, t1);
720     }
721 }
722 
723 /* dest = T0 - T1; compute C, N, V and Z flags */
724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
725 {
726     /* 64 bit arithmetic */
727     TCGv_i64 result, flag, tmp;
728 
729     result = tcg_temp_new_i64();
730     flag = tcg_temp_new_i64();
731     tcg_gen_sub_i64(result, t0, t1);
732 
733     gen_set_NZ64(result);
734 
735     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
736     tcg_gen_extrl_i64_i32(cpu_CF, flag);
737 
738     tcg_gen_xor_i64(flag, result, t0);
739     tmp = tcg_temp_new_i64();
740     tcg_gen_xor_i64(tmp, t0, t1);
741     tcg_gen_and_i64(flag, flag, tmp);
742     tcg_gen_extrh_i64_i32(cpu_VF, flag);
743     tcg_gen_mov_i64(dest, result);
744 }
745 
746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
747 {
748     /* 32 bit arithmetic */
749     TCGv_i32 t0_32 = tcg_temp_new_i32();
750     TCGv_i32 t1_32 = tcg_temp_new_i32();
751     TCGv_i32 tmp;
752 
753     tcg_gen_extrl_i64_i32(t0_32, t0);
754     tcg_gen_extrl_i64_i32(t1_32, t1);
755     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
756     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
757     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
758     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
759     tmp = tcg_temp_new_i32();
760     tcg_gen_xor_i32(tmp, t0_32, t1_32);
761     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
762     tcg_gen_extu_i32_i64(dest, cpu_NF);
763 }
764 
765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
766 {
767     if (sf) {
768         gen_sub64_CC(dest, t0, t1);
769     } else {
770         gen_sub32_CC(dest, t0, t1);
771     }
772 }
773 
774 /* dest = T0 + T1 + CF; do not compute flags. */
775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
776 {
777     TCGv_i64 flag = tcg_temp_new_i64();
778     tcg_gen_extu_i32_i64(flag, cpu_CF);
779     tcg_gen_add_i64(dest, t0, t1);
780     tcg_gen_add_i64(dest, dest, flag);
781 
782     if (!sf) {
783         tcg_gen_ext32u_i64(dest, dest);
784     }
785 }
786 
787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
789 {
790     if (sf) {
791         TCGv_i64 result = tcg_temp_new_i64();
792         TCGv_i64 cf_64 = tcg_temp_new_i64();
793         TCGv_i64 vf_64 = tcg_temp_new_i64();
794         TCGv_i64 tmp = tcg_temp_new_i64();
795         TCGv_i64 zero = tcg_constant_i64(0);
796 
797         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
798         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
799         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
800         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
801         gen_set_NZ64(result);
802 
803         tcg_gen_xor_i64(vf_64, result, t0);
804         tcg_gen_xor_i64(tmp, t0, t1);
805         tcg_gen_andc_i64(vf_64, vf_64, tmp);
806         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
807 
808         tcg_gen_mov_i64(dest, result);
809     } else {
810         TCGv_i32 t0_32 = tcg_temp_new_i32();
811         TCGv_i32 t1_32 = tcg_temp_new_i32();
812         TCGv_i32 tmp = tcg_temp_new_i32();
813         TCGv_i32 zero = tcg_constant_i32(0);
814 
815         tcg_gen_extrl_i64_i32(t0_32, t0);
816         tcg_gen_extrl_i64_i32(t1_32, t1);
817         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
818         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
819 
820         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
821         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
822         tcg_gen_xor_i32(tmp, t0_32, t1_32);
823         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
824         tcg_gen_extu_i32_i64(dest, cpu_NF);
825     }
826 }
827 
828 /*
829  * Load/Store generators
830  */
831 
832 /*
833  * Store from GPR register to memory.
834  */
835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
836                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
837                              bool iss_valid,
838                              unsigned int iss_srt,
839                              bool iss_sf, bool iss_ar)
840 {
841     memop = finalize_memop(s, memop);
842     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
843 
844     if (iss_valid) {
845         uint32_t syn;
846 
847         syn = syn_data_abort_with_iss(0,
848                                       (memop & MO_SIZE),
849                                       false,
850                                       iss_srt,
851                                       iss_sf,
852                                       iss_ar,
853                                       0, 0, 0, 0, 0, false);
854         disas_set_insn_syndrome(s, syn);
855     }
856 }
857 
858 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
859                       TCGv_i64 tcg_addr, MemOp memop,
860                       bool iss_valid,
861                       unsigned int iss_srt,
862                       bool iss_sf, bool iss_ar)
863 {
864     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
865                      iss_valid, iss_srt, iss_sf, iss_ar);
866 }
867 
868 /*
869  * Load from memory to GPR register
870  */
871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
872                              MemOp memop, bool extend, int memidx,
873                              bool iss_valid, unsigned int iss_srt,
874                              bool iss_sf, bool iss_ar)
875 {
876     memop = finalize_memop(s, memop);
877     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
878 
879     if (extend && (memop & MO_SIGN)) {
880         g_assert((memop & MO_SIZE) <= MO_32);
881         tcg_gen_ext32u_i64(dest, dest);
882     }
883 
884     if (iss_valid) {
885         uint32_t syn;
886 
887         syn = syn_data_abort_with_iss(0,
888                                       (memop & MO_SIZE),
889                                       (memop & MO_SIGN) != 0,
890                                       iss_srt,
891                                       iss_sf,
892                                       iss_ar,
893                                       0, 0, 0, 0, 0, false);
894         disas_set_insn_syndrome(s, syn);
895     }
896 }
897 
898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
899                       MemOp memop, bool extend,
900                       bool iss_valid, unsigned int iss_srt,
901                       bool iss_sf, bool iss_ar)
902 {
903     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
904                      iss_valid, iss_srt, iss_sf, iss_ar);
905 }
906 
907 /*
908  * Store from FP register to memory
909  */
910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
911 {
912     /* This writes the bottom N bits of a 128 bit wide vector to memory */
913     TCGv_i64 tmplo = tcg_temp_new_i64();
914     MemOp mop = finalize_memop_asimd(s, size);
915 
916     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
917 
918     if (size < MO_128) {
919         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
920     } else {
921         TCGv_i64 tmphi = tcg_temp_new_i64();
922         TCGv_i128 t16 = tcg_temp_new_i128();
923 
924         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
925         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
926 
927         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
928     }
929 }
930 
931 /*
932  * Load from memory to FP register
933  */
934 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
935 {
936     /* This always zero-extends and writes to a full 128 bit wide vector */
937     TCGv_i64 tmplo = tcg_temp_new_i64();
938     TCGv_i64 tmphi = NULL;
939     MemOp mop = finalize_memop_asimd(s, size);
940 
941     if (size < MO_128) {
942         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
943     } else {
944         TCGv_i128 t16 = tcg_temp_new_i128();
945 
946         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
947 
948         tmphi = tcg_temp_new_i64();
949         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
950     }
951 
952     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
953 
954     if (tmphi) {
955         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
956     }
957     clear_vec_high(s, tmphi != NULL, destidx);
958 }
959 
960 /*
961  * Vector load/store helpers.
962  *
963  * The principal difference between this and a FP load is that we don't
964  * zero extend as we are filling a partial chunk of the vector register.
965  * These functions don't support 128 bit loads/stores, which would be
966  * normal load/store operations.
967  *
968  * The _i32 versions are useful when operating on 32 bit quantities
969  * (eg for floating point single or using Neon helper functions).
970  */
971 
972 /* Get value of an element within a vector register */
973 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
974                              int element, MemOp memop)
975 {
976     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
977     switch ((unsigned)memop) {
978     case MO_8:
979         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
980         break;
981     case MO_16:
982         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
983         break;
984     case MO_32:
985         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
986         break;
987     case MO_8|MO_SIGN:
988         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
989         break;
990     case MO_16|MO_SIGN:
991         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
992         break;
993     case MO_32|MO_SIGN:
994         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
995         break;
996     case MO_64:
997     case MO_64|MO_SIGN:
998         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
999         break;
1000     default:
1001         g_assert_not_reached();
1002     }
1003 }
1004 
1005 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1006                                  int element, MemOp memop)
1007 {
1008     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1009     switch (memop) {
1010     case MO_8:
1011         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1012         break;
1013     case MO_16:
1014         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1015         break;
1016     case MO_8|MO_SIGN:
1017         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1018         break;
1019     case MO_16|MO_SIGN:
1020         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1021         break;
1022     case MO_32:
1023     case MO_32|MO_SIGN:
1024         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1025         break;
1026     default:
1027         g_assert_not_reached();
1028     }
1029 }
1030 
1031 /* Set value of an element within a vector register */
1032 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1033                               int element, MemOp memop)
1034 {
1035     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1036     switch (memop) {
1037     case MO_8:
1038         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1039         break;
1040     case MO_16:
1041         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1042         break;
1043     case MO_32:
1044         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1045         break;
1046     case MO_64:
1047         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1048         break;
1049     default:
1050         g_assert_not_reached();
1051     }
1052 }
1053 
1054 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1055                                   int destidx, int element, MemOp memop)
1056 {
1057     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1058     switch (memop) {
1059     case MO_8:
1060         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1061         break;
1062     case MO_16:
1063         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1064         break;
1065     case MO_32:
1066         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1067         break;
1068     default:
1069         g_assert_not_reached();
1070     }
1071 }
1072 
1073 /* Store from vector register to memory */
1074 static void do_vec_st(DisasContext *s, int srcidx, int element,
1075                       TCGv_i64 tcg_addr, MemOp mop)
1076 {
1077     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1078 
1079     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1080     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1081 }
1082 
1083 /* Load from memory to vector register */
1084 static void do_vec_ld(DisasContext *s, int destidx, int element,
1085                       TCGv_i64 tcg_addr, MemOp mop)
1086 {
1087     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1088 
1089     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1090     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1091 }
1092 
1093 /* Check that FP/Neon access is enabled. If it is, return
1094  * true. If not, emit code to generate an appropriate exception,
1095  * and return false; the caller should not emit any code for
1096  * the instruction. Note that this check must happen after all
1097  * unallocated-encoding checks (otherwise the syndrome information
1098  * for the resulting exception will be incorrect).
1099  */
1100 static bool fp_access_check_only(DisasContext *s)
1101 {
1102     if (s->fp_excp_el) {
1103         assert(!s->fp_access_checked);
1104         s->fp_access_checked = true;
1105 
1106         gen_exception_insn_el(s, 0, EXCP_UDEF,
1107                               syn_fp_access_trap(1, 0xe, false, 0),
1108                               s->fp_excp_el);
1109         return false;
1110     }
1111     s->fp_access_checked = true;
1112     return true;
1113 }
1114 
1115 static bool fp_access_check(DisasContext *s)
1116 {
1117     if (!fp_access_check_only(s)) {
1118         return false;
1119     }
1120     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1121         gen_exception_insn(s, 0, EXCP_UDEF,
1122                            syn_smetrap(SME_ET_Streaming, false));
1123         return false;
1124     }
1125     return true;
1126 }
1127 
1128 /*
1129  * Check that SVE access is enabled.  If it is, return true.
1130  * If not, emit code to generate an appropriate exception and return false.
1131  * This function corresponds to CheckSVEEnabled().
1132  */
1133 bool sve_access_check(DisasContext *s)
1134 {
1135     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1136         assert(dc_isar_feature(aa64_sme, s));
1137         if (!sme_sm_enabled_check(s)) {
1138             goto fail_exit;
1139         }
1140     } else if (s->sve_excp_el) {
1141         gen_exception_insn_el(s, 0, EXCP_UDEF,
1142                               syn_sve_access_trap(), s->sve_excp_el);
1143         goto fail_exit;
1144     }
1145     s->sve_access_checked = true;
1146     return fp_access_check(s);
1147 
1148  fail_exit:
1149     /* Assert that we only raise one exception per instruction. */
1150     assert(!s->sve_access_checked);
1151     s->sve_access_checked = true;
1152     return false;
1153 }
1154 
1155 /*
1156  * Check that SME access is enabled, raise an exception if not.
1157  * Note that this function corresponds to CheckSMEAccess and is
1158  * only used directly for cpregs.
1159  */
1160 static bool sme_access_check(DisasContext *s)
1161 {
1162     if (s->sme_excp_el) {
1163         gen_exception_insn_el(s, 0, EXCP_UDEF,
1164                               syn_smetrap(SME_ET_AccessTrap, false),
1165                               s->sme_excp_el);
1166         return false;
1167     }
1168     return true;
1169 }
1170 
1171 /* This function corresponds to CheckSMEEnabled. */
1172 bool sme_enabled_check(DisasContext *s)
1173 {
1174     /*
1175      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1176      * to be zero when fp_excp_el has priority.  This is because we need
1177      * sme_excp_el by itself for cpregs access checks.
1178      */
1179     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1180         s->fp_access_checked = true;
1181         return sme_access_check(s);
1182     }
1183     return fp_access_check_only(s);
1184 }
1185 
1186 /* Common subroutine for CheckSMEAnd*Enabled. */
1187 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1188 {
1189     if (!sme_enabled_check(s)) {
1190         return false;
1191     }
1192     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1193         gen_exception_insn(s, 0, EXCP_UDEF,
1194                            syn_smetrap(SME_ET_NotStreaming, false));
1195         return false;
1196     }
1197     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1198         gen_exception_insn(s, 0, EXCP_UDEF,
1199                            syn_smetrap(SME_ET_InactiveZA, false));
1200         return false;
1201     }
1202     return true;
1203 }
1204 
1205 /*
1206  * This utility function is for doing register extension with an
1207  * optional shift. You will likely want to pass a temporary for the
1208  * destination register. See DecodeRegExtend() in the ARM ARM.
1209  */
1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1211                               int option, unsigned int shift)
1212 {
1213     int extsize = extract32(option, 0, 2);
1214     bool is_signed = extract32(option, 2, 1);
1215 
1216     if (is_signed) {
1217         switch (extsize) {
1218         case 0:
1219             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1220             break;
1221         case 1:
1222             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1223             break;
1224         case 2:
1225             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1226             break;
1227         case 3:
1228             tcg_gen_mov_i64(tcg_out, tcg_in);
1229             break;
1230         }
1231     } else {
1232         switch (extsize) {
1233         case 0:
1234             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1235             break;
1236         case 1:
1237             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1238             break;
1239         case 2:
1240             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1241             break;
1242         case 3:
1243             tcg_gen_mov_i64(tcg_out, tcg_in);
1244             break;
1245         }
1246     }
1247 
1248     if (shift) {
1249         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1250     }
1251 }
1252 
1253 static inline void gen_check_sp_alignment(DisasContext *s)
1254 {
1255     /* The AArch64 architecture mandates that (if enabled via PSTATE
1256      * or SCTLR bits) there is a check that SP is 16-aligned on every
1257      * SP-relative load or store (with an exception generated if it is not).
1258      * In line with general QEMU practice regarding misaligned accesses,
1259      * we omit these checks for the sake of guest program performance.
1260      * This function is provided as a hook so we can more easily add these
1261      * checks in future (possibly as a "favour catching guest program bugs
1262      * over speed" user selectable option).
1263      */
1264 }
1265 
1266 /*
1267  * This provides a simple table based table lookup decoder. It is
1268  * intended to be used when the relevant bits for decode are too
1269  * awkwardly placed and switch/if based logic would be confusing and
1270  * deeply nested. Since it's a linear search through the table, tables
1271  * should be kept small.
1272  *
1273  * It returns the first handler where insn & mask == pattern, or
1274  * NULL if there is no match.
1275  * The table is terminated by an empty mask (i.e. 0)
1276  */
1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1278                                                uint32_t insn)
1279 {
1280     const AArch64DecodeTable *tptr = table;
1281 
1282     while (tptr->mask) {
1283         if ((insn & tptr->mask) == tptr->pattern) {
1284             return tptr->disas_fn;
1285         }
1286         tptr++;
1287     }
1288     return NULL;
1289 }
1290 
1291 /*
1292  * The instruction disassembly implemented here matches
1293  * the instruction encoding classifications in chapter C4
1294  * of the ARM Architecture Reference Manual (DDI0487B_a);
1295  * classification names and decode diagrams here should generally
1296  * match up with those in the manual.
1297  */
1298 
1299 static bool trans_B(DisasContext *s, arg_i *a)
1300 {
1301     reset_btype(s);
1302     gen_goto_tb(s, 0, a->imm);
1303     return true;
1304 }
1305 
1306 static bool trans_BL(DisasContext *s, arg_i *a)
1307 {
1308     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1309     reset_btype(s);
1310     gen_goto_tb(s, 0, a->imm);
1311     return true;
1312 }
1313 
1314 
1315 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1316 {
1317     DisasLabel match;
1318     TCGv_i64 tcg_cmp;
1319 
1320     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1321     reset_btype(s);
1322 
1323     match = gen_disas_label(s);
1324     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1325                         tcg_cmp, 0, match.label);
1326     gen_goto_tb(s, 0, 4);
1327     set_disas_label(s, match);
1328     gen_goto_tb(s, 1, a->imm);
1329     return true;
1330 }
1331 
1332 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1333 {
1334     DisasLabel match;
1335     TCGv_i64 tcg_cmp;
1336 
1337     tcg_cmp = tcg_temp_new_i64();
1338     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1339 
1340     reset_btype(s);
1341 
1342     match = gen_disas_label(s);
1343     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1344                         tcg_cmp, 0, match.label);
1345     gen_goto_tb(s, 0, 4);
1346     set_disas_label(s, match);
1347     gen_goto_tb(s, 1, a->imm);
1348     return true;
1349 }
1350 
1351 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1352 {
1353     reset_btype(s);
1354     if (a->cond < 0x0e) {
1355         /* genuinely conditional branches */
1356         DisasLabel match = gen_disas_label(s);
1357         arm_gen_test_cc(a->cond, match.label);
1358         gen_goto_tb(s, 0, 4);
1359         set_disas_label(s, match);
1360         gen_goto_tb(s, 1, a->imm);
1361     } else {
1362         /* 0xe and 0xf are both "always" conditions */
1363         gen_goto_tb(s, 0, a->imm);
1364     }
1365     return true;
1366 }
1367 
1368 static void set_btype_for_br(DisasContext *s, int rn)
1369 {
1370     if (dc_isar_feature(aa64_bti, s)) {
1371         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1372         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1373     }
1374 }
1375 
1376 static void set_btype_for_blr(DisasContext *s)
1377 {
1378     if (dc_isar_feature(aa64_bti, s)) {
1379         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1380         set_btype(s, 2);
1381     }
1382 }
1383 
1384 static bool trans_BR(DisasContext *s, arg_r *a)
1385 {
1386     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1387     set_btype_for_br(s, a->rn);
1388     s->base.is_jmp = DISAS_JUMP;
1389     return true;
1390 }
1391 
1392 static bool trans_BLR(DisasContext *s, arg_r *a)
1393 {
1394     TCGv_i64 dst = cpu_reg(s, a->rn);
1395     TCGv_i64 lr = cpu_reg(s, 30);
1396     if (dst == lr) {
1397         TCGv_i64 tmp = tcg_temp_new_i64();
1398         tcg_gen_mov_i64(tmp, dst);
1399         dst = tmp;
1400     }
1401     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1402     gen_a64_set_pc(s, dst);
1403     set_btype_for_blr(s);
1404     s->base.is_jmp = DISAS_JUMP;
1405     return true;
1406 }
1407 
1408 static bool trans_RET(DisasContext *s, arg_r *a)
1409 {
1410     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1411     s->base.is_jmp = DISAS_JUMP;
1412     return true;
1413 }
1414 
1415 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1416                                    TCGv_i64 modifier, bool use_key_a)
1417 {
1418     TCGv_i64 truedst;
1419     /*
1420      * Return the branch target for a BRAA/RETA/etc, which is either
1421      * just the destination dst, or that value with the pauth check
1422      * done and the code removed from the high bits.
1423      */
1424     if (!s->pauth_active) {
1425         return dst;
1426     }
1427 
1428     truedst = tcg_temp_new_i64();
1429     if (use_key_a) {
1430         gen_helper_autia(truedst, cpu_env, dst, modifier);
1431     } else {
1432         gen_helper_autib(truedst, cpu_env, dst, modifier);
1433     }
1434     return truedst;
1435 }
1436 
1437 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1438 {
1439     TCGv_i64 dst;
1440 
1441     if (!dc_isar_feature(aa64_pauth, s)) {
1442         return false;
1443     }
1444 
1445     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1446     gen_a64_set_pc(s, dst);
1447     set_btype_for_br(s, a->rn);
1448     s->base.is_jmp = DISAS_JUMP;
1449     return true;
1450 }
1451 
1452 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1453 {
1454     TCGv_i64 dst, lr;
1455 
1456     if (!dc_isar_feature(aa64_pauth, s)) {
1457         return false;
1458     }
1459 
1460     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1461     lr = cpu_reg(s, 30);
1462     if (dst == lr) {
1463         TCGv_i64 tmp = tcg_temp_new_i64();
1464         tcg_gen_mov_i64(tmp, dst);
1465         dst = tmp;
1466     }
1467     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1468     gen_a64_set_pc(s, dst);
1469     set_btype_for_blr(s);
1470     s->base.is_jmp = DISAS_JUMP;
1471     return true;
1472 }
1473 
1474 static bool trans_RETA(DisasContext *s, arg_reta *a)
1475 {
1476     TCGv_i64 dst;
1477 
1478     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1479     gen_a64_set_pc(s, dst);
1480     s->base.is_jmp = DISAS_JUMP;
1481     return true;
1482 }
1483 
1484 static bool trans_BRA(DisasContext *s, arg_bra *a)
1485 {
1486     TCGv_i64 dst;
1487 
1488     if (!dc_isar_feature(aa64_pauth, s)) {
1489         return false;
1490     }
1491     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1492     gen_a64_set_pc(s, dst);
1493     set_btype_for_br(s, a->rn);
1494     s->base.is_jmp = DISAS_JUMP;
1495     return true;
1496 }
1497 
1498 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1499 {
1500     TCGv_i64 dst, lr;
1501 
1502     if (!dc_isar_feature(aa64_pauth, s)) {
1503         return false;
1504     }
1505     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1506     lr = cpu_reg(s, 30);
1507     if (dst == lr) {
1508         TCGv_i64 tmp = tcg_temp_new_i64();
1509         tcg_gen_mov_i64(tmp, dst);
1510         dst = tmp;
1511     }
1512     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1513     gen_a64_set_pc(s, dst);
1514     set_btype_for_blr(s);
1515     s->base.is_jmp = DISAS_JUMP;
1516     return true;
1517 }
1518 
1519 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1520 {
1521     TCGv_i64 dst;
1522 
1523     if (s->current_el == 0) {
1524         return false;
1525     }
1526     if (s->fgt_eret) {
1527         gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1528         return true;
1529     }
1530     dst = tcg_temp_new_i64();
1531     tcg_gen_ld_i64(dst, cpu_env,
1532                    offsetof(CPUARMState, elr_el[s->current_el]));
1533 
1534     translator_io_start(&s->base);
1535 
1536     gen_helper_exception_return(cpu_env, dst);
1537     /* Must exit loop to check un-masked IRQs */
1538     s->base.is_jmp = DISAS_EXIT;
1539     return true;
1540 }
1541 
1542 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1543 {
1544     TCGv_i64 dst;
1545 
1546     if (!dc_isar_feature(aa64_pauth, s)) {
1547         return false;
1548     }
1549     if (s->current_el == 0) {
1550         return false;
1551     }
1552     /* The FGT trap takes precedence over an auth trap. */
1553     if (s->fgt_eret) {
1554         gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1555         return true;
1556     }
1557     dst = tcg_temp_new_i64();
1558     tcg_gen_ld_i64(dst, cpu_env,
1559                    offsetof(CPUARMState, elr_el[s->current_el]));
1560 
1561     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1562 
1563     translator_io_start(&s->base);
1564 
1565     gen_helper_exception_return(cpu_env, dst);
1566     /* Must exit loop to check un-masked IRQs */
1567     s->base.is_jmp = DISAS_EXIT;
1568     return true;
1569 }
1570 
1571 /* HINT instruction group, including various allocated HINTs */
1572 static void handle_hint(DisasContext *s, uint32_t insn,
1573                         unsigned int op1, unsigned int op2, unsigned int crm)
1574 {
1575     unsigned int selector = crm << 3 | op2;
1576 
1577     if (op1 != 3) {
1578         unallocated_encoding(s);
1579         return;
1580     }
1581 
1582     switch (selector) {
1583     case 0b00000: /* NOP */
1584         break;
1585     case 0b00011: /* WFI */
1586         s->base.is_jmp = DISAS_WFI;
1587         break;
1588     case 0b00001: /* YIELD */
1589         /* When running in MTTCG we don't generate jumps to the yield and
1590          * WFE helpers as it won't affect the scheduling of other vCPUs.
1591          * If we wanted to more completely model WFE/SEV so we don't busy
1592          * spin unnecessarily we would need to do something more involved.
1593          */
1594         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1595             s->base.is_jmp = DISAS_YIELD;
1596         }
1597         break;
1598     case 0b00010: /* WFE */
1599         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1600             s->base.is_jmp = DISAS_WFE;
1601         }
1602         break;
1603     case 0b00100: /* SEV */
1604     case 0b00101: /* SEVL */
1605     case 0b00110: /* DGH */
1606         /* we treat all as NOP at least for now */
1607         break;
1608     case 0b00111: /* XPACLRI */
1609         if (s->pauth_active) {
1610             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1611         }
1612         break;
1613     case 0b01000: /* PACIA1716 */
1614         if (s->pauth_active) {
1615             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1616         }
1617         break;
1618     case 0b01010: /* PACIB1716 */
1619         if (s->pauth_active) {
1620             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1621         }
1622         break;
1623     case 0b01100: /* AUTIA1716 */
1624         if (s->pauth_active) {
1625             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1626         }
1627         break;
1628     case 0b01110: /* AUTIB1716 */
1629         if (s->pauth_active) {
1630             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1631         }
1632         break;
1633     case 0b10000: /* ESB */
1634         /* Without RAS, we must implement this as NOP. */
1635         if (dc_isar_feature(aa64_ras, s)) {
1636             /*
1637              * QEMU does not have a source of physical SErrors,
1638              * so we are only concerned with virtual SErrors.
1639              * The pseudocode in the ARM for this case is
1640              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1641              *      AArch64.vESBOperation();
1642              * Most of the condition can be evaluated at translation time.
1643              * Test for EL2 present, and defer test for SEL2 to runtime.
1644              */
1645             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1646                 gen_helper_vesb(cpu_env);
1647             }
1648         }
1649         break;
1650     case 0b11000: /* PACIAZ */
1651         if (s->pauth_active) {
1652             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1653                              tcg_constant_i64(0));
1654         }
1655         break;
1656     case 0b11001: /* PACIASP */
1657         if (s->pauth_active) {
1658             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1659         }
1660         break;
1661     case 0b11010: /* PACIBZ */
1662         if (s->pauth_active) {
1663             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1664                              tcg_constant_i64(0));
1665         }
1666         break;
1667     case 0b11011: /* PACIBSP */
1668         if (s->pauth_active) {
1669             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1670         }
1671         break;
1672     case 0b11100: /* AUTIAZ */
1673         if (s->pauth_active) {
1674             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1675                              tcg_constant_i64(0));
1676         }
1677         break;
1678     case 0b11101: /* AUTIASP */
1679         if (s->pauth_active) {
1680             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1681         }
1682         break;
1683     case 0b11110: /* AUTIBZ */
1684         if (s->pauth_active) {
1685             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1686                              tcg_constant_i64(0));
1687         }
1688         break;
1689     case 0b11111: /* AUTIBSP */
1690         if (s->pauth_active) {
1691             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1692         }
1693         break;
1694     default:
1695         /* default specified as NOP equivalent */
1696         break;
1697     }
1698 }
1699 
1700 static void gen_clrex(DisasContext *s, uint32_t insn)
1701 {
1702     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1703 }
1704 
1705 /* CLREX, DSB, DMB, ISB */
1706 static void handle_sync(DisasContext *s, uint32_t insn,
1707                         unsigned int op1, unsigned int op2, unsigned int crm)
1708 {
1709     TCGBar bar;
1710 
1711     if (op1 != 3) {
1712         unallocated_encoding(s);
1713         return;
1714     }
1715 
1716     switch (op2) {
1717     case 2: /* CLREX */
1718         gen_clrex(s, insn);
1719         return;
1720     case 4: /* DSB */
1721     case 5: /* DMB */
1722         switch (crm & 3) {
1723         case 1: /* MBReqTypes_Reads */
1724             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1725             break;
1726         case 2: /* MBReqTypes_Writes */
1727             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1728             break;
1729         default: /* MBReqTypes_All */
1730             bar = TCG_BAR_SC | TCG_MO_ALL;
1731             break;
1732         }
1733         tcg_gen_mb(bar);
1734         return;
1735     case 6: /* ISB */
1736         /* We need to break the TB after this insn to execute
1737          * a self-modified code correctly and also to take
1738          * any pending interrupts immediately.
1739          */
1740         reset_btype(s);
1741         gen_goto_tb(s, 0, 4);
1742         return;
1743 
1744     case 7: /* SB */
1745         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1746             goto do_unallocated;
1747         }
1748         /*
1749          * TODO: There is no speculation barrier opcode for TCG;
1750          * MB and end the TB instead.
1751          */
1752         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1753         gen_goto_tb(s, 0, 4);
1754         return;
1755 
1756     default:
1757     do_unallocated:
1758         unallocated_encoding(s);
1759         return;
1760     }
1761 }
1762 
1763 static void gen_xaflag(void)
1764 {
1765     TCGv_i32 z = tcg_temp_new_i32();
1766 
1767     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1768 
1769     /*
1770      * (!C & !Z) << 31
1771      * (!(C | Z)) << 31
1772      * ~((C | Z) << 31)
1773      * ~-(C | Z)
1774      * (C | Z) - 1
1775      */
1776     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1777     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1778 
1779     /* !(Z & C) */
1780     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1781     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1782 
1783     /* (!C & Z) << 31 -> -(Z & ~C) */
1784     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1785     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1786 
1787     /* C | Z */
1788     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1789 }
1790 
1791 static void gen_axflag(void)
1792 {
1793     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1794     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1795 
1796     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1797     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1798 
1799     tcg_gen_movi_i32(cpu_NF, 0);
1800     tcg_gen_movi_i32(cpu_VF, 0);
1801 }
1802 
1803 /* MSR (immediate) - move immediate to processor state field */
1804 static void handle_msr_i(DisasContext *s, uint32_t insn,
1805                          unsigned int op1, unsigned int op2, unsigned int crm)
1806 {
1807     int op = op1 << 3 | op2;
1808 
1809     /* End the TB by default, chaining is ok.  */
1810     s->base.is_jmp = DISAS_TOO_MANY;
1811 
1812     switch (op) {
1813     case 0x00: /* CFINV */
1814         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1815             goto do_unallocated;
1816         }
1817         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1818         s->base.is_jmp = DISAS_NEXT;
1819         break;
1820 
1821     case 0x01: /* XAFlag */
1822         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1823             goto do_unallocated;
1824         }
1825         gen_xaflag();
1826         s->base.is_jmp = DISAS_NEXT;
1827         break;
1828 
1829     case 0x02: /* AXFlag */
1830         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1831             goto do_unallocated;
1832         }
1833         gen_axflag();
1834         s->base.is_jmp = DISAS_NEXT;
1835         break;
1836 
1837     case 0x03: /* UAO */
1838         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1839             goto do_unallocated;
1840         }
1841         if (crm & 1) {
1842             set_pstate_bits(PSTATE_UAO);
1843         } else {
1844             clear_pstate_bits(PSTATE_UAO);
1845         }
1846         gen_rebuild_hflags(s);
1847         break;
1848 
1849     case 0x04: /* PAN */
1850         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1851             goto do_unallocated;
1852         }
1853         if (crm & 1) {
1854             set_pstate_bits(PSTATE_PAN);
1855         } else {
1856             clear_pstate_bits(PSTATE_PAN);
1857         }
1858         gen_rebuild_hflags(s);
1859         break;
1860 
1861     case 0x05: /* SPSel */
1862         if (s->current_el == 0) {
1863             goto do_unallocated;
1864         }
1865         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1866         break;
1867 
1868     case 0x19: /* SSBS */
1869         if (!dc_isar_feature(aa64_ssbs, s)) {
1870             goto do_unallocated;
1871         }
1872         if (crm & 1) {
1873             set_pstate_bits(PSTATE_SSBS);
1874         } else {
1875             clear_pstate_bits(PSTATE_SSBS);
1876         }
1877         /* Don't need to rebuild hflags since SSBS is a nop */
1878         break;
1879 
1880     case 0x1a: /* DIT */
1881         if (!dc_isar_feature(aa64_dit, s)) {
1882             goto do_unallocated;
1883         }
1884         if (crm & 1) {
1885             set_pstate_bits(PSTATE_DIT);
1886         } else {
1887             clear_pstate_bits(PSTATE_DIT);
1888         }
1889         /* There's no need to rebuild hflags because DIT is a nop */
1890         break;
1891 
1892     case 0x1e: /* DAIFSet */
1893         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1894         break;
1895 
1896     case 0x1f: /* DAIFClear */
1897         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1898         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1899         s->base.is_jmp = DISAS_UPDATE_EXIT;
1900         break;
1901 
1902     case 0x1c: /* TCO */
1903         if (dc_isar_feature(aa64_mte, s)) {
1904             /* Full MTE is enabled -- set the TCO bit as directed. */
1905             if (crm & 1) {
1906                 set_pstate_bits(PSTATE_TCO);
1907             } else {
1908                 clear_pstate_bits(PSTATE_TCO);
1909             }
1910             gen_rebuild_hflags(s);
1911             /* Many factors, including TCO, go into MTE_ACTIVE. */
1912             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1913         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1914             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1915             s->base.is_jmp = DISAS_NEXT;
1916         } else {
1917             goto do_unallocated;
1918         }
1919         break;
1920 
1921     case 0x1b: /* SVCR* */
1922         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1923             goto do_unallocated;
1924         }
1925         if (sme_access_check(s)) {
1926             int old = s->pstate_sm | (s->pstate_za << 1);
1927             int new = (crm & 1) * 3;
1928             int msk = (crm >> 1) & 3;
1929 
1930             if ((old ^ new) & msk) {
1931                 /* At least one bit changes. */
1932                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1933                                     tcg_constant_i32(msk));
1934             } else {
1935                 s->base.is_jmp = DISAS_NEXT;
1936             }
1937         }
1938         break;
1939 
1940     default:
1941     do_unallocated:
1942         unallocated_encoding(s);
1943         return;
1944     }
1945 }
1946 
1947 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1948 {
1949     TCGv_i32 tmp = tcg_temp_new_i32();
1950     TCGv_i32 nzcv = tcg_temp_new_i32();
1951 
1952     /* build bit 31, N */
1953     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1954     /* build bit 30, Z */
1955     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1956     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1957     /* build bit 29, C */
1958     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1959     /* build bit 28, V */
1960     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1961     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1962     /* generate result */
1963     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1964 }
1965 
1966 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1967 {
1968     TCGv_i32 nzcv = tcg_temp_new_i32();
1969 
1970     /* take NZCV from R[t] */
1971     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1972 
1973     /* bit 31, N */
1974     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1975     /* bit 30, Z */
1976     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1977     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1978     /* bit 29, C */
1979     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1980     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1981     /* bit 28, V */
1982     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1983     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1984 }
1985 
1986 static void gen_sysreg_undef(DisasContext *s, bool isread,
1987                              uint8_t op0, uint8_t op1, uint8_t op2,
1988                              uint8_t crn, uint8_t crm, uint8_t rt)
1989 {
1990     /*
1991      * Generate code to emit an UNDEF with correct syndrome
1992      * information for a failed system register access.
1993      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1994      * but if FEAT_IDST is implemented then read accesses to registers
1995      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1996      * syndrome.
1997      */
1998     uint32_t syndrome;
1999 
2000     if (isread && dc_isar_feature(aa64_ids, s) &&
2001         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2002         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2003     } else {
2004         syndrome = syn_uncategorized();
2005     }
2006     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2007 }
2008 
2009 /* MRS - move from system register
2010  * MSR (register) - move to system register
2011  * SYS
2012  * SYSL
2013  * These are all essentially the same insn in 'read' and 'write'
2014  * versions, with varying op0 fields.
2015  */
2016 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
2017                        unsigned int op0, unsigned int op1, unsigned int op2,
2018                        unsigned int crn, unsigned int crm, unsigned int rt)
2019 {
2020     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2021                                       crn, crm, op0, op1, op2);
2022     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2023     bool need_exit_tb = false;
2024     TCGv_ptr tcg_ri = NULL;
2025     TCGv_i64 tcg_rt;
2026 
2027     if (!ri) {
2028         /* Unknown register; this might be a guest error or a QEMU
2029          * unimplemented feature.
2030          */
2031         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2032                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2033                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2034         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2035         return;
2036     }
2037 
2038     /* Check access permissions */
2039     if (!cp_access_ok(s->current_el, ri, isread)) {
2040         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2041         return;
2042     }
2043 
2044     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2045         /* Emit code to perform further access permissions checks at
2046          * runtime; this may result in an exception.
2047          */
2048         uint32_t syndrome;
2049 
2050         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2051         gen_a64_update_pc(s, 0);
2052         tcg_ri = tcg_temp_new_ptr();
2053         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
2054                                        tcg_constant_i32(key),
2055                                        tcg_constant_i32(syndrome),
2056                                        tcg_constant_i32(isread));
2057     } else if (ri->type & ARM_CP_RAISES_EXC) {
2058         /*
2059          * The readfn or writefn might raise an exception;
2060          * synchronize the CPU state in case it does.
2061          */
2062         gen_a64_update_pc(s, 0);
2063     }
2064 
2065     /* Handle special cases first */
2066     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2067     case 0:
2068         break;
2069     case ARM_CP_NOP:
2070         return;
2071     case ARM_CP_NZCV:
2072         tcg_rt = cpu_reg(s, rt);
2073         if (isread) {
2074             gen_get_nzcv(tcg_rt);
2075         } else {
2076             gen_set_nzcv(tcg_rt);
2077         }
2078         return;
2079     case ARM_CP_CURRENTEL:
2080         /* Reads as current EL value from pstate, which is
2081          * guaranteed to be constant by the tb flags.
2082          */
2083         tcg_rt = cpu_reg(s, rt);
2084         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2085         return;
2086     case ARM_CP_DC_ZVA:
2087         /* Writes clear the aligned block of memory which rt points into. */
2088         if (s->mte_active[0]) {
2089             int desc = 0;
2090 
2091             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2092             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2093             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2094 
2095             tcg_rt = tcg_temp_new_i64();
2096             gen_helper_mte_check_zva(tcg_rt, cpu_env,
2097                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2098         } else {
2099             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2100         }
2101         gen_helper_dc_zva(cpu_env, tcg_rt);
2102         return;
2103     case ARM_CP_DC_GVA:
2104         {
2105             TCGv_i64 clean_addr, tag;
2106 
2107             /*
2108              * DC_GVA, like DC_ZVA, requires that we supply the original
2109              * pointer for an invalid page.  Probe that address first.
2110              */
2111             tcg_rt = cpu_reg(s, rt);
2112             clean_addr = clean_data_tbi(s, tcg_rt);
2113             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2114 
2115             if (s->ata) {
2116                 /* Extract the tag from the register to match STZGM.  */
2117                 tag = tcg_temp_new_i64();
2118                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2119                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2120             }
2121         }
2122         return;
2123     case ARM_CP_DC_GZVA:
2124         {
2125             TCGv_i64 clean_addr, tag;
2126 
2127             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2128             tcg_rt = cpu_reg(s, rt);
2129             clean_addr = clean_data_tbi(s, tcg_rt);
2130             gen_helper_dc_zva(cpu_env, clean_addr);
2131 
2132             if (s->ata) {
2133                 /* Extract the tag from the register to match STZGM.  */
2134                 tag = tcg_temp_new_i64();
2135                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2136                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2137             }
2138         }
2139         return;
2140     default:
2141         g_assert_not_reached();
2142     }
2143     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2144         return;
2145     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2146         return;
2147     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2148         return;
2149     }
2150 
2151     if (ri->type & ARM_CP_IO) {
2152         /* I/O operations must end the TB here (whether read or write) */
2153         need_exit_tb = translator_io_start(&s->base);
2154     }
2155 
2156     tcg_rt = cpu_reg(s, rt);
2157 
2158     if (isread) {
2159         if (ri->type & ARM_CP_CONST) {
2160             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2161         } else if (ri->readfn) {
2162             if (!tcg_ri) {
2163                 tcg_ri = gen_lookup_cp_reg(key);
2164             }
2165             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2166         } else {
2167             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2168         }
2169     } else {
2170         if (ri->type & ARM_CP_CONST) {
2171             /* If not forbidden by access permissions, treat as WI */
2172             return;
2173         } else if (ri->writefn) {
2174             if (!tcg_ri) {
2175                 tcg_ri = gen_lookup_cp_reg(key);
2176             }
2177             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2178         } else {
2179             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2180         }
2181     }
2182 
2183     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2184         /*
2185          * A write to any coprocessor regiser that ends a TB
2186          * must rebuild the hflags for the next TB.
2187          */
2188         gen_rebuild_hflags(s);
2189         /*
2190          * We default to ending the TB on a coprocessor register write,
2191          * but allow this to be suppressed by the register definition
2192          * (usually only necessary to work around guest bugs).
2193          */
2194         need_exit_tb = true;
2195     }
2196     if (need_exit_tb) {
2197         s->base.is_jmp = DISAS_UPDATE_EXIT;
2198     }
2199 }
2200 
2201 /* System
2202  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2203  * +---------------------+---+-----+-----+-------+-------+-----+------+
2204  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2205  * +---------------------+---+-----+-----+-------+-------+-----+------+
2206  */
2207 static void disas_system(DisasContext *s, uint32_t insn)
2208 {
2209     unsigned int l, op0, op1, crn, crm, op2, rt;
2210     l = extract32(insn, 21, 1);
2211     op0 = extract32(insn, 19, 2);
2212     op1 = extract32(insn, 16, 3);
2213     crn = extract32(insn, 12, 4);
2214     crm = extract32(insn, 8, 4);
2215     op2 = extract32(insn, 5, 3);
2216     rt = extract32(insn, 0, 5);
2217 
2218     if (op0 == 0) {
2219         if (l || rt != 31) {
2220             unallocated_encoding(s);
2221             return;
2222         }
2223         switch (crn) {
2224         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2225             handle_hint(s, insn, op1, op2, crm);
2226             break;
2227         case 3: /* CLREX, DSB, DMB, ISB */
2228             handle_sync(s, insn, op1, op2, crm);
2229             break;
2230         case 4: /* MSR (immediate) */
2231             handle_msr_i(s, insn, op1, op2, crm);
2232             break;
2233         default:
2234             unallocated_encoding(s);
2235             break;
2236         }
2237         return;
2238     }
2239     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2240 }
2241 
2242 /* Exception generation
2243  *
2244  *  31             24 23 21 20                     5 4   2 1  0
2245  * +-----------------+-----+------------------------+-----+----+
2246  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2247  * +-----------------------+------------------------+----------+
2248  */
2249 static void disas_exc(DisasContext *s, uint32_t insn)
2250 {
2251     int opc = extract32(insn, 21, 3);
2252     int op2_ll = extract32(insn, 0, 5);
2253     int imm16 = extract32(insn, 5, 16);
2254     uint32_t syndrome;
2255 
2256     switch (opc) {
2257     case 0:
2258         /* For SVC, HVC and SMC we advance the single-step state
2259          * machine before taking the exception. This is architecturally
2260          * mandated, to ensure that single-stepping a system call
2261          * instruction works properly.
2262          */
2263         switch (op2_ll) {
2264         case 1:                                                     /* SVC */
2265             syndrome = syn_aa64_svc(imm16);
2266             if (s->fgt_svc) {
2267                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2268                 break;
2269             }
2270             gen_ss_advance(s);
2271             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2272             break;
2273         case 2:                                                     /* HVC */
2274             if (s->current_el == 0) {
2275                 unallocated_encoding(s);
2276                 break;
2277             }
2278             /* The pre HVC helper handles cases when HVC gets trapped
2279              * as an undefined insn by runtime configuration.
2280              */
2281             gen_a64_update_pc(s, 0);
2282             gen_helper_pre_hvc(cpu_env);
2283             gen_ss_advance(s);
2284             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2285             break;
2286         case 3:                                                     /* SMC */
2287             if (s->current_el == 0) {
2288                 unallocated_encoding(s);
2289                 break;
2290             }
2291             gen_a64_update_pc(s, 0);
2292             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2293             gen_ss_advance(s);
2294             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2295             break;
2296         default:
2297             unallocated_encoding(s);
2298             break;
2299         }
2300         break;
2301     case 1:
2302         if (op2_ll != 0) {
2303             unallocated_encoding(s);
2304             break;
2305         }
2306         /* BRK */
2307         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2308         break;
2309     case 2:
2310         if (op2_ll != 0) {
2311             unallocated_encoding(s);
2312             break;
2313         }
2314         /* HLT. This has two purposes.
2315          * Architecturally, it is an external halting debug instruction.
2316          * Since QEMU doesn't implement external debug, we treat this as
2317          * it is required for halting debug disabled: it will UNDEF.
2318          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2319          */
2320         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2321             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2322         } else {
2323             unallocated_encoding(s);
2324         }
2325         break;
2326     case 5:
2327         if (op2_ll < 1 || op2_ll > 3) {
2328             unallocated_encoding(s);
2329             break;
2330         }
2331         /* DCPS1, DCPS2, DCPS3 */
2332         unallocated_encoding(s);
2333         break;
2334     default:
2335         unallocated_encoding(s);
2336         break;
2337     }
2338 }
2339 
2340 /* Branches, exception generating and system instructions */
2341 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2342 {
2343     switch (extract32(insn, 25, 7)) {
2344     case 0x6a: /* Exception generation / System */
2345         if (insn & (1 << 24)) {
2346             if (extract32(insn, 22, 2) == 0) {
2347                 disas_system(s, insn);
2348             } else {
2349                 unallocated_encoding(s);
2350             }
2351         } else {
2352             disas_exc(s, insn);
2353         }
2354         break;
2355     default:
2356         unallocated_encoding(s);
2357         break;
2358     }
2359 }
2360 
2361 /*
2362  * Load/Store exclusive instructions are implemented by remembering
2363  * the value/address loaded, and seeing if these are the same
2364  * when the store is performed. This is not actually the architecturally
2365  * mandated semantics, but it works for typical guest code sequences
2366  * and avoids having to monitor regular stores.
2367  *
2368  * The store exclusive uses the atomic cmpxchg primitives to avoid
2369  * races in multi-threaded linux-user and when MTTCG softmmu is
2370  * enabled.
2371  */
2372 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2373                                TCGv_i64 addr, int size, bool is_pair)
2374 {
2375     int idx = get_mem_index(s);
2376     MemOp memop;
2377 
2378     g_assert(size <= 3);
2379     if (is_pair) {
2380         g_assert(size >= 2);
2381         if (size == 2) {
2382             /* The pair must be single-copy atomic for the doubleword.  */
2383             memop = finalize_memop(s, MO_64 | MO_ALIGN);
2384             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2385             if (s->be_data == MO_LE) {
2386                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2387                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2388             } else {
2389                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2390                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2391             }
2392         } else {
2393             /*
2394              * The pair must be single-copy atomic for *each* doubleword, not
2395              * the entire quadword, however it must be quadword aligned.
2396              * Expose the complete load to tcg, for ease of tlb lookup,
2397              * but indicate that only 8-byte atomicity is required.
2398              */
2399             TCGv_i128 t16 = tcg_temp_new_i128();
2400 
2401             memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16,
2402                                         MO_ATOM_IFALIGN_PAIR);
2403             tcg_gen_qemu_ld_i128(t16, addr, idx, memop);
2404 
2405             if (s->be_data == MO_LE) {
2406                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2407                                       cpu_exclusive_high, t16);
2408             } else {
2409                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2410                                       cpu_exclusive_val, t16);
2411             }
2412             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2413             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2414         }
2415     } else {
2416         memop = finalize_memop(s, size | MO_ALIGN);
2417         tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2418         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2419     }
2420     tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2421 }
2422 
2423 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2424                                 TCGv_i64 addr, int size, int is_pair)
2425 {
2426     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2427      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2428      *     [addr] = {Rt};
2429      *     if (is_pair) {
2430      *         [addr + datasize] = {Rt2};
2431      *     }
2432      *     {Rd} = 0;
2433      * } else {
2434      *     {Rd} = 1;
2435      * }
2436      * env->exclusive_addr = -1;
2437      */
2438     TCGLabel *fail_label = gen_new_label();
2439     TCGLabel *done_label = gen_new_label();
2440     TCGv_i64 tmp;
2441 
2442     tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2443 
2444     tmp = tcg_temp_new_i64();
2445     if (is_pair) {
2446         if (size == 2) {
2447             if (s->be_data == MO_LE) {
2448                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2449             } else {
2450                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2451             }
2452             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2453                                        cpu_exclusive_val, tmp,
2454                                        get_mem_index(s),
2455                                        MO_64 | MO_ALIGN | s->be_data);
2456             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2457         } else {
2458             TCGv_i128 t16 = tcg_temp_new_i128();
2459             TCGv_i128 c16 = tcg_temp_new_i128();
2460             TCGv_i64 a, b;
2461 
2462             if (s->be_data == MO_LE) {
2463                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2464                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2465                                         cpu_exclusive_high);
2466             } else {
2467                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2468                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2469                                         cpu_exclusive_val);
2470             }
2471 
2472             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2473                                         get_mem_index(s),
2474                                         MO_128 | MO_ALIGN | s->be_data);
2475 
2476             a = tcg_temp_new_i64();
2477             b = tcg_temp_new_i64();
2478             if (s->be_data == MO_LE) {
2479                 tcg_gen_extr_i128_i64(a, b, t16);
2480             } else {
2481                 tcg_gen_extr_i128_i64(b, a, t16);
2482             }
2483 
2484             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2485             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2486             tcg_gen_or_i64(tmp, a, b);
2487 
2488             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2489         }
2490     } else {
2491         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2492                                    cpu_reg(s, rt), get_mem_index(s),
2493                                    size | MO_ALIGN | s->be_data);
2494         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2495     }
2496     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2497     tcg_gen_br(done_label);
2498 
2499     gen_set_label(fail_label);
2500     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2501     gen_set_label(done_label);
2502     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2503 }
2504 
2505 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2506                                  int rn, int size)
2507 {
2508     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2509     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2510     int memidx = get_mem_index(s);
2511     TCGv_i64 clean_addr;
2512 
2513     if (rn == 31) {
2514         gen_check_sp_alignment(s);
2515     }
2516     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2517     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2518                                size | MO_ALIGN | s->be_data);
2519 }
2520 
2521 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2522                                       int rn, int size)
2523 {
2524     TCGv_i64 s1 = cpu_reg(s, rs);
2525     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2526     TCGv_i64 t1 = cpu_reg(s, rt);
2527     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2528     TCGv_i64 clean_addr;
2529     int memidx = get_mem_index(s);
2530 
2531     if (rn == 31) {
2532         gen_check_sp_alignment(s);
2533     }
2534 
2535     /* This is a single atomic access, despite the "pair". */
2536     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2537 
2538     if (size == 2) {
2539         TCGv_i64 cmp = tcg_temp_new_i64();
2540         TCGv_i64 val = tcg_temp_new_i64();
2541 
2542         if (s->be_data == MO_LE) {
2543             tcg_gen_concat32_i64(val, t1, t2);
2544             tcg_gen_concat32_i64(cmp, s1, s2);
2545         } else {
2546             tcg_gen_concat32_i64(val, t2, t1);
2547             tcg_gen_concat32_i64(cmp, s2, s1);
2548         }
2549 
2550         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2551                                    MO_64 | MO_ALIGN | s->be_data);
2552 
2553         if (s->be_data == MO_LE) {
2554             tcg_gen_extr32_i64(s1, s2, cmp);
2555         } else {
2556             tcg_gen_extr32_i64(s2, s1, cmp);
2557         }
2558     } else {
2559         TCGv_i128 cmp = tcg_temp_new_i128();
2560         TCGv_i128 val = tcg_temp_new_i128();
2561 
2562         if (s->be_data == MO_LE) {
2563             tcg_gen_concat_i64_i128(val, t1, t2);
2564             tcg_gen_concat_i64_i128(cmp, s1, s2);
2565         } else {
2566             tcg_gen_concat_i64_i128(val, t2, t1);
2567             tcg_gen_concat_i64_i128(cmp, s2, s1);
2568         }
2569 
2570         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2571                                     MO_128 | MO_ALIGN | s->be_data);
2572 
2573         if (s->be_data == MO_LE) {
2574             tcg_gen_extr_i128_i64(s1, s2, cmp);
2575         } else {
2576             tcg_gen_extr_i128_i64(s2, s1, cmp);
2577         }
2578     }
2579 }
2580 
2581 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2582  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2583  */
2584 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2585 {
2586     int opc0 = extract32(opc, 0, 1);
2587     int regsize;
2588 
2589     if (is_signed) {
2590         regsize = opc0 ? 32 : 64;
2591     } else {
2592         regsize = size == 3 ? 64 : 32;
2593     }
2594     return regsize == 64;
2595 }
2596 
2597 /* Load/store exclusive
2598  *
2599  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2600  * +-----+-------------+----+---+----+------+----+-------+------+------+
2601  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2602  * +-----+-------------+----+---+----+------+----+-------+------+------+
2603  *
2604  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2605  *   L: 0 -> store, 1 -> load
2606  *  o2: 0 -> exclusive, 1 -> not
2607  *  o1: 0 -> single register, 1 -> register pair
2608  *  o0: 1 -> load-acquire/store-release, 0 -> not
2609  */
2610 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2611 {
2612     int rt = extract32(insn, 0, 5);
2613     int rn = extract32(insn, 5, 5);
2614     int rt2 = extract32(insn, 10, 5);
2615     int rs = extract32(insn, 16, 5);
2616     int is_lasr = extract32(insn, 15, 1);
2617     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2618     int size = extract32(insn, 30, 2);
2619     TCGv_i64 clean_addr;
2620 
2621     switch (o2_L_o1_o0) {
2622     case 0x0: /* STXR */
2623     case 0x1: /* STLXR */
2624         if (rn == 31) {
2625             gen_check_sp_alignment(s);
2626         }
2627         if (is_lasr) {
2628             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2629         }
2630         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2631                                     true, rn != 31, size);
2632         gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2633         return;
2634 
2635     case 0x4: /* LDXR */
2636     case 0x5: /* LDAXR */
2637         if (rn == 31) {
2638             gen_check_sp_alignment(s);
2639         }
2640         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2641                                     false, rn != 31, size);
2642         s->is_ldex = true;
2643         gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2644         if (is_lasr) {
2645             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2646         }
2647         return;
2648 
2649     case 0x8: /* STLLR */
2650         if (!dc_isar_feature(aa64_lor, s)) {
2651             break;
2652         }
2653         /* StoreLORelease is the same as Store-Release for QEMU.  */
2654         /* fall through */
2655     case 0x9: /* STLR */
2656         /* Generate ISS for non-exclusive accesses including LASR.  */
2657         if (rn == 31) {
2658             gen_check_sp_alignment(s);
2659         }
2660         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2661         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2662                                     true, rn != 31, size);
2663         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2664         do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2665                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2666         return;
2667 
2668     case 0xc: /* LDLAR */
2669         if (!dc_isar_feature(aa64_lor, s)) {
2670             break;
2671         }
2672         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2673         /* fall through */
2674     case 0xd: /* LDAR */
2675         /* Generate ISS for non-exclusive accesses including LASR.  */
2676         if (rn == 31) {
2677             gen_check_sp_alignment(s);
2678         }
2679         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2680                                     false, rn != 31, size);
2681         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2682         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2683                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2684         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2685         return;
2686 
2687     case 0x2: case 0x3: /* CASP / STXP */
2688         if (size & 2) { /* STXP / STLXP */
2689             if (rn == 31) {
2690                 gen_check_sp_alignment(s);
2691             }
2692             if (is_lasr) {
2693                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2694             }
2695             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2696                                         true, rn != 31, size);
2697             gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2698             return;
2699         }
2700         if (rt2 == 31
2701             && ((rt | rs) & 1) == 0
2702             && dc_isar_feature(aa64_atomics, s)) {
2703             /* CASP / CASPL */
2704             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2705             return;
2706         }
2707         break;
2708 
2709     case 0x6: case 0x7: /* CASPA / LDXP */
2710         if (size & 2) { /* LDXP / LDAXP */
2711             if (rn == 31) {
2712                 gen_check_sp_alignment(s);
2713             }
2714             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2715                                         false, rn != 31, size);
2716             s->is_ldex = true;
2717             gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2718             if (is_lasr) {
2719                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2720             }
2721             return;
2722         }
2723         if (rt2 == 31
2724             && ((rt | rs) & 1) == 0
2725             && dc_isar_feature(aa64_atomics, s)) {
2726             /* CASPA / CASPAL */
2727             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2728             return;
2729         }
2730         break;
2731 
2732     case 0xa: /* CAS */
2733     case 0xb: /* CASL */
2734     case 0xe: /* CASA */
2735     case 0xf: /* CASAL */
2736         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2737             gen_compare_and_swap(s, rs, rt, rn, size);
2738             return;
2739         }
2740         break;
2741     }
2742     unallocated_encoding(s);
2743 }
2744 
2745 /*
2746  * Load register (literal)
2747  *
2748  *  31 30 29   27  26 25 24 23                5 4     0
2749  * +-----+-------+---+-----+-------------------+-------+
2750  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2751  * +-----+-------+---+-----+-------------------+-------+
2752  *
2753  * V: 1 -> vector (simd/fp)
2754  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2755  *                   10-> 32 bit signed, 11 -> prefetch
2756  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2757  */
2758 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2759 {
2760     int rt = extract32(insn, 0, 5);
2761     int64_t imm = sextract32(insn, 5, 19) << 2;
2762     bool is_vector = extract32(insn, 26, 1);
2763     int opc = extract32(insn, 30, 2);
2764     bool is_signed = false;
2765     int size = 2;
2766     TCGv_i64 tcg_rt, clean_addr;
2767 
2768     if (is_vector) {
2769         if (opc == 3) {
2770             unallocated_encoding(s);
2771             return;
2772         }
2773         size = 2 + opc;
2774         if (!fp_access_check(s)) {
2775             return;
2776         }
2777     } else {
2778         if (opc == 3) {
2779             /* PRFM (literal) : prefetch */
2780             return;
2781         }
2782         size = 2 + extract32(opc, 0, 1);
2783         is_signed = extract32(opc, 1, 1);
2784     }
2785 
2786     tcg_rt = cpu_reg(s, rt);
2787 
2788     clean_addr = tcg_temp_new_i64();
2789     gen_pc_plus_diff(s, clean_addr, imm);
2790     if (is_vector) {
2791         do_fp_ld(s, rt, clean_addr, size);
2792     } else {
2793         /* Only unsigned 32bit loads target 32bit registers.  */
2794         bool iss_sf = opc != 0;
2795 
2796         do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2797                   false, true, rt, iss_sf, false);
2798     }
2799 }
2800 
2801 /*
2802  * LDNP (Load Pair - non-temporal hint)
2803  * LDP (Load Pair - non vector)
2804  * LDPSW (Load Pair Signed Word - non vector)
2805  * STNP (Store Pair - non-temporal hint)
2806  * STP (Store Pair - non vector)
2807  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2808  * LDP (Load Pair of SIMD&FP)
2809  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2810  * STP (Store Pair of SIMD&FP)
2811  *
2812  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2813  * +-----+-------+---+---+-------+---+-----------------------------+
2814  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2815  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2816  *
2817  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2818  *      LDPSW/STGP               01
2819  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2820  *   V: 0 -> GPR, 1 -> Vector
2821  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2822  *      10 -> signed offset, 11 -> pre-index
2823  *   L: 0 -> Store 1 -> Load
2824  *
2825  * Rt, Rt2 = GPR or SIMD registers to be stored
2826  * Rn = general purpose register containing address
2827  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2828  */
2829 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2830 {
2831     int rt = extract32(insn, 0, 5);
2832     int rn = extract32(insn, 5, 5);
2833     int rt2 = extract32(insn, 10, 5);
2834     uint64_t offset = sextract64(insn, 15, 7);
2835     int index = extract32(insn, 23, 2);
2836     bool is_vector = extract32(insn, 26, 1);
2837     bool is_load = extract32(insn, 22, 1);
2838     int opc = extract32(insn, 30, 2);
2839 
2840     bool is_signed = false;
2841     bool postindex = false;
2842     bool wback = false;
2843     bool set_tag = false;
2844 
2845     TCGv_i64 clean_addr, dirty_addr;
2846 
2847     int size;
2848 
2849     if (opc == 3) {
2850         unallocated_encoding(s);
2851         return;
2852     }
2853 
2854     if (is_vector) {
2855         size = 2 + opc;
2856     } else if (opc == 1 && !is_load) {
2857         /* STGP */
2858         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2859             unallocated_encoding(s);
2860             return;
2861         }
2862         size = 3;
2863         set_tag = true;
2864     } else {
2865         size = 2 + extract32(opc, 1, 1);
2866         is_signed = extract32(opc, 0, 1);
2867         if (!is_load && is_signed) {
2868             unallocated_encoding(s);
2869             return;
2870         }
2871     }
2872 
2873     switch (index) {
2874     case 1: /* post-index */
2875         postindex = true;
2876         wback = true;
2877         break;
2878     case 0:
2879         /* signed offset with "non-temporal" hint. Since we don't emulate
2880          * caches we don't care about hints to the cache system about
2881          * data access patterns, and handle this identically to plain
2882          * signed offset.
2883          */
2884         if (is_signed) {
2885             /* There is no non-temporal-hint version of LDPSW */
2886             unallocated_encoding(s);
2887             return;
2888         }
2889         postindex = false;
2890         break;
2891     case 2: /* signed offset, rn not updated */
2892         postindex = false;
2893         break;
2894     case 3: /* pre-index */
2895         postindex = false;
2896         wback = true;
2897         break;
2898     }
2899 
2900     if (is_vector && !fp_access_check(s)) {
2901         return;
2902     }
2903 
2904     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2905 
2906     if (rn == 31) {
2907         gen_check_sp_alignment(s);
2908     }
2909 
2910     dirty_addr = read_cpu_reg_sp(s, rn, 1);
2911     if (!postindex) {
2912         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2913     }
2914 
2915     if (set_tag) {
2916         if (!s->ata) {
2917             /*
2918              * TODO: We could rely on the stores below, at least for
2919              * system mode, if we arrange to add MO_ALIGN_16.
2920              */
2921             gen_helper_stg_stub(cpu_env, dirty_addr);
2922         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2923             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2924         } else {
2925             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2926         }
2927     }
2928 
2929     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2930                                 (wback || rn != 31) && !set_tag, 2 << size);
2931 
2932     if (is_vector) {
2933         if (is_load) {
2934             do_fp_ld(s, rt, clean_addr, size);
2935         } else {
2936             do_fp_st(s, rt, clean_addr, size);
2937         }
2938         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2939         if (is_load) {
2940             do_fp_ld(s, rt2, clean_addr, size);
2941         } else {
2942             do_fp_st(s, rt2, clean_addr, size);
2943         }
2944     } else {
2945         TCGv_i64 tcg_rt = cpu_reg(s, rt);
2946         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2947 
2948         if (is_load) {
2949             TCGv_i64 tmp = tcg_temp_new_i64();
2950 
2951             /* Do not modify tcg_rt before recognizing any exception
2952              * from the second load.
2953              */
2954             do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
2955                       false, false, 0, false, false);
2956             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2957             do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
2958                       false, false, 0, false, false);
2959 
2960             tcg_gen_mov_i64(tcg_rt, tmp);
2961         } else {
2962             do_gpr_st(s, tcg_rt, clean_addr, size,
2963                       false, 0, false, false);
2964             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2965             do_gpr_st(s, tcg_rt2, clean_addr, size,
2966                       false, 0, false, false);
2967         }
2968     }
2969 
2970     if (wback) {
2971         if (postindex) {
2972             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2973         }
2974         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2975     }
2976 }
2977 
2978 /*
2979  * Load/store (immediate post-indexed)
2980  * Load/store (immediate pre-indexed)
2981  * Load/store (unscaled immediate)
2982  *
2983  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
2984  * +----+-------+---+-----+-----+---+--------+-----+------+------+
2985  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
2986  * +----+-------+---+-----+-----+---+--------+-----+------+------+
2987  *
2988  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2989          10 -> unprivileged
2990  * V = 0 -> non-vector
2991  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2992  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2993  */
2994 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2995                                 int opc,
2996                                 int size,
2997                                 int rt,
2998                                 bool is_vector)
2999 {
3000     int rn = extract32(insn, 5, 5);
3001     int imm9 = sextract32(insn, 12, 9);
3002     int idx = extract32(insn, 10, 2);
3003     bool is_signed = false;
3004     bool is_store = false;
3005     bool is_extended = false;
3006     bool is_unpriv = (idx == 2);
3007     bool iss_valid;
3008     bool post_index;
3009     bool writeback;
3010     int memidx;
3011 
3012     TCGv_i64 clean_addr, dirty_addr;
3013 
3014     if (is_vector) {
3015         size |= (opc & 2) << 1;
3016         if (size > 4 || is_unpriv) {
3017             unallocated_encoding(s);
3018             return;
3019         }
3020         is_store = ((opc & 1) == 0);
3021         if (!fp_access_check(s)) {
3022             return;
3023         }
3024     } else {
3025         if (size == 3 && opc == 2) {
3026             /* PRFM - prefetch */
3027             if (idx != 0) {
3028                 unallocated_encoding(s);
3029                 return;
3030             }
3031             return;
3032         }
3033         if (opc == 3 && size > 1) {
3034             unallocated_encoding(s);
3035             return;
3036         }
3037         is_store = (opc == 0);
3038         is_signed = extract32(opc, 1, 1);
3039         is_extended = (size < 3) && extract32(opc, 0, 1);
3040     }
3041 
3042     switch (idx) {
3043     case 0:
3044     case 2:
3045         post_index = false;
3046         writeback = false;
3047         break;
3048     case 1:
3049         post_index = true;
3050         writeback = true;
3051         break;
3052     case 3:
3053         post_index = false;
3054         writeback = true;
3055         break;
3056     default:
3057         g_assert_not_reached();
3058     }
3059 
3060     iss_valid = !is_vector && !writeback;
3061 
3062     if (rn == 31) {
3063         gen_check_sp_alignment(s);
3064     }
3065 
3066     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3067     if (!post_index) {
3068         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3069     }
3070 
3071     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3072     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3073                                        writeback || rn != 31,
3074                                        size, is_unpriv, memidx);
3075 
3076     if (is_vector) {
3077         if (is_store) {
3078             do_fp_st(s, rt, clean_addr, size);
3079         } else {
3080             do_fp_ld(s, rt, clean_addr, size);
3081         }
3082     } else {
3083         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3084         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3085 
3086         if (is_store) {
3087             do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3088                              iss_valid, rt, iss_sf, false);
3089         } else {
3090             do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3091                              is_extended, memidx,
3092                              iss_valid, rt, iss_sf, false);
3093         }
3094     }
3095 
3096     if (writeback) {
3097         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3098         if (post_index) {
3099             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3100         }
3101         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3102     }
3103 }
3104 
3105 /*
3106  * Load/store (register offset)
3107  *
3108  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3109  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3110  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3111  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3112  *
3113  * For non-vector:
3114  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3115  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3116  * For vector:
3117  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3118  *   opc<0>: 0 -> store, 1 -> load
3119  * V: 1 -> vector/simd
3120  * opt: extend encoding (see DecodeRegExtend)
3121  * S: if S=1 then scale (essentially index by sizeof(size))
3122  * Rt: register to transfer into/out of
3123  * Rn: address register or SP for base
3124  * Rm: offset register or ZR for offset
3125  */
3126 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3127                                    int opc,
3128                                    int size,
3129                                    int rt,
3130                                    bool is_vector)
3131 {
3132     int rn = extract32(insn, 5, 5);
3133     int shift = extract32(insn, 12, 1);
3134     int rm = extract32(insn, 16, 5);
3135     int opt = extract32(insn, 13, 3);
3136     bool is_signed = false;
3137     bool is_store = false;
3138     bool is_extended = false;
3139 
3140     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3141 
3142     if (extract32(opt, 1, 1) == 0) {
3143         unallocated_encoding(s);
3144         return;
3145     }
3146 
3147     if (is_vector) {
3148         size |= (opc & 2) << 1;
3149         if (size > 4) {
3150             unallocated_encoding(s);
3151             return;
3152         }
3153         is_store = !extract32(opc, 0, 1);
3154         if (!fp_access_check(s)) {
3155             return;
3156         }
3157     } else {
3158         if (size == 3 && opc == 2) {
3159             /* PRFM - prefetch */
3160             return;
3161         }
3162         if (opc == 3 && size > 1) {
3163             unallocated_encoding(s);
3164             return;
3165         }
3166         is_store = (opc == 0);
3167         is_signed = extract32(opc, 1, 1);
3168         is_extended = (size < 3) && extract32(opc, 0, 1);
3169     }
3170 
3171     if (rn == 31) {
3172         gen_check_sp_alignment(s);
3173     }
3174     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3175 
3176     tcg_rm = read_cpu_reg(s, rm, 1);
3177     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3178 
3179     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3180     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3181 
3182     if (is_vector) {
3183         if (is_store) {
3184             do_fp_st(s, rt, clean_addr, size);
3185         } else {
3186             do_fp_ld(s, rt, clean_addr, size);
3187         }
3188     } else {
3189         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3190         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3191         if (is_store) {
3192             do_gpr_st(s, tcg_rt, clean_addr, size,
3193                       true, rt, iss_sf, false);
3194         } else {
3195             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3196                       is_extended, true, rt, iss_sf, false);
3197         }
3198     }
3199 }
3200 
3201 /*
3202  * Load/store (unsigned immediate)
3203  *
3204  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3205  * +----+-------+---+-----+-----+------------+-------+------+
3206  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3207  * +----+-------+---+-----+-----+------------+-------+------+
3208  *
3209  * For non-vector:
3210  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3211  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3212  * For vector:
3213  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3214  *   opc<0>: 0 -> store, 1 -> load
3215  * Rn: base address register (inc SP)
3216  * Rt: target register
3217  */
3218 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3219                                         int opc,
3220                                         int size,
3221                                         int rt,
3222                                         bool is_vector)
3223 {
3224     int rn = extract32(insn, 5, 5);
3225     unsigned int imm12 = extract32(insn, 10, 12);
3226     unsigned int offset;
3227 
3228     TCGv_i64 clean_addr, dirty_addr;
3229 
3230     bool is_store;
3231     bool is_signed = false;
3232     bool is_extended = false;
3233 
3234     if (is_vector) {
3235         size |= (opc & 2) << 1;
3236         if (size > 4) {
3237             unallocated_encoding(s);
3238             return;
3239         }
3240         is_store = !extract32(opc, 0, 1);
3241         if (!fp_access_check(s)) {
3242             return;
3243         }
3244     } else {
3245         if (size == 3 && opc == 2) {
3246             /* PRFM - prefetch */
3247             return;
3248         }
3249         if (opc == 3 && size > 1) {
3250             unallocated_encoding(s);
3251             return;
3252         }
3253         is_store = (opc == 0);
3254         is_signed = extract32(opc, 1, 1);
3255         is_extended = (size < 3) && extract32(opc, 0, 1);
3256     }
3257 
3258     if (rn == 31) {
3259         gen_check_sp_alignment(s);
3260     }
3261     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3262     offset = imm12 << size;
3263     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3264     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3265 
3266     if (is_vector) {
3267         if (is_store) {
3268             do_fp_st(s, rt, clean_addr, size);
3269         } else {
3270             do_fp_ld(s, rt, clean_addr, size);
3271         }
3272     } else {
3273         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3274         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3275         if (is_store) {
3276             do_gpr_st(s, tcg_rt, clean_addr, size,
3277                       true, rt, iss_sf, false);
3278         } else {
3279             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3280                       is_extended, true, rt, iss_sf, false);
3281         }
3282     }
3283 }
3284 
3285 /* Atomic memory operations
3286  *
3287  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3288  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3289  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3290  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3291  *
3292  * Rt: the result register
3293  * Rn: base address or SP
3294  * Rs: the source register for the operation
3295  * V: vector flag (always 0 as of v8.3)
3296  * A: acquire flag
3297  * R: release flag
3298  */
3299 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3300                               int size, int rt, bool is_vector)
3301 {
3302     int rs = extract32(insn, 16, 5);
3303     int rn = extract32(insn, 5, 5);
3304     int o3_opc = extract32(insn, 12, 4);
3305     bool r = extract32(insn, 22, 1);
3306     bool a = extract32(insn, 23, 1);
3307     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3308     AtomicThreeOpFn *fn = NULL;
3309     MemOp mop = s->be_data | size | MO_ALIGN;
3310 
3311     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3312         unallocated_encoding(s);
3313         return;
3314     }
3315     switch (o3_opc) {
3316     case 000: /* LDADD */
3317         fn = tcg_gen_atomic_fetch_add_i64;
3318         break;
3319     case 001: /* LDCLR */
3320         fn = tcg_gen_atomic_fetch_and_i64;
3321         break;
3322     case 002: /* LDEOR */
3323         fn = tcg_gen_atomic_fetch_xor_i64;
3324         break;
3325     case 003: /* LDSET */
3326         fn = tcg_gen_atomic_fetch_or_i64;
3327         break;
3328     case 004: /* LDSMAX */
3329         fn = tcg_gen_atomic_fetch_smax_i64;
3330         mop |= MO_SIGN;
3331         break;
3332     case 005: /* LDSMIN */
3333         fn = tcg_gen_atomic_fetch_smin_i64;
3334         mop |= MO_SIGN;
3335         break;
3336     case 006: /* LDUMAX */
3337         fn = tcg_gen_atomic_fetch_umax_i64;
3338         break;
3339     case 007: /* LDUMIN */
3340         fn = tcg_gen_atomic_fetch_umin_i64;
3341         break;
3342     case 010: /* SWP */
3343         fn = tcg_gen_atomic_xchg_i64;
3344         break;
3345     case 014: /* LDAPR, LDAPRH, LDAPRB */
3346         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3347             rs != 31 || a != 1 || r != 0) {
3348             unallocated_encoding(s);
3349             return;
3350         }
3351         break;
3352     default:
3353         unallocated_encoding(s);
3354         return;
3355     }
3356 
3357     if (rn == 31) {
3358         gen_check_sp_alignment(s);
3359     }
3360     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3361 
3362     if (o3_opc == 014) {
3363         /*
3364          * LDAPR* are a special case because they are a simple load, not a
3365          * fetch-and-do-something op.
3366          * The architectural consistency requirements here are weaker than
3367          * full load-acquire (we only need "load-acquire processor consistent"),
3368          * but we choose to implement them as full LDAQ.
3369          */
3370         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3371                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3372         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3373         return;
3374     }
3375 
3376     tcg_rs = read_cpu_reg(s, rs, true);
3377     tcg_rt = cpu_reg(s, rt);
3378 
3379     if (o3_opc == 1) { /* LDCLR */
3380         tcg_gen_not_i64(tcg_rs, tcg_rs);
3381     }
3382 
3383     /* The tcg atomic primitives are all full barriers.  Therefore we
3384      * can ignore the Acquire and Release bits of this instruction.
3385      */
3386     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3387 
3388     if ((mop & MO_SIGN) && size != MO_64) {
3389         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3390     }
3391 }
3392 
3393 /*
3394  * PAC memory operations
3395  *
3396  *  31  30      27  26    24    22  21       12  11  10    5     0
3397  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3398  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3399  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3400  *
3401  * Rt: the result register
3402  * Rn: base address or SP
3403  * V: vector flag (always 0 as of v8.3)
3404  * M: clear for key DA, set for key DB
3405  * W: pre-indexing flag
3406  * S: sign for imm9.
3407  */
3408 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3409                            int size, int rt, bool is_vector)
3410 {
3411     int rn = extract32(insn, 5, 5);
3412     bool is_wback = extract32(insn, 11, 1);
3413     bool use_key_a = !extract32(insn, 23, 1);
3414     int offset;
3415     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3416 
3417     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3418         unallocated_encoding(s);
3419         return;
3420     }
3421 
3422     if (rn == 31) {
3423         gen_check_sp_alignment(s);
3424     }
3425     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3426 
3427     if (s->pauth_active) {
3428         if (use_key_a) {
3429             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3430                              tcg_constant_i64(0));
3431         } else {
3432             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3433                              tcg_constant_i64(0));
3434         }
3435     }
3436 
3437     /* Form the 10-bit signed, scaled offset.  */
3438     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3439     offset = sextract32(offset << size, 0, 10 + size);
3440     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3441 
3442     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3443     clean_addr = gen_mte_check1(s, dirty_addr, false,
3444                                 is_wback || rn != 31, size);
3445 
3446     tcg_rt = cpu_reg(s, rt);
3447     do_gpr_ld(s, tcg_rt, clean_addr, size,
3448               /* extend */ false, /* iss_valid */ !is_wback,
3449               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3450 
3451     if (is_wback) {
3452         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3453     }
3454 }
3455 
3456 /*
3457  * LDAPR/STLR (unscaled immediate)
3458  *
3459  *  31  30            24    22  21       12    10    5     0
3460  * +------+-------------+-----+---+--------+-----+----+-----+
3461  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3462  * +------+-------------+-----+---+--------+-----+----+-----+
3463  *
3464  * Rt: source or destination register
3465  * Rn: base register
3466  * imm9: unscaled immediate offset
3467  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3468  * size: size of load/store
3469  */
3470 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3471 {
3472     int rt = extract32(insn, 0, 5);
3473     int rn = extract32(insn, 5, 5);
3474     int offset = sextract32(insn, 12, 9);
3475     int opc = extract32(insn, 22, 2);
3476     int size = extract32(insn, 30, 2);
3477     TCGv_i64 clean_addr, dirty_addr;
3478     bool is_store = false;
3479     bool extend = false;
3480     bool iss_sf;
3481     MemOp mop;
3482 
3483     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3484         unallocated_encoding(s);
3485         return;
3486     }
3487 
3488     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3489     mop = size | MO_ALIGN;
3490 
3491     switch (opc) {
3492     case 0: /* STLURB */
3493         is_store = true;
3494         break;
3495     case 1: /* LDAPUR* */
3496         break;
3497     case 2: /* LDAPURS* 64-bit variant */
3498         if (size == 3) {
3499             unallocated_encoding(s);
3500             return;
3501         }
3502         mop |= MO_SIGN;
3503         break;
3504     case 3: /* LDAPURS* 32-bit variant */
3505         if (size > 1) {
3506             unallocated_encoding(s);
3507             return;
3508         }
3509         mop |= MO_SIGN;
3510         extend = true; /* zero-extend 32->64 after signed load */
3511         break;
3512     default:
3513         g_assert_not_reached();
3514     }
3515 
3516     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3517 
3518     if (rn == 31) {
3519         gen_check_sp_alignment(s);
3520     }
3521 
3522     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3523     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3524     clean_addr = clean_data_tbi(s, dirty_addr);
3525 
3526     if (is_store) {
3527         /* Store-Release semantics */
3528         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3529         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3530     } else {
3531         /*
3532          * Load-AcquirePC semantics; we implement as the slightly more
3533          * restrictive Load-Acquire.
3534          */
3535         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3536                   extend, true, rt, iss_sf, true);
3537         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3538     }
3539 }
3540 
3541 /* Load/store register (all forms) */
3542 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3543 {
3544     int rt = extract32(insn, 0, 5);
3545     int opc = extract32(insn, 22, 2);
3546     bool is_vector = extract32(insn, 26, 1);
3547     int size = extract32(insn, 30, 2);
3548 
3549     switch (extract32(insn, 24, 2)) {
3550     case 0:
3551         if (extract32(insn, 21, 1) == 0) {
3552             /* Load/store register (unscaled immediate)
3553              * Load/store immediate pre/post-indexed
3554              * Load/store register unprivileged
3555              */
3556             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3557             return;
3558         }
3559         switch (extract32(insn, 10, 2)) {
3560         case 0:
3561             disas_ldst_atomic(s, insn, size, rt, is_vector);
3562             return;
3563         case 2:
3564             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3565             return;
3566         default:
3567             disas_ldst_pac(s, insn, size, rt, is_vector);
3568             return;
3569         }
3570         break;
3571     case 1:
3572         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3573         return;
3574     }
3575     unallocated_encoding(s);
3576 }
3577 
3578 /* AdvSIMD load/store multiple structures
3579  *
3580  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3581  * +---+---+---------------+---+-------------+--------+------+------+------+
3582  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3583  * +---+---+---------------+---+-------------+--------+------+------+------+
3584  *
3585  * AdvSIMD load/store multiple structures (post-indexed)
3586  *
3587  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3588  * +---+---+---------------+---+---+---------+--------+------+------+------+
3589  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3590  * +---+---+---------------+---+---+---------+--------+------+------+------+
3591  *
3592  * Rt: first (or only) SIMD&FP register to be transferred
3593  * Rn: base address or SP
3594  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3595  */
3596 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3597 {
3598     int rt = extract32(insn, 0, 5);
3599     int rn = extract32(insn, 5, 5);
3600     int rm = extract32(insn, 16, 5);
3601     int size = extract32(insn, 10, 2);
3602     int opcode = extract32(insn, 12, 4);
3603     bool is_store = !extract32(insn, 22, 1);
3604     bool is_postidx = extract32(insn, 23, 1);
3605     bool is_q = extract32(insn, 30, 1);
3606     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3607     MemOp endian, align, mop;
3608 
3609     int total;    /* total bytes */
3610     int elements; /* elements per vector */
3611     int rpt;    /* num iterations */
3612     int selem;  /* structure elements */
3613     int r;
3614 
3615     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3616         unallocated_encoding(s);
3617         return;
3618     }
3619 
3620     if (!is_postidx && rm != 0) {
3621         unallocated_encoding(s);
3622         return;
3623     }
3624 
3625     /* From the shared decode logic */
3626     switch (opcode) {
3627     case 0x0:
3628         rpt = 1;
3629         selem = 4;
3630         break;
3631     case 0x2:
3632         rpt = 4;
3633         selem = 1;
3634         break;
3635     case 0x4:
3636         rpt = 1;
3637         selem = 3;
3638         break;
3639     case 0x6:
3640         rpt = 3;
3641         selem = 1;
3642         break;
3643     case 0x7:
3644         rpt = 1;
3645         selem = 1;
3646         break;
3647     case 0x8:
3648         rpt = 1;
3649         selem = 2;
3650         break;
3651     case 0xa:
3652         rpt = 2;
3653         selem = 1;
3654         break;
3655     default:
3656         unallocated_encoding(s);
3657         return;
3658     }
3659 
3660     if (size == 3 && !is_q && selem != 1) {
3661         /* reserved */
3662         unallocated_encoding(s);
3663         return;
3664     }
3665 
3666     if (!fp_access_check(s)) {
3667         return;
3668     }
3669 
3670     if (rn == 31) {
3671         gen_check_sp_alignment(s);
3672     }
3673 
3674     /* For our purposes, bytes are always little-endian.  */
3675     endian = s->be_data;
3676     if (size == 0) {
3677         endian = MO_LE;
3678     }
3679 
3680     total = rpt * selem * (is_q ? 16 : 8);
3681     tcg_rn = cpu_reg_sp(s, rn);
3682 
3683     /*
3684      * Issue the MTE check vs the logical repeat count, before we
3685      * promote consecutive little-endian elements below.
3686      */
3687     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3688                                 total);
3689 
3690     /*
3691      * Consecutive little-endian elements from a single register
3692      * can be promoted to a larger little-endian operation.
3693      */
3694     align = MO_ALIGN;
3695     if (selem == 1 && endian == MO_LE) {
3696         align = pow2_align(size);
3697         size = 3;
3698     }
3699     if (!s->align_mem) {
3700         align = 0;
3701     }
3702     mop = endian | size | align;
3703 
3704     elements = (is_q ? 16 : 8) >> size;
3705     tcg_ebytes = tcg_constant_i64(1 << size);
3706     for (r = 0; r < rpt; r++) {
3707         int e;
3708         for (e = 0; e < elements; e++) {
3709             int xs;
3710             for (xs = 0; xs < selem; xs++) {
3711                 int tt = (rt + r + xs) % 32;
3712                 if (is_store) {
3713                     do_vec_st(s, tt, e, clean_addr, mop);
3714                 } else {
3715                     do_vec_ld(s, tt, e, clean_addr, mop);
3716                 }
3717                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3718             }
3719         }
3720     }
3721 
3722     if (!is_store) {
3723         /* For non-quad operations, setting a slice of the low
3724          * 64 bits of the register clears the high 64 bits (in
3725          * the ARM ARM pseudocode this is implicit in the fact
3726          * that 'rval' is a 64 bit wide variable).
3727          * For quad operations, we might still need to zero the
3728          * high bits of SVE.
3729          */
3730         for (r = 0; r < rpt * selem; r++) {
3731             int tt = (rt + r) % 32;
3732             clear_vec_high(s, is_q, tt);
3733         }
3734     }
3735 
3736     if (is_postidx) {
3737         if (rm == 31) {
3738             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3739         } else {
3740             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3741         }
3742     }
3743 }
3744 
3745 /* AdvSIMD load/store single structure
3746  *
3747  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3748  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3749  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3750  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3751  *
3752  * AdvSIMD load/store single structure (post-indexed)
3753  *
3754  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3755  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3756  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3757  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3758  *
3759  * Rt: first (or only) SIMD&FP register to be transferred
3760  * Rn: base address or SP
3761  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3762  * index = encoded in Q:S:size dependent on size
3763  *
3764  * lane_size = encoded in R, opc
3765  * transfer width = encoded in opc, S, size
3766  */
3767 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3768 {
3769     int rt = extract32(insn, 0, 5);
3770     int rn = extract32(insn, 5, 5);
3771     int rm = extract32(insn, 16, 5);
3772     int size = extract32(insn, 10, 2);
3773     int S = extract32(insn, 12, 1);
3774     int opc = extract32(insn, 13, 3);
3775     int R = extract32(insn, 21, 1);
3776     int is_load = extract32(insn, 22, 1);
3777     int is_postidx = extract32(insn, 23, 1);
3778     int is_q = extract32(insn, 30, 1);
3779 
3780     int scale = extract32(opc, 1, 2);
3781     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3782     bool replicate = false;
3783     int index = is_q << 3 | S << 2 | size;
3784     int xs, total;
3785     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3786     MemOp mop;
3787 
3788     if (extract32(insn, 31, 1)) {
3789         unallocated_encoding(s);
3790         return;
3791     }
3792     if (!is_postidx && rm != 0) {
3793         unallocated_encoding(s);
3794         return;
3795     }
3796 
3797     switch (scale) {
3798     case 3:
3799         if (!is_load || S) {
3800             unallocated_encoding(s);
3801             return;
3802         }
3803         scale = size;
3804         replicate = true;
3805         break;
3806     case 0:
3807         break;
3808     case 1:
3809         if (extract32(size, 0, 1)) {
3810             unallocated_encoding(s);
3811             return;
3812         }
3813         index >>= 1;
3814         break;
3815     case 2:
3816         if (extract32(size, 1, 1)) {
3817             unallocated_encoding(s);
3818             return;
3819         }
3820         if (!extract32(size, 0, 1)) {
3821             index >>= 2;
3822         } else {
3823             if (S) {
3824                 unallocated_encoding(s);
3825                 return;
3826             }
3827             index >>= 3;
3828             scale = 3;
3829         }
3830         break;
3831     default:
3832         g_assert_not_reached();
3833     }
3834 
3835     if (!fp_access_check(s)) {
3836         return;
3837     }
3838 
3839     if (rn == 31) {
3840         gen_check_sp_alignment(s);
3841     }
3842 
3843     total = selem << scale;
3844     tcg_rn = cpu_reg_sp(s, rn);
3845 
3846     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3847                                 total);
3848     mop = finalize_memop(s, scale);
3849 
3850     tcg_ebytes = tcg_constant_i64(1 << scale);
3851     for (xs = 0; xs < selem; xs++) {
3852         if (replicate) {
3853             /* Load and replicate to all elements */
3854             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3855 
3856             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3857             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3858                                  (is_q + 1) * 8, vec_full_reg_size(s),
3859                                  tcg_tmp);
3860         } else {
3861             /* Load/store one element per register */
3862             if (is_load) {
3863                 do_vec_ld(s, rt, index, clean_addr, mop);
3864             } else {
3865                 do_vec_st(s, rt, index, clean_addr, mop);
3866             }
3867         }
3868         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3869         rt = (rt + 1) % 32;
3870     }
3871 
3872     if (is_postidx) {
3873         if (rm == 31) {
3874             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3875         } else {
3876             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3877         }
3878     }
3879 }
3880 
3881 /*
3882  * Load/Store memory tags
3883  *
3884  *  31 30 29         24     22  21     12    10      5      0
3885  * +-----+-------------+-----+---+------+-----+------+------+
3886  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
3887  * +-----+-------------+-----+---+------+-----+------+------+
3888  */
3889 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3890 {
3891     int rt = extract32(insn, 0, 5);
3892     int rn = extract32(insn, 5, 5);
3893     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3894     int op2 = extract32(insn, 10, 2);
3895     int op1 = extract32(insn, 22, 2);
3896     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3897     int index = 0;
3898     TCGv_i64 addr, clean_addr, tcg_rt;
3899 
3900     /* We checked insn bits [29:24,21] in the caller.  */
3901     if (extract32(insn, 30, 2) != 3) {
3902         goto do_unallocated;
3903     }
3904 
3905     /*
3906      * @index is a tri-state variable which has 3 states:
3907      * < 0 : post-index, writeback
3908      * = 0 : signed offset
3909      * > 0 : pre-index, writeback
3910      */
3911     switch (op1) {
3912     case 0:
3913         if (op2 != 0) {
3914             /* STG */
3915             index = op2 - 2;
3916         } else {
3917             /* STZGM */
3918             if (s->current_el == 0 || offset != 0) {
3919                 goto do_unallocated;
3920             }
3921             is_mult = is_zero = true;
3922         }
3923         break;
3924     case 1:
3925         if (op2 != 0) {
3926             /* STZG */
3927             is_zero = true;
3928             index = op2 - 2;
3929         } else {
3930             /* LDG */
3931             is_load = true;
3932         }
3933         break;
3934     case 2:
3935         if (op2 != 0) {
3936             /* ST2G */
3937             is_pair = true;
3938             index = op2 - 2;
3939         } else {
3940             /* STGM */
3941             if (s->current_el == 0 || offset != 0) {
3942                 goto do_unallocated;
3943             }
3944             is_mult = true;
3945         }
3946         break;
3947     case 3:
3948         if (op2 != 0) {
3949             /* STZ2G */
3950             is_pair = is_zero = true;
3951             index = op2 - 2;
3952         } else {
3953             /* LDGM */
3954             if (s->current_el == 0 || offset != 0) {
3955                 goto do_unallocated;
3956             }
3957             is_mult = is_load = true;
3958         }
3959         break;
3960 
3961     default:
3962     do_unallocated:
3963         unallocated_encoding(s);
3964         return;
3965     }
3966 
3967     if (is_mult
3968         ? !dc_isar_feature(aa64_mte, s)
3969         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
3970         goto do_unallocated;
3971     }
3972 
3973     if (rn == 31) {
3974         gen_check_sp_alignment(s);
3975     }
3976 
3977     addr = read_cpu_reg_sp(s, rn, true);
3978     if (index >= 0) {
3979         /* pre-index or signed offset */
3980         tcg_gen_addi_i64(addr, addr, offset);
3981     }
3982 
3983     if (is_mult) {
3984         tcg_rt = cpu_reg(s, rt);
3985 
3986         if (is_zero) {
3987             int size = 4 << s->dcz_blocksize;
3988 
3989             if (s->ata) {
3990                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
3991             }
3992             /*
3993              * The non-tags portion of STZGM is mostly like DC_ZVA,
3994              * except the alignment happens before the access.
3995              */
3996             clean_addr = clean_data_tbi(s, addr);
3997             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3998             gen_helper_dc_zva(cpu_env, clean_addr);
3999         } else if (s->ata) {
4000             if (is_load) {
4001                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4002             } else {
4003                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4004             }
4005         } else {
4006             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4007             int size = 4 << GMID_EL1_BS;
4008 
4009             clean_addr = clean_data_tbi(s, addr);
4010             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4011             gen_probe_access(s, clean_addr, acc, size);
4012 
4013             if (is_load) {
4014                 /* The result tags are zeros.  */
4015                 tcg_gen_movi_i64(tcg_rt, 0);
4016             }
4017         }
4018         return;
4019     }
4020 
4021     if (is_load) {
4022         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4023         tcg_rt = cpu_reg(s, rt);
4024         if (s->ata) {
4025             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4026         } else {
4027             clean_addr = clean_data_tbi(s, addr);
4028             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4029             gen_address_with_allocation_tag0(tcg_rt, addr);
4030         }
4031     } else {
4032         tcg_rt = cpu_reg_sp(s, rt);
4033         if (!s->ata) {
4034             /*
4035              * For STG and ST2G, we need to check alignment and probe memory.
4036              * TODO: For STZG and STZ2G, we could rely on the stores below,
4037              * at least for system mode; user-only won't enforce alignment.
4038              */
4039             if (is_pair) {
4040                 gen_helper_st2g_stub(cpu_env, addr);
4041             } else {
4042                 gen_helper_stg_stub(cpu_env, addr);
4043             }
4044         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4045             if (is_pair) {
4046                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4047             } else {
4048                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4049             }
4050         } else {
4051             if (is_pair) {
4052                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4053             } else {
4054                 gen_helper_stg(cpu_env, addr, tcg_rt);
4055             }
4056         }
4057     }
4058 
4059     if (is_zero) {
4060         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4061         TCGv_i64 tcg_zero = tcg_constant_i64(0);
4062         int mem_index = get_mem_index(s);
4063         int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4064 
4065         tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4066                             MO_UQ | MO_ALIGN_16);
4067         for (i = 8; i < n; i += 8) {
4068             tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4069             tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4070         }
4071     }
4072 
4073     if (index != 0) {
4074         /* pre-index or post-index */
4075         if (index < 0) {
4076             /* post-index */
4077             tcg_gen_addi_i64(addr, addr, offset);
4078         }
4079         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4080     }
4081 }
4082 
4083 /* Loads and stores */
4084 static void disas_ldst(DisasContext *s, uint32_t insn)
4085 {
4086     switch (extract32(insn, 24, 6)) {
4087     case 0x08: /* Load/store exclusive */
4088         disas_ldst_excl(s, insn);
4089         break;
4090     case 0x18: case 0x1c: /* Load register (literal) */
4091         disas_ld_lit(s, insn);
4092         break;
4093     case 0x28: case 0x29:
4094     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4095         disas_ldst_pair(s, insn);
4096         break;
4097     case 0x38: case 0x39:
4098     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4099         disas_ldst_reg(s, insn);
4100         break;
4101     case 0x0c: /* AdvSIMD load/store multiple structures */
4102         disas_ldst_multiple_struct(s, insn);
4103         break;
4104     case 0x0d: /* AdvSIMD load/store single structure */
4105         disas_ldst_single_struct(s, insn);
4106         break;
4107     case 0x19:
4108         if (extract32(insn, 21, 1) != 0) {
4109             disas_ldst_tag(s, insn);
4110         } else if (extract32(insn, 10, 2) == 0) {
4111             disas_ldst_ldapr_stlr(s, insn);
4112         } else {
4113             unallocated_encoding(s);
4114         }
4115         break;
4116     default:
4117         unallocated_encoding(s);
4118         break;
4119     }
4120 }
4121 
4122 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4123 
4124 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4125                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4126 {
4127     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4128     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4129     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4130 
4131     fn(tcg_rd, tcg_rn, tcg_imm);
4132     if (!a->sf) {
4133         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4134     }
4135     return true;
4136 }
4137 
4138 /*
4139  * PC-rel. addressing
4140  */
4141 
4142 static bool trans_ADR(DisasContext *s, arg_ri *a)
4143 {
4144     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4145     return true;
4146 }
4147 
4148 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4149 {
4150     int64_t offset = (int64_t)a->imm << 12;
4151 
4152     /* The page offset is ok for CF_PCREL. */
4153     offset -= s->pc_curr & 0xfff;
4154     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4155     return true;
4156 }
4157 
4158 /*
4159  * Add/subtract (immediate)
4160  */
4161 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4162 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4163 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4164 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4165 
4166 /*
4167  * Add/subtract (immediate, with tags)
4168  */
4169 
4170 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4171                                       bool sub_op)
4172 {
4173     TCGv_i64 tcg_rn, tcg_rd;
4174     int imm;
4175 
4176     imm = a->uimm6 << LOG2_TAG_GRANULE;
4177     if (sub_op) {
4178         imm = -imm;
4179     }
4180 
4181     tcg_rn = cpu_reg_sp(s, a->rn);
4182     tcg_rd = cpu_reg_sp(s, a->rd);
4183 
4184     if (s->ata) {
4185         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4186                            tcg_constant_i32(imm),
4187                            tcg_constant_i32(a->uimm4));
4188     } else {
4189         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4190         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4191     }
4192     return true;
4193 }
4194 
4195 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4196 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4197 
4198 /* The input should be a value in the bottom e bits (with higher
4199  * bits zero); returns that value replicated into every element
4200  * of size e in a 64 bit integer.
4201  */
4202 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4203 {
4204     assert(e != 0);
4205     while (e < 64) {
4206         mask |= mask << e;
4207         e *= 2;
4208     }
4209     return mask;
4210 }
4211 
4212 /*
4213  * Logical (immediate)
4214  */
4215 
4216 /*
4217  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4218  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4219  * value (ie should cause a guest UNDEF exception), and true if they are
4220  * valid, in which case the decoded bit pattern is written to result.
4221  */
4222 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4223                             unsigned int imms, unsigned int immr)
4224 {
4225     uint64_t mask;
4226     unsigned e, levels, s, r;
4227     int len;
4228 
4229     assert(immn < 2 && imms < 64 && immr < 64);
4230 
4231     /* The bit patterns we create here are 64 bit patterns which
4232      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4233      * 64 bits each. Each element contains the same value: a run
4234      * of between 1 and e-1 non-zero bits, rotated within the
4235      * element by between 0 and e-1 bits.
4236      *
4237      * The element size and run length are encoded into immn (1 bit)
4238      * and imms (6 bits) as follows:
4239      * 64 bit elements: immn = 1, imms = <length of run - 1>
4240      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4241      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4242      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4243      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4244      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4245      * Notice that immn = 0, imms = 11111x is the only combination
4246      * not covered by one of the above options; this is reserved.
4247      * Further, <length of run - 1> all-ones is a reserved pattern.
4248      *
4249      * In all cases the rotation is by immr % e (and immr is 6 bits).
4250      */
4251 
4252     /* First determine the element size */
4253     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4254     if (len < 1) {
4255         /* This is the immn == 0, imms == 0x11111x case */
4256         return false;
4257     }
4258     e = 1 << len;
4259 
4260     levels = e - 1;
4261     s = imms & levels;
4262     r = immr & levels;
4263 
4264     if (s == levels) {
4265         /* <length of run - 1> mustn't be all-ones. */
4266         return false;
4267     }
4268 
4269     /* Create the value of one element: s+1 set bits rotated
4270      * by r within the element (which is e bits wide)...
4271      */
4272     mask = MAKE_64BIT_MASK(0, s + 1);
4273     if (r) {
4274         mask = (mask >> r) | (mask << (e - r));
4275         mask &= MAKE_64BIT_MASK(0, e);
4276     }
4277     /* ...then replicate the element over the whole 64 bit value */
4278     mask = bitfield_replicate(mask, e);
4279     *result = mask;
4280     return true;
4281 }
4282 
4283 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4284                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4285 {
4286     TCGv_i64 tcg_rd, tcg_rn;
4287     uint64_t imm;
4288 
4289     /* Some immediate field values are reserved. */
4290     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4291                                 extract32(a->dbm, 0, 6),
4292                                 extract32(a->dbm, 6, 6))) {
4293         return false;
4294     }
4295     if (!a->sf) {
4296         imm &= 0xffffffffull;
4297     }
4298 
4299     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4300     tcg_rn = cpu_reg(s, a->rn);
4301 
4302     fn(tcg_rd, tcg_rn, imm);
4303     if (set_cc) {
4304         gen_logic_CC(a->sf, tcg_rd);
4305     }
4306     if (!a->sf) {
4307         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4308     }
4309     return true;
4310 }
4311 
4312 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4313 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4314 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4315 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4316 
4317 /*
4318  * Move wide (immediate)
4319  */
4320 
4321 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4322 {
4323     int pos = a->hw << 4;
4324     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4325     return true;
4326 }
4327 
4328 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4329 {
4330     int pos = a->hw << 4;
4331     uint64_t imm = a->imm;
4332 
4333     imm = ~(imm << pos);
4334     if (!a->sf) {
4335         imm = (uint32_t)imm;
4336     }
4337     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4338     return true;
4339 }
4340 
4341 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4342 {
4343     int pos = a->hw << 4;
4344     TCGv_i64 tcg_rd, tcg_im;
4345 
4346     tcg_rd = cpu_reg(s, a->rd);
4347     tcg_im = tcg_constant_i64(a->imm);
4348     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4349     if (!a->sf) {
4350         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4351     }
4352     return true;
4353 }
4354 
4355 /*
4356  * Bitfield
4357  */
4358 
4359 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4360 {
4361     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4362     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4363     unsigned int bitsize = a->sf ? 64 : 32;
4364     unsigned int ri = a->immr;
4365     unsigned int si = a->imms;
4366     unsigned int pos, len;
4367 
4368     if (si >= ri) {
4369         /* Wd<s-r:0> = Wn<s:r> */
4370         len = (si - ri) + 1;
4371         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4372         if (!a->sf) {
4373             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4374         }
4375     } else {
4376         /* Wd<32+s-r,32-r> = Wn<s:0> */
4377         len = si + 1;
4378         pos = (bitsize - ri) & (bitsize - 1);
4379 
4380         if (len < ri) {
4381             /*
4382              * Sign extend the destination field from len to fill the
4383              * balance of the word.  Let the deposit below insert all
4384              * of those sign bits.
4385              */
4386             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4387             len = ri;
4388         }
4389 
4390         /*
4391          * We start with zero, and we haven't modified any bits outside
4392          * bitsize, therefore no final zero-extension is unneeded for !sf.
4393          */
4394         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4395     }
4396     return true;
4397 }
4398 
4399 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4400 {
4401     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4402     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4403     unsigned int bitsize = a->sf ? 64 : 32;
4404     unsigned int ri = a->immr;
4405     unsigned int si = a->imms;
4406     unsigned int pos, len;
4407 
4408     tcg_rd = cpu_reg(s, a->rd);
4409     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4410 
4411     if (si >= ri) {
4412         /* Wd<s-r:0> = Wn<s:r> */
4413         len = (si - ri) + 1;
4414         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4415     } else {
4416         /* Wd<32+s-r,32-r> = Wn<s:0> */
4417         len = si + 1;
4418         pos = (bitsize - ri) & (bitsize - 1);
4419         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4420     }
4421     return true;
4422 }
4423 
4424 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4425 {
4426     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4427     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4428     unsigned int bitsize = a->sf ? 64 : 32;
4429     unsigned int ri = a->immr;
4430     unsigned int si = a->imms;
4431     unsigned int pos, len;
4432 
4433     tcg_rd = cpu_reg(s, a->rd);
4434     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4435 
4436     if (si >= ri) {
4437         /* Wd<s-r:0> = Wn<s:r> */
4438         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4439         len = (si - ri) + 1;
4440         pos = 0;
4441     } else {
4442         /* Wd<32+s-r,32-r> = Wn<s:0> */
4443         len = si + 1;
4444         pos = (bitsize - ri) & (bitsize - 1);
4445     }
4446 
4447     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4448     if (!a->sf) {
4449         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4450     }
4451     return true;
4452 }
4453 
4454 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4455 {
4456     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4457 
4458     tcg_rd = cpu_reg(s, a->rd);
4459 
4460     if (unlikely(a->imm == 0)) {
4461         /*
4462          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4463          * so an extract from bit 0 is a special case.
4464          */
4465         if (a->sf) {
4466             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4467         } else {
4468             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4469         }
4470     } else {
4471         tcg_rm = cpu_reg(s, a->rm);
4472         tcg_rn = cpu_reg(s, a->rn);
4473 
4474         if (a->sf) {
4475             /* Specialization to ROR happens in EXTRACT2.  */
4476             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4477         } else {
4478             TCGv_i32 t0 = tcg_temp_new_i32();
4479 
4480             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4481             if (a->rm == a->rn) {
4482                 tcg_gen_rotri_i32(t0, t0, a->imm);
4483             } else {
4484                 TCGv_i32 t1 = tcg_temp_new_i32();
4485                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4486                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4487             }
4488             tcg_gen_extu_i32_i64(tcg_rd, t0);
4489         }
4490     }
4491     return true;
4492 }
4493 
4494 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4495  * Note that it is the caller's responsibility to ensure that the
4496  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4497  * mandated semantics for out of range shifts.
4498  */
4499 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4500                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4501 {
4502     switch (shift_type) {
4503     case A64_SHIFT_TYPE_LSL:
4504         tcg_gen_shl_i64(dst, src, shift_amount);
4505         break;
4506     case A64_SHIFT_TYPE_LSR:
4507         tcg_gen_shr_i64(dst, src, shift_amount);
4508         break;
4509     case A64_SHIFT_TYPE_ASR:
4510         if (!sf) {
4511             tcg_gen_ext32s_i64(dst, src);
4512         }
4513         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4514         break;
4515     case A64_SHIFT_TYPE_ROR:
4516         if (sf) {
4517             tcg_gen_rotr_i64(dst, src, shift_amount);
4518         } else {
4519             TCGv_i32 t0, t1;
4520             t0 = tcg_temp_new_i32();
4521             t1 = tcg_temp_new_i32();
4522             tcg_gen_extrl_i64_i32(t0, src);
4523             tcg_gen_extrl_i64_i32(t1, shift_amount);
4524             tcg_gen_rotr_i32(t0, t0, t1);
4525             tcg_gen_extu_i32_i64(dst, t0);
4526         }
4527         break;
4528     default:
4529         assert(FALSE); /* all shift types should be handled */
4530         break;
4531     }
4532 
4533     if (!sf) { /* zero extend final result */
4534         tcg_gen_ext32u_i64(dst, dst);
4535     }
4536 }
4537 
4538 /* Shift a TCGv src by immediate, put result in dst.
4539  * The shift amount must be in range (this should always be true as the
4540  * relevant instructions will UNDEF on bad shift immediates).
4541  */
4542 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4543                           enum a64_shift_type shift_type, unsigned int shift_i)
4544 {
4545     assert(shift_i < (sf ? 64 : 32));
4546 
4547     if (shift_i == 0) {
4548         tcg_gen_mov_i64(dst, src);
4549     } else {
4550         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4551     }
4552 }
4553 
4554 /* Logical (shifted register)
4555  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4556  * +----+-----+-----------+-------+---+------+--------+------+------+
4557  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4558  * +----+-----+-----------+-------+---+------+--------+------+------+
4559  */
4560 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4561 {
4562     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4563     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4564 
4565     sf = extract32(insn, 31, 1);
4566     opc = extract32(insn, 29, 2);
4567     shift_type = extract32(insn, 22, 2);
4568     invert = extract32(insn, 21, 1);
4569     rm = extract32(insn, 16, 5);
4570     shift_amount = extract32(insn, 10, 6);
4571     rn = extract32(insn, 5, 5);
4572     rd = extract32(insn, 0, 5);
4573 
4574     if (!sf && (shift_amount & (1 << 5))) {
4575         unallocated_encoding(s);
4576         return;
4577     }
4578 
4579     tcg_rd = cpu_reg(s, rd);
4580 
4581     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4582         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4583          * register-register MOV and MVN, so it is worth special casing.
4584          */
4585         tcg_rm = cpu_reg(s, rm);
4586         if (invert) {
4587             tcg_gen_not_i64(tcg_rd, tcg_rm);
4588             if (!sf) {
4589                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4590             }
4591         } else {
4592             if (sf) {
4593                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4594             } else {
4595                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4596             }
4597         }
4598         return;
4599     }
4600 
4601     tcg_rm = read_cpu_reg(s, rm, sf);
4602 
4603     if (shift_amount) {
4604         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4605     }
4606 
4607     tcg_rn = cpu_reg(s, rn);
4608 
4609     switch (opc | (invert << 2)) {
4610     case 0: /* AND */
4611     case 3: /* ANDS */
4612         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4613         break;
4614     case 1: /* ORR */
4615         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4616         break;
4617     case 2: /* EOR */
4618         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4619         break;
4620     case 4: /* BIC */
4621     case 7: /* BICS */
4622         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4623         break;
4624     case 5: /* ORN */
4625         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4626         break;
4627     case 6: /* EON */
4628         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4629         break;
4630     default:
4631         assert(FALSE);
4632         break;
4633     }
4634 
4635     if (!sf) {
4636         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4637     }
4638 
4639     if (opc == 3) {
4640         gen_logic_CC(sf, tcg_rd);
4641     }
4642 }
4643 
4644 /*
4645  * Add/subtract (extended register)
4646  *
4647  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4648  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4649  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4650  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4651  *
4652  *  sf: 0 -> 32bit, 1 -> 64bit
4653  *  op: 0 -> add  , 1 -> sub
4654  *   S: 1 -> set flags
4655  * opt: 00
4656  * option: extension type (see DecodeRegExtend)
4657  * imm3: optional shift to Rm
4658  *
4659  * Rd = Rn + LSL(extend(Rm), amount)
4660  */
4661 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4662 {
4663     int rd = extract32(insn, 0, 5);
4664     int rn = extract32(insn, 5, 5);
4665     int imm3 = extract32(insn, 10, 3);
4666     int option = extract32(insn, 13, 3);
4667     int rm = extract32(insn, 16, 5);
4668     int opt = extract32(insn, 22, 2);
4669     bool setflags = extract32(insn, 29, 1);
4670     bool sub_op = extract32(insn, 30, 1);
4671     bool sf = extract32(insn, 31, 1);
4672 
4673     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4674     TCGv_i64 tcg_rd;
4675     TCGv_i64 tcg_result;
4676 
4677     if (imm3 > 4 || opt != 0) {
4678         unallocated_encoding(s);
4679         return;
4680     }
4681 
4682     /* non-flag setting ops may use SP */
4683     if (!setflags) {
4684         tcg_rd = cpu_reg_sp(s, rd);
4685     } else {
4686         tcg_rd = cpu_reg(s, rd);
4687     }
4688     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4689 
4690     tcg_rm = read_cpu_reg(s, rm, sf);
4691     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4692 
4693     tcg_result = tcg_temp_new_i64();
4694 
4695     if (!setflags) {
4696         if (sub_op) {
4697             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4698         } else {
4699             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4700         }
4701     } else {
4702         if (sub_op) {
4703             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4704         } else {
4705             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4706         }
4707     }
4708 
4709     if (sf) {
4710         tcg_gen_mov_i64(tcg_rd, tcg_result);
4711     } else {
4712         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4713     }
4714 }
4715 
4716 /*
4717  * Add/subtract (shifted register)
4718  *
4719  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4720  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4721  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4722  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4723  *
4724  *    sf: 0 -> 32bit, 1 -> 64bit
4725  *    op: 0 -> add  , 1 -> sub
4726  *     S: 1 -> set flags
4727  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4728  *  imm6: Shift amount to apply to Rm before the add/sub
4729  */
4730 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4731 {
4732     int rd = extract32(insn, 0, 5);
4733     int rn = extract32(insn, 5, 5);
4734     int imm6 = extract32(insn, 10, 6);
4735     int rm = extract32(insn, 16, 5);
4736     int shift_type = extract32(insn, 22, 2);
4737     bool setflags = extract32(insn, 29, 1);
4738     bool sub_op = extract32(insn, 30, 1);
4739     bool sf = extract32(insn, 31, 1);
4740 
4741     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4742     TCGv_i64 tcg_rn, tcg_rm;
4743     TCGv_i64 tcg_result;
4744 
4745     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4746         unallocated_encoding(s);
4747         return;
4748     }
4749 
4750     tcg_rn = read_cpu_reg(s, rn, sf);
4751     tcg_rm = read_cpu_reg(s, rm, sf);
4752 
4753     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4754 
4755     tcg_result = tcg_temp_new_i64();
4756 
4757     if (!setflags) {
4758         if (sub_op) {
4759             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4760         } else {
4761             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4762         }
4763     } else {
4764         if (sub_op) {
4765             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4766         } else {
4767             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4768         }
4769     }
4770 
4771     if (sf) {
4772         tcg_gen_mov_i64(tcg_rd, tcg_result);
4773     } else {
4774         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4775     }
4776 }
4777 
4778 /* Data-processing (3 source)
4779  *
4780  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4781  *  +--+------+-----------+------+------+----+------+------+------+
4782  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4783  *  +--+------+-----------+------+------+----+------+------+------+
4784  */
4785 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4786 {
4787     int rd = extract32(insn, 0, 5);
4788     int rn = extract32(insn, 5, 5);
4789     int ra = extract32(insn, 10, 5);
4790     int rm = extract32(insn, 16, 5);
4791     int op_id = (extract32(insn, 29, 3) << 4) |
4792         (extract32(insn, 21, 3) << 1) |
4793         extract32(insn, 15, 1);
4794     bool sf = extract32(insn, 31, 1);
4795     bool is_sub = extract32(op_id, 0, 1);
4796     bool is_high = extract32(op_id, 2, 1);
4797     bool is_signed = false;
4798     TCGv_i64 tcg_op1;
4799     TCGv_i64 tcg_op2;
4800     TCGv_i64 tcg_tmp;
4801 
4802     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4803     switch (op_id) {
4804     case 0x42: /* SMADDL */
4805     case 0x43: /* SMSUBL */
4806     case 0x44: /* SMULH */
4807         is_signed = true;
4808         break;
4809     case 0x0: /* MADD (32bit) */
4810     case 0x1: /* MSUB (32bit) */
4811     case 0x40: /* MADD (64bit) */
4812     case 0x41: /* MSUB (64bit) */
4813     case 0x4a: /* UMADDL */
4814     case 0x4b: /* UMSUBL */
4815     case 0x4c: /* UMULH */
4816         break;
4817     default:
4818         unallocated_encoding(s);
4819         return;
4820     }
4821 
4822     if (is_high) {
4823         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4824         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4825         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4826         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4827 
4828         if (is_signed) {
4829             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4830         } else {
4831             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4832         }
4833         return;
4834     }
4835 
4836     tcg_op1 = tcg_temp_new_i64();
4837     tcg_op2 = tcg_temp_new_i64();
4838     tcg_tmp = tcg_temp_new_i64();
4839 
4840     if (op_id < 0x42) {
4841         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4842         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4843     } else {
4844         if (is_signed) {
4845             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4846             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4847         } else {
4848             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4849             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4850         }
4851     }
4852 
4853     if (ra == 31 && !is_sub) {
4854         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4855         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4856     } else {
4857         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4858         if (is_sub) {
4859             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4860         } else {
4861             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4862         }
4863     }
4864 
4865     if (!sf) {
4866         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4867     }
4868 }
4869 
4870 /* Add/subtract (with carry)
4871  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4872  * +--+--+--+------------------------+------+-------------+------+-----+
4873  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4874  * +--+--+--+------------------------+------+-------------+------+-----+
4875  */
4876 
4877 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4878 {
4879     unsigned int sf, op, setflags, rm, rn, rd;
4880     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4881 
4882     sf = extract32(insn, 31, 1);
4883     op = extract32(insn, 30, 1);
4884     setflags = extract32(insn, 29, 1);
4885     rm = extract32(insn, 16, 5);
4886     rn = extract32(insn, 5, 5);
4887     rd = extract32(insn, 0, 5);
4888 
4889     tcg_rd = cpu_reg(s, rd);
4890     tcg_rn = cpu_reg(s, rn);
4891 
4892     if (op) {
4893         tcg_y = tcg_temp_new_i64();
4894         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4895     } else {
4896         tcg_y = cpu_reg(s, rm);
4897     }
4898 
4899     if (setflags) {
4900         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4901     } else {
4902         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4903     }
4904 }
4905 
4906 /*
4907  * Rotate right into flags
4908  *  31 30 29                21       15          10      5  4      0
4909  * +--+--+--+-----------------+--------+-----------+------+--+------+
4910  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4911  * +--+--+--+-----------------+--------+-----------+------+--+------+
4912  */
4913 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4914 {
4915     int mask = extract32(insn, 0, 4);
4916     int o2 = extract32(insn, 4, 1);
4917     int rn = extract32(insn, 5, 5);
4918     int imm6 = extract32(insn, 15, 6);
4919     int sf_op_s = extract32(insn, 29, 3);
4920     TCGv_i64 tcg_rn;
4921     TCGv_i32 nzcv;
4922 
4923     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4924         unallocated_encoding(s);
4925         return;
4926     }
4927 
4928     tcg_rn = read_cpu_reg(s, rn, 1);
4929     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4930 
4931     nzcv = tcg_temp_new_i32();
4932     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4933 
4934     if (mask & 8) { /* N */
4935         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4936     }
4937     if (mask & 4) { /* Z */
4938         tcg_gen_not_i32(cpu_ZF, nzcv);
4939         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4940     }
4941     if (mask & 2) { /* C */
4942         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4943     }
4944     if (mask & 1) { /* V */
4945         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4946     }
4947 }
4948 
4949 /*
4950  * Evaluate into flags
4951  *  31 30 29                21        15   14        10      5  4      0
4952  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4953  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4954  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4955  */
4956 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4957 {
4958     int o3_mask = extract32(insn, 0, 5);
4959     int rn = extract32(insn, 5, 5);
4960     int o2 = extract32(insn, 15, 6);
4961     int sz = extract32(insn, 14, 1);
4962     int sf_op_s = extract32(insn, 29, 3);
4963     TCGv_i32 tmp;
4964     int shift;
4965 
4966     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4967         !dc_isar_feature(aa64_condm_4, s)) {
4968         unallocated_encoding(s);
4969         return;
4970     }
4971     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4972 
4973     tmp = tcg_temp_new_i32();
4974     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4975     tcg_gen_shli_i32(cpu_NF, tmp, shift);
4976     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4977     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4978     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4979 }
4980 
4981 /* Conditional compare (immediate / register)
4982  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4983  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4984  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4985  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4986  *        [1]                             y                [0]       [0]
4987  */
4988 static void disas_cc(DisasContext *s, uint32_t insn)
4989 {
4990     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4991     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4992     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4993     DisasCompare c;
4994 
4995     if (!extract32(insn, 29, 1)) {
4996         unallocated_encoding(s);
4997         return;
4998     }
4999     if (insn & (1 << 10 | 1 << 4)) {
5000         unallocated_encoding(s);
5001         return;
5002     }
5003     sf = extract32(insn, 31, 1);
5004     op = extract32(insn, 30, 1);
5005     is_imm = extract32(insn, 11, 1);
5006     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5007     cond = extract32(insn, 12, 4);
5008     rn = extract32(insn, 5, 5);
5009     nzcv = extract32(insn, 0, 4);
5010 
5011     /* Set T0 = !COND.  */
5012     tcg_t0 = tcg_temp_new_i32();
5013     arm_test_cc(&c, cond);
5014     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5015 
5016     /* Load the arguments for the new comparison.  */
5017     if (is_imm) {
5018         tcg_y = tcg_temp_new_i64();
5019         tcg_gen_movi_i64(tcg_y, y);
5020     } else {
5021         tcg_y = cpu_reg(s, y);
5022     }
5023     tcg_rn = cpu_reg(s, rn);
5024 
5025     /* Set the flags for the new comparison.  */
5026     tcg_tmp = tcg_temp_new_i64();
5027     if (op) {
5028         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5029     } else {
5030         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5031     }
5032 
5033     /* If COND was false, force the flags to #nzcv.  Compute two masks
5034      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5035      * For tcg hosts that support ANDC, we can make do with just T1.
5036      * In either case, allow the tcg optimizer to delete any unused mask.
5037      */
5038     tcg_t1 = tcg_temp_new_i32();
5039     tcg_t2 = tcg_temp_new_i32();
5040     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5041     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5042 
5043     if (nzcv & 8) { /* N */
5044         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5045     } else {
5046         if (TCG_TARGET_HAS_andc_i32) {
5047             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5048         } else {
5049             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5050         }
5051     }
5052     if (nzcv & 4) { /* Z */
5053         if (TCG_TARGET_HAS_andc_i32) {
5054             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5055         } else {
5056             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5057         }
5058     } else {
5059         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5060     }
5061     if (nzcv & 2) { /* C */
5062         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5063     } else {
5064         if (TCG_TARGET_HAS_andc_i32) {
5065             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5066         } else {
5067             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5068         }
5069     }
5070     if (nzcv & 1) { /* V */
5071         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5072     } else {
5073         if (TCG_TARGET_HAS_andc_i32) {
5074             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5075         } else {
5076             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5077         }
5078     }
5079 }
5080 
5081 /* Conditional select
5082  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5083  * +----+----+---+-----------------+------+------+-----+------+------+
5084  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5085  * +----+----+---+-----------------+------+------+-----+------+------+
5086  */
5087 static void disas_cond_select(DisasContext *s, uint32_t insn)
5088 {
5089     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5090     TCGv_i64 tcg_rd, zero;
5091     DisasCompare64 c;
5092 
5093     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5094         /* S == 1 or op2<1> == 1 */
5095         unallocated_encoding(s);
5096         return;
5097     }
5098     sf = extract32(insn, 31, 1);
5099     else_inv = extract32(insn, 30, 1);
5100     rm = extract32(insn, 16, 5);
5101     cond = extract32(insn, 12, 4);
5102     else_inc = extract32(insn, 10, 1);
5103     rn = extract32(insn, 5, 5);
5104     rd = extract32(insn, 0, 5);
5105 
5106     tcg_rd = cpu_reg(s, rd);
5107 
5108     a64_test_cc(&c, cond);
5109     zero = tcg_constant_i64(0);
5110 
5111     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5112         /* CSET & CSETM.  */
5113         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5114         if (else_inv) {
5115             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5116         }
5117     } else {
5118         TCGv_i64 t_true = cpu_reg(s, rn);
5119         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5120         if (else_inv && else_inc) {
5121             tcg_gen_neg_i64(t_false, t_false);
5122         } else if (else_inv) {
5123             tcg_gen_not_i64(t_false, t_false);
5124         } else if (else_inc) {
5125             tcg_gen_addi_i64(t_false, t_false, 1);
5126         }
5127         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5128     }
5129 
5130     if (!sf) {
5131         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5132     }
5133 }
5134 
5135 static void handle_clz(DisasContext *s, unsigned int sf,
5136                        unsigned int rn, unsigned int rd)
5137 {
5138     TCGv_i64 tcg_rd, tcg_rn;
5139     tcg_rd = cpu_reg(s, rd);
5140     tcg_rn = cpu_reg(s, rn);
5141 
5142     if (sf) {
5143         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5144     } else {
5145         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5146         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5147         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5148         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5149     }
5150 }
5151 
5152 static void handle_cls(DisasContext *s, unsigned int sf,
5153                        unsigned int rn, unsigned int rd)
5154 {
5155     TCGv_i64 tcg_rd, tcg_rn;
5156     tcg_rd = cpu_reg(s, rd);
5157     tcg_rn = cpu_reg(s, rn);
5158 
5159     if (sf) {
5160         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5161     } else {
5162         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5163         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5164         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5165         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5166     }
5167 }
5168 
5169 static void handle_rbit(DisasContext *s, unsigned int sf,
5170                         unsigned int rn, unsigned int rd)
5171 {
5172     TCGv_i64 tcg_rd, tcg_rn;
5173     tcg_rd = cpu_reg(s, rd);
5174     tcg_rn = cpu_reg(s, rn);
5175 
5176     if (sf) {
5177         gen_helper_rbit64(tcg_rd, tcg_rn);
5178     } else {
5179         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5180         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5181         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5182         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5183     }
5184 }
5185 
5186 /* REV with sf==1, opcode==3 ("REV64") */
5187 static void handle_rev64(DisasContext *s, unsigned int sf,
5188                          unsigned int rn, unsigned int rd)
5189 {
5190     if (!sf) {
5191         unallocated_encoding(s);
5192         return;
5193     }
5194     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5195 }
5196 
5197 /* REV with sf==0, opcode==2
5198  * REV32 (sf==1, opcode==2)
5199  */
5200 static void handle_rev32(DisasContext *s, unsigned int sf,
5201                          unsigned int rn, unsigned int rd)
5202 {
5203     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5204     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5205 
5206     if (sf) {
5207         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5208         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5209     } else {
5210         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5211     }
5212 }
5213 
5214 /* REV16 (opcode==1) */
5215 static void handle_rev16(DisasContext *s, unsigned int sf,
5216                          unsigned int rn, unsigned int rd)
5217 {
5218     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5219     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5220     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5221     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5222 
5223     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5224     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5225     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5226     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5227     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5228 }
5229 
5230 /* Data-processing (1 source)
5231  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5232  * +----+---+---+-----------------+---------+--------+------+------+
5233  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5234  * +----+---+---+-----------------+---------+--------+------+------+
5235  */
5236 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5237 {
5238     unsigned int sf, opcode, opcode2, rn, rd;
5239     TCGv_i64 tcg_rd;
5240 
5241     if (extract32(insn, 29, 1)) {
5242         unallocated_encoding(s);
5243         return;
5244     }
5245 
5246     sf = extract32(insn, 31, 1);
5247     opcode = extract32(insn, 10, 6);
5248     opcode2 = extract32(insn, 16, 5);
5249     rn = extract32(insn, 5, 5);
5250     rd = extract32(insn, 0, 5);
5251 
5252 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5253 
5254     switch (MAP(sf, opcode2, opcode)) {
5255     case MAP(0, 0x00, 0x00): /* RBIT */
5256     case MAP(1, 0x00, 0x00):
5257         handle_rbit(s, sf, rn, rd);
5258         break;
5259     case MAP(0, 0x00, 0x01): /* REV16 */
5260     case MAP(1, 0x00, 0x01):
5261         handle_rev16(s, sf, rn, rd);
5262         break;
5263     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5264     case MAP(1, 0x00, 0x02):
5265         handle_rev32(s, sf, rn, rd);
5266         break;
5267     case MAP(1, 0x00, 0x03): /* REV64 */
5268         handle_rev64(s, sf, rn, rd);
5269         break;
5270     case MAP(0, 0x00, 0x04): /* CLZ */
5271     case MAP(1, 0x00, 0x04):
5272         handle_clz(s, sf, rn, rd);
5273         break;
5274     case MAP(0, 0x00, 0x05): /* CLS */
5275     case MAP(1, 0x00, 0x05):
5276         handle_cls(s, sf, rn, rd);
5277         break;
5278     case MAP(1, 0x01, 0x00): /* PACIA */
5279         if (s->pauth_active) {
5280             tcg_rd = cpu_reg(s, rd);
5281             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5282         } else if (!dc_isar_feature(aa64_pauth, s)) {
5283             goto do_unallocated;
5284         }
5285         break;
5286     case MAP(1, 0x01, 0x01): /* PACIB */
5287         if (s->pauth_active) {
5288             tcg_rd = cpu_reg(s, rd);
5289             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5290         } else if (!dc_isar_feature(aa64_pauth, s)) {
5291             goto do_unallocated;
5292         }
5293         break;
5294     case MAP(1, 0x01, 0x02): /* PACDA */
5295         if (s->pauth_active) {
5296             tcg_rd = cpu_reg(s, rd);
5297             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5298         } else if (!dc_isar_feature(aa64_pauth, s)) {
5299             goto do_unallocated;
5300         }
5301         break;
5302     case MAP(1, 0x01, 0x03): /* PACDB */
5303         if (s->pauth_active) {
5304             tcg_rd = cpu_reg(s, rd);
5305             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5306         } else if (!dc_isar_feature(aa64_pauth, s)) {
5307             goto do_unallocated;
5308         }
5309         break;
5310     case MAP(1, 0x01, 0x04): /* AUTIA */
5311         if (s->pauth_active) {
5312             tcg_rd = cpu_reg(s, rd);
5313             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5314         } else if (!dc_isar_feature(aa64_pauth, s)) {
5315             goto do_unallocated;
5316         }
5317         break;
5318     case MAP(1, 0x01, 0x05): /* AUTIB */
5319         if (s->pauth_active) {
5320             tcg_rd = cpu_reg(s, rd);
5321             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5322         } else if (!dc_isar_feature(aa64_pauth, s)) {
5323             goto do_unallocated;
5324         }
5325         break;
5326     case MAP(1, 0x01, 0x06): /* AUTDA */
5327         if (s->pauth_active) {
5328             tcg_rd = cpu_reg(s, rd);
5329             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5330         } else if (!dc_isar_feature(aa64_pauth, s)) {
5331             goto do_unallocated;
5332         }
5333         break;
5334     case MAP(1, 0x01, 0x07): /* AUTDB */
5335         if (s->pauth_active) {
5336             tcg_rd = cpu_reg(s, rd);
5337             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5338         } else if (!dc_isar_feature(aa64_pauth, s)) {
5339             goto do_unallocated;
5340         }
5341         break;
5342     case MAP(1, 0x01, 0x08): /* PACIZA */
5343         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5344             goto do_unallocated;
5345         } else if (s->pauth_active) {
5346             tcg_rd = cpu_reg(s, rd);
5347             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5348         }
5349         break;
5350     case MAP(1, 0x01, 0x09): /* PACIZB */
5351         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5352             goto do_unallocated;
5353         } else if (s->pauth_active) {
5354             tcg_rd = cpu_reg(s, rd);
5355             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5356         }
5357         break;
5358     case MAP(1, 0x01, 0x0a): /* PACDZA */
5359         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5360             goto do_unallocated;
5361         } else if (s->pauth_active) {
5362             tcg_rd = cpu_reg(s, rd);
5363             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5364         }
5365         break;
5366     case MAP(1, 0x01, 0x0b): /* PACDZB */
5367         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5368             goto do_unallocated;
5369         } else if (s->pauth_active) {
5370             tcg_rd = cpu_reg(s, rd);
5371             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5372         }
5373         break;
5374     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5375         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5376             goto do_unallocated;
5377         } else if (s->pauth_active) {
5378             tcg_rd = cpu_reg(s, rd);
5379             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5380         }
5381         break;
5382     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5383         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5384             goto do_unallocated;
5385         } else if (s->pauth_active) {
5386             tcg_rd = cpu_reg(s, rd);
5387             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5388         }
5389         break;
5390     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5391         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5392             goto do_unallocated;
5393         } else if (s->pauth_active) {
5394             tcg_rd = cpu_reg(s, rd);
5395             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5396         }
5397         break;
5398     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5399         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5400             goto do_unallocated;
5401         } else if (s->pauth_active) {
5402             tcg_rd = cpu_reg(s, rd);
5403             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5404         }
5405         break;
5406     case MAP(1, 0x01, 0x10): /* XPACI */
5407         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5408             goto do_unallocated;
5409         } else if (s->pauth_active) {
5410             tcg_rd = cpu_reg(s, rd);
5411             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5412         }
5413         break;
5414     case MAP(1, 0x01, 0x11): /* XPACD */
5415         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5416             goto do_unallocated;
5417         } else if (s->pauth_active) {
5418             tcg_rd = cpu_reg(s, rd);
5419             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5420         }
5421         break;
5422     default:
5423     do_unallocated:
5424         unallocated_encoding(s);
5425         break;
5426     }
5427 
5428 #undef MAP
5429 }
5430 
5431 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5432                        unsigned int rm, unsigned int rn, unsigned int rd)
5433 {
5434     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5435     tcg_rd = cpu_reg(s, rd);
5436 
5437     if (!sf && is_signed) {
5438         tcg_n = tcg_temp_new_i64();
5439         tcg_m = tcg_temp_new_i64();
5440         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5441         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5442     } else {
5443         tcg_n = read_cpu_reg(s, rn, sf);
5444         tcg_m = read_cpu_reg(s, rm, sf);
5445     }
5446 
5447     if (is_signed) {
5448         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5449     } else {
5450         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5451     }
5452 
5453     if (!sf) { /* zero extend final result */
5454         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5455     }
5456 }
5457 
5458 /* LSLV, LSRV, ASRV, RORV */
5459 static void handle_shift_reg(DisasContext *s,
5460                              enum a64_shift_type shift_type, unsigned int sf,
5461                              unsigned int rm, unsigned int rn, unsigned int rd)
5462 {
5463     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5464     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5465     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5466 
5467     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5468     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5469 }
5470 
5471 /* CRC32[BHWX], CRC32C[BHWX] */
5472 static void handle_crc32(DisasContext *s,
5473                          unsigned int sf, unsigned int sz, bool crc32c,
5474                          unsigned int rm, unsigned int rn, unsigned int rd)
5475 {
5476     TCGv_i64 tcg_acc, tcg_val;
5477     TCGv_i32 tcg_bytes;
5478 
5479     if (!dc_isar_feature(aa64_crc32, s)
5480         || (sf == 1 && sz != 3)
5481         || (sf == 0 && sz == 3)) {
5482         unallocated_encoding(s);
5483         return;
5484     }
5485 
5486     if (sz == 3) {
5487         tcg_val = cpu_reg(s, rm);
5488     } else {
5489         uint64_t mask;
5490         switch (sz) {
5491         case 0:
5492             mask = 0xFF;
5493             break;
5494         case 1:
5495             mask = 0xFFFF;
5496             break;
5497         case 2:
5498             mask = 0xFFFFFFFF;
5499             break;
5500         default:
5501             g_assert_not_reached();
5502         }
5503         tcg_val = tcg_temp_new_i64();
5504         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5505     }
5506 
5507     tcg_acc = cpu_reg(s, rn);
5508     tcg_bytes = tcg_constant_i32(1 << sz);
5509 
5510     if (crc32c) {
5511         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5512     } else {
5513         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5514     }
5515 }
5516 
5517 /* Data-processing (2 source)
5518  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5519  * +----+---+---+-----------------+------+--------+------+------+
5520  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5521  * +----+---+---+-----------------+------+--------+------+------+
5522  */
5523 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5524 {
5525     unsigned int sf, rm, opcode, rn, rd, setflag;
5526     sf = extract32(insn, 31, 1);
5527     setflag = extract32(insn, 29, 1);
5528     rm = extract32(insn, 16, 5);
5529     opcode = extract32(insn, 10, 6);
5530     rn = extract32(insn, 5, 5);
5531     rd = extract32(insn, 0, 5);
5532 
5533     if (setflag && opcode != 0) {
5534         unallocated_encoding(s);
5535         return;
5536     }
5537 
5538     switch (opcode) {
5539     case 0: /* SUBP(S) */
5540         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5541             goto do_unallocated;
5542         } else {
5543             TCGv_i64 tcg_n, tcg_m, tcg_d;
5544 
5545             tcg_n = read_cpu_reg_sp(s, rn, true);
5546             tcg_m = read_cpu_reg_sp(s, rm, true);
5547             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5548             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5549             tcg_d = cpu_reg(s, rd);
5550 
5551             if (setflag) {
5552                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5553             } else {
5554                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5555             }
5556         }
5557         break;
5558     case 2: /* UDIV */
5559         handle_div(s, false, sf, rm, rn, rd);
5560         break;
5561     case 3: /* SDIV */
5562         handle_div(s, true, sf, rm, rn, rd);
5563         break;
5564     case 4: /* IRG */
5565         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5566             goto do_unallocated;
5567         }
5568         if (s->ata) {
5569             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5570                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5571         } else {
5572             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5573                                              cpu_reg_sp(s, rn));
5574         }
5575         break;
5576     case 5: /* GMI */
5577         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5578             goto do_unallocated;
5579         } else {
5580             TCGv_i64 t = tcg_temp_new_i64();
5581 
5582             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5583             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5584             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5585         }
5586         break;
5587     case 8: /* LSLV */
5588         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5589         break;
5590     case 9: /* LSRV */
5591         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5592         break;
5593     case 10: /* ASRV */
5594         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5595         break;
5596     case 11: /* RORV */
5597         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5598         break;
5599     case 12: /* PACGA */
5600         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5601             goto do_unallocated;
5602         }
5603         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5604                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5605         break;
5606     case 16:
5607     case 17:
5608     case 18:
5609     case 19:
5610     case 20:
5611     case 21:
5612     case 22:
5613     case 23: /* CRC32 */
5614     {
5615         int sz = extract32(opcode, 0, 2);
5616         bool crc32c = extract32(opcode, 2, 1);
5617         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5618         break;
5619     }
5620     default:
5621     do_unallocated:
5622         unallocated_encoding(s);
5623         break;
5624     }
5625 }
5626 
5627 /*
5628  * Data processing - register
5629  *  31  30 29  28      25    21  20  16      10         0
5630  * +--+---+--+---+-------+-----+-------+-------+---------+
5631  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5632  * +--+---+--+---+-------+-----+-------+-------+---------+
5633  */
5634 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5635 {
5636     int op0 = extract32(insn, 30, 1);
5637     int op1 = extract32(insn, 28, 1);
5638     int op2 = extract32(insn, 21, 4);
5639     int op3 = extract32(insn, 10, 6);
5640 
5641     if (!op1) {
5642         if (op2 & 8) {
5643             if (op2 & 1) {
5644                 /* Add/sub (extended register) */
5645                 disas_add_sub_ext_reg(s, insn);
5646             } else {
5647                 /* Add/sub (shifted register) */
5648                 disas_add_sub_reg(s, insn);
5649             }
5650         } else {
5651             /* Logical (shifted register) */
5652             disas_logic_reg(s, insn);
5653         }
5654         return;
5655     }
5656 
5657     switch (op2) {
5658     case 0x0:
5659         switch (op3) {
5660         case 0x00: /* Add/subtract (with carry) */
5661             disas_adc_sbc(s, insn);
5662             break;
5663 
5664         case 0x01: /* Rotate right into flags */
5665         case 0x21:
5666             disas_rotate_right_into_flags(s, insn);
5667             break;
5668 
5669         case 0x02: /* Evaluate into flags */
5670         case 0x12:
5671         case 0x22:
5672         case 0x32:
5673             disas_evaluate_into_flags(s, insn);
5674             break;
5675 
5676         default:
5677             goto do_unallocated;
5678         }
5679         break;
5680 
5681     case 0x2: /* Conditional compare */
5682         disas_cc(s, insn); /* both imm and reg forms */
5683         break;
5684 
5685     case 0x4: /* Conditional select */
5686         disas_cond_select(s, insn);
5687         break;
5688 
5689     case 0x6: /* Data-processing */
5690         if (op0) {    /* (1 source) */
5691             disas_data_proc_1src(s, insn);
5692         } else {      /* (2 source) */
5693             disas_data_proc_2src(s, insn);
5694         }
5695         break;
5696     case 0x8 ... 0xf: /* (3 source) */
5697         disas_data_proc_3src(s, insn);
5698         break;
5699 
5700     default:
5701     do_unallocated:
5702         unallocated_encoding(s);
5703         break;
5704     }
5705 }
5706 
5707 static void handle_fp_compare(DisasContext *s, int size,
5708                               unsigned int rn, unsigned int rm,
5709                               bool cmp_with_zero, bool signal_all_nans)
5710 {
5711     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5712     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5713 
5714     if (size == MO_64) {
5715         TCGv_i64 tcg_vn, tcg_vm;
5716 
5717         tcg_vn = read_fp_dreg(s, rn);
5718         if (cmp_with_zero) {
5719             tcg_vm = tcg_constant_i64(0);
5720         } else {
5721             tcg_vm = read_fp_dreg(s, rm);
5722         }
5723         if (signal_all_nans) {
5724             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5725         } else {
5726             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5727         }
5728     } else {
5729         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5730         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5731 
5732         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5733         if (cmp_with_zero) {
5734             tcg_gen_movi_i32(tcg_vm, 0);
5735         } else {
5736             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5737         }
5738 
5739         switch (size) {
5740         case MO_32:
5741             if (signal_all_nans) {
5742                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5743             } else {
5744                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5745             }
5746             break;
5747         case MO_16:
5748             if (signal_all_nans) {
5749                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5750             } else {
5751                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5752             }
5753             break;
5754         default:
5755             g_assert_not_reached();
5756         }
5757     }
5758 
5759     gen_set_nzcv(tcg_flags);
5760 }
5761 
5762 /* Floating point compare
5763  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5764  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5765  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5766  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5767  */
5768 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5769 {
5770     unsigned int mos, type, rm, op, rn, opc, op2r;
5771     int size;
5772 
5773     mos = extract32(insn, 29, 3);
5774     type = extract32(insn, 22, 2);
5775     rm = extract32(insn, 16, 5);
5776     op = extract32(insn, 14, 2);
5777     rn = extract32(insn, 5, 5);
5778     opc = extract32(insn, 3, 2);
5779     op2r = extract32(insn, 0, 3);
5780 
5781     if (mos || op || op2r) {
5782         unallocated_encoding(s);
5783         return;
5784     }
5785 
5786     switch (type) {
5787     case 0:
5788         size = MO_32;
5789         break;
5790     case 1:
5791         size = MO_64;
5792         break;
5793     case 3:
5794         size = MO_16;
5795         if (dc_isar_feature(aa64_fp16, s)) {
5796             break;
5797         }
5798         /* fallthru */
5799     default:
5800         unallocated_encoding(s);
5801         return;
5802     }
5803 
5804     if (!fp_access_check(s)) {
5805         return;
5806     }
5807 
5808     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5809 }
5810 
5811 /* Floating point conditional compare
5812  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5813  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5814  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5815  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5816  */
5817 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5818 {
5819     unsigned int mos, type, rm, cond, rn, op, nzcv;
5820     TCGLabel *label_continue = NULL;
5821     int size;
5822 
5823     mos = extract32(insn, 29, 3);
5824     type = extract32(insn, 22, 2);
5825     rm = extract32(insn, 16, 5);
5826     cond = extract32(insn, 12, 4);
5827     rn = extract32(insn, 5, 5);
5828     op = extract32(insn, 4, 1);
5829     nzcv = extract32(insn, 0, 4);
5830 
5831     if (mos) {
5832         unallocated_encoding(s);
5833         return;
5834     }
5835 
5836     switch (type) {
5837     case 0:
5838         size = MO_32;
5839         break;
5840     case 1:
5841         size = MO_64;
5842         break;
5843     case 3:
5844         size = MO_16;
5845         if (dc_isar_feature(aa64_fp16, s)) {
5846             break;
5847         }
5848         /* fallthru */
5849     default:
5850         unallocated_encoding(s);
5851         return;
5852     }
5853 
5854     if (!fp_access_check(s)) {
5855         return;
5856     }
5857 
5858     if (cond < 0x0e) { /* not always */
5859         TCGLabel *label_match = gen_new_label();
5860         label_continue = gen_new_label();
5861         arm_gen_test_cc(cond, label_match);
5862         /* nomatch: */
5863         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5864         tcg_gen_br(label_continue);
5865         gen_set_label(label_match);
5866     }
5867 
5868     handle_fp_compare(s, size, rn, rm, false, op);
5869 
5870     if (cond < 0x0e) {
5871         gen_set_label(label_continue);
5872     }
5873 }
5874 
5875 /* Floating point conditional select
5876  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5877  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5878  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5879  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5880  */
5881 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5882 {
5883     unsigned int mos, type, rm, cond, rn, rd;
5884     TCGv_i64 t_true, t_false;
5885     DisasCompare64 c;
5886     MemOp sz;
5887 
5888     mos = extract32(insn, 29, 3);
5889     type = extract32(insn, 22, 2);
5890     rm = extract32(insn, 16, 5);
5891     cond = extract32(insn, 12, 4);
5892     rn = extract32(insn, 5, 5);
5893     rd = extract32(insn, 0, 5);
5894 
5895     if (mos) {
5896         unallocated_encoding(s);
5897         return;
5898     }
5899 
5900     switch (type) {
5901     case 0:
5902         sz = MO_32;
5903         break;
5904     case 1:
5905         sz = MO_64;
5906         break;
5907     case 3:
5908         sz = MO_16;
5909         if (dc_isar_feature(aa64_fp16, s)) {
5910             break;
5911         }
5912         /* fallthru */
5913     default:
5914         unallocated_encoding(s);
5915         return;
5916     }
5917 
5918     if (!fp_access_check(s)) {
5919         return;
5920     }
5921 
5922     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5923     t_true = tcg_temp_new_i64();
5924     t_false = tcg_temp_new_i64();
5925     read_vec_element(s, t_true, rn, 0, sz);
5926     read_vec_element(s, t_false, rm, 0, sz);
5927 
5928     a64_test_cc(&c, cond);
5929     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5930                         t_true, t_false);
5931 
5932     /* Note that sregs & hregs write back zeros to the high bits,
5933        and we've already done the zero-extension.  */
5934     write_fp_dreg(s, rd, t_true);
5935 }
5936 
5937 /* Floating-point data-processing (1 source) - half precision */
5938 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5939 {
5940     TCGv_ptr fpst = NULL;
5941     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5942     TCGv_i32 tcg_res = tcg_temp_new_i32();
5943 
5944     switch (opcode) {
5945     case 0x0: /* FMOV */
5946         tcg_gen_mov_i32(tcg_res, tcg_op);
5947         break;
5948     case 0x1: /* FABS */
5949         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5950         break;
5951     case 0x2: /* FNEG */
5952         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5953         break;
5954     case 0x3: /* FSQRT */
5955         fpst = fpstatus_ptr(FPST_FPCR_F16);
5956         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5957         break;
5958     case 0x8: /* FRINTN */
5959     case 0x9: /* FRINTP */
5960     case 0xa: /* FRINTM */
5961     case 0xb: /* FRINTZ */
5962     case 0xc: /* FRINTA */
5963     {
5964         TCGv_i32 tcg_rmode;
5965 
5966         fpst = fpstatus_ptr(FPST_FPCR_F16);
5967         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5968         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5969         gen_restore_rmode(tcg_rmode, fpst);
5970         break;
5971     }
5972     case 0xe: /* FRINTX */
5973         fpst = fpstatus_ptr(FPST_FPCR_F16);
5974         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5975         break;
5976     case 0xf: /* FRINTI */
5977         fpst = fpstatus_ptr(FPST_FPCR_F16);
5978         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5979         break;
5980     default:
5981         g_assert_not_reached();
5982     }
5983 
5984     write_fp_sreg(s, rd, tcg_res);
5985 }
5986 
5987 /* Floating-point data-processing (1 source) - single precision */
5988 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5989 {
5990     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5991     TCGv_i32 tcg_op, tcg_res;
5992     TCGv_ptr fpst;
5993     int rmode = -1;
5994 
5995     tcg_op = read_fp_sreg(s, rn);
5996     tcg_res = tcg_temp_new_i32();
5997 
5998     switch (opcode) {
5999     case 0x0: /* FMOV */
6000         tcg_gen_mov_i32(tcg_res, tcg_op);
6001         goto done;
6002     case 0x1: /* FABS */
6003         gen_helper_vfp_abss(tcg_res, tcg_op);
6004         goto done;
6005     case 0x2: /* FNEG */
6006         gen_helper_vfp_negs(tcg_res, tcg_op);
6007         goto done;
6008     case 0x3: /* FSQRT */
6009         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6010         goto done;
6011     case 0x6: /* BFCVT */
6012         gen_fpst = gen_helper_bfcvt;
6013         break;
6014     case 0x8: /* FRINTN */
6015     case 0x9: /* FRINTP */
6016     case 0xa: /* FRINTM */
6017     case 0xb: /* FRINTZ */
6018     case 0xc: /* FRINTA */
6019         rmode = opcode & 7;
6020         gen_fpst = gen_helper_rints;
6021         break;
6022     case 0xe: /* FRINTX */
6023         gen_fpst = gen_helper_rints_exact;
6024         break;
6025     case 0xf: /* FRINTI */
6026         gen_fpst = gen_helper_rints;
6027         break;
6028     case 0x10: /* FRINT32Z */
6029         rmode = FPROUNDING_ZERO;
6030         gen_fpst = gen_helper_frint32_s;
6031         break;
6032     case 0x11: /* FRINT32X */
6033         gen_fpst = gen_helper_frint32_s;
6034         break;
6035     case 0x12: /* FRINT64Z */
6036         rmode = FPROUNDING_ZERO;
6037         gen_fpst = gen_helper_frint64_s;
6038         break;
6039     case 0x13: /* FRINT64X */
6040         gen_fpst = gen_helper_frint64_s;
6041         break;
6042     default:
6043         g_assert_not_reached();
6044     }
6045 
6046     fpst = fpstatus_ptr(FPST_FPCR);
6047     if (rmode >= 0) {
6048         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6049         gen_fpst(tcg_res, tcg_op, fpst);
6050         gen_restore_rmode(tcg_rmode, fpst);
6051     } else {
6052         gen_fpst(tcg_res, tcg_op, fpst);
6053     }
6054 
6055  done:
6056     write_fp_sreg(s, rd, tcg_res);
6057 }
6058 
6059 /* Floating-point data-processing (1 source) - double precision */
6060 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6061 {
6062     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6063     TCGv_i64 tcg_op, tcg_res;
6064     TCGv_ptr fpst;
6065     int rmode = -1;
6066 
6067     switch (opcode) {
6068     case 0x0: /* FMOV */
6069         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6070         return;
6071     }
6072 
6073     tcg_op = read_fp_dreg(s, rn);
6074     tcg_res = tcg_temp_new_i64();
6075 
6076     switch (opcode) {
6077     case 0x1: /* FABS */
6078         gen_helper_vfp_absd(tcg_res, tcg_op);
6079         goto done;
6080     case 0x2: /* FNEG */
6081         gen_helper_vfp_negd(tcg_res, tcg_op);
6082         goto done;
6083     case 0x3: /* FSQRT */
6084         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6085         goto done;
6086     case 0x8: /* FRINTN */
6087     case 0x9: /* FRINTP */
6088     case 0xa: /* FRINTM */
6089     case 0xb: /* FRINTZ */
6090     case 0xc: /* FRINTA */
6091         rmode = opcode & 7;
6092         gen_fpst = gen_helper_rintd;
6093         break;
6094     case 0xe: /* FRINTX */
6095         gen_fpst = gen_helper_rintd_exact;
6096         break;
6097     case 0xf: /* FRINTI */
6098         gen_fpst = gen_helper_rintd;
6099         break;
6100     case 0x10: /* FRINT32Z */
6101         rmode = FPROUNDING_ZERO;
6102         gen_fpst = gen_helper_frint32_d;
6103         break;
6104     case 0x11: /* FRINT32X */
6105         gen_fpst = gen_helper_frint32_d;
6106         break;
6107     case 0x12: /* FRINT64Z */
6108         rmode = FPROUNDING_ZERO;
6109         gen_fpst = gen_helper_frint64_d;
6110         break;
6111     case 0x13: /* FRINT64X */
6112         gen_fpst = gen_helper_frint64_d;
6113         break;
6114     default:
6115         g_assert_not_reached();
6116     }
6117 
6118     fpst = fpstatus_ptr(FPST_FPCR);
6119     if (rmode >= 0) {
6120         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6121         gen_fpst(tcg_res, tcg_op, fpst);
6122         gen_restore_rmode(tcg_rmode, fpst);
6123     } else {
6124         gen_fpst(tcg_res, tcg_op, fpst);
6125     }
6126 
6127  done:
6128     write_fp_dreg(s, rd, tcg_res);
6129 }
6130 
6131 static void handle_fp_fcvt(DisasContext *s, int opcode,
6132                            int rd, int rn, int dtype, int ntype)
6133 {
6134     switch (ntype) {
6135     case 0x0:
6136     {
6137         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6138         if (dtype == 1) {
6139             /* Single to double */
6140             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6141             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6142             write_fp_dreg(s, rd, tcg_rd);
6143         } else {
6144             /* Single to half */
6145             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6146             TCGv_i32 ahp = get_ahp_flag();
6147             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6148 
6149             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6150             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6151             write_fp_sreg(s, rd, tcg_rd);
6152         }
6153         break;
6154     }
6155     case 0x1:
6156     {
6157         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6158         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6159         if (dtype == 0) {
6160             /* Double to single */
6161             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6162         } else {
6163             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6164             TCGv_i32 ahp = get_ahp_flag();
6165             /* Double to half */
6166             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6167             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6168         }
6169         write_fp_sreg(s, rd, tcg_rd);
6170         break;
6171     }
6172     case 0x3:
6173     {
6174         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6175         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6176         TCGv_i32 tcg_ahp = get_ahp_flag();
6177         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6178         if (dtype == 0) {
6179             /* Half to single */
6180             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6181             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6182             write_fp_sreg(s, rd, tcg_rd);
6183         } else {
6184             /* Half to double */
6185             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6186             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6187             write_fp_dreg(s, rd, tcg_rd);
6188         }
6189         break;
6190     }
6191     default:
6192         g_assert_not_reached();
6193     }
6194 }
6195 
6196 /* Floating point data-processing (1 source)
6197  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6198  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6199  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6200  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6201  */
6202 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6203 {
6204     int mos = extract32(insn, 29, 3);
6205     int type = extract32(insn, 22, 2);
6206     int opcode = extract32(insn, 15, 6);
6207     int rn = extract32(insn, 5, 5);
6208     int rd = extract32(insn, 0, 5);
6209 
6210     if (mos) {
6211         goto do_unallocated;
6212     }
6213 
6214     switch (opcode) {
6215     case 0x4: case 0x5: case 0x7:
6216     {
6217         /* FCVT between half, single and double precision */
6218         int dtype = extract32(opcode, 0, 2);
6219         if (type == 2 || dtype == type) {
6220             goto do_unallocated;
6221         }
6222         if (!fp_access_check(s)) {
6223             return;
6224         }
6225 
6226         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6227         break;
6228     }
6229 
6230     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6231         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6232             goto do_unallocated;
6233         }
6234         /* fall through */
6235     case 0x0 ... 0x3:
6236     case 0x8 ... 0xc:
6237     case 0xe ... 0xf:
6238         /* 32-to-32 and 64-to-64 ops */
6239         switch (type) {
6240         case 0:
6241             if (!fp_access_check(s)) {
6242                 return;
6243             }
6244             handle_fp_1src_single(s, opcode, rd, rn);
6245             break;
6246         case 1:
6247             if (!fp_access_check(s)) {
6248                 return;
6249             }
6250             handle_fp_1src_double(s, opcode, rd, rn);
6251             break;
6252         case 3:
6253             if (!dc_isar_feature(aa64_fp16, s)) {
6254                 goto do_unallocated;
6255             }
6256 
6257             if (!fp_access_check(s)) {
6258                 return;
6259             }
6260             handle_fp_1src_half(s, opcode, rd, rn);
6261             break;
6262         default:
6263             goto do_unallocated;
6264         }
6265         break;
6266 
6267     case 0x6:
6268         switch (type) {
6269         case 1: /* BFCVT */
6270             if (!dc_isar_feature(aa64_bf16, s)) {
6271                 goto do_unallocated;
6272             }
6273             if (!fp_access_check(s)) {
6274                 return;
6275             }
6276             handle_fp_1src_single(s, opcode, rd, rn);
6277             break;
6278         default:
6279             goto do_unallocated;
6280         }
6281         break;
6282 
6283     default:
6284     do_unallocated:
6285         unallocated_encoding(s);
6286         break;
6287     }
6288 }
6289 
6290 /* Floating-point data-processing (2 source) - single precision */
6291 static void handle_fp_2src_single(DisasContext *s, int opcode,
6292                                   int rd, int rn, int rm)
6293 {
6294     TCGv_i32 tcg_op1;
6295     TCGv_i32 tcg_op2;
6296     TCGv_i32 tcg_res;
6297     TCGv_ptr fpst;
6298 
6299     tcg_res = tcg_temp_new_i32();
6300     fpst = fpstatus_ptr(FPST_FPCR);
6301     tcg_op1 = read_fp_sreg(s, rn);
6302     tcg_op2 = read_fp_sreg(s, rm);
6303 
6304     switch (opcode) {
6305     case 0x0: /* FMUL */
6306         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6307         break;
6308     case 0x1: /* FDIV */
6309         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6310         break;
6311     case 0x2: /* FADD */
6312         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6313         break;
6314     case 0x3: /* FSUB */
6315         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6316         break;
6317     case 0x4: /* FMAX */
6318         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6319         break;
6320     case 0x5: /* FMIN */
6321         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6322         break;
6323     case 0x6: /* FMAXNM */
6324         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6325         break;
6326     case 0x7: /* FMINNM */
6327         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6328         break;
6329     case 0x8: /* FNMUL */
6330         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6331         gen_helper_vfp_negs(tcg_res, tcg_res);
6332         break;
6333     }
6334 
6335     write_fp_sreg(s, rd, tcg_res);
6336 }
6337 
6338 /* Floating-point data-processing (2 source) - double precision */
6339 static void handle_fp_2src_double(DisasContext *s, int opcode,
6340                                   int rd, int rn, int rm)
6341 {
6342     TCGv_i64 tcg_op1;
6343     TCGv_i64 tcg_op2;
6344     TCGv_i64 tcg_res;
6345     TCGv_ptr fpst;
6346 
6347     tcg_res = tcg_temp_new_i64();
6348     fpst = fpstatus_ptr(FPST_FPCR);
6349     tcg_op1 = read_fp_dreg(s, rn);
6350     tcg_op2 = read_fp_dreg(s, rm);
6351 
6352     switch (opcode) {
6353     case 0x0: /* FMUL */
6354         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6355         break;
6356     case 0x1: /* FDIV */
6357         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6358         break;
6359     case 0x2: /* FADD */
6360         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6361         break;
6362     case 0x3: /* FSUB */
6363         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6364         break;
6365     case 0x4: /* FMAX */
6366         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6367         break;
6368     case 0x5: /* FMIN */
6369         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6370         break;
6371     case 0x6: /* FMAXNM */
6372         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6373         break;
6374     case 0x7: /* FMINNM */
6375         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6376         break;
6377     case 0x8: /* FNMUL */
6378         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6379         gen_helper_vfp_negd(tcg_res, tcg_res);
6380         break;
6381     }
6382 
6383     write_fp_dreg(s, rd, tcg_res);
6384 }
6385 
6386 /* Floating-point data-processing (2 source) - half precision */
6387 static void handle_fp_2src_half(DisasContext *s, int opcode,
6388                                 int rd, int rn, int rm)
6389 {
6390     TCGv_i32 tcg_op1;
6391     TCGv_i32 tcg_op2;
6392     TCGv_i32 tcg_res;
6393     TCGv_ptr fpst;
6394 
6395     tcg_res = tcg_temp_new_i32();
6396     fpst = fpstatus_ptr(FPST_FPCR_F16);
6397     tcg_op1 = read_fp_hreg(s, rn);
6398     tcg_op2 = read_fp_hreg(s, rm);
6399 
6400     switch (opcode) {
6401     case 0x0: /* FMUL */
6402         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6403         break;
6404     case 0x1: /* FDIV */
6405         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6406         break;
6407     case 0x2: /* FADD */
6408         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6409         break;
6410     case 0x3: /* FSUB */
6411         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6412         break;
6413     case 0x4: /* FMAX */
6414         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6415         break;
6416     case 0x5: /* FMIN */
6417         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6418         break;
6419     case 0x6: /* FMAXNM */
6420         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6421         break;
6422     case 0x7: /* FMINNM */
6423         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6424         break;
6425     case 0x8: /* FNMUL */
6426         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6427         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6428         break;
6429     default:
6430         g_assert_not_reached();
6431     }
6432 
6433     write_fp_sreg(s, rd, tcg_res);
6434 }
6435 
6436 /* Floating point data-processing (2 source)
6437  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6438  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6439  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6440  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6441  */
6442 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6443 {
6444     int mos = extract32(insn, 29, 3);
6445     int type = extract32(insn, 22, 2);
6446     int rd = extract32(insn, 0, 5);
6447     int rn = extract32(insn, 5, 5);
6448     int rm = extract32(insn, 16, 5);
6449     int opcode = extract32(insn, 12, 4);
6450 
6451     if (opcode > 8 || mos) {
6452         unallocated_encoding(s);
6453         return;
6454     }
6455 
6456     switch (type) {
6457     case 0:
6458         if (!fp_access_check(s)) {
6459             return;
6460         }
6461         handle_fp_2src_single(s, opcode, rd, rn, rm);
6462         break;
6463     case 1:
6464         if (!fp_access_check(s)) {
6465             return;
6466         }
6467         handle_fp_2src_double(s, opcode, rd, rn, rm);
6468         break;
6469     case 3:
6470         if (!dc_isar_feature(aa64_fp16, s)) {
6471             unallocated_encoding(s);
6472             return;
6473         }
6474         if (!fp_access_check(s)) {
6475             return;
6476         }
6477         handle_fp_2src_half(s, opcode, rd, rn, rm);
6478         break;
6479     default:
6480         unallocated_encoding(s);
6481     }
6482 }
6483 
6484 /* Floating-point data-processing (3 source) - single precision */
6485 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6486                                   int rd, int rn, int rm, int ra)
6487 {
6488     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6489     TCGv_i32 tcg_res = tcg_temp_new_i32();
6490     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6491 
6492     tcg_op1 = read_fp_sreg(s, rn);
6493     tcg_op2 = read_fp_sreg(s, rm);
6494     tcg_op3 = read_fp_sreg(s, ra);
6495 
6496     /* These are fused multiply-add, and must be done as one
6497      * floating point operation with no rounding between the
6498      * multiplication and addition steps.
6499      * NB that doing the negations here as separate steps is
6500      * correct : an input NaN should come out with its sign bit
6501      * flipped if it is a negated-input.
6502      */
6503     if (o1 == true) {
6504         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6505     }
6506 
6507     if (o0 != o1) {
6508         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6509     }
6510 
6511     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6512 
6513     write_fp_sreg(s, rd, tcg_res);
6514 }
6515 
6516 /* Floating-point data-processing (3 source) - double precision */
6517 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6518                                   int rd, int rn, int rm, int ra)
6519 {
6520     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6521     TCGv_i64 tcg_res = tcg_temp_new_i64();
6522     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6523 
6524     tcg_op1 = read_fp_dreg(s, rn);
6525     tcg_op2 = read_fp_dreg(s, rm);
6526     tcg_op3 = read_fp_dreg(s, ra);
6527 
6528     /* These are fused multiply-add, and must be done as one
6529      * floating point operation with no rounding between the
6530      * multiplication and addition steps.
6531      * NB that doing the negations here as separate steps is
6532      * correct : an input NaN should come out with its sign bit
6533      * flipped if it is a negated-input.
6534      */
6535     if (o1 == true) {
6536         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6537     }
6538 
6539     if (o0 != o1) {
6540         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6541     }
6542 
6543     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6544 
6545     write_fp_dreg(s, rd, tcg_res);
6546 }
6547 
6548 /* Floating-point data-processing (3 source) - half precision */
6549 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6550                                 int rd, int rn, int rm, int ra)
6551 {
6552     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6553     TCGv_i32 tcg_res = tcg_temp_new_i32();
6554     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6555 
6556     tcg_op1 = read_fp_hreg(s, rn);
6557     tcg_op2 = read_fp_hreg(s, rm);
6558     tcg_op3 = read_fp_hreg(s, ra);
6559 
6560     /* These are fused multiply-add, and must be done as one
6561      * floating point operation with no rounding between the
6562      * multiplication and addition steps.
6563      * NB that doing the negations here as separate steps is
6564      * correct : an input NaN should come out with its sign bit
6565      * flipped if it is a negated-input.
6566      */
6567     if (o1 == true) {
6568         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6569     }
6570 
6571     if (o0 != o1) {
6572         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6573     }
6574 
6575     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6576 
6577     write_fp_sreg(s, rd, tcg_res);
6578 }
6579 
6580 /* Floating point data-processing (3 source)
6581  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6582  * +---+---+---+-----------+------+----+------+----+------+------+------+
6583  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6584  * +---+---+---+-----------+------+----+------+----+------+------+------+
6585  */
6586 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6587 {
6588     int mos = extract32(insn, 29, 3);
6589     int type = extract32(insn, 22, 2);
6590     int rd = extract32(insn, 0, 5);
6591     int rn = extract32(insn, 5, 5);
6592     int ra = extract32(insn, 10, 5);
6593     int rm = extract32(insn, 16, 5);
6594     bool o0 = extract32(insn, 15, 1);
6595     bool o1 = extract32(insn, 21, 1);
6596 
6597     if (mos) {
6598         unallocated_encoding(s);
6599         return;
6600     }
6601 
6602     switch (type) {
6603     case 0:
6604         if (!fp_access_check(s)) {
6605             return;
6606         }
6607         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6608         break;
6609     case 1:
6610         if (!fp_access_check(s)) {
6611             return;
6612         }
6613         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6614         break;
6615     case 3:
6616         if (!dc_isar_feature(aa64_fp16, s)) {
6617             unallocated_encoding(s);
6618             return;
6619         }
6620         if (!fp_access_check(s)) {
6621             return;
6622         }
6623         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6624         break;
6625     default:
6626         unallocated_encoding(s);
6627     }
6628 }
6629 
6630 /* Floating point immediate
6631  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6632  * +---+---+---+-----------+------+---+------------+-------+------+------+
6633  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6634  * +---+---+---+-----------+------+---+------------+-------+------+------+
6635  */
6636 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6637 {
6638     int rd = extract32(insn, 0, 5);
6639     int imm5 = extract32(insn, 5, 5);
6640     int imm8 = extract32(insn, 13, 8);
6641     int type = extract32(insn, 22, 2);
6642     int mos = extract32(insn, 29, 3);
6643     uint64_t imm;
6644     MemOp sz;
6645 
6646     if (mos || imm5) {
6647         unallocated_encoding(s);
6648         return;
6649     }
6650 
6651     switch (type) {
6652     case 0:
6653         sz = MO_32;
6654         break;
6655     case 1:
6656         sz = MO_64;
6657         break;
6658     case 3:
6659         sz = MO_16;
6660         if (dc_isar_feature(aa64_fp16, s)) {
6661             break;
6662         }
6663         /* fallthru */
6664     default:
6665         unallocated_encoding(s);
6666         return;
6667     }
6668 
6669     if (!fp_access_check(s)) {
6670         return;
6671     }
6672 
6673     imm = vfp_expand_imm(sz, imm8);
6674     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6675 }
6676 
6677 /* Handle floating point <=> fixed point conversions. Note that we can
6678  * also deal with fp <=> integer conversions as a special case (scale == 64)
6679  * OPTME: consider handling that special case specially or at least skipping
6680  * the call to scalbn in the helpers for zero shifts.
6681  */
6682 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6683                            bool itof, int rmode, int scale, int sf, int type)
6684 {
6685     bool is_signed = !(opcode & 1);
6686     TCGv_ptr tcg_fpstatus;
6687     TCGv_i32 tcg_shift, tcg_single;
6688     TCGv_i64 tcg_double;
6689 
6690     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6691 
6692     tcg_shift = tcg_constant_i32(64 - scale);
6693 
6694     if (itof) {
6695         TCGv_i64 tcg_int = cpu_reg(s, rn);
6696         if (!sf) {
6697             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6698 
6699             if (is_signed) {
6700                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6701             } else {
6702                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6703             }
6704 
6705             tcg_int = tcg_extend;
6706         }
6707 
6708         switch (type) {
6709         case 1: /* float64 */
6710             tcg_double = tcg_temp_new_i64();
6711             if (is_signed) {
6712                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6713                                      tcg_shift, tcg_fpstatus);
6714             } else {
6715                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6716                                      tcg_shift, tcg_fpstatus);
6717             }
6718             write_fp_dreg(s, rd, tcg_double);
6719             break;
6720 
6721         case 0: /* float32 */
6722             tcg_single = tcg_temp_new_i32();
6723             if (is_signed) {
6724                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6725                                      tcg_shift, tcg_fpstatus);
6726             } else {
6727                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6728                                      tcg_shift, tcg_fpstatus);
6729             }
6730             write_fp_sreg(s, rd, tcg_single);
6731             break;
6732 
6733         case 3: /* float16 */
6734             tcg_single = tcg_temp_new_i32();
6735             if (is_signed) {
6736                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6737                                      tcg_shift, tcg_fpstatus);
6738             } else {
6739                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6740                                      tcg_shift, tcg_fpstatus);
6741             }
6742             write_fp_sreg(s, rd, tcg_single);
6743             break;
6744 
6745         default:
6746             g_assert_not_reached();
6747         }
6748     } else {
6749         TCGv_i64 tcg_int = cpu_reg(s, rd);
6750         TCGv_i32 tcg_rmode;
6751 
6752         if (extract32(opcode, 2, 1)) {
6753             /* There are too many rounding modes to all fit into rmode,
6754              * so FCVTA[US] is a special case.
6755              */
6756             rmode = FPROUNDING_TIEAWAY;
6757         }
6758 
6759         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6760 
6761         switch (type) {
6762         case 1: /* float64 */
6763             tcg_double = read_fp_dreg(s, rn);
6764             if (is_signed) {
6765                 if (!sf) {
6766                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6767                                          tcg_shift, tcg_fpstatus);
6768                 } else {
6769                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6770                                          tcg_shift, tcg_fpstatus);
6771                 }
6772             } else {
6773                 if (!sf) {
6774                     gen_helper_vfp_tould(tcg_int, tcg_double,
6775                                          tcg_shift, tcg_fpstatus);
6776                 } else {
6777                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6778                                          tcg_shift, tcg_fpstatus);
6779                 }
6780             }
6781             if (!sf) {
6782                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6783             }
6784             break;
6785 
6786         case 0: /* float32 */
6787             tcg_single = read_fp_sreg(s, rn);
6788             if (sf) {
6789                 if (is_signed) {
6790                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6791                                          tcg_shift, tcg_fpstatus);
6792                 } else {
6793                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6794                                          tcg_shift, tcg_fpstatus);
6795                 }
6796             } else {
6797                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6798                 if (is_signed) {
6799                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6800                                          tcg_shift, tcg_fpstatus);
6801                 } else {
6802                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6803                                          tcg_shift, tcg_fpstatus);
6804                 }
6805                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6806             }
6807             break;
6808 
6809         case 3: /* float16 */
6810             tcg_single = read_fp_sreg(s, rn);
6811             if (sf) {
6812                 if (is_signed) {
6813                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6814                                          tcg_shift, tcg_fpstatus);
6815                 } else {
6816                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6817                                          tcg_shift, tcg_fpstatus);
6818                 }
6819             } else {
6820                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6821                 if (is_signed) {
6822                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6823                                          tcg_shift, tcg_fpstatus);
6824                 } else {
6825                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6826                                          tcg_shift, tcg_fpstatus);
6827                 }
6828                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6829             }
6830             break;
6831 
6832         default:
6833             g_assert_not_reached();
6834         }
6835 
6836         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6837     }
6838 }
6839 
6840 /* Floating point <-> fixed point conversions
6841  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6842  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6843  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6844  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6845  */
6846 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6847 {
6848     int rd = extract32(insn, 0, 5);
6849     int rn = extract32(insn, 5, 5);
6850     int scale = extract32(insn, 10, 6);
6851     int opcode = extract32(insn, 16, 3);
6852     int rmode = extract32(insn, 19, 2);
6853     int type = extract32(insn, 22, 2);
6854     bool sbit = extract32(insn, 29, 1);
6855     bool sf = extract32(insn, 31, 1);
6856     bool itof;
6857 
6858     if (sbit || (!sf && scale < 32)) {
6859         unallocated_encoding(s);
6860         return;
6861     }
6862 
6863     switch (type) {
6864     case 0: /* float32 */
6865     case 1: /* float64 */
6866         break;
6867     case 3: /* float16 */
6868         if (dc_isar_feature(aa64_fp16, s)) {
6869             break;
6870         }
6871         /* fallthru */
6872     default:
6873         unallocated_encoding(s);
6874         return;
6875     }
6876 
6877     switch ((rmode << 3) | opcode) {
6878     case 0x2: /* SCVTF */
6879     case 0x3: /* UCVTF */
6880         itof = true;
6881         break;
6882     case 0x18: /* FCVTZS */
6883     case 0x19: /* FCVTZU */
6884         itof = false;
6885         break;
6886     default:
6887         unallocated_encoding(s);
6888         return;
6889     }
6890 
6891     if (!fp_access_check(s)) {
6892         return;
6893     }
6894 
6895     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6896 }
6897 
6898 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6899 {
6900     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6901      * without conversion.
6902      */
6903 
6904     if (itof) {
6905         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6906         TCGv_i64 tmp;
6907 
6908         switch (type) {
6909         case 0:
6910             /* 32 bit */
6911             tmp = tcg_temp_new_i64();
6912             tcg_gen_ext32u_i64(tmp, tcg_rn);
6913             write_fp_dreg(s, rd, tmp);
6914             break;
6915         case 1:
6916             /* 64 bit */
6917             write_fp_dreg(s, rd, tcg_rn);
6918             break;
6919         case 2:
6920             /* 64 bit to top half. */
6921             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6922             clear_vec_high(s, true, rd);
6923             break;
6924         case 3:
6925             /* 16 bit */
6926             tmp = tcg_temp_new_i64();
6927             tcg_gen_ext16u_i64(tmp, tcg_rn);
6928             write_fp_dreg(s, rd, tmp);
6929             break;
6930         default:
6931             g_assert_not_reached();
6932         }
6933     } else {
6934         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6935 
6936         switch (type) {
6937         case 0:
6938             /* 32 bit */
6939             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6940             break;
6941         case 1:
6942             /* 64 bit */
6943             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6944             break;
6945         case 2:
6946             /* 64 bits from top half */
6947             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6948             break;
6949         case 3:
6950             /* 16 bit */
6951             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6952             break;
6953         default:
6954             g_assert_not_reached();
6955         }
6956     }
6957 }
6958 
6959 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6960 {
6961     TCGv_i64 t = read_fp_dreg(s, rn);
6962     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6963 
6964     gen_helper_fjcvtzs(t, t, fpstatus);
6965 
6966     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6967     tcg_gen_extrh_i64_i32(cpu_ZF, t);
6968     tcg_gen_movi_i32(cpu_CF, 0);
6969     tcg_gen_movi_i32(cpu_NF, 0);
6970     tcg_gen_movi_i32(cpu_VF, 0);
6971 }
6972 
6973 /* Floating point <-> integer conversions
6974  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6975  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6976  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6977  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6978  */
6979 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6980 {
6981     int rd = extract32(insn, 0, 5);
6982     int rn = extract32(insn, 5, 5);
6983     int opcode = extract32(insn, 16, 3);
6984     int rmode = extract32(insn, 19, 2);
6985     int type = extract32(insn, 22, 2);
6986     bool sbit = extract32(insn, 29, 1);
6987     bool sf = extract32(insn, 31, 1);
6988     bool itof = false;
6989 
6990     if (sbit) {
6991         goto do_unallocated;
6992     }
6993 
6994     switch (opcode) {
6995     case 2: /* SCVTF */
6996     case 3: /* UCVTF */
6997         itof = true;
6998         /* fallthru */
6999     case 4: /* FCVTAS */
7000     case 5: /* FCVTAU */
7001         if (rmode != 0) {
7002             goto do_unallocated;
7003         }
7004         /* fallthru */
7005     case 0: /* FCVT[NPMZ]S */
7006     case 1: /* FCVT[NPMZ]U */
7007         switch (type) {
7008         case 0: /* float32 */
7009         case 1: /* float64 */
7010             break;
7011         case 3: /* float16 */
7012             if (!dc_isar_feature(aa64_fp16, s)) {
7013                 goto do_unallocated;
7014             }
7015             break;
7016         default:
7017             goto do_unallocated;
7018         }
7019         if (!fp_access_check(s)) {
7020             return;
7021         }
7022         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7023         break;
7024 
7025     default:
7026         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7027         case 0b01100110: /* FMOV half <-> 32-bit int */
7028         case 0b01100111:
7029         case 0b11100110: /* FMOV half <-> 64-bit int */
7030         case 0b11100111:
7031             if (!dc_isar_feature(aa64_fp16, s)) {
7032                 goto do_unallocated;
7033             }
7034             /* fallthru */
7035         case 0b00000110: /* FMOV 32-bit */
7036         case 0b00000111:
7037         case 0b10100110: /* FMOV 64-bit */
7038         case 0b10100111:
7039         case 0b11001110: /* FMOV top half of 128-bit */
7040         case 0b11001111:
7041             if (!fp_access_check(s)) {
7042                 return;
7043             }
7044             itof = opcode & 1;
7045             handle_fmov(s, rd, rn, type, itof);
7046             break;
7047 
7048         case 0b00111110: /* FJCVTZS */
7049             if (!dc_isar_feature(aa64_jscvt, s)) {
7050                 goto do_unallocated;
7051             } else if (fp_access_check(s)) {
7052                 handle_fjcvtzs(s, rd, rn);
7053             }
7054             break;
7055 
7056         default:
7057         do_unallocated:
7058             unallocated_encoding(s);
7059             return;
7060         }
7061         break;
7062     }
7063 }
7064 
7065 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7066  *   31  30  29 28     25 24                          0
7067  * +---+---+---+---------+-----------------------------+
7068  * |   | 0 |   | 1 1 1 1 |                             |
7069  * +---+---+---+---------+-----------------------------+
7070  */
7071 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7072 {
7073     if (extract32(insn, 24, 1)) {
7074         /* Floating point data-processing (3 source) */
7075         disas_fp_3src(s, insn);
7076     } else if (extract32(insn, 21, 1) == 0) {
7077         /* Floating point to fixed point conversions */
7078         disas_fp_fixed_conv(s, insn);
7079     } else {
7080         switch (extract32(insn, 10, 2)) {
7081         case 1:
7082             /* Floating point conditional compare */
7083             disas_fp_ccomp(s, insn);
7084             break;
7085         case 2:
7086             /* Floating point data-processing (2 source) */
7087             disas_fp_2src(s, insn);
7088             break;
7089         case 3:
7090             /* Floating point conditional select */
7091             disas_fp_csel(s, insn);
7092             break;
7093         case 0:
7094             switch (ctz32(extract32(insn, 12, 4))) {
7095             case 0: /* [15:12] == xxx1 */
7096                 /* Floating point immediate */
7097                 disas_fp_imm(s, insn);
7098                 break;
7099             case 1: /* [15:12] == xx10 */
7100                 /* Floating point compare */
7101                 disas_fp_compare(s, insn);
7102                 break;
7103             case 2: /* [15:12] == x100 */
7104                 /* Floating point data-processing (1 source) */
7105                 disas_fp_1src(s, insn);
7106                 break;
7107             case 3: /* [15:12] == 1000 */
7108                 unallocated_encoding(s);
7109                 break;
7110             default: /* [15:12] == 0000 */
7111                 /* Floating point <-> integer conversions */
7112                 disas_fp_int_conv(s, insn);
7113                 break;
7114             }
7115             break;
7116         }
7117     }
7118 }
7119 
7120 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7121                      int pos)
7122 {
7123     /* Extract 64 bits from the middle of two concatenated 64 bit
7124      * vector register slices left:right. The extracted bits start
7125      * at 'pos' bits into the right (least significant) side.
7126      * We return the result in tcg_right, and guarantee not to
7127      * trash tcg_left.
7128      */
7129     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7130     assert(pos > 0 && pos < 64);
7131 
7132     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7133     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7134     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7135 }
7136 
7137 /* EXT
7138  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7139  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7140  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7141  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7142  */
7143 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7144 {
7145     int is_q = extract32(insn, 30, 1);
7146     int op2 = extract32(insn, 22, 2);
7147     int imm4 = extract32(insn, 11, 4);
7148     int rm = extract32(insn, 16, 5);
7149     int rn = extract32(insn, 5, 5);
7150     int rd = extract32(insn, 0, 5);
7151     int pos = imm4 << 3;
7152     TCGv_i64 tcg_resl, tcg_resh;
7153 
7154     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7155         unallocated_encoding(s);
7156         return;
7157     }
7158 
7159     if (!fp_access_check(s)) {
7160         return;
7161     }
7162 
7163     tcg_resh = tcg_temp_new_i64();
7164     tcg_resl = tcg_temp_new_i64();
7165 
7166     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7167      * either extracting 128 bits from a 128:128 concatenation, or
7168      * extracting 64 bits from a 64:64 concatenation.
7169      */
7170     if (!is_q) {
7171         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7172         if (pos != 0) {
7173             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7174             do_ext64(s, tcg_resh, tcg_resl, pos);
7175         }
7176     } else {
7177         TCGv_i64 tcg_hh;
7178         typedef struct {
7179             int reg;
7180             int elt;
7181         } EltPosns;
7182         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7183         EltPosns *elt = eltposns;
7184 
7185         if (pos >= 64) {
7186             elt++;
7187             pos -= 64;
7188         }
7189 
7190         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7191         elt++;
7192         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7193         elt++;
7194         if (pos != 0) {
7195             do_ext64(s, tcg_resh, tcg_resl, pos);
7196             tcg_hh = tcg_temp_new_i64();
7197             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7198             do_ext64(s, tcg_hh, tcg_resh, pos);
7199         }
7200     }
7201 
7202     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7203     if (is_q) {
7204         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7205     }
7206     clear_vec_high(s, is_q, rd);
7207 }
7208 
7209 /* TBL/TBX
7210  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7211  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7212  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7213  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7214  */
7215 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7216 {
7217     int op2 = extract32(insn, 22, 2);
7218     int is_q = extract32(insn, 30, 1);
7219     int rm = extract32(insn, 16, 5);
7220     int rn = extract32(insn, 5, 5);
7221     int rd = extract32(insn, 0, 5);
7222     int is_tbx = extract32(insn, 12, 1);
7223     int len = (extract32(insn, 13, 2) + 1) * 16;
7224 
7225     if (op2 != 0) {
7226         unallocated_encoding(s);
7227         return;
7228     }
7229 
7230     if (!fp_access_check(s)) {
7231         return;
7232     }
7233 
7234     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7235                        vec_full_reg_offset(s, rm), cpu_env,
7236                        is_q ? 16 : 8, vec_full_reg_size(s),
7237                        (len << 6) | (is_tbx << 5) | rn,
7238                        gen_helper_simd_tblx);
7239 }
7240 
7241 /* ZIP/UZP/TRN
7242  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7243  * +---+---+-------------+------+---+------+---+------------------+------+
7244  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7245  * +---+---+-------------+------+---+------+---+------------------+------+
7246  */
7247 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7248 {
7249     int rd = extract32(insn, 0, 5);
7250     int rn = extract32(insn, 5, 5);
7251     int rm = extract32(insn, 16, 5);
7252     int size = extract32(insn, 22, 2);
7253     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7254      * bit 2 indicates 1 vs 2 variant of the insn.
7255      */
7256     int opcode = extract32(insn, 12, 2);
7257     bool part = extract32(insn, 14, 1);
7258     bool is_q = extract32(insn, 30, 1);
7259     int esize = 8 << size;
7260     int i;
7261     int datasize = is_q ? 128 : 64;
7262     int elements = datasize / esize;
7263     TCGv_i64 tcg_res[2], tcg_ele;
7264 
7265     if (opcode == 0 || (size == 3 && !is_q)) {
7266         unallocated_encoding(s);
7267         return;
7268     }
7269 
7270     if (!fp_access_check(s)) {
7271         return;
7272     }
7273 
7274     tcg_res[0] = tcg_temp_new_i64();
7275     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7276     tcg_ele = tcg_temp_new_i64();
7277 
7278     for (i = 0; i < elements; i++) {
7279         int o, w;
7280 
7281         switch (opcode) {
7282         case 1: /* UZP1/2 */
7283         {
7284             int midpoint = elements / 2;
7285             if (i < midpoint) {
7286                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7287             } else {
7288                 read_vec_element(s, tcg_ele, rm,
7289                                  2 * (i - midpoint) + part, size);
7290             }
7291             break;
7292         }
7293         case 2: /* TRN1/2 */
7294             if (i & 1) {
7295                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7296             } else {
7297                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7298             }
7299             break;
7300         case 3: /* ZIP1/2 */
7301         {
7302             int base = part * elements / 2;
7303             if (i & 1) {
7304                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7305             } else {
7306                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7307             }
7308             break;
7309         }
7310         default:
7311             g_assert_not_reached();
7312         }
7313 
7314         w = (i * esize) / 64;
7315         o = (i * esize) % 64;
7316         if (o == 0) {
7317             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7318         } else {
7319             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7320             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7321         }
7322     }
7323 
7324     for (i = 0; i <= is_q; ++i) {
7325         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7326     }
7327     clear_vec_high(s, is_q, rd);
7328 }
7329 
7330 /*
7331  * do_reduction_op helper
7332  *
7333  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7334  * important for correct NaN propagation that we do these
7335  * operations in exactly the order specified by the pseudocode.
7336  *
7337  * This is a recursive function, TCG temps should be freed by the
7338  * calling function once it is done with the values.
7339  */
7340 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7341                                 int esize, int size, int vmap, TCGv_ptr fpst)
7342 {
7343     if (esize == size) {
7344         int element;
7345         MemOp msize = esize == 16 ? MO_16 : MO_32;
7346         TCGv_i32 tcg_elem;
7347 
7348         /* We should have one register left here */
7349         assert(ctpop8(vmap) == 1);
7350         element = ctz32(vmap);
7351         assert(element < 8);
7352 
7353         tcg_elem = tcg_temp_new_i32();
7354         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7355         return tcg_elem;
7356     } else {
7357         int bits = size / 2;
7358         int shift = ctpop8(vmap) / 2;
7359         int vmap_lo = (vmap >> shift) & vmap;
7360         int vmap_hi = (vmap & ~vmap_lo);
7361         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7362 
7363         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7364         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7365         tcg_res = tcg_temp_new_i32();
7366 
7367         switch (fpopcode) {
7368         case 0x0c: /* fmaxnmv half-precision */
7369             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7370             break;
7371         case 0x0f: /* fmaxv half-precision */
7372             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7373             break;
7374         case 0x1c: /* fminnmv half-precision */
7375             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7376             break;
7377         case 0x1f: /* fminv half-precision */
7378             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7379             break;
7380         case 0x2c: /* fmaxnmv */
7381             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7382             break;
7383         case 0x2f: /* fmaxv */
7384             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7385             break;
7386         case 0x3c: /* fminnmv */
7387             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7388             break;
7389         case 0x3f: /* fminv */
7390             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7391             break;
7392         default:
7393             g_assert_not_reached();
7394         }
7395         return tcg_res;
7396     }
7397 }
7398 
7399 /* AdvSIMD across lanes
7400  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7401  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7402  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7403  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7404  */
7405 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7406 {
7407     int rd = extract32(insn, 0, 5);
7408     int rn = extract32(insn, 5, 5);
7409     int size = extract32(insn, 22, 2);
7410     int opcode = extract32(insn, 12, 5);
7411     bool is_q = extract32(insn, 30, 1);
7412     bool is_u = extract32(insn, 29, 1);
7413     bool is_fp = false;
7414     bool is_min = false;
7415     int esize;
7416     int elements;
7417     int i;
7418     TCGv_i64 tcg_res, tcg_elt;
7419 
7420     switch (opcode) {
7421     case 0x1b: /* ADDV */
7422         if (is_u) {
7423             unallocated_encoding(s);
7424             return;
7425         }
7426         /* fall through */
7427     case 0x3: /* SADDLV, UADDLV */
7428     case 0xa: /* SMAXV, UMAXV */
7429     case 0x1a: /* SMINV, UMINV */
7430         if (size == 3 || (size == 2 && !is_q)) {
7431             unallocated_encoding(s);
7432             return;
7433         }
7434         break;
7435     case 0xc: /* FMAXNMV, FMINNMV */
7436     case 0xf: /* FMAXV, FMINV */
7437         /* Bit 1 of size field encodes min vs max and the actual size
7438          * depends on the encoding of the U bit. If not set (and FP16
7439          * enabled) then we do half-precision float instead of single
7440          * precision.
7441          */
7442         is_min = extract32(size, 1, 1);
7443         is_fp = true;
7444         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7445             size = 1;
7446         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7447             unallocated_encoding(s);
7448             return;
7449         } else {
7450             size = 2;
7451         }
7452         break;
7453     default:
7454         unallocated_encoding(s);
7455         return;
7456     }
7457 
7458     if (!fp_access_check(s)) {
7459         return;
7460     }
7461 
7462     esize = 8 << size;
7463     elements = (is_q ? 128 : 64) / esize;
7464 
7465     tcg_res = tcg_temp_new_i64();
7466     tcg_elt = tcg_temp_new_i64();
7467 
7468     /* These instructions operate across all lanes of a vector
7469      * to produce a single result. We can guarantee that a 64
7470      * bit intermediate is sufficient:
7471      *  + for [US]ADDLV the maximum element size is 32 bits, and
7472      *    the result type is 64 bits
7473      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7474      *    same as the element size, which is 32 bits at most
7475      * For the integer operations we can choose to work at 64
7476      * or 32 bits and truncate at the end; for simplicity
7477      * we use 64 bits always. The floating point
7478      * ops do require 32 bit intermediates, though.
7479      */
7480     if (!is_fp) {
7481         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7482 
7483         for (i = 1; i < elements; i++) {
7484             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7485 
7486             switch (opcode) {
7487             case 0x03: /* SADDLV / UADDLV */
7488             case 0x1b: /* ADDV */
7489                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7490                 break;
7491             case 0x0a: /* SMAXV / UMAXV */
7492                 if (is_u) {
7493                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7494                 } else {
7495                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7496                 }
7497                 break;
7498             case 0x1a: /* SMINV / UMINV */
7499                 if (is_u) {
7500                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7501                 } else {
7502                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7503                 }
7504                 break;
7505             default:
7506                 g_assert_not_reached();
7507             }
7508 
7509         }
7510     } else {
7511         /* Floating point vector reduction ops which work across 32
7512          * bit (single) or 16 bit (half-precision) intermediates.
7513          * Note that correct NaN propagation requires that we do these
7514          * operations in exactly the order specified by the pseudocode.
7515          */
7516         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7517         int fpopcode = opcode | is_min << 4 | is_u << 5;
7518         int vmap = (1 << elements) - 1;
7519         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7520                                              (is_q ? 128 : 64), vmap, fpst);
7521         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7522     }
7523 
7524     /* Now truncate the result to the width required for the final output */
7525     if (opcode == 0x03) {
7526         /* SADDLV, UADDLV: result is 2*esize */
7527         size++;
7528     }
7529 
7530     switch (size) {
7531     case 0:
7532         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7533         break;
7534     case 1:
7535         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7536         break;
7537     case 2:
7538         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7539         break;
7540     case 3:
7541         break;
7542     default:
7543         g_assert_not_reached();
7544     }
7545 
7546     write_fp_dreg(s, rd, tcg_res);
7547 }
7548 
7549 /* DUP (Element, Vector)
7550  *
7551  *  31  30   29              21 20    16 15        10  9    5 4    0
7552  * +---+---+-------------------+--------+-------------+------+------+
7553  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7554  * +---+---+-------------------+--------+-------------+------+------+
7555  *
7556  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7557  */
7558 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7559                              int imm5)
7560 {
7561     int size = ctz32(imm5);
7562     int index;
7563 
7564     if (size > 3 || (size == 3 && !is_q)) {
7565         unallocated_encoding(s);
7566         return;
7567     }
7568 
7569     if (!fp_access_check(s)) {
7570         return;
7571     }
7572 
7573     index = imm5 >> (size + 1);
7574     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7575                          vec_reg_offset(s, rn, index, size),
7576                          is_q ? 16 : 8, vec_full_reg_size(s));
7577 }
7578 
7579 /* DUP (element, scalar)
7580  *  31                   21 20    16 15        10  9    5 4    0
7581  * +-----------------------+--------+-------------+------+------+
7582  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7583  * +-----------------------+--------+-------------+------+------+
7584  */
7585 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7586                               int imm5)
7587 {
7588     int size = ctz32(imm5);
7589     int index;
7590     TCGv_i64 tmp;
7591 
7592     if (size > 3) {
7593         unallocated_encoding(s);
7594         return;
7595     }
7596 
7597     if (!fp_access_check(s)) {
7598         return;
7599     }
7600 
7601     index = imm5 >> (size + 1);
7602 
7603     /* This instruction just extracts the specified element and
7604      * zero-extends it into the bottom of the destination register.
7605      */
7606     tmp = tcg_temp_new_i64();
7607     read_vec_element(s, tmp, rn, index, size);
7608     write_fp_dreg(s, rd, tmp);
7609 }
7610 
7611 /* DUP (General)
7612  *
7613  *  31  30   29              21 20    16 15        10  9    5 4    0
7614  * +---+---+-------------------+--------+-------------+------+------+
7615  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7616  * +---+---+-------------------+--------+-------------+------+------+
7617  *
7618  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7619  */
7620 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7621                              int imm5)
7622 {
7623     int size = ctz32(imm5);
7624     uint32_t dofs, oprsz, maxsz;
7625 
7626     if (size > 3 || ((size == 3) && !is_q)) {
7627         unallocated_encoding(s);
7628         return;
7629     }
7630 
7631     if (!fp_access_check(s)) {
7632         return;
7633     }
7634 
7635     dofs = vec_full_reg_offset(s, rd);
7636     oprsz = is_q ? 16 : 8;
7637     maxsz = vec_full_reg_size(s);
7638 
7639     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7640 }
7641 
7642 /* INS (Element)
7643  *
7644  *  31                   21 20    16 15  14    11  10 9    5 4    0
7645  * +-----------------------+--------+------------+---+------+------+
7646  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7647  * +-----------------------+--------+------------+---+------+------+
7648  *
7649  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7650  * index: encoded in imm5<4:size+1>
7651  */
7652 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7653                              int imm4, int imm5)
7654 {
7655     int size = ctz32(imm5);
7656     int src_index, dst_index;
7657     TCGv_i64 tmp;
7658 
7659     if (size > 3) {
7660         unallocated_encoding(s);
7661         return;
7662     }
7663 
7664     if (!fp_access_check(s)) {
7665         return;
7666     }
7667 
7668     dst_index = extract32(imm5, 1+size, 5);
7669     src_index = extract32(imm4, size, 4);
7670 
7671     tmp = tcg_temp_new_i64();
7672 
7673     read_vec_element(s, tmp, rn, src_index, size);
7674     write_vec_element(s, tmp, rd, dst_index, size);
7675 
7676     /* INS is considered a 128-bit write for SVE. */
7677     clear_vec_high(s, true, rd);
7678 }
7679 
7680 
7681 /* INS (General)
7682  *
7683  *  31                   21 20    16 15        10  9    5 4    0
7684  * +-----------------------+--------+-------------+------+------+
7685  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7686  * +-----------------------+--------+-------------+------+------+
7687  *
7688  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7689  * index: encoded in imm5<4:size+1>
7690  */
7691 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7692 {
7693     int size = ctz32(imm5);
7694     int idx;
7695 
7696     if (size > 3) {
7697         unallocated_encoding(s);
7698         return;
7699     }
7700 
7701     if (!fp_access_check(s)) {
7702         return;
7703     }
7704 
7705     idx = extract32(imm5, 1 + size, 4 - size);
7706     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7707 
7708     /* INS is considered a 128-bit write for SVE. */
7709     clear_vec_high(s, true, rd);
7710 }
7711 
7712 /*
7713  * UMOV (General)
7714  * SMOV (General)
7715  *
7716  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7717  * +---+---+-------------------+--------+-------------+------+------+
7718  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7719  * +---+---+-------------------+--------+-------------+------+------+
7720  *
7721  * U: unsigned when set
7722  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7723  */
7724 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7725                                   int rn, int rd, int imm5)
7726 {
7727     int size = ctz32(imm5);
7728     int element;
7729     TCGv_i64 tcg_rd;
7730 
7731     /* Check for UnallocatedEncodings */
7732     if (is_signed) {
7733         if (size > 2 || (size == 2 && !is_q)) {
7734             unallocated_encoding(s);
7735             return;
7736         }
7737     } else {
7738         if (size > 3
7739             || (size < 3 && is_q)
7740             || (size == 3 && !is_q)) {
7741             unallocated_encoding(s);
7742             return;
7743         }
7744     }
7745 
7746     if (!fp_access_check(s)) {
7747         return;
7748     }
7749 
7750     element = extract32(imm5, 1+size, 4);
7751 
7752     tcg_rd = cpu_reg(s, rd);
7753     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7754     if (is_signed && !is_q) {
7755         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7756     }
7757 }
7758 
7759 /* AdvSIMD copy
7760  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7761  * +---+---+----+-----------------+------+---+------+---+------+------+
7762  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7763  * +---+---+----+-----------------+------+---+------+---+------+------+
7764  */
7765 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7766 {
7767     int rd = extract32(insn, 0, 5);
7768     int rn = extract32(insn, 5, 5);
7769     int imm4 = extract32(insn, 11, 4);
7770     int op = extract32(insn, 29, 1);
7771     int is_q = extract32(insn, 30, 1);
7772     int imm5 = extract32(insn, 16, 5);
7773 
7774     if (op) {
7775         if (is_q) {
7776             /* INS (element) */
7777             handle_simd_inse(s, rd, rn, imm4, imm5);
7778         } else {
7779             unallocated_encoding(s);
7780         }
7781     } else {
7782         switch (imm4) {
7783         case 0:
7784             /* DUP (element - vector) */
7785             handle_simd_dupe(s, is_q, rd, rn, imm5);
7786             break;
7787         case 1:
7788             /* DUP (general) */
7789             handle_simd_dupg(s, is_q, rd, rn, imm5);
7790             break;
7791         case 3:
7792             if (is_q) {
7793                 /* INS (general) */
7794                 handle_simd_insg(s, rd, rn, imm5);
7795             } else {
7796                 unallocated_encoding(s);
7797             }
7798             break;
7799         case 5:
7800         case 7:
7801             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7802             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7803             break;
7804         default:
7805             unallocated_encoding(s);
7806             break;
7807         }
7808     }
7809 }
7810 
7811 /* AdvSIMD modified immediate
7812  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7813  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7814  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7815  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7816  *
7817  * There are a number of operations that can be carried out here:
7818  *   MOVI - move (shifted) imm into register
7819  *   MVNI - move inverted (shifted) imm into register
7820  *   ORR  - bitwise OR of (shifted) imm with register
7821  *   BIC  - bitwise clear of (shifted) imm with register
7822  * With ARMv8.2 we also have:
7823  *   FMOV half-precision
7824  */
7825 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7826 {
7827     int rd = extract32(insn, 0, 5);
7828     int cmode = extract32(insn, 12, 4);
7829     int o2 = extract32(insn, 11, 1);
7830     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7831     bool is_neg = extract32(insn, 29, 1);
7832     bool is_q = extract32(insn, 30, 1);
7833     uint64_t imm = 0;
7834 
7835     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7836         /* Check for FMOV (vector, immediate) - half-precision */
7837         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7838             unallocated_encoding(s);
7839             return;
7840         }
7841     }
7842 
7843     if (!fp_access_check(s)) {
7844         return;
7845     }
7846 
7847     if (cmode == 15 && o2 && !is_neg) {
7848         /* FMOV (vector, immediate) - half-precision */
7849         imm = vfp_expand_imm(MO_16, abcdefgh);
7850         /* now duplicate across the lanes */
7851         imm = dup_const(MO_16, imm);
7852     } else {
7853         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7854     }
7855 
7856     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7857         /* MOVI or MVNI, with MVNI negation handled above.  */
7858         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7859                              vec_full_reg_size(s), imm);
7860     } else {
7861         /* ORR or BIC, with BIC negation to AND handled above.  */
7862         if (is_neg) {
7863             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7864         } else {
7865             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7866         }
7867     }
7868 }
7869 
7870 /* AdvSIMD scalar copy
7871  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7872  * +-----+----+-----------------+------+---+------+---+------+------+
7873  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7874  * +-----+----+-----------------+------+---+------+---+------+------+
7875  */
7876 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7877 {
7878     int rd = extract32(insn, 0, 5);
7879     int rn = extract32(insn, 5, 5);
7880     int imm4 = extract32(insn, 11, 4);
7881     int imm5 = extract32(insn, 16, 5);
7882     int op = extract32(insn, 29, 1);
7883 
7884     if (op != 0 || imm4 != 0) {
7885         unallocated_encoding(s);
7886         return;
7887     }
7888 
7889     /* DUP (element, scalar) */
7890     handle_simd_dupes(s, rd, rn, imm5);
7891 }
7892 
7893 /* AdvSIMD scalar pairwise
7894  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7895  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7896  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7897  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7898  */
7899 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7900 {
7901     int u = extract32(insn, 29, 1);
7902     int size = extract32(insn, 22, 2);
7903     int opcode = extract32(insn, 12, 5);
7904     int rn = extract32(insn, 5, 5);
7905     int rd = extract32(insn, 0, 5);
7906     TCGv_ptr fpst;
7907 
7908     /* For some ops (the FP ones), size[1] is part of the encoding.
7909      * For ADDP strictly it is not but size[1] is always 1 for valid
7910      * encodings.
7911      */
7912     opcode |= (extract32(size, 1, 1) << 5);
7913 
7914     switch (opcode) {
7915     case 0x3b: /* ADDP */
7916         if (u || size != 3) {
7917             unallocated_encoding(s);
7918             return;
7919         }
7920         if (!fp_access_check(s)) {
7921             return;
7922         }
7923 
7924         fpst = NULL;
7925         break;
7926     case 0xc: /* FMAXNMP */
7927     case 0xd: /* FADDP */
7928     case 0xf: /* FMAXP */
7929     case 0x2c: /* FMINNMP */
7930     case 0x2f: /* FMINP */
7931         /* FP op, size[0] is 32 or 64 bit*/
7932         if (!u) {
7933             if (!dc_isar_feature(aa64_fp16, s)) {
7934                 unallocated_encoding(s);
7935                 return;
7936             } else {
7937                 size = MO_16;
7938             }
7939         } else {
7940             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7941         }
7942 
7943         if (!fp_access_check(s)) {
7944             return;
7945         }
7946 
7947         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7948         break;
7949     default:
7950         unallocated_encoding(s);
7951         return;
7952     }
7953 
7954     if (size == MO_64) {
7955         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7956         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7957         TCGv_i64 tcg_res = tcg_temp_new_i64();
7958 
7959         read_vec_element(s, tcg_op1, rn, 0, MO_64);
7960         read_vec_element(s, tcg_op2, rn, 1, MO_64);
7961 
7962         switch (opcode) {
7963         case 0x3b: /* ADDP */
7964             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7965             break;
7966         case 0xc: /* FMAXNMP */
7967             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7968             break;
7969         case 0xd: /* FADDP */
7970             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7971             break;
7972         case 0xf: /* FMAXP */
7973             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7974             break;
7975         case 0x2c: /* FMINNMP */
7976             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7977             break;
7978         case 0x2f: /* FMINP */
7979             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7980             break;
7981         default:
7982             g_assert_not_reached();
7983         }
7984 
7985         write_fp_dreg(s, rd, tcg_res);
7986     } else {
7987         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7988         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7989         TCGv_i32 tcg_res = tcg_temp_new_i32();
7990 
7991         read_vec_element_i32(s, tcg_op1, rn, 0, size);
7992         read_vec_element_i32(s, tcg_op2, rn, 1, size);
7993 
7994         if (size == MO_16) {
7995             switch (opcode) {
7996             case 0xc: /* FMAXNMP */
7997                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7998                 break;
7999             case 0xd: /* FADDP */
8000                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8001                 break;
8002             case 0xf: /* FMAXP */
8003                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8004                 break;
8005             case 0x2c: /* FMINNMP */
8006                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8007                 break;
8008             case 0x2f: /* FMINP */
8009                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8010                 break;
8011             default:
8012                 g_assert_not_reached();
8013             }
8014         } else {
8015             switch (opcode) {
8016             case 0xc: /* FMAXNMP */
8017                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8018                 break;
8019             case 0xd: /* FADDP */
8020                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8021                 break;
8022             case 0xf: /* FMAXP */
8023                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8024                 break;
8025             case 0x2c: /* FMINNMP */
8026                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8027                 break;
8028             case 0x2f: /* FMINP */
8029                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8030                 break;
8031             default:
8032                 g_assert_not_reached();
8033             }
8034         }
8035 
8036         write_fp_sreg(s, rd, tcg_res);
8037     }
8038 }
8039 
8040 /*
8041  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8042  *
8043  * This code is handles the common shifting code and is used by both
8044  * the vector and scalar code.
8045  */
8046 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8047                                     TCGv_i64 tcg_rnd, bool accumulate,
8048                                     bool is_u, int size, int shift)
8049 {
8050     bool extended_result = false;
8051     bool round = tcg_rnd != NULL;
8052     int ext_lshift = 0;
8053     TCGv_i64 tcg_src_hi;
8054 
8055     if (round && size == 3) {
8056         extended_result = true;
8057         ext_lshift = 64 - shift;
8058         tcg_src_hi = tcg_temp_new_i64();
8059     } else if (shift == 64) {
8060         if (!accumulate && is_u) {
8061             /* result is zero */
8062             tcg_gen_movi_i64(tcg_res, 0);
8063             return;
8064         }
8065     }
8066 
8067     /* Deal with the rounding step */
8068     if (round) {
8069         if (extended_result) {
8070             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8071             if (!is_u) {
8072                 /* take care of sign extending tcg_res */
8073                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8074                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8075                                  tcg_src, tcg_src_hi,
8076                                  tcg_rnd, tcg_zero);
8077             } else {
8078                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8079                                  tcg_src, tcg_zero,
8080                                  tcg_rnd, tcg_zero);
8081             }
8082         } else {
8083             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8084         }
8085     }
8086 
8087     /* Now do the shift right */
8088     if (round && extended_result) {
8089         /* extended case, >64 bit precision required */
8090         if (ext_lshift == 0) {
8091             /* special case, only high bits matter */
8092             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8093         } else {
8094             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8095             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8096             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8097         }
8098     } else {
8099         if (is_u) {
8100             if (shift == 64) {
8101                 /* essentially shifting in 64 zeros */
8102                 tcg_gen_movi_i64(tcg_src, 0);
8103             } else {
8104                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8105             }
8106         } else {
8107             if (shift == 64) {
8108                 /* effectively extending the sign-bit */
8109                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8110             } else {
8111                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8112             }
8113         }
8114     }
8115 
8116     if (accumulate) {
8117         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8118     } else {
8119         tcg_gen_mov_i64(tcg_res, tcg_src);
8120     }
8121 }
8122 
8123 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8124 static void handle_scalar_simd_shri(DisasContext *s,
8125                                     bool is_u, int immh, int immb,
8126                                     int opcode, int rn, int rd)
8127 {
8128     const int size = 3;
8129     int immhb = immh << 3 | immb;
8130     int shift = 2 * (8 << size) - immhb;
8131     bool accumulate = false;
8132     bool round = false;
8133     bool insert = false;
8134     TCGv_i64 tcg_rn;
8135     TCGv_i64 tcg_rd;
8136     TCGv_i64 tcg_round;
8137 
8138     if (!extract32(immh, 3, 1)) {
8139         unallocated_encoding(s);
8140         return;
8141     }
8142 
8143     if (!fp_access_check(s)) {
8144         return;
8145     }
8146 
8147     switch (opcode) {
8148     case 0x02: /* SSRA / USRA (accumulate) */
8149         accumulate = true;
8150         break;
8151     case 0x04: /* SRSHR / URSHR (rounding) */
8152         round = true;
8153         break;
8154     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8155         accumulate = round = true;
8156         break;
8157     case 0x08: /* SRI */
8158         insert = true;
8159         break;
8160     }
8161 
8162     if (round) {
8163         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8164     } else {
8165         tcg_round = NULL;
8166     }
8167 
8168     tcg_rn = read_fp_dreg(s, rn);
8169     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8170 
8171     if (insert) {
8172         /* shift count same as element size is valid but does nothing;
8173          * special case to avoid potential shift by 64.
8174          */
8175         int esize = 8 << size;
8176         if (shift != esize) {
8177             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8178             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8179         }
8180     } else {
8181         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8182                                 accumulate, is_u, size, shift);
8183     }
8184 
8185     write_fp_dreg(s, rd, tcg_rd);
8186 }
8187 
8188 /* SHL/SLI - Scalar shift left */
8189 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8190                                     int immh, int immb, int opcode,
8191                                     int rn, int rd)
8192 {
8193     int size = 32 - clz32(immh) - 1;
8194     int immhb = immh << 3 | immb;
8195     int shift = immhb - (8 << size);
8196     TCGv_i64 tcg_rn;
8197     TCGv_i64 tcg_rd;
8198 
8199     if (!extract32(immh, 3, 1)) {
8200         unallocated_encoding(s);
8201         return;
8202     }
8203 
8204     if (!fp_access_check(s)) {
8205         return;
8206     }
8207 
8208     tcg_rn = read_fp_dreg(s, rn);
8209     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8210 
8211     if (insert) {
8212         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8213     } else {
8214         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8215     }
8216 
8217     write_fp_dreg(s, rd, tcg_rd);
8218 }
8219 
8220 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8221  * (signed/unsigned) narrowing */
8222 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8223                                    bool is_u_shift, bool is_u_narrow,
8224                                    int immh, int immb, int opcode,
8225                                    int rn, int rd)
8226 {
8227     int immhb = immh << 3 | immb;
8228     int size = 32 - clz32(immh) - 1;
8229     int esize = 8 << size;
8230     int shift = (2 * esize) - immhb;
8231     int elements = is_scalar ? 1 : (64 / esize);
8232     bool round = extract32(opcode, 0, 1);
8233     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8234     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8235     TCGv_i32 tcg_rd_narrowed;
8236     TCGv_i64 tcg_final;
8237 
8238     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8239         { gen_helper_neon_narrow_sat_s8,
8240           gen_helper_neon_unarrow_sat8 },
8241         { gen_helper_neon_narrow_sat_s16,
8242           gen_helper_neon_unarrow_sat16 },
8243         { gen_helper_neon_narrow_sat_s32,
8244           gen_helper_neon_unarrow_sat32 },
8245         { NULL, NULL },
8246     };
8247     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8248         gen_helper_neon_narrow_sat_u8,
8249         gen_helper_neon_narrow_sat_u16,
8250         gen_helper_neon_narrow_sat_u32,
8251         NULL
8252     };
8253     NeonGenNarrowEnvFn *narrowfn;
8254 
8255     int i;
8256 
8257     assert(size < 4);
8258 
8259     if (extract32(immh, 3, 1)) {
8260         unallocated_encoding(s);
8261         return;
8262     }
8263 
8264     if (!fp_access_check(s)) {
8265         return;
8266     }
8267 
8268     if (is_u_shift) {
8269         narrowfn = unsigned_narrow_fns[size];
8270     } else {
8271         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8272     }
8273 
8274     tcg_rn = tcg_temp_new_i64();
8275     tcg_rd = tcg_temp_new_i64();
8276     tcg_rd_narrowed = tcg_temp_new_i32();
8277     tcg_final = tcg_temp_new_i64();
8278 
8279     if (round) {
8280         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8281     } else {
8282         tcg_round = NULL;
8283     }
8284 
8285     for (i = 0; i < elements; i++) {
8286         read_vec_element(s, tcg_rn, rn, i, ldop);
8287         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8288                                 false, is_u_shift, size+1, shift);
8289         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8290         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8291         if (i == 0) {
8292             tcg_gen_mov_i64(tcg_final, tcg_rd);
8293         } else {
8294             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8295         }
8296     }
8297 
8298     if (!is_q) {
8299         write_vec_element(s, tcg_final, rd, 0, MO_64);
8300     } else {
8301         write_vec_element(s, tcg_final, rd, 1, MO_64);
8302     }
8303     clear_vec_high(s, is_q, rd);
8304 }
8305 
8306 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8307 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8308                              bool src_unsigned, bool dst_unsigned,
8309                              int immh, int immb, int rn, int rd)
8310 {
8311     int immhb = immh << 3 | immb;
8312     int size = 32 - clz32(immh) - 1;
8313     int shift = immhb - (8 << size);
8314     int pass;
8315 
8316     assert(immh != 0);
8317     assert(!(scalar && is_q));
8318 
8319     if (!scalar) {
8320         if (!is_q && extract32(immh, 3, 1)) {
8321             unallocated_encoding(s);
8322             return;
8323         }
8324 
8325         /* Since we use the variable-shift helpers we must
8326          * replicate the shift count into each element of
8327          * the tcg_shift value.
8328          */
8329         switch (size) {
8330         case 0:
8331             shift |= shift << 8;
8332             /* fall through */
8333         case 1:
8334             shift |= shift << 16;
8335             break;
8336         case 2:
8337         case 3:
8338             break;
8339         default:
8340             g_assert_not_reached();
8341         }
8342     }
8343 
8344     if (!fp_access_check(s)) {
8345         return;
8346     }
8347 
8348     if (size == 3) {
8349         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8350         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8351             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8352             { NULL, gen_helper_neon_qshl_u64 },
8353         };
8354         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8355         int maxpass = is_q ? 2 : 1;
8356 
8357         for (pass = 0; pass < maxpass; pass++) {
8358             TCGv_i64 tcg_op = tcg_temp_new_i64();
8359 
8360             read_vec_element(s, tcg_op, rn, pass, MO_64);
8361             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8362             write_vec_element(s, tcg_op, rd, pass, MO_64);
8363         }
8364         clear_vec_high(s, is_q, rd);
8365     } else {
8366         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8367         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8368             {
8369                 { gen_helper_neon_qshl_s8,
8370                   gen_helper_neon_qshl_s16,
8371                   gen_helper_neon_qshl_s32 },
8372                 { gen_helper_neon_qshlu_s8,
8373                   gen_helper_neon_qshlu_s16,
8374                   gen_helper_neon_qshlu_s32 }
8375             }, {
8376                 { NULL, NULL, NULL },
8377                 { gen_helper_neon_qshl_u8,
8378                   gen_helper_neon_qshl_u16,
8379                   gen_helper_neon_qshl_u32 }
8380             }
8381         };
8382         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8383         MemOp memop = scalar ? size : MO_32;
8384         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8385 
8386         for (pass = 0; pass < maxpass; pass++) {
8387             TCGv_i32 tcg_op = tcg_temp_new_i32();
8388 
8389             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8390             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8391             if (scalar) {
8392                 switch (size) {
8393                 case 0:
8394                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8395                     break;
8396                 case 1:
8397                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8398                     break;
8399                 case 2:
8400                     break;
8401                 default:
8402                     g_assert_not_reached();
8403                 }
8404                 write_fp_sreg(s, rd, tcg_op);
8405             } else {
8406                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8407             }
8408         }
8409 
8410         if (!scalar) {
8411             clear_vec_high(s, is_q, rd);
8412         }
8413     }
8414 }
8415 
8416 /* Common vector code for handling integer to FP conversion */
8417 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8418                                    int elements, int is_signed,
8419                                    int fracbits, int size)
8420 {
8421     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8422     TCGv_i32 tcg_shift = NULL;
8423 
8424     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8425     int pass;
8426 
8427     if (fracbits || size == MO_64) {
8428         tcg_shift = tcg_constant_i32(fracbits);
8429     }
8430 
8431     if (size == MO_64) {
8432         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8433         TCGv_i64 tcg_double = tcg_temp_new_i64();
8434 
8435         for (pass = 0; pass < elements; pass++) {
8436             read_vec_element(s, tcg_int64, rn, pass, mop);
8437 
8438             if (is_signed) {
8439                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8440                                      tcg_shift, tcg_fpst);
8441             } else {
8442                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8443                                      tcg_shift, tcg_fpst);
8444             }
8445             if (elements == 1) {
8446                 write_fp_dreg(s, rd, tcg_double);
8447             } else {
8448                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8449             }
8450         }
8451     } else {
8452         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8453         TCGv_i32 tcg_float = tcg_temp_new_i32();
8454 
8455         for (pass = 0; pass < elements; pass++) {
8456             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8457 
8458             switch (size) {
8459             case MO_32:
8460                 if (fracbits) {
8461                     if (is_signed) {
8462                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8463                                              tcg_shift, tcg_fpst);
8464                     } else {
8465                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8466                                              tcg_shift, tcg_fpst);
8467                     }
8468                 } else {
8469                     if (is_signed) {
8470                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8471                     } else {
8472                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8473                     }
8474                 }
8475                 break;
8476             case MO_16:
8477                 if (fracbits) {
8478                     if (is_signed) {
8479                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8480                                              tcg_shift, tcg_fpst);
8481                     } else {
8482                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8483                                              tcg_shift, tcg_fpst);
8484                     }
8485                 } else {
8486                     if (is_signed) {
8487                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8488                     } else {
8489                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8490                     }
8491                 }
8492                 break;
8493             default:
8494                 g_assert_not_reached();
8495             }
8496 
8497             if (elements == 1) {
8498                 write_fp_sreg(s, rd, tcg_float);
8499             } else {
8500                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8501             }
8502         }
8503     }
8504 
8505     clear_vec_high(s, elements << size == 16, rd);
8506 }
8507 
8508 /* UCVTF/SCVTF - Integer to FP conversion */
8509 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8510                                          bool is_q, bool is_u,
8511                                          int immh, int immb, int opcode,
8512                                          int rn, int rd)
8513 {
8514     int size, elements, fracbits;
8515     int immhb = immh << 3 | immb;
8516 
8517     if (immh & 8) {
8518         size = MO_64;
8519         if (!is_scalar && !is_q) {
8520             unallocated_encoding(s);
8521             return;
8522         }
8523     } else if (immh & 4) {
8524         size = MO_32;
8525     } else if (immh & 2) {
8526         size = MO_16;
8527         if (!dc_isar_feature(aa64_fp16, s)) {
8528             unallocated_encoding(s);
8529             return;
8530         }
8531     } else {
8532         /* immh == 0 would be a failure of the decode logic */
8533         g_assert(immh == 1);
8534         unallocated_encoding(s);
8535         return;
8536     }
8537 
8538     if (is_scalar) {
8539         elements = 1;
8540     } else {
8541         elements = (8 << is_q) >> size;
8542     }
8543     fracbits = (16 << size) - immhb;
8544 
8545     if (!fp_access_check(s)) {
8546         return;
8547     }
8548 
8549     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8550 }
8551 
8552 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8553 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8554                                          bool is_q, bool is_u,
8555                                          int immh, int immb, int rn, int rd)
8556 {
8557     int immhb = immh << 3 | immb;
8558     int pass, size, fracbits;
8559     TCGv_ptr tcg_fpstatus;
8560     TCGv_i32 tcg_rmode, tcg_shift;
8561 
8562     if (immh & 0x8) {
8563         size = MO_64;
8564         if (!is_scalar && !is_q) {
8565             unallocated_encoding(s);
8566             return;
8567         }
8568     } else if (immh & 0x4) {
8569         size = MO_32;
8570     } else if (immh & 0x2) {
8571         size = MO_16;
8572         if (!dc_isar_feature(aa64_fp16, s)) {
8573             unallocated_encoding(s);
8574             return;
8575         }
8576     } else {
8577         /* Should have split out AdvSIMD modified immediate earlier.  */
8578         assert(immh == 1);
8579         unallocated_encoding(s);
8580         return;
8581     }
8582 
8583     if (!fp_access_check(s)) {
8584         return;
8585     }
8586 
8587     assert(!(is_scalar && is_q));
8588 
8589     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8590     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8591     fracbits = (16 << size) - immhb;
8592     tcg_shift = tcg_constant_i32(fracbits);
8593 
8594     if (size == MO_64) {
8595         int maxpass = is_scalar ? 1 : 2;
8596 
8597         for (pass = 0; pass < maxpass; pass++) {
8598             TCGv_i64 tcg_op = tcg_temp_new_i64();
8599 
8600             read_vec_element(s, tcg_op, rn, pass, MO_64);
8601             if (is_u) {
8602                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8603             } else {
8604                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8605             }
8606             write_vec_element(s, tcg_op, rd, pass, MO_64);
8607         }
8608         clear_vec_high(s, is_q, rd);
8609     } else {
8610         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8611         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8612 
8613         switch (size) {
8614         case MO_16:
8615             if (is_u) {
8616                 fn = gen_helper_vfp_touhh;
8617             } else {
8618                 fn = gen_helper_vfp_toshh;
8619             }
8620             break;
8621         case MO_32:
8622             if (is_u) {
8623                 fn = gen_helper_vfp_touls;
8624             } else {
8625                 fn = gen_helper_vfp_tosls;
8626             }
8627             break;
8628         default:
8629             g_assert_not_reached();
8630         }
8631 
8632         for (pass = 0; pass < maxpass; pass++) {
8633             TCGv_i32 tcg_op = tcg_temp_new_i32();
8634 
8635             read_vec_element_i32(s, tcg_op, rn, pass, size);
8636             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8637             if (is_scalar) {
8638                 write_fp_sreg(s, rd, tcg_op);
8639             } else {
8640                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8641             }
8642         }
8643         if (!is_scalar) {
8644             clear_vec_high(s, is_q, rd);
8645         }
8646     }
8647 
8648     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8649 }
8650 
8651 /* AdvSIMD scalar shift by immediate
8652  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8653  * +-----+---+-------------+------+------+--------+---+------+------+
8654  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8655  * +-----+---+-------------+------+------+--------+---+------+------+
8656  *
8657  * This is the scalar version so it works on a fixed sized registers
8658  */
8659 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8660 {
8661     int rd = extract32(insn, 0, 5);
8662     int rn = extract32(insn, 5, 5);
8663     int opcode = extract32(insn, 11, 5);
8664     int immb = extract32(insn, 16, 3);
8665     int immh = extract32(insn, 19, 4);
8666     bool is_u = extract32(insn, 29, 1);
8667 
8668     if (immh == 0) {
8669         unallocated_encoding(s);
8670         return;
8671     }
8672 
8673     switch (opcode) {
8674     case 0x08: /* SRI */
8675         if (!is_u) {
8676             unallocated_encoding(s);
8677             return;
8678         }
8679         /* fall through */
8680     case 0x00: /* SSHR / USHR */
8681     case 0x02: /* SSRA / USRA */
8682     case 0x04: /* SRSHR / URSHR */
8683     case 0x06: /* SRSRA / URSRA */
8684         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8685         break;
8686     case 0x0a: /* SHL / SLI */
8687         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8688         break;
8689     case 0x1c: /* SCVTF, UCVTF */
8690         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8691                                      opcode, rn, rd);
8692         break;
8693     case 0x10: /* SQSHRUN, SQSHRUN2 */
8694     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8695         if (!is_u) {
8696             unallocated_encoding(s);
8697             return;
8698         }
8699         handle_vec_simd_sqshrn(s, true, false, false, true,
8700                                immh, immb, opcode, rn, rd);
8701         break;
8702     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8703     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8704         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8705                                immh, immb, opcode, rn, rd);
8706         break;
8707     case 0xc: /* SQSHLU */
8708         if (!is_u) {
8709             unallocated_encoding(s);
8710             return;
8711         }
8712         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8713         break;
8714     case 0xe: /* SQSHL, UQSHL */
8715         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8716         break;
8717     case 0x1f: /* FCVTZS, FCVTZU */
8718         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8719         break;
8720     default:
8721         unallocated_encoding(s);
8722         break;
8723     }
8724 }
8725 
8726 /* AdvSIMD scalar three different
8727  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8728  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8729  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8730  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8731  */
8732 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8733 {
8734     bool is_u = extract32(insn, 29, 1);
8735     int size = extract32(insn, 22, 2);
8736     int opcode = extract32(insn, 12, 4);
8737     int rm = extract32(insn, 16, 5);
8738     int rn = extract32(insn, 5, 5);
8739     int rd = extract32(insn, 0, 5);
8740 
8741     if (is_u) {
8742         unallocated_encoding(s);
8743         return;
8744     }
8745 
8746     switch (opcode) {
8747     case 0x9: /* SQDMLAL, SQDMLAL2 */
8748     case 0xb: /* SQDMLSL, SQDMLSL2 */
8749     case 0xd: /* SQDMULL, SQDMULL2 */
8750         if (size == 0 || size == 3) {
8751             unallocated_encoding(s);
8752             return;
8753         }
8754         break;
8755     default:
8756         unallocated_encoding(s);
8757         return;
8758     }
8759 
8760     if (!fp_access_check(s)) {
8761         return;
8762     }
8763 
8764     if (size == 2) {
8765         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8766         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8767         TCGv_i64 tcg_res = tcg_temp_new_i64();
8768 
8769         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8770         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8771 
8772         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8773         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8774 
8775         switch (opcode) {
8776         case 0xd: /* SQDMULL, SQDMULL2 */
8777             break;
8778         case 0xb: /* SQDMLSL, SQDMLSL2 */
8779             tcg_gen_neg_i64(tcg_res, tcg_res);
8780             /* fall through */
8781         case 0x9: /* SQDMLAL, SQDMLAL2 */
8782             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8783             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8784                                               tcg_res, tcg_op1);
8785             break;
8786         default:
8787             g_assert_not_reached();
8788         }
8789 
8790         write_fp_dreg(s, rd, tcg_res);
8791     } else {
8792         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8793         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8794         TCGv_i64 tcg_res = tcg_temp_new_i64();
8795 
8796         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8797         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8798 
8799         switch (opcode) {
8800         case 0xd: /* SQDMULL, SQDMULL2 */
8801             break;
8802         case 0xb: /* SQDMLSL, SQDMLSL2 */
8803             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8804             /* fall through */
8805         case 0x9: /* SQDMLAL, SQDMLAL2 */
8806         {
8807             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8808             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8809             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8810                                               tcg_res, tcg_op3);
8811             break;
8812         }
8813         default:
8814             g_assert_not_reached();
8815         }
8816 
8817         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8818         write_fp_dreg(s, rd, tcg_res);
8819     }
8820 }
8821 
8822 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8823                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8824 {
8825     /* Handle 64x64->64 opcodes which are shared between the scalar
8826      * and vector 3-same groups. We cover every opcode where size == 3
8827      * is valid in either the three-reg-same (integer, not pairwise)
8828      * or scalar-three-reg-same groups.
8829      */
8830     TCGCond cond;
8831 
8832     switch (opcode) {
8833     case 0x1: /* SQADD */
8834         if (u) {
8835             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8836         } else {
8837             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8838         }
8839         break;
8840     case 0x5: /* SQSUB */
8841         if (u) {
8842             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8843         } else {
8844             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8845         }
8846         break;
8847     case 0x6: /* CMGT, CMHI */
8848         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8849          * We implement this using setcond (test) and then negating.
8850          */
8851         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8852     do_cmop:
8853         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8854         tcg_gen_neg_i64(tcg_rd, tcg_rd);
8855         break;
8856     case 0x7: /* CMGE, CMHS */
8857         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8858         goto do_cmop;
8859     case 0x11: /* CMTST, CMEQ */
8860         if (u) {
8861             cond = TCG_COND_EQ;
8862             goto do_cmop;
8863         }
8864         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8865         break;
8866     case 0x8: /* SSHL, USHL */
8867         if (u) {
8868             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8869         } else {
8870             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8871         }
8872         break;
8873     case 0x9: /* SQSHL, UQSHL */
8874         if (u) {
8875             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8876         } else {
8877             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8878         }
8879         break;
8880     case 0xa: /* SRSHL, URSHL */
8881         if (u) {
8882             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8883         } else {
8884             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8885         }
8886         break;
8887     case 0xb: /* SQRSHL, UQRSHL */
8888         if (u) {
8889             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8890         } else {
8891             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8892         }
8893         break;
8894     case 0x10: /* ADD, SUB */
8895         if (u) {
8896             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8897         } else {
8898             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8899         }
8900         break;
8901     default:
8902         g_assert_not_reached();
8903     }
8904 }
8905 
8906 /* Handle the 3-same-operands float operations; shared by the scalar
8907  * and vector encodings. The caller must filter out any encodings
8908  * not allocated for the encoding it is dealing with.
8909  */
8910 static void handle_3same_float(DisasContext *s, int size, int elements,
8911                                int fpopcode, int rd, int rn, int rm)
8912 {
8913     int pass;
8914     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8915 
8916     for (pass = 0; pass < elements; pass++) {
8917         if (size) {
8918             /* Double */
8919             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8920             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8921             TCGv_i64 tcg_res = tcg_temp_new_i64();
8922 
8923             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8924             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8925 
8926             switch (fpopcode) {
8927             case 0x39: /* FMLS */
8928                 /* As usual for ARM, separate negation for fused multiply-add */
8929                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8930                 /* fall through */
8931             case 0x19: /* FMLA */
8932                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8933                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8934                                        tcg_res, fpst);
8935                 break;
8936             case 0x18: /* FMAXNM */
8937                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8938                 break;
8939             case 0x1a: /* FADD */
8940                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8941                 break;
8942             case 0x1b: /* FMULX */
8943                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8944                 break;
8945             case 0x1c: /* FCMEQ */
8946                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8947                 break;
8948             case 0x1e: /* FMAX */
8949                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8950                 break;
8951             case 0x1f: /* FRECPS */
8952                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8953                 break;
8954             case 0x38: /* FMINNM */
8955                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8956                 break;
8957             case 0x3a: /* FSUB */
8958                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8959                 break;
8960             case 0x3e: /* FMIN */
8961                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8962                 break;
8963             case 0x3f: /* FRSQRTS */
8964                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8965                 break;
8966             case 0x5b: /* FMUL */
8967                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8968                 break;
8969             case 0x5c: /* FCMGE */
8970                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8971                 break;
8972             case 0x5d: /* FACGE */
8973                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8974                 break;
8975             case 0x5f: /* FDIV */
8976                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8977                 break;
8978             case 0x7a: /* FABD */
8979                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8980                 gen_helper_vfp_absd(tcg_res, tcg_res);
8981                 break;
8982             case 0x7c: /* FCMGT */
8983                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8984                 break;
8985             case 0x7d: /* FACGT */
8986                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8987                 break;
8988             default:
8989                 g_assert_not_reached();
8990             }
8991 
8992             write_vec_element(s, tcg_res, rd, pass, MO_64);
8993         } else {
8994             /* Single */
8995             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8996             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8997             TCGv_i32 tcg_res = tcg_temp_new_i32();
8998 
8999             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9000             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9001 
9002             switch (fpopcode) {
9003             case 0x39: /* FMLS */
9004                 /* As usual for ARM, separate negation for fused multiply-add */
9005                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9006                 /* fall through */
9007             case 0x19: /* FMLA */
9008                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9009                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9010                                        tcg_res, fpst);
9011                 break;
9012             case 0x1a: /* FADD */
9013                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9014                 break;
9015             case 0x1b: /* FMULX */
9016                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9017                 break;
9018             case 0x1c: /* FCMEQ */
9019                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9020                 break;
9021             case 0x1e: /* FMAX */
9022                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9023                 break;
9024             case 0x1f: /* FRECPS */
9025                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9026                 break;
9027             case 0x18: /* FMAXNM */
9028                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9029                 break;
9030             case 0x38: /* FMINNM */
9031                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9032                 break;
9033             case 0x3a: /* FSUB */
9034                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9035                 break;
9036             case 0x3e: /* FMIN */
9037                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9038                 break;
9039             case 0x3f: /* FRSQRTS */
9040                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9041                 break;
9042             case 0x5b: /* FMUL */
9043                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9044                 break;
9045             case 0x5c: /* FCMGE */
9046                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9047                 break;
9048             case 0x5d: /* FACGE */
9049                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9050                 break;
9051             case 0x5f: /* FDIV */
9052                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9053                 break;
9054             case 0x7a: /* FABD */
9055                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9056                 gen_helper_vfp_abss(tcg_res, tcg_res);
9057                 break;
9058             case 0x7c: /* FCMGT */
9059                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9060                 break;
9061             case 0x7d: /* FACGT */
9062                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9063                 break;
9064             default:
9065                 g_assert_not_reached();
9066             }
9067 
9068             if (elements == 1) {
9069                 /* scalar single so clear high part */
9070                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9071 
9072                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9073                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9074             } else {
9075                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9076             }
9077         }
9078     }
9079 
9080     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9081 }
9082 
9083 /* AdvSIMD scalar three same
9084  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9085  * +-----+---+-----------+------+---+------+--------+---+------+------+
9086  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9087  * +-----+---+-----------+------+---+------+--------+---+------+------+
9088  */
9089 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9090 {
9091     int rd = extract32(insn, 0, 5);
9092     int rn = extract32(insn, 5, 5);
9093     int opcode = extract32(insn, 11, 5);
9094     int rm = extract32(insn, 16, 5);
9095     int size = extract32(insn, 22, 2);
9096     bool u = extract32(insn, 29, 1);
9097     TCGv_i64 tcg_rd;
9098 
9099     if (opcode >= 0x18) {
9100         /* Floating point: U, size[1] and opcode indicate operation */
9101         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9102         switch (fpopcode) {
9103         case 0x1b: /* FMULX */
9104         case 0x1f: /* FRECPS */
9105         case 0x3f: /* FRSQRTS */
9106         case 0x5d: /* FACGE */
9107         case 0x7d: /* FACGT */
9108         case 0x1c: /* FCMEQ */
9109         case 0x5c: /* FCMGE */
9110         case 0x7c: /* FCMGT */
9111         case 0x7a: /* FABD */
9112             break;
9113         default:
9114             unallocated_encoding(s);
9115             return;
9116         }
9117 
9118         if (!fp_access_check(s)) {
9119             return;
9120         }
9121 
9122         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9123         return;
9124     }
9125 
9126     switch (opcode) {
9127     case 0x1: /* SQADD, UQADD */
9128     case 0x5: /* SQSUB, UQSUB */
9129     case 0x9: /* SQSHL, UQSHL */
9130     case 0xb: /* SQRSHL, UQRSHL */
9131         break;
9132     case 0x8: /* SSHL, USHL */
9133     case 0xa: /* SRSHL, URSHL */
9134     case 0x6: /* CMGT, CMHI */
9135     case 0x7: /* CMGE, CMHS */
9136     case 0x11: /* CMTST, CMEQ */
9137     case 0x10: /* ADD, SUB (vector) */
9138         if (size != 3) {
9139             unallocated_encoding(s);
9140             return;
9141         }
9142         break;
9143     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9144         if (size != 1 && size != 2) {
9145             unallocated_encoding(s);
9146             return;
9147         }
9148         break;
9149     default:
9150         unallocated_encoding(s);
9151         return;
9152     }
9153 
9154     if (!fp_access_check(s)) {
9155         return;
9156     }
9157 
9158     tcg_rd = tcg_temp_new_i64();
9159 
9160     if (size == 3) {
9161         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9162         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9163 
9164         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9165     } else {
9166         /* Do a single operation on the lowest element in the vector.
9167          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9168          * no side effects for all these operations.
9169          * OPTME: special-purpose helpers would avoid doing some
9170          * unnecessary work in the helper for the 8 and 16 bit cases.
9171          */
9172         NeonGenTwoOpEnvFn *genenvfn;
9173         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9174         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9175         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9176 
9177         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9178         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9179 
9180         switch (opcode) {
9181         case 0x1: /* SQADD, UQADD */
9182         {
9183             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9184                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9185                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9186                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9187             };
9188             genenvfn = fns[size][u];
9189             break;
9190         }
9191         case 0x5: /* SQSUB, UQSUB */
9192         {
9193             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9194                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9195                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9196                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9197             };
9198             genenvfn = fns[size][u];
9199             break;
9200         }
9201         case 0x9: /* SQSHL, UQSHL */
9202         {
9203             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9204                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9205                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9206                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9207             };
9208             genenvfn = fns[size][u];
9209             break;
9210         }
9211         case 0xb: /* SQRSHL, UQRSHL */
9212         {
9213             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9214                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9215                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9216                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9217             };
9218             genenvfn = fns[size][u];
9219             break;
9220         }
9221         case 0x16: /* SQDMULH, SQRDMULH */
9222         {
9223             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9224                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9225                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9226             };
9227             assert(size == 1 || size == 2);
9228             genenvfn = fns[size - 1][u];
9229             break;
9230         }
9231         default:
9232             g_assert_not_reached();
9233         }
9234 
9235         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9236         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9237     }
9238 
9239     write_fp_dreg(s, rd, tcg_rd);
9240 }
9241 
9242 /* AdvSIMD scalar three same FP16
9243  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9244  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9245  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9246  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9247  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9248  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9249  */
9250 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9251                                                   uint32_t insn)
9252 {
9253     int rd = extract32(insn, 0, 5);
9254     int rn = extract32(insn, 5, 5);
9255     int opcode = extract32(insn, 11, 3);
9256     int rm = extract32(insn, 16, 5);
9257     bool u = extract32(insn, 29, 1);
9258     bool a = extract32(insn, 23, 1);
9259     int fpopcode = opcode | (a << 3) |  (u << 4);
9260     TCGv_ptr fpst;
9261     TCGv_i32 tcg_op1;
9262     TCGv_i32 tcg_op2;
9263     TCGv_i32 tcg_res;
9264 
9265     switch (fpopcode) {
9266     case 0x03: /* FMULX */
9267     case 0x04: /* FCMEQ (reg) */
9268     case 0x07: /* FRECPS */
9269     case 0x0f: /* FRSQRTS */
9270     case 0x14: /* FCMGE (reg) */
9271     case 0x15: /* FACGE */
9272     case 0x1a: /* FABD */
9273     case 0x1c: /* FCMGT (reg) */
9274     case 0x1d: /* FACGT */
9275         break;
9276     default:
9277         unallocated_encoding(s);
9278         return;
9279     }
9280 
9281     if (!dc_isar_feature(aa64_fp16, s)) {
9282         unallocated_encoding(s);
9283     }
9284 
9285     if (!fp_access_check(s)) {
9286         return;
9287     }
9288 
9289     fpst = fpstatus_ptr(FPST_FPCR_F16);
9290 
9291     tcg_op1 = read_fp_hreg(s, rn);
9292     tcg_op2 = read_fp_hreg(s, rm);
9293     tcg_res = tcg_temp_new_i32();
9294 
9295     switch (fpopcode) {
9296     case 0x03: /* FMULX */
9297         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9298         break;
9299     case 0x04: /* FCMEQ (reg) */
9300         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9301         break;
9302     case 0x07: /* FRECPS */
9303         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9304         break;
9305     case 0x0f: /* FRSQRTS */
9306         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9307         break;
9308     case 0x14: /* FCMGE (reg) */
9309         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9310         break;
9311     case 0x15: /* FACGE */
9312         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9313         break;
9314     case 0x1a: /* FABD */
9315         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9316         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9317         break;
9318     case 0x1c: /* FCMGT (reg) */
9319         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9320         break;
9321     case 0x1d: /* FACGT */
9322         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9323         break;
9324     default:
9325         g_assert_not_reached();
9326     }
9327 
9328     write_fp_sreg(s, rd, tcg_res);
9329 }
9330 
9331 /* AdvSIMD scalar three same extra
9332  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9333  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9334  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9335  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9336  */
9337 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9338                                                    uint32_t insn)
9339 {
9340     int rd = extract32(insn, 0, 5);
9341     int rn = extract32(insn, 5, 5);
9342     int opcode = extract32(insn, 11, 4);
9343     int rm = extract32(insn, 16, 5);
9344     int size = extract32(insn, 22, 2);
9345     bool u = extract32(insn, 29, 1);
9346     TCGv_i32 ele1, ele2, ele3;
9347     TCGv_i64 res;
9348     bool feature;
9349 
9350     switch (u * 16 + opcode) {
9351     case 0x10: /* SQRDMLAH (vector) */
9352     case 0x11: /* SQRDMLSH (vector) */
9353         if (size != 1 && size != 2) {
9354             unallocated_encoding(s);
9355             return;
9356         }
9357         feature = dc_isar_feature(aa64_rdm, s);
9358         break;
9359     default:
9360         unallocated_encoding(s);
9361         return;
9362     }
9363     if (!feature) {
9364         unallocated_encoding(s);
9365         return;
9366     }
9367     if (!fp_access_check(s)) {
9368         return;
9369     }
9370 
9371     /* Do a single operation on the lowest element in the vector.
9372      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9373      * with no side effects for all these operations.
9374      * OPTME: special-purpose helpers would avoid doing some
9375      * unnecessary work in the helper for the 16 bit cases.
9376      */
9377     ele1 = tcg_temp_new_i32();
9378     ele2 = tcg_temp_new_i32();
9379     ele3 = tcg_temp_new_i32();
9380 
9381     read_vec_element_i32(s, ele1, rn, 0, size);
9382     read_vec_element_i32(s, ele2, rm, 0, size);
9383     read_vec_element_i32(s, ele3, rd, 0, size);
9384 
9385     switch (opcode) {
9386     case 0x0: /* SQRDMLAH */
9387         if (size == 1) {
9388             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9389         } else {
9390             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9391         }
9392         break;
9393     case 0x1: /* SQRDMLSH */
9394         if (size == 1) {
9395             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9396         } else {
9397             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9398         }
9399         break;
9400     default:
9401         g_assert_not_reached();
9402     }
9403 
9404     res = tcg_temp_new_i64();
9405     tcg_gen_extu_i32_i64(res, ele3);
9406     write_fp_dreg(s, rd, res);
9407 }
9408 
9409 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9410                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9411                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9412 {
9413     /* Handle 64->64 opcodes which are shared between the scalar and
9414      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9415      * is valid in either group and also the double-precision fp ops.
9416      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9417      * requires them.
9418      */
9419     TCGCond cond;
9420 
9421     switch (opcode) {
9422     case 0x4: /* CLS, CLZ */
9423         if (u) {
9424             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9425         } else {
9426             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9427         }
9428         break;
9429     case 0x5: /* NOT */
9430         /* This opcode is shared with CNT and RBIT but we have earlier
9431          * enforced that size == 3 if and only if this is the NOT insn.
9432          */
9433         tcg_gen_not_i64(tcg_rd, tcg_rn);
9434         break;
9435     case 0x7: /* SQABS, SQNEG */
9436         if (u) {
9437             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9438         } else {
9439             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9440         }
9441         break;
9442     case 0xa: /* CMLT */
9443         /* 64 bit integer comparison against zero, result is
9444          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9445          * subtracting 1.
9446          */
9447         cond = TCG_COND_LT;
9448     do_cmop:
9449         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9450         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9451         break;
9452     case 0x8: /* CMGT, CMGE */
9453         cond = u ? TCG_COND_GE : TCG_COND_GT;
9454         goto do_cmop;
9455     case 0x9: /* CMEQ, CMLE */
9456         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9457         goto do_cmop;
9458     case 0xb: /* ABS, NEG */
9459         if (u) {
9460             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9461         } else {
9462             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9463         }
9464         break;
9465     case 0x2f: /* FABS */
9466         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9467         break;
9468     case 0x6f: /* FNEG */
9469         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9470         break;
9471     case 0x7f: /* FSQRT */
9472         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9473         break;
9474     case 0x1a: /* FCVTNS */
9475     case 0x1b: /* FCVTMS */
9476     case 0x1c: /* FCVTAS */
9477     case 0x3a: /* FCVTPS */
9478     case 0x3b: /* FCVTZS */
9479         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9480         break;
9481     case 0x5a: /* FCVTNU */
9482     case 0x5b: /* FCVTMU */
9483     case 0x5c: /* FCVTAU */
9484     case 0x7a: /* FCVTPU */
9485     case 0x7b: /* FCVTZU */
9486         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9487         break;
9488     case 0x18: /* FRINTN */
9489     case 0x19: /* FRINTM */
9490     case 0x38: /* FRINTP */
9491     case 0x39: /* FRINTZ */
9492     case 0x58: /* FRINTA */
9493     case 0x79: /* FRINTI */
9494         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9495         break;
9496     case 0x59: /* FRINTX */
9497         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9498         break;
9499     case 0x1e: /* FRINT32Z */
9500     case 0x5e: /* FRINT32X */
9501         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9502         break;
9503     case 0x1f: /* FRINT64Z */
9504     case 0x5f: /* FRINT64X */
9505         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9506         break;
9507     default:
9508         g_assert_not_reached();
9509     }
9510 }
9511 
9512 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9513                                    bool is_scalar, bool is_u, bool is_q,
9514                                    int size, int rn, int rd)
9515 {
9516     bool is_double = (size == MO_64);
9517     TCGv_ptr fpst;
9518 
9519     if (!fp_access_check(s)) {
9520         return;
9521     }
9522 
9523     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9524 
9525     if (is_double) {
9526         TCGv_i64 tcg_op = tcg_temp_new_i64();
9527         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9528         TCGv_i64 tcg_res = tcg_temp_new_i64();
9529         NeonGenTwoDoubleOpFn *genfn;
9530         bool swap = false;
9531         int pass;
9532 
9533         switch (opcode) {
9534         case 0x2e: /* FCMLT (zero) */
9535             swap = true;
9536             /* fallthrough */
9537         case 0x2c: /* FCMGT (zero) */
9538             genfn = gen_helper_neon_cgt_f64;
9539             break;
9540         case 0x2d: /* FCMEQ (zero) */
9541             genfn = gen_helper_neon_ceq_f64;
9542             break;
9543         case 0x6d: /* FCMLE (zero) */
9544             swap = true;
9545             /* fall through */
9546         case 0x6c: /* FCMGE (zero) */
9547             genfn = gen_helper_neon_cge_f64;
9548             break;
9549         default:
9550             g_assert_not_reached();
9551         }
9552 
9553         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9554             read_vec_element(s, tcg_op, rn, pass, MO_64);
9555             if (swap) {
9556                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9557             } else {
9558                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9559             }
9560             write_vec_element(s, tcg_res, rd, pass, MO_64);
9561         }
9562 
9563         clear_vec_high(s, !is_scalar, rd);
9564     } else {
9565         TCGv_i32 tcg_op = tcg_temp_new_i32();
9566         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9567         TCGv_i32 tcg_res = tcg_temp_new_i32();
9568         NeonGenTwoSingleOpFn *genfn;
9569         bool swap = false;
9570         int pass, maxpasses;
9571 
9572         if (size == MO_16) {
9573             switch (opcode) {
9574             case 0x2e: /* FCMLT (zero) */
9575                 swap = true;
9576                 /* fall through */
9577             case 0x2c: /* FCMGT (zero) */
9578                 genfn = gen_helper_advsimd_cgt_f16;
9579                 break;
9580             case 0x2d: /* FCMEQ (zero) */
9581                 genfn = gen_helper_advsimd_ceq_f16;
9582                 break;
9583             case 0x6d: /* FCMLE (zero) */
9584                 swap = true;
9585                 /* fall through */
9586             case 0x6c: /* FCMGE (zero) */
9587                 genfn = gen_helper_advsimd_cge_f16;
9588                 break;
9589             default:
9590                 g_assert_not_reached();
9591             }
9592         } else {
9593             switch (opcode) {
9594             case 0x2e: /* FCMLT (zero) */
9595                 swap = true;
9596                 /* fall through */
9597             case 0x2c: /* FCMGT (zero) */
9598                 genfn = gen_helper_neon_cgt_f32;
9599                 break;
9600             case 0x2d: /* FCMEQ (zero) */
9601                 genfn = gen_helper_neon_ceq_f32;
9602                 break;
9603             case 0x6d: /* FCMLE (zero) */
9604                 swap = true;
9605                 /* fall through */
9606             case 0x6c: /* FCMGE (zero) */
9607                 genfn = gen_helper_neon_cge_f32;
9608                 break;
9609             default:
9610                 g_assert_not_reached();
9611             }
9612         }
9613 
9614         if (is_scalar) {
9615             maxpasses = 1;
9616         } else {
9617             int vector_size = 8 << is_q;
9618             maxpasses = vector_size >> size;
9619         }
9620 
9621         for (pass = 0; pass < maxpasses; pass++) {
9622             read_vec_element_i32(s, tcg_op, rn, pass, size);
9623             if (swap) {
9624                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9625             } else {
9626                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9627             }
9628             if (is_scalar) {
9629                 write_fp_sreg(s, rd, tcg_res);
9630             } else {
9631                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9632             }
9633         }
9634 
9635         if (!is_scalar) {
9636             clear_vec_high(s, is_q, rd);
9637         }
9638     }
9639 }
9640 
9641 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9642                                     bool is_scalar, bool is_u, bool is_q,
9643                                     int size, int rn, int rd)
9644 {
9645     bool is_double = (size == 3);
9646     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9647 
9648     if (is_double) {
9649         TCGv_i64 tcg_op = tcg_temp_new_i64();
9650         TCGv_i64 tcg_res = tcg_temp_new_i64();
9651         int pass;
9652 
9653         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9654             read_vec_element(s, tcg_op, rn, pass, MO_64);
9655             switch (opcode) {
9656             case 0x3d: /* FRECPE */
9657                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9658                 break;
9659             case 0x3f: /* FRECPX */
9660                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9661                 break;
9662             case 0x7d: /* FRSQRTE */
9663                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9664                 break;
9665             default:
9666                 g_assert_not_reached();
9667             }
9668             write_vec_element(s, tcg_res, rd, pass, MO_64);
9669         }
9670         clear_vec_high(s, !is_scalar, rd);
9671     } else {
9672         TCGv_i32 tcg_op = tcg_temp_new_i32();
9673         TCGv_i32 tcg_res = tcg_temp_new_i32();
9674         int pass, maxpasses;
9675 
9676         if (is_scalar) {
9677             maxpasses = 1;
9678         } else {
9679             maxpasses = is_q ? 4 : 2;
9680         }
9681 
9682         for (pass = 0; pass < maxpasses; pass++) {
9683             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9684 
9685             switch (opcode) {
9686             case 0x3c: /* URECPE */
9687                 gen_helper_recpe_u32(tcg_res, tcg_op);
9688                 break;
9689             case 0x3d: /* FRECPE */
9690                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9691                 break;
9692             case 0x3f: /* FRECPX */
9693                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9694                 break;
9695             case 0x7d: /* FRSQRTE */
9696                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9697                 break;
9698             default:
9699                 g_assert_not_reached();
9700             }
9701 
9702             if (is_scalar) {
9703                 write_fp_sreg(s, rd, tcg_res);
9704             } else {
9705                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9706             }
9707         }
9708         if (!is_scalar) {
9709             clear_vec_high(s, is_q, rd);
9710         }
9711     }
9712 }
9713 
9714 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9715                                 int opcode, bool u, bool is_q,
9716                                 int size, int rn, int rd)
9717 {
9718     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9719      * in the source becomes a size element in the destination).
9720      */
9721     int pass;
9722     TCGv_i32 tcg_res[2];
9723     int destelt = is_q ? 2 : 0;
9724     int passes = scalar ? 1 : 2;
9725 
9726     if (scalar) {
9727         tcg_res[1] = tcg_constant_i32(0);
9728     }
9729 
9730     for (pass = 0; pass < passes; pass++) {
9731         TCGv_i64 tcg_op = tcg_temp_new_i64();
9732         NeonGenNarrowFn *genfn = NULL;
9733         NeonGenNarrowEnvFn *genenvfn = NULL;
9734 
9735         if (scalar) {
9736             read_vec_element(s, tcg_op, rn, pass, size + 1);
9737         } else {
9738             read_vec_element(s, tcg_op, rn, pass, MO_64);
9739         }
9740         tcg_res[pass] = tcg_temp_new_i32();
9741 
9742         switch (opcode) {
9743         case 0x12: /* XTN, SQXTUN */
9744         {
9745             static NeonGenNarrowFn * const xtnfns[3] = {
9746                 gen_helper_neon_narrow_u8,
9747                 gen_helper_neon_narrow_u16,
9748                 tcg_gen_extrl_i64_i32,
9749             };
9750             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9751                 gen_helper_neon_unarrow_sat8,
9752                 gen_helper_neon_unarrow_sat16,
9753                 gen_helper_neon_unarrow_sat32,
9754             };
9755             if (u) {
9756                 genenvfn = sqxtunfns[size];
9757             } else {
9758                 genfn = xtnfns[size];
9759             }
9760             break;
9761         }
9762         case 0x14: /* SQXTN, UQXTN */
9763         {
9764             static NeonGenNarrowEnvFn * const fns[3][2] = {
9765                 { gen_helper_neon_narrow_sat_s8,
9766                   gen_helper_neon_narrow_sat_u8 },
9767                 { gen_helper_neon_narrow_sat_s16,
9768                   gen_helper_neon_narrow_sat_u16 },
9769                 { gen_helper_neon_narrow_sat_s32,
9770                   gen_helper_neon_narrow_sat_u32 },
9771             };
9772             genenvfn = fns[size][u];
9773             break;
9774         }
9775         case 0x16: /* FCVTN, FCVTN2 */
9776             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9777             if (size == 2) {
9778                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9779             } else {
9780                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9781                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9782                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9783                 TCGv_i32 ahp = get_ahp_flag();
9784 
9785                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9786                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9787                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9788                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9789             }
9790             break;
9791         case 0x36: /* BFCVTN, BFCVTN2 */
9792             {
9793                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9794                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9795             }
9796             break;
9797         case 0x56:  /* FCVTXN, FCVTXN2 */
9798             /* 64 bit to 32 bit float conversion
9799              * with von Neumann rounding (round to odd)
9800              */
9801             assert(size == 2);
9802             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9803             break;
9804         default:
9805             g_assert_not_reached();
9806         }
9807 
9808         if (genfn) {
9809             genfn(tcg_res[pass], tcg_op);
9810         } else if (genenvfn) {
9811             genenvfn(tcg_res[pass], cpu_env, tcg_op);
9812         }
9813     }
9814 
9815     for (pass = 0; pass < 2; pass++) {
9816         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9817     }
9818     clear_vec_high(s, is_q, rd);
9819 }
9820 
9821 /* Remaining saturating accumulating ops */
9822 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9823                                 bool is_q, int size, int rn, int rd)
9824 {
9825     bool is_double = (size == 3);
9826 
9827     if (is_double) {
9828         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9829         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9830         int pass;
9831 
9832         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9833             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9834             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9835 
9836             if (is_u) { /* USQADD */
9837                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9838             } else { /* SUQADD */
9839                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9840             }
9841             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9842         }
9843         clear_vec_high(s, !is_scalar, rd);
9844     } else {
9845         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9846         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9847         int pass, maxpasses;
9848 
9849         if (is_scalar) {
9850             maxpasses = 1;
9851         } else {
9852             maxpasses = is_q ? 4 : 2;
9853         }
9854 
9855         for (pass = 0; pass < maxpasses; pass++) {
9856             if (is_scalar) {
9857                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9858                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9859             } else {
9860                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9861                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9862             }
9863 
9864             if (is_u) { /* USQADD */
9865                 switch (size) {
9866                 case 0:
9867                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9868                     break;
9869                 case 1:
9870                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9871                     break;
9872                 case 2:
9873                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9874                     break;
9875                 default:
9876                     g_assert_not_reached();
9877                 }
9878             } else { /* SUQADD */
9879                 switch (size) {
9880                 case 0:
9881                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9882                     break;
9883                 case 1:
9884                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9885                     break;
9886                 case 2:
9887                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9888                     break;
9889                 default:
9890                     g_assert_not_reached();
9891                 }
9892             }
9893 
9894             if (is_scalar) {
9895                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9896             }
9897             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9898         }
9899         clear_vec_high(s, is_q, rd);
9900     }
9901 }
9902 
9903 /* AdvSIMD scalar two reg misc
9904  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9905  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9906  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9907  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9908  */
9909 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9910 {
9911     int rd = extract32(insn, 0, 5);
9912     int rn = extract32(insn, 5, 5);
9913     int opcode = extract32(insn, 12, 5);
9914     int size = extract32(insn, 22, 2);
9915     bool u = extract32(insn, 29, 1);
9916     bool is_fcvt = false;
9917     int rmode;
9918     TCGv_i32 tcg_rmode;
9919     TCGv_ptr tcg_fpstatus;
9920 
9921     switch (opcode) {
9922     case 0x3: /* USQADD / SUQADD*/
9923         if (!fp_access_check(s)) {
9924             return;
9925         }
9926         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9927         return;
9928     case 0x7: /* SQABS / SQNEG */
9929         break;
9930     case 0xa: /* CMLT */
9931         if (u) {
9932             unallocated_encoding(s);
9933             return;
9934         }
9935         /* fall through */
9936     case 0x8: /* CMGT, CMGE */
9937     case 0x9: /* CMEQ, CMLE */
9938     case 0xb: /* ABS, NEG */
9939         if (size != 3) {
9940             unallocated_encoding(s);
9941             return;
9942         }
9943         break;
9944     case 0x12: /* SQXTUN */
9945         if (!u) {
9946             unallocated_encoding(s);
9947             return;
9948         }
9949         /* fall through */
9950     case 0x14: /* SQXTN, UQXTN */
9951         if (size == 3) {
9952             unallocated_encoding(s);
9953             return;
9954         }
9955         if (!fp_access_check(s)) {
9956             return;
9957         }
9958         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9959         return;
9960     case 0xc ... 0xf:
9961     case 0x16 ... 0x1d:
9962     case 0x1f:
9963         /* Floating point: U, size[1] and opcode indicate operation;
9964          * size[0] indicates single or double precision.
9965          */
9966         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9967         size = extract32(size, 0, 1) ? 3 : 2;
9968         switch (opcode) {
9969         case 0x2c: /* FCMGT (zero) */
9970         case 0x2d: /* FCMEQ (zero) */
9971         case 0x2e: /* FCMLT (zero) */
9972         case 0x6c: /* FCMGE (zero) */
9973         case 0x6d: /* FCMLE (zero) */
9974             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9975             return;
9976         case 0x1d: /* SCVTF */
9977         case 0x5d: /* UCVTF */
9978         {
9979             bool is_signed = (opcode == 0x1d);
9980             if (!fp_access_check(s)) {
9981                 return;
9982             }
9983             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9984             return;
9985         }
9986         case 0x3d: /* FRECPE */
9987         case 0x3f: /* FRECPX */
9988         case 0x7d: /* FRSQRTE */
9989             if (!fp_access_check(s)) {
9990                 return;
9991             }
9992             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9993             return;
9994         case 0x1a: /* FCVTNS */
9995         case 0x1b: /* FCVTMS */
9996         case 0x3a: /* FCVTPS */
9997         case 0x3b: /* FCVTZS */
9998         case 0x5a: /* FCVTNU */
9999         case 0x5b: /* FCVTMU */
10000         case 0x7a: /* FCVTPU */
10001         case 0x7b: /* FCVTZU */
10002             is_fcvt = true;
10003             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10004             break;
10005         case 0x1c: /* FCVTAS */
10006         case 0x5c: /* FCVTAU */
10007             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10008             is_fcvt = true;
10009             rmode = FPROUNDING_TIEAWAY;
10010             break;
10011         case 0x56: /* FCVTXN, FCVTXN2 */
10012             if (size == 2) {
10013                 unallocated_encoding(s);
10014                 return;
10015             }
10016             if (!fp_access_check(s)) {
10017                 return;
10018             }
10019             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10020             return;
10021         default:
10022             unallocated_encoding(s);
10023             return;
10024         }
10025         break;
10026     default:
10027         unallocated_encoding(s);
10028         return;
10029     }
10030 
10031     if (!fp_access_check(s)) {
10032         return;
10033     }
10034 
10035     if (is_fcvt) {
10036         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10037         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10038     } else {
10039         tcg_fpstatus = NULL;
10040         tcg_rmode = NULL;
10041     }
10042 
10043     if (size == 3) {
10044         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10045         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10046 
10047         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10048         write_fp_dreg(s, rd, tcg_rd);
10049     } else {
10050         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10051         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10052 
10053         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10054 
10055         switch (opcode) {
10056         case 0x7: /* SQABS, SQNEG */
10057         {
10058             NeonGenOneOpEnvFn *genfn;
10059             static NeonGenOneOpEnvFn * const fns[3][2] = {
10060                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10061                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10062                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10063             };
10064             genfn = fns[size][u];
10065             genfn(tcg_rd, cpu_env, tcg_rn);
10066             break;
10067         }
10068         case 0x1a: /* FCVTNS */
10069         case 0x1b: /* FCVTMS */
10070         case 0x1c: /* FCVTAS */
10071         case 0x3a: /* FCVTPS */
10072         case 0x3b: /* FCVTZS */
10073             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10074                                  tcg_fpstatus);
10075             break;
10076         case 0x5a: /* FCVTNU */
10077         case 0x5b: /* FCVTMU */
10078         case 0x5c: /* FCVTAU */
10079         case 0x7a: /* FCVTPU */
10080         case 0x7b: /* FCVTZU */
10081             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10082                                  tcg_fpstatus);
10083             break;
10084         default:
10085             g_assert_not_reached();
10086         }
10087 
10088         write_fp_sreg(s, rd, tcg_rd);
10089     }
10090 
10091     if (is_fcvt) {
10092         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10093     }
10094 }
10095 
10096 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10097 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10098                                  int immh, int immb, int opcode, int rn, int rd)
10099 {
10100     int size = 32 - clz32(immh) - 1;
10101     int immhb = immh << 3 | immb;
10102     int shift = 2 * (8 << size) - immhb;
10103     GVecGen2iFn *gvec_fn;
10104 
10105     if (extract32(immh, 3, 1) && !is_q) {
10106         unallocated_encoding(s);
10107         return;
10108     }
10109     tcg_debug_assert(size <= 3);
10110 
10111     if (!fp_access_check(s)) {
10112         return;
10113     }
10114 
10115     switch (opcode) {
10116     case 0x02: /* SSRA / USRA (accumulate) */
10117         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10118         break;
10119 
10120     case 0x08: /* SRI */
10121         gvec_fn = gen_gvec_sri;
10122         break;
10123 
10124     case 0x00: /* SSHR / USHR */
10125         if (is_u) {
10126             if (shift == 8 << size) {
10127                 /* Shift count the same size as element size produces zero.  */
10128                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10129                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10130                 return;
10131             }
10132             gvec_fn = tcg_gen_gvec_shri;
10133         } else {
10134             /* Shift count the same size as element size produces all sign.  */
10135             if (shift == 8 << size) {
10136                 shift -= 1;
10137             }
10138             gvec_fn = tcg_gen_gvec_sari;
10139         }
10140         break;
10141 
10142     case 0x04: /* SRSHR / URSHR (rounding) */
10143         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10144         break;
10145 
10146     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10147         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10148         break;
10149 
10150     default:
10151         g_assert_not_reached();
10152     }
10153 
10154     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10155 }
10156 
10157 /* SHL/SLI - Vector shift left */
10158 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10159                                  int immh, int immb, int opcode, int rn, int rd)
10160 {
10161     int size = 32 - clz32(immh) - 1;
10162     int immhb = immh << 3 | immb;
10163     int shift = immhb - (8 << size);
10164 
10165     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10166     assert(size >= 0 && size <= 3);
10167 
10168     if (extract32(immh, 3, 1) && !is_q) {
10169         unallocated_encoding(s);
10170         return;
10171     }
10172 
10173     if (!fp_access_check(s)) {
10174         return;
10175     }
10176 
10177     if (insert) {
10178         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10179     } else {
10180         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10181     }
10182 }
10183 
10184 /* USHLL/SHLL - Vector shift left with widening */
10185 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10186                                  int immh, int immb, int opcode, int rn, int rd)
10187 {
10188     int size = 32 - clz32(immh) - 1;
10189     int immhb = immh << 3 | immb;
10190     int shift = immhb - (8 << size);
10191     int dsize = 64;
10192     int esize = 8 << size;
10193     int elements = dsize/esize;
10194     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10195     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10196     int i;
10197 
10198     if (size >= 3) {
10199         unallocated_encoding(s);
10200         return;
10201     }
10202 
10203     if (!fp_access_check(s)) {
10204         return;
10205     }
10206 
10207     /* For the LL variants the store is larger than the load,
10208      * so if rd == rn we would overwrite parts of our input.
10209      * So load everything right now and use shifts in the main loop.
10210      */
10211     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10212 
10213     for (i = 0; i < elements; i++) {
10214         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10215         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10216         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10217         write_vec_element(s, tcg_rd, rd, i, size + 1);
10218     }
10219 }
10220 
10221 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10222 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10223                                  int immh, int immb, int opcode, int rn, int rd)
10224 {
10225     int immhb = immh << 3 | immb;
10226     int size = 32 - clz32(immh) - 1;
10227     int dsize = 64;
10228     int esize = 8 << size;
10229     int elements = dsize/esize;
10230     int shift = (2 * esize) - immhb;
10231     bool round = extract32(opcode, 0, 1);
10232     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10233     TCGv_i64 tcg_round;
10234     int i;
10235 
10236     if (extract32(immh, 3, 1)) {
10237         unallocated_encoding(s);
10238         return;
10239     }
10240 
10241     if (!fp_access_check(s)) {
10242         return;
10243     }
10244 
10245     tcg_rn = tcg_temp_new_i64();
10246     tcg_rd = tcg_temp_new_i64();
10247     tcg_final = tcg_temp_new_i64();
10248     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10249 
10250     if (round) {
10251         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10252     } else {
10253         tcg_round = NULL;
10254     }
10255 
10256     for (i = 0; i < elements; i++) {
10257         read_vec_element(s, tcg_rn, rn, i, size+1);
10258         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10259                                 false, true, size+1, shift);
10260 
10261         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10262     }
10263 
10264     if (!is_q) {
10265         write_vec_element(s, tcg_final, rd, 0, MO_64);
10266     } else {
10267         write_vec_element(s, tcg_final, rd, 1, MO_64);
10268     }
10269 
10270     clear_vec_high(s, is_q, rd);
10271 }
10272 
10273 
10274 /* AdvSIMD shift by immediate
10275  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10276  * +---+---+---+-------------+------+------+--------+---+------+------+
10277  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10278  * +---+---+---+-------------+------+------+--------+---+------+------+
10279  */
10280 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10281 {
10282     int rd = extract32(insn, 0, 5);
10283     int rn = extract32(insn, 5, 5);
10284     int opcode = extract32(insn, 11, 5);
10285     int immb = extract32(insn, 16, 3);
10286     int immh = extract32(insn, 19, 4);
10287     bool is_u = extract32(insn, 29, 1);
10288     bool is_q = extract32(insn, 30, 1);
10289 
10290     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10291     assert(immh != 0);
10292 
10293     switch (opcode) {
10294     case 0x08: /* SRI */
10295         if (!is_u) {
10296             unallocated_encoding(s);
10297             return;
10298         }
10299         /* fall through */
10300     case 0x00: /* SSHR / USHR */
10301     case 0x02: /* SSRA / USRA (accumulate) */
10302     case 0x04: /* SRSHR / URSHR (rounding) */
10303     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10304         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10305         break;
10306     case 0x0a: /* SHL / SLI */
10307         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10308         break;
10309     case 0x10: /* SHRN */
10310     case 0x11: /* RSHRN / SQRSHRUN */
10311         if (is_u) {
10312             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10313                                    opcode, rn, rd);
10314         } else {
10315             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10316         }
10317         break;
10318     case 0x12: /* SQSHRN / UQSHRN */
10319     case 0x13: /* SQRSHRN / UQRSHRN */
10320         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10321                                opcode, rn, rd);
10322         break;
10323     case 0x14: /* SSHLL / USHLL */
10324         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10325         break;
10326     case 0x1c: /* SCVTF / UCVTF */
10327         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10328                                      opcode, rn, rd);
10329         break;
10330     case 0xc: /* SQSHLU */
10331         if (!is_u) {
10332             unallocated_encoding(s);
10333             return;
10334         }
10335         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10336         break;
10337     case 0xe: /* SQSHL, UQSHL */
10338         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10339         break;
10340     case 0x1f: /* FCVTZS/ FCVTZU */
10341         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10342         return;
10343     default:
10344         unallocated_encoding(s);
10345         return;
10346     }
10347 }
10348 
10349 /* Generate code to do a "long" addition or subtraction, ie one done in
10350  * TCGv_i64 on vector lanes twice the width specified by size.
10351  */
10352 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10353                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10354 {
10355     static NeonGenTwo64OpFn * const fns[3][2] = {
10356         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10357         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10358         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10359     };
10360     NeonGenTwo64OpFn *genfn;
10361     assert(size < 3);
10362 
10363     genfn = fns[size][is_sub];
10364     genfn(tcg_res, tcg_op1, tcg_op2);
10365 }
10366 
10367 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10368                                 int opcode, int rd, int rn, int rm)
10369 {
10370     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10371     TCGv_i64 tcg_res[2];
10372     int pass, accop;
10373 
10374     tcg_res[0] = tcg_temp_new_i64();
10375     tcg_res[1] = tcg_temp_new_i64();
10376 
10377     /* Does this op do an adding accumulate, a subtracting accumulate,
10378      * or no accumulate at all?
10379      */
10380     switch (opcode) {
10381     case 5:
10382     case 8:
10383     case 9:
10384         accop = 1;
10385         break;
10386     case 10:
10387     case 11:
10388         accop = -1;
10389         break;
10390     default:
10391         accop = 0;
10392         break;
10393     }
10394 
10395     if (accop != 0) {
10396         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10397         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10398     }
10399 
10400     /* size == 2 means two 32x32->64 operations; this is worth special
10401      * casing because we can generally handle it inline.
10402      */
10403     if (size == 2) {
10404         for (pass = 0; pass < 2; pass++) {
10405             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10406             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10407             TCGv_i64 tcg_passres;
10408             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10409 
10410             int elt = pass + is_q * 2;
10411 
10412             read_vec_element(s, tcg_op1, rn, elt, memop);
10413             read_vec_element(s, tcg_op2, rm, elt, memop);
10414 
10415             if (accop == 0) {
10416                 tcg_passres = tcg_res[pass];
10417             } else {
10418                 tcg_passres = tcg_temp_new_i64();
10419             }
10420 
10421             switch (opcode) {
10422             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10423                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10424                 break;
10425             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10426                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10427                 break;
10428             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10429             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10430             {
10431                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10432                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10433 
10434                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10435                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10436                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10437                                     tcg_passres,
10438                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10439                 break;
10440             }
10441             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10442             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10443             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10444                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10445                 break;
10446             case 9: /* SQDMLAL, SQDMLAL2 */
10447             case 11: /* SQDMLSL, SQDMLSL2 */
10448             case 13: /* SQDMULL, SQDMULL2 */
10449                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10450                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10451                                                   tcg_passres, tcg_passres);
10452                 break;
10453             default:
10454                 g_assert_not_reached();
10455             }
10456 
10457             if (opcode == 9 || opcode == 11) {
10458                 /* saturating accumulate ops */
10459                 if (accop < 0) {
10460                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10461                 }
10462                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10463                                                   tcg_res[pass], tcg_passres);
10464             } else if (accop > 0) {
10465                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10466             } else if (accop < 0) {
10467                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10468             }
10469         }
10470     } else {
10471         /* size 0 or 1, generally helper functions */
10472         for (pass = 0; pass < 2; pass++) {
10473             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10474             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10475             TCGv_i64 tcg_passres;
10476             int elt = pass + is_q * 2;
10477 
10478             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10479             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10480 
10481             if (accop == 0) {
10482                 tcg_passres = tcg_res[pass];
10483             } else {
10484                 tcg_passres = tcg_temp_new_i64();
10485             }
10486 
10487             switch (opcode) {
10488             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10489             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10490             {
10491                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10492                 static NeonGenWidenFn * const widenfns[2][2] = {
10493                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10494                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10495                 };
10496                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10497 
10498                 widenfn(tcg_op2_64, tcg_op2);
10499                 widenfn(tcg_passres, tcg_op1);
10500                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10501                               tcg_passres, tcg_op2_64);
10502                 break;
10503             }
10504             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10505             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10506                 if (size == 0) {
10507                     if (is_u) {
10508                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10509                     } else {
10510                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10511                     }
10512                 } else {
10513                     if (is_u) {
10514                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10515                     } else {
10516                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10517                     }
10518                 }
10519                 break;
10520             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10521             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10522             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10523                 if (size == 0) {
10524                     if (is_u) {
10525                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10526                     } else {
10527                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10528                     }
10529                 } else {
10530                     if (is_u) {
10531                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10532                     } else {
10533                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10534                     }
10535                 }
10536                 break;
10537             case 9: /* SQDMLAL, SQDMLAL2 */
10538             case 11: /* SQDMLSL, SQDMLSL2 */
10539             case 13: /* SQDMULL, SQDMULL2 */
10540                 assert(size == 1);
10541                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10542                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10543                                                   tcg_passres, tcg_passres);
10544                 break;
10545             default:
10546                 g_assert_not_reached();
10547             }
10548 
10549             if (accop != 0) {
10550                 if (opcode == 9 || opcode == 11) {
10551                     /* saturating accumulate ops */
10552                     if (accop < 0) {
10553                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10554                     }
10555                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10556                                                       tcg_res[pass],
10557                                                       tcg_passres);
10558                 } else {
10559                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10560                                   tcg_res[pass], tcg_passres);
10561                 }
10562             }
10563         }
10564     }
10565 
10566     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10567     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10568 }
10569 
10570 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10571                             int opcode, int rd, int rn, int rm)
10572 {
10573     TCGv_i64 tcg_res[2];
10574     int part = is_q ? 2 : 0;
10575     int pass;
10576 
10577     for (pass = 0; pass < 2; pass++) {
10578         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10579         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10580         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10581         static NeonGenWidenFn * const widenfns[3][2] = {
10582             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10583             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10584             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10585         };
10586         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10587 
10588         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10589         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10590         widenfn(tcg_op2_wide, tcg_op2);
10591         tcg_res[pass] = tcg_temp_new_i64();
10592         gen_neon_addl(size, (opcode == 3),
10593                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10594     }
10595 
10596     for (pass = 0; pass < 2; pass++) {
10597         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10598     }
10599 }
10600 
10601 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10602 {
10603     tcg_gen_addi_i64(in, in, 1U << 31);
10604     tcg_gen_extrh_i64_i32(res, in);
10605 }
10606 
10607 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10608                                  int opcode, int rd, int rn, int rm)
10609 {
10610     TCGv_i32 tcg_res[2];
10611     int part = is_q ? 2 : 0;
10612     int pass;
10613 
10614     for (pass = 0; pass < 2; pass++) {
10615         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10616         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10617         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10618         static NeonGenNarrowFn * const narrowfns[3][2] = {
10619             { gen_helper_neon_narrow_high_u8,
10620               gen_helper_neon_narrow_round_high_u8 },
10621             { gen_helper_neon_narrow_high_u16,
10622               gen_helper_neon_narrow_round_high_u16 },
10623             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10624         };
10625         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10626 
10627         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10628         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10629 
10630         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10631 
10632         tcg_res[pass] = tcg_temp_new_i32();
10633         gennarrow(tcg_res[pass], tcg_wideres);
10634     }
10635 
10636     for (pass = 0; pass < 2; pass++) {
10637         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10638     }
10639     clear_vec_high(s, is_q, rd);
10640 }
10641 
10642 /* AdvSIMD three different
10643  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10644  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10645  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10646  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10647  */
10648 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10649 {
10650     /* Instructions in this group fall into three basic classes
10651      * (in each case with the operation working on each element in
10652      * the input vectors):
10653      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10654      *     128 bit input)
10655      * (2) wide 64 x 128 -> 128
10656      * (3) narrowing 128 x 128 -> 64
10657      * Here we do initial decode, catch unallocated cases and
10658      * dispatch to separate functions for each class.
10659      */
10660     int is_q = extract32(insn, 30, 1);
10661     int is_u = extract32(insn, 29, 1);
10662     int size = extract32(insn, 22, 2);
10663     int opcode = extract32(insn, 12, 4);
10664     int rm = extract32(insn, 16, 5);
10665     int rn = extract32(insn, 5, 5);
10666     int rd = extract32(insn, 0, 5);
10667 
10668     switch (opcode) {
10669     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10670     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10671         /* 64 x 128 -> 128 */
10672         if (size == 3) {
10673             unallocated_encoding(s);
10674             return;
10675         }
10676         if (!fp_access_check(s)) {
10677             return;
10678         }
10679         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10680         break;
10681     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10682     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10683         /* 128 x 128 -> 64 */
10684         if (size == 3) {
10685             unallocated_encoding(s);
10686             return;
10687         }
10688         if (!fp_access_check(s)) {
10689             return;
10690         }
10691         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10692         break;
10693     case 14: /* PMULL, PMULL2 */
10694         if (is_u) {
10695             unallocated_encoding(s);
10696             return;
10697         }
10698         switch (size) {
10699         case 0: /* PMULL.P8 */
10700             if (!fp_access_check(s)) {
10701                 return;
10702             }
10703             /* The Q field specifies lo/hi half input for this insn.  */
10704             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10705                              gen_helper_neon_pmull_h);
10706             break;
10707 
10708         case 3: /* PMULL.P64 */
10709             if (!dc_isar_feature(aa64_pmull, s)) {
10710                 unallocated_encoding(s);
10711                 return;
10712             }
10713             if (!fp_access_check(s)) {
10714                 return;
10715             }
10716             /* The Q field specifies lo/hi half input for this insn.  */
10717             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10718                              gen_helper_gvec_pmull_q);
10719             break;
10720 
10721         default:
10722             unallocated_encoding(s);
10723             break;
10724         }
10725         return;
10726     case 9: /* SQDMLAL, SQDMLAL2 */
10727     case 11: /* SQDMLSL, SQDMLSL2 */
10728     case 13: /* SQDMULL, SQDMULL2 */
10729         if (is_u || size == 0) {
10730             unallocated_encoding(s);
10731             return;
10732         }
10733         /* fall through */
10734     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10735     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10736     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10737     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10738     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10739     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10740     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10741         /* 64 x 64 -> 128 */
10742         if (size == 3) {
10743             unallocated_encoding(s);
10744             return;
10745         }
10746         if (!fp_access_check(s)) {
10747             return;
10748         }
10749 
10750         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10751         break;
10752     default:
10753         /* opcode 15 not allocated */
10754         unallocated_encoding(s);
10755         break;
10756     }
10757 }
10758 
10759 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10760 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10761 {
10762     int rd = extract32(insn, 0, 5);
10763     int rn = extract32(insn, 5, 5);
10764     int rm = extract32(insn, 16, 5);
10765     int size = extract32(insn, 22, 2);
10766     bool is_u = extract32(insn, 29, 1);
10767     bool is_q = extract32(insn, 30, 1);
10768 
10769     if (!fp_access_check(s)) {
10770         return;
10771     }
10772 
10773     switch (size + 4 * is_u) {
10774     case 0: /* AND */
10775         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10776         return;
10777     case 1: /* BIC */
10778         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10779         return;
10780     case 2: /* ORR */
10781         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10782         return;
10783     case 3: /* ORN */
10784         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10785         return;
10786     case 4: /* EOR */
10787         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10788         return;
10789 
10790     case 5: /* BSL bitwise select */
10791         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10792         return;
10793     case 6: /* BIT, bitwise insert if true */
10794         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10795         return;
10796     case 7: /* BIF, bitwise insert if false */
10797         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10798         return;
10799 
10800     default:
10801         g_assert_not_reached();
10802     }
10803 }
10804 
10805 /* Pairwise op subgroup of C3.6.16.
10806  *
10807  * This is called directly or via the handle_3same_float for float pairwise
10808  * operations where the opcode and size are calculated differently.
10809  */
10810 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10811                                    int size, int rn, int rm, int rd)
10812 {
10813     TCGv_ptr fpst;
10814     int pass;
10815 
10816     /* Floating point operations need fpst */
10817     if (opcode >= 0x58) {
10818         fpst = fpstatus_ptr(FPST_FPCR);
10819     } else {
10820         fpst = NULL;
10821     }
10822 
10823     if (!fp_access_check(s)) {
10824         return;
10825     }
10826 
10827     /* These operations work on the concatenated rm:rn, with each pair of
10828      * adjacent elements being operated on to produce an element in the result.
10829      */
10830     if (size == 3) {
10831         TCGv_i64 tcg_res[2];
10832 
10833         for (pass = 0; pass < 2; pass++) {
10834             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10835             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10836             int passreg = (pass == 0) ? rn : rm;
10837 
10838             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10839             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10840             tcg_res[pass] = tcg_temp_new_i64();
10841 
10842             switch (opcode) {
10843             case 0x17: /* ADDP */
10844                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10845                 break;
10846             case 0x58: /* FMAXNMP */
10847                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10848                 break;
10849             case 0x5a: /* FADDP */
10850                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10851                 break;
10852             case 0x5e: /* FMAXP */
10853                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10854                 break;
10855             case 0x78: /* FMINNMP */
10856                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10857                 break;
10858             case 0x7e: /* FMINP */
10859                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10860                 break;
10861             default:
10862                 g_assert_not_reached();
10863             }
10864         }
10865 
10866         for (pass = 0; pass < 2; pass++) {
10867             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10868         }
10869     } else {
10870         int maxpass = is_q ? 4 : 2;
10871         TCGv_i32 tcg_res[4];
10872 
10873         for (pass = 0; pass < maxpass; pass++) {
10874             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10875             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10876             NeonGenTwoOpFn *genfn = NULL;
10877             int passreg = pass < (maxpass / 2) ? rn : rm;
10878             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10879 
10880             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10881             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10882             tcg_res[pass] = tcg_temp_new_i32();
10883 
10884             switch (opcode) {
10885             case 0x17: /* ADDP */
10886             {
10887                 static NeonGenTwoOpFn * const fns[3] = {
10888                     gen_helper_neon_padd_u8,
10889                     gen_helper_neon_padd_u16,
10890                     tcg_gen_add_i32,
10891                 };
10892                 genfn = fns[size];
10893                 break;
10894             }
10895             case 0x14: /* SMAXP, UMAXP */
10896             {
10897                 static NeonGenTwoOpFn * const fns[3][2] = {
10898                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10899                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10900                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10901                 };
10902                 genfn = fns[size][u];
10903                 break;
10904             }
10905             case 0x15: /* SMINP, UMINP */
10906             {
10907                 static NeonGenTwoOpFn * const fns[3][2] = {
10908                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10909                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10910                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10911                 };
10912                 genfn = fns[size][u];
10913                 break;
10914             }
10915             /* The FP operations are all on single floats (32 bit) */
10916             case 0x58: /* FMAXNMP */
10917                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10918                 break;
10919             case 0x5a: /* FADDP */
10920                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10921                 break;
10922             case 0x5e: /* FMAXP */
10923                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10924                 break;
10925             case 0x78: /* FMINNMP */
10926                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10927                 break;
10928             case 0x7e: /* FMINP */
10929                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10930                 break;
10931             default:
10932                 g_assert_not_reached();
10933             }
10934 
10935             /* FP ops called directly, otherwise call now */
10936             if (genfn) {
10937                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10938             }
10939         }
10940 
10941         for (pass = 0; pass < maxpass; pass++) {
10942             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10943         }
10944         clear_vec_high(s, is_q, rd);
10945     }
10946 }
10947 
10948 /* Floating point op subgroup of C3.6.16. */
10949 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10950 {
10951     /* For floating point ops, the U, size[1] and opcode bits
10952      * together indicate the operation. size[0] indicates single
10953      * or double.
10954      */
10955     int fpopcode = extract32(insn, 11, 5)
10956         | (extract32(insn, 23, 1) << 5)
10957         | (extract32(insn, 29, 1) << 6);
10958     int is_q = extract32(insn, 30, 1);
10959     int size = extract32(insn, 22, 1);
10960     int rm = extract32(insn, 16, 5);
10961     int rn = extract32(insn, 5, 5);
10962     int rd = extract32(insn, 0, 5);
10963 
10964     int datasize = is_q ? 128 : 64;
10965     int esize = 32 << size;
10966     int elements = datasize / esize;
10967 
10968     if (size == 1 && !is_q) {
10969         unallocated_encoding(s);
10970         return;
10971     }
10972 
10973     switch (fpopcode) {
10974     case 0x58: /* FMAXNMP */
10975     case 0x5a: /* FADDP */
10976     case 0x5e: /* FMAXP */
10977     case 0x78: /* FMINNMP */
10978     case 0x7e: /* FMINP */
10979         if (size && !is_q) {
10980             unallocated_encoding(s);
10981             return;
10982         }
10983         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10984                                rn, rm, rd);
10985         return;
10986     case 0x1b: /* FMULX */
10987     case 0x1f: /* FRECPS */
10988     case 0x3f: /* FRSQRTS */
10989     case 0x5d: /* FACGE */
10990     case 0x7d: /* FACGT */
10991     case 0x19: /* FMLA */
10992     case 0x39: /* FMLS */
10993     case 0x18: /* FMAXNM */
10994     case 0x1a: /* FADD */
10995     case 0x1c: /* FCMEQ */
10996     case 0x1e: /* FMAX */
10997     case 0x38: /* FMINNM */
10998     case 0x3a: /* FSUB */
10999     case 0x3e: /* FMIN */
11000     case 0x5b: /* FMUL */
11001     case 0x5c: /* FCMGE */
11002     case 0x5f: /* FDIV */
11003     case 0x7a: /* FABD */
11004     case 0x7c: /* FCMGT */
11005         if (!fp_access_check(s)) {
11006             return;
11007         }
11008         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11009         return;
11010 
11011     case 0x1d: /* FMLAL  */
11012     case 0x3d: /* FMLSL  */
11013     case 0x59: /* FMLAL2 */
11014     case 0x79: /* FMLSL2 */
11015         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11016             unallocated_encoding(s);
11017             return;
11018         }
11019         if (fp_access_check(s)) {
11020             int is_s = extract32(insn, 23, 1);
11021             int is_2 = extract32(insn, 29, 1);
11022             int data = (is_2 << 1) | is_s;
11023             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11024                                vec_full_reg_offset(s, rn),
11025                                vec_full_reg_offset(s, rm), cpu_env,
11026                                is_q ? 16 : 8, vec_full_reg_size(s),
11027                                data, gen_helper_gvec_fmlal_a64);
11028         }
11029         return;
11030 
11031     default:
11032         unallocated_encoding(s);
11033         return;
11034     }
11035 }
11036 
11037 /* Integer op subgroup of C3.6.16. */
11038 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11039 {
11040     int is_q = extract32(insn, 30, 1);
11041     int u = extract32(insn, 29, 1);
11042     int size = extract32(insn, 22, 2);
11043     int opcode = extract32(insn, 11, 5);
11044     int rm = extract32(insn, 16, 5);
11045     int rn = extract32(insn, 5, 5);
11046     int rd = extract32(insn, 0, 5);
11047     int pass;
11048     TCGCond cond;
11049 
11050     switch (opcode) {
11051     case 0x13: /* MUL, PMUL */
11052         if (u && size != 0) {
11053             unallocated_encoding(s);
11054             return;
11055         }
11056         /* fall through */
11057     case 0x0: /* SHADD, UHADD */
11058     case 0x2: /* SRHADD, URHADD */
11059     case 0x4: /* SHSUB, UHSUB */
11060     case 0xc: /* SMAX, UMAX */
11061     case 0xd: /* SMIN, UMIN */
11062     case 0xe: /* SABD, UABD */
11063     case 0xf: /* SABA, UABA */
11064     case 0x12: /* MLA, MLS */
11065         if (size == 3) {
11066             unallocated_encoding(s);
11067             return;
11068         }
11069         break;
11070     case 0x16: /* SQDMULH, SQRDMULH */
11071         if (size == 0 || size == 3) {
11072             unallocated_encoding(s);
11073             return;
11074         }
11075         break;
11076     default:
11077         if (size == 3 && !is_q) {
11078             unallocated_encoding(s);
11079             return;
11080         }
11081         break;
11082     }
11083 
11084     if (!fp_access_check(s)) {
11085         return;
11086     }
11087 
11088     switch (opcode) {
11089     case 0x01: /* SQADD, UQADD */
11090         if (u) {
11091             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11092         } else {
11093             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11094         }
11095         return;
11096     case 0x05: /* SQSUB, UQSUB */
11097         if (u) {
11098             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11099         } else {
11100             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11101         }
11102         return;
11103     case 0x08: /* SSHL, USHL */
11104         if (u) {
11105             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11106         } else {
11107             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11108         }
11109         return;
11110     case 0x0c: /* SMAX, UMAX */
11111         if (u) {
11112             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11113         } else {
11114             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11115         }
11116         return;
11117     case 0x0d: /* SMIN, UMIN */
11118         if (u) {
11119             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11120         } else {
11121             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11122         }
11123         return;
11124     case 0xe: /* SABD, UABD */
11125         if (u) {
11126             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11127         } else {
11128             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11129         }
11130         return;
11131     case 0xf: /* SABA, UABA */
11132         if (u) {
11133             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11134         } else {
11135             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11136         }
11137         return;
11138     case 0x10: /* ADD, SUB */
11139         if (u) {
11140             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11141         } else {
11142             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11143         }
11144         return;
11145     case 0x13: /* MUL, PMUL */
11146         if (!u) { /* MUL */
11147             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11148         } else {  /* PMUL */
11149             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11150         }
11151         return;
11152     case 0x12: /* MLA, MLS */
11153         if (u) {
11154             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11155         } else {
11156             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11157         }
11158         return;
11159     case 0x16: /* SQDMULH, SQRDMULH */
11160         {
11161             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11162                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11163                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11164             };
11165             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11166         }
11167         return;
11168     case 0x11:
11169         if (!u) { /* CMTST */
11170             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11171             return;
11172         }
11173         /* else CMEQ */
11174         cond = TCG_COND_EQ;
11175         goto do_gvec_cmp;
11176     case 0x06: /* CMGT, CMHI */
11177         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11178         goto do_gvec_cmp;
11179     case 0x07: /* CMGE, CMHS */
11180         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11181     do_gvec_cmp:
11182         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11183                          vec_full_reg_offset(s, rn),
11184                          vec_full_reg_offset(s, rm),
11185                          is_q ? 16 : 8, vec_full_reg_size(s));
11186         return;
11187     }
11188 
11189     if (size == 3) {
11190         assert(is_q);
11191         for (pass = 0; pass < 2; pass++) {
11192             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11193             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11194             TCGv_i64 tcg_res = tcg_temp_new_i64();
11195 
11196             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11197             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11198 
11199             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11200 
11201             write_vec_element(s, tcg_res, rd, pass, MO_64);
11202         }
11203     } else {
11204         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11205             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11206             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11207             TCGv_i32 tcg_res = tcg_temp_new_i32();
11208             NeonGenTwoOpFn *genfn = NULL;
11209             NeonGenTwoOpEnvFn *genenvfn = NULL;
11210 
11211             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11212             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11213 
11214             switch (opcode) {
11215             case 0x0: /* SHADD, UHADD */
11216             {
11217                 static NeonGenTwoOpFn * const fns[3][2] = {
11218                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11219                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11220                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11221                 };
11222                 genfn = fns[size][u];
11223                 break;
11224             }
11225             case 0x2: /* SRHADD, URHADD */
11226             {
11227                 static NeonGenTwoOpFn * const fns[3][2] = {
11228                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11229                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11230                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11231                 };
11232                 genfn = fns[size][u];
11233                 break;
11234             }
11235             case 0x4: /* SHSUB, UHSUB */
11236             {
11237                 static NeonGenTwoOpFn * const fns[3][2] = {
11238                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11239                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11240                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11241                 };
11242                 genfn = fns[size][u];
11243                 break;
11244             }
11245             case 0x9: /* SQSHL, UQSHL */
11246             {
11247                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11248                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11249                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11250                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11251                 };
11252                 genenvfn = fns[size][u];
11253                 break;
11254             }
11255             case 0xa: /* SRSHL, URSHL */
11256             {
11257                 static NeonGenTwoOpFn * const fns[3][2] = {
11258                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11259                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11260                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11261                 };
11262                 genfn = fns[size][u];
11263                 break;
11264             }
11265             case 0xb: /* SQRSHL, UQRSHL */
11266             {
11267                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11268                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11269                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11270                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11271                 };
11272                 genenvfn = fns[size][u];
11273                 break;
11274             }
11275             default:
11276                 g_assert_not_reached();
11277             }
11278 
11279             if (genenvfn) {
11280                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11281             } else {
11282                 genfn(tcg_res, tcg_op1, tcg_op2);
11283             }
11284 
11285             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11286         }
11287     }
11288     clear_vec_high(s, is_q, rd);
11289 }
11290 
11291 /* AdvSIMD three same
11292  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11293  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11294  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11295  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11296  */
11297 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11298 {
11299     int opcode = extract32(insn, 11, 5);
11300 
11301     switch (opcode) {
11302     case 0x3: /* logic ops */
11303         disas_simd_3same_logic(s, insn);
11304         break;
11305     case 0x17: /* ADDP */
11306     case 0x14: /* SMAXP, UMAXP */
11307     case 0x15: /* SMINP, UMINP */
11308     {
11309         /* Pairwise operations */
11310         int is_q = extract32(insn, 30, 1);
11311         int u = extract32(insn, 29, 1);
11312         int size = extract32(insn, 22, 2);
11313         int rm = extract32(insn, 16, 5);
11314         int rn = extract32(insn, 5, 5);
11315         int rd = extract32(insn, 0, 5);
11316         if (opcode == 0x17) {
11317             if (u || (size == 3 && !is_q)) {
11318                 unallocated_encoding(s);
11319                 return;
11320             }
11321         } else {
11322             if (size == 3) {
11323                 unallocated_encoding(s);
11324                 return;
11325             }
11326         }
11327         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11328         break;
11329     }
11330     case 0x18 ... 0x31:
11331         /* floating point ops, sz[1] and U are part of opcode */
11332         disas_simd_3same_float(s, insn);
11333         break;
11334     default:
11335         disas_simd_3same_int(s, insn);
11336         break;
11337     }
11338 }
11339 
11340 /*
11341  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11342  *
11343  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11344  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11345  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11346  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11347  *
11348  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11349  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11350  *
11351  */
11352 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11353 {
11354     int opcode = extract32(insn, 11, 3);
11355     int u = extract32(insn, 29, 1);
11356     int a = extract32(insn, 23, 1);
11357     int is_q = extract32(insn, 30, 1);
11358     int rm = extract32(insn, 16, 5);
11359     int rn = extract32(insn, 5, 5);
11360     int rd = extract32(insn, 0, 5);
11361     /*
11362      * For these floating point ops, the U, a and opcode bits
11363      * together indicate the operation.
11364      */
11365     int fpopcode = opcode | (a << 3) | (u << 4);
11366     int datasize = is_q ? 128 : 64;
11367     int elements = datasize / 16;
11368     bool pairwise;
11369     TCGv_ptr fpst;
11370     int pass;
11371 
11372     switch (fpopcode) {
11373     case 0x0: /* FMAXNM */
11374     case 0x1: /* FMLA */
11375     case 0x2: /* FADD */
11376     case 0x3: /* FMULX */
11377     case 0x4: /* FCMEQ */
11378     case 0x6: /* FMAX */
11379     case 0x7: /* FRECPS */
11380     case 0x8: /* FMINNM */
11381     case 0x9: /* FMLS */
11382     case 0xa: /* FSUB */
11383     case 0xe: /* FMIN */
11384     case 0xf: /* FRSQRTS */
11385     case 0x13: /* FMUL */
11386     case 0x14: /* FCMGE */
11387     case 0x15: /* FACGE */
11388     case 0x17: /* FDIV */
11389     case 0x1a: /* FABD */
11390     case 0x1c: /* FCMGT */
11391     case 0x1d: /* FACGT */
11392         pairwise = false;
11393         break;
11394     case 0x10: /* FMAXNMP */
11395     case 0x12: /* FADDP */
11396     case 0x16: /* FMAXP */
11397     case 0x18: /* FMINNMP */
11398     case 0x1e: /* FMINP */
11399         pairwise = true;
11400         break;
11401     default:
11402         unallocated_encoding(s);
11403         return;
11404     }
11405 
11406     if (!dc_isar_feature(aa64_fp16, s)) {
11407         unallocated_encoding(s);
11408         return;
11409     }
11410 
11411     if (!fp_access_check(s)) {
11412         return;
11413     }
11414 
11415     fpst = fpstatus_ptr(FPST_FPCR_F16);
11416 
11417     if (pairwise) {
11418         int maxpass = is_q ? 8 : 4;
11419         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11420         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11421         TCGv_i32 tcg_res[8];
11422 
11423         for (pass = 0; pass < maxpass; pass++) {
11424             int passreg = pass < (maxpass / 2) ? rn : rm;
11425             int passelt = (pass << 1) & (maxpass - 1);
11426 
11427             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11428             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11429             tcg_res[pass] = tcg_temp_new_i32();
11430 
11431             switch (fpopcode) {
11432             case 0x10: /* FMAXNMP */
11433                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11434                                            fpst);
11435                 break;
11436             case 0x12: /* FADDP */
11437                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11438                 break;
11439             case 0x16: /* FMAXP */
11440                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11441                 break;
11442             case 0x18: /* FMINNMP */
11443                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11444                                            fpst);
11445                 break;
11446             case 0x1e: /* FMINP */
11447                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11448                 break;
11449             default:
11450                 g_assert_not_reached();
11451             }
11452         }
11453 
11454         for (pass = 0; pass < maxpass; pass++) {
11455             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11456         }
11457     } else {
11458         for (pass = 0; pass < elements; pass++) {
11459             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11460             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11461             TCGv_i32 tcg_res = tcg_temp_new_i32();
11462 
11463             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11464             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11465 
11466             switch (fpopcode) {
11467             case 0x0: /* FMAXNM */
11468                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11469                 break;
11470             case 0x1: /* FMLA */
11471                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11472                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11473                                            fpst);
11474                 break;
11475             case 0x2: /* FADD */
11476                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11477                 break;
11478             case 0x3: /* FMULX */
11479                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11480                 break;
11481             case 0x4: /* FCMEQ */
11482                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11483                 break;
11484             case 0x6: /* FMAX */
11485                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11486                 break;
11487             case 0x7: /* FRECPS */
11488                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11489                 break;
11490             case 0x8: /* FMINNM */
11491                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11492                 break;
11493             case 0x9: /* FMLS */
11494                 /* As usual for ARM, separate negation for fused multiply-add */
11495                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11496                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11497                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11498                                            fpst);
11499                 break;
11500             case 0xa: /* FSUB */
11501                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11502                 break;
11503             case 0xe: /* FMIN */
11504                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11505                 break;
11506             case 0xf: /* FRSQRTS */
11507                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11508                 break;
11509             case 0x13: /* FMUL */
11510                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11511                 break;
11512             case 0x14: /* FCMGE */
11513                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11514                 break;
11515             case 0x15: /* FACGE */
11516                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11517                 break;
11518             case 0x17: /* FDIV */
11519                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11520                 break;
11521             case 0x1a: /* FABD */
11522                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11523                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11524                 break;
11525             case 0x1c: /* FCMGT */
11526                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11527                 break;
11528             case 0x1d: /* FACGT */
11529                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11530                 break;
11531             default:
11532                 g_assert_not_reached();
11533             }
11534 
11535             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11536         }
11537     }
11538 
11539     clear_vec_high(s, is_q, rd);
11540 }
11541 
11542 /* AdvSIMD three same extra
11543  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11544  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11545  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11546  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11547  */
11548 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11549 {
11550     int rd = extract32(insn, 0, 5);
11551     int rn = extract32(insn, 5, 5);
11552     int opcode = extract32(insn, 11, 4);
11553     int rm = extract32(insn, 16, 5);
11554     int size = extract32(insn, 22, 2);
11555     bool u = extract32(insn, 29, 1);
11556     bool is_q = extract32(insn, 30, 1);
11557     bool feature;
11558     int rot;
11559 
11560     switch (u * 16 + opcode) {
11561     case 0x10: /* SQRDMLAH (vector) */
11562     case 0x11: /* SQRDMLSH (vector) */
11563         if (size != 1 && size != 2) {
11564             unallocated_encoding(s);
11565             return;
11566         }
11567         feature = dc_isar_feature(aa64_rdm, s);
11568         break;
11569     case 0x02: /* SDOT (vector) */
11570     case 0x12: /* UDOT (vector) */
11571         if (size != MO_32) {
11572             unallocated_encoding(s);
11573             return;
11574         }
11575         feature = dc_isar_feature(aa64_dp, s);
11576         break;
11577     case 0x03: /* USDOT */
11578         if (size != MO_32) {
11579             unallocated_encoding(s);
11580             return;
11581         }
11582         feature = dc_isar_feature(aa64_i8mm, s);
11583         break;
11584     case 0x04: /* SMMLA */
11585     case 0x14: /* UMMLA */
11586     case 0x05: /* USMMLA */
11587         if (!is_q || size != MO_32) {
11588             unallocated_encoding(s);
11589             return;
11590         }
11591         feature = dc_isar_feature(aa64_i8mm, s);
11592         break;
11593     case 0x18: /* FCMLA, #0 */
11594     case 0x19: /* FCMLA, #90 */
11595     case 0x1a: /* FCMLA, #180 */
11596     case 0x1b: /* FCMLA, #270 */
11597     case 0x1c: /* FCADD, #90 */
11598     case 0x1e: /* FCADD, #270 */
11599         if (size == 0
11600             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11601             || (size == 3 && !is_q)) {
11602             unallocated_encoding(s);
11603             return;
11604         }
11605         feature = dc_isar_feature(aa64_fcma, s);
11606         break;
11607     case 0x1d: /* BFMMLA */
11608         if (size != MO_16 || !is_q) {
11609             unallocated_encoding(s);
11610             return;
11611         }
11612         feature = dc_isar_feature(aa64_bf16, s);
11613         break;
11614     case 0x1f:
11615         switch (size) {
11616         case 1: /* BFDOT */
11617         case 3: /* BFMLAL{B,T} */
11618             feature = dc_isar_feature(aa64_bf16, s);
11619             break;
11620         default:
11621             unallocated_encoding(s);
11622             return;
11623         }
11624         break;
11625     default:
11626         unallocated_encoding(s);
11627         return;
11628     }
11629     if (!feature) {
11630         unallocated_encoding(s);
11631         return;
11632     }
11633     if (!fp_access_check(s)) {
11634         return;
11635     }
11636 
11637     switch (opcode) {
11638     case 0x0: /* SQRDMLAH (vector) */
11639         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11640         return;
11641 
11642     case 0x1: /* SQRDMLSH (vector) */
11643         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11644         return;
11645 
11646     case 0x2: /* SDOT / UDOT */
11647         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11648                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11649         return;
11650 
11651     case 0x3: /* USDOT */
11652         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11653         return;
11654 
11655     case 0x04: /* SMMLA, UMMLA */
11656         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11657                          u ? gen_helper_gvec_ummla_b
11658                          : gen_helper_gvec_smmla_b);
11659         return;
11660     case 0x05: /* USMMLA */
11661         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11662         return;
11663 
11664     case 0x8: /* FCMLA, #0 */
11665     case 0x9: /* FCMLA, #90 */
11666     case 0xa: /* FCMLA, #180 */
11667     case 0xb: /* FCMLA, #270 */
11668         rot = extract32(opcode, 0, 2);
11669         switch (size) {
11670         case 1:
11671             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11672                               gen_helper_gvec_fcmlah);
11673             break;
11674         case 2:
11675             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11676                               gen_helper_gvec_fcmlas);
11677             break;
11678         case 3:
11679             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11680                               gen_helper_gvec_fcmlad);
11681             break;
11682         default:
11683             g_assert_not_reached();
11684         }
11685         return;
11686 
11687     case 0xc: /* FCADD, #90 */
11688     case 0xe: /* FCADD, #270 */
11689         rot = extract32(opcode, 1, 1);
11690         switch (size) {
11691         case 1:
11692             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11693                               gen_helper_gvec_fcaddh);
11694             break;
11695         case 2:
11696             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11697                               gen_helper_gvec_fcadds);
11698             break;
11699         case 3:
11700             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11701                               gen_helper_gvec_fcaddd);
11702             break;
11703         default:
11704             g_assert_not_reached();
11705         }
11706         return;
11707 
11708     case 0xd: /* BFMMLA */
11709         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11710         return;
11711     case 0xf:
11712         switch (size) {
11713         case 1: /* BFDOT */
11714             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11715             break;
11716         case 3: /* BFMLAL{B,T} */
11717             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11718                               gen_helper_gvec_bfmlal);
11719             break;
11720         default:
11721             g_assert_not_reached();
11722         }
11723         return;
11724 
11725     default:
11726         g_assert_not_reached();
11727     }
11728 }
11729 
11730 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11731                                   int size, int rn, int rd)
11732 {
11733     /* Handle 2-reg-misc ops which are widening (so each size element
11734      * in the source becomes a 2*size element in the destination.
11735      * The only instruction like this is FCVTL.
11736      */
11737     int pass;
11738 
11739     if (size == 3) {
11740         /* 32 -> 64 bit fp conversion */
11741         TCGv_i64 tcg_res[2];
11742         int srcelt = is_q ? 2 : 0;
11743 
11744         for (pass = 0; pass < 2; pass++) {
11745             TCGv_i32 tcg_op = tcg_temp_new_i32();
11746             tcg_res[pass] = tcg_temp_new_i64();
11747 
11748             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11749             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11750         }
11751         for (pass = 0; pass < 2; pass++) {
11752             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11753         }
11754     } else {
11755         /* 16 -> 32 bit fp conversion */
11756         int srcelt = is_q ? 4 : 0;
11757         TCGv_i32 tcg_res[4];
11758         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11759         TCGv_i32 ahp = get_ahp_flag();
11760 
11761         for (pass = 0; pass < 4; pass++) {
11762             tcg_res[pass] = tcg_temp_new_i32();
11763 
11764             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11765             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11766                                            fpst, ahp);
11767         }
11768         for (pass = 0; pass < 4; pass++) {
11769             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11770         }
11771     }
11772 }
11773 
11774 static void handle_rev(DisasContext *s, int opcode, bool u,
11775                        bool is_q, int size, int rn, int rd)
11776 {
11777     int op = (opcode << 1) | u;
11778     int opsz = op + size;
11779     int grp_size = 3 - opsz;
11780     int dsize = is_q ? 128 : 64;
11781     int i;
11782 
11783     if (opsz >= 3) {
11784         unallocated_encoding(s);
11785         return;
11786     }
11787 
11788     if (!fp_access_check(s)) {
11789         return;
11790     }
11791 
11792     if (size == 0) {
11793         /* Special case bytes, use bswap op on each group of elements */
11794         int groups = dsize / (8 << grp_size);
11795 
11796         for (i = 0; i < groups; i++) {
11797             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11798 
11799             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11800             switch (grp_size) {
11801             case MO_16:
11802                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11803                 break;
11804             case MO_32:
11805                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11806                 break;
11807             case MO_64:
11808                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11809                 break;
11810             default:
11811                 g_assert_not_reached();
11812             }
11813             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11814         }
11815         clear_vec_high(s, is_q, rd);
11816     } else {
11817         int revmask = (1 << grp_size) - 1;
11818         int esize = 8 << size;
11819         int elements = dsize / esize;
11820         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11821         TCGv_i64 tcg_rd[2];
11822 
11823         for (i = 0; i < 2; i++) {
11824             tcg_rd[i] = tcg_temp_new_i64();
11825             tcg_gen_movi_i64(tcg_rd[i], 0);
11826         }
11827 
11828         for (i = 0; i < elements; i++) {
11829             int e_rev = (i & 0xf) ^ revmask;
11830             int w = (e_rev * esize) / 64;
11831             int o = (e_rev * esize) % 64;
11832 
11833             read_vec_element(s, tcg_rn, rn, i, size);
11834             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11835         }
11836 
11837         for (i = 0; i < 2; i++) {
11838             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11839         }
11840         clear_vec_high(s, true, rd);
11841     }
11842 }
11843 
11844 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11845                                   bool is_q, int size, int rn, int rd)
11846 {
11847     /* Implement the pairwise operations from 2-misc:
11848      * SADDLP, UADDLP, SADALP, UADALP.
11849      * These all add pairs of elements in the input to produce a
11850      * double-width result element in the output (possibly accumulating).
11851      */
11852     bool accum = (opcode == 0x6);
11853     int maxpass = is_q ? 2 : 1;
11854     int pass;
11855     TCGv_i64 tcg_res[2];
11856 
11857     if (size == 2) {
11858         /* 32 + 32 -> 64 op */
11859         MemOp memop = size + (u ? 0 : MO_SIGN);
11860 
11861         for (pass = 0; pass < maxpass; pass++) {
11862             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11863             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11864 
11865             tcg_res[pass] = tcg_temp_new_i64();
11866 
11867             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11868             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11869             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11870             if (accum) {
11871                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11872                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11873             }
11874         }
11875     } else {
11876         for (pass = 0; pass < maxpass; pass++) {
11877             TCGv_i64 tcg_op = tcg_temp_new_i64();
11878             NeonGenOne64OpFn *genfn;
11879             static NeonGenOne64OpFn * const fns[2][2] = {
11880                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11881                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11882             };
11883 
11884             genfn = fns[size][u];
11885 
11886             tcg_res[pass] = tcg_temp_new_i64();
11887 
11888             read_vec_element(s, tcg_op, rn, pass, MO_64);
11889             genfn(tcg_res[pass], tcg_op);
11890 
11891             if (accum) {
11892                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11893                 if (size == 0) {
11894                     gen_helper_neon_addl_u16(tcg_res[pass],
11895                                              tcg_res[pass], tcg_op);
11896                 } else {
11897                     gen_helper_neon_addl_u32(tcg_res[pass],
11898                                              tcg_res[pass], tcg_op);
11899                 }
11900             }
11901         }
11902     }
11903     if (!is_q) {
11904         tcg_res[1] = tcg_constant_i64(0);
11905     }
11906     for (pass = 0; pass < 2; pass++) {
11907         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11908     }
11909 }
11910 
11911 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11912 {
11913     /* Implement SHLL and SHLL2 */
11914     int pass;
11915     int part = is_q ? 2 : 0;
11916     TCGv_i64 tcg_res[2];
11917 
11918     for (pass = 0; pass < 2; pass++) {
11919         static NeonGenWidenFn * const widenfns[3] = {
11920             gen_helper_neon_widen_u8,
11921             gen_helper_neon_widen_u16,
11922             tcg_gen_extu_i32_i64,
11923         };
11924         NeonGenWidenFn *widenfn = widenfns[size];
11925         TCGv_i32 tcg_op = tcg_temp_new_i32();
11926 
11927         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11928         tcg_res[pass] = tcg_temp_new_i64();
11929         widenfn(tcg_res[pass], tcg_op);
11930         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11931     }
11932 
11933     for (pass = 0; pass < 2; pass++) {
11934         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11935     }
11936 }
11937 
11938 /* AdvSIMD two reg misc
11939  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11940  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11941  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11942  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11943  */
11944 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11945 {
11946     int size = extract32(insn, 22, 2);
11947     int opcode = extract32(insn, 12, 5);
11948     bool u = extract32(insn, 29, 1);
11949     bool is_q = extract32(insn, 30, 1);
11950     int rn = extract32(insn, 5, 5);
11951     int rd = extract32(insn, 0, 5);
11952     bool need_fpstatus = false;
11953     int rmode = -1;
11954     TCGv_i32 tcg_rmode;
11955     TCGv_ptr tcg_fpstatus;
11956 
11957     switch (opcode) {
11958     case 0x0: /* REV64, REV32 */
11959     case 0x1: /* REV16 */
11960         handle_rev(s, opcode, u, is_q, size, rn, rd);
11961         return;
11962     case 0x5: /* CNT, NOT, RBIT */
11963         if (u && size == 0) {
11964             /* NOT */
11965             break;
11966         } else if (u && size == 1) {
11967             /* RBIT */
11968             break;
11969         } else if (!u && size == 0) {
11970             /* CNT */
11971             break;
11972         }
11973         unallocated_encoding(s);
11974         return;
11975     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11976     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11977         if (size == 3) {
11978             unallocated_encoding(s);
11979             return;
11980         }
11981         if (!fp_access_check(s)) {
11982             return;
11983         }
11984 
11985         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11986         return;
11987     case 0x4: /* CLS, CLZ */
11988         if (size == 3) {
11989             unallocated_encoding(s);
11990             return;
11991         }
11992         break;
11993     case 0x2: /* SADDLP, UADDLP */
11994     case 0x6: /* SADALP, UADALP */
11995         if (size == 3) {
11996             unallocated_encoding(s);
11997             return;
11998         }
11999         if (!fp_access_check(s)) {
12000             return;
12001         }
12002         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12003         return;
12004     case 0x13: /* SHLL, SHLL2 */
12005         if (u == 0 || size == 3) {
12006             unallocated_encoding(s);
12007             return;
12008         }
12009         if (!fp_access_check(s)) {
12010             return;
12011         }
12012         handle_shll(s, is_q, size, rn, rd);
12013         return;
12014     case 0xa: /* CMLT */
12015         if (u == 1) {
12016             unallocated_encoding(s);
12017             return;
12018         }
12019         /* fall through */
12020     case 0x8: /* CMGT, CMGE */
12021     case 0x9: /* CMEQ, CMLE */
12022     case 0xb: /* ABS, NEG */
12023         if (size == 3 && !is_q) {
12024             unallocated_encoding(s);
12025             return;
12026         }
12027         break;
12028     case 0x3: /* SUQADD, USQADD */
12029         if (size == 3 && !is_q) {
12030             unallocated_encoding(s);
12031             return;
12032         }
12033         if (!fp_access_check(s)) {
12034             return;
12035         }
12036         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12037         return;
12038     case 0x7: /* SQABS, SQNEG */
12039         if (size == 3 && !is_q) {
12040             unallocated_encoding(s);
12041             return;
12042         }
12043         break;
12044     case 0xc ... 0xf:
12045     case 0x16 ... 0x1f:
12046     {
12047         /* Floating point: U, size[1] and opcode indicate operation;
12048          * size[0] indicates single or double precision.
12049          */
12050         int is_double = extract32(size, 0, 1);
12051         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12052         size = is_double ? 3 : 2;
12053         switch (opcode) {
12054         case 0x2f: /* FABS */
12055         case 0x6f: /* FNEG */
12056             if (size == 3 && !is_q) {
12057                 unallocated_encoding(s);
12058                 return;
12059             }
12060             break;
12061         case 0x1d: /* SCVTF */
12062         case 0x5d: /* UCVTF */
12063         {
12064             bool is_signed = (opcode == 0x1d) ? true : false;
12065             int elements = is_double ? 2 : is_q ? 4 : 2;
12066             if (is_double && !is_q) {
12067                 unallocated_encoding(s);
12068                 return;
12069             }
12070             if (!fp_access_check(s)) {
12071                 return;
12072             }
12073             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12074             return;
12075         }
12076         case 0x2c: /* FCMGT (zero) */
12077         case 0x2d: /* FCMEQ (zero) */
12078         case 0x2e: /* FCMLT (zero) */
12079         case 0x6c: /* FCMGE (zero) */
12080         case 0x6d: /* FCMLE (zero) */
12081             if (size == 3 && !is_q) {
12082                 unallocated_encoding(s);
12083                 return;
12084             }
12085             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12086             return;
12087         case 0x7f: /* FSQRT */
12088             if (size == 3 && !is_q) {
12089                 unallocated_encoding(s);
12090                 return;
12091             }
12092             break;
12093         case 0x1a: /* FCVTNS */
12094         case 0x1b: /* FCVTMS */
12095         case 0x3a: /* FCVTPS */
12096         case 0x3b: /* FCVTZS */
12097         case 0x5a: /* FCVTNU */
12098         case 0x5b: /* FCVTMU */
12099         case 0x7a: /* FCVTPU */
12100         case 0x7b: /* FCVTZU */
12101             need_fpstatus = true;
12102             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12103             if (size == 3 && !is_q) {
12104                 unallocated_encoding(s);
12105                 return;
12106             }
12107             break;
12108         case 0x5c: /* FCVTAU */
12109         case 0x1c: /* FCVTAS */
12110             need_fpstatus = true;
12111             rmode = FPROUNDING_TIEAWAY;
12112             if (size == 3 && !is_q) {
12113                 unallocated_encoding(s);
12114                 return;
12115             }
12116             break;
12117         case 0x3c: /* URECPE */
12118             if (size == 3) {
12119                 unallocated_encoding(s);
12120                 return;
12121             }
12122             /* fall through */
12123         case 0x3d: /* FRECPE */
12124         case 0x7d: /* FRSQRTE */
12125             if (size == 3 && !is_q) {
12126                 unallocated_encoding(s);
12127                 return;
12128             }
12129             if (!fp_access_check(s)) {
12130                 return;
12131             }
12132             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12133             return;
12134         case 0x56: /* FCVTXN, FCVTXN2 */
12135             if (size == 2) {
12136                 unallocated_encoding(s);
12137                 return;
12138             }
12139             /* fall through */
12140         case 0x16: /* FCVTN, FCVTN2 */
12141             /* handle_2misc_narrow does a 2*size -> size operation, but these
12142              * instructions encode the source size rather than dest size.
12143              */
12144             if (!fp_access_check(s)) {
12145                 return;
12146             }
12147             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12148             return;
12149         case 0x36: /* BFCVTN, BFCVTN2 */
12150             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12151                 unallocated_encoding(s);
12152                 return;
12153             }
12154             if (!fp_access_check(s)) {
12155                 return;
12156             }
12157             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12158             return;
12159         case 0x17: /* FCVTL, FCVTL2 */
12160             if (!fp_access_check(s)) {
12161                 return;
12162             }
12163             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12164             return;
12165         case 0x18: /* FRINTN */
12166         case 0x19: /* FRINTM */
12167         case 0x38: /* FRINTP */
12168         case 0x39: /* FRINTZ */
12169             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12170             /* fall through */
12171         case 0x59: /* FRINTX */
12172         case 0x79: /* FRINTI */
12173             need_fpstatus = true;
12174             if (size == 3 && !is_q) {
12175                 unallocated_encoding(s);
12176                 return;
12177             }
12178             break;
12179         case 0x58: /* FRINTA */
12180             rmode = FPROUNDING_TIEAWAY;
12181             need_fpstatus = true;
12182             if (size == 3 && !is_q) {
12183                 unallocated_encoding(s);
12184                 return;
12185             }
12186             break;
12187         case 0x7c: /* URSQRTE */
12188             if (size == 3) {
12189                 unallocated_encoding(s);
12190                 return;
12191             }
12192             break;
12193         case 0x1e: /* FRINT32Z */
12194         case 0x1f: /* FRINT64Z */
12195             rmode = FPROUNDING_ZERO;
12196             /* fall through */
12197         case 0x5e: /* FRINT32X */
12198         case 0x5f: /* FRINT64X */
12199             need_fpstatus = true;
12200             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12201                 unallocated_encoding(s);
12202                 return;
12203             }
12204             break;
12205         default:
12206             unallocated_encoding(s);
12207             return;
12208         }
12209         break;
12210     }
12211     default:
12212         unallocated_encoding(s);
12213         return;
12214     }
12215 
12216     if (!fp_access_check(s)) {
12217         return;
12218     }
12219 
12220     if (need_fpstatus || rmode >= 0) {
12221         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12222     } else {
12223         tcg_fpstatus = NULL;
12224     }
12225     if (rmode >= 0) {
12226         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12227     } else {
12228         tcg_rmode = NULL;
12229     }
12230 
12231     switch (opcode) {
12232     case 0x5:
12233         if (u && size == 0) { /* NOT */
12234             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12235             return;
12236         }
12237         break;
12238     case 0x8: /* CMGT, CMGE */
12239         if (u) {
12240             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12241         } else {
12242             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12243         }
12244         return;
12245     case 0x9: /* CMEQ, CMLE */
12246         if (u) {
12247             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12248         } else {
12249             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12250         }
12251         return;
12252     case 0xa: /* CMLT */
12253         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12254         return;
12255     case 0xb:
12256         if (u) { /* ABS, NEG */
12257             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12258         } else {
12259             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12260         }
12261         return;
12262     }
12263 
12264     if (size == 3) {
12265         /* All 64-bit element operations can be shared with scalar 2misc */
12266         int pass;
12267 
12268         /* Coverity claims (size == 3 && !is_q) has been eliminated
12269          * from all paths leading to here.
12270          */
12271         tcg_debug_assert(is_q);
12272         for (pass = 0; pass < 2; pass++) {
12273             TCGv_i64 tcg_op = tcg_temp_new_i64();
12274             TCGv_i64 tcg_res = tcg_temp_new_i64();
12275 
12276             read_vec_element(s, tcg_op, rn, pass, MO_64);
12277 
12278             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12279                             tcg_rmode, tcg_fpstatus);
12280 
12281             write_vec_element(s, tcg_res, rd, pass, MO_64);
12282         }
12283     } else {
12284         int pass;
12285 
12286         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12287             TCGv_i32 tcg_op = tcg_temp_new_i32();
12288             TCGv_i32 tcg_res = tcg_temp_new_i32();
12289 
12290             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12291 
12292             if (size == 2) {
12293                 /* Special cases for 32 bit elements */
12294                 switch (opcode) {
12295                 case 0x4: /* CLS */
12296                     if (u) {
12297                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12298                     } else {
12299                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12300                     }
12301                     break;
12302                 case 0x7: /* SQABS, SQNEG */
12303                     if (u) {
12304                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12305                     } else {
12306                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12307                     }
12308                     break;
12309                 case 0x2f: /* FABS */
12310                     gen_helper_vfp_abss(tcg_res, tcg_op);
12311                     break;
12312                 case 0x6f: /* FNEG */
12313                     gen_helper_vfp_negs(tcg_res, tcg_op);
12314                     break;
12315                 case 0x7f: /* FSQRT */
12316                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12317                     break;
12318                 case 0x1a: /* FCVTNS */
12319                 case 0x1b: /* FCVTMS */
12320                 case 0x1c: /* FCVTAS */
12321                 case 0x3a: /* FCVTPS */
12322                 case 0x3b: /* FCVTZS */
12323                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12324                                          tcg_constant_i32(0), tcg_fpstatus);
12325                     break;
12326                 case 0x5a: /* FCVTNU */
12327                 case 0x5b: /* FCVTMU */
12328                 case 0x5c: /* FCVTAU */
12329                 case 0x7a: /* FCVTPU */
12330                 case 0x7b: /* FCVTZU */
12331                     gen_helper_vfp_touls(tcg_res, tcg_op,
12332                                          tcg_constant_i32(0), tcg_fpstatus);
12333                     break;
12334                 case 0x18: /* FRINTN */
12335                 case 0x19: /* FRINTM */
12336                 case 0x38: /* FRINTP */
12337                 case 0x39: /* FRINTZ */
12338                 case 0x58: /* FRINTA */
12339                 case 0x79: /* FRINTI */
12340                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12341                     break;
12342                 case 0x59: /* FRINTX */
12343                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12344                     break;
12345                 case 0x7c: /* URSQRTE */
12346                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12347                     break;
12348                 case 0x1e: /* FRINT32Z */
12349                 case 0x5e: /* FRINT32X */
12350                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12351                     break;
12352                 case 0x1f: /* FRINT64Z */
12353                 case 0x5f: /* FRINT64X */
12354                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12355                     break;
12356                 default:
12357                     g_assert_not_reached();
12358                 }
12359             } else {
12360                 /* Use helpers for 8 and 16 bit elements */
12361                 switch (opcode) {
12362                 case 0x5: /* CNT, RBIT */
12363                     /* For these two insns size is part of the opcode specifier
12364                      * (handled earlier); they always operate on byte elements.
12365                      */
12366                     if (u) {
12367                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12368                     } else {
12369                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12370                     }
12371                     break;
12372                 case 0x7: /* SQABS, SQNEG */
12373                 {
12374                     NeonGenOneOpEnvFn *genfn;
12375                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12376                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12377                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12378                     };
12379                     genfn = fns[size][u];
12380                     genfn(tcg_res, cpu_env, tcg_op);
12381                     break;
12382                 }
12383                 case 0x4: /* CLS, CLZ */
12384                     if (u) {
12385                         if (size == 0) {
12386                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12387                         } else {
12388                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12389                         }
12390                     } else {
12391                         if (size == 0) {
12392                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12393                         } else {
12394                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12395                         }
12396                     }
12397                     break;
12398                 default:
12399                     g_assert_not_reached();
12400                 }
12401             }
12402 
12403             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12404         }
12405     }
12406     clear_vec_high(s, is_q, rd);
12407 
12408     if (tcg_rmode) {
12409         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12410     }
12411 }
12412 
12413 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12414  *
12415  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12416  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12417  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12418  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12419  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12420  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12421  *
12422  * This actually covers two groups where scalar access is governed by
12423  * bit 28. A bunch of the instructions (float to integral) only exist
12424  * in the vector form and are un-allocated for the scalar decode. Also
12425  * in the scalar decode Q is always 1.
12426  */
12427 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12428 {
12429     int fpop, opcode, a, u;
12430     int rn, rd;
12431     bool is_q;
12432     bool is_scalar;
12433     bool only_in_vector = false;
12434 
12435     int pass;
12436     TCGv_i32 tcg_rmode = NULL;
12437     TCGv_ptr tcg_fpstatus = NULL;
12438     bool need_fpst = true;
12439     int rmode = -1;
12440 
12441     if (!dc_isar_feature(aa64_fp16, s)) {
12442         unallocated_encoding(s);
12443         return;
12444     }
12445 
12446     rd = extract32(insn, 0, 5);
12447     rn = extract32(insn, 5, 5);
12448 
12449     a = extract32(insn, 23, 1);
12450     u = extract32(insn, 29, 1);
12451     is_scalar = extract32(insn, 28, 1);
12452     is_q = extract32(insn, 30, 1);
12453 
12454     opcode = extract32(insn, 12, 5);
12455     fpop = deposit32(opcode, 5, 1, a);
12456     fpop = deposit32(fpop, 6, 1, u);
12457 
12458     switch (fpop) {
12459     case 0x1d: /* SCVTF */
12460     case 0x5d: /* UCVTF */
12461     {
12462         int elements;
12463 
12464         if (is_scalar) {
12465             elements = 1;
12466         } else {
12467             elements = (is_q ? 8 : 4);
12468         }
12469 
12470         if (!fp_access_check(s)) {
12471             return;
12472         }
12473         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12474         return;
12475     }
12476     break;
12477     case 0x2c: /* FCMGT (zero) */
12478     case 0x2d: /* FCMEQ (zero) */
12479     case 0x2e: /* FCMLT (zero) */
12480     case 0x6c: /* FCMGE (zero) */
12481     case 0x6d: /* FCMLE (zero) */
12482         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12483         return;
12484     case 0x3d: /* FRECPE */
12485     case 0x3f: /* FRECPX */
12486         break;
12487     case 0x18: /* FRINTN */
12488         only_in_vector = true;
12489         rmode = FPROUNDING_TIEEVEN;
12490         break;
12491     case 0x19: /* FRINTM */
12492         only_in_vector = true;
12493         rmode = FPROUNDING_NEGINF;
12494         break;
12495     case 0x38: /* FRINTP */
12496         only_in_vector = true;
12497         rmode = FPROUNDING_POSINF;
12498         break;
12499     case 0x39: /* FRINTZ */
12500         only_in_vector = true;
12501         rmode = FPROUNDING_ZERO;
12502         break;
12503     case 0x58: /* FRINTA */
12504         only_in_vector = true;
12505         rmode = FPROUNDING_TIEAWAY;
12506         break;
12507     case 0x59: /* FRINTX */
12508     case 0x79: /* FRINTI */
12509         only_in_vector = true;
12510         /* current rounding mode */
12511         break;
12512     case 0x1a: /* FCVTNS */
12513         rmode = FPROUNDING_TIEEVEN;
12514         break;
12515     case 0x1b: /* FCVTMS */
12516         rmode = FPROUNDING_NEGINF;
12517         break;
12518     case 0x1c: /* FCVTAS */
12519         rmode = FPROUNDING_TIEAWAY;
12520         break;
12521     case 0x3a: /* FCVTPS */
12522         rmode = FPROUNDING_POSINF;
12523         break;
12524     case 0x3b: /* FCVTZS */
12525         rmode = FPROUNDING_ZERO;
12526         break;
12527     case 0x5a: /* FCVTNU */
12528         rmode = FPROUNDING_TIEEVEN;
12529         break;
12530     case 0x5b: /* FCVTMU */
12531         rmode = FPROUNDING_NEGINF;
12532         break;
12533     case 0x5c: /* FCVTAU */
12534         rmode = FPROUNDING_TIEAWAY;
12535         break;
12536     case 0x7a: /* FCVTPU */
12537         rmode = FPROUNDING_POSINF;
12538         break;
12539     case 0x7b: /* FCVTZU */
12540         rmode = FPROUNDING_ZERO;
12541         break;
12542     case 0x2f: /* FABS */
12543     case 0x6f: /* FNEG */
12544         need_fpst = false;
12545         break;
12546     case 0x7d: /* FRSQRTE */
12547     case 0x7f: /* FSQRT (vector) */
12548         break;
12549     default:
12550         unallocated_encoding(s);
12551         return;
12552     }
12553 
12554 
12555     /* Check additional constraints for the scalar encoding */
12556     if (is_scalar) {
12557         if (!is_q) {
12558             unallocated_encoding(s);
12559             return;
12560         }
12561         /* FRINTxx is only in the vector form */
12562         if (only_in_vector) {
12563             unallocated_encoding(s);
12564             return;
12565         }
12566     }
12567 
12568     if (!fp_access_check(s)) {
12569         return;
12570     }
12571 
12572     if (rmode >= 0 || need_fpst) {
12573         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12574     }
12575 
12576     if (rmode >= 0) {
12577         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12578     }
12579 
12580     if (is_scalar) {
12581         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12582         TCGv_i32 tcg_res = tcg_temp_new_i32();
12583 
12584         switch (fpop) {
12585         case 0x1a: /* FCVTNS */
12586         case 0x1b: /* FCVTMS */
12587         case 0x1c: /* FCVTAS */
12588         case 0x3a: /* FCVTPS */
12589         case 0x3b: /* FCVTZS */
12590             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12591             break;
12592         case 0x3d: /* FRECPE */
12593             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12594             break;
12595         case 0x3f: /* FRECPX */
12596             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12597             break;
12598         case 0x5a: /* FCVTNU */
12599         case 0x5b: /* FCVTMU */
12600         case 0x5c: /* FCVTAU */
12601         case 0x7a: /* FCVTPU */
12602         case 0x7b: /* FCVTZU */
12603             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12604             break;
12605         case 0x6f: /* FNEG */
12606             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12607             break;
12608         case 0x7d: /* FRSQRTE */
12609             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12610             break;
12611         default:
12612             g_assert_not_reached();
12613         }
12614 
12615         /* limit any sign extension going on */
12616         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12617         write_fp_sreg(s, rd, tcg_res);
12618     } else {
12619         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12620             TCGv_i32 tcg_op = tcg_temp_new_i32();
12621             TCGv_i32 tcg_res = tcg_temp_new_i32();
12622 
12623             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12624 
12625             switch (fpop) {
12626             case 0x1a: /* FCVTNS */
12627             case 0x1b: /* FCVTMS */
12628             case 0x1c: /* FCVTAS */
12629             case 0x3a: /* FCVTPS */
12630             case 0x3b: /* FCVTZS */
12631                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12632                 break;
12633             case 0x3d: /* FRECPE */
12634                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12635                 break;
12636             case 0x5a: /* FCVTNU */
12637             case 0x5b: /* FCVTMU */
12638             case 0x5c: /* FCVTAU */
12639             case 0x7a: /* FCVTPU */
12640             case 0x7b: /* FCVTZU */
12641                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12642                 break;
12643             case 0x18: /* FRINTN */
12644             case 0x19: /* FRINTM */
12645             case 0x38: /* FRINTP */
12646             case 0x39: /* FRINTZ */
12647             case 0x58: /* FRINTA */
12648             case 0x79: /* FRINTI */
12649                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12650                 break;
12651             case 0x59: /* FRINTX */
12652                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12653                 break;
12654             case 0x2f: /* FABS */
12655                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12656                 break;
12657             case 0x6f: /* FNEG */
12658                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12659                 break;
12660             case 0x7d: /* FRSQRTE */
12661                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12662                 break;
12663             case 0x7f: /* FSQRT */
12664                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12665                 break;
12666             default:
12667                 g_assert_not_reached();
12668             }
12669 
12670             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12671         }
12672 
12673         clear_vec_high(s, is_q, rd);
12674     }
12675 
12676     if (tcg_rmode) {
12677         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12678     }
12679 }
12680 
12681 /* AdvSIMD scalar x indexed element
12682  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12683  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12684  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12685  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12686  * AdvSIMD vector x indexed element
12687  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12688  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12689  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12690  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12691  */
12692 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12693 {
12694     /* This encoding has two kinds of instruction:
12695      *  normal, where we perform elt x idxelt => elt for each
12696      *     element in the vector
12697      *  long, where we perform elt x idxelt and generate a result of
12698      *     double the width of the input element
12699      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12700      */
12701     bool is_scalar = extract32(insn, 28, 1);
12702     bool is_q = extract32(insn, 30, 1);
12703     bool u = extract32(insn, 29, 1);
12704     int size = extract32(insn, 22, 2);
12705     int l = extract32(insn, 21, 1);
12706     int m = extract32(insn, 20, 1);
12707     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12708     int rm = extract32(insn, 16, 4);
12709     int opcode = extract32(insn, 12, 4);
12710     int h = extract32(insn, 11, 1);
12711     int rn = extract32(insn, 5, 5);
12712     int rd = extract32(insn, 0, 5);
12713     bool is_long = false;
12714     int is_fp = 0;
12715     bool is_fp16 = false;
12716     int index;
12717     TCGv_ptr fpst;
12718 
12719     switch (16 * u + opcode) {
12720     case 0x08: /* MUL */
12721     case 0x10: /* MLA */
12722     case 0x14: /* MLS */
12723         if (is_scalar) {
12724             unallocated_encoding(s);
12725             return;
12726         }
12727         break;
12728     case 0x02: /* SMLAL, SMLAL2 */
12729     case 0x12: /* UMLAL, UMLAL2 */
12730     case 0x06: /* SMLSL, SMLSL2 */
12731     case 0x16: /* UMLSL, UMLSL2 */
12732     case 0x0a: /* SMULL, SMULL2 */
12733     case 0x1a: /* UMULL, UMULL2 */
12734         if (is_scalar) {
12735             unallocated_encoding(s);
12736             return;
12737         }
12738         is_long = true;
12739         break;
12740     case 0x03: /* SQDMLAL, SQDMLAL2 */
12741     case 0x07: /* SQDMLSL, SQDMLSL2 */
12742     case 0x0b: /* SQDMULL, SQDMULL2 */
12743         is_long = true;
12744         break;
12745     case 0x0c: /* SQDMULH */
12746     case 0x0d: /* SQRDMULH */
12747         break;
12748     case 0x01: /* FMLA */
12749     case 0x05: /* FMLS */
12750     case 0x09: /* FMUL */
12751     case 0x19: /* FMULX */
12752         is_fp = 1;
12753         break;
12754     case 0x1d: /* SQRDMLAH */
12755     case 0x1f: /* SQRDMLSH */
12756         if (!dc_isar_feature(aa64_rdm, s)) {
12757             unallocated_encoding(s);
12758             return;
12759         }
12760         break;
12761     case 0x0e: /* SDOT */
12762     case 0x1e: /* UDOT */
12763         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12764             unallocated_encoding(s);
12765             return;
12766         }
12767         break;
12768     case 0x0f:
12769         switch (size) {
12770         case 0: /* SUDOT */
12771         case 2: /* USDOT */
12772             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12773                 unallocated_encoding(s);
12774                 return;
12775             }
12776             size = MO_32;
12777             break;
12778         case 1: /* BFDOT */
12779             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12780                 unallocated_encoding(s);
12781                 return;
12782             }
12783             size = MO_32;
12784             break;
12785         case 3: /* BFMLAL{B,T} */
12786             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12787                 unallocated_encoding(s);
12788                 return;
12789             }
12790             /* can't set is_fp without other incorrect size checks */
12791             size = MO_16;
12792             break;
12793         default:
12794             unallocated_encoding(s);
12795             return;
12796         }
12797         break;
12798     case 0x11: /* FCMLA #0 */
12799     case 0x13: /* FCMLA #90 */
12800     case 0x15: /* FCMLA #180 */
12801     case 0x17: /* FCMLA #270 */
12802         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12803             unallocated_encoding(s);
12804             return;
12805         }
12806         is_fp = 2;
12807         break;
12808     case 0x00: /* FMLAL */
12809     case 0x04: /* FMLSL */
12810     case 0x18: /* FMLAL2 */
12811     case 0x1c: /* FMLSL2 */
12812         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12813             unallocated_encoding(s);
12814             return;
12815         }
12816         size = MO_16;
12817         /* is_fp, but we pass cpu_env not fp_status.  */
12818         break;
12819     default:
12820         unallocated_encoding(s);
12821         return;
12822     }
12823 
12824     switch (is_fp) {
12825     case 1: /* normal fp */
12826         /* convert insn encoded size to MemOp size */
12827         switch (size) {
12828         case 0: /* half-precision */
12829             size = MO_16;
12830             is_fp16 = true;
12831             break;
12832         case MO_32: /* single precision */
12833         case MO_64: /* double precision */
12834             break;
12835         default:
12836             unallocated_encoding(s);
12837             return;
12838         }
12839         break;
12840 
12841     case 2: /* complex fp */
12842         /* Each indexable element is a complex pair.  */
12843         size += 1;
12844         switch (size) {
12845         case MO_32:
12846             if (h && !is_q) {
12847                 unallocated_encoding(s);
12848                 return;
12849             }
12850             is_fp16 = true;
12851             break;
12852         case MO_64:
12853             break;
12854         default:
12855             unallocated_encoding(s);
12856             return;
12857         }
12858         break;
12859 
12860     default: /* integer */
12861         switch (size) {
12862         case MO_8:
12863         case MO_64:
12864             unallocated_encoding(s);
12865             return;
12866         }
12867         break;
12868     }
12869     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12870         unallocated_encoding(s);
12871         return;
12872     }
12873 
12874     /* Given MemOp size, adjust register and indexing.  */
12875     switch (size) {
12876     case MO_16:
12877         index = h << 2 | l << 1 | m;
12878         break;
12879     case MO_32:
12880         index = h << 1 | l;
12881         rm |= m << 4;
12882         break;
12883     case MO_64:
12884         if (l || !is_q) {
12885             unallocated_encoding(s);
12886             return;
12887         }
12888         index = h;
12889         rm |= m << 4;
12890         break;
12891     default:
12892         g_assert_not_reached();
12893     }
12894 
12895     if (!fp_access_check(s)) {
12896         return;
12897     }
12898 
12899     if (is_fp) {
12900         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12901     } else {
12902         fpst = NULL;
12903     }
12904 
12905     switch (16 * u + opcode) {
12906     case 0x0e: /* SDOT */
12907     case 0x1e: /* UDOT */
12908         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12909                          u ? gen_helper_gvec_udot_idx_b
12910                          : gen_helper_gvec_sdot_idx_b);
12911         return;
12912     case 0x0f:
12913         switch (extract32(insn, 22, 2)) {
12914         case 0: /* SUDOT */
12915             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12916                              gen_helper_gvec_sudot_idx_b);
12917             return;
12918         case 1: /* BFDOT */
12919             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12920                              gen_helper_gvec_bfdot_idx);
12921             return;
12922         case 2: /* USDOT */
12923             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12924                              gen_helper_gvec_usdot_idx_b);
12925             return;
12926         case 3: /* BFMLAL{B,T} */
12927             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12928                               gen_helper_gvec_bfmlal_idx);
12929             return;
12930         }
12931         g_assert_not_reached();
12932     case 0x11: /* FCMLA #0 */
12933     case 0x13: /* FCMLA #90 */
12934     case 0x15: /* FCMLA #180 */
12935     case 0x17: /* FCMLA #270 */
12936         {
12937             int rot = extract32(insn, 13, 2);
12938             int data = (index << 2) | rot;
12939             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12940                                vec_full_reg_offset(s, rn),
12941                                vec_full_reg_offset(s, rm),
12942                                vec_full_reg_offset(s, rd), fpst,
12943                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12944                                size == MO_64
12945                                ? gen_helper_gvec_fcmlas_idx
12946                                : gen_helper_gvec_fcmlah_idx);
12947         }
12948         return;
12949 
12950     case 0x00: /* FMLAL */
12951     case 0x04: /* FMLSL */
12952     case 0x18: /* FMLAL2 */
12953     case 0x1c: /* FMLSL2 */
12954         {
12955             int is_s = extract32(opcode, 2, 1);
12956             int is_2 = u;
12957             int data = (index << 2) | (is_2 << 1) | is_s;
12958             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12959                                vec_full_reg_offset(s, rn),
12960                                vec_full_reg_offset(s, rm), cpu_env,
12961                                is_q ? 16 : 8, vec_full_reg_size(s),
12962                                data, gen_helper_gvec_fmlal_idx_a64);
12963         }
12964         return;
12965 
12966     case 0x08: /* MUL */
12967         if (!is_long && !is_scalar) {
12968             static gen_helper_gvec_3 * const fns[3] = {
12969                 gen_helper_gvec_mul_idx_h,
12970                 gen_helper_gvec_mul_idx_s,
12971                 gen_helper_gvec_mul_idx_d,
12972             };
12973             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12974                                vec_full_reg_offset(s, rn),
12975                                vec_full_reg_offset(s, rm),
12976                                is_q ? 16 : 8, vec_full_reg_size(s),
12977                                index, fns[size - 1]);
12978             return;
12979         }
12980         break;
12981 
12982     case 0x10: /* MLA */
12983         if (!is_long && !is_scalar) {
12984             static gen_helper_gvec_4 * const fns[3] = {
12985                 gen_helper_gvec_mla_idx_h,
12986                 gen_helper_gvec_mla_idx_s,
12987                 gen_helper_gvec_mla_idx_d,
12988             };
12989             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12990                                vec_full_reg_offset(s, rn),
12991                                vec_full_reg_offset(s, rm),
12992                                vec_full_reg_offset(s, rd),
12993                                is_q ? 16 : 8, vec_full_reg_size(s),
12994                                index, fns[size - 1]);
12995             return;
12996         }
12997         break;
12998 
12999     case 0x14: /* MLS */
13000         if (!is_long && !is_scalar) {
13001             static gen_helper_gvec_4 * const fns[3] = {
13002                 gen_helper_gvec_mls_idx_h,
13003                 gen_helper_gvec_mls_idx_s,
13004                 gen_helper_gvec_mls_idx_d,
13005             };
13006             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13007                                vec_full_reg_offset(s, rn),
13008                                vec_full_reg_offset(s, rm),
13009                                vec_full_reg_offset(s, rd),
13010                                is_q ? 16 : 8, vec_full_reg_size(s),
13011                                index, fns[size - 1]);
13012             return;
13013         }
13014         break;
13015     }
13016 
13017     if (size == 3) {
13018         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13019         int pass;
13020 
13021         assert(is_fp && is_q && !is_long);
13022 
13023         read_vec_element(s, tcg_idx, rm, index, MO_64);
13024 
13025         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13026             TCGv_i64 tcg_op = tcg_temp_new_i64();
13027             TCGv_i64 tcg_res = tcg_temp_new_i64();
13028 
13029             read_vec_element(s, tcg_op, rn, pass, MO_64);
13030 
13031             switch (16 * u + opcode) {
13032             case 0x05: /* FMLS */
13033                 /* As usual for ARM, separate negation for fused multiply-add */
13034                 gen_helper_vfp_negd(tcg_op, tcg_op);
13035                 /* fall through */
13036             case 0x01: /* FMLA */
13037                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13038                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13039                 break;
13040             case 0x09: /* FMUL */
13041                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13042                 break;
13043             case 0x19: /* FMULX */
13044                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13045                 break;
13046             default:
13047                 g_assert_not_reached();
13048             }
13049 
13050             write_vec_element(s, tcg_res, rd, pass, MO_64);
13051         }
13052 
13053         clear_vec_high(s, !is_scalar, rd);
13054     } else if (!is_long) {
13055         /* 32 bit floating point, or 16 or 32 bit integer.
13056          * For the 16 bit scalar case we use the usual Neon helpers and
13057          * rely on the fact that 0 op 0 == 0 with no side effects.
13058          */
13059         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13060         int pass, maxpasses;
13061 
13062         if (is_scalar) {
13063             maxpasses = 1;
13064         } else {
13065             maxpasses = is_q ? 4 : 2;
13066         }
13067 
13068         read_vec_element_i32(s, tcg_idx, rm, index, size);
13069 
13070         if (size == 1 && !is_scalar) {
13071             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13072              * the index into both halves of the 32 bit tcg_idx and then use
13073              * the usual Neon helpers.
13074              */
13075             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13076         }
13077 
13078         for (pass = 0; pass < maxpasses; pass++) {
13079             TCGv_i32 tcg_op = tcg_temp_new_i32();
13080             TCGv_i32 tcg_res = tcg_temp_new_i32();
13081 
13082             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13083 
13084             switch (16 * u + opcode) {
13085             case 0x08: /* MUL */
13086             case 0x10: /* MLA */
13087             case 0x14: /* MLS */
13088             {
13089                 static NeonGenTwoOpFn * const fns[2][2] = {
13090                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13091                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13092                 };
13093                 NeonGenTwoOpFn *genfn;
13094                 bool is_sub = opcode == 0x4;
13095 
13096                 if (size == 1) {
13097                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13098                 } else {
13099                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13100                 }
13101                 if (opcode == 0x8) {
13102                     break;
13103                 }
13104                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13105                 genfn = fns[size - 1][is_sub];
13106                 genfn(tcg_res, tcg_op, tcg_res);
13107                 break;
13108             }
13109             case 0x05: /* FMLS */
13110             case 0x01: /* FMLA */
13111                 read_vec_element_i32(s, tcg_res, rd, pass,
13112                                      is_scalar ? size : MO_32);
13113                 switch (size) {
13114                 case 1:
13115                     if (opcode == 0x5) {
13116                         /* As usual for ARM, separate negation for fused
13117                          * multiply-add */
13118                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13119                     }
13120                     if (is_scalar) {
13121                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13122                                                    tcg_res, fpst);
13123                     } else {
13124                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13125                                                     tcg_res, fpst);
13126                     }
13127                     break;
13128                 case 2:
13129                     if (opcode == 0x5) {
13130                         /* As usual for ARM, separate negation for
13131                          * fused multiply-add */
13132                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13133                     }
13134                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13135                                            tcg_res, fpst);
13136                     break;
13137                 default:
13138                     g_assert_not_reached();
13139                 }
13140                 break;
13141             case 0x09: /* FMUL */
13142                 switch (size) {
13143                 case 1:
13144                     if (is_scalar) {
13145                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13146                                                 tcg_idx, fpst);
13147                     } else {
13148                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13149                                                  tcg_idx, fpst);
13150                     }
13151                     break;
13152                 case 2:
13153                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13154                     break;
13155                 default:
13156                     g_assert_not_reached();
13157                 }
13158                 break;
13159             case 0x19: /* FMULX */
13160                 switch (size) {
13161                 case 1:
13162                     if (is_scalar) {
13163                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13164                                                  tcg_idx, fpst);
13165                     } else {
13166                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13167                                                   tcg_idx, fpst);
13168                     }
13169                     break;
13170                 case 2:
13171                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13172                     break;
13173                 default:
13174                     g_assert_not_reached();
13175                 }
13176                 break;
13177             case 0x0c: /* SQDMULH */
13178                 if (size == 1) {
13179                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13180                                                tcg_op, tcg_idx);
13181                 } else {
13182                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13183                                                tcg_op, tcg_idx);
13184                 }
13185                 break;
13186             case 0x0d: /* SQRDMULH */
13187                 if (size == 1) {
13188                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13189                                                 tcg_op, tcg_idx);
13190                 } else {
13191                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13192                                                 tcg_op, tcg_idx);
13193                 }
13194                 break;
13195             case 0x1d: /* SQRDMLAH */
13196                 read_vec_element_i32(s, tcg_res, rd, pass,
13197                                      is_scalar ? size : MO_32);
13198                 if (size == 1) {
13199                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13200                                                 tcg_op, tcg_idx, tcg_res);
13201                 } else {
13202                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13203                                                 tcg_op, tcg_idx, tcg_res);
13204                 }
13205                 break;
13206             case 0x1f: /* SQRDMLSH */
13207                 read_vec_element_i32(s, tcg_res, rd, pass,
13208                                      is_scalar ? size : MO_32);
13209                 if (size == 1) {
13210                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13211                                                 tcg_op, tcg_idx, tcg_res);
13212                 } else {
13213                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13214                                                 tcg_op, tcg_idx, tcg_res);
13215                 }
13216                 break;
13217             default:
13218                 g_assert_not_reached();
13219             }
13220 
13221             if (is_scalar) {
13222                 write_fp_sreg(s, rd, tcg_res);
13223             } else {
13224                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13225             }
13226         }
13227 
13228         clear_vec_high(s, is_q, rd);
13229     } else {
13230         /* long ops: 16x16->32 or 32x32->64 */
13231         TCGv_i64 tcg_res[2];
13232         int pass;
13233         bool satop = extract32(opcode, 0, 1);
13234         MemOp memop = MO_32;
13235 
13236         if (satop || !u) {
13237             memop |= MO_SIGN;
13238         }
13239 
13240         if (size == 2) {
13241             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13242 
13243             read_vec_element(s, tcg_idx, rm, index, memop);
13244 
13245             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13246                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13247                 TCGv_i64 tcg_passres;
13248                 int passelt;
13249 
13250                 if (is_scalar) {
13251                     passelt = 0;
13252                 } else {
13253                     passelt = pass + (is_q * 2);
13254                 }
13255 
13256                 read_vec_element(s, tcg_op, rn, passelt, memop);
13257 
13258                 tcg_res[pass] = tcg_temp_new_i64();
13259 
13260                 if (opcode == 0xa || opcode == 0xb) {
13261                     /* Non-accumulating ops */
13262                     tcg_passres = tcg_res[pass];
13263                 } else {
13264                     tcg_passres = tcg_temp_new_i64();
13265                 }
13266 
13267                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13268 
13269                 if (satop) {
13270                     /* saturating, doubling */
13271                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13272                                                       tcg_passres, tcg_passres);
13273                 }
13274 
13275                 if (opcode == 0xa || opcode == 0xb) {
13276                     continue;
13277                 }
13278 
13279                 /* Accumulating op: handle accumulate step */
13280                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13281 
13282                 switch (opcode) {
13283                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13284                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13285                     break;
13286                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13287                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13288                     break;
13289                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13290                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13291                     /* fall through */
13292                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13293                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13294                                                       tcg_res[pass],
13295                                                       tcg_passres);
13296                     break;
13297                 default:
13298                     g_assert_not_reached();
13299                 }
13300             }
13301 
13302             clear_vec_high(s, !is_scalar, rd);
13303         } else {
13304             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13305 
13306             assert(size == 1);
13307             read_vec_element_i32(s, tcg_idx, rm, index, size);
13308 
13309             if (!is_scalar) {
13310                 /* The simplest way to handle the 16x16 indexed ops is to
13311                  * duplicate the index into both halves of the 32 bit tcg_idx
13312                  * and then use the usual Neon helpers.
13313                  */
13314                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13315             }
13316 
13317             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13318                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13319                 TCGv_i64 tcg_passres;
13320 
13321                 if (is_scalar) {
13322                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13323                 } else {
13324                     read_vec_element_i32(s, tcg_op, rn,
13325                                          pass + (is_q * 2), MO_32);
13326                 }
13327 
13328                 tcg_res[pass] = tcg_temp_new_i64();
13329 
13330                 if (opcode == 0xa || opcode == 0xb) {
13331                     /* Non-accumulating ops */
13332                     tcg_passres = tcg_res[pass];
13333                 } else {
13334                     tcg_passres = tcg_temp_new_i64();
13335                 }
13336 
13337                 if (memop & MO_SIGN) {
13338                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13339                 } else {
13340                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13341                 }
13342                 if (satop) {
13343                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13344                                                       tcg_passres, tcg_passres);
13345                 }
13346 
13347                 if (opcode == 0xa || opcode == 0xb) {
13348                     continue;
13349                 }
13350 
13351                 /* Accumulating op: handle accumulate step */
13352                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13353 
13354                 switch (opcode) {
13355                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13356                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13357                                              tcg_passres);
13358                     break;
13359                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13360                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13361                                              tcg_passres);
13362                     break;
13363                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13364                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13365                     /* fall through */
13366                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13367                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13368                                                       tcg_res[pass],
13369                                                       tcg_passres);
13370                     break;
13371                 default:
13372                     g_assert_not_reached();
13373                 }
13374             }
13375 
13376             if (is_scalar) {
13377                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13378             }
13379         }
13380 
13381         if (is_scalar) {
13382             tcg_res[1] = tcg_constant_i64(0);
13383         }
13384 
13385         for (pass = 0; pass < 2; pass++) {
13386             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13387         }
13388     }
13389 }
13390 
13391 /* Crypto AES
13392  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13393  * +-----------------+------+-----------+--------+-----+------+------+
13394  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13395  * +-----------------+------+-----------+--------+-----+------+------+
13396  */
13397 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13398 {
13399     int size = extract32(insn, 22, 2);
13400     int opcode = extract32(insn, 12, 5);
13401     int rn = extract32(insn, 5, 5);
13402     int rd = extract32(insn, 0, 5);
13403     int decrypt;
13404     gen_helper_gvec_2 *genfn2 = NULL;
13405     gen_helper_gvec_3 *genfn3 = NULL;
13406 
13407     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13408         unallocated_encoding(s);
13409         return;
13410     }
13411 
13412     switch (opcode) {
13413     case 0x4: /* AESE */
13414         decrypt = 0;
13415         genfn3 = gen_helper_crypto_aese;
13416         break;
13417     case 0x6: /* AESMC */
13418         decrypt = 0;
13419         genfn2 = gen_helper_crypto_aesmc;
13420         break;
13421     case 0x5: /* AESD */
13422         decrypt = 1;
13423         genfn3 = gen_helper_crypto_aese;
13424         break;
13425     case 0x7: /* AESIMC */
13426         decrypt = 1;
13427         genfn2 = gen_helper_crypto_aesmc;
13428         break;
13429     default:
13430         unallocated_encoding(s);
13431         return;
13432     }
13433 
13434     if (!fp_access_check(s)) {
13435         return;
13436     }
13437     if (genfn2) {
13438         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13439     } else {
13440         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13441     }
13442 }
13443 
13444 /* Crypto three-reg SHA
13445  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13446  * +-----------------+------+---+------+---+--------+-----+------+------+
13447  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13448  * +-----------------+------+---+------+---+--------+-----+------+------+
13449  */
13450 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13451 {
13452     int size = extract32(insn, 22, 2);
13453     int opcode = extract32(insn, 12, 3);
13454     int rm = extract32(insn, 16, 5);
13455     int rn = extract32(insn, 5, 5);
13456     int rd = extract32(insn, 0, 5);
13457     gen_helper_gvec_3 *genfn;
13458     bool feature;
13459 
13460     if (size != 0) {
13461         unallocated_encoding(s);
13462         return;
13463     }
13464 
13465     switch (opcode) {
13466     case 0: /* SHA1C */
13467         genfn = gen_helper_crypto_sha1c;
13468         feature = dc_isar_feature(aa64_sha1, s);
13469         break;
13470     case 1: /* SHA1P */
13471         genfn = gen_helper_crypto_sha1p;
13472         feature = dc_isar_feature(aa64_sha1, s);
13473         break;
13474     case 2: /* SHA1M */
13475         genfn = gen_helper_crypto_sha1m;
13476         feature = dc_isar_feature(aa64_sha1, s);
13477         break;
13478     case 3: /* SHA1SU0 */
13479         genfn = gen_helper_crypto_sha1su0;
13480         feature = dc_isar_feature(aa64_sha1, s);
13481         break;
13482     case 4: /* SHA256H */
13483         genfn = gen_helper_crypto_sha256h;
13484         feature = dc_isar_feature(aa64_sha256, s);
13485         break;
13486     case 5: /* SHA256H2 */
13487         genfn = gen_helper_crypto_sha256h2;
13488         feature = dc_isar_feature(aa64_sha256, s);
13489         break;
13490     case 6: /* SHA256SU1 */
13491         genfn = gen_helper_crypto_sha256su1;
13492         feature = dc_isar_feature(aa64_sha256, s);
13493         break;
13494     default:
13495         unallocated_encoding(s);
13496         return;
13497     }
13498 
13499     if (!feature) {
13500         unallocated_encoding(s);
13501         return;
13502     }
13503 
13504     if (!fp_access_check(s)) {
13505         return;
13506     }
13507     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13508 }
13509 
13510 /* Crypto two-reg SHA
13511  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13512  * +-----------------+------+-----------+--------+-----+------+------+
13513  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13514  * +-----------------+------+-----------+--------+-----+------+------+
13515  */
13516 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13517 {
13518     int size = extract32(insn, 22, 2);
13519     int opcode = extract32(insn, 12, 5);
13520     int rn = extract32(insn, 5, 5);
13521     int rd = extract32(insn, 0, 5);
13522     gen_helper_gvec_2 *genfn;
13523     bool feature;
13524 
13525     if (size != 0) {
13526         unallocated_encoding(s);
13527         return;
13528     }
13529 
13530     switch (opcode) {
13531     case 0: /* SHA1H */
13532         feature = dc_isar_feature(aa64_sha1, s);
13533         genfn = gen_helper_crypto_sha1h;
13534         break;
13535     case 1: /* SHA1SU1 */
13536         feature = dc_isar_feature(aa64_sha1, s);
13537         genfn = gen_helper_crypto_sha1su1;
13538         break;
13539     case 2: /* SHA256SU0 */
13540         feature = dc_isar_feature(aa64_sha256, s);
13541         genfn = gen_helper_crypto_sha256su0;
13542         break;
13543     default:
13544         unallocated_encoding(s);
13545         return;
13546     }
13547 
13548     if (!feature) {
13549         unallocated_encoding(s);
13550         return;
13551     }
13552 
13553     if (!fp_access_check(s)) {
13554         return;
13555     }
13556     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13557 }
13558 
13559 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13560 {
13561     tcg_gen_rotli_i64(d, m, 1);
13562     tcg_gen_xor_i64(d, d, n);
13563 }
13564 
13565 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13566 {
13567     tcg_gen_rotli_vec(vece, d, m, 1);
13568     tcg_gen_xor_vec(vece, d, d, n);
13569 }
13570 
13571 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13572                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13573 {
13574     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13575     static const GVecGen3 op = {
13576         .fni8 = gen_rax1_i64,
13577         .fniv = gen_rax1_vec,
13578         .opt_opc = vecop_list,
13579         .fno = gen_helper_crypto_rax1,
13580         .vece = MO_64,
13581     };
13582     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13583 }
13584 
13585 /* Crypto three-reg SHA512
13586  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13587  * +-----------------------+------+---+---+-----+--------+------+------+
13588  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13589  * +-----------------------+------+---+---+-----+--------+------+------+
13590  */
13591 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13592 {
13593     int opcode = extract32(insn, 10, 2);
13594     int o =  extract32(insn, 14, 1);
13595     int rm = extract32(insn, 16, 5);
13596     int rn = extract32(insn, 5, 5);
13597     int rd = extract32(insn, 0, 5);
13598     bool feature;
13599     gen_helper_gvec_3 *oolfn = NULL;
13600     GVecGen3Fn *gvecfn = NULL;
13601 
13602     if (o == 0) {
13603         switch (opcode) {
13604         case 0: /* SHA512H */
13605             feature = dc_isar_feature(aa64_sha512, s);
13606             oolfn = gen_helper_crypto_sha512h;
13607             break;
13608         case 1: /* SHA512H2 */
13609             feature = dc_isar_feature(aa64_sha512, s);
13610             oolfn = gen_helper_crypto_sha512h2;
13611             break;
13612         case 2: /* SHA512SU1 */
13613             feature = dc_isar_feature(aa64_sha512, s);
13614             oolfn = gen_helper_crypto_sha512su1;
13615             break;
13616         case 3: /* RAX1 */
13617             feature = dc_isar_feature(aa64_sha3, s);
13618             gvecfn = gen_gvec_rax1;
13619             break;
13620         default:
13621             g_assert_not_reached();
13622         }
13623     } else {
13624         switch (opcode) {
13625         case 0: /* SM3PARTW1 */
13626             feature = dc_isar_feature(aa64_sm3, s);
13627             oolfn = gen_helper_crypto_sm3partw1;
13628             break;
13629         case 1: /* SM3PARTW2 */
13630             feature = dc_isar_feature(aa64_sm3, s);
13631             oolfn = gen_helper_crypto_sm3partw2;
13632             break;
13633         case 2: /* SM4EKEY */
13634             feature = dc_isar_feature(aa64_sm4, s);
13635             oolfn = gen_helper_crypto_sm4ekey;
13636             break;
13637         default:
13638             unallocated_encoding(s);
13639             return;
13640         }
13641     }
13642 
13643     if (!feature) {
13644         unallocated_encoding(s);
13645         return;
13646     }
13647 
13648     if (!fp_access_check(s)) {
13649         return;
13650     }
13651 
13652     if (oolfn) {
13653         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13654     } else {
13655         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13656     }
13657 }
13658 
13659 /* Crypto two-reg SHA512
13660  *  31                                     12  11  10  9    5 4    0
13661  * +-----------------------------------------+--------+------+------+
13662  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13663  * +-----------------------------------------+--------+------+------+
13664  */
13665 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13666 {
13667     int opcode = extract32(insn, 10, 2);
13668     int rn = extract32(insn, 5, 5);
13669     int rd = extract32(insn, 0, 5);
13670     bool feature;
13671 
13672     switch (opcode) {
13673     case 0: /* SHA512SU0 */
13674         feature = dc_isar_feature(aa64_sha512, s);
13675         break;
13676     case 1: /* SM4E */
13677         feature = dc_isar_feature(aa64_sm4, s);
13678         break;
13679     default:
13680         unallocated_encoding(s);
13681         return;
13682     }
13683 
13684     if (!feature) {
13685         unallocated_encoding(s);
13686         return;
13687     }
13688 
13689     if (!fp_access_check(s)) {
13690         return;
13691     }
13692 
13693     switch (opcode) {
13694     case 0: /* SHA512SU0 */
13695         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13696         break;
13697     case 1: /* SM4E */
13698         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13699         break;
13700     default:
13701         g_assert_not_reached();
13702     }
13703 }
13704 
13705 /* Crypto four-register
13706  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13707  * +-------------------+-----+------+---+------+------+------+
13708  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13709  * +-------------------+-----+------+---+------+------+------+
13710  */
13711 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13712 {
13713     int op0 = extract32(insn, 21, 2);
13714     int rm = extract32(insn, 16, 5);
13715     int ra = extract32(insn, 10, 5);
13716     int rn = extract32(insn, 5, 5);
13717     int rd = extract32(insn, 0, 5);
13718     bool feature;
13719 
13720     switch (op0) {
13721     case 0: /* EOR3 */
13722     case 1: /* BCAX */
13723         feature = dc_isar_feature(aa64_sha3, s);
13724         break;
13725     case 2: /* SM3SS1 */
13726         feature = dc_isar_feature(aa64_sm3, s);
13727         break;
13728     default:
13729         unallocated_encoding(s);
13730         return;
13731     }
13732 
13733     if (!feature) {
13734         unallocated_encoding(s);
13735         return;
13736     }
13737 
13738     if (!fp_access_check(s)) {
13739         return;
13740     }
13741 
13742     if (op0 < 2) {
13743         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13744         int pass;
13745 
13746         tcg_op1 = tcg_temp_new_i64();
13747         tcg_op2 = tcg_temp_new_i64();
13748         tcg_op3 = tcg_temp_new_i64();
13749         tcg_res[0] = tcg_temp_new_i64();
13750         tcg_res[1] = tcg_temp_new_i64();
13751 
13752         for (pass = 0; pass < 2; pass++) {
13753             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13754             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13755             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13756 
13757             if (op0 == 0) {
13758                 /* EOR3 */
13759                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13760             } else {
13761                 /* BCAX */
13762                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13763             }
13764             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13765         }
13766         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13767         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13768     } else {
13769         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13770 
13771         tcg_op1 = tcg_temp_new_i32();
13772         tcg_op2 = tcg_temp_new_i32();
13773         tcg_op3 = tcg_temp_new_i32();
13774         tcg_res = tcg_temp_new_i32();
13775         tcg_zero = tcg_constant_i32(0);
13776 
13777         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13778         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13779         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13780 
13781         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13782         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13783         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13784         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13785 
13786         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13787         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13788         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13789         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13790     }
13791 }
13792 
13793 /* Crypto XAR
13794  *  31                   21 20  16 15    10 9    5 4    0
13795  * +-----------------------+------+--------+------+------+
13796  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13797  * +-----------------------+------+--------+------+------+
13798  */
13799 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13800 {
13801     int rm = extract32(insn, 16, 5);
13802     int imm6 = extract32(insn, 10, 6);
13803     int rn = extract32(insn, 5, 5);
13804     int rd = extract32(insn, 0, 5);
13805 
13806     if (!dc_isar_feature(aa64_sha3, s)) {
13807         unallocated_encoding(s);
13808         return;
13809     }
13810 
13811     if (!fp_access_check(s)) {
13812         return;
13813     }
13814 
13815     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13816                  vec_full_reg_offset(s, rn),
13817                  vec_full_reg_offset(s, rm), imm6, 16,
13818                  vec_full_reg_size(s));
13819 }
13820 
13821 /* Crypto three-reg imm2
13822  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13823  * +-----------------------+------+-----+------+--------+------+------+
13824  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13825  * +-----------------------+------+-----+------+--------+------+------+
13826  */
13827 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13828 {
13829     static gen_helper_gvec_3 * const fns[4] = {
13830         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13831         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13832     };
13833     int opcode = extract32(insn, 10, 2);
13834     int imm2 = extract32(insn, 12, 2);
13835     int rm = extract32(insn, 16, 5);
13836     int rn = extract32(insn, 5, 5);
13837     int rd = extract32(insn, 0, 5);
13838 
13839     if (!dc_isar_feature(aa64_sm3, s)) {
13840         unallocated_encoding(s);
13841         return;
13842     }
13843 
13844     if (!fp_access_check(s)) {
13845         return;
13846     }
13847 
13848     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13849 }
13850 
13851 /* C3.6 Data processing - SIMD, inc Crypto
13852  *
13853  * As the decode gets a little complex we are using a table based
13854  * approach for this part of the decode.
13855  */
13856 static const AArch64DecodeTable data_proc_simd[] = {
13857     /* pattern  ,  mask     ,  fn                        */
13858     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13859     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13860     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13861     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13862     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13863     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13864     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13865     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13866     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13867     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13868     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13869     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13870     { 0x2e000000, 0xbf208400, disas_simd_ext },
13871     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13872     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13873     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13874     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13875     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13876     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13877     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13878     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13879     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13880     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13881     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13882     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13883     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13884     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13885     { 0xce800000, 0xffe00000, disas_crypto_xar },
13886     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13887     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13888     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13889     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13890     { 0x00000000, 0x00000000, NULL }
13891 };
13892 
13893 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13894 {
13895     /* Note that this is called with all non-FP cases from
13896      * table C3-6 so it must UNDEF for entries not specifically
13897      * allocated to instructions in that table.
13898      */
13899     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13900     if (fn) {
13901         fn(s, insn);
13902     } else {
13903         unallocated_encoding(s);
13904     }
13905 }
13906 
13907 /* C3.6 Data processing - SIMD and floating point */
13908 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13909 {
13910     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13911         disas_data_proc_fp(s, insn);
13912     } else {
13913         /* SIMD, including crypto */
13914         disas_data_proc_simd(s, insn);
13915     }
13916 }
13917 
13918 static bool trans_OK(DisasContext *s, arg_OK *a)
13919 {
13920     return true;
13921 }
13922 
13923 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13924 {
13925     s->is_nonstreaming = true;
13926     return true;
13927 }
13928 
13929 /**
13930  * is_guarded_page:
13931  * @env: The cpu environment
13932  * @s: The DisasContext
13933  *
13934  * Return true if the page is guarded.
13935  */
13936 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13937 {
13938     uint64_t addr = s->base.pc_first;
13939 #ifdef CONFIG_USER_ONLY
13940     return page_get_flags(addr) & PAGE_BTI;
13941 #else
13942     CPUTLBEntryFull *full;
13943     void *host;
13944     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13945     int flags;
13946 
13947     /*
13948      * We test this immediately after reading an insn, which means
13949      * that the TLB entry must be present and valid, and thus this
13950      * access will never raise an exception.
13951      */
13952     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13953                               false, &host, &full, 0);
13954     assert(!(flags & TLB_INVALID_MASK));
13955 
13956     return full->guarded;
13957 #endif
13958 }
13959 
13960 /**
13961  * btype_destination_ok:
13962  * @insn: The instruction at the branch destination
13963  * @bt: SCTLR_ELx.BT
13964  * @btype: PSTATE.BTYPE, and is non-zero
13965  *
13966  * On a guarded page, there are a limited number of insns
13967  * that may be present at the branch target:
13968  *   - branch target identifiers,
13969  *   - paciasp, pacibsp,
13970  *   - BRK insn
13971  *   - HLT insn
13972  * Anything else causes a Branch Target Exception.
13973  *
13974  * Return true if the branch is compatible, false to raise BTITRAP.
13975  */
13976 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13977 {
13978     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13979         /* HINT space */
13980         switch (extract32(insn, 5, 7)) {
13981         case 0b011001: /* PACIASP */
13982         case 0b011011: /* PACIBSP */
13983             /*
13984              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13985              * with btype == 3.  Otherwise all btype are ok.
13986              */
13987             return !bt || btype != 3;
13988         case 0b100000: /* BTI */
13989             /* Not compatible with any btype.  */
13990             return false;
13991         case 0b100010: /* BTI c */
13992             /* Not compatible with btype == 3 */
13993             return btype != 3;
13994         case 0b100100: /* BTI j */
13995             /* Not compatible with btype == 2 */
13996             return btype != 2;
13997         case 0b100110: /* BTI jc */
13998             /* Compatible with any btype.  */
13999             return true;
14000         }
14001     } else {
14002         switch (insn & 0xffe0001fu) {
14003         case 0xd4200000u: /* BRK */
14004         case 0xd4400000u: /* HLT */
14005             /* Give priority to the breakpoint exception.  */
14006             return true;
14007         }
14008     }
14009     return false;
14010 }
14011 
14012 /* C3.1 A64 instruction index by encoding */
14013 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14014 {
14015     switch (extract32(insn, 25, 4)) {
14016     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14017         disas_b_exc_sys(s, insn);
14018         break;
14019     case 0x4:
14020     case 0x6:
14021     case 0xc:
14022     case 0xe:      /* Loads and stores */
14023         disas_ldst(s, insn);
14024         break;
14025     case 0x5:
14026     case 0xd:      /* Data processing - register */
14027         disas_data_proc_reg(s, insn);
14028         break;
14029     case 0x7:
14030     case 0xf:      /* Data processing - SIMD and floating point */
14031         disas_data_proc_simd_fp(s, insn);
14032         break;
14033     default:
14034         unallocated_encoding(s);
14035         break;
14036     }
14037 }
14038 
14039 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14040                                           CPUState *cpu)
14041 {
14042     DisasContext *dc = container_of(dcbase, DisasContext, base);
14043     CPUARMState *env = cpu->env_ptr;
14044     ARMCPU *arm_cpu = env_archcpu(env);
14045     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14046     int bound, core_mmu_idx;
14047 
14048     dc->isar = &arm_cpu->isar;
14049     dc->condjmp = 0;
14050     dc->pc_save = dc->base.pc_first;
14051     dc->aarch64 = true;
14052     dc->thumb = false;
14053     dc->sctlr_b = 0;
14054     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14055     dc->condexec_mask = 0;
14056     dc->condexec_cond = 0;
14057     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14058     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14059     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14060     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14061     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14062     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14063 #if !defined(CONFIG_USER_ONLY)
14064     dc->user = (dc->current_el == 0);
14065 #endif
14066     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14067     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14068     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14069     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14070     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14071     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14072     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14073     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14074     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14075     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14076     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14077     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14078     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14079     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14080     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14081     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14082     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14083     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14084     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14085     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14086     dc->vec_len = 0;
14087     dc->vec_stride = 0;
14088     dc->cp_regs = arm_cpu->cp_regs;
14089     dc->features = env->features;
14090     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14091 
14092 #ifdef CONFIG_USER_ONLY
14093     /* In sve_probe_page, we assume TBI is enabled. */
14094     tcg_debug_assert(dc->tbid & 1);
14095 #endif
14096 
14097     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14098 
14099     /* Single step state. The code-generation logic here is:
14100      *  SS_ACTIVE == 0:
14101      *   generate code with no special handling for single-stepping (except
14102      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14103      *   this happens anyway because those changes are all system register or
14104      *   PSTATE writes).
14105      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14106      *   emit code for one insn
14107      *   emit code to clear PSTATE.SS
14108      *   emit code to generate software step exception for completed step
14109      *   end TB (as usual for having generated an exception)
14110      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14111      *   emit code to generate a software step exception
14112      *   end the TB
14113      */
14114     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14115     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14116     dc->is_ldex = false;
14117 
14118     /* Bound the number of insns to execute to those left on the page.  */
14119     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14120 
14121     /* If architectural single step active, limit to 1.  */
14122     if (dc->ss_active) {
14123         bound = 1;
14124     }
14125     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14126 }
14127 
14128 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14129 {
14130 }
14131 
14132 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14133 {
14134     DisasContext *dc = container_of(dcbase, DisasContext, base);
14135     target_ulong pc_arg = dc->base.pc_next;
14136 
14137     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14138         pc_arg &= ~TARGET_PAGE_MASK;
14139     }
14140     tcg_gen_insn_start(pc_arg, 0, 0);
14141     dc->insn_start = tcg_last_op();
14142 }
14143 
14144 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14145 {
14146     DisasContext *s = container_of(dcbase, DisasContext, base);
14147     CPUARMState *env = cpu->env_ptr;
14148     uint64_t pc = s->base.pc_next;
14149     uint32_t insn;
14150 
14151     /* Singlestep exceptions have the highest priority. */
14152     if (s->ss_active && !s->pstate_ss) {
14153         /* Singlestep state is Active-pending.
14154          * If we're in this state at the start of a TB then either
14155          *  a) we just took an exception to an EL which is being debugged
14156          *     and this is the first insn in the exception handler
14157          *  b) debug exceptions were masked and we just unmasked them
14158          *     without changing EL (eg by clearing PSTATE.D)
14159          * In either case we're going to take a swstep exception in the
14160          * "did not step an insn" case, and so the syndrome ISV and EX
14161          * bits should be zero.
14162          */
14163         assert(s->base.num_insns == 1);
14164         gen_swstep_exception(s, 0, 0);
14165         s->base.is_jmp = DISAS_NORETURN;
14166         s->base.pc_next = pc + 4;
14167         return;
14168     }
14169 
14170     if (pc & 3) {
14171         /*
14172          * PC alignment fault.  This has priority over the instruction abort
14173          * that we would receive from a translation fault via arm_ldl_code.
14174          * This should only be possible after an indirect branch, at the
14175          * start of the TB.
14176          */
14177         assert(s->base.num_insns == 1);
14178         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14179         s->base.is_jmp = DISAS_NORETURN;
14180         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14181         return;
14182     }
14183 
14184     s->pc_curr = pc;
14185     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14186     s->insn = insn;
14187     s->base.pc_next = pc + 4;
14188 
14189     s->fp_access_checked = false;
14190     s->sve_access_checked = false;
14191 
14192     if (s->pstate_il) {
14193         /*
14194          * Illegal execution state. This has priority over BTI
14195          * exceptions, but comes after instruction abort exceptions.
14196          */
14197         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14198         return;
14199     }
14200 
14201     if (dc_isar_feature(aa64_bti, s)) {
14202         if (s->base.num_insns == 1) {
14203             /*
14204              * At the first insn of the TB, compute s->guarded_page.
14205              * We delayed computing this until successfully reading
14206              * the first insn of the TB, above.  This (mostly) ensures
14207              * that the softmmu tlb entry has been populated, and the
14208              * page table GP bit is available.
14209              *
14210              * Note that we need to compute this even if btype == 0,
14211              * because this value is used for BR instructions later
14212              * where ENV is not available.
14213              */
14214             s->guarded_page = is_guarded_page(env, s);
14215 
14216             /* First insn can have btype set to non-zero.  */
14217             tcg_debug_assert(s->btype >= 0);
14218 
14219             /*
14220              * Note that the Branch Target Exception has fairly high
14221              * priority -- below debugging exceptions but above most
14222              * everything else.  This allows us to handle this now
14223              * instead of waiting until the insn is otherwise decoded.
14224              */
14225             if (s->btype != 0
14226                 && s->guarded_page
14227                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14228                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14229                 return;
14230             }
14231         } else {
14232             /* Not the first insn: btype must be 0.  */
14233             tcg_debug_assert(s->btype == 0);
14234         }
14235     }
14236 
14237     s->is_nonstreaming = false;
14238     if (s->sme_trap_nonstreaming) {
14239         disas_sme_fa64(s, insn);
14240     }
14241 
14242     if (!disas_a64(s, insn) &&
14243         !disas_sme(s, insn) &&
14244         !disas_sve(s, insn)) {
14245         disas_a64_legacy(s, insn);
14246     }
14247 
14248     /*
14249      * After execution of most insns, btype is reset to 0.
14250      * Note that we set btype == -1 when the insn sets btype.
14251      */
14252     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14253         reset_btype(s);
14254     }
14255 }
14256 
14257 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14258 {
14259     DisasContext *dc = container_of(dcbase, DisasContext, base);
14260 
14261     if (unlikely(dc->ss_active)) {
14262         /* Note that this means single stepping WFI doesn't halt the CPU.
14263          * For conditional branch insns this is harmless unreachable code as
14264          * gen_goto_tb() has already handled emitting the debug exception
14265          * (and thus a tb-jump is not possible when singlestepping).
14266          */
14267         switch (dc->base.is_jmp) {
14268         default:
14269             gen_a64_update_pc(dc, 4);
14270             /* fall through */
14271         case DISAS_EXIT:
14272         case DISAS_JUMP:
14273             gen_step_complete_exception(dc);
14274             break;
14275         case DISAS_NORETURN:
14276             break;
14277         }
14278     } else {
14279         switch (dc->base.is_jmp) {
14280         case DISAS_NEXT:
14281         case DISAS_TOO_MANY:
14282             gen_goto_tb(dc, 1, 4);
14283             break;
14284         default:
14285         case DISAS_UPDATE_EXIT:
14286             gen_a64_update_pc(dc, 4);
14287             /* fall through */
14288         case DISAS_EXIT:
14289             tcg_gen_exit_tb(NULL, 0);
14290             break;
14291         case DISAS_UPDATE_NOCHAIN:
14292             gen_a64_update_pc(dc, 4);
14293             /* fall through */
14294         case DISAS_JUMP:
14295             tcg_gen_lookup_and_goto_ptr();
14296             break;
14297         case DISAS_NORETURN:
14298         case DISAS_SWI:
14299             break;
14300         case DISAS_WFE:
14301             gen_a64_update_pc(dc, 4);
14302             gen_helper_wfe(cpu_env);
14303             break;
14304         case DISAS_YIELD:
14305             gen_a64_update_pc(dc, 4);
14306             gen_helper_yield(cpu_env);
14307             break;
14308         case DISAS_WFI:
14309             /*
14310              * This is a special case because we don't want to just halt
14311              * the CPU if trying to debug across a WFI.
14312              */
14313             gen_a64_update_pc(dc, 4);
14314             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14315             /*
14316              * The helper doesn't necessarily throw an exception, but we
14317              * must go back to the main loop to check for interrupts anyway.
14318              */
14319             tcg_gen_exit_tb(NULL, 0);
14320             break;
14321         }
14322     }
14323 }
14324 
14325 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14326                                  CPUState *cpu, FILE *logfile)
14327 {
14328     DisasContext *dc = container_of(dcbase, DisasContext, base);
14329 
14330     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14331     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14332 }
14333 
14334 const TranslatorOps aarch64_translator_ops = {
14335     .init_disas_context = aarch64_tr_init_disas_context,
14336     .tb_start           = aarch64_tr_tb_start,
14337     .insn_start         = aarch64_tr_insn_start,
14338     .translate_insn     = aarch64_tr_translate_insn,
14339     .tb_stop            = aarch64_tr_tb_stop,
14340     .disas_log          = aarch64_tr_disas_log,
14341 };
14342