1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 memop = finalize_memop(s, memop); 842 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 843 844 if (iss_valid) { 845 uint32_t syn; 846 847 syn = syn_data_abort_with_iss(0, 848 (memop & MO_SIZE), 849 false, 850 iss_srt, 851 iss_sf, 852 iss_ar, 853 0, 0, 0, 0, 0, false); 854 disas_set_insn_syndrome(s, syn); 855 } 856 } 857 858 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 859 TCGv_i64 tcg_addr, MemOp memop, 860 bool iss_valid, 861 unsigned int iss_srt, 862 bool iss_sf, bool iss_ar) 863 { 864 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 865 iss_valid, iss_srt, iss_sf, iss_ar); 866 } 867 868 /* 869 * Load from memory to GPR register 870 */ 871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 872 MemOp memop, bool extend, int memidx, 873 bool iss_valid, unsigned int iss_srt, 874 bool iss_sf, bool iss_ar) 875 { 876 memop = finalize_memop(s, memop); 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 MemOp mop = finalize_memop_asimd(s, size); 915 916 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 917 918 if (size < MO_128) { 919 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 920 } else { 921 TCGv_i64 tmphi = tcg_temp_new_i64(); 922 TCGv_i128 t16 = tcg_temp_new_i128(); 923 924 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 925 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 926 927 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 928 } 929 } 930 931 /* 932 * Load from memory to FP register 933 */ 934 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 935 { 936 /* This always zero-extends and writes to a full 128 bit wide vector */ 937 TCGv_i64 tmplo = tcg_temp_new_i64(); 938 TCGv_i64 tmphi = NULL; 939 MemOp mop = finalize_memop_asimd(s, size); 940 941 if (size < MO_128) { 942 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 943 } else { 944 TCGv_i128 t16 = tcg_temp_new_i128(); 945 946 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 947 948 tmphi = tcg_temp_new_i64(); 949 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 950 } 951 952 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 953 954 if (tmphi) { 955 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 956 } 957 clear_vec_high(s, tmphi != NULL, destidx); 958 } 959 960 /* 961 * Vector load/store helpers. 962 * 963 * The principal difference between this and a FP load is that we don't 964 * zero extend as we are filling a partial chunk of the vector register. 965 * These functions don't support 128 bit loads/stores, which would be 966 * normal load/store operations. 967 * 968 * The _i32 versions are useful when operating on 32 bit quantities 969 * (eg for floating point single or using Neon helper functions). 970 */ 971 972 /* Get value of an element within a vector register */ 973 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 974 int element, MemOp memop) 975 { 976 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 977 switch ((unsigned)memop) { 978 case MO_8: 979 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_16: 982 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_32: 985 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_8|MO_SIGN: 988 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_16|MO_SIGN: 991 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_32|MO_SIGN: 994 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 case MO_64: 997 case MO_64|MO_SIGN: 998 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 default: 1001 g_assert_not_reached(); 1002 } 1003 } 1004 1005 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1006 int element, MemOp memop) 1007 { 1008 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1009 switch (memop) { 1010 case MO_8: 1011 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16: 1014 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_8|MO_SIGN: 1017 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_16|MO_SIGN: 1020 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 case MO_32: 1023 case MO_32|MO_SIGN: 1024 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 default: 1027 g_assert_not_reached(); 1028 } 1029 } 1030 1031 /* Set value of an element within a vector register */ 1032 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1033 int element, MemOp memop) 1034 { 1035 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1036 switch (memop) { 1037 case MO_8: 1038 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_16: 1041 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_32: 1044 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 case MO_64: 1047 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1055 int destidx, int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1058 switch (memop) { 1059 case MO_8: 1060 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1067 break; 1068 default: 1069 g_assert_not_reached(); 1070 } 1071 } 1072 1073 /* Store from vector register to memory */ 1074 static void do_vec_st(DisasContext *s, int srcidx, int element, 1075 TCGv_i64 tcg_addr, MemOp mop) 1076 { 1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1078 1079 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1081 } 1082 1083 /* Load from memory to vector register */ 1084 static void do_vec_ld(DisasContext *s, int destidx, int element, 1085 TCGv_i64 tcg_addr, MemOp mop) 1086 { 1087 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1088 1089 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1090 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1091 } 1092 1093 /* Check that FP/Neon access is enabled. If it is, return 1094 * true. If not, emit code to generate an appropriate exception, 1095 * and return false; the caller should not emit any code for 1096 * the instruction. Note that this check must happen after all 1097 * unallocated-encoding checks (otherwise the syndrome information 1098 * for the resulting exception will be incorrect). 1099 */ 1100 static bool fp_access_check_only(DisasContext *s) 1101 { 1102 if (s->fp_excp_el) { 1103 assert(!s->fp_access_checked); 1104 s->fp_access_checked = true; 1105 1106 gen_exception_insn_el(s, 0, EXCP_UDEF, 1107 syn_fp_access_trap(1, 0xe, false, 0), 1108 s->fp_excp_el); 1109 return false; 1110 } 1111 s->fp_access_checked = true; 1112 return true; 1113 } 1114 1115 static bool fp_access_check(DisasContext *s) 1116 { 1117 if (!fp_access_check_only(s)) { 1118 return false; 1119 } 1120 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1121 gen_exception_insn(s, 0, EXCP_UDEF, 1122 syn_smetrap(SME_ET_Streaming, false)); 1123 return false; 1124 } 1125 return true; 1126 } 1127 1128 /* 1129 * Check that SVE access is enabled. If it is, return true. 1130 * If not, emit code to generate an appropriate exception and return false. 1131 * This function corresponds to CheckSVEEnabled(). 1132 */ 1133 bool sve_access_check(DisasContext *s) 1134 { 1135 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1136 assert(dc_isar_feature(aa64_sme, s)); 1137 if (!sme_sm_enabled_check(s)) { 1138 goto fail_exit; 1139 } 1140 } else if (s->sve_excp_el) { 1141 gen_exception_insn_el(s, 0, EXCP_UDEF, 1142 syn_sve_access_trap(), s->sve_excp_el); 1143 goto fail_exit; 1144 } 1145 s->sve_access_checked = true; 1146 return fp_access_check(s); 1147 1148 fail_exit: 1149 /* Assert that we only raise one exception per instruction. */ 1150 assert(!s->sve_access_checked); 1151 s->sve_access_checked = true; 1152 return false; 1153 } 1154 1155 /* 1156 * Check that SME access is enabled, raise an exception if not. 1157 * Note that this function corresponds to CheckSMEAccess and is 1158 * only used directly for cpregs. 1159 */ 1160 static bool sme_access_check(DisasContext *s) 1161 { 1162 if (s->sme_excp_el) { 1163 gen_exception_insn_el(s, 0, EXCP_UDEF, 1164 syn_smetrap(SME_ET_AccessTrap, false), 1165 s->sme_excp_el); 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 /* This function corresponds to CheckSMEEnabled. */ 1172 bool sme_enabled_check(DisasContext *s) 1173 { 1174 /* 1175 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1176 * to be zero when fp_excp_el has priority. This is because we need 1177 * sme_excp_el by itself for cpregs access checks. 1178 */ 1179 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1180 s->fp_access_checked = true; 1181 return sme_access_check(s); 1182 } 1183 return fp_access_check_only(s); 1184 } 1185 1186 /* Common subroutine for CheckSMEAnd*Enabled. */ 1187 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1188 { 1189 if (!sme_enabled_check(s)) { 1190 return false; 1191 } 1192 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1193 gen_exception_insn(s, 0, EXCP_UDEF, 1194 syn_smetrap(SME_ET_NotStreaming, false)); 1195 return false; 1196 } 1197 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1198 gen_exception_insn(s, 0, EXCP_UDEF, 1199 syn_smetrap(SME_ET_InactiveZA, false)); 1200 return false; 1201 } 1202 return true; 1203 } 1204 1205 /* 1206 * This utility function is for doing register extension with an 1207 * optional shift. You will likely want to pass a temporary for the 1208 * destination register. See DecodeRegExtend() in the ARM ARM. 1209 */ 1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1211 int option, unsigned int shift) 1212 { 1213 int extsize = extract32(option, 0, 2); 1214 bool is_signed = extract32(option, 2, 1); 1215 1216 if (is_signed) { 1217 switch (extsize) { 1218 case 0: 1219 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1220 break; 1221 case 1: 1222 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1223 break; 1224 case 2: 1225 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1226 break; 1227 case 3: 1228 tcg_gen_mov_i64(tcg_out, tcg_in); 1229 break; 1230 } 1231 } else { 1232 switch (extsize) { 1233 case 0: 1234 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1235 break; 1236 case 1: 1237 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1238 break; 1239 case 2: 1240 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1241 break; 1242 case 3: 1243 tcg_gen_mov_i64(tcg_out, tcg_in); 1244 break; 1245 } 1246 } 1247 1248 if (shift) { 1249 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1250 } 1251 } 1252 1253 static inline void gen_check_sp_alignment(DisasContext *s) 1254 { 1255 /* The AArch64 architecture mandates that (if enabled via PSTATE 1256 * or SCTLR bits) there is a check that SP is 16-aligned on every 1257 * SP-relative load or store (with an exception generated if it is not). 1258 * In line with general QEMU practice regarding misaligned accesses, 1259 * we omit these checks for the sake of guest program performance. 1260 * This function is provided as a hook so we can more easily add these 1261 * checks in future (possibly as a "favour catching guest program bugs 1262 * over speed" user selectable option). 1263 */ 1264 } 1265 1266 /* 1267 * This provides a simple table based table lookup decoder. It is 1268 * intended to be used when the relevant bits for decode are too 1269 * awkwardly placed and switch/if based logic would be confusing and 1270 * deeply nested. Since it's a linear search through the table, tables 1271 * should be kept small. 1272 * 1273 * It returns the first handler where insn & mask == pattern, or 1274 * NULL if there is no match. 1275 * The table is terminated by an empty mask (i.e. 0) 1276 */ 1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1278 uint32_t insn) 1279 { 1280 const AArch64DecodeTable *tptr = table; 1281 1282 while (tptr->mask) { 1283 if ((insn & tptr->mask) == tptr->pattern) { 1284 return tptr->disas_fn; 1285 } 1286 tptr++; 1287 } 1288 return NULL; 1289 } 1290 1291 /* 1292 * The instruction disassembly implemented here matches 1293 * the instruction encoding classifications in chapter C4 1294 * of the ARM Architecture Reference Manual (DDI0487B_a); 1295 * classification names and decode diagrams here should generally 1296 * match up with those in the manual. 1297 */ 1298 1299 static bool trans_B(DisasContext *s, arg_i *a) 1300 { 1301 reset_btype(s); 1302 gen_goto_tb(s, 0, a->imm); 1303 return true; 1304 } 1305 1306 static bool trans_BL(DisasContext *s, arg_i *a) 1307 { 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 reset_btype(s); 1310 gen_goto_tb(s, 0, a->imm); 1311 return true; 1312 } 1313 1314 1315 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1316 { 1317 DisasLabel match; 1318 TCGv_i64 tcg_cmp; 1319 1320 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1321 reset_btype(s); 1322 1323 match = gen_disas_label(s); 1324 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1325 tcg_cmp, 0, match.label); 1326 gen_goto_tb(s, 0, 4); 1327 set_disas_label(s, match); 1328 gen_goto_tb(s, 1, a->imm); 1329 return true; 1330 } 1331 1332 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1333 { 1334 DisasLabel match; 1335 TCGv_i64 tcg_cmp; 1336 1337 tcg_cmp = tcg_temp_new_i64(); 1338 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1339 1340 reset_btype(s); 1341 1342 match = gen_disas_label(s); 1343 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1344 tcg_cmp, 0, match.label); 1345 gen_goto_tb(s, 0, 4); 1346 set_disas_label(s, match); 1347 gen_goto_tb(s, 1, a->imm); 1348 return true; 1349 } 1350 1351 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1352 { 1353 reset_btype(s); 1354 if (a->cond < 0x0e) { 1355 /* genuinely conditional branches */ 1356 DisasLabel match = gen_disas_label(s); 1357 arm_gen_test_cc(a->cond, match.label); 1358 gen_goto_tb(s, 0, 4); 1359 set_disas_label(s, match); 1360 gen_goto_tb(s, 1, a->imm); 1361 } else { 1362 /* 0xe and 0xf are both "always" conditions */ 1363 gen_goto_tb(s, 0, a->imm); 1364 } 1365 return true; 1366 } 1367 1368 static void set_btype_for_br(DisasContext *s, int rn) 1369 { 1370 if (dc_isar_feature(aa64_bti, s)) { 1371 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1372 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1373 } 1374 } 1375 1376 static void set_btype_for_blr(DisasContext *s) 1377 { 1378 if (dc_isar_feature(aa64_bti, s)) { 1379 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1380 set_btype(s, 2); 1381 } 1382 } 1383 1384 static bool trans_BR(DisasContext *s, arg_r *a) 1385 { 1386 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1387 set_btype_for_br(s, a->rn); 1388 s->base.is_jmp = DISAS_JUMP; 1389 return true; 1390 } 1391 1392 static bool trans_BLR(DisasContext *s, arg_r *a) 1393 { 1394 TCGv_i64 dst = cpu_reg(s, a->rn); 1395 TCGv_i64 lr = cpu_reg(s, 30); 1396 if (dst == lr) { 1397 TCGv_i64 tmp = tcg_temp_new_i64(); 1398 tcg_gen_mov_i64(tmp, dst); 1399 dst = tmp; 1400 } 1401 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1402 gen_a64_set_pc(s, dst); 1403 set_btype_for_blr(s); 1404 s->base.is_jmp = DISAS_JUMP; 1405 return true; 1406 } 1407 1408 static bool trans_RET(DisasContext *s, arg_r *a) 1409 { 1410 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1411 s->base.is_jmp = DISAS_JUMP; 1412 return true; 1413 } 1414 1415 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1416 TCGv_i64 modifier, bool use_key_a) 1417 { 1418 TCGv_i64 truedst; 1419 /* 1420 * Return the branch target for a BRAA/RETA/etc, which is either 1421 * just the destination dst, or that value with the pauth check 1422 * done and the code removed from the high bits. 1423 */ 1424 if (!s->pauth_active) { 1425 return dst; 1426 } 1427 1428 truedst = tcg_temp_new_i64(); 1429 if (use_key_a) { 1430 gen_helper_autia(truedst, cpu_env, dst, modifier); 1431 } else { 1432 gen_helper_autib(truedst, cpu_env, dst, modifier); 1433 } 1434 return truedst; 1435 } 1436 1437 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1438 { 1439 TCGv_i64 dst; 1440 1441 if (!dc_isar_feature(aa64_pauth, s)) { 1442 return false; 1443 } 1444 1445 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1446 gen_a64_set_pc(s, dst); 1447 set_btype_for_br(s, a->rn); 1448 s->base.is_jmp = DISAS_JUMP; 1449 return true; 1450 } 1451 1452 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1453 { 1454 TCGv_i64 dst, lr; 1455 1456 if (!dc_isar_feature(aa64_pauth, s)) { 1457 return false; 1458 } 1459 1460 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1461 lr = cpu_reg(s, 30); 1462 if (dst == lr) { 1463 TCGv_i64 tmp = tcg_temp_new_i64(); 1464 tcg_gen_mov_i64(tmp, dst); 1465 dst = tmp; 1466 } 1467 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1468 gen_a64_set_pc(s, dst); 1469 set_btype_for_blr(s); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_RETA(DisasContext *s, arg_reta *a) 1475 { 1476 TCGv_i64 dst; 1477 1478 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1479 gen_a64_set_pc(s, dst); 1480 s->base.is_jmp = DISAS_JUMP; 1481 return true; 1482 } 1483 1484 static bool trans_BRA(DisasContext *s, arg_bra *a) 1485 { 1486 TCGv_i64 dst; 1487 1488 if (!dc_isar_feature(aa64_pauth, s)) { 1489 return false; 1490 } 1491 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1492 gen_a64_set_pc(s, dst); 1493 set_btype_for_br(s, a->rn); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1499 { 1500 TCGv_i64 dst, lr; 1501 1502 if (!dc_isar_feature(aa64_pauth, s)) { 1503 return false; 1504 } 1505 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1506 lr = cpu_reg(s, 30); 1507 if (dst == lr) { 1508 TCGv_i64 tmp = tcg_temp_new_i64(); 1509 tcg_gen_mov_i64(tmp, dst); 1510 dst = tmp; 1511 } 1512 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1513 gen_a64_set_pc(s, dst); 1514 set_btype_for_blr(s); 1515 s->base.is_jmp = DISAS_JUMP; 1516 return true; 1517 } 1518 1519 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (s->current_el == 0) { 1524 return false; 1525 } 1526 if (s->fgt_eret) { 1527 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1528 return true; 1529 } 1530 dst = tcg_temp_new_i64(); 1531 tcg_gen_ld_i64(dst, cpu_env, 1532 offsetof(CPUARMState, elr_el[s->current_el])); 1533 1534 translator_io_start(&s->base); 1535 1536 gen_helper_exception_return(cpu_env, dst); 1537 /* Must exit loop to check un-masked IRQs */ 1538 s->base.is_jmp = DISAS_EXIT; 1539 return true; 1540 } 1541 1542 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1543 { 1544 TCGv_i64 dst; 1545 1546 if (!dc_isar_feature(aa64_pauth, s)) { 1547 return false; 1548 } 1549 if (s->current_el == 0) { 1550 return false; 1551 } 1552 /* The FGT trap takes precedence over an auth trap. */ 1553 if (s->fgt_eret) { 1554 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1555 return true; 1556 } 1557 dst = tcg_temp_new_i64(); 1558 tcg_gen_ld_i64(dst, cpu_env, 1559 offsetof(CPUARMState, elr_el[s->current_el])); 1560 1561 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1562 1563 translator_io_start(&s->base); 1564 1565 gen_helper_exception_return(cpu_env, dst); 1566 /* Must exit loop to check un-masked IRQs */ 1567 s->base.is_jmp = DISAS_EXIT; 1568 return true; 1569 } 1570 1571 /* HINT instruction group, including various allocated HINTs */ 1572 static void handle_hint(DisasContext *s, uint32_t insn, 1573 unsigned int op1, unsigned int op2, unsigned int crm) 1574 { 1575 unsigned int selector = crm << 3 | op2; 1576 1577 if (op1 != 3) { 1578 unallocated_encoding(s); 1579 return; 1580 } 1581 1582 switch (selector) { 1583 case 0b00000: /* NOP */ 1584 break; 1585 case 0b00011: /* WFI */ 1586 s->base.is_jmp = DISAS_WFI; 1587 break; 1588 case 0b00001: /* YIELD */ 1589 /* When running in MTTCG we don't generate jumps to the yield and 1590 * WFE helpers as it won't affect the scheduling of other vCPUs. 1591 * If we wanted to more completely model WFE/SEV so we don't busy 1592 * spin unnecessarily we would need to do something more involved. 1593 */ 1594 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1595 s->base.is_jmp = DISAS_YIELD; 1596 } 1597 break; 1598 case 0b00010: /* WFE */ 1599 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1600 s->base.is_jmp = DISAS_WFE; 1601 } 1602 break; 1603 case 0b00100: /* SEV */ 1604 case 0b00101: /* SEVL */ 1605 case 0b00110: /* DGH */ 1606 /* we treat all as NOP at least for now */ 1607 break; 1608 case 0b00111: /* XPACLRI */ 1609 if (s->pauth_active) { 1610 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1611 } 1612 break; 1613 case 0b01000: /* PACIA1716 */ 1614 if (s->pauth_active) { 1615 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1616 } 1617 break; 1618 case 0b01010: /* PACIB1716 */ 1619 if (s->pauth_active) { 1620 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1621 } 1622 break; 1623 case 0b01100: /* AUTIA1716 */ 1624 if (s->pauth_active) { 1625 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1626 } 1627 break; 1628 case 0b01110: /* AUTIB1716 */ 1629 if (s->pauth_active) { 1630 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1631 } 1632 break; 1633 case 0b10000: /* ESB */ 1634 /* Without RAS, we must implement this as NOP. */ 1635 if (dc_isar_feature(aa64_ras, s)) { 1636 /* 1637 * QEMU does not have a source of physical SErrors, 1638 * so we are only concerned with virtual SErrors. 1639 * The pseudocode in the ARM for this case is 1640 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1641 * AArch64.vESBOperation(); 1642 * Most of the condition can be evaluated at translation time. 1643 * Test for EL2 present, and defer test for SEL2 to runtime. 1644 */ 1645 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1646 gen_helper_vesb(cpu_env); 1647 } 1648 } 1649 break; 1650 case 0b11000: /* PACIAZ */ 1651 if (s->pauth_active) { 1652 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1653 tcg_constant_i64(0)); 1654 } 1655 break; 1656 case 0b11001: /* PACIASP */ 1657 if (s->pauth_active) { 1658 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1659 } 1660 break; 1661 case 0b11010: /* PACIBZ */ 1662 if (s->pauth_active) { 1663 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1664 tcg_constant_i64(0)); 1665 } 1666 break; 1667 case 0b11011: /* PACIBSP */ 1668 if (s->pauth_active) { 1669 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1670 } 1671 break; 1672 case 0b11100: /* AUTIAZ */ 1673 if (s->pauth_active) { 1674 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1675 tcg_constant_i64(0)); 1676 } 1677 break; 1678 case 0b11101: /* AUTIASP */ 1679 if (s->pauth_active) { 1680 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1681 } 1682 break; 1683 case 0b11110: /* AUTIBZ */ 1684 if (s->pauth_active) { 1685 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1686 tcg_constant_i64(0)); 1687 } 1688 break; 1689 case 0b11111: /* AUTIBSP */ 1690 if (s->pauth_active) { 1691 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1692 } 1693 break; 1694 default: 1695 /* default specified as NOP equivalent */ 1696 break; 1697 } 1698 } 1699 1700 static void gen_clrex(DisasContext *s, uint32_t insn) 1701 { 1702 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1703 } 1704 1705 /* CLREX, DSB, DMB, ISB */ 1706 static void handle_sync(DisasContext *s, uint32_t insn, 1707 unsigned int op1, unsigned int op2, unsigned int crm) 1708 { 1709 TCGBar bar; 1710 1711 if (op1 != 3) { 1712 unallocated_encoding(s); 1713 return; 1714 } 1715 1716 switch (op2) { 1717 case 2: /* CLREX */ 1718 gen_clrex(s, insn); 1719 return; 1720 case 4: /* DSB */ 1721 case 5: /* DMB */ 1722 switch (crm & 3) { 1723 case 1: /* MBReqTypes_Reads */ 1724 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1725 break; 1726 case 2: /* MBReqTypes_Writes */ 1727 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1728 break; 1729 default: /* MBReqTypes_All */ 1730 bar = TCG_BAR_SC | TCG_MO_ALL; 1731 break; 1732 } 1733 tcg_gen_mb(bar); 1734 return; 1735 case 6: /* ISB */ 1736 /* We need to break the TB after this insn to execute 1737 * a self-modified code correctly and also to take 1738 * any pending interrupts immediately. 1739 */ 1740 reset_btype(s); 1741 gen_goto_tb(s, 0, 4); 1742 return; 1743 1744 case 7: /* SB */ 1745 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1746 goto do_unallocated; 1747 } 1748 /* 1749 * TODO: There is no speculation barrier opcode for TCG; 1750 * MB and end the TB instead. 1751 */ 1752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1753 gen_goto_tb(s, 0, 4); 1754 return; 1755 1756 default: 1757 do_unallocated: 1758 unallocated_encoding(s); 1759 return; 1760 } 1761 } 1762 1763 static void gen_xaflag(void) 1764 { 1765 TCGv_i32 z = tcg_temp_new_i32(); 1766 1767 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1768 1769 /* 1770 * (!C & !Z) << 31 1771 * (!(C | Z)) << 31 1772 * ~((C | Z) << 31) 1773 * ~-(C | Z) 1774 * (C | Z) - 1 1775 */ 1776 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1777 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1778 1779 /* !(Z & C) */ 1780 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1781 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1782 1783 /* (!C & Z) << 31 -> -(Z & ~C) */ 1784 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1785 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1786 1787 /* C | Z */ 1788 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1789 } 1790 1791 static void gen_axflag(void) 1792 { 1793 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1794 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1795 1796 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1797 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1798 1799 tcg_gen_movi_i32(cpu_NF, 0); 1800 tcg_gen_movi_i32(cpu_VF, 0); 1801 } 1802 1803 /* MSR (immediate) - move immediate to processor state field */ 1804 static void handle_msr_i(DisasContext *s, uint32_t insn, 1805 unsigned int op1, unsigned int op2, unsigned int crm) 1806 { 1807 int op = op1 << 3 | op2; 1808 1809 /* End the TB by default, chaining is ok. */ 1810 s->base.is_jmp = DISAS_TOO_MANY; 1811 1812 switch (op) { 1813 case 0x00: /* CFINV */ 1814 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1815 goto do_unallocated; 1816 } 1817 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1818 s->base.is_jmp = DISAS_NEXT; 1819 break; 1820 1821 case 0x01: /* XAFlag */ 1822 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1823 goto do_unallocated; 1824 } 1825 gen_xaflag(); 1826 s->base.is_jmp = DISAS_NEXT; 1827 break; 1828 1829 case 0x02: /* AXFlag */ 1830 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1831 goto do_unallocated; 1832 } 1833 gen_axflag(); 1834 s->base.is_jmp = DISAS_NEXT; 1835 break; 1836 1837 case 0x03: /* UAO */ 1838 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1839 goto do_unallocated; 1840 } 1841 if (crm & 1) { 1842 set_pstate_bits(PSTATE_UAO); 1843 } else { 1844 clear_pstate_bits(PSTATE_UAO); 1845 } 1846 gen_rebuild_hflags(s); 1847 break; 1848 1849 case 0x04: /* PAN */ 1850 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1851 goto do_unallocated; 1852 } 1853 if (crm & 1) { 1854 set_pstate_bits(PSTATE_PAN); 1855 } else { 1856 clear_pstate_bits(PSTATE_PAN); 1857 } 1858 gen_rebuild_hflags(s); 1859 break; 1860 1861 case 0x05: /* SPSel */ 1862 if (s->current_el == 0) { 1863 goto do_unallocated; 1864 } 1865 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1866 break; 1867 1868 case 0x19: /* SSBS */ 1869 if (!dc_isar_feature(aa64_ssbs, s)) { 1870 goto do_unallocated; 1871 } 1872 if (crm & 1) { 1873 set_pstate_bits(PSTATE_SSBS); 1874 } else { 1875 clear_pstate_bits(PSTATE_SSBS); 1876 } 1877 /* Don't need to rebuild hflags since SSBS is a nop */ 1878 break; 1879 1880 case 0x1a: /* DIT */ 1881 if (!dc_isar_feature(aa64_dit, s)) { 1882 goto do_unallocated; 1883 } 1884 if (crm & 1) { 1885 set_pstate_bits(PSTATE_DIT); 1886 } else { 1887 clear_pstate_bits(PSTATE_DIT); 1888 } 1889 /* There's no need to rebuild hflags because DIT is a nop */ 1890 break; 1891 1892 case 0x1e: /* DAIFSet */ 1893 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1894 break; 1895 1896 case 0x1f: /* DAIFClear */ 1897 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1898 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1899 s->base.is_jmp = DISAS_UPDATE_EXIT; 1900 break; 1901 1902 case 0x1c: /* TCO */ 1903 if (dc_isar_feature(aa64_mte, s)) { 1904 /* Full MTE is enabled -- set the TCO bit as directed. */ 1905 if (crm & 1) { 1906 set_pstate_bits(PSTATE_TCO); 1907 } else { 1908 clear_pstate_bits(PSTATE_TCO); 1909 } 1910 gen_rebuild_hflags(s); 1911 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1912 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1913 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1914 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1915 s->base.is_jmp = DISAS_NEXT; 1916 } else { 1917 goto do_unallocated; 1918 } 1919 break; 1920 1921 case 0x1b: /* SVCR* */ 1922 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1923 goto do_unallocated; 1924 } 1925 if (sme_access_check(s)) { 1926 int old = s->pstate_sm | (s->pstate_za << 1); 1927 int new = (crm & 1) * 3; 1928 int msk = (crm >> 1) & 3; 1929 1930 if ((old ^ new) & msk) { 1931 /* At least one bit changes. */ 1932 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1933 tcg_constant_i32(msk)); 1934 } else { 1935 s->base.is_jmp = DISAS_NEXT; 1936 } 1937 } 1938 break; 1939 1940 default: 1941 do_unallocated: 1942 unallocated_encoding(s); 1943 return; 1944 } 1945 } 1946 1947 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1948 { 1949 TCGv_i32 tmp = tcg_temp_new_i32(); 1950 TCGv_i32 nzcv = tcg_temp_new_i32(); 1951 1952 /* build bit 31, N */ 1953 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1954 /* build bit 30, Z */ 1955 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1956 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1957 /* build bit 29, C */ 1958 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1959 /* build bit 28, V */ 1960 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1961 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1962 /* generate result */ 1963 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1964 } 1965 1966 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1967 { 1968 TCGv_i32 nzcv = tcg_temp_new_i32(); 1969 1970 /* take NZCV from R[t] */ 1971 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1972 1973 /* bit 31, N */ 1974 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1975 /* bit 30, Z */ 1976 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1977 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1978 /* bit 29, C */ 1979 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1980 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1981 /* bit 28, V */ 1982 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1983 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1984 } 1985 1986 static void gen_sysreg_undef(DisasContext *s, bool isread, 1987 uint8_t op0, uint8_t op1, uint8_t op2, 1988 uint8_t crn, uint8_t crm, uint8_t rt) 1989 { 1990 /* 1991 * Generate code to emit an UNDEF with correct syndrome 1992 * information for a failed system register access. 1993 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1994 * but if FEAT_IDST is implemented then read accesses to registers 1995 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1996 * syndrome. 1997 */ 1998 uint32_t syndrome; 1999 2000 if (isread && dc_isar_feature(aa64_ids, s) && 2001 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2002 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2003 } else { 2004 syndrome = syn_uncategorized(); 2005 } 2006 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2007 } 2008 2009 /* MRS - move from system register 2010 * MSR (register) - move to system register 2011 * SYS 2012 * SYSL 2013 * These are all essentially the same insn in 'read' and 'write' 2014 * versions, with varying op0 fields. 2015 */ 2016 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2017 unsigned int op0, unsigned int op1, unsigned int op2, 2018 unsigned int crn, unsigned int crm, unsigned int rt) 2019 { 2020 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2021 crn, crm, op0, op1, op2); 2022 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2023 bool need_exit_tb = false; 2024 TCGv_ptr tcg_ri = NULL; 2025 TCGv_i64 tcg_rt; 2026 2027 if (!ri) { 2028 /* Unknown register; this might be a guest error or a QEMU 2029 * unimplemented feature. 2030 */ 2031 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2032 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2033 isread ? "read" : "write", op0, op1, crn, crm, op2); 2034 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2035 return; 2036 } 2037 2038 /* Check access permissions */ 2039 if (!cp_access_ok(s->current_el, ri, isread)) { 2040 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2041 return; 2042 } 2043 2044 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2045 /* Emit code to perform further access permissions checks at 2046 * runtime; this may result in an exception. 2047 */ 2048 uint32_t syndrome; 2049 2050 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2051 gen_a64_update_pc(s, 0); 2052 tcg_ri = tcg_temp_new_ptr(); 2053 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2054 tcg_constant_i32(key), 2055 tcg_constant_i32(syndrome), 2056 tcg_constant_i32(isread)); 2057 } else if (ri->type & ARM_CP_RAISES_EXC) { 2058 /* 2059 * The readfn or writefn might raise an exception; 2060 * synchronize the CPU state in case it does. 2061 */ 2062 gen_a64_update_pc(s, 0); 2063 } 2064 2065 /* Handle special cases first */ 2066 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2067 case 0: 2068 break; 2069 case ARM_CP_NOP: 2070 return; 2071 case ARM_CP_NZCV: 2072 tcg_rt = cpu_reg(s, rt); 2073 if (isread) { 2074 gen_get_nzcv(tcg_rt); 2075 } else { 2076 gen_set_nzcv(tcg_rt); 2077 } 2078 return; 2079 case ARM_CP_CURRENTEL: 2080 /* Reads as current EL value from pstate, which is 2081 * guaranteed to be constant by the tb flags. 2082 */ 2083 tcg_rt = cpu_reg(s, rt); 2084 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2085 return; 2086 case ARM_CP_DC_ZVA: 2087 /* Writes clear the aligned block of memory which rt points into. */ 2088 if (s->mte_active[0]) { 2089 int desc = 0; 2090 2091 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2092 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2093 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2094 2095 tcg_rt = tcg_temp_new_i64(); 2096 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2097 tcg_constant_i32(desc), cpu_reg(s, rt)); 2098 } else { 2099 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2100 } 2101 gen_helper_dc_zva(cpu_env, tcg_rt); 2102 return; 2103 case ARM_CP_DC_GVA: 2104 { 2105 TCGv_i64 clean_addr, tag; 2106 2107 /* 2108 * DC_GVA, like DC_ZVA, requires that we supply the original 2109 * pointer for an invalid page. Probe that address first. 2110 */ 2111 tcg_rt = cpu_reg(s, rt); 2112 clean_addr = clean_data_tbi(s, tcg_rt); 2113 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2114 2115 if (s->ata) { 2116 /* Extract the tag from the register to match STZGM. */ 2117 tag = tcg_temp_new_i64(); 2118 tcg_gen_shri_i64(tag, tcg_rt, 56); 2119 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2120 } 2121 } 2122 return; 2123 case ARM_CP_DC_GZVA: 2124 { 2125 TCGv_i64 clean_addr, tag; 2126 2127 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2128 tcg_rt = cpu_reg(s, rt); 2129 clean_addr = clean_data_tbi(s, tcg_rt); 2130 gen_helper_dc_zva(cpu_env, clean_addr); 2131 2132 if (s->ata) { 2133 /* Extract the tag from the register to match STZGM. */ 2134 tag = tcg_temp_new_i64(); 2135 tcg_gen_shri_i64(tag, tcg_rt, 56); 2136 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2137 } 2138 } 2139 return; 2140 default: 2141 g_assert_not_reached(); 2142 } 2143 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2146 return; 2147 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2148 return; 2149 } 2150 2151 if (ri->type & ARM_CP_IO) { 2152 /* I/O operations must end the TB here (whether read or write) */ 2153 need_exit_tb = translator_io_start(&s->base); 2154 } 2155 2156 tcg_rt = cpu_reg(s, rt); 2157 2158 if (isread) { 2159 if (ri->type & ARM_CP_CONST) { 2160 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2161 } else if (ri->readfn) { 2162 if (!tcg_ri) { 2163 tcg_ri = gen_lookup_cp_reg(key); 2164 } 2165 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2166 } else { 2167 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2168 } 2169 } else { 2170 if (ri->type & ARM_CP_CONST) { 2171 /* If not forbidden by access permissions, treat as WI */ 2172 return; 2173 } else if (ri->writefn) { 2174 if (!tcg_ri) { 2175 tcg_ri = gen_lookup_cp_reg(key); 2176 } 2177 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2178 } else { 2179 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2180 } 2181 } 2182 2183 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2184 /* 2185 * A write to any coprocessor regiser that ends a TB 2186 * must rebuild the hflags for the next TB. 2187 */ 2188 gen_rebuild_hflags(s); 2189 /* 2190 * We default to ending the TB on a coprocessor register write, 2191 * but allow this to be suppressed by the register definition 2192 * (usually only necessary to work around guest bugs). 2193 */ 2194 need_exit_tb = true; 2195 } 2196 if (need_exit_tb) { 2197 s->base.is_jmp = DISAS_UPDATE_EXIT; 2198 } 2199 } 2200 2201 /* System 2202 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2205 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2206 */ 2207 static void disas_system(DisasContext *s, uint32_t insn) 2208 { 2209 unsigned int l, op0, op1, crn, crm, op2, rt; 2210 l = extract32(insn, 21, 1); 2211 op0 = extract32(insn, 19, 2); 2212 op1 = extract32(insn, 16, 3); 2213 crn = extract32(insn, 12, 4); 2214 crm = extract32(insn, 8, 4); 2215 op2 = extract32(insn, 5, 3); 2216 rt = extract32(insn, 0, 5); 2217 2218 if (op0 == 0) { 2219 if (l || rt != 31) { 2220 unallocated_encoding(s); 2221 return; 2222 } 2223 switch (crn) { 2224 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2225 handle_hint(s, insn, op1, op2, crm); 2226 break; 2227 case 3: /* CLREX, DSB, DMB, ISB */ 2228 handle_sync(s, insn, op1, op2, crm); 2229 break; 2230 case 4: /* MSR (immediate) */ 2231 handle_msr_i(s, insn, op1, op2, crm); 2232 break; 2233 default: 2234 unallocated_encoding(s); 2235 break; 2236 } 2237 return; 2238 } 2239 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2240 } 2241 2242 /* Exception generation 2243 * 2244 * 31 24 23 21 20 5 4 2 1 0 2245 * +-----------------+-----+------------------------+-----+----+ 2246 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2247 * +-----------------------+------------------------+----------+ 2248 */ 2249 static void disas_exc(DisasContext *s, uint32_t insn) 2250 { 2251 int opc = extract32(insn, 21, 3); 2252 int op2_ll = extract32(insn, 0, 5); 2253 int imm16 = extract32(insn, 5, 16); 2254 uint32_t syndrome; 2255 2256 switch (opc) { 2257 case 0: 2258 /* For SVC, HVC and SMC we advance the single-step state 2259 * machine before taking the exception. This is architecturally 2260 * mandated, to ensure that single-stepping a system call 2261 * instruction works properly. 2262 */ 2263 switch (op2_ll) { 2264 case 1: /* SVC */ 2265 syndrome = syn_aa64_svc(imm16); 2266 if (s->fgt_svc) { 2267 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2268 break; 2269 } 2270 gen_ss_advance(s); 2271 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2272 break; 2273 case 2: /* HVC */ 2274 if (s->current_el == 0) { 2275 unallocated_encoding(s); 2276 break; 2277 } 2278 /* The pre HVC helper handles cases when HVC gets trapped 2279 * as an undefined insn by runtime configuration. 2280 */ 2281 gen_a64_update_pc(s, 0); 2282 gen_helper_pre_hvc(cpu_env); 2283 gen_ss_advance(s); 2284 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2285 break; 2286 case 3: /* SMC */ 2287 if (s->current_el == 0) { 2288 unallocated_encoding(s); 2289 break; 2290 } 2291 gen_a64_update_pc(s, 0); 2292 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2293 gen_ss_advance(s); 2294 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2295 break; 2296 default: 2297 unallocated_encoding(s); 2298 break; 2299 } 2300 break; 2301 case 1: 2302 if (op2_ll != 0) { 2303 unallocated_encoding(s); 2304 break; 2305 } 2306 /* BRK */ 2307 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2308 break; 2309 case 2: 2310 if (op2_ll != 0) { 2311 unallocated_encoding(s); 2312 break; 2313 } 2314 /* HLT. This has two purposes. 2315 * Architecturally, it is an external halting debug instruction. 2316 * Since QEMU doesn't implement external debug, we treat this as 2317 * it is required for halting debug disabled: it will UNDEF. 2318 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2319 */ 2320 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2321 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2322 } else { 2323 unallocated_encoding(s); 2324 } 2325 break; 2326 case 5: 2327 if (op2_ll < 1 || op2_ll > 3) { 2328 unallocated_encoding(s); 2329 break; 2330 } 2331 /* DCPS1, DCPS2, DCPS3 */ 2332 unallocated_encoding(s); 2333 break; 2334 default: 2335 unallocated_encoding(s); 2336 break; 2337 } 2338 } 2339 2340 /* Branches, exception generating and system instructions */ 2341 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2342 { 2343 switch (extract32(insn, 25, 7)) { 2344 case 0x6a: /* Exception generation / System */ 2345 if (insn & (1 << 24)) { 2346 if (extract32(insn, 22, 2) == 0) { 2347 disas_system(s, insn); 2348 } else { 2349 unallocated_encoding(s); 2350 } 2351 } else { 2352 disas_exc(s, insn); 2353 } 2354 break; 2355 default: 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 } 2360 2361 /* 2362 * Load/Store exclusive instructions are implemented by remembering 2363 * the value/address loaded, and seeing if these are the same 2364 * when the store is performed. This is not actually the architecturally 2365 * mandated semantics, but it works for typical guest code sequences 2366 * and avoids having to monitor regular stores. 2367 * 2368 * The store exclusive uses the atomic cmpxchg primitives to avoid 2369 * races in multi-threaded linux-user and when MTTCG softmmu is 2370 * enabled. 2371 */ 2372 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2373 TCGv_i64 addr, int size, bool is_pair) 2374 { 2375 int idx = get_mem_index(s); 2376 MemOp memop; 2377 2378 g_assert(size <= 3); 2379 if (is_pair) { 2380 g_assert(size >= 2); 2381 if (size == 2) { 2382 /* The pair must be single-copy atomic for the doubleword. */ 2383 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2384 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2385 if (s->be_data == MO_LE) { 2386 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2387 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2388 } else { 2389 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2390 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2391 } 2392 } else { 2393 /* 2394 * The pair must be single-copy atomic for *each* doubleword, not 2395 * the entire quadword, however it must be quadword aligned. 2396 * Expose the complete load to tcg, for ease of tlb lookup, 2397 * but indicate that only 8-byte atomicity is required. 2398 */ 2399 TCGv_i128 t16 = tcg_temp_new_i128(); 2400 2401 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2402 MO_ATOM_IFALIGN_PAIR); 2403 tcg_gen_qemu_ld_i128(t16, addr, idx, memop); 2404 2405 if (s->be_data == MO_LE) { 2406 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2407 cpu_exclusive_high, t16); 2408 } else { 2409 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2410 cpu_exclusive_val, t16); 2411 } 2412 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2413 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2414 } 2415 } else { 2416 memop = finalize_memop(s, size | MO_ALIGN); 2417 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2418 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2419 } 2420 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2421 } 2422 2423 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2424 TCGv_i64 addr, int size, int is_pair) 2425 { 2426 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2427 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2428 * [addr] = {Rt}; 2429 * if (is_pair) { 2430 * [addr + datasize] = {Rt2}; 2431 * } 2432 * {Rd} = 0; 2433 * } else { 2434 * {Rd} = 1; 2435 * } 2436 * env->exclusive_addr = -1; 2437 */ 2438 TCGLabel *fail_label = gen_new_label(); 2439 TCGLabel *done_label = gen_new_label(); 2440 TCGv_i64 tmp; 2441 2442 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2443 2444 tmp = tcg_temp_new_i64(); 2445 if (is_pair) { 2446 if (size == 2) { 2447 if (s->be_data == MO_LE) { 2448 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2449 } else { 2450 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2451 } 2452 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2453 cpu_exclusive_val, tmp, 2454 get_mem_index(s), 2455 MO_64 | MO_ALIGN | s->be_data); 2456 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2457 } else { 2458 TCGv_i128 t16 = tcg_temp_new_i128(); 2459 TCGv_i128 c16 = tcg_temp_new_i128(); 2460 TCGv_i64 a, b; 2461 2462 if (s->be_data == MO_LE) { 2463 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2464 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2465 cpu_exclusive_high); 2466 } else { 2467 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2468 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2469 cpu_exclusive_val); 2470 } 2471 2472 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2473 get_mem_index(s), 2474 MO_128 | MO_ALIGN | s->be_data); 2475 2476 a = tcg_temp_new_i64(); 2477 b = tcg_temp_new_i64(); 2478 if (s->be_data == MO_LE) { 2479 tcg_gen_extr_i128_i64(a, b, t16); 2480 } else { 2481 tcg_gen_extr_i128_i64(b, a, t16); 2482 } 2483 2484 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2485 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2486 tcg_gen_or_i64(tmp, a, b); 2487 2488 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2489 } 2490 } else { 2491 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2492 cpu_reg(s, rt), get_mem_index(s), 2493 size | MO_ALIGN | s->be_data); 2494 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2495 } 2496 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2497 tcg_gen_br(done_label); 2498 2499 gen_set_label(fail_label); 2500 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2501 gen_set_label(done_label); 2502 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2503 } 2504 2505 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2506 int rn, int size) 2507 { 2508 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2509 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2510 int memidx = get_mem_index(s); 2511 TCGv_i64 clean_addr; 2512 2513 if (rn == 31) { 2514 gen_check_sp_alignment(s); 2515 } 2516 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2517 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2518 size | MO_ALIGN | s->be_data); 2519 } 2520 2521 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2522 int rn, int size) 2523 { 2524 TCGv_i64 s1 = cpu_reg(s, rs); 2525 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2526 TCGv_i64 t1 = cpu_reg(s, rt); 2527 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2528 TCGv_i64 clean_addr; 2529 int memidx = get_mem_index(s); 2530 2531 if (rn == 31) { 2532 gen_check_sp_alignment(s); 2533 } 2534 2535 /* This is a single atomic access, despite the "pair". */ 2536 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2537 2538 if (size == 2) { 2539 TCGv_i64 cmp = tcg_temp_new_i64(); 2540 TCGv_i64 val = tcg_temp_new_i64(); 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat32_i64(val, t1, t2); 2544 tcg_gen_concat32_i64(cmp, s1, s2); 2545 } else { 2546 tcg_gen_concat32_i64(val, t2, t1); 2547 tcg_gen_concat32_i64(cmp, s2, s1); 2548 } 2549 2550 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2551 MO_64 | MO_ALIGN | s->be_data); 2552 2553 if (s->be_data == MO_LE) { 2554 tcg_gen_extr32_i64(s1, s2, cmp); 2555 } else { 2556 tcg_gen_extr32_i64(s2, s1, cmp); 2557 } 2558 } else { 2559 TCGv_i128 cmp = tcg_temp_new_i128(); 2560 TCGv_i128 val = tcg_temp_new_i128(); 2561 2562 if (s->be_data == MO_LE) { 2563 tcg_gen_concat_i64_i128(val, t1, t2); 2564 tcg_gen_concat_i64_i128(cmp, s1, s2); 2565 } else { 2566 tcg_gen_concat_i64_i128(val, t2, t1); 2567 tcg_gen_concat_i64_i128(cmp, s2, s1); 2568 } 2569 2570 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2571 MO_128 | MO_ALIGN | s->be_data); 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_extr_i128_i64(s1, s2, cmp); 2575 } else { 2576 tcg_gen_extr_i128_i64(s2, s1, cmp); 2577 } 2578 } 2579 } 2580 2581 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2582 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2583 */ 2584 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2585 { 2586 int opc0 = extract32(opc, 0, 1); 2587 int regsize; 2588 2589 if (is_signed) { 2590 regsize = opc0 ? 32 : 64; 2591 } else { 2592 regsize = size == 3 ? 64 : 32; 2593 } 2594 return regsize == 64; 2595 } 2596 2597 /* Load/store exclusive 2598 * 2599 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2600 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2601 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2602 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2603 * 2604 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2605 * L: 0 -> store, 1 -> load 2606 * o2: 0 -> exclusive, 1 -> not 2607 * o1: 0 -> single register, 1 -> register pair 2608 * o0: 1 -> load-acquire/store-release, 0 -> not 2609 */ 2610 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2611 { 2612 int rt = extract32(insn, 0, 5); 2613 int rn = extract32(insn, 5, 5); 2614 int rt2 = extract32(insn, 10, 5); 2615 int rs = extract32(insn, 16, 5); 2616 int is_lasr = extract32(insn, 15, 1); 2617 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2618 int size = extract32(insn, 30, 2); 2619 TCGv_i64 clean_addr; 2620 2621 switch (o2_L_o1_o0) { 2622 case 0x0: /* STXR */ 2623 case 0x1: /* STLXR */ 2624 if (rn == 31) { 2625 gen_check_sp_alignment(s); 2626 } 2627 if (is_lasr) { 2628 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2629 } 2630 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2631 true, rn != 31, size); 2632 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2633 return; 2634 2635 case 0x4: /* LDXR */ 2636 case 0x5: /* LDAXR */ 2637 if (rn == 31) { 2638 gen_check_sp_alignment(s); 2639 } 2640 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2641 false, rn != 31, size); 2642 s->is_ldex = true; 2643 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2644 if (is_lasr) { 2645 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2646 } 2647 return; 2648 2649 case 0x8: /* STLLR */ 2650 if (!dc_isar_feature(aa64_lor, s)) { 2651 break; 2652 } 2653 /* StoreLORelease is the same as Store-Release for QEMU. */ 2654 /* fall through */ 2655 case 0x9: /* STLR */ 2656 /* Generate ISS for non-exclusive accesses including LASR. */ 2657 if (rn == 31) { 2658 gen_check_sp_alignment(s); 2659 } 2660 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2661 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2662 true, rn != 31, size); 2663 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2664 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2665 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2666 return; 2667 2668 case 0xc: /* LDLAR */ 2669 if (!dc_isar_feature(aa64_lor, s)) { 2670 break; 2671 } 2672 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2673 /* fall through */ 2674 case 0xd: /* LDAR */ 2675 /* Generate ISS for non-exclusive accesses including LASR. */ 2676 if (rn == 31) { 2677 gen_check_sp_alignment(s); 2678 } 2679 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2680 false, rn != 31, size); 2681 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2682 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2683 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2684 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2685 return; 2686 2687 case 0x2: case 0x3: /* CASP / STXP */ 2688 if (size & 2) { /* STXP / STLXP */ 2689 if (rn == 31) { 2690 gen_check_sp_alignment(s); 2691 } 2692 if (is_lasr) { 2693 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2694 } 2695 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2696 true, rn != 31, size); 2697 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2698 return; 2699 } 2700 if (rt2 == 31 2701 && ((rt | rs) & 1) == 0 2702 && dc_isar_feature(aa64_atomics, s)) { 2703 /* CASP / CASPL */ 2704 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2705 return; 2706 } 2707 break; 2708 2709 case 0x6: case 0x7: /* CASPA / LDXP */ 2710 if (size & 2) { /* LDXP / LDAXP */ 2711 if (rn == 31) { 2712 gen_check_sp_alignment(s); 2713 } 2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2715 false, rn != 31, size); 2716 s->is_ldex = true; 2717 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2718 if (is_lasr) { 2719 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2720 } 2721 return; 2722 } 2723 if (rt2 == 31 2724 && ((rt | rs) & 1) == 0 2725 && dc_isar_feature(aa64_atomics, s)) { 2726 /* CASPA / CASPAL */ 2727 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2728 return; 2729 } 2730 break; 2731 2732 case 0xa: /* CAS */ 2733 case 0xb: /* CASL */ 2734 case 0xe: /* CASA */ 2735 case 0xf: /* CASAL */ 2736 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2737 gen_compare_and_swap(s, rs, rt, rn, size); 2738 return; 2739 } 2740 break; 2741 } 2742 unallocated_encoding(s); 2743 } 2744 2745 /* 2746 * Load register (literal) 2747 * 2748 * 31 30 29 27 26 25 24 23 5 4 0 2749 * +-----+-------+---+-----+-------------------+-------+ 2750 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2751 * +-----+-------+---+-----+-------------------+-------+ 2752 * 2753 * V: 1 -> vector (simd/fp) 2754 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2755 * 10-> 32 bit signed, 11 -> prefetch 2756 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2757 */ 2758 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2759 { 2760 int rt = extract32(insn, 0, 5); 2761 int64_t imm = sextract32(insn, 5, 19) << 2; 2762 bool is_vector = extract32(insn, 26, 1); 2763 int opc = extract32(insn, 30, 2); 2764 bool is_signed = false; 2765 int size = 2; 2766 TCGv_i64 tcg_rt, clean_addr; 2767 2768 if (is_vector) { 2769 if (opc == 3) { 2770 unallocated_encoding(s); 2771 return; 2772 } 2773 size = 2 + opc; 2774 if (!fp_access_check(s)) { 2775 return; 2776 } 2777 } else { 2778 if (opc == 3) { 2779 /* PRFM (literal) : prefetch */ 2780 return; 2781 } 2782 size = 2 + extract32(opc, 0, 1); 2783 is_signed = extract32(opc, 1, 1); 2784 } 2785 2786 tcg_rt = cpu_reg(s, rt); 2787 2788 clean_addr = tcg_temp_new_i64(); 2789 gen_pc_plus_diff(s, clean_addr, imm); 2790 if (is_vector) { 2791 do_fp_ld(s, rt, clean_addr, size); 2792 } else { 2793 /* Only unsigned 32bit loads target 32bit registers. */ 2794 bool iss_sf = opc != 0; 2795 2796 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2797 false, true, rt, iss_sf, false); 2798 } 2799 } 2800 2801 /* 2802 * LDNP (Load Pair - non-temporal hint) 2803 * LDP (Load Pair - non vector) 2804 * LDPSW (Load Pair Signed Word - non vector) 2805 * STNP (Store Pair - non-temporal hint) 2806 * STP (Store Pair - non vector) 2807 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2808 * LDP (Load Pair of SIMD&FP) 2809 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2810 * STP (Store Pair of SIMD&FP) 2811 * 2812 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2813 * +-----+-------+---+---+-------+---+-----------------------------+ 2814 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2815 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2816 * 2817 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2818 * LDPSW/STGP 01 2819 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2820 * V: 0 -> GPR, 1 -> Vector 2821 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2822 * 10 -> signed offset, 11 -> pre-index 2823 * L: 0 -> Store 1 -> Load 2824 * 2825 * Rt, Rt2 = GPR or SIMD registers to be stored 2826 * Rn = general purpose register containing address 2827 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2828 */ 2829 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2830 { 2831 int rt = extract32(insn, 0, 5); 2832 int rn = extract32(insn, 5, 5); 2833 int rt2 = extract32(insn, 10, 5); 2834 uint64_t offset = sextract64(insn, 15, 7); 2835 int index = extract32(insn, 23, 2); 2836 bool is_vector = extract32(insn, 26, 1); 2837 bool is_load = extract32(insn, 22, 1); 2838 int opc = extract32(insn, 30, 2); 2839 2840 bool is_signed = false; 2841 bool postindex = false; 2842 bool wback = false; 2843 bool set_tag = false; 2844 2845 TCGv_i64 clean_addr, dirty_addr; 2846 2847 int size; 2848 2849 if (opc == 3) { 2850 unallocated_encoding(s); 2851 return; 2852 } 2853 2854 if (is_vector) { 2855 size = 2 + opc; 2856 } else if (opc == 1 && !is_load) { 2857 /* STGP */ 2858 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2859 unallocated_encoding(s); 2860 return; 2861 } 2862 size = 3; 2863 set_tag = true; 2864 } else { 2865 size = 2 + extract32(opc, 1, 1); 2866 is_signed = extract32(opc, 0, 1); 2867 if (!is_load && is_signed) { 2868 unallocated_encoding(s); 2869 return; 2870 } 2871 } 2872 2873 switch (index) { 2874 case 1: /* post-index */ 2875 postindex = true; 2876 wback = true; 2877 break; 2878 case 0: 2879 /* signed offset with "non-temporal" hint. Since we don't emulate 2880 * caches we don't care about hints to the cache system about 2881 * data access patterns, and handle this identically to plain 2882 * signed offset. 2883 */ 2884 if (is_signed) { 2885 /* There is no non-temporal-hint version of LDPSW */ 2886 unallocated_encoding(s); 2887 return; 2888 } 2889 postindex = false; 2890 break; 2891 case 2: /* signed offset, rn not updated */ 2892 postindex = false; 2893 break; 2894 case 3: /* pre-index */ 2895 postindex = false; 2896 wback = true; 2897 break; 2898 } 2899 2900 if (is_vector && !fp_access_check(s)) { 2901 return; 2902 } 2903 2904 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2905 2906 if (rn == 31) { 2907 gen_check_sp_alignment(s); 2908 } 2909 2910 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2911 if (!postindex) { 2912 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2913 } 2914 2915 if (set_tag) { 2916 if (!s->ata) { 2917 /* 2918 * TODO: We could rely on the stores below, at least for 2919 * system mode, if we arrange to add MO_ALIGN_16. 2920 */ 2921 gen_helper_stg_stub(cpu_env, dirty_addr); 2922 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2923 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2924 } else { 2925 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2926 } 2927 } 2928 2929 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2930 (wback || rn != 31) && !set_tag, 2 << size); 2931 2932 if (is_vector) { 2933 if (is_load) { 2934 do_fp_ld(s, rt, clean_addr, size); 2935 } else { 2936 do_fp_st(s, rt, clean_addr, size); 2937 } 2938 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2939 if (is_load) { 2940 do_fp_ld(s, rt2, clean_addr, size); 2941 } else { 2942 do_fp_st(s, rt2, clean_addr, size); 2943 } 2944 } else { 2945 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2946 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2947 2948 if (is_load) { 2949 TCGv_i64 tmp = tcg_temp_new_i64(); 2950 2951 /* Do not modify tcg_rt before recognizing any exception 2952 * from the second load. 2953 */ 2954 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 2955 false, false, 0, false, false); 2956 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2957 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 2958 false, false, 0, false, false); 2959 2960 tcg_gen_mov_i64(tcg_rt, tmp); 2961 } else { 2962 do_gpr_st(s, tcg_rt, clean_addr, size, 2963 false, 0, false, false); 2964 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2965 do_gpr_st(s, tcg_rt2, clean_addr, size, 2966 false, 0, false, false); 2967 } 2968 } 2969 2970 if (wback) { 2971 if (postindex) { 2972 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2973 } 2974 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 2975 } 2976 } 2977 2978 /* 2979 * Load/store (immediate post-indexed) 2980 * Load/store (immediate pre-indexed) 2981 * Load/store (unscaled immediate) 2982 * 2983 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 2984 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2985 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 2986 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2987 * 2988 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 2989 10 -> unprivileged 2990 * V = 0 -> non-vector 2991 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 2992 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 2993 */ 2994 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 2995 int opc, 2996 int size, 2997 int rt, 2998 bool is_vector) 2999 { 3000 int rn = extract32(insn, 5, 5); 3001 int imm9 = sextract32(insn, 12, 9); 3002 int idx = extract32(insn, 10, 2); 3003 bool is_signed = false; 3004 bool is_store = false; 3005 bool is_extended = false; 3006 bool is_unpriv = (idx == 2); 3007 bool iss_valid; 3008 bool post_index; 3009 bool writeback; 3010 int memidx; 3011 3012 TCGv_i64 clean_addr, dirty_addr; 3013 3014 if (is_vector) { 3015 size |= (opc & 2) << 1; 3016 if (size > 4 || is_unpriv) { 3017 unallocated_encoding(s); 3018 return; 3019 } 3020 is_store = ((opc & 1) == 0); 3021 if (!fp_access_check(s)) { 3022 return; 3023 } 3024 } else { 3025 if (size == 3 && opc == 2) { 3026 /* PRFM - prefetch */ 3027 if (idx != 0) { 3028 unallocated_encoding(s); 3029 return; 3030 } 3031 return; 3032 } 3033 if (opc == 3 && size > 1) { 3034 unallocated_encoding(s); 3035 return; 3036 } 3037 is_store = (opc == 0); 3038 is_signed = extract32(opc, 1, 1); 3039 is_extended = (size < 3) && extract32(opc, 0, 1); 3040 } 3041 3042 switch (idx) { 3043 case 0: 3044 case 2: 3045 post_index = false; 3046 writeback = false; 3047 break; 3048 case 1: 3049 post_index = true; 3050 writeback = true; 3051 break; 3052 case 3: 3053 post_index = false; 3054 writeback = true; 3055 break; 3056 default: 3057 g_assert_not_reached(); 3058 } 3059 3060 iss_valid = !is_vector && !writeback; 3061 3062 if (rn == 31) { 3063 gen_check_sp_alignment(s); 3064 } 3065 3066 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3067 if (!post_index) { 3068 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3069 } 3070 3071 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3072 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3073 writeback || rn != 31, 3074 size, is_unpriv, memidx); 3075 3076 if (is_vector) { 3077 if (is_store) { 3078 do_fp_st(s, rt, clean_addr, size); 3079 } else { 3080 do_fp_ld(s, rt, clean_addr, size); 3081 } 3082 } else { 3083 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3084 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3085 3086 if (is_store) { 3087 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3088 iss_valid, rt, iss_sf, false); 3089 } else { 3090 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3091 is_extended, memidx, 3092 iss_valid, rt, iss_sf, false); 3093 } 3094 } 3095 3096 if (writeback) { 3097 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3098 if (post_index) { 3099 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3100 } 3101 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3102 } 3103 } 3104 3105 /* 3106 * Load/store (register offset) 3107 * 3108 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3109 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3110 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3111 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3112 * 3113 * For non-vector: 3114 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3115 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3116 * For vector: 3117 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3118 * opc<0>: 0 -> store, 1 -> load 3119 * V: 1 -> vector/simd 3120 * opt: extend encoding (see DecodeRegExtend) 3121 * S: if S=1 then scale (essentially index by sizeof(size)) 3122 * Rt: register to transfer into/out of 3123 * Rn: address register or SP for base 3124 * Rm: offset register or ZR for offset 3125 */ 3126 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3127 int opc, 3128 int size, 3129 int rt, 3130 bool is_vector) 3131 { 3132 int rn = extract32(insn, 5, 5); 3133 int shift = extract32(insn, 12, 1); 3134 int rm = extract32(insn, 16, 5); 3135 int opt = extract32(insn, 13, 3); 3136 bool is_signed = false; 3137 bool is_store = false; 3138 bool is_extended = false; 3139 3140 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3141 3142 if (extract32(opt, 1, 1) == 0) { 3143 unallocated_encoding(s); 3144 return; 3145 } 3146 3147 if (is_vector) { 3148 size |= (opc & 2) << 1; 3149 if (size > 4) { 3150 unallocated_encoding(s); 3151 return; 3152 } 3153 is_store = !extract32(opc, 0, 1); 3154 if (!fp_access_check(s)) { 3155 return; 3156 } 3157 } else { 3158 if (size == 3 && opc == 2) { 3159 /* PRFM - prefetch */ 3160 return; 3161 } 3162 if (opc == 3 && size > 1) { 3163 unallocated_encoding(s); 3164 return; 3165 } 3166 is_store = (opc == 0); 3167 is_signed = extract32(opc, 1, 1); 3168 is_extended = (size < 3) && extract32(opc, 0, 1); 3169 } 3170 3171 if (rn == 31) { 3172 gen_check_sp_alignment(s); 3173 } 3174 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3175 3176 tcg_rm = read_cpu_reg(s, rm, 1); 3177 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3178 3179 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3180 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3181 3182 if (is_vector) { 3183 if (is_store) { 3184 do_fp_st(s, rt, clean_addr, size); 3185 } else { 3186 do_fp_ld(s, rt, clean_addr, size); 3187 } 3188 } else { 3189 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3190 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3191 if (is_store) { 3192 do_gpr_st(s, tcg_rt, clean_addr, size, 3193 true, rt, iss_sf, false); 3194 } else { 3195 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3196 is_extended, true, rt, iss_sf, false); 3197 } 3198 } 3199 } 3200 3201 /* 3202 * Load/store (unsigned immediate) 3203 * 3204 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3205 * +----+-------+---+-----+-----+------------+-------+------+ 3206 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3207 * +----+-------+---+-----+-----+------------+-------+------+ 3208 * 3209 * For non-vector: 3210 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3211 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3212 * For vector: 3213 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3214 * opc<0>: 0 -> store, 1 -> load 3215 * Rn: base address register (inc SP) 3216 * Rt: target register 3217 */ 3218 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3219 int opc, 3220 int size, 3221 int rt, 3222 bool is_vector) 3223 { 3224 int rn = extract32(insn, 5, 5); 3225 unsigned int imm12 = extract32(insn, 10, 12); 3226 unsigned int offset; 3227 3228 TCGv_i64 clean_addr, dirty_addr; 3229 3230 bool is_store; 3231 bool is_signed = false; 3232 bool is_extended = false; 3233 3234 if (is_vector) { 3235 size |= (opc & 2) << 1; 3236 if (size > 4) { 3237 unallocated_encoding(s); 3238 return; 3239 } 3240 is_store = !extract32(opc, 0, 1); 3241 if (!fp_access_check(s)) { 3242 return; 3243 } 3244 } else { 3245 if (size == 3 && opc == 2) { 3246 /* PRFM - prefetch */ 3247 return; 3248 } 3249 if (opc == 3 && size > 1) { 3250 unallocated_encoding(s); 3251 return; 3252 } 3253 is_store = (opc == 0); 3254 is_signed = extract32(opc, 1, 1); 3255 is_extended = (size < 3) && extract32(opc, 0, 1); 3256 } 3257 3258 if (rn == 31) { 3259 gen_check_sp_alignment(s); 3260 } 3261 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3262 offset = imm12 << size; 3263 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3264 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3265 3266 if (is_vector) { 3267 if (is_store) { 3268 do_fp_st(s, rt, clean_addr, size); 3269 } else { 3270 do_fp_ld(s, rt, clean_addr, size); 3271 } 3272 } else { 3273 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3274 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3275 if (is_store) { 3276 do_gpr_st(s, tcg_rt, clean_addr, size, 3277 true, rt, iss_sf, false); 3278 } else { 3279 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3280 is_extended, true, rt, iss_sf, false); 3281 } 3282 } 3283 } 3284 3285 /* Atomic memory operations 3286 * 3287 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3288 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3289 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3290 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3291 * 3292 * Rt: the result register 3293 * Rn: base address or SP 3294 * Rs: the source register for the operation 3295 * V: vector flag (always 0 as of v8.3) 3296 * A: acquire flag 3297 * R: release flag 3298 */ 3299 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3300 int size, int rt, bool is_vector) 3301 { 3302 int rs = extract32(insn, 16, 5); 3303 int rn = extract32(insn, 5, 5); 3304 int o3_opc = extract32(insn, 12, 4); 3305 bool r = extract32(insn, 22, 1); 3306 bool a = extract32(insn, 23, 1); 3307 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3308 AtomicThreeOpFn *fn = NULL; 3309 MemOp mop = s->be_data | size | MO_ALIGN; 3310 3311 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3312 unallocated_encoding(s); 3313 return; 3314 } 3315 switch (o3_opc) { 3316 case 000: /* LDADD */ 3317 fn = tcg_gen_atomic_fetch_add_i64; 3318 break; 3319 case 001: /* LDCLR */ 3320 fn = tcg_gen_atomic_fetch_and_i64; 3321 break; 3322 case 002: /* LDEOR */ 3323 fn = tcg_gen_atomic_fetch_xor_i64; 3324 break; 3325 case 003: /* LDSET */ 3326 fn = tcg_gen_atomic_fetch_or_i64; 3327 break; 3328 case 004: /* LDSMAX */ 3329 fn = tcg_gen_atomic_fetch_smax_i64; 3330 mop |= MO_SIGN; 3331 break; 3332 case 005: /* LDSMIN */ 3333 fn = tcg_gen_atomic_fetch_smin_i64; 3334 mop |= MO_SIGN; 3335 break; 3336 case 006: /* LDUMAX */ 3337 fn = tcg_gen_atomic_fetch_umax_i64; 3338 break; 3339 case 007: /* LDUMIN */ 3340 fn = tcg_gen_atomic_fetch_umin_i64; 3341 break; 3342 case 010: /* SWP */ 3343 fn = tcg_gen_atomic_xchg_i64; 3344 break; 3345 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3346 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3347 rs != 31 || a != 1 || r != 0) { 3348 unallocated_encoding(s); 3349 return; 3350 } 3351 break; 3352 default: 3353 unallocated_encoding(s); 3354 return; 3355 } 3356 3357 if (rn == 31) { 3358 gen_check_sp_alignment(s); 3359 } 3360 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3361 3362 if (o3_opc == 014) { 3363 /* 3364 * LDAPR* are a special case because they are a simple load, not a 3365 * fetch-and-do-something op. 3366 * The architectural consistency requirements here are weaker than 3367 * full load-acquire (we only need "load-acquire processor consistent"), 3368 * but we choose to implement them as full LDAQ. 3369 */ 3370 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3371 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3372 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3373 return; 3374 } 3375 3376 tcg_rs = read_cpu_reg(s, rs, true); 3377 tcg_rt = cpu_reg(s, rt); 3378 3379 if (o3_opc == 1) { /* LDCLR */ 3380 tcg_gen_not_i64(tcg_rs, tcg_rs); 3381 } 3382 3383 /* The tcg atomic primitives are all full barriers. Therefore we 3384 * can ignore the Acquire and Release bits of this instruction. 3385 */ 3386 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3387 3388 if ((mop & MO_SIGN) && size != MO_64) { 3389 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3390 } 3391 } 3392 3393 /* 3394 * PAC memory operations 3395 * 3396 * 31 30 27 26 24 22 21 12 11 10 5 0 3397 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3398 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3399 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3400 * 3401 * Rt: the result register 3402 * Rn: base address or SP 3403 * V: vector flag (always 0 as of v8.3) 3404 * M: clear for key DA, set for key DB 3405 * W: pre-indexing flag 3406 * S: sign for imm9. 3407 */ 3408 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3409 int size, int rt, bool is_vector) 3410 { 3411 int rn = extract32(insn, 5, 5); 3412 bool is_wback = extract32(insn, 11, 1); 3413 bool use_key_a = !extract32(insn, 23, 1); 3414 int offset; 3415 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3416 3417 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3418 unallocated_encoding(s); 3419 return; 3420 } 3421 3422 if (rn == 31) { 3423 gen_check_sp_alignment(s); 3424 } 3425 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3426 3427 if (s->pauth_active) { 3428 if (use_key_a) { 3429 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3430 tcg_constant_i64(0)); 3431 } else { 3432 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3433 tcg_constant_i64(0)); 3434 } 3435 } 3436 3437 /* Form the 10-bit signed, scaled offset. */ 3438 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3439 offset = sextract32(offset << size, 0, 10 + size); 3440 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3441 3442 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3443 clean_addr = gen_mte_check1(s, dirty_addr, false, 3444 is_wback || rn != 31, size); 3445 3446 tcg_rt = cpu_reg(s, rt); 3447 do_gpr_ld(s, tcg_rt, clean_addr, size, 3448 /* extend */ false, /* iss_valid */ !is_wback, 3449 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3450 3451 if (is_wback) { 3452 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3453 } 3454 } 3455 3456 /* 3457 * LDAPR/STLR (unscaled immediate) 3458 * 3459 * 31 30 24 22 21 12 10 5 0 3460 * +------+-------------+-----+---+--------+-----+----+-----+ 3461 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3462 * +------+-------------+-----+---+--------+-----+----+-----+ 3463 * 3464 * Rt: source or destination register 3465 * Rn: base register 3466 * imm9: unscaled immediate offset 3467 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3468 * size: size of load/store 3469 */ 3470 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3471 { 3472 int rt = extract32(insn, 0, 5); 3473 int rn = extract32(insn, 5, 5); 3474 int offset = sextract32(insn, 12, 9); 3475 int opc = extract32(insn, 22, 2); 3476 int size = extract32(insn, 30, 2); 3477 TCGv_i64 clean_addr, dirty_addr; 3478 bool is_store = false; 3479 bool extend = false; 3480 bool iss_sf; 3481 MemOp mop; 3482 3483 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3484 unallocated_encoding(s); 3485 return; 3486 } 3487 3488 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3489 mop = size | MO_ALIGN; 3490 3491 switch (opc) { 3492 case 0: /* STLURB */ 3493 is_store = true; 3494 break; 3495 case 1: /* LDAPUR* */ 3496 break; 3497 case 2: /* LDAPURS* 64-bit variant */ 3498 if (size == 3) { 3499 unallocated_encoding(s); 3500 return; 3501 } 3502 mop |= MO_SIGN; 3503 break; 3504 case 3: /* LDAPURS* 32-bit variant */ 3505 if (size > 1) { 3506 unallocated_encoding(s); 3507 return; 3508 } 3509 mop |= MO_SIGN; 3510 extend = true; /* zero-extend 32->64 after signed load */ 3511 break; 3512 default: 3513 g_assert_not_reached(); 3514 } 3515 3516 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3517 3518 if (rn == 31) { 3519 gen_check_sp_alignment(s); 3520 } 3521 3522 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3523 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3524 clean_addr = clean_data_tbi(s, dirty_addr); 3525 3526 if (is_store) { 3527 /* Store-Release semantics */ 3528 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3529 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3530 } else { 3531 /* 3532 * Load-AcquirePC semantics; we implement as the slightly more 3533 * restrictive Load-Acquire. 3534 */ 3535 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3536 extend, true, rt, iss_sf, true); 3537 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3538 } 3539 } 3540 3541 /* Load/store register (all forms) */ 3542 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3543 { 3544 int rt = extract32(insn, 0, 5); 3545 int opc = extract32(insn, 22, 2); 3546 bool is_vector = extract32(insn, 26, 1); 3547 int size = extract32(insn, 30, 2); 3548 3549 switch (extract32(insn, 24, 2)) { 3550 case 0: 3551 if (extract32(insn, 21, 1) == 0) { 3552 /* Load/store register (unscaled immediate) 3553 * Load/store immediate pre/post-indexed 3554 * Load/store register unprivileged 3555 */ 3556 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3557 return; 3558 } 3559 switch (extract32(insn, 10, 2)) { 3560 case 0: 3561 disas_ldst_atomic(s, insn, size, rt, is_vector); 3562 return; 3563 case 2: 3564 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3565 return; 3566 default: 3567 disas_ldst_pac(s, insn, size, rt, is_vector); 3568 return; 3569 } 3570 break; 3571 case 1: 3572 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3573 return; 3574 } 3575 unallocated_encoding(s); 3576 } 3577 3578 /* AdvSIMD load/store multiple structures 3579 * 3580 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3581 * +---+---+---------------+---+-------------+--------+------+------+------+ 3582 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3583 * +---+---+---------------+---+-------------+--------+------+------+------+ 3584 * 3585 * AdvSIMD load/store multiple structures (post-indexed) 3586 * 3587 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3588 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3589 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3590 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3591 * 3592 * Rt: first (or only) SIMD&FP register to be transferred 3593 * Rn: base address or SP 3594 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3595 */ 3596 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3597 { 3598 int rt = extract32(insn, 0, 5); 3599 int rn = extract32(insn, 5, 5); 3600 int rm = extract32(insn, 16, 5); 3601 int size = extract32(insn, 10, 2); 3602 int opcode = extract32(insn, 12, 4); 3603 bool is_store = !extract32(insn, 22, 1); 3604 bool is_postidx = extract32(insn, 23, 1); 3605 bool is_q = extract32(insn, 30, 1); 3606 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3607 MemOp endian, align, mop; 3608 3609 int total; /* total bytes */ 3610 int elements; /* elements per vector */ 3611 int rpt; /* num iterations */ 3612 int selem; /* structure elements */ 3613 int r; 3614 3615 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3616 unallocated_encoding(s); 3617 return; 3618 } 3619 3620 if (!is_postidx && rm != 0) { 3621 unallocated_encoding(s); 3622 return; 3623 } 3624 3625 /* From the shared decode logic */ 3626 switch (opcode) { 3627 case 0x0: 3628 rpt = 1; 3629 selem = 4; 3630 break; 3631 case 0x2: 3632 rpt = 4; 3633 selem = 1; 3634 break; 3635 case 0x4: 3636 rpt = 1; 3637 selem = 3; 3638 break; 3639 case 0x6: 3640 rpt = 3; 3641 selem = 1; 3642 break; 3643 case 0x7: 3644 rpt = 1; 3645 selem = 1; 3646 break; 3647 case 0x8: 3648 rpt = 1; 3649 selem = 2; 3650 break; 3651 case 0xa: 3652 rpt = 2; 3653 selem = 1; 3654 break; 3655 default: 3656 unallocated_encoding(s); 3657 return; 3658 } 3659 3660 if (size == 3 && !is_q && selem != 1) { 3661 /* reserved */ 3662 unallocated_encoding(s); 3663 return; 3664 } 3665 3666 if (!fp_access_check(s)) { 3667 return; 3668 } 3669 3670 if (rn == 31) { 3671 gen_check_sp_alignment(s); 3672 } 3673 3674 /* For our purposes, bytes are always little-endian. */ 3675 endian = s->be_data; 3676 if (size == 0) { 3677 endian = MO_LE; 3678 } 3679 3680 total = rpt * selem * (is_q ? 16 : 8); 3681 tcg_rn = cpu_reg_sp(s, rn); 3682 3683 /* 3684 * Issue the MTE check vs the logical repeat count, before we 3685 * promote consecutive little-endian elements below. 3686 */ 3687 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3688 total); 3689 3690 /* 3691 * Consecutive little-endian elements from a single register 3692 * can be promoted to a larger little-endian operation. 3693 */ 3694 align = MO_ALIGN; 3695 if (selem == 1 && endian == MO_LE) { 3696 align = pow2_align(size); 3697 size = 3; 3698 } 3699 if (!s->align_mem) { 3700 align = 0; 3701 } 3702 mop = endian | size | align; 3703 3704 elements = (is_q ? 16 : 8) >> size; 3705 tcg_ebytes = tcg_constant_i64(1 << size); 3706 for (r = 0; r < rpt; r++) { 3707 int e; 3708 for (e = 0; e < elements; e++) { 3709 int xs; 3710 for (xs = 0; xs < selem; xs++) { 3711 int tt = (rt + r + xs) % 32; 3712 if (is_store) { 3713 do_vec_st(s, tt, e, clean_addr, mop); 3714 } else { 3715 do_vec_ld(s, tt, e, clean_addr, mop); 3716 } 3717 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3718 } 3719 } 3720 } 3721 3722 if (!is_store) { 3723 /* For non-quad operations, setting a slice of the low 3724 * 64 bits of the register clears the high 64 bits (in 3725 * the ARM ARM pseudocode this is implicit in the fact 3726 * that 'rval' is a 64 bit wide variable). 3727 * For quad operations, we might still need to zero the 3728 * high bits of SVE. 3729 */ 3730 for (r = 0; r < rpt * selem; r++) { 3731 int tt = (rt + r) % 32; 3732 clear_vec_high(s, is_q, tt); 3733 } 3734 } 3735 3736 if (is_postidx) { 3737 if (rm == 31) { 3738 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3739 } else { 3740 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3741 } 3742 } 3743 } 3744 3745 /* AdvSIMD load/store single structure 3746 * 3747 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3748 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3749 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3750 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3751 * 3752 * AdvSIMD load/store single structure (post-indexed) 3753 * 3754 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3755 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3756 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3757 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3758 * 3759 * Rt: first (or only) SIMD&FP register to be transferred 3760 * Rn: base address or SP 3761 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3762 * index = encoded in Q:S:size dependent on size 3763 * 3764 * lane_size = encoded in R, opc 3765 * transfer width = encoded in opc, S, size 3766 */ 3767 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3768 { 3769 int rt = extract32(insn, 0, 5); 3770 int rn = extract32(insn, 5, 5); 3771 int rm = extract32(insn, 16, 5); 3772 int size = extract32(insn, 10, 2); 3773 int S = extract32(insn, 12, 1); 3774 int opc = extract32(insn, 13, 3); 3775 int R = extract32(insn, 21, 1); 3776 int is_load = extract32(insn, 22, 1); 3777 int is_postidx = extract32(insn, 23, 1); 3778 int is_q = extract32(insn, 30, 1); 3779 3780 int scale = extract32(opc, 1, 2); 3781 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3782 bool replicate = false; 3783 int index = is_q << 3 | S << 2 | size; 3784 int xs, total; 3785 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3786 MemOp mop; 3787 3788 if (extract32(insn, 31, 1)) { 3789 unallocated_encoding(s); 3790 return; 3791 } 3792 if (!is_postidx && rm != 0) { 3793 unallocated_encoding(s); 3794 return; 3795 } 3796 3797 switch (scale) { 3798 case 3: 3799 if (!is_load || S) { 3800 unallocated_encoding(s); 3801 return; 3802 } 3803 scale = size; 3804 replicate = true; 3805 break; 3806 case 0: 3807 break; 3808 case 1: 3809 if (extract32(size, 0, 1)) { 3810 unallocated_encoding(s); 3811 return; 3812 } 3813 index >>= 1; 3814 break; 3815 case 2: 3816 if (extract32(size, 1, 1)) { 3817 unallocated_encoding(s); 3818 return; 3819 } 3820 if (!extract32(size, 0, 1)) { 3821 index >>= 2; 3822 } else { 3823 if (S) { 3824 unallocated_encoding(s); 3825 return; 3826 } 3827 index >>= 3; 3828 scale = 3; 3829 } 3830 break; 3831 default: 3832 g_assert_not_reached(); 3833 } 3834 3835 if (!fp_access_check(s)) { 3836 return; 3837 } 3838 3839 if (rn == 31) { 3840 gen_check_sp_alignment(s); 3841 } 3842 3843 total = selem << scale; 3844 tcg_rn = cpu_reg_sp(s, rn); 3845 3846 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3847 total); 3848 mop = finalize_memop(s, scale); 3849 3850 tcg_ebytes = tcg_constant_i64(1 << scale); 3851 for (xs = 0; xs < selem; xs++) { 3852 if (replicate) { 3853 /* Load and replicate to all elements */ 3854 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3855 3856 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3857 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3858 (is_q + 1) * 8, vec_full_reg_size(s), 3859 tcg_tmp); 3860 } else { 3861 /* Load/store one element per register */ 3862 if (is_load) { 3863 do_vec_ld(s, rt, index, clean_addr, mop); 3864 } else { 3865 do_vec_st(s, rt, index, clean_addr, mop); 3866 } 3867 } 3868 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3869 rt = (rt + 1) % 32; 3870 } 3871 3872 if (is_postidx) { 3873 if (rm == 31) { 3874 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3875 } else { 3876 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3877 } 3878 } 3879 } 3880 3881 /* 3882 * Load/Store memory tags 3883 * 3884 * 31 30 29 24 22 21 12 10 5 0 3885 * +-----+-------------+-----+---+------+-----+------+------+ 3886 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3887 * +-----+-------------+-----+---+------+-----+------+------+ 3888 */ 3889 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3890 { 3891 int rt = extract32(insn, 0, 5); 3892 int rn = extract32(insn, 5, 5); 3893 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3894 int op2 = extract32(insn, 10, 2); 3895 int op1 = extract32(insn, 22, 2); 3896 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3897 int index = 0; 3898 TCGv_i64 addr, clean_addr, tcg_rt; 3899 3900 /* We checked insn bits [29:24,21] in the caller. */ 3901 if (extract32(insn, 30, 2) != 3) { 3902 goto do_unallocated; 3903 } 3904 3905 /* 3906 * @index is a tri-state variable which has 3 states: 3907 * < 0 : post-index, writeback 3908 * = 0 : signed offset 3909 * > 0 : pre-index, writeback 3910 */ 3911 switch (op1) { 3912 case 0: 3913 if (op2 != 0) { 3914 /* STG */ 3915 index = op2 - 2; 3916 } else { 3917 /* STZGM */ 3918 if (s->current_el == 0 || offset != 0) { 3919 goto do_unallocated; 3920 } 3921 is_mult = is_zero = true; 3922 } 3923 break; 3924 case 1: 3925 if (op2 != 0) { 3926 /* STZG */ 3927 is_zero = true; 3928 index = op2 - 2; 3929 } else { 3930 /* LDG */ 3931 is_load = true; 3932 } 3933 break; 3934 case 2: 3935 if (op2 != 0) { 3936 /* ST2G */ 3937 is_pair = true; 3938 index = op2 - 2; 3939 } else { 3940 /* STGM */ 3941 if (s->current_el == 0 || offset != 0) { 3942 goto do_unallocated; 3943 } 3944 is_mult = true; 3945 } 3946 break; 3947 case 3: 3948 if (op2 != 0) { 3949 /* STZ2G */ 3950 is_pair = is_zero = true; 3951 index = op2 - 2; 3952 } else { 3953 /* LDGM */ 3954 if (s->current_el == 0 || offset != 0) { 3955 goto do_unallocated; 3956 } 3957 is_mult = is_load = true; 3958 } 3959 break; 3960 3961 default: 3962 do_unallocated: 3963 unallocated_encoding(s); 3964 return; 3965 } 3966 3967 if (is_mult 3968 ? !dc_isar_feature(aa64_mte, s) 3969 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 3970 goto do_unallocated; 3971 } 3972 3973 if (rn == 31) { 3974 gen_check_sp_alignment(s); 3975 } 3976 3977 addr = read_cpu_reg_sp(s, rn, true); 3978 if (index >= 0) { 3979 /* pre-index or signed offset */ 3980 tcg_gen_addi_i64(addr, addr, offset); 3981 } 3982 3983 if (is_mult) { 3984 tcg_rt = cpu_reg(s, rt); 3985 3986 if (is_zero) { 3987 int size = 4 << s->dcz_blocksize; 3988 3989 if (s->ata) { 3990 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3991 } 3992 /* 3993 * The non-tags portion of STZGM is mostly like DC_ZVA, 3994 * except the alignment happens before the access. 3995 */ 3996 clean_addr = clean_data_tbi(s, addr); 3997 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3998 gen_helper_dc_zva(cpu_env, clean_addr); 3999 } else if (s->ata) { 4000 if (is_load) { 4001 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4002 } else { 4003 gen_helper_stgm(cpu_env, addr, tcg_rt); 4004 } 4005 } else { 4006 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4007 int size = 4 << GMID_EL1_BS; 4008 4009 clean_addr = clean_data_tbi(s, addr); 4010 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4011 gen_probe_access(s, clean_addr, acc, size); 4012 4013 if (is_load) { 4014 /* The result tags are zeros. */ 4015 tcg_gen_movi_i64(tcg_rt, 0); 4016 } 4017 } 4018 return; 4019 } 4020 4021 if (is_load) { 4022 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4023 tcg_rt = cpu_reg(s, rt); 4024 if (s->ata) { 4025 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4026 } else { 4027 clean_addr = clean_data_tbi(s, addr); 4028 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4029 gen_address_with_allocation_tag0(tcg_rt, addr); 4030 } 4031 } else { 4032 tcg_rt = cpu_reg_sp(s, rt); 4033 if (!s->ata) { 4034 /* 4035 * For STG and ST2G, we need to check alignment and probe memory. 4036 * TODO: For STZG and STZ2G, we could rely on the stores below, 4037 * at least for system mode; user-only won't enforce alignment. 4038 */ 4039 if (is_pair) { 4040 gen_helper_st2g_stub(cpu_env, addr); 4041 } else { 4042 gen_helper_stg_stub(cpu_env, addr); 4043 } 4044 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4045 if (is_pair) { 4046 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4047 } else { 4048 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4049 } 4050 } else { 4051 if (is_pair) { 4052 gen_helper_st2g(cpu_env, addr, tcg_rt); 4053 } else { 4054 gen_helper_stg(cpu_env, addr, tcg_rt); 4055 } 4056 } 4057 } 4058 4059 if (is_zero) { 4060 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4061 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4062 int mem_index = get_mem_index(s); 4063 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4064 4065 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4066 MO_UQ | MO_ALIGN_16); 4067 for (i = 8; i < n; i += 8) { 4068 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4069 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4070 } 4071 } 4072 4073 if (index != 0) { 4074 /* pre-index or post-index */ 4075 if (index < 0) { 4076 /* post-index */ 4077 tcg_gen_addi_i64(addr, addr, offset); 4078 } 4079 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4080 } 4081 } 4082 4083 /* Loads and stores */ 4084 static void disas_ldst(DisasContext *s, uint32_t insn) 4085 { 4086 switch (extract32(insn, 24, 6)) { 4087 case 0x08: /* Load/store exclusive */ 4088 disas_ldst_excl(s, insn); 4089 break; 4090 case 0x18: case 0x1c: /* Load register (literal) */ 4091 disas_ld_lit(s, insn); 4092 break; 4093 case 0x28: case 0x29: 4094 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4095 disas_ldst_pair(s, insn); 4096 break; 4097 case 0x38: case 0x39: 4098 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4099 disas_ldst_reg(s, insn); 4100 break; 4101 case 0x0c: /* AdvSIMD load/store multiple structures */ 4102 disas_ldst_multiple_struct(s, insn); 4103 break; 4104 case 0x0d: /* AdvSIMD load/store single structure */ 4105 disas_ldst_single_struct(s, insn); 4106 break; 4107 case 0x19: 4108 if (extract32(insn, 21, 1) != 0) { 4109 disas_ldst_tag(s, insn); 4110 } else if (extract32(insn, 10, 2) == 0) { 4111 disas_ldst_ldapr_stlr(s, insn); 4112 } else { 4113 unallocated_encoding(s); 4114 } 4115 break; 4116 default: 4117 unallocated_encoding(s); 4118 break; 4119 } 4120 } 4121 4122 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4123 4124 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4125 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4126 { 4127 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4128 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4129 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4130 4131 fn(tcg_rd, tcg_rn, tcg_imm); 4132 if (!a->sf) { 4133 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4134 } 4135 return true; 4136 } 4137 4138 /* 4139 * PC-rel. addressing 4140 */ 4141 4142 static bool trans_ADR(DisasContext *s, arg_ri *a) 4143 { 4144 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4145 return true; 4146 } 4147 4148 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4149 { 4150 int64_t offset = (int64_t)a->imm << 12; 4151 4152 /* The page offset is ok for CF_PCREL. */ 4153 offset -= s->pc_curr & 0xfff; 4154 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4155 return true; 4156 } 4157 4158 /* 4159 * Add/subtract (immediate) 4160 */ 4161 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4162 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4163 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4164 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4165 4166 /* 4167 * Add/subtract (immediate, with tags) 4168 */ 4169 4170 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4171 bool sub_op) 4172 { 4173 TCGv_i64 tcg_rn, tcg_rd; 4174 int imm; 4175 4176 imm = a->uimm6 << LOG2_TAG_GRANULE; 4177 if (sub_op) { 4178 imm = -imm; 4179 } 4180 4181 tcg_rn = cpu_reg_sp(s, a->rn); 4182 tcg_rd = cpu_reg_sp(s, a->rd); 4183 4184 if (s->ata) { 4185 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4186 tcg_constant_i32(imm), 4187 tcg_constant_i32(a->uimm4)); 4188 } else { 4189 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4190 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4191 } 4192 return true; 4193 } 4194 4195 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4196 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4197 4198 /* The input should be a value in the bottom e bits (with higher 4199 * bits zero); returns that value replicated into every element 4200 * of size e in a 64 bit integer. 4201 */ 4202 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4203 { 4204 assert(e != 0); 4205 while (e < 64) { 4206 mask |= mask << e; 4207 e *= 2; 4208 } 4209 return mask; 4210 } 4211 4212 /* 4213 * Logical (immediate) 4214 */ 4215 4216 /* 4217 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4218 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4219 * value (ie should cause a guest UNDEF exception), and true if they are 4220 * valid, in which case the decoded bit pattern is written to result. 4221 */ 4222 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4223 unsigned int imms, unsigned int immr) 4224 { 4225 uint64_t mask; 4226 unsigned e, levels, s, r; 4227 int len; 4228 4229 assert(immn < 2 && imms < 64 && immr < 64); 4230 4231 /* The bit patterns we create here are 64 bit patterns which 4232 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4233 * 64 bits each. Each element contains the same value: a run 4234 * of between 1 and e-1 non-zero bits, rotated within the 4235 * element by between 0 and e-1 bits. 4236 * 4237 * The element size and run length are encoded into immn (1 bit) 4238 * and imms (6 bits) as follows: 4239 * 64 bit elements: immn = 1, imms = <length of run - 1> 4240 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4241 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4242 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4243 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4244 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4245 * Notice that immn = 0, imms = 11111x is the only combination 4246 * not covered by one of the above options; this is reserved. 4247 * Further, <length of run - 1> all-ones is a reserved pattern. 4248 * 4249 * In all cases the rotation is by immr % e (and immr is 6 bits). 4250 */ 4251 4252 /* First determine the element size */ 4253 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4254 if (len < 1) { 4255 /* This is the immn == 0, imms == 0x11111x case */ 4256 return false; 4257 } 4258 e = 1 << len; 4259 4260 levels = e - 1; 4261 s = imms & levels; 4262 r = immr & levels; 4263 4264 if (s == levels) { 4265 /* <length of run - 1> mustn't be all-ones. */ 4266 return false; 4267 } 4268 4269 /* Create the value of one element: s+1 set bits rotated 4270 * by r within the element (which is e bits wide)... 4271 */ 4272 mask = MAKE_64BIT_MASK(0, s + 1); 4273 if (r) { 4274 mask = (mask >> r) | (mask << (e - r)); 4275 mask &= MAKE_64BIT_MASK(0, e); 4276 } 4277 /* ...then replicate the element over the whole 64 bit value */ 4278 mask = bitfield_replicate(mask, e); 4279 *result = mask; 4280 return true; 4281 } 4282 4283 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4284 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4285 { 4286 TCGv_i64 tcg_rd, tcg_rn; 4287 uint64_t imm; 4288 4289 /* Some immediate field values are reserved. */ 4290 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4291 extract32(a->dbm, 0, 6), 4292 extract32(a->dbm, 6, 6))) { 4293 return false; 4294 } 4295 if (!a->sf) { 4296 imm &= 0xffffffffull; 4297 } 4298 4299 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4300 tcg_rn = cpu_reg(s, a->rn); 4301 4302 fn(tcg_rd, tcg_rn, imm); 4303 if (set_cc) { 4304 gen_logic_CC(a->sf, tcg_rd); 4305 } 4306 if (!a->sf) { 4307 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4308 } 4309 return true; 4310 } 4311 4312 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4313 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4314 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4315 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4316 4317 /* 4318 * Move wide (immediate) 4319 */ 4320 4321 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4322 { 4323 int pos = a->hw << 4; 4324 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4325 return true; 4326 } 4327 4328 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4329 { 4330 int pos = a->hw << 4; 4331 uint64_t imm = a->imm; 4332 4333 imm = ~(imm << pos); 4334 if (!a->sf) { 4335 imm = (uint32_t)imm; 4336 } 4337 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4338 return true; 4339 } 4340 4341 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4342 { 4343 int pos = a->hw << 4; 4344 TCGv_i64 tcg_rd, tcg_im; 4345 4346 tcg_rd = cpu_reg(s, a->rd); 4347 tcg_im = tcg_constant_i64(a->imm); 4348 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4349 if (!a->sf) { 4350 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4351 } 4352 return true; 4353 } 4354 4355 /* 4356 * Bitfield 4357 */ 4358 4359 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4360 { 4361 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4362 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4363 unsigned int bitsize = a->sf ? 64 : 32; 4364 unsigned int ri = a->immr; 4365 unsigned int si = a->imms; 4366 unsigned int pos, len; 4367 4368 if (si >= ri) { 4369 /* Wd<s-r:0> = Wn<s:r> */ 4370 len = (si - ri) + 1; 4371 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4372 if (!a->sf) { 4373 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4374 } 4375 } else { 4376 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4377 len = si + 1; 4378 pos = (bitsize - ri) & (bitsize - 1); 4379 4380 if (len < ri) { 4381 /* 4382 * Sign extend the destination field from len to fill the 4383 * balance of the word. Let the deposit below insert all 4384 * of those sign bits. 4385 */ 4386 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4387 len = ri; 4388 } 4389 4390 /* 4391 * We start with zero, and we haven't modified any bits outside 4392 * bitsize, therefore no final zero-extension is unneeded for !sf. 4393 */ 4394 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4395 } 4396 return true; 4397 } 4398 4399 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4400 { 4401 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4402 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4403 unsigned int bitsize = a->sf ? 64 : 32; 4404 unsigned int ri = a->immr; 4405 unsigned int si = a->imms; 4406 unsigned int pos, len; 4407 4408 tcg_rd = cpu_reg(s, a->rd); 4409 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4410 4411 if (si >= ri) { 4412 /* Wd<s-r:0> = Wn<s:r> */ 4413 len = (si - ri) + 1; 4414 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4415 } else { 4416 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4417 len = si + 1; 4418 pos = (bitsize - ri) & (bitsize - 1); 4419 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4420 } 4421 return true; 4422 } 4423 4424 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4425 { 4426 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4427 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4428 unsigned int bitsize = a->sf ? 64 : 32; 4429 unsigned int ri = a->immr; 4430 unsigned int si = a->imms; 4431 unsigned int pos, len; 4432 4433 tcg_rd = cpu_reg(s, a->rd); 4434 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4435 4436 if (si >= ri) { 4437 /* Wd<s-r:0> = Wn<s:r> */ 4438 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4439 len = (si - ri) + 1; 4440 pos = 0; 4441 } else { 4442 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4443 len = si + 1; 4444 pos = (bitsize - ri) & (bitsize - 1); 4445 } 4446 4447 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4448 if (!a->sf) { 4449 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4450 } 4451 return true; 4452 } 4453 4454 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4455 { 4456 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4457 4458 tcg_rd = cpu_reg(s, a->rd); 4459 4460 if (unlikely(a->imm == 0)) { 4461 /* 4462 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4463 * so an extract from bit 0 is a special case. 4464 */ 4465 if (a->sf) { 4466 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4467 } else { 4468 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4469 } 4470 } else { 4471 tcg_rm = cpu_reg(s, a->rm); 4472 tcg_rn = cpu_reg(s, a->rn); 4473 4474 if (a->sf) { 4475 /* Specialization to ROR happens in EXTRACT2. */ 4476 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4477 } else { 4478 TCGv_i32 t0 = tcg_temp_new_i32(); 4479 4480 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4481 if (a->rm == a->rn) { 4482 tcg_gen_rotri_i32(t0, t0, a->imm); 4483 } else { 4484 TCGv_i32 t1 = tcg_temp_new_i32(); 4485 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4486 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4487 } 4488 tcg_gen_extu_i32_i64(tcg_rd, t0); 4489 } 4490 } 4491 return true; 4492 } 4493 4494 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4495 * Note that it is the caller's responsibility to ensure that the 4496 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4497 * mandated semantics for out of range shifts. 4498 */ 4499 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4500 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4501 { 4502 switch (shift_type) { 4503 case A64_SHIFT_TYPE_LSL: 4504 tcg_gen_shl_i64(dst, src, shift_amount); 4505 break; 4506 case A64_SHIFT_TYPE_LSR: 4507 tcg_gen_shr_i64(dst, src, shift_amount); 4508 break; 4509 case A64_SHIFT_TYPE_ASR: 4510 if (!sf) { 4511 tcg_gen_ext32s_i64(dst, src); 4512 } 4513 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4514 break; 4515 case A64_SHIFT_TYPE_ROR: 4516 if (sf) { 4517 tcg_gen_rotr_i64(dst, src, shift_amount); 4518 } else { 4519 TCGv_i32 t0, t1; 4520 t0 = tcg_temp_new_i32(); 4521 t1 = tcg_temp_new_i32(); 4522 tcg_gen_extrl_i64_i32(t0, src); 4523 tcg_gen_extrl_i64_i32(t1, shift_amount); 4524 tcg_gen_rotr_i32(t0, t0, t1); 4525 tcg_gen_extu_i32_i64(dst, t0); 4526 } 4527 break; 4528 default: 4529 assert(FALSE); /* all shift types should be handled */ 4530 break; 4531 } 4532 4533 if (!sf) { /* zero extend final result */ 4534 tcg_gen_ext32u_i64(dst, dst); 4535 } 4536 } 4537 4538 /* Shift a TCGv src by immediate, put result in dst. 4539 * The shift amount must be in range (this should always be true as the 4540 * relevant instructions will UNDEF on bad shift immediates). 4541 */ 4542 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4543 enum a64_shift_type shift_type, unsigned int shift_i) 4544 { 4545 assert(shift_i < (sf ? 64 : 32)); 4546 4547 if (shift_i == 0) { 4548 tcg_gen_mov_i64(dst, src); 4549 } else { 4550 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4551 } 4552 } 4553 4554 /* Logical (shifted register) 4555 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4556 * +----+-----+-----------+-------+---+------+--------+------+------+ 4557 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4558 * +----+-----+-----------+-------+---+------+--------+------+------+ 4559 */ 4560 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4561 { 4562 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4563 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4564 4565 sf = extract32(insn, 31, 1); 4566 opc = extract32(insn, 29, 2); 4567 shift_type = extract32(insn, 22, 2); 4568 invert = extract32(insn, 21, 1); 4569 rm = extract32(insn, 16, 5); 4570 shift_amount = extract32(insn, 10, 6); 4571 rn = extract32(insn, 5, 5); 4572 rd = extract32(insn, 0, 5); 4573 4574 if (!sf && (shift_amount & (1 << 5))) { 4575 unallocated_encoding(s); 4576 return; 4577 } 4578 4579 tcg_rd = cpu_reg(s, rd); 4580 4581 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4582 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4583 * register-register MOV and MVN, so it is worth special casing. 4584 */ 4585 tcg_rm = cpu_reg(s, rm); 4586 if (invert) { 4587 tcg_gen_not_i64(tcg_rd, tcg_rm); 4588 if (!sf) { 4589 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4590 } 4591 } else { 4592 if (sf) { 4593 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4594 } else { 4595 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4596 } 4597 } 4598 return; 4599 } 4600 4601 tcg_rm = read_cpu_reg(s, rm, sf); 4602 4603 if (shift_amount) { 4604 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4605 } 4606 4607 tcg_rn = cpu_reg(s, rn); 4608 4609 switch (opc | (invert << 2)) { 4610 case 0: /* AND */ 4611 case 3: /* ANDS */ 4612 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4613 break; 4614 case 1: /* ORR */ 4615 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4616 break; 4617 case 2: /* EOR */ 4618 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4619 break; 4620 case 4: /* BIC */ 4621 case 7: /* BICS */ 4622 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4623 break; 4624 case 5: /* ORN */ 4625 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4626 break; 4627 case 6: /* EON */ 4628 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4629 break; 4630 default: 4631 assert(FALSE); 4632 break; 4633 } 4634 4635 if (!sf) { 4636 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4637 } 4638 4639 if (opc == 3) { 4640 gen_logic_CC(sf, tcg_rd); 4641 } 4642 } 4643 4644 /* 4645 * Add/subtract (extended register) 4646 * 4647 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4648 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4649 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4650 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4651 * 4652 * sf: 0 -> 32bit, 1 -> 64bit 4653 * op: 0 -> add , 1 -> sub 4654 * S: 1 -> set flags 4655 * opt: 00 4656 * option: extension type (see DecodeRegExtend) 4657 * imm3: optional shift to Rm 4658 * 4659 * Rd = Rn + LSL(extend(Rm), amount) 4660 */ 4661 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4662 { 4663 int rd = extract32(insn, 0, 5); 4664 int rn = extract32(insn, 5, 5); 4665 int imm3 = extract32(insn, 10, 3); 4666 int option = extract32(insn, 13, 3); 4667 int rm = extract32(insn, 16, 5); 4668 int opt = extract32(insn, 22, 2); 4669 bool setflags = extract32(insn, 29, 1); 4670 bool sub_op = extract32(insn, 30, 1); 4671 bool sf = extract32(insn, 31, 1); 4672 4673 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4674 TCGv_i64 tcg_rd; 4675 TCGv_i64 tcg_result; 4676 4677 if (imm3 > 4 || opt != 0) { 4678 unallocated_encoding(s); 4679 return; 4680 } 4681 4682 /* non-flag setting ops may use SP */ 4683 if (!setflags) { 4684 tcg_rd = cpu_reg_sp(s, rd); 4685 } else { 4686 tcg_rd = cpu_reg(s, rd); 4687 } 4688 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4689 4690 tcg_rm = read_cpu_reg(s, rm, sf); 4691 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4692 4693 tcg_result = tcg_temp_new_i64(); 4694 4695 if (!setflags) { 4696 if (sub_op) { 4697 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4698 } else { 4699 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4700 } 4701 } else { 4702 if (sub_op) { 4703 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4704 } else { 4705 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4706 } 4707 } 4708 4709 if (sf) { 4710 tcg_gen_mov_i64(tcg_rd, tcg_result); 4711 } else { 4712 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4713 } 4714 } 4715 4716 /* 4717 * Add/subtract (shifted register) 4718 * 4719 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4720 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4721 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4722 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4723 * 4724 * sf: 0 -> 32bit, 1 -> 64bit 4725 * op: 0 -> add , 1 -> sub 4726 * S: 1 -> set flags 4727 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4728 * imm6: Shift amount to apply to Rm before the add/sub 4729 */ 4730 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4731 { 4732 int rd = extract32(insn, 0, 5); 4733 int rn = extract32(insn, 5, 5); 4734 int imm6 = extract32(insn, 10, 6); 4735 int rm = extract32(insn, 16, 5); 4736 int shift_type = extract32(insn, 22, 2); 4737 bool setflags = extract32(insn, 29, 1); 4738 bool sub_op = extract32(insn, 30, 1); 4739 bool sf = extract32(insn, 31, 1); 4740 4741 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4742 TCGv_i64 tcg_rn, tcg_rm; 4743 TCGv_i64 tcg_result; 4744 4745 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4746 unallocated_encoding(s); 4747 return; 4748 } 4749 4750 tcg_rn = read_cpu_reg(s, rn, sf); 4751 tcg_rm = read_cpu_reg(s, rm, sf); 4752 4753 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4754 4755 tcg_result = tcg_temp_new_i64(); 4756 4757 if (!setflags) { 4758 if (sub_op) { 4759 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4760 } else { 4761 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4762 } 4763 } else { 4764 if (sub_op) { 4765 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4766 } else { 4767 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4768 } 4769 } 4770 4771 if (sf) { 4772 tcg_gen_mov_i64(tcg_rd, tcg_result); 4773 } else { 4774 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4775 } 4776 } 4777 4778 /* Data-processing (3 source) 4779 * 4780 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4781 * +--+------+-----------+------+------+----+------+------+------+ 4782 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4783 * +--+------+-----------+------+------+----+------+------+------+ 4784 */ 4785 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4786 { 4787 int rd = extract32(insn, 0, 5); 4788 int rn = extract32(insn, 5, 5); 4789 int ra = extract32(insn, 10, 5); 4790 int rm = extract32(insn, 16, 5); 4791 int op_id = (extract32(insn, 29, 3) << 4) | 4792 (extract32(insn, 21, 3) << 1) | 4793 extract32(insn, 15, 1); 4794 bool sf = extract32(insn, 31, 1); 4795 bool is_sub = extract32(op_id, 0, 1); 4796 bool is_high = extract32(op_id, 2, 1); 4797 bool is_signed = false; 4798 TCGv_i64 tcg_op1; 4799 TCGv_i64 tcg_op2; 4800 TCGv_i64 tcg_tmp; 4801 4802 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4803 switch (op_id) { 4804 case 0x42: /* SMADDL */ 4805 case 0x43: /* SMSUBL */ 4806 case 0x44: /* SMULH */ 4807 is_signed = true; 4808 break; 4809 case 0x0: /* MADD (32bit) */ 4810 case 0x1: /* MSUB (32bit) */ 4811 case 0x40: /* MADD (64bit) */ 4812 case 0x41: /* MSUB (64bit) */ 4813 case 0x4a: /* UMADDL */ 4814 case 0x4b: /* UMSUBL */ 4815 case 0x4c: /* UMULH */ 4816 break; 4817 default: 4818 unallocated_encoding(s); 4819 return; 4820 } 4821 4822 if (is_high) { 4823 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4824 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4825 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4826 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4827 4828 if (is_signed) { 4829 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4830 } else { 4831 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4832 } 4833 return; 4834 } 4835 4836 tcg_op1 = tcg_temp_new_i64(); 4837 tcg_op2 = tcg_temp_new_i64(); 4838 tcg_tmp = tcg_temp_new_i64(); 4839 4840 if (op_id < 0x42) { 4841 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4842 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4843 } else { 4844 if (is_signed) { 4845 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4846 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4847 } else { 4848 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4849 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4850 } 4851 } 4852 4853 if (ra == 31 && !is_sub) { 4854 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4855 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4856 } else { 4857 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4858 if (is_sub) { 4859 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4860 } else { 4861 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4862 } 4863 } 4864 4865 if (!sf) { 4866 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4867 } 4868 } 4869 4870 /* Add/subtract (with carry) 4871 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4872 * +--+--+--+------------------------+------+-------------+------+-----+ 4873 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4874 * +--+--+--+------------------------+------+-------------+------+-----+ 4875 */ 4876 4877 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4878 { 4879 unsigned int sf, op, setflags, rm, rn, rd; 4880 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4881 4882 sf = extract32(insn, 31, 1); 4883 op = extract32(insn, 30, 1); 4884 setflags = extract32(insn, 29, 1); 4885 rm = extract32(insn, 16, 5); 4886 rn = extract32(insn, 5, 5); 4887 rd = extract32(insn, 0, 5); 4888 4889 tcg_rd = cpu_reg(s, rd); 4890 tcg_rn = cpu_reg(s, rn); 4891 4892 if (op) { 4893 tcg_y = tcg_temp_new_i64(); 4894 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4895 } else { 4896 tcg_y = cpu_reg(s, rm); 4897 } 4898 4899 if (setflags) { 4900 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4901 } else { 4902 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4903 } 4904 } 4905 4906 /* 4907 * Rotate right into flags 4908 * 31 30 29 21 15 10 5 4 0 4909 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4910 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4911 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4912 */ 4913 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4914 { 4915 int mask = extract32(insn, 0, 4); 4916 int o2 = extract32(insn, 4, 1); 4917 int rn = extract32(insn, 5, 5); 4918 int imm6 = extract32(insn, 15, 6); 4919 int sf_op_s = extract32(insn, 29, 3); 4920 TCGv_i64 tcg_rn; 4921 TCGv_i32 nzcv; 4922 4923 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4924 unallocated_encoding(s); 4925 return; 4926 } 4927 4928 tcg_rn = read_cpu_reg(s, rn, 1); 4929 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4930 4931 nzcv = tcg_temp_new_i32(); 4932 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4933 4934 if (mask & 8) { /* N */ 4935 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4936 } 4937 if (mask & 4) { /* Z */ 4938 tcg_gen_not_i32(cpu_ZF, nzcv); 4939 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4940 } 4941 if (mask & 2) { /* C */ 4942 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4943 } 4944 if (mask & 1) { /* V */ 4945 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4946 } 4947 } 4948 4949 /* 4950 * Evaluate into flags 4951 * 31 30 29 21 15 14 10 5 4 0 4952 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4953 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4954 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4955 */ 4956 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4957 { 4958 int o3_mask = extract32(insn, 0, 5); 4959 int rn = extract32(insn, 5, 5); 4960 int o2 = extract32(insn, 15, 6); 4961 int sz = extract32(insn, 14, 1); 4962 int sf_op_s = extract32(insn, 29, 3); 4963 TCGv_i32 tmp; 4964 int shift; 4965 4966 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4967 !dc_isar_feature(aa64_condm_4, s)) { 4968 unallocated_encoding(s); 4969 return; 4970 } 4971 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4972 4973 tmp = tcg_temp_new_i32(); 4974 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4975 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4976 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4977 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4978 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4979 } 4980 4981 /* Conditional compare (immediate / register) 4982 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4983 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4984 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4985 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4986 * [1] y [0] [0] 4987 */ 4988 static void disas_cc(DisasContext *s, uint32_t insn) 4989 { 4990 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4991 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4992 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4993 DisasCompare c; 4994 4995 if (!extract32(insn, 29, 1)) { 4996 unallocated_encoding(s); 4997 return; 4998 } 4999 if (insn & (1 << 10 | 1 << 4)) { 5000 unallocated_encoding(s); 5001 return; 5002 } 5003 sf = extract32(insn, 31, 1); 5004 op = extract32(insn, 30, 1); 5005 is_imm = extract32(insn, 11, 1); 5006 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5007 cond = extract32(insn, 12, 4); 5008 rn = extract32(insn, 5, 5); 5009 nzcv = extract32(insn, 0, 4); 5010 5011 /* Set T0 = !COND. */ 5012 tcg_t0 = tcg_temp_new_i32(); 5013 arm_test_cc(&c, cond); 5014 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5015 5016 /* Load the arguments for the new comparison. */ 5017 if (is_imm) { 5018 tcg_y = tcg_temp_new_i64(); 5019 tcg_gen_movi_i64(tcg_y, y); 5020 } else { 5021 tcg_y = cpu_reg(s, y); 5022 } 5023 tcg_rn = cpu_reg(s, rn); 5024 5025 /* Set the flags for the new comparison. */ 5026 tcg_tmp = tcg_temp_new_i64(); 5027 if (op) { 5028 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5029 } else { 5030 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5031 } 5032 5033 /* If COND was false, force the flags to #nzcv. Compute two masks 5034 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5035 * For tcg hosts that support ANDC, we can make do with just T1. 5036 * In either case, allow the tcg optimizer to delete any unused mask. 5037 */ 5038 tcg_t1 = tcg_temp_new_i32(); 5039 tcg_t2 = tcg_temp_new_i32(); 5040 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5041 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5042 5043 if (nzcv & 8) { /* N */ 5044 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5045 } else { 5046 if (TCG_TARGET_HAS_andc_i32) { 5047 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5048 } else { 5049 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5050 } 5051 } 5052 if (nzcv & 4) { /* Z */ 5053 if (TCG_TARGET_HAS_andc_i32) { 5054 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5055 } else { 5056 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5057 } 5058 } else { 5059 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5060 } 5061 if (nzcv & 2) { /* C */ 5062 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5063 } else { 5064 if (TCG_TARGET_HAS_andc_i32) { 5065 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5066 } else { 5067 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5068 } 5069 } 5070 if (nzcv & 1) { /* V */ 5071 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5072 } else { 5073 if (TCG_TARGET_HAS_andc_i32) { 5074 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5075 } else { 5076 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5077 } 5078 } 5079 } 5080 5081 /* Conditional select 5082 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5083 * +----+----+---+-----------------+------+------+-----+------+------+ 5084 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5085 * +----+----+---+-----------------+------+------+-----+------+------+ 5086 */ 5087 static void disas_cond_select(DisasContext *s, uint32_t insn) 5088 { 5089 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5090 TCGv_i64 tcg_rd, zero; 5091 DisasCompare64 c; 5092 5093 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5094 /* S == 1 or op2<1> == 1 */ 5095 unallocated_encoding(s); 5096 return; 5097 } 5098 sf = extract32(insn, 31, 1); 5099 else_inv = extract32(insn, 30, 1); 5100 rm = extract32(insn, 16, 5); 5101 cond = extract32(insn, 12, 4); 5102 else_inc = extract32(insn, 10, 1); 5103 rn = extract32(insn, 5, 5); 5104 rd = extract32(insn, 0, 5); 5105 5106 tcg_rd = cpu_reg(s, rd); 5107 5108 a64_test_cc(&c, cond); 5109 zero = tcg_constant_i64(0); 5110 5111 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5112 /* CSET & CSETM. */ 5113 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5114 if (else_inv) { 5115 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5116 } 5117 } else { 5118 TCGv_i64 t_true = cpu_reg(s, rn); 5119 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5120 if (else_inv && else_inc) { 5121 tcg_gen_neg_i64(t_false, t_false); 5122 } else if (else_inv) { 5123 tcg_gen_not_i64(t_false, t_false); 5124 } else if (else_inc) { 5125 tcg_gen_addi_i64(t_false, t_false, 1); 5126 } 5127 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5128 } 5129 5130 if (!sf) { 5131 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5132 } 5133 } 5134 5135 static void handle_clz(DisasContext *s, unsigned int sf, 5136 unsigned int rn, unsigned int rd) 5137 { 5138 TCGv_i64 tcg_rd, tcg_rn; 5139 tcg_rd = cpu_reg(s, rd); 5140 tcg_rn = cpu_reg(s, rn); 5141 5142 if (sf) { 5143 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5144 } else { 5145 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5146 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5147 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5148 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5149 } 5150 } 5151 5152 static void handle_cls(DisasContext *s, unsigned int sf, 5153 unsigned int rn, unsigned int rd) 5154 { 5155 TCGv_i64 tcg_rd, tcg_rn; 5156 tcg_rd = cpu_reg(s, rd); 5157 tcg_rn = cpu_reg(s, rn); 5158 5159 if (sf) { 5160 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5161 } else { 5162 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5163 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5164 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5165 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5166 } 5167 } 5168 5169 static void handle_rbit(DisasContext *s, unsigned int sf, 5170 unsigned int rn, unsigned int rd) 5171 { 5172 TCGv_i64 tcg_rd, tcg_rn; 5173 tcg_rd = cpu_reg(s, rd); 5174 tcg_rn = cpu_reg(s, rn); 5175 5176 if (sf) { 5177 gen_helper_rbit64(tcg_rd, tcg_rn); 5178 } else { 5179 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5180 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5181 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5182 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5183 } 5184 } 5185 5186 /* REV with sf==1, opcode==3 ("REV64") */ 5187 static void handle_rev64(DisasContext *s, unsigned int sf, 5188 unsigned int rn, unsigned int rd) 5189 { 5190 if (!sf) { 5191 unallocated_encoding(s); 5192 return; 5193 } 5194 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5195 } 5196 5197 /* REV with sf==0, opcode==2 5198 * REV32 (sf==1, opcode==2) 5199 */ 5200 static void handle_rev32(DisasContext *s, unsigned int sf, 5201 unsigned int rn, unsigned int rd) 5202 { 5203 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5204 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5205 5206 if (sf) { 5207 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5208 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5209 } else { 5210 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5211 } 5212 } 5213 5214 /* REV16 (opcode==1) */ 5215 static void handle_rev16(DisasContext *s, unsigned int sf, 5216 unsigned int rn, unsigned int rd) 5217 { 5218 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5219 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5220 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5221 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5222 5223 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5224 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5225 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5226 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5227 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5228 } 5229 5230 /* Data-processing (1 source) 5231 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5232 * +----+---+---+-----------------+---------+--------+------+------+ 5233 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5234 * +----+---+---+-----------------+---------+--------+------+------+ 5235 */ 5236 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5237 { 5238 unsigned int sf, opcode, opcode2, rn, rd; 5239 TCGv_i64 tcg_rd; 5240 5241 if (extract32(insn, 29, 1)) { 5242 unallocated_encoding(s); 5243 return; 5244 } 5245 5246 sf = extract32(insn, 31, 1); 5247 opcode = extract32(insn, 10, 6); 5248 opcode2 = extract32(insn, 16, 5); 5249 rn = extract32(insn, 5, 5); 5250 rd = extract32(insn, 0, 5); 5251 5252 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5253 5254 switch (MAP(sf, opcode2, opcode)) { 5255 case MAP(0, 0x00, 0x00): /* RBIT */ 5256 case MAP(1, 0x00, 0x00): 5257 handle_rbit(s, sf, rn, rd); 5258 break; 5259 case MAP(0, 0x00, 0x01): /* REV16 */ 5260 case MAP(1, 0x00, 0x01): 5261 handle_rev16(s, sf, rn, rd); 5262 break; 5263 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5264 case MAP(1, 0x00, 0x02): 5265 handle_rev32(s, sf, rn, rd); 5266 break; 5267 case MAP(1, 0x00, 0x03): /* REV64 */ 5268 handle_rev64(s, sf, rn, rd); 5269 break; 5270 case MAP(0, 0x00, 0x04): /* CLZ */ 5271 case MAP(1, 0x00, 0x04): 5272 handle_clz(s, sf, rn, rd); 5273 break; 5274 case MAP(0, 0x00, 0x05): /* CLS */ 5275 case MAP(1, 0x00, 0x05): 5276 handle_cls(s, sf, rn, rd); 5277 break; 5278 case MAP(1, 0x01, 0x00): /* PACIA */ 5279 if (s->pauth_active) { 5280 tcg_rd = cpu_reg(s, rd); 5281 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5282 } else if (!dc_isar_feature(aa64_pauth, s)) { 5283 goto do_unallocated; 5284 } 5285 break; 5286 case MAP(1, 0x01, 0x01): /* PACIB */ 5287 if (s->pauth_active) { 5288 tcg_rd = cpu_reg(s, rd); 5289 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5290 } else if (!dc_isar_feature(aa64_pauth, s)) { 5291 goto do_unallocated; 5292 } 5293 break; 5294 case MAP(1, 0x01, 0x02): /* PACDA */ 5295 if (s->pauth_active) { 5296 tcg_rd = cpu_reg(s, rd); 5297 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5298 } else if (!dc_isar_feature(aa64_pauth, s)) { 5299 goto do_unallocated; 5300 } 5301 break; 5302 case MAP(1, 0x01, 0x03): /* PACDB */ 5303 if (s->pauth_active) { 5304 tcg_rd = cpu_reg(s, rd); 5305 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5306 } else if (!dc_isar_feature(aa64_pauth, s)) { 5307 goto do_unallocated; 5308 } 5309 break; 5310 case MAP(1, 0x01, 0x04): /* AUTIA */ 5311 if (s->pauth_active) { 5312 tcg_rd = cpu_reg(s, rd); 5313 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5314 } else if (!dc_isar_feature(aa64_pauth, s)) { 5315 goto do_unallocated; 5316 } 5317 break; 5318 case MAP(1, 0x01, 0x05): /* AUTIB */ 5319 if (s->pauth_active) { 5320 tcg_rd = cpu_reg(s, rd); 5321 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5322 } else if (!dc_isar_feature(aa64_pauth, s)) { 5323 goto do_unallocated; 5324 } 5325 break; 5326 case MAP(1, 0x01, 0x06): /* AUTDA */ 5327 if (s->pauth_active) { 5328 tcg_rd = cpu_reg(s, rd); 5329 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5330 } else if (!dc_isar_feature(aa64_pauth, s)) { 5331 goto do_unallocated; 5332 } 5333 break; 5334 case MAP(1, 0x01, 0x07): /* AUTDB */ 5335 if (s->pauth_active) { 5336 tcg_rd = cpu_reg(s, rd); 5337 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5338 } else if (!dc_isar_feature(aa64_pauth, s)) { 5339 goto do_unallocated; 5340 } 5341 break; 5342 case MAP(1, 0x01, 0x08): /* PACIZA */ 5343 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5344 goto do_unallocated; 5345 } else if (s->pauth_active) { 5346 tcg_rd = cpu_reg(s, rd); 5347 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5348 } 5349 break; 5350 case MAP(1, 0x01, 0x09): /* PACIZB */ 5351 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5352 goto do_unallocated; 5353 } else if (s->pauth_active) { 5354 tcg_rd = cpu_reg(s, rd); 5355 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5356 } 5357 break; 5358 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5359 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5360 goto do_unallocated; 5361 } else if (s->pauth_active) { 5362 tcg_rd = cpu_reg(s, rd); 5363 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5364 } 5365 break; 5366 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5367 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5368 goto do_unallocated; 5369 } else if (s->pauth_active) { 5370 tcg_rd = cpu_reg(s, rd); 5371 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5372 } 5373 break; 5374 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5375 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5376 goto do_unallocated; 5377 } else if (s->pauth_active) { 5378 tcg_rd = cpu_reg(s, rd); 5379 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5380 } 5381 break; 5382 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5383 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5384 goto do_unallocated; 5385 } else if (s->pauth_active) { 5386 tcg_rd = cpu_reg(s, rd); 5387 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5388 } 5389 break; 5390 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5391 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5392 goto do_unallocated; 5393 } else if (s->pauth_active) { 5394 tcg_rd = cpu_reg(s, rd); 5395 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5396 } 5397 break; 5398 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5399 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5400 goto do_unallocated; 5401 } else if (s->pauth_active) { 5402 tcg_rd = cpu_reg(s, rd); 5403 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5404 } 5405 break; 5406 case MAP(1, 0x01, 0x10): /* XPACI */ 5407 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5408 goto do_unallocated; 5409 } else if (s->pauth_active) { 5410 tcg_rd = cpu_reg(s, rd); 5411 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5412 } 5413 break; 5414 case MAP(1, 0x01, 0x11): /* XPACD */ 5415 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5416 goto do_unallocated; 5417 } else if (s->pauth_active) { 5418 tcg_rd = cpu_reg(s, rd); 5419 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5420 } 5421 break; 5422 default: 5423 do_unallocated: 5424 unallocated_encoding(s); 5425 break; 5426 } 5427 5428 #undef MAP 5429 } 5430 5431 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5432 unsigned int rm, unsigned int rn, unsigned int rd) 5433 { 5434 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5435 tcg_rd = cpu_reg(s, rd); 5436 5437 if (!sf && is_signed) { 5438 tcg_n = tcg_temp_new_i64(); 5439 tcg_m = tcg_temp_new_i64(); 5440 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5441 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5442 } else { 5443 tcg_n = read_cpu_reg(s, rn, sf); 5444 tcg_m = read_cpu_reg(s, rm, sf); 5445 } 5446 5447 if (is_signed) { 5448 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5449 } else { 5450 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5451 } 5452 5453 if (!sf) { /* zero extend final result */ 5454 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5455 } 5456 } 5457 5458 /* LSLV, LSRV, ASRV, RORV */ 5459 static void handle_shift_reg(DisasContext *s, 5460 enum a64_shift_type shift_type, unsigned int sf, 5461 unsigned int rm, unsigned int rn, unsigned int rd) 5462 { 5463 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5464 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5465 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5466 5467 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5468 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5469 } 5470 5471 /* CRC32[BHWX], CRC32C[BHWX] */ 5472 static void handle_crc32(DisasContext *s, 5473 unsigned int sf, unsigned int sz, bool crc32c, 5474 unsigned int rm, unsigned int rn, unsigned int rd) 5475 { 5476 TCGv_i64 tcg_acc, tcg_val; 5477 TCGv_i32 tcg_bytes; 5478 5479 if (!dc_isar_feature(aa64_crc32, s) 5480 || (sf == 1 && sz != 3) 5481 || (sf == 0 && sz == 3)) { 5482 unallocated_encoding(s); 5483 return; 5484 } 5485 5486 if (sz == 3) { 5487 tcg_val = cpu_reg(s, rm); 5488 } else { 5489 uint64_t mask; 5490 switch (sz) { 5491 case 0: 5492 mask = 0xFF; 5493 break; 5494 case 1: 5495 mask = 0xFFFF; 5496 break; 5497 case 2: 5498 mask = 0xFFFFFFFF; 5499 break; 5500 default: 5501 g_assert_not_reached(); 5502 } 5503 tcg_val = tcg_temp_new_i64(); 5504 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5505 } 5506 5507 tcg_acc = cpu_reg(s, rn); 5508 tcg_bytes = tcg_constant_i32(1 << sz); 5509 5510 if (crc32c) { 5511 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5512 } else { 5513 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5514 } 5515 } 5516 5517 /* Data-processing (2 source) 5518 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5519 * +----+---+---+-----------------+------+--------+------+------+ 5520 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5521 * +----+---+---+-----------------+------+--------+------+------+ 5522 */ 5523 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5524 { 5525 unsigned int sf, rm, opcode, rn, rd, setflag; 5526 sf = extract32(insn, 31, 1); 5527 setflag = extract32(insn, 29, 1); 5528 rm = extract32(insn, 16, 5); 5529 opcode = extract32(insn, 10, 6); 5530 rn = extract32(insn, 5, 5); 5531 rd = extract32(insn, 0, 5); 5532 5533 if (setflag && opcode != 0) { 5534 unallocated_encoding(s); 5535 return; 5536 } 5537 5538 switch (opcode) { 5539 case 0: /* SUBP(S) */ 5540 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5541 goto do_unallocated; 5542 } else { 5543 TCGv_i64 tcg_n, tcg_m, tcg_d; 5544 5545 tcg_n = read_cpu_reg_sp(s, rn, true); 5546 tcg_m = read_cpu_reg_sp(s, rm, true); 5547 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5548 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5549 tcg_d = cpu_reg(s, rd); 5550 5551 if (setflag) { 5552 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5553 } else { 5554 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5555 } 5556 } 5557 break; 5558 case 2: /* UDIV */ 5559 handle_div(s, false, sf, rm, rn, rd); 5560 break; 5561 case 3: /* SDIV */ 5562 handle_div(s, true, sf, rm, rn, rd); 5563 break; 5564 case 4: /* IRG */ 5565 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5566 goto do_unallocated; 5567 } 5568 if (s->ata) { 5569 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5570 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5571 } else { 5572 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5573 cpu_reg_sp(s, rn)); 5574 } 5575 break; 5576 case 5: /* GMI */ 5577 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5578 goto do_unallocated; 5579 } else { 5580 TCGv_i64 t = tcg_temp_new_i64(); 5581 5582 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5583 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5584 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5585 } 5586 break; 5587 case 8: /* LSLV */ 5588 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5589 break; 5590 case 9: /* LSRV */ 5591 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5592 break; 5593 case 10: /* ASRV */ 5594 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5595 break; 5596 case 11: /* RORV */ 5597 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5598 break; 5599 case 12: /* PACGA */ 5600 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5601 goto do_unallocated; 5602 } 5603 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5604 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5605 break; 5606 case 16: 5607 case 17: 5608 case 18: 5609 case 19: 5610 case 20: 5611 case 21: 5612 case 22: 5613 case 23: /* CRC32 */ 5614 { 5615 int sz = extract32(opcode, 0, 2); 5616 bool crc32c = extract32(opcode, 2, 1); 5617 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5618 break; 5619 } 5620 default: 5621 do_unallocated: 5622 unallocated_encoding(s); 5623 break; 5624 } 5625 } 5626 5627 /* 5628 * Data processing - register 5629 * 31 30 29 28 25 21 20 16 10 0 5630 * +--+---+--+---+-------+-----+-------+-------+---------+ 5631 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5632 * +--+---+--+---+-------+-----+-------+-------+---------+ 5633 */ 5634 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5635 { 5636 int op0 = extract32(insn, 30, 1); 5637 int op1 = extract32(insn, 28, 1); 5638 int op2 = extract32(insn, 21, 4); 5639 int op3 = extract32(insn, 10, 6); 5640 5641 if (!op1) { 5642 if (op2 & 8) { 5643 if (op2 & 1) { 5644 /* Add/sub (extended register) */ 5645 disas_add_sub_ext_reg(s, insn); 5646 } else { 5647 /* Add/sub (shifted register) */ 5648 disas_add_sub_reg(s, insn); 5649 } 5650 } else { 5651 /* Logical (shifted register) */ 5652 disas_logic_reg(s, insn); 5653 } 5654 return; 5655 } 5656 5657 switch (op2) { 5658 case 0x0: 5659 switch (op3) { 5660 case 0x00: /* Add/subtract (with carry) */ 5661 disas_adc_sbc(s, insn); 5662 break; 5663 5664 case 0x01: /* Rotate right into flags */ 5665 case 0x21: 5666 disas_rotate_right_into_flags(s, insn); 5667 break; 5668 5669 case 0x02: /* Evaluate into flags */ 5670 case 0x12: 5671 case 0x22: 5672 case 0x32: 5673 disas_evaluate_into_flags(s, insn); 5674 break; 5675 5676 default: 5677 goto do_unallocated; 5678 } 5679 break; 5680 5681 case 0x2: /* Conditional compare */ 5682 disas_cc(s, insn); /* both imm and reg forms */ 5683 break; 5684 5685 case 0x4: /* Conditional select */ 5686 disas_cond_select(s, insn); 5687 break; 5688 5689 case 0x6: /* Data-processing */ 5690 if (op0) { /* (1 source) */ 5691 disas_data_proc_1src(s, insn); 5692 } else { /* (2 source) */ 5693 disas_data_proc_2src(s, insn); 5694 } 5695 break; 5696 case 0x8 ... 0xf: /* (3 source) */ 5697 disas_data_proc_3src(s, insn); 5698 break; 5699 5700 default: 5701 do_unallocated: 5702 unallocated_encoding(s); 5703 break; 5704 } 5705 } 5706 5707 static void handle_fp_compare(DisasContext *s, int size, 5708 unsigned int rn, unsigned int rm, 5709 bool cmp_with_zero, bool signal_all_nans) 5710 { 5711 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5712 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5713 5714 if (size == MO_64) { 5715 TCGv_i64 tcg_vn, tcg_vm; 5716 5717 tcg_vn = read_fp_dreg(s, rn); 5718 if (cmp_with_zero) { 5719 tcg_vm = tcg_constant_i64(0); 5720 } else { 5721 tcg_vm = read_fp_dreg(s, rm); 5722 } 5723 if (signal_all_nans) { 5724 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5725 } else { 5726 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5727 } 5728 } else { 5729 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5730 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5731 5732 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5733 if (cmp_with_zero) { 5734 tcg_gen_movi_i32(tcg_vm, 0); 5735 } else { 5736 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5737 } 5738 5739 switch (size) { 5740 case MO_32: 5741 if (signal_all_nans) { 5742 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5743 } else { 5744 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5745 } 5746 break; 5747 case MO_16: 5748 if (signal_all_nans) { 5749 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5750 } else { 5751 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5752 } 5753 break; 5754 default: 5755 g_assert_not_reached(); 5756 } 5757 } 5758 5759 gen_set_nzcv(tcg_flags); 5760 } 5761 5762 /* Floating point compare 5763 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5764 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5765 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5766 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5767 */ 5768 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5769 { 5770 unsigned int mos, type, rm, op, rn, opc, op2r; 5771 int size; 5772 5773 mos = extract32(insn, 29, 3); 5774 type = extract32(insn, 22, 2); 5775 rm = extract32(insn, 16, 5); 5776 op = extract32(insn, 14, 2); 5777 rn = extract32(insn, 5, 5); 5778 opc = extract32(insn, 3, 2); 5779 op2r = extract32(insn, 0, 3); 5780 5781 if (mos || op || op2r) { 5782 unallocated_encoding(s); 5783 return; 5784 } 5785 5786 switch (type) { 5787 case 0: 5788 size = MO_32; 5789 break; 5790 case 1: 5791 size = MO_64; 5792 break; 5793 case 3: 5794 size = MO_16; 5795 if (dc_isar_feature(aa64_fp16, s)) { 5796 break; 5797 } 5798 /* fallthru */ 5799 default: 5800 unallocated_encoding(s); 5801 return; 5802 } 5803 5804 if (!fp_access_check(s)) { 5805 return; 5806 } 5807 5808 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5809 } 5810 5811 /* Floating point conditional compare 5812 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5813 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5814 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5815 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5816 */ 5817 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5818 { 5819 unsigned int mos, type, rm, cond, rn, op, nzcv; 5820 TCGLabel *label_continue = NULL; 5821 int size; 5822 5823 mos = extract32(insn, 29, 3); 5824 type = extract32(insn, 22, 2); 5825 rm = extract32(insn, 16, 5); 5826 cond = extract32(insn, 12, 4); 5827 rn = extract32(insn, 5, 5); 5828 op = extract32(insn, 4, 1); 5829 nzcv = extract32(insn, 0, 4); 5830 5831 if (mos) { 5832 unallocated_encoding(s); 5833 return; 5834 } 5835 5836 switch (type) { 5837 case 0: 5838 size = MO_32; 5839 break; 5840 case 1: 5841 size = MO_64; 5842 break; 5843 case 3: 5844 size = MO_16; 5845 if (dc_isar_feature(aa64_fp16, s)) { 5846 break; 5847 } 5848 /* fallthru */ 5849 default: 5850 unallocated_encoding(s); 5851 return; 5852 } 5853 5854 if (!fp_access_check(s)) { 5855 return; 5856 } 5857 5858 if (cond < 0x0e) { /* not always */ 5859 TCGLabel *label_match = gen_new_label(); 5860 label_continue = gen_new_label(); 5861 arm_gen_test_cc(cond, label_match); 5862 /* nomatch: */ 5863 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5864 tcg_gen_br(label_continue); 5865 gen_set_label(label_match); 5866 } 5867 5868 handle_fp_compare(s, size, rn, rm, false, op); 5869 5870 if (cond < 0x0e) { 5871 gen_set_label(label_continue); 5872 } 5873 } 5874 5875 /* Floating point conditional select 5876 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5877 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5878 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5879 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5880 */ 5881 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5882 { 5883 unsigned int mos, type, rm, cond, rn, rd; 5884 TCGv_i64 t_true, t_false; 5885 DisasCompare64 c; 5886 MemOp sz; 5887 5888 mos = extract32(insn, 29, 3); 5889 type = extract32(insn, 22, 2); 5890 rm = extract32(insn, 16, 5); 5891 cond = extract32(insn, 12, 4); 5892 rn = extract32(insn, 5, 5); 5893 rd = extract32(insn, 0, 5); 5894 5895 if (mos) { 5896 unallocated_encoding(s); 5897 return; 5898 } 5899 5900 switch (type) { 5901 case 0: 5902 sz = MO_32; 5903 break; 5904 case 1: 5905 sz = MO_64; 5906 break; 5907 case 3: 5908 sz = MO_16; 5909 if (dc_isar_feature(aa64_fp16, s)) { 5910 break; 5911 } 5912 /* fallthru */ 5913 default: 5914 unallocated_encoding(s); 5915 return; 5916 } 5917 5918 if (!fp_access_check(s)) { 5919 return; 5920 } 5921 5922 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5923 t_true = tcg_temp_new_i64(); 5924 t_false = tcg_temp_new_i64(); 5925 read_vec_element(s, t_true, rn, 0, sz); 5926 read_vec_element(s, t_false, rm, 0, sz); 5927 5928 a64_test_cc(&c, cond); 5929 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5930 t_true, t_false); 5931 5932 /* Note that sregs & hregs write back zeros to the high bits, 5933 and we've already done the zero-extension. */ 5934 write_fp_dreg(s, rd, t_true); 5935 } 5936 5937 /* Floating-point data-processing (1 source) - half precision */ 5938 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5939 { 5940 TCGv_ptr fpst = NULL; 5941 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5942 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5943 5944 switch (opcode) { 5945 case 0x0: /* FMOV */ 5946 tcg_gen_mov_i32(tcg_res, tcg_op); 5947 break; 5948 case 0x1: /* FABS */ 5949 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5950 break; 5951 case 0x2: /* FNEG */ 5952 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5953 break; 5954 case 0x3: /* FSQRT */ 5955 fpst = fpstatus_ptr(FPST_FPCR_F16); 5956 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5957 break; 5958 case 0x8: /* FRINTN */ 5959 case 0x9: /* FRINTP */ 5960 case 0xa: /* FRINTM */ 5961 case 0xb: /* FRINTZ */ 5962 case 0xc: /* FRINTA */ 5963 { 5964 TCGv_i32 tcg_rmode; 5965 5966 fpst = fpstatus_ptr(FPST_FPCR_F16); 5967 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5968 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5969 gen_restore_rmode(tcg_rmode, fpst); 5970 break; 5971 } 5972 case 0xe: /* FRINTX */ 5973 fpst = fpstatus_ptr(FPST_FPCR_F16); 5974 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5975 break; 5976 case 0xf: /* FRINTI */ 5977 fpst = fpstatus_ptr(FPST_FPCR_F16); 5978 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5979 break; 5980 default: 5981 g_assert_not_reached(); 5982 } 5983 5984 write_fp_sreg(s, rd, tcg_res); 5985 } 5986 5987 /* Floating-point data-processing (1 source) - single precision */ 5988 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5989 { 5990 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5991 TCGv_i32 tcg_op, tcg_res; 5992 TCGv_ptr fpst; 5993 int rmode = -1; 5994 5995 tcg_op = read_fp_sreg(s, rn); 5996 tcg_res = tcg_temp_new_i32(); 5997 5998 switch (opcode) { 5999 case 0x0: /* FMOV */ 6000 tcg_gen_mov_i32(tcg_res, tcg_op); 6001 goto done; 6002 case 0x1: /* FABS */ 6003 gen_helper_vfp_abss(tcg_res, tcg_op); 6004 goto done; 6005 case 0x2: /* FNEG */ 6006 gen_helper_vfp_negs(tcg_res, tcg_op); 6007 goto done; 6008 case 0x3: /* FSQRT */ 6009 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6010 goto done; 6011 case 0x6: /* BFCVT */ 6012 gen_fpst = gen_helper_bfcvt; 6013 break; 6014 case 0x8: /* FRINTN */ 6015 case 0x9: /* FRINTP */ 6016 case 0xa: /* FRINTM */ 6017 case 0xb: /* FRINTZ */ 6018 case 0xc: /* FRINTA */ 6019 rmode = opcode & 7; 6020 gen_fpst = gen_helper_rints; 6021 break; 6022 case 0xe: /* FRINTX */ 6023 gen_fpst = gen_helper_rints_exact; 6024 break; 6025 case 0xf: /* FRINTI */ 6026 gen_fpst = gen_helper_rints; 6027 break; 6028 case 0x10: /* FRINT32Z */ 6029 rmode = FPROUNDING_ZERO; 6030 gen_fpst = gen_helper_frint32_s; 6031 break; 6032 case 0x11: /* FRINT32X */ 6033 gen_fpst = gen_helper_frint32_s; 6034 break; 6035 case 0x12: /* FRINT64Z */ 6036 rmode = FPROUNDING_ZERO; 6037 gen_fpst = gen_helper_frint64_s; 6038 break; 6039 case 0x13: /* FRINT64X */ 6040 gen_fpst = gen_helper_frint64_s; 6041 break; 6042 default: 6043 g_assert_not_reached(); 6044 } 6045 6046 fpst = fpstatus_ptr(FPST_FPCR); 6047 if (rmode >= 0) { 6048 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6049 gen_fpst(tcg_res, tcg_op, fpst); 6050 gen_restore_rmode(tcg_rmode, fpst); 6051 } else { 6052 gen_fpst(tcg_res, tcg_op, fpst); 6053 } 6054 6055 done: 6056 write_fp_sreg(s, rd, tcg_res); 6057 } 6058 6059 /* Floating-point data-processing (1 source) - double precision */ 6060 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6061 { 6062 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6063 TCGv_i64 tcg_op, tcg_res; 6064 TCGv_ptr fpst; 6065 int rmode = -1; 6066 6067 switch (opcode) { 6068 case 0x0: /* FMOV */ 6069 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6070 return; 6071 } 6072 6073 tcg_op = read_fp_dreg(s, rn); 6074 tcg_res = tcg_temp_new_i64(); 6075 6076 switch (opcode) { 6077 case 0x1: /* FABS */ 6078 gen_helper_vfp_absd(tcg_res, tcg_op); 6079 goto done; 6080 case 0x2: /* FNEG */ 6081 gen_helper_vfp_negd(tcg_res, tcg_op); 6082 goto done; 6083 case 0x3: /* FSQRT */ 6084 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6085 goto done; 6086 case 0x8: /* FRINTN */ 6087 case 0x9: /* FRINTP */ 6088 case 0xa: /* FRINTM */ 6089 case 0xb: /* FRINTZ */ 6090 case 0xc: /* FRINTA */ 6091 rmode = opcode & 7; 6092 gen_fpst = gen_helper_rintd; 6093 break; 6094 case 0xe: /* FRINTX */ 6095 gen_fpst = gen_helper_rintd_exact; 6096 break; 6097 case 0xf: /* FRINTI */ 6098 gen_fpst = gen_helper_rintd; 6099 break; 6100 case 0x10: /* FRINT32Z */ 6101 rmode = FPROUNDING_ZERO; 6102 gen_fpst = gen_helper_frint32_d; 6103 break; 6104 case 0x11: /* FRINT32X */ 6105 gen_fpst = gen_helper_frint32_d; 6106 break; 6107 case 0x12: /* FRINT64Z */ 6108 rmode = FPROUNDING_ZERO; 6109 gen_fpst = gen_helper_frint64_d; 6110 break; 6111 case 0x13: /* FRINT64X */ 6112 gen_fpst = gen_helper_frint64_d; 6113 break; 6114 default: 6115 g_assert_not_reached(); 6116 } 6117 6118 fpst = fpstatus_ptr(FPST_FPCR); 6119 if (rmode >= 0) { 6120 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6121 gen_fpst(tcg_res, tcg_op, fpst); 6122 gen_restore_rmode(tcg_rmode, fpst); 6123 } else { 6124 gen_fpst(tcg_res, tcg_op, fpst); 6125 } 6126 6127 done: 6128 write_fp_dreg(s, rd, tcg_res); 6129 } 6130 6131 static void handle_fp_fcvt(DisasContext *s, int opcode, 6132 int rd, int rn, int dtype, int ntype) 6133 { 6134 switch (ntype) { 6135 case 0x0: 6136 { 6137 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6138 if (dtype == 1) { 6139 /* Single to double */ 6140 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6141 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6142 write_fp_dreg(s, rd, tcg_rd); 6143 } else { 6144 /* Single to half */ 6145 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6146 TCGv_i32 ahp = get_ahp_flag(); 6147 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6148 6149 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6150 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6151 write_fp_sreg(s, rd, tcg_rd); 6152 } 6153 break; 6154 } 6155 case 0x1: 6156 { 6157 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6158 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6159 if (dtype == 0) { 6160 /* Double to single */ 6161 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6162 } else { 6163 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6164 TCGv_i32 ahp = get_ahp_flag(); 6165 /* Double to half */ 6166 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6167 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6168 } 6169 write_fp_sreg(s, rd, tcg_rd); 6170 break; 6171 } 6172 case 0x3: 6173 { 6174 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6175 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6176 TCGv_i32 tcg_ahp = get_ahp_flag(); 6177 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6178 if (dtype == 0) { 6179 /* Half to single */ 6180 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6181 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6182 write_fp_sreg(s, rd, tcg_rd); 6183 } else { 6184 /* Half to double */ 6185 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6186 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6187 write_fp_dreg(s, rd, tcg_rd); 6188 } 6189 break; 6190 } 6191 default: 6192 g_assert_not_reached(); 6193 } 6194 } 6195 6196 /* Floating point data-processing (1 source) 6197 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6198 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6199 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6200 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6201 */ 6202 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6203 { 6204 int mos = extract32(insn, 29, 3); 6205 int type = extract32(insn, 22, 2); 6206 int opcode = extract32(insn, 15, 6); 6207 int rn = extract32(insn, 5, 5); 6208 int rd = extract32(insn, 0, 5); 6209 6210 if (mos) { 6211 goto do_unallocated; 6212 } 6213 6214 switch (opcode) { 6215 case 0x4: case 0x5: case 0x7: 6216 { 6217 /* FCVT between half, single and double precision */ 6218 int dtype = extract32(opcode, 0, 2); 6219 if (type == 2 || dtype == type) { 6220 goto do_unallocated; 6221 } 6222 if (!fp_access_check(s)) { 6223 return; 6224 } 6225 6226 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6227 break; 6228 } 6229 6230 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6231 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6232 goto do_unallocated; 6233 } 6234 /* fall through */ 6235 case 0x0 ... 0x3: 6236 case 0x8 ... 0xc: 6237 case 0xe ... 0xf: 6238 /* 32-to-32 and 64-to-64 ops */ 6239 switch (type) { 6240 case 0: 6241 if (!fp_access_check(s)) { 6242 return; 6243 } 6244 handle_fp_1src_single(s, opcode, rd, rn); 6245 break; 6246 case 1: 6247 if (!fp_access_check(s)) { 6248 return; 6249 } 6250 handle_fp_1src_double(s, opcode, rd, rn); 6251 break; 6252 case 3: 6253 if (!dc_isar_feature(aa64_fp16, s)) { 6254 goto do_unallocated; 6255 } 6256 6257 if (!fp_access_check(s)) { 6258 return; 6259 } 6260 handle_fp_1src_half(s, opcode, rd, rn); 6261 break; 6262 default: 6263 goto do_unallocated; 6264 } 6265 break; 6266 6267 case 0x6: 6268 switch (type) { 6269 case 1: /* BFCVT */ 6270 if (!dc_isar_feature(aa64_bf16, s)) { 6271 goto do_unallocated; 6272 } 6273 if (!fp_access_check(s)) { 6274 return; 6275 } 6276 handle_fp_1src_single(s, opcode, rd, rn); 6277 break; 6278 default: 6279 goto do_unallocated; 6280 } 6281 break; 6282 6283 default: 6284 do_unallocated: 6285 unallocated_encoding(s); 6286 break; 6287 } 6288 } 6289 6290 /* Floating-point data-processing (2 source) - single precision */ 6291 static void handle_fp_2src_single(DisasContext *s, int opcode, 6292 int rd, int rn, int rm) 6293 { 6294 TCGv_i32 tcg_op1; 6295 TCGv_i32 tcg_op2; 6296 TCGv_i32 tcg_res; 6297 TCGv_ptr fpst; 6298 6299 tcg_res = tcg_temp_new_i32(); 6300 fpst = fpstatus_ptr(FPST_FPCR); 6301 tcg_op1 = read_fp_sreg(s, rn); 6302 tcg_op2 = read_fp_sreg(s, rm); 6303 6304 switch (opcode) { 6305 case 0x0: /* FMUL */ 6306 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6307 break; 6308 case 0x1: /* FDIV */ 6309 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6310 break; 6311 case 0x2: /* FADD */ 6312 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6313 break; 6314 case 0x3: /* FSUB */ 6315 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6316 break; 6317 case 0x4: /* FMAX */ 6318 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6319 break; 6320 case 0x5: /* FMIN */ 6321 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6322 break; 6323 case 0x6: /* FMAXNM */ 6324 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6325 break; 6326 case 0x7: /* FMINNM */ 6327 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6328 break; 6329 case 0x8: /* FNMUL */ 6330 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6331 gen_helper_vfp_negs(tcg_res, tcg_res); 6332 break; 6333 } 6334 6335 write_fp_sreg(s, rd, tcg_res); 6336 } 6337 6338 /* Floating-point data-processing (2 source) - double precision */ 6339 static void handle_fp_2src_double(DisasContext *s, int opcode, 6340 int rd, int rn, int rm) 6341 { 6342 TCGv_i64 tcg_op1; 6343 TCGv_i64 tcg_op2; 6344 TCGv_i64 tcg_res; 6345 TCGv_ptr fpst; 6346 6347 tcg_res = tcg_temp_new_i64(); 6348 fpst = fpstatus_ptr(FPST_FPCR); 6349 tcg_op1 = read_fp_dreg(s, rn); 6350 tcg_op2 = read_fp_dreg(s, rm); 6351 6352 switch (opcode) { 6353 case 0x0: /* FMUL */ 6354 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6355 break; 6356 case 0x1: /* FDIV */ 6357 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6358 break; 6359 case 0x2: /* FADD */ 6360 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6361 break; 6362 case 0x3: /* FSUB */ 6363 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6364 break; 6365 case 0x4: /* FMAX */ 6366 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6367 break; 6368 case 0x5: /* FMIN */ 6369 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6370 break; 6371 case 0x6: /* FMAXNM */ 6372 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6373 break; 6374 case 0x7: /* FMINNM */ 6375 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6376 break; 6377 case 0x8: /* FNMUL */ 6378 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6379 gen_helper_vfp_negd(tcg_res, tcg_res); 6380 break; 6381 } 6382 6383 write_fp_dreg(s, rd, tcg_res); 6384 } 6385 6386 /* Floating-point data-processing (2 source) - half precision */ 6387 static void handle_fp_2src_half(DisasContext *s, int opcode, 6388 int rd, int rn, int rm) 6389 { 6390 TCGv_i32 tcg_op1; 6391 TCGv_i32 tcg_op2; 6392 TCGv_i32 tcg_res; 6393 TCGv_ptr fpst; 6394 6395 tcg_res = tcg_temp_new_i32(); 6396 fpst = fpstatus_ptr(FPST_FPCR_F16); 6397 tcg_op1 = read_fp_hreg(s, rn); 6398 tcg_op2 = read_fp_hreg(s, rm); 6399 6400 switch (opcode) { 6401 case 0x0: /* FMUL */ 6402 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6403 break; 6404 case 0x1: /* FDIV */ 6405 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6406 break; 6407 case 0x2: /* FADD */ 6408 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6409 break; 6410 case 0x3: /* FSUB */ 6411 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6412 break; 6413 case 0x4: /* FMAX */ 6414 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6415 break; 6416 case 0x5: /* FMIN */ 6417 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6418 break; 6419 case 0x6: /* FMAXNM */ 6420 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6421 break; 6422 case 0x7: /* FMINNM */ 6423 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6424 break; 6425 case 0x8: /* FNMUL */ 6426 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6427 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6428 break; 6429 default: 6430 g_assert_not_reached(); 6431 } 6432 6433 write_fp_sreg(s, rd, tcg_res); 6434 } 6435 6436 /* Floating point data-processing (2 source) 6437 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6438 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6439 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6440 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6441 */ 6442 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6443 { 6444 int mos = extract32(insn, 29, 3); 6445 int type = extract32(insn, 22, 2); 6446 int rd = extract32(insn, 0, 5); 6447 int rn = extract32(insn, 5, 5); 6448 int rm = extract32(insn, 16, 5); 6449 int opcode = extract32(insn, 12, 4); 6450 6451 if (opcode > 8 || mos) { 6452 unallocated_encoding(s); 6453 return; 6454 } 6455 6456 switch (type) { 6457 case 0: 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_2src_single(s, opcode, rd, rn, rm); 6462 break; 6463 case 1: 6464 if (!fp_access_check(s)) { 6465 return; 6466 } 6467 handle_fp_2src_double(s, opcode, rd, rn, rm); 6468 break; 6469 case 3: 6470 if (!dc_isar_feature(aa64_fp16, s)) { 6471 unallocated_encoding(s); 6472 return; 6473 } 6474 if (!fp_access_check(s)) { 6475 return; 6476 } 6477 handle_fp_2src_half(s, opcode, rd, rn, rm); 6478 break; 6479 default: 6480 unallocated_encoding(s); 6481 } 6482 } 6483 6484 /* Floating-point data-processing (3 source) - single precision */ 6485 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6486 int rd, int rn, int rm, int ra) 6487 { 6488 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6489 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6490 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6491 6492 tcg_op1 = read_fp_sreg(s, rn); 6493 tcg_op2 = read_fp_sreg(s, rm); 6494 tcg_op3 = read_fp_sreg(s, ra); 6495 6496 /* These are fused multiply-add, and must be done as one 6497 * floating point operation with no rounding between the 6498 * multiplication and addition steps. 6499 * NB that doing the negations here as separate steps is 6500 * correct : an input NaN should come out with its sign bit 6501 * flipped if it is a negated-input. 6502 */ 6503 if (o1 == true) { 6504 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6505 } 6506 6507 if (o0 != o1) { 6508 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6509 } 6510 6511 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6512 6513 write_fp_sreg(s, rd, tcg_res); 6514 } 6515 6516 /* Floating-point data-processing (3 source) - double precision */ 6517 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6518 int rd, int rn, int rm, int ra) 6519 { 6520 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6521 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6522 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6523 6524 tcg_op1 = read_fp_dreg(s, rn); 6525 tcg_op2 = read_fp_dreg(s, rm); 6526 tcg_op3 = read_fp_dreg(s, ra); 6527 6528 /* These are fused multiply-add, and must be done as one 6529 * floating point operation with no rounding between the 6530 * multiplication and addition steps. 6531 * NB that doing the negations here as separate steps is 6532 * correct : an input NaN should come out with its sign bit 6533 * flipped if it is a negated-input. 6534 */ 6535 if (o1 == true) { 6536 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6537 } 6538 6539 if (o0 != o1) { 6540 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6541 } 6542 6543 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6544 6545 write_fp_dreg(s, rd, tcg_res); 6546 } 6547 6548 /* Floating-point data-processing (3 source) - half precision */ 6549 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6550 int rd, int rn, int rm, int ra) 6551 { 6552 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6553 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6554 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6555 6556 tcg_op1 = read_fp_hreg(s, rn); 6557 tcg_op2 = read_fp_hreg(s, rm); 6558 tcg_op3 = read_fp_hreg(s, ra); 6559 6560 /* These are fused multiply-add, and must be done as one 6561 * floating point operation with no rounding between the 6562 * multiplication and addition steps. 6563 * NB that doing the negations here as separate steps is 6564 * correct : an input NaN should come out with its sign bit 6565 * flipped if it is a negated-input. 6566 */ 6567 if (o1 == true) { 6568 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6569 } 6570 6571 if (o0 != o1) { 6572 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6573 } 6574 6575 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6576 6577 write_fp_sreg(s, rd, tcg_res); 6578 } 6579 6580 /* Floating point data-processing (3 source) 6581 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6582 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6583 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6584 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6585 */ 6586 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6587 { 6588 int mos = extract32(insn, 29, 3); 6589 int type = extract32(insn, 22, 2); 6590 int rd = extract32(insn, 0, 5); 6591 int rn = extract32(insn, 5, 5); 6592 int ra = extract32(insn, 10, 5); 6593 int rm = extract32(insn, 16, 5); 6594 bool o0 = extract32(insn, 15, 1); 6595 bool o1 = extract32(insn, 21, 1); 6596 6597 if (mos) { 6598 unallocated_encoding(s); 6599 return; 6600 } 6601 6602 switch (type) { 6603 case 0: 6604 if (!fp_access_check(s)) { 6605 return; 6606 } 6607 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6608 break; 6609 case 1: 6610 if (!fp_access_check(s)) { 6611 return; 6612 } 6613 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6614 break; 6615 case 3: 6616 if (!dc_isar_feature(aa64_fp16, s)) { 6617 unallocated_encoding(s); 6618 return; 6619 } 6620 if (!fp_access_check(s)) { 6621 return; 6622 } 6623 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6624 break; 6625 default: 6626 unallocated_encoding(s); 6627 } 6628 } 6629 6630 /* Floating point immediate 6631 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6632 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6633 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6634 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6635 */ 6636 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6637 { 6638 int rd = extract32(insn, 0, 5); 6639 int imm5 = extract32(insn, 5, 5); 6640 int imm8 = extract32(insn, 13, 8); 6641 int type = extract32(insn, 22, 2); 6642 int mos = extract32(insn, 29, 3); 6643 uint64_t imm; 6644 MemOp sz; 6645 6646 if (mos || imm5) { 6647 unallocated_encoding(s); 6648 return; 6649 } 6650 6651 switch (type) { 6652 case 0: 6653 sz = MO_32; 6654 break; 6655 case 1: 6656 sz = MO_64; 6657 break; 6658 case 3: 6659 sz = MO_16; 6660 if (dc_isar_feature(aa64_fp16, s)) { 6661 break; 6662 } 6663 /* fallthru */ 6664 default: 6665 unallocated_encoding(s); 6666 return; 6667 } 6668 6669 if (!fp_access_check(s)) { 6670 return; 6671 } 6672 6673 imm = vfp_expand_imm(sz, imm8); 6674 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6675 } 6676 6677 /* Handle floating point <=> fixed point conversions. Note that we can 6678 * also deal with fp <=> integer conversions as a special case (scale == 64) 6679 * OPTME: consider handling that special case specially or at least skipping 6680 * the call to scalbn in the helpers for zero shifts. 6681 */ 6682 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6683 bool itof, int rmode, int scale, int sf, int type) 6684 { 6685 bool is_signed = !(opcode & 1); 6686 TCGv_ptr tcg_fpstatus; 6687 TCGv_i32 tcg_shift, tcg_single; 6688 TCGv_i64 tcg_double; 6689 6690 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6691 6692 tcg_shift = tcg_constant_i32(64 - scale); 6693 6694 if (itof) { 6695 TCGv_i64 tcg_int = cpu_reg(s, rn); 6696 if (!sf) { 6697 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6698 6699 if (is_signed) { 6700 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6701 } else { 6702 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6703 } 6704 6705 tcg_int = tcg_extend; 6706 } 6707 6708 switch (type) { 6709 case 1: /* float64 */ 6710 tcg_double = tcg_temp_new_i64(); 6711 if (is_signed) { 6712 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6713 tcg_shift, tcg_fpstatus); 6714 } else { 6715 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6716 tcg_shift, tcg_fpstatus); 6717 } 6718 write_fp_dreg(s, rd, tcg_double); 6719 break; 6720 6721 case 0: /* float32 */ 6722 tcg_single = tcg_temp_new_i32(); 6723 if (is_signed) { 6724 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6725 tcg_shift, tcg_fpstatus); 6726 } else { 6727 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6728 tcg_shift, tcg_fpstatus); 6729 } 6730 write_fp_sreg(s, rd, tcg_single); 6731 break; 6732 6733 case 3: /* float16 */ 6734 tcg_single = tcg_temp_new_i32(); 6735 if (is_signed) { 6736 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6737 tcg_shift, tcg_fpstatus); 6738 } else { 6739 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6740 tcg_shift, tcg_fpstatus); 6741 } 6742 write_fp_sreg(s, rd, tcg_single); 6743 break; 6744 6745 default: 6746 g_assert_not_reached(); 6747 } 6748 } else { 6749 TCGv_i64 tcg_int = cpu_reg(s, rd); 6750 TCGv_i32 tcg_rmode; 6751 6752 if (extract32(opcode, 2, 1)) { 6753 /* There are too many rounding modes to all fit into rmode, 6754 * so FCVTA[US] is a special case. 6755 */ 6756 rmode = FPROUNDING_TIEAWAY; 6757 } 6758 6759 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6760 6761 switch (type) { 6762 case 1: /* float64 */ 6763 tcg_double = read_fp_dreg(s, rn); 6764 if (is_signed) { 6765 if (!sf) { 6766 gen_helper_vfp_tosld(tcg_int, tcg_double, 6767 tcg_shift, tcg_fpstatus); 6768 } else { 6769 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6770 tcg_shift, tcg_fpstatus); 6771 } 6772 } else { 6773 if (!sf) { 6774 gen_helper_vfp_tould(tcg_int, tcg_double, 6775 tcg_shift, tcg_fpstatus); 6776 } else { 6777 gen_helper_vfp_touqd(tcg_int, tcg_double, 6778 tcg_shift, tcg_fpstatus); 6779 } 6780 } 6781 if (!sf) { 6782 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6783 } 6784 break; 6785 6786 case 0: /* float32 */ 6787 tcg_single = read_fp_sreg(s, rn); 6788 if (sf) { 6789 if (is_signed) { 6790 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6791 tcg_shift, tcg_fpstatus); 6792 } else { 6793 gen_helper_vfp_touqs(tcg_int, tcg_single, 6794 tcg_shift, tcg_fpstatus); 6795 } 6796 } else { 6797 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6798 if (is_signed) { 6799 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6800 tcg_shift, tcg_fpstatus); 6801 } else { 6802 gen_helper_vfp_touls(tcg_dest, tcg_single, 6803 tcg_shift, tcg_fpstatus); 6804 } 6805 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6806 } 6807 break; 6808 6809 case 3: /* float16 */ 6810 tcg_single = read_fp_sreg(s, rn); 6811 if (sf) { 6812 if (is_signed) { 6813 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6814 tcg_shift, tcg_fpstatus); 6815 } else { 6816 gen_helper_vfp_touqh(tcg_int, tcg_single, 6817 tcg_shift, tcg_fpstatus); 6818 } 6819 } else { 6820 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6821 if (is_signed) { 6822 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6823 tcg_shift, tcg_fpstatus); 6824 } else { 6825 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6826 tcg_shift, tcg_fpstatus); 6827 } 6828 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6829 } 6830 break; 6831 6832 default: 6833 g_assert_not_reached(); 6834 } 6835 6836 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6837 } 6838 } 6839 6840 /* Floating point <-> fixed point conversions 6841 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6842 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6843 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6844 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6845 */ 6846 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6847 { 6848 int rd = extract32(insn, 0, 5); 6849 int rn = extract32(insn, 5, 5); 6850 int scale = extract32(insn, 10, 6); 6851 int opcode = extract32(insn, 16, 3); 6852 int rmode = extract32(insn, 19, 2); 6853 int type = extract32(insn, 22, 2); 6854 bool sbit = extract32(insn, 29, 1); 6855 bool sf = extract32(insn, 31, 1); 6856 bool itof; 6857 6858 if (sbit || (!sf && scale < 32)) { 6859 unallocated_encoding(s); 6860 return; 6861 } 6862 6863 switch (type) { 6864 case 0: /* float32 */ 6865 case 1: /* float64 */ 6866 break; 6867 case 3: /* float16 */ 6868 if (dc_isar_feature(aa64_fp16, s)) { 6869 break; 6870 } 6871 /* fallthru */ 6872 default: 6873 unallocated_encoding(s); 6874 return; 6875 } 6876 6877 switch ((rmode << 3) | opcode) { 6878 case 0x2: /* SCVTF */ 6879 case 0x3: /* UCVTF */ 6880 itof = true; 6881 break; 6882 case 0x18: /* FCVTZS */ 6883 case 0x19: /* FCVTZU */ 6884 itof = false; 6885 break; 6886 default: 6887 unallocated_encoding(s); 6888 return; 6889 } 6890 6891 if (!fp_access_check(s)) { 6892 return; 6893 } 6894 6895 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6896 } 6897 6898 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6899 { 6900 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6901 * without conversion. 6902 */ 6903 6904 if (itof) { 6905 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6906 TCGv_i64 tmp; 6907 6908 switch (type) { 6909 case 0: 6910 /* 32 bit */ 6911 tmp = tcg_temp_new_i64(); 6912 tcg_gen_ext32u_i64(tmp, tcg_rn); 6913 write_fp_dreg(s, rd, tmp); 6914 break; 6915 case 1: 6916 /* 64 bit */ 6917 write_fp_dreg(s, rd, tcg_rn); 6918 break; 6919 case 2: 6920 /* 64 bit to top half. */ 6921 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6922 clear_vec_high(s, true, rd); 6923 break; 6924 case 3: 6925 /* 16 bit */ 6926 tmp = tcg_temp_new_i64(); 6927 tcg_gen_ext16u_i64(tmp, tcg_rn); 6928 write_fp_dreg(s, rd, tmp); 6929 break; 6930 default: 6931 g_assert_not_reached(); 6932 } 6933 } else { 6934 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6935 6936 switch (type) { 6937 case 0: 6938 /* 32 bit */ 6939 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6940 break; 6941 case 1: 6942 /* 64 bit */ 6943 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6944 break; 6945 case 2: 6946 /* 64 bits from top half */ 6947 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6948 break; 6949 case 3: 6950 /* 16 bit */ 6951 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6952 break; 6953 default: 6954 g_assert_not_reached(); 6955 } 6956 } 6957 } 6958 6959 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6960 { 6961 TCGv_i64 t = read_fp_dreg(s, rn); 6962 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6963 6964 gen_helper_fjcvtzs(t, t, fpstatus); 6965 6966 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6967 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6968 tcg_gen_movi_i32(cpu_CF, 0); 6969 tcg_gen_movi_i32(cpu_NF, 0); 6970 tcg_gen_movi_i32(cpu_VF, 0); 6971 } 6972 6973 /* Floating point <-> integer conversions 6974 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6975 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6976 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6977 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6978 */ 6979 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6980 { 6981 int rd = extract32(insn, 0, 5); 6982 int rn = extract32(insn, 5, 5); 6983 int opcode = extract32(insn, 16, 3); 6984 int rmode = extract32(insn, 19, 2); 6985 int type = extract32(insn, 22, 2); 6986 bool sbit = extract32(insn, 29, 1); 6987 bool sf = extract32(insn, 31, 1); 6988 bool itof = false; 6989 6990 if (sbit) { 6991 goto do_unallocated; 6992 } 6993 6994 switch (opcode) { 6995 case 2: /* SCVTF */ 6996 case 3: /* UCVTF */ 6997 itof = true; 6998 /* fallthru */ 6999 case 4: /* FCVTAS */ 7000 case 5: /* FCVTAU */ 7001 if (rmode != 0) { 7002 goto do_unallocated; 7003 } 7004 /* fallthru */ 7005 case 0: /* FCVT[NPMZ]S */ 7006 case 1: /* FCVT[NPMZ]U */ 7007 switch (type) { 7008 case 0: /* float32 */ 7009 case 1: /* float64 */ 7010 break; 7011 case 3: /* float16 */ 7012 if (!dc_isar_feature(aa64_fp16, s)) { 7013 goto do_unallocated; 7014 } 7015 break; 7016 default: 7017 goto do_unallocated; 7018 } 7019 if (!fp_access_check(s)) { 7020 return; 7021 } 7022 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7023 break; 7024 7025 default: 7026 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7027 case 0b01100110: /* FMOV half <-> 32-bit int */ 7028 case 0b01100111: 7029 case 0b11100110: /* FMOV half <-> 64-bit int */ 7030 case 0b11100111: 7031 if (!dc_isar_feature(aa64_fp16, s)) { 7032 goto do_unallocated; 7033 } 7034 /* fallthru */ 7035 case 0b00000110: /* FMOV 32-bit */ 7036 case 0b00000111: 7037 case 0b10100110: /* FMOV 64-bit */ 7038 case 0b10100111: 7039 case 0b11001110: /* FMOV top half of 128-bit */ 7040 case 0b11001111: 7041 if (!fp_access_check(s)) { 7042 return; 7043 } 7044 itof = opcode & 1; 7045 handle_fmov(s, rd, rn, type, itof); 7046 break; 7047 7048 case 0b00111110: /* FJCVTZS */ 7049 if (!dc_isar_feature(aa64_jscvt, s)) { 7050 goto do_unallocated; 7051 } else if (fp_access_check(s)) { 7052 handle_fjcvtzs(s, rd, rn); 7053 } 7054 break; 7055 7056 default: 7057 do_unallocated: 7058 unallocated_encoding(s); 7059 return; 7060 } 7061 break; 7062 } 7063 } 7064 7065 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7066 * 31 30 29 28 25 24 0 7067 * +---+---+---+---------+-----------------------------+ 7068 * | | 0 | | 1 1 1 1 | | 7069 * +---+---+---+---------+-----------------------------+ 7070 */ 7071 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7072 { 7073 if (extract32(insn, 24, 1)) { 7074 /* Floating point data-processing (3 source) */ 7075 disas_fp_3src(s, insn); 7076 } else if (extract32(insn, 21, 1) == 0) { 7077 /* Floating point to fixed point conversions */ 7078 disas_fp_fixed_conv(s, insn); 7079 } else { 7080 switch (extract32(insn, 10, 2)) { 7081 case 1: 7082 /* Floating point conditional compare */ 7083 disas_fp_ccomp(s, insn); 7084 break; 7085 case 2: 7086 /* Floating point data-processing (2 source) */ 7087 disas_fp_2src(s, insn); 7088 break; 7089 case 3: 7090 /* Floating point conditional select */ 7091 disas_fp_csel(s, insn); 7092 break; 7093 case 0: 7094 switch (ctz32(extract32(insn, 12, 4))) { 7095 case 0: /* [15:12] == xxx1 */ 7096 /* Floating point immediate */ 7097 disas_fp_imm(s, insn); 7098 break; 7099 case 1: /* [15:12] == xx10 */ 7100 /* Floating point compare */ 7101 disas_fp_compare(s, insn); 7102 break; 7103 case 2: /* [15:12] == x100 */ 7104 /* Floating point data-processing (1 source) */ 7105 disas_fp_1src(s, insn); 7106 break; 7107 case 3: /* [15:12] == 1000 */ 7108 unallocated_encoding(s); 7109 break; 7110 default: /* [15:12] == 0000 */ 7111 /* Floating point <-> integer conversions */ 7112 disas_fp_int_conv(s, insn); 7113 break; 7114 } 7115 break; 7116 } 7117 } 7118 } 7119 7120 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7121 int pos) 7122 { 7123 /* Extract 64 bits from the middle of two concatenated 64 bit 7124 * vector register slices left:right. The extracted bits start 7125 * at 'pos' bits into the right (least significant) side. 7126 * We return the result in tcg_right, and guarantee not to 7127 * trash tcg_left. 7128 */ 7129 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7130 assert(pos > 0 && pos < 64); 7131 7132 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7133 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7134 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7135 } 7136 7137 /* EXT 7138 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7139 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7140 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7141 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7142 */ 7143 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7144 { 7145 int is_q = extract32(insn, 30, 1); 7146 int op2 = extract32(insn, 22, 2); 7147 int imm4 = extract32(insn, 11, 4); 7148 int rm = extract32(insn, 16, 5); 7149 int rn = extract32(insn, 5, 5); 7150 int rd = extract32(insn, 0, 5); 7151 int pos = imm4 << 3; 7152 TCGv_i64 tcg_resl, tcg_resh; 7153 7154 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7155 unallocated_encoding(s); 7156 return; 7157 } 7158 7159 if (!fp_access_check(s)) { 7160 return; 7161 } 7162 7163 tcg_resh = tcg_temp_new_i64(); 7164 tcg_resl = tcg_temp_new_i64(); 7165 7166 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7167 * either extracting 128 bits from a 128:128 concatenation, or 7168 * extracting 64 bits from a 64:64 concatenation. 7169 */ 7170 if (!is_q) { 7171 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7172 if (pos != 0) { 7173 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7174 do_ext64(s, tcg_resh, tcg_resl, pos); 7175 } 7176 } else { 7177 TCGv_i64 tcg_hh; 7178 typedef struct { 7179 int reg; 7180 int elt; 7181 } EltPosns; 7182 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7183 EltPosns *elt = eltposns; 7184 7185 if (pos >= 64) { 7186 elt++; 7187 pos -= 64; 7188 } 7189 7190 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7191 elt++; 7192 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7193 elt++; 7194 if (pos != 0) { 7195 do_ext64(s, tcg_resh, tcg_resl, pos); 7196 tcg_hh = tcg_temp_new_i64(); 7197 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7198 do_ext64(s, tcg_hh, tcg_resh, pos); 7199 } 7200 } 7201 7202 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7203 if (is_q) { 7204 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7205 } 7206 clear_vec_high(s, is_q, rd); 7207 } 7208 7209 /* TBL/TBX 7210 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7211 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7212 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7213 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7214 */ 7215 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7216 { 7217 int op2 = extract32(insn, 22, 2); 7218 int is_q = extract32(insn, 30, 1); 7219 int rm = extract32(insn, 16, 5); 7220 int rn = extract32(insn, 5, 5); 7221 int rd = extract32(insn, 0, 5); 7222 int is_tbx = extract32(insn, 12, 1); 7223 int len = (extract32(insn, 13, 2) + 1) * 16; 7224 7225 if (op2 != 0) { 7226 unallocated_encoding(s); 7227 return; 7228 } 7229 7230 if (!fp_access_check(s)) { 7231 return; 7232 } 7233 7234 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7235 vec_full_reg_offset(s, rm), cpu_env, 7236 is_q ? 16 : 8, vec_full_reg_size(s), 7237 (len << 6) | (is_tbx << 5) | rn, 7238 gen_helper_simd_tblx); 7239 } 7240 7241 /* ZIP/UZP/TRN 7242 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7243 * +---+---+-------------+------+---+------+---+------------------+------+ 7244 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7245 * +---+---+-------------+------+---+------+---+------------------+------+ 7246 */ 7247 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7248 { 7249 int rd = extract32(insn, 0, 5); 7250 int rn = extract32(insn, 5, 5); 7251 int rm = extract32(insn, 16, 5); 7252 int size = extract32(insn, 22, 2); 7253 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7254 * bit 2 indicates 1 vs 2 variant of the insn. 7255 */ 7256 int opcode = extract32(insn, 12, 2); 7257 bool part = extract32(insn, 14, 1); 7258 bool is_q = extract32(insn, 30, 1); 7259 int esize = 8 << size; 7260 int i; 7261 int datasize = is_q ? 128 : 64; 7262 int elements = datasize / esize; 7263 TCGv_i64 tcg_res[2], tcg_ele; 7264 7265 if (opcode == 0 || (size == 3 && !is_q)) { 7266 unallocated_encoding(s); 7267 return; 7268 } 7269 7270 if (!fp_access_check(s)) { 7271 return; 7272 } 7273 7274 tcg_res[0] = tcg_temp_new_i64(); 7275 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7276 tcg_ele = tcg_temp_new_i64(); 7277 7278 for (i = 0; i < elements; i++) { 7279 int o, w; 7280 7281 switch (opcode) { 7282 case 1: /* UZP1/2 */ 7283 { 7284 int midpoint = elements / 2; 7285 if (i < midpoint) { 7286 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7287 } else { 7288 read_vec_element(s, tcg_ele, rm, 7289 2 * (i - midpoint) + part, size); 7290 } 7291 break; 7292 } 7293 case 2: /* TRN1/2 */ 7294 if (i & 1) { 7295 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7296 } else { 7297 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7298 } 7299 break; 7300 case 3: /* ZIP1/2 */ 7301 { 7302 int base = part * elements / 2; 7303 if (i & 1) { 7304 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7305 } else { 7306 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7307 } 7308 break; 7309 } 7310 default: 7311 g_assert_not_reached(); 7312 } 7313 7314 w = (i * esize) / 64; 7315 o = (i * esize) % 64; 7316 if (o == 0) { 7317 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7318 } else { 7319 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7320 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7321 } 7322 } 7323 7324 for (i = 0; i <= is_q; ++i) { 7325 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7326 } 7327 clear_vec_high(s, is_q, rd); 7328 } 7329 7330 /* 7331 * do_reduction_op helper 7332 * 7333 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7334 * important for correct NaN propagation that we do these 7335 * operations in exactly the order specified by the pseudocode. 7336 * 7337 * This is a recursive function, TCG temps should be freed by the 7338 * calling function once it is done with the values. 7339 */ 7340 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7341 int esize, int size, int vmap, TCGv_ptr fpst) 7342 { 7343 if (esize == size) { 7344 int element; 7345 MemOp msize = esize == 16 ? MO_16 : MO_32; 7346 TCGv_i32 tcg_elem; 7347 7348 /* We should have one register left here */ 7349 assert(ctpop8(vmap) == 1); 7350 element = ctz32(vmap); 7351 assert(element < 8); 7352 7353 tcg_elem = tcg_temp_new_i32(); 7354 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7355 return tcg_elem; 7356 } else { 7357 int bits = size / 2; 7358 int shift = ctpop8(vmap) / 2; 7359 int vmap_lo = (vmap >> shift) & vmap; 7360 int vmap_hi = (vmap & ~vmap_lo); 7361 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7362 7363 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7364 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7365 tcg_res = tcg_temp_new_i32(); 7366 7367 switch (fpopcode) { 7368 case 0x0c: /* fmaxnmv half-precision */ 7369 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7370 break; 7371 case 0x0f: /* fmaxv half-precision */ 7372 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7373 break; 7374 case 0x1c: /* fminnmv half-precision */ 7375 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7376 break; 7377 case 0x1f: /* fminv half-precision */ 7378 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7379 break; 7380 case 0x2c: /* fmaxnmv */ 7381 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7382 break; 7383 case 0x2f: /* fmaxv */ 7384 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7385 break; 7386 case 0x3c: /* fminnmv */ 7387 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7388 break; 7389 case 0x3f: /* fminv */ 7390 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7391 break; 7392 default: 7393 g_assert_not_reached(); 7394 } 7395 return tcg_res; 7396 } 7397 } 7398 7399 /* AdvSIMD across lanes 7400 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7401 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7402 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7403 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7404 */ 7405 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7406 { 7407 int rd = extract32(insn, 0, 5); 7408 int rn = extract32(insn, 5, 5); 7409 int size = extract32(insn, 22, 2); 7410 int opcode = extract32(insn, 12, 5); 7411 bool is_q = extract32(insn, 30, 1); 7412 bool is_u = extract32(insn, 29, 1); 7413 bool is_fp = false; 7414 bool is_min = false; 7415 int esize; 7416 int elements; 7417 int i; 7418 TCGv_i64 tcg_res, tcg_elt; 7419 7420 switch (opcode) { 7421 case 0x1b: /* ADDV */ 7422 if (is_u) { 7423 unallocated_encoding(s); 7424 return; 7425 } 7426 /* fall through */ 7427 case 0x3: /* SADDLV, UADDLV */ 7428 case 0xa: /* SMAXV, UMAXV */ 7429 case 0x1a: /* SMINV, UMINV */ 7430 if (size == 3 || (size == 2 && !is_q)) { 7431 unallocated_encoding(s); 7432 return; 7433 } 7434 break; 7435 case 0xc: /* FMAXNMV, FMINNMV */ 7436 case 0xf: /* FMAXV, FMINV */ 7437 /* Bit 1 of size field encodes min vs max and the actual size 7438 * depends on the encoding of the U bit. If not set (and FP16 7439 * enabled) then we do half-precision float instead of single 7440 * precision. 7441 */ 7442 is_min = extract32(size, 1, 1); 7443 is_fp = true; 7444 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7445 size = 1; 7446 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7447 unallocated_encoding(s); 7448 return; 7449 } else { 7450 size = 2; 7451 } 7452 break; 7453 default: 7454 unallocated_encoding(s); 7455 return; 7456 } 7457 7458 if (!fp_access_check(s)) { 7459 return; 7460 } 7461 7462 esize = 8 << size; 7463 elements = (is_q ? 128 : 64) / esize; 7464 7465 tcg_res = tcg_temp_new_i64(); 7466 tcg_elt = tcg_temp_new_i64(); 7467 7468 /* These instructions operate across all lanes of a vector 7469 * to produce a single result. We can guarantee that a 64 7470 * bit intermediate is sufficient: 7471 * + for [US]ADDLV the maximum element size is 32 bits, and 7472 * the result type is 64 bits 7473 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7474 * same as the element size, which is 32 bits at most 7475 * For the integer operations we can choose to work at 64 7476 * or 32 bits and truncate at the end; for simplicity 7477 * we use 64 bits always. The floating point 7478 * ops do require 32 bit intermediates, though. 7479 */ 7480 if (!is_fp) { 7481 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7482 7483 for (i = 1; i < elements; i++) { 7484 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7485 7486 switch (opcode) { 7487 case 0x03: /* SADDLV / UADDLV */ 7488 case 0x1b: /* ADDV */ 7489 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7490 break; 7491 case 0x0a: /* SMAXV / UMAXV */ 7492 if (is_u) { 7493 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7494 } else { 7495 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7496 } 7497 break; 7498 case 0x1a: /* SMINV / UMINV */ 7499 if (is_u) { 7500 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7501 } else { 7502 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7503 } 7504 break; 7505 default: 7506 g_assert_not_reached(); 7507 } 7508 7509 } 7510 } else { 7511 /* Floating point vector reduction ops which work across 32 7512 * bit (single) or 16 bit (half-precision) intermediates. 7513 * Note that correct NaN propagation requires that we do these 7514 * operations in exactly the order specified by the pseudocode. 7515 */ 7516 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7517 int fpopcode = opcode | is_min << 4 | is_u << 5; 7518 int vmap = (1 << elements) - 1; 7519 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7520 (is_q ? 128 : 64), vmap, fpst); 7521 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7522 } 7523 7524 /* Now truncate the result to the width required for the final output */ 7525 if (opcode == 0x03) { 7526 /* SADDLV, UADDLV: result is 2*esize */ 7527 size++; 7528 } 7529 7530 switch (size) { 7531 case 0: 7532 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7533 break; 7534 case 1: 7535 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7536 break; 7537 case 2: 7538 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7539 break; 7540 case 3: 7541 break; 7542 default: 7543 g_assert_not_reached(); 7544 } 7545 7546 write_fp_dreg(s, rd, tcg_res); 7547 } 7548 7549 /* DUP (Element, Vector) 7550 * 7551 * 31 30 29 21 20 16 15 10 9 5 4 0 7552 * +---+---+-------------------+--------+-------------+------+------+ 7553 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7554 * +---+---+-------------------+--------+-------------+------+------+ 7555 * 7556 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7557 */ 7558 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7559 int imm5) 7560 { 7561 int size = ctz32(imm5); 7562 int index; 7563 7564 if (size > 3 || (size == 3 && !is_q)) { 7565 unallocated_encoding(s); 7566 return; 7567 } 7568 7569 if (!fp_access_check(s)) { 7570 return; 7571 } 7572 7573 index = imm5 >> (size + 1); 7574 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7575 vec_reg_offset(s, rn, index, size), 7576 is_q ? 16 : 8, vec_full_reg_size(s)); 7577 } 7578 7579 /* DUP (element, scalar) 7580 * 31 21 20 16 15 10 9 5 4 0 7581 * +-----------------------+--------+-------------+------+------+ 7582 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7583 * +-----------------------+--------+-------------+------+------+ 7584 */ 7585 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7586 int imm5) 7587 { 7588 int size = ctz32(imm5); 7589 int index; 7590 TCGv_i64 tmp; 7591 7592 if (size > 3) { 7593 unallocated_encoding(s); 7594 return; 7595 } 7596 7597 if (!fp_access_check(s)) { 7598 return; 7599 } 7600 7601 index = imm5 >> (size + 1); 7602 7603 /* This instruction just extracts the specified element and 7604 * zero-extends it into the bottom of the destination register. 7605 */ 7606 tmp = tcg_temp_new_i64(); 7607 read_vec_element(s, tmp, rn, index, size); 7608 write_fp_dreg(s, rd, tmp); 7609 } 7610 7611 /* DUP (General) 7612 * 7613 * 31 30 29 21 20 16 15 10 9 5 4 0 7614 * +---+---+-------------------+--------+-------------+------+------+ 7615 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7616 * +---+---+-------------------+--------+-------------+------+------+ 7617 * 7618 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7619 */ 7620 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7621 int imm5) 7622 { 7623 int size = ctz32(imm5); 7624 uint32_t dofs, oprsz, maxsz; 7625 7626 if (size > 3 || ((size == 3) && !is_q)) { 7627 unallocated_encoding(s); 7628 return; 7629 } 7630 7631 if (!fp_access_check(s)) { 7632 return; 7633 } 7634 7635 dofs = vec_full_reg_offset(s, rd); 7636 oprsz = is_q ? 16 : 8; 7637 maxsz = vec_full_reg_size(s); 7638 7639 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7640 } 7641 7642 /* INS (Element) 7643 * 7644 * 31 21 20 16 15 14 11 10 9 5 4 0 7645 * +-----------------------+--------+------------+---+------+------+ 7646 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7647 * +-----------------------+--------+------------+---+------+------+ 7648 * 7649 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7650 * index: encoded in imm5<4:size+1> 7651 */ 7652 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7653 int imm4, int imm5) 7654 { 7655 int size = ctz32(imm5); 7656 int src_index, dst_index; 7657 TCGv_i64 tmp; 7658 7659 if (size > 3) { 7660 unallocated_encoding(s); 7661 return; 7662 } 7663 7664 if (!fp_access_check(s)) { 7665 return; 7666 } 7667 7668 dst_index = extract32(imm5, 1+size, 5); 7669 src_index = extract32(imm4, size, 4); 7670 7671 tmp = tcg_temp_new_i64(); 7672 7673 read_vec_element(s, tmp, rn, src_index, size); 7674 write_vec_element(s, tmp, rd, dst_index, size); 7675 7676 /* INS is considered a 128-bit write for SVE. */ 7677 clear_vec_high(s, true, rd); 7678 } 7679 7680 7681 /* INS (General) 7682 * 7683 * 31 21 20 16 15 10 9 5 4 0 7684 * +-----------------------+--------+-------------+------+------+ 7685 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7686 * +-----------------------+--------+-------------+------+------+ 7687 * 7688 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7689 * index: encoded in imm5<4:size+1> 7690 */ 7691 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7692 { 7693 int size = ctz32(imm5); 7694 int idx; 7695 7696 if (size > 3) { 7697 unallocated_encoding(s); 7698 return; 7699 } 7700 7701 if (!fp_access_check(s)) { 7702 return; 7703 } 7704 7705 idx = extract32(imm5, 1 + size, 4 - size); 7706 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7707 7708 /* INS is considered a 128-bit write for SVE. */ 7709 clear_vec_high(s, true, rd); 7710 } 7711 7712 /* 7713 * UMOV (General) 7714 * SMOV (General) 7715 * 7716 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7717 * +---+---+-------------------+--------+-------------+------+------+ 7718 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7719 * +---+---+-------------------+--------+-------------+------+------+ 7720 * 7721 * U: unsigned when set 7722 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7723 */ 7724 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7725 int rn, int rd, int imm5) 7726 { 7727 int size = ctz32(imm5); 7728 int element; 7729 TCGv_i64 tcg_rd; 7730 7731 /* Check for UnallocatedEncodings */ 7732 if (is_signed) { 7733 if (size > 2 || (size == 2 && !is_q)) { 7734 unallocated_encoding(s); 7735 return; 7736 } 7737 } else { 7738 if (size > 3 7739 || (size < 3 && is_q) 7740 || (size == 3 && !is_q)) { 7741 unallocated_encoding(s); 7742 return; 7743 } 7744 } 7745 7746 if (!fp_access_check(s)) { 7747 return; 7748 } 7749 7750 element = extract32(imm5, 1+size, 4); 7751 7752 tcg_rd = cpu_reg(s, rd); 7753 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7754 if (is_signed && !is_q) { 7755 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7756 } 7757 } 7758 7759 /* AdvSIMD copy 7760 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7761 * +---+---+----+-----------------+------+---+------+---+------+------+ 7762 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7763 * +---+---+----+-----------------+------+---+------+---+------+------+ 7764 */ 7765 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7766 { 7767 int rd = extract32(insn, 0, 5); 7768 int rn = extract32(insn, 5, 5); 7769 int imm4 = extract32(insn, 11, 4); 7770 int op = extract32(insn, 29, 1); 7771 int is_q = extract32(insn, 30, 1); 7772 int imm5 = extract32(insn, 16, 5); 7773 7774 if (op) { 7775 if (is_q) { 7776 /* INS (element) */ 7777 handle_simd_inse(s, rd, rn, imm4, imm5); 7778 } else { 7779 unallocated_encoding(s); 7780 } 7781 } else { 7782 switch (imm4) { 7783 case 0: 7784 /* DUP (element - vector) */ 7785 handle_simd_dupe(s, is_q, rd, rn, imm5); 7786 break; 7787 case 1: 7788 /* DUP (general) */ 7789 handle_simd_dupg(s, is_q, rd, rn, imm5); 7790 break; 7791 case 3: 7792 if (is_q) { 7793 /* INS (general) */ 7794 handle_simd_insg(s, rd, rn, imm5); 7795 } else { 7796 unallocated_encoding(s); 7797 } 7798 break; 7799 case 5: 7800 case 7: 7801 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7802 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7803 break; 7804 default: 7805 unallocated_encoding(s); 7806 break; 7807 } 7808 } 7809 } 7810 7811 /* AdvSIMD modified immediate 7812 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7813 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7814 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7815 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7816 * 7817 * There are a number of operations that can be carried out here: 7818 * MOVI - move (shifted) imm into register 7819 * MVNI - move inverted (shifted) imm into register 7820 * ORR - bitwise OR of (shifted) imm with register 7821 * BIC - bitwise clear of (shifted) imm with register 7822 * With ARMv8.2 we also have: 7823 * FMOV half-precision 7824 */ 7825 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7826 { 7827 int rd = extract32(insn, 0, 5); 7828 int cmode = extract32(insn, 12, 4); 7829 int o2 = extract32(insn, 11, 1); 7830 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7831 bool is_neg = extract32(insn, 29, 1); 7832 bool is_q = extract32(insn, 30, 1); 7833 uint64_t imm = 0; 7834 7835 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7836 /* Check for FMOV (vector, immediate) - half-precision */ 7837 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7838 unallocated_encoding(s); 7839 return; 7840 } 7841 } 7842 7843 if (!fp_access_check(s)) { 7844 return; 7845 } 7846 7847 if (cmode == 15 && o2 && !is_neg) { 7848 /* FMOV (vector, immediate) - half-precision */ 7849 imm = vfp_expand_imm(MO_16, abcdefgh); 7850 /* now duplicate across the lanes */ 7851 imm = dup_const(MO_16, imm); 7852 } else { 7853 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7854 } 7855 7856 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7857 /* MOVI or MVNI, with MVNI negation handled above. */ 7858 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7859 vec_full_reg_size(s), imm); 7860 } else { 7861 /* ORR or BIC, with BIC negation to AND handled above. */ 7862 if (is_neg) { 7863 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7864 } else { 7865 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7866 } 7867 } 7868 } 7869 7870 /* AdvSIMD scalar copy 7871 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7872 * +-----+----+-----------------+------+---+------+---+------+------+ 7873 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7874 * +-----+----+-----------------+------+---+------+---+------+------+ 7875 */ 7876 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7877 { 7878 int rd = extract32(insn, 0, 5); 7879 int rn = extract32(insn, 5, 5); 7880 int imm4 = extract32(insn, 11, 4); 7881 int imm5 = extract32(insn, 16, 5); 7882 int op = extract32(insn, 29, 1); 7883 7884 if (op != 0 || imm4 != 0) { 7885 unallocated_encoding(s); 7886 return; 7887 } 7888 7889 /* DUP (element, scalar) */ 7890 handle_simd_dupes(s, rd, rn, imm5); 7891 } 7892 7893 /* AdvSIMD scalar pairwise 7894 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7895 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7896 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7897 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7898 */ 7899 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7900 { 7901 int u = extract32(insn, 29, 1); 7902 int size = extract32(insn, 22, 2); 7903 int opcode = extract32(insn, 12, 5); 7904 int rn = extract32(insn, 5, 5); 7905 int rd = extract32(insn, 0, 5); 7906 TCGv_ptr fpst; 7907 7908 /* For some ops (the FP ones), size[1] is part of the encoding. 7909 * For ADDP strictly it is not but size[1] is always 1 for valid 7910 * encodings. 7911 */ 7912 opcode |= (extract32(size, 1, 1) << 5); 7913 7914 switch (opcode) { 7915 case 0x3b: /* ADDP */ 7916 if (u || size != 3) { 7917 unallocated_encoding(s); 7918 return; 7919 } 7920 if (!fp_access_check(s)) { 7921 return; 7922 } 7923 7924 fpst = NULL; 7925 break; 7926 case 0xc: /* FMAXNMP */ 7927 case 0xd: /* FADDP */ 7928 case 0xf: /* FMAXP */ 7929 case 0x2c: /* FMINNMP */ 7930 case 0x2f: /* FMINP */ 7931 /* FP op, size[0] is 32 or 64 bit*/ 7932 if (!u) { 7933 if (!dc_isar_feature(aa64_fp16, s)) { 7934 unallocated_encoding(s); 7935 return; 7936 } else { 7937 size = MO_16; 7938 } 7939 } else { 7940 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7941 } 7942 7943 if (!fp_access_check(s)) { 7944 return; 7945 } 7946 7947 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7948 break; 7949 default: 7950 unallocated_encoding(s); 7951 return; 7952 } 7953 7954 if (size == MO_64) { 7955 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7956 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7957 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7958 7959 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7960 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7961 7962 switch (opcode) { 7963 case 0x3b: /* ADDP */ 7964 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7965 break; 7966 case 0xc: /* FMAXNMP */ 7967 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7968 break; 7969 case 0xd: /* FADDP */ 7970 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7971 break; 7972 case 0xf: /* FMAXP */ 7973 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7974 break; 7975 case 0x2c: /* FMINNMP */ 7976 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7977 break; 7978 case 0x2f: /* FMINP */ 7979 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7980 break; 7981 default: 7982 g_assert_not_reached(); 7983 } 7984 7985 write_fp_dreg(s, rd, tcg_res); 7986 } else { 7987 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7988 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7989 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7990 7991 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7992 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7993 7994 if (size == MO_16) { 7995 switch (opcode) { 7996 case 0xc: /* FMAXNMP */ 7997 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7998 break; 7999 case 0xd: /* FADDP */ 8000 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8001 break; 8002 case 0xf: /* FMAXP */ 8003 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8004 break; 8005 case 0x2c: /* FMINNMP */ 8006 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8007 break; 8008 case 0x2f: /* FMINP */ 8009 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8010 break; 8011 default: 8012 g_assert_not_reached(); 8013 } 8014 } else { 8015 switch (opcode) { 8016 case 0xc: /* FMAXNMP */ 8017 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8018 break; 8019 case 0xd: /* FADDP */ 8020 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 case 0xf: /* FMAXP */ 8023 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8024 break; 8025 case 0x2c: /* FMINNMP */ 8026 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8027 break; 8028 case 0x2f: /* FMINP */ 8029 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8030 break; 8031 default: 8032 g_assert_not_reached(); 8033 } 8034 } 8035 8036 write_fp_sreg(s, rd, tcg_res); 8037 } 8038 } 8039 8040 /* 8041 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8042 * 8043 * This code is handles the common shifting code and is used by both 8044 * the vector and scalar code. 8045 */ 8046 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8047 TCGv_i64 tcg_rnd, bool accumulate, 8048 bool is_u, int size, int shift) 8049 { 8050 bool extended_result = false; 8051 bool round = tcg_rnd != NULL; 8052 int ext_lshift = 0; 8053 TCGv_i64 tcg_src_hi; 8054 8055 if (round && size == 3) { 8056 extended_result = true; 8057 ext_lshift = 64 - shift; 8058 tcg_src_hi = tcg_temp_new_i64(); 8059 } else if (shift == 64) { 8060 if (!accumulate && is_u) { 8061 /* result is zero */ 8062 tcg_gen_movi_i64(tcg_res, 0); 8063 return; 8064 } 8065 } 8066 8067 /* Deal with the rounding step */ 8068 if (round) { 8069 if (extended_result) { 8070 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8071 if (!is_u) { 8072 /* take care of sign extending tcg_res */ 8073 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8074 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8075 tcg_src, tcg_src_hi, 8076 tcg_rnd, tcg_zero); 8077 } else { 8078 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8079 tcg_src, tcg_zero, 8080 tcg_rnd, tcg_zero); 8081 } 8082 } else { 8083 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8084 } 8085 } 8086 8087 /* Now do the shift right */ 8088 if (round && extended_result) { 8089 /* extended case, >64 bit precision required */ 8090 if (ext_lshift == 0) { 8091 /* special case, only high bits matter */ 8092 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8093 } else { 8094 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8095 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8096 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8097 } 8098 } else { 8099 if (is_u) { 8100 if (shift == 64) { 8101 /* essentially shifting in 64 zeros */ 8102 tcg_gen_movi_i64(tcg_src, 0); 8103 } else { 8104 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8105 } 8106 } else { 8107 if (shift == 64) { 8108 /* effectively extending the sign-bit */ 8109 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8110 } else { 8111 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8112 } 8113 } 8114 } 8115 8116 if (accumulate) { 8117 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8118 } else { 8119 tcg_gen_mov_i64(tcg_res, tcg_src); 8120 } 8121 } 8122 8123 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8124 static void handle_scalar_simd_shri(DisasContext *s, 8125 bool is_u, int immh, int immb, 8126 int opcode, int rn, int rd) 8127 { 8128 const int size = 3; 8129 int immhb = immh << 3 | immb; 8130 int shift = 2 * (8 << size) - immhb; 8131 bool accumulate = false; 8132 bool round = false; 8133 bool insert = false; 8134 TCGv_i64 tcg_rn; 8135 TCGv_i64 tcg_rd; 8136 TCGv_i64 tcg_round; 8137 8138 if (!extract32(immh, 3, 1)) { 8139 unallocated_encoding(s); 8140 return; 8141 } 8142 8143 if (!fp_access_check(s)) { 8144 return; 8145 } 8146 8147 switch (opcode) { 8148 case 0x02: /* SSRA / USRA (accumulate) */ 8149 accumulate = true; 8150 break; 8151 case 0x04: /* SRSHR / URSHR (rounding) */ 8152 round = true; 8153 break; 8154 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8155 accumulate = round = true; 8156 break; 8157 case 0x08: /* SRI */ 8158 insert = true; 8159 break; 8160 } 8161 8162 if (round) { 8163 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8164 } else { 8165 tcg_round = NULL; 8166 } 8167 8168 tcg_rn = read_fp_dreg(s, rn); 8169 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8170 8171 if (insert) { 8172 /* shift count same as element size is valid but does nothing; 8173 * special case to avoid potential shift by 64. 8174 */ 8175 int esize = 8 << size; 8176 if (shift != esize) { 8177 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8178 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8179 } 8180 } else { 8181 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8182 accumulate, is_u, size, shift); 8183 } 8184 8185 write_fp_dreg(s, rd, tcg_rd); 8186 } 8187 8188 /* SHL/SLI - Scalar shift left */ 8189 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8190 int immh, int immb, int opcode, 8191 int rn, int rd) 8192 { 8193 int size = 32 - clz32(immh) - 1; 8194 int immhb = immh << 3 | immb; 8195 int shift = immhb - (8 << size); 8196 TCGv_i64 tcg_rn; 8197 TCGv_i64 tcg_rd; 8198 8199 if (!extract32(immh, 3, 1)) { 8200 unallocated_encoding(s); 8201 return; 8202 } 8203 8204 if (!fp_access_check(s)) { 8205 return; 8206 } 8207 8208 tcg_rn = read_fp_dreg(s, rn); 8209 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8210 8211 if (insert) { 8212 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8213 } else { 8214 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8215 } 8216 8217 write_fp_dreg(s, rd, tcg_rd); 8218 } 8219 8220 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8221 * (signed/unsigned) narrowing */ 8222 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8223 bool is_u_shift, bool is_u_narrow, 8224 int immh, int immb, int opcode, 8225 int rn, int rd) 8226 { 8227 int immhb = immh << 3 | immb; 8228 int size = 32 - clz32(immh) - 1; 8229 int esize = 8 << size; 8230 int shift = (2 * esize) - immhb; 8231 int elements = is_scalar ? 1 : (64 / esize); 8232 bool round = extract32(opcode, 0, 1); 8233 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8234 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8235 TCGv_i32 tcg_rd_narrowed; 8236 TCGv_i64 tcg_final; 8237 8238 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8239 { gen_helper_neon_narrow_sat_s8, 8240 gen_helper_neon_unarrow_sat8 }, 8241 { gen_helper_neon_narrow_sat_s16, 8242 gen_helper_neon_unarrow_sat16 }, 8243 { gen_helper_neon_narrow_sat_s32, 8244 gen_helper_neon_unarrow_sat32 }, 8245 { NULL, NULL }, 8246 }; 8247 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8248 gen_helper_neon_narrow_sat_u8, 8249 gen_helper_neon_narrow_sat_u16, 8250 gen_helper_neon_narrow_sat_u32, 8251 NULL 8252 }; 8253 NeonGenNarrowEnvFn *narrowfn; 8254 8255 int i; 8256 8257 assert(size < 4); 8258 8259 if (extract32(immh, 3, 1)) { 8260 unallocated_encoding(s); 8261 return; 8262 } 8263 8264 if (!fp_access_check(s)) { 8265 return; 8266 } 8267 8268 if (is_u_shift) { 8269 narrowfn = unsigned_narrow_fns[size]; 8270 } else { 8271 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8272 } 8273 8274 tcg_rn = tcg_temp_new_i64(); 8275 tcg_rd = tcg_temp_new_i64(); 8276 tcg_rd_narrowed = tcg_temp_new_i32(); 8277 tcg_final = tcg_temp_new_i64(); 8278 8279 if (round) { 8280 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8281 } else { 8282 tcg_round = NULL; 8283 } 8284 8285 for (i = 0; i < elements; i++) { 8286 read_vec_element(s, tcg_rn, rn, i, ldop); 8287 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8288 false, is_u_shift, size+1, shift); 8289 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8290 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8291 if (i == 0) { 8292 tcg_gen_mov_i64(tcg_final, tcg_rd); 8293 } else { 8294 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8295 } 8296 } 8297 8298 if (!is_q) { 8299 write_vec_element(s, tcg_final, rd, 0, MO_64); 8300 } else { 8301 write_vec_element(s, tcg_final, rd, 1, MO_64); 8302 } 8303 clear_vec_high(s, is_q, rd); 8304 } 8305 8306 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8307 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8308 bool src_unsigned, bool dst_unsigned, 8309 int immh, int immb, int rn, int rd) 8310 { 8311 int immhb = immh << 3 | immb; 8312 int size = 32 - clz32(immh) - 1; 8313 int shift = immhb - (8 << size); 8314 int pass; 8315 8316 assert(immh != 0); 8317 assert(!(scalar && is_q)); 8318 8319 if (!scalar) { 8320 if (!is_q && extract32(immh, 3, 1)) { 8321 unallocated_encoding(s); 8322 return; 8323 } 8324 8325 /* Since we use the variable-shift helpers we must 8326 * replicate the shift count into each element of 8327 * the tcg_shift value. 8328 */ 8329 switch (size) { 8330 case 0: 8331 shift |= shift << 8; 8332 /* fall through */ 8333 case 1: 8334 shift |= shift << 16; 8335 break; 8336 case 2: 8337 case 3: 8338 break; 8339 default: 8340 g_assert_not_reached(); 8341 } 8342 } 8343 8344 if (!fp_access_check(s)) { 8345 return; 8346 } 8347 8348 if (size == 3) { 8349 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8350 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8351 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8352 { NULL, gen_helper_neon_qshl_u64 }, 8353 }; 8354 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8355 int maxpass = is_q ? 2 : 1; 8356 8357 for (pass = 0; pass < maxpass; pass++) { 8358 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8359 8360 read_vec_element(s, tcg_op, rn, pass, MO_64); 8361 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8362 write_vec_element(s, tcg_op, rd, pass, MO_64); 8363 } 8364 clear_vec_high(s, is_q, rd); 8365 } else { 8366 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8367 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8368 { 8369 { gen_helper_neon_qshl_s8, 8370 gen_helper_neon_qshl_s16, 8371 gen_helper_neon_qshl_s32 }, 8372 { gen_helper_neon_qshlu_s8, 8373 gen_helper_neon_qshlu_s16, 8374 gen_helper_neon_qshlu_s32 } 8375 }, { 8376 { NULL, NULL, NULL }, 8377 { gen_helper_neon_qshl_u8, 8378 gen_helper_neon_qshl_u16, 8379 gen_helper_neon_qshl_u32 } 8380 } 8381 }; 8382 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8383 MemOp memop = scalar ? size : MO_32; 8384 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8385 8386 for (pass = 0; pass < maxpass; pass++) { 8387 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8388 8389 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8390 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8391 if (scalar) { 8392 switch (size) { 8393 case 0: 8394 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8395 break; 8396 case 1: 8397 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8398 break; 8399 case 2: 8400 break; 8401 default: 8402 g_assert_not_reached(); 8403 } 8404 write_fp_sreg(s, rd, tcg_op); 8405 } else { 8406 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8407 } 8408 } 8409 8410 if (!scalar) { 8411 clear_vec_high(s, is_q, rd); 8412 } 8413 } 8414 } 8415 8416 /* Common vector code for handling integer to FP conversion */ 8417 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8418 int elements, int is_signed, 8419 int fracbits, int size) 8420 { 8421 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8422 TCGv_i32 tcg_shift = NULL; 8423 8424 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8425 int pass; 8426 8427 if (fracbits || size == MO_64) { 8428 tcg_shift = tcg_constant_i32(fracbits); 8429 } 8430 8431 if (size == MO_64) { 8432 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8433 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8434 8435 for (pass = 0; pass < elements; pass++) { 8436 read_vec_element(s, tcg_int64, rn, pass, mop); 8437 8438 if (is_signed) { 8439 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8440 tcg_shift, tcg_fpst); 8441 } else { 8442 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8443 tcg_shift, tcg_fpst); 8444 } 8445 if (elements == 1) { 8446 write_fp_dreg(s, rd, tcg_double); 8447 } else { 8448 write_vec_element(s, tcg_double, rd, pass, MO_64); 8449 } 8450 } 8451 } else { 8452 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8453 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8454 8455 for (pass = 0; pass < elements; pass++) { 8456 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8457 8458 switch (size) { 8459 case MO_32: 8460 if (fracbits) { 8461 if (is_signed) { 8462 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8463 tcg_shift, tcg_fpst); 8464 } else { 8465 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8466 tcg_shift, tcg_fpst); 8467 } 8468 } else { 8469 if (is_signed) { 8470 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8471 } else { 8472 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8473 } 8474 } 8475 break; 8476 case MO_16: 8477 if (fracbits) { 8478 if (is_signed) { 8479 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8480 tcg_shift, tcg_fpst); 8481 } else { 8482 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8483 tcg_shift, tcg_fpst); 8484 } 8485 } else { 8486 if (is_signed) { 8487 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8488 } else { 8489 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8490 } 8491 } 8492 break; 8493 default: 8494 g_assert_not_reached(); 8495 } 8496 8497 if (elements == 1) { 8498 write_fp_sreg(s, rd, tcg_float); 8499 } else { 8500 write_vec_element_i32(s, tcg_float, rd, pass, size); 8501 } 8502 } 8503 } 8504 8505 clear_vec_high(s, elements << size == 16, rd); 8506 } 8507 8508 /* UCVTF/SCVTF - Integer to FP conversion */ 8509 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8510 bool is_q, bool is_u, 8511 int immh, int immb, int opcode, 8512 int rn, int rd) 8513 { 8514 int size, elements, fracbits; 8515 int immhb = immh << 3 | immb; 8516 8517 if (immh & 8) { 8518 size = MO_64; 8519 if (!is_scalar && !is_q) { 8520 unallocated_encoding(s); 8521 return; 8522 } 8523 } else if (immh & 4) { 8524 size = MO_32; 8525 } else if (immh & 2) { 8526 size = MO_16; 8527 if (!dc_isar_feature(aa64_fp16, s)) { 8528 unallocated_encoding(s); 8529 return; 8530 } 8531 } else { 8532 /* immh == 0 would be a failure of the decode logic */ 8533 g_assert(immh == 1); 8534 unallocated_encoding(s); 8535 return; 8536 } 8537 8538 if (is_scalar) { 8539 elements = 1; 8540 } else { 8541 elements = (8 << is_q) >> size; 8542 } 8543 fracbits = (16 << size) - immhb; 8544 8545 if (!fp_access_check(s)) { 8546 return; 8547 } 8548 8549 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8550 } 8551 8552 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8553 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8554 bool is_q, bool is_u, 8555 int immh, int immb, int rn, int rd) 8556 { 8557 int immhb = immh << 3 | immb; 8558 int pass, size, fracbits; 8559 TCGv_ptr tcg_fpstatus; 8560 TCGv_i32 tcg_rmode, tcg_shift; 8561 8562 if (immh & 0x8) { 8563 size = MO_64; 8564 if (!is_scalar && !is_q) { 8565 unallocated_encoding(s); 8566 return; 8567 } 8568 } else if (immh & 0x4) { 8569 size = MO_32; 8570 } else if (immh & 0x2) { 8571 size = MO_16; 8572 if (!dc_isar_feature(aa64_fp16, s)) { 8573 unallocated_encoding(s); 8574 return; 8575 } 8576 } else { 8577 /* Should have split out AdvSIMD modified immediate earlier. */ 8578 assert(immh == 1); 8579 unallocated_encoding(s); 8580 return; 8581 } 8582 8583 if (!fp_access_check(s)) { 8584 return; 8585 } 8586 8587 assert(!(is_scalar && is_q)); 8588 8589 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8590 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8591 fracbits = (16 << size) - immhb; 8592 tcg_shift = tcg_constant_i32(fracbits); 8593 8594 if (size == MO_64) { 8595 int maxpass = is_scalar ? 1 : 2; 8596 8597 for (pass = 0; pass < maxpass; pass++) { 8598 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8599 8600 read_vec_element(s, tcg_op, rn, pass, MO_64); 8601 if (is_u) { 8602 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8603 } else { 8604 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8605 } 8606 write_vec_element(s, tcg_op, rd, pass, MO_64); 8607 } 8608 clear_vec_high(s, is_q, rd); 8609 } else { 8610 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8611 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8612 8613 switch (size) { 8614 case MO_16: 8615 if (is_u) { 8616 fn = gen_helper_vfp_touhh; 8617 } else { 8618 fn = gen_helper_vfp_toshh; 8619 } 8620 break; 8621 case MO_32: 8622 if (is_u) { 8623 fn = gen_helper_vfp_touls; 8624 } else { 8625 fn = gen_helper_vfp_tosls; 8626 } 8627 break; 8628 default: 8629 g_assert_not_reached(); 8630 } 8631 8632 for (pass = 0; pass < maxpass; pass++) { 8633 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8634 8635 read_vec_element_i32(s, tcg_op, rn, pass, size); 8636 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8637 if (is_scalar) { 8638 write_fp_sreg(s, rd, tcg_op); 8639 } else { 8640 write_vec_element_i32(s, tcg_op, rd, pass, size); 8641 } 8642 } 8643 if (!is_scalar) { 8644 clear_vec_high(s, is_q, rd); 8645 } 8646 } 8647 8648 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8649 } 8650 8651 /* AdvSIMD scalar shift by immediate 8652 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8653 * +-----+---+-------------+------+------+--------+---+------+------+ 8654 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8655 * +-----+---+-------------+------+------+--------+---+------+------+ 8656 * 8657 * This is the scalar version so it works on a fixed sized registers 8658 */ 8659 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8660 { 8661 int rd = extract32(insn, 0, 5); 8662 int rn = extract32(insn, 5, 5); 8663 int opcode = extract32(insn, 11, 5); 8664 int immb = extract32(insn, 16, 3); 8665 int immh = extract32(insn, 19, 4); 8666 bool is_u = extract32(insn, 29, 1); 8667 8668 if (immh == 0) { 8669 unallocated_encoding(s); 8670 return; 8671 } 8672 8673 switch (opcode) { 8674 case 0x08: /* SRI */ 8675 if (!is_u) { 8676 unallocated_encoding(s); 8677 return; 8678 } 8679 /* fall through */ 8680 case 0x00: /* SSHR / USHR */ 8681 case 0x02: /* SSRA / USRA */ 8682 case 0x04: /* SRSHR / URSHR */ 8683 case 0x06: /* SRSRA / URSRA */ 8684 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8685 break; 8686 case 0x0a: /* SHL / SLI */ 8687 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8688 break; 8689 case 0x1c: /* SCVTF, UCVTF */ 8690 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8691 opcode, rn, rd); 8692 break; 8693 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8694 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8695 if (!is_u) { 8696 unallocated_encoding(s); 8697 return; 8698 } 8699 handle_vec_simd_sqshrn(s, true, false, false, true, 8700 immh, immb, opcode, rn, rd); 8701 break; 8702 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8703 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8704 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8705 immh, immb, opcode, rn, rd); 8706 break; 8707 case 0xc: /* SQSHLU */ 8708 if (!is_u) { 8709 unallocated_encoding(s); 8710 return; 8711 } 8712 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8713 break; 8714 case 0xe: /* SQSHL, UQSHL */ 8715 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8716 break; 8717 case 0x1f: /* FCVTZS, FCVTZU */ 8718 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8719 break; 8720 default: 8721 unallocated_encoding(s); 8722 break; 8723 } 8724 } 8725 8726 /* AdvSIMD scalar three different 8727 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8728 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8729 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8730 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8731 */ 8732 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8733 { 8734 bool is_u = extract32(insn, 29, 1); 8735 int size = extract32(insn, 22, 2); 8736 int opcode = extract32(insn, 12, 4); 8737 int rm = extract32(insn, 16, 5); 8738 int rn = extract32(insn, 5, 5); 8739 int rd = extract32(insn, 0, 5); 8740 8741 if (is_u) { 8742 unallocated_encoding(s); 8743 return; 8744 } 8745 8746 switch (opcode) { 8747 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8748 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8749 case 0xd: /* SQDMULL, SQDMULL2 */ 8750 if (size == 0 || size == 3) { 8751 unallocated_encoding(s); 8752 return; 8753 } 8754 break; 8755 default: 8756 unallocated_encoding(s); 8757 return; 8758 } 8759 8760 if (!fp_access_check(s)) { 8761 return; 8762 } 8763 8764 if (size == 2) { 8765 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8766 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8767 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8768 8769 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8770 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8771 8772 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8773 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8774 8775 switch (opcode) { 8776 case 0xd: /* SQDMULL, SQDMULL2 */ 8777 break; 8778 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8779 tcg_gen_neg_i64(tcg_res, tcg_res); 8780 /* fall through */ 8781 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8782 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8783 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8784 tcg_res, tcg_op1); 8785 break; 8786 default: 8787 g_assert_not_reached(); 8788 } 8789 8790 write_fp_dreg(s, rd, tcg_res); 8791 } else { 8792 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8793 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8794 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8795 8796 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8797 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8798 8799 switch (opcode) { 8800 case 0xd: /* SQDMULL, SQDMULL2 */ 8801 break; 8802 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8803 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8804 /* fall through */ 8805 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8806 { 8807 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8808 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8809 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8810 tcg_res, tcg_op3); 8811 break; 8812 } 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 8817 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8818 write_fp_dreg(s, rd, tcg_res); 8819 } 8820 } 8821 8822 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8823 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8824 { 8825 /* Handle 64x64->64 opcodes which are shared between the scalar 8826 * and vector 3-same groups. We cover every opcode where size == 3 8827 * is valid in either the three-reg-same (integer, not pairwise) 8828 * or scalar-three-reg-same groups. 8829 */ 8830 TCGCond cond; 8831 8832 switch (opcode) { 8833 case 0x1: /* SQADD */ 8834 if (u) { 8835 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8836 } else { 8837 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8838 } 8839 break; 8840 case 0x5: /* SQSUB */ 8841 if (u) { 8842 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8843 } else { 8844 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8845 } 8846 break; 8847 case 0x6: /* CMGT, CMHI */ 8848 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8849 * We implement this using setcond (test) and then negating. 8850 */ 8851 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8852 do_cmop: 8853 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8854 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8855 break; 8856 case 0x7: /* CMGE, CMHS */ 8857 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8858 goto do_cmop; 8859 case 0x11: /* CMTST, CMEQ */ 8860 if (u) { 8861 cond = TCG_COND_EQ; 8862 goto do_cmop; 8863 } 8864 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8865 break; 8866 case 0x8: /* SSHL, USHL */ 8867 if (u) { 8868 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8869 } else { 8870 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8871 } 8872 break; 8873 case 0x9: /* SQSHL, UQSHL */ 8874 if (u) { 8875 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8876 } else { 8877 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8878 } 8879 break; 8880 case 0xa: /* SRSHL, URSHL */ 8881 if (u) { 8882 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8883 } else { 8884 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8885 } 8886 break; 8887 case 0xb: /* SQRSHL, UQRSHL */ 8888 if (u) { 8889 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8890 } else { 8891 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8892 } 8893 break; 8894 case 0x10: /* ADD, SUB */ 8895 if (u) { 8896 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8897 } else { 8898 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8899 } 8900 break; 8901 default: 8902 g_assert_not_reached(); 8903 } 8904 } 8905 8906 /* Handle the 3-same-operands float operations; shared by the scalar 8907 * and vector encodings. The caller must filter out any encodings 8908 * not allocated for the encoding it is dealing with. 8909 */ 8910 static void handle_3same_float(DisasContext *s, int size, int elements, 8911 int fpopcode, int rd, int rn, int rm) 8912 { 8913 int pass; 8914 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8915 8916 for (pass = 0; pass < elements; pass++) { 8917 if (size) { 8918 /* Double */ 8919 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8920 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8921 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8922 8923 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8924 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8925 8926 switch (fpopcode) { 8927 case 0x39: /* FMLS */ 8928 /* As usual for ARM, separate negation for fused multiply-add */ 8929 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8930 /* fall through */ 8931 case 0x19: /* FMLA */ 8932 read_vec_element(s, tcg_res, rd, pass, MO_64); 8933 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8934 tcg_res, fpst); 8935 break; 8936 case 0x18: /* FMAXNM */ 8937 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8938 break; 8939 case 0x1a: /* FADD */ 8940 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8941 break; 8942 case 0x1b: /* FMULX */ 8943 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8944 break; 8945 case 0x1c: /* FCMEQ */ 8946 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8947 break; 8948 case 0x1e: /* FMAX */ 8949 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8950 break; 8951 case 0x1f: /* FRECPS */ 8952 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8953 break; 8954 case 0x38: /* FMINNM */ 8955 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8956 break; 8957 case 0x3a: /* FSUB */ 8958 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8959 break; 8960 case 0x3e: /* FMIN */ 8961 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8962 break; 8963 case 0x3f: /* FRSQRTS */ 8964 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8965 break; 8966 case 0x5b: /* FMUL */ 8967 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8968 break; 8969 case 0x5c: /* FCMGE */ 8970 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8971 break; 8972 case 0x5d: /* FACGE */ 8973 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8974 break; 8975 case 0x5f: /* FDIV */ 8976 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8977 break; 8978 case 0x7a: /* FABD */ 8979 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8980 gen_helper_vfp_absd(tcg_res, tcg_res); 8981 break; 8982 case 0x7c: /* FCMGT */ 8983 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8984 break; 8985 case 0x7d: /* FACGT */ 8986 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8987 break; 8988 default: 8989 g_assert_not_reached(); 8990 } 8991 8992 write_vec_element(s, tcg_res, rd, pass, MO_64); 8993 } else { 8994 /* Single */ 8995 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8996 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8997 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8998 8999 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9000 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9001 9002 switch (fpopcode) { 9003 case 0x39: /* FMLS */ 9004 /* As usual for ARM, separate negation for fused multiply-add */ 9005 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9006 /* fall through */ 9007 case 0x19: /* FMLA */ 9008 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9009 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9010 tcg_res, fpst); 9011 break; 9012 case 0x1a: /* FADD */ 9013 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9014 break; 9015 case 0x1b: /* FMULX */ 9016 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9017 break; 9018 case 0x1c: /* FCMEQ */ 9019 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9020 break; 9021 case 0x1e: /* FMAX */ 9022 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9023 break; 9024 case 0x1f: /* FRECPS */ 9025 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9026 break; 9027 case 0x18: /* FMAXNM */ 9028 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9029 break; 9030 case 0x38: /* FMINNM */ 9031 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9032 break; 9033 case 0x3a: /* FSUB */ 9034 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9035 break; 9036 case 0x3e: /* FMIN */ 9037 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9038 break; 9039 case 0x3f: /* FRSQRTS */ 9040 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9041 break; 9042 case 0x5b: /* FMUL */ 9043 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9044 break; 9045 case 0x5c: /* FCMGE */ 9046 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9047 break; 9048 case 0x5d: /* FACGE */ 9049 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9050 break; 9051 case 0x5f: /* FDIV */ 9052 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9053 break; 9054 case 0x7a: /* FABD */ 9055 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9056 gen_helper_vfp_abss(tcg_res, tcg_res); 9057 break; 9058 case 0x7c: /* FCMGT */ 9059 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9060 break; 9061 case 0x7d: /* FACGT */ 9062 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9063 break; 9064 default: 9065 g_assert_not_reached(); 9066 } 9067 9068 if (elements == 1) { 9069 /* scalar single so clear high part */ 9070 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9071 9072 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9073 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9074 } else { 9075 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9076 } 9077 } 9078 } 9079 9080 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9081 } 9082 9083 /* AdvSIMD scalar three same 9084 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9085 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9086 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9087 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9088 */ 9089 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9090 { 9091 int rd = extract32(insn, 0, 5); 9092 int rn = extract32(insn, 5, 5); 9093 int opcode = extract32(insn, 11, 5); 9094 int rm = extract32(insn, 16, 5); 9095 int size = extract32(insn, 22, 2); 9096 bool u = extract32(insn, 29, 1); 9097 TCGv_i64 tcg_rd; 9098 9099 if (opcode >= 0x18) { 9100 /* Floating point: U, size[1] and opcode indicate operation */ 9101 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9102 switch (fpopcode) { 9103 case 0x1b: /* FMULX */ 9104 case 0x1f: /* FRECPS */ 9105 case 0x3f: /* FRSQRTS */ 9106 case 0x5d: /* FACGE */ 9107 case 0x7d: /* FACGT */ 9108 case 0x1c: /* FCMEQ */ 9109 case 0x5c: /* FCMGE */ 9110 case 0x7c: /* FCMGT */ 9111 case 0x7a: /* FABD */ 9112 break; 9113 default: 9114 unallocated_encoding(s); 9115 return; 9116 } 9117 9118 if (!fp_access_check(s)) { 9119 return; 9120 } 9121 9122 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9123 return; 9124 } 9125 9126 switch (opcode) { 9127 case 0x1: /* SQADD, UQADD */ 9128 case 0x5: /* SQSUB, UQSUB */ 9129 case 0x9: /* SQSHL, UQSHL */ 9130 case 0xb: /* SQRSHL, UQRSHL */ 9131 break; 9132 case 0x8: /* SSHL, USHL */ 9133 case 0xa: /* SRSHL, URSHL */ 9134 case 0x6: /* CMGT, CMHI */ 9135 case 0x7: /* CMGE, CMHS */ 9136 case 0x11: /* CMTST, CMEQ */ 9137 case 0x10: /* ADD, SUB (vector) */ 9138 if (size != 3) { 9139 unallocated_encoding(s); 9140 return; 9141 } 9142 break; 9143 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9144 if (size != 1 && size != 2) { 9145 unallocated_encoding(s); 9146 return; 9147 } 9148 break; 9149 default: 9150 unallocated_encoding(s); 9151 return; 9152 } 9153 9154 if (!fp_access_check(s)) { 9155 return; 9156 } 9157 9158 tcg_rd = tcg_temp_new_i64(); 9159 9160 if (size == 3) { 9161 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9162 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9163 9164 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9165 } else { 9166 /* Do a single operation on the lowest element in the vector. 9167 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9168 * no side effects for all these operations. 9169 * OPTME: special-purpose helpers would avoid doing some 9170 * unnecessary work in the helper for the 8 and 16 bit cases. 9171 */ 9172 NeonGenTwoOpEnvFn *genenvfn; 9173 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9174 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9175 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9176 9177 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9178 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9179 9180 switch (opcode) { 9181 case 0x1: /* SQADD, UQADD */ 9182 { 9183 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9184 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9185 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9186 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9187 }; 9188 genenvfn = fns[size][u]; 9189 break; 9190 } 9191 case 0x5: /* SQSUB, UQSUB */ 9192 { 9193 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9194 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9195 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9196 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9197 }; 9198 genenvfn = fns[size][u]; 9199 break; 9200 } 9201 case 0x9: /* SQSHL, UQSHL */ 9202 { 9203 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9204 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9205 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9206 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9207 }; 9208 genenvfn = fns[size][u]; 9209 break; 9210 } 9211 case 0xb: /* SQRSHL, UQRSHL */ 9212 { 9213 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9214 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9215 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9216 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9217 }; 9218 genenvfn = fns[size][u]; 9219 break; 9220 } 9221 case 0x16: /* SQDMULH, SQRDMULH */ 9222 { 9223 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9224 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9225 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9226 }; 9227 assert(size == 1 || size == 2); 9228 genenvfn = fns[size - 1][u]; 9229 break; 9230 } 9231 default: 9232 g_assert_not_reached(); 9233 } 9234 9235 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9236 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9237 } 9238 9239 write_fp_dreg(s, rd, tcg_rd); 9240 } 9241 9242 /* AdvSIMD scalar three same FP16 9243 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9244 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9245 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9246 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9247 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9248 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9249 */ 9250 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9251 uint32_t insn) 9252 { 9253 int rd = extract32(insn, 0, 5); 9254 int rn = extract32(insn, 5, 5); 9255 int opcode = extract32(insn, 11, 3); 9256 int rm = extract32(insn, 16, 5); 9257 bool u = extract32(insn, 29, 1); 9258 bool a = extract32(insn, 23, 1); 9259 int fpopcode = opcode | (a << 3) | (u << 4); 9260 TCGv_ptr fpst; 9261 TCGv_i32 tcg_op1; 9262 TCGv_i32 tcg_op2; 9263 TCGv_i32 tcg_res; 9264 9265 switch (fpopcode) { 9266 case 0x03: /* FMULX */ 9267 case 0x04: /* FCMEQ (reg) */ 9268 case 0x07: /* FRECPS */ 9269 case 0x0f: /* FRSQRTS */ 9270 case 0x14: /* FCMGE (reg) */ 9271 case 0x15: /* FACGE */ 9272 case 0x1a: /* FABD */ 9273 case 0x1c: /* FCMGT (reg) */ 9274 case 0x1d: /* FACGT */ 9275 break; 9276 default: 9277 unallocated_encoding(s); 9278 return; 9279 } 9280 9281 if (!dc_isar_feature(aa64_fp16, s)) { 9282 unallocated_encoding(s); 9283 } 9284 9285 if (!fp_access_check(s)) { 9286 return; 9287 } 9288 9289 fpst = fpstatus_ptr(FPST_FPCR_F16); 9290 9291 tcg_op1 = read_fp_hreg(s, rn); 9292 tcg_op2 = read_fp_hreg(s, rm); 9293 tcg_res = tcg_temp_new_i32(); 9294 9295 switch (fpopcode) { 9296 case 0x03: /* FMULX */ 9297 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9298 break; 9299 case 0x04: /* FCMEQ (reg) */ 9300 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9301 break; 9302 case 0x07: /* FRECPS */ 9303 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9304 break; 9305 case 0x0f: /* FRSQRTS */ 9306 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9307 break; 9308 case 0x14: /* FCMGE (reg) */ 9309 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9310 break; 9311 case 0x15: /* FACGE */ 9312 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9313 break; 9314 case 0x1a: /* FABD */ 9315 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9316 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9317 break; 9318 case 0x1c: /* FCMGT (reg) */ 9319 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9320 break; 9321 case 0x1d: /* FACGT */ 9322 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9323 break; 9324 default: 9325 g_assert_not_reached(); 9326 } 9327 9328 write_fp_sreg(s, rd, tcg_res); 9329 } 9330 9331 /* AdvSIMD scalar three same extra 9332 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9333 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9334 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9335 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9336 */ 9337 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9338 uint32_t insn) 9339 { 9340 int rd = extract32(insn, 0, 5); 9341 int rn = extract32(insn, 5, 5); 9342 int opcode = extract32(insn, 11, 4); 9343 int rm = extract32(insn, 16, 5); 9344 int size = extract32(insn, 22, 2); 9345 bool u = extract32(insn, 29, 1); 9346 TCGv_i32 ele1, ele2, ele3; 9347 TCGv_i64 res; 9348 bool feature; 9349 9350 switch (u * 16 + opcode) { 9351 case 0x10: /* SQRDMLAH (vector) */ 9352 case 0x11: /* SQRDMLSH (vector) */ 9353 if (size != 1 && size != 2) { 9354 unallocated_encoding(s); 9355 return; 9356 } 9357 feature = dc_isar_feature(aa64_rdm, s); 9358 break; 9359 default: 9360 unallocated_encoding(s); 9361 return; 9362 } 9363 if (!feature) { 9364 unallocated_encoding(s); 9365 return; 9366 } 9367 if (!fp_access_check(s)) { 9368 return; 9369 } 9370 9371 /* Do a single operation on the lowest element in the vector. 9372 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9373 * with no side effects for all these operations. 9374 * OPTME: special-purpose helpers would avoid doing some 9375 * unnecessary work in the helper for the 16 bit cases. 9376 */ 9377 ele1 = tcg_temp_new_i32(); 9378 ele2 = tcg_temp_new_i32(); 9379 ele3 = tcg_temp_new_i32(); 9380 9381 read_vec_element_i32(s, ele1, rn, 0, size); 9382 read_vec_element_i32(s, ele2, rm, 0, size); 9383 read_vec_element_i32(s, ele3, rd, 0, size); 9384 9385 switch (opcode) { 9386 case 0x0: /* SQRDMLAH */ 9387 if (size == 1) { 9388 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9389 } else { 9390 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9391 } 9392 break; 9393 case 0x1: /* SQRDMLSH */ 9394 if (size == 1) { 9395 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9396 } else { 9397 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9398 } 9399 break; 9400 default: 9401 g_assert_not_reached(); 9402 } 9403 9404 res = tcg_temp_new_i64(); 9405 tcg_gen_extu_i32_i64(res, ele3); 9406 write_fp_dreg(s, rd, res); 9407 } 9408 9409 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9410 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9411 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9412 { 9413 /* Handle 64->64 opcodes which are shared between the scalar and 9414 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9415 * is valid in either group and also the double-precision fp ops. 9416 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9417 * requires them. 9418 */ 9419 TCGCond cond; 9420 9421 switch (opcode) { 9422 case 0x4: /* CLS, CLZ */ 9423 if (u) { 9424 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9425 } else { 9426 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9427 } 9428 break; 9429 case 0x5: /* NOT */ 9430 /* This opcode is shared with CNT and RBIT but we have earlier 9431 * enforced that size == 3 if and only if this is the NOT insn. 9432 */ 9433 tcg_gen_not_i64(tcg_rd, tcg_rn); 9434 break; 9435 case 0x7: /* SQABS, SQNEG */ 9436 if (u) { 9437 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9438 } else { 9439 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9440 } 9441 break; 9442 case 0xa: /* CMLT */ 9443 /* 64 bit integer comparison against zero, result is 9444 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9445 * subtracting 1. 9446 */ 9447 cond = TCG_COND_LT; 9448 do_cmop: 9449 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9450 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9451 break; 9452 case 0x8: /* CMGT, CMGE */ 9453 cond = u ? TCG_COND_GE : TCG_COND_GT; 9454 goto do_cmop; 9455 case 0x9: /* CMEQ, CMLE */ 9456 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9457 goto do_cmop; 9458 case 0xb: /* ABS, NEG */ 9459 if (u) { 9460 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9461 } else { 9462 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9463 } 9464 break; 9465 case 0x2f: /* FABS */ 9466 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9467 break; 9468 case 0x6f: /* FNEG */ 9469 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9470 break; 9471 case 0x7f: /* FSQRT */ 9472 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9473 break; 9474 case 0x1a: /* FCVTNS */ 9475 case 0x1b: /* FCVTMS */ 9476 case 0x1c: /* FCVTAS */ 9477 case 0x3a: /* FCVTPS */ 9478 case 0x3b: /* FCVTZS */ 9479 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9480 break; 9481 case 0x5a: /* FCVTNU */ 9482 case 0x5b: /* FCVTMU */ 9483 case 0x5c: /* FCVTAU */ 9484 case 0x7a: /* FCVTPU */ 9485 case 0x7b: /* FCVTZU */ 9486 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9487 break; 9488 case 0x18: /* FRINTN */ 9489 case 0x19: /* FRINTM */ 9490 case 0x38: /* FRINTP */ 9491 case 0x39: /* FRINTZ */ 9492 case 0x58: /* FRINTA */ 9493 case 0x79: /* FRINTI */ 9494 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9495 break; 9496 case 0x59: /* FRINTX */ 9497 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9498 break; 9499 case 0x1e: /* FRINT32Z */ 9500 case 0x5e: /* FRINT32X */ 9501 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9502 break; 9503 case 0x1f: /* FRINT64Z */ 9504 case 0x5f: /* FRINT64X */ 9505 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9506 break; 9507 default: 9508 g_assert_not_reached(); 9509 } 9510 } 9511 9512 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9513 bool is_scalar, bool is_u, bool is_q, 9514 int size, int rn, int rd) 9515 { 9516 bool is_double = (size == MO_64); 9517 TCGv_ptr fpst; 9518 9519 if (!fp_access_check(s)) { 9520 return; 9521 } 9522 9523 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9524 9525 if (is_double) { 9526 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9527 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9528 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9529 NeonGenTwoDoubleOpFn *genfn; 9530 bool swap = false; 9531 int pass; 9532 9533 switch (opcode) { 9534 case 0x2e: /* FCMLT (zero) */ 9535 swap = true; 9536 /* fallthrough */ 9537 case 0x2c: /* FCMGT (zero) */ 9538 genfn = gen_helper_neon_cgt_f64; 9539 break; 9540 case 0x2d: /* FCMEQ (zero) */ 9541 genfn = gen_helper_neon_ceq_f64; 9542 break; 9543 case 0x6d: /* FCMLE (zero) */ 9544 swap = true; 9545 /* fall through */ 9546 case 0x6c: /* FCMGE (zero) */ 9547 genfn = gen_helper_neon_cge_f64; 9548 break; 9549 default: 9550 g_assert_not_reached(); 9551 } 9552 9553 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9554 read_vec_element(s, tcg_op, rn, pass, MO_64); 9555 if (swap) { 9556 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9557 } else { 9558 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9559 } 9560 write_vec_element(s, tcg_res, rd, pass, MO_64); 9561 } 9562 9563 clear_vec_high(s, !is_scalar, rd); 9564 } else { 9565 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9566 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9567 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9568 NeonGenTwoSingleOpFn *genfn; 9569 bool swap = false; 9570 int pass, maxpasses; 9571 9572 if (size == MO_16) { 9573 switch (opcode) { 9574 case 0x2e: /* FCMLT (zero) */ 9575 swap = true; 9576 /* fall through */ 9577 case 0x2c: /* FCMGT (zero) */ 9578 genfn = gen_helper_advsimd_cgt_f16; 9579 break; 9580 case 0x2d: /* FCMEQ (zero) */ 9581 genfn = gen_helper_advsimd_ceq_f16; 9582 break; 9583 case 0x6d: /* FCMLE (zero) */ 9584 swap = true; 9585 /* fall through */ 9586 case 0x6c: /* FCMGE (zero) */ 9587 genfn = gen_helper_advsimd_cge_f16; 9588 break; 9589 default: 9590 g_assert_not_reached(); 9591 } 9592 } else { 9593 switch (opcode) { 9594 case 0x2e: /* FCMLT (zero) */ 9595 swap = true; 9596 /* fall through */ 9597 case 0x2c: /* FCMGT (zero) */ 9598 genfn = gen_helper_neon_cgt_f32; 9599 break; 9600 case 0x2d: /* FCMEQ (zero) */ 9601 genfn = gen_helper_neon_ceq_f32; 9602 break; 9603 case 0x6d: /* FCMLE (zero) */ 9604 swap = true; 9605 /* fall through */ 9606 case 0x6c: /* FCMGE (zero) */ 9607 genfn = gen_helper_neon_cge_f32; 9608 break; 9609 default: 9610 g_assert_not_reached(); 9611 } 9612 } 9613 9614 if (is_scalar) { 9615 maxpasses = 1; 9616 } else { 9617 int vector_size = 8 << is_q; 9618 maxpasses = vector_size >> size; 9619 } 9620 9621 for (pass = 0; pass < maxpasses; pass++) { 9622 read_vec_element_i32(s, tcg_op, rn, pass, size); 9623 if (swap) { 9624 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9625 } else { 9626 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9627 } 9628 if (is_scalar) { 9629 write_fp_sreg(s, rd, tcg_res); 9630 } else { 9631 write_vec_element_i32(s, tcg_res, rd, pass, size); 9632 } 9633 } 9634 9635 if (!is_scalar) { 9636 clear_vec_high(s, is_q, rd); 9637 } 9638 } 9639 } 9640 9641 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9642 bool is_scalar, bool is_u, bool is_q, 9643 int size, int rn, int rd) 9644 { 9645 bool is_double = (size == 3); 9646 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9647 9648 if (is_double) { 9649 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9650 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9651 int pass; 9652 9653 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9654 read_vec_element(s, tcg_op, rn, pass, MO_64); 9655 switch (opcode) { 9656 case 0x3d: /* FRECPE */ 9657 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9658 break; 9659 case 0x3f: /* FRECPX */ 9660 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9661 break; 9662 case 0x7d: /* FRSQRTE */ 9663 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9664 break; 9665 default: 9666 g_assert_not_reached(); 9667 } 9668 write_vec_element(s, tcg_res, rd, pass, MO_64); 9669 } 9670 clear_vec_high(s, !is_scalar, rd); 9671 } else { 9672 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9673 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9674 int pass, maxpasses; 9675 9676 if (is_scalar) { 9677 maxpasses = 1; 9678 } else { 9679 maxpasses = is_q ? 4 : 2; 9680 } 9681 9682 for (pass = 0; pass < maxpasses; pass++) { 9683 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9684 9685 switch (opcode) { 9686 case 0x3c: /* URECPE */ 9687 gen_helper_recpe_u32(tcg_res, tcg_op); 9688 break; 9689 case 0x3d: /* FRECPE */ 9690 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9691 break; 9692 case 0x3f: /* FRECPX */ 9693 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9694 break; 9695 case 0x7d: /* FRSQRTE */ 9696 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9697 break; 9698 default: 9699 g_assert_not_reached(); 9700 } 9701 9702 if (is_scalar) { 9703 write_fp_sreg(s, rd, tcg_res); 9704 } else { 9705 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9706 } 9707 } 9708 if (!is_scalar) { 9709 clear_vec_high(s, is_q, rd); 9710 } 9711 } 9712 } 9713 9714 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9715 int opcode, bool u, bool is_q, 9716 int size, int rn, int rd) 9717 { 9718 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9719 * in the source becomes a size element in the destination). 9720 */ 9721 int pass; 9722 TCGv_i32 tcg_res[2]; 9723 int destelt = is_q ? 2 : 0; 9724 int passes = scalar ? 1 : 2; 9725 9726 if (scalar) { 9727 tcg_res[1] = tcg_constant_i32(0); 9728 } 9729 9730 for (pass = 0; pass < passes; pass++) { 9731 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9732 NeonGenNarrowFn *genfn = NULL; 9733 NeonGenNarrowEnvFn *genenvfn = NULL; 9734 9735 if (scalar) { 9736 read_vec_element(s, tcg_op, rn, pass, size + 1); 9737 } else { 9738 read_vec_element(s, tcg_op, rn, pass, MO_64); 9739 } 9740 tcg_res[pass] = tcg_temp_new_i32(); 9741 9742 switch (opcode) { 9743 case 0x12: /* XTN, SQXTUN */ 9744 { 9745 static NeonGenNarrowFn * const xtnfns[3] = { 9746 gen_helper_neon_narrow_u8, 9747 gen_helper_neon_narrow_u16, 9748 tcg_gen_extrl_i64_i32, 9749 }; 9750 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9751 gen_helper_neon_unarrow_sat8, 9752 gen_helper_neon_unarrow_sat16, 9753 gen_helper_neon_unarrow_sat32, 9754 }; 9755 if (u) { 9756 genenvfn = sqxtunfns[size]; 9757 } else { 9758 genfn = xtnfns[size]; 9759 } 9760 break; 9761 } 9762 case 0x14: /* SQXTN, UQXTN */ 9763 { 9764 static NeonGenNarrowEnvFn * const fns[3][2] = { 9765 { gen_helper_neon_narrow_sat_s8, 9766 gen_helper_neon_narrow_sat_u8 }, 9767 { gen_helper_neon_narrow_sat_s16, 9768 gen_helper_neon_narrow_sat_u16 }, 9769 { gen_helper_neon_narrow_sat_s32, 9770 gen_helper_neon_narrow_sat_u32 }, 9771 }; 9772 genenvfn = fns[size][u]; 9773 break; 9774 } 9775 case 0x16: /* FCVTN, FCVTN2 */ 9776 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9777 if (size == 2) { 9778 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9779 } else { 9780 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9781 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9782 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9783 TCGv_i32 ahp = get_ahp_flag(); 9784 9785 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9786 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9787 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9788 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9789 } 9790 break; 9791 case 0x36: /* BFCVTN, BFCVTN2 */ 9792 { 9793 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9794 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9795 } 9796 break; 9797 case 0x56: /* FCVTXN, FCVTXN2 */ 9798 /* 64 bit to 32 bit float conversion 9799 * with von Neumann rounding (round to odd) 9800 */ 9801 assert(size == 2); 9802 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9803 break; 9804 default: 9805 g_assert_not_reached(); 9806 } 9807 9808 if (genfn) { 9809 genfn(tcg_res[pass], tcg_op); 9810 } else if (genenvfn) { 9811 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9812 } 9813 } 9814 9815 for (pass = 0; pass < 2; pass++) { 9816 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9817 } 9818 clear_vec_high(s, is_q, rd); 9819 } 9820 9821 /* Remaining saturating accumulating ops */ 9822 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9823 bool is_q, int size, int rn, int rd) 9824 { 9825 bool is_double = (size == 3); 9826 9827 if (is_double) { 9828 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9829 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9830 int pass; 9831 9832 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9833 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9834 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9835 9836 if (is_u) { /* USQADD */ 9837 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9838 } else { /* SUQADD */ 9839 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9840 } 9841 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9842 } 9843 clear_vec_high(s, !is_scalar, rd); 9844 } else { 9845 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9846 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9847 int pass, maxpasses; 9848 9849 if (is_scalar) { 9850 maxpasses = 1; 9851 } else { 9852 maxpasses = is_q ? 4 : 2; 9853 } 9854 9855 for (pass = 0; pass < maxpasses; pass++) { 9856 if (is_scalar) { 9857 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9858 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9859 } else { 9860 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9861 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9862 } 9863 9864 if (is_u) { /* USQADD */ 9865 switch (size) { 9866 case 0: 9867 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9868 break; 9869 case 1: 9870 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9871 break; 9872 case 2: 9873 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9874 break; 9875 default: 9876 g_assert_not_reached(); 9877 } 9878 } else { /* SUQADD */ 9879 switch (size) { 9880 case 0: 9881 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9882 break; 9883 case 1: 9884 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9885 break; 9886 case 2: 9887 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9888 break; 9889 default: 9890 g_assert_not_reached(); 9891 } 9892 } 9893 9894 if (is_scalar) { 9895 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9896 } 9897 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9898 } 9899 clear_vec_high(s, is_q, rd); 9900 } 9901 } 9902 9903 /* AdvSIMD scalar two reg misc 9904 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9905 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9906 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9907 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9908 */ 9909 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9910 { 9911 int rd = extract32(insn, 0, 5); 9912 int rn = extract32(insn, 5, 5); 9913 int opcode = extract32(insn, 12, 5); 9914 int size = extract32(insn, 22, 2); 9915 bool u = extract32(insn, 29, 1); 9916 bool is_fcvt = false; 9917 int rmode; 9918 TCGv_i32 tcg_rmode; 9919 TCGv_ptr tcg_fpstatus; 9920 9921 switch (opcode) { 9922 case 0x3: /* USQADD / SUQADD*/ 9923 if (!fp_access_check(s)) { 9924 return; 9925 } 9926 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9927 return; 9928 case 0x7: /* SQABS / SQNEG */ 9929 break; 9930 case 0xa: /* CMLT */ 9931 if (u) { 9932 unallocated_encoding(s); 9933 return; 9934 } 9935 /* fall through */ 9936 case 0x8: /* CMGT, CMGE */ 9937 case 0x9: /* CMEQ, CMLE */ 9938 case 0xb: /* ABS, NEG */ 9939 if (size != 3) { 9940 unallocated_encoding(s); 9941 return; 9942 } 9943 break; 9944 case 0x12: /* SQXTUN */ 9945 if (!u) { 9946 unallocated_encoding(s); 9947 return; 9948 } 9949 /* fall through */ 9950 case 0x14: /* SQXTN, UQXTN */ 9951 if (size == 3) { 9952 unallocated_encoding(s); 9953 return; 9954 } 9955 if (!fp_access_check(s)) { 9956 return; 9957 } 9958 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9959 return; 9960 case 0xc ... 0xf: 9961 case 0x16 ... 0x1d: 9962 case 0x1f: 9963 /* Floating point: U, size[1] and opcode indicate operation; 9964 * size[0] indicates single or double precision. 9965 */ 9966 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9967 size = extract32(size, 0, 1) ? 3 : 2; 9968 switch (opcode) { 9969 case 0x2c: /* FCMGT (zero) */ 9970 case 0x2d: /* FCMEQ (zero) */ 9971 case 0x2e: /* FCMLT (zero) */ 9972 case 0x6c: /* FCMGE (zero) */ 9973 case 0x6d: /* FCMLE (zero) */ 9974 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9975 return; 9976 case 0x1d: /* SCVTF */ 9977 case 0x5d: /* UCVTF */ 9978 { 9979 bool is_signed = (opcode == 0x1d); 9980 if (!fp_access_check(s)) { 9981 return; 9982 } 9983 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9984 return; 9985 } 9986 case 0x3d: /* FRECPE */ 9987 case 0x3f: /* FRECPX */ 9988 case 0x7d: /* FRSQRTE */ 9989 if (!fp_access_check(s)) { 9990 return; 9991 } 9992 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9993 return; 9994 case 0x1a: /* FCVTNS */ 9995 case 0x1b: /* FCVTMS */ 9996 case 0x3a: /* FCVTPS */ 9997 case 0x3b: /* FCVTZS */ 9998 case 0x5a: /* FCVTNU */ 9999 case 0x5b: /* FCVTMU */ 10000 case 0x7a: /* FCVTPU */ 10001 case 0x7b: /* FCVTZU */ 10002 is_fcvt = true; 10003 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10004 break; 10005 case 0x1c: /* FCVTAS */ 10006 case 0x5c: /* FCVTAU */ 10007 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10008 is_fcvt = true; 10009 rmode = FPROUNDING_TIEAWAY; 10010 break; 10011 case 0x56: /* FCVTXN, FCVTXN2 */ 10012 if (size == 2) { 10013 unallocated_encoding(s); 10014 return; 10015 } 10016 if (!fp_access_check(s)) { 10017 return; 10018 } 10019 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10020 return; 10021 default: 10022 unallocated_encoding(s); 10023 return; 10024 } 10025 break; 10026 default: 10027 unallocated_encoding(s); 10028 return; 10029 } 10030 10031 if (!fp_access_check(s)) { 10032 return; 10033 } 10034 10035 if (is_fcvt) { 10036 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10037 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10038 } else { 10039 tcg_fpstatus = NULL; 10040 tcg_rmode = NULL; 10041 } 10042 10043 if (size == 3) { 10044 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10045 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10046 10047 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10048 write_fp_dreg(s, rd, tcg_rd); 10049 } else { 10050 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10051 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10052 10053 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10054 10055 switch (opcode) { 10056 case 0x7: /* SQABS, SQNEG */ 10057 { 10058 NeonGenOneOpEnvFn *genfn; 10059 static NeonGenOneOpEnvFn * const fns[3][2] = { 10060 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10061 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10062 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10063 }; 10064 genfn = fns[size][u]; 10065 genfn(tcg_rd, cpu_env, tcg_rn); 10066 break; 10067 } 10068 case 0x1a: /* FCVTNS */ 10069 case 0x1b: /* FCVTMS */ 10070 case 0x1c: /* FCVTAS */ 10071 case 0x3a: /* FCVTPS */ 10072 case 0x3b: /* FCVTZS */ 10073 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10074 tcg_fpstatus); 10075 break; 10076 case 0x5a: /* FCVTNU */ 10077 case 0x5b: /* FCVTMU */ 10078 case 0x5c: /* FCVTAU */ 10079 case 0x7a: /* FCVTPU */ 10080 case 0x7b: /* FCVTZU */ 10081 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10082 tcg_fpstatus); 10083 break; 10084 default: 10085 g_assert_not_reached(); 10086 } 10087 10088 write_fp_sreg(s, rd, tcg_rd); 10089 } 10090 10091 if (is_fcvt) { 10092 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10093 } 10094 } 10095 10096 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10097 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10098 int immh, int immb, int opcode, int rn, int rd) 10099 { 10100 int size = 32 - clz32(immh) - 1; 10101 int immhb = immh << 3 | immb; 10102 int shift = 2 * (8 << size) - immhb; 10103 GVecGen2iFn *gvec_fn; 10104 10105 if (extract32(immh, 3, 1) && !is_q) { 10106 unallocated_encoding(s); 10107 return; 10108 } 10109 tcg_debug_assert(size <= 3); 10110 10111 if (!fp_access_check(s)) { 10112 return; 10113 } 10114 10115 switch (opcode) { 10116 case 0x02: /* SSRA / USRA (accumulate) */ 10117 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10118 break; 10119 10120 case 0x08: /* SRI */ 10121 gvec_fn = gen_gvec_sri; 10122 break; 10123 10124 case 0x00: /* SSHR / USHR */ 10125 if (is_u) { 10126 if (shift == 8 << size) { 10127 /* Shift count the same size as element size produces zero. */ 10128 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10129 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10130 return; 10131 } 10132 gvec_fn = tcg_gen_gvec_shri; 10133 } else { 10134 /* Shift count the same size as element size produces all sign. */ 10135 if (shift == 8 << size) { 10136 shift -= 1; 10137 } 10138 gvec_fn = tcg_gen_gvec_sari; 10139 } 10140 break; 10141 10142 case 0x04: /* SRSHR / URSHR (rounding) */ 10143 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10144 break; 10145 10146 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10147 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10148 break; 10149 10150 default: 10151 g_assert_not_reached(); 10152 } 10153 10154 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10155 } 10156 10157 /* SHL/SLI - Vector shift left */ 10158 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10159 int immh, int immb, int opcode, int rn, int rd) 10160 { 10161 int size = 32 - clz32(immh) - 1; 10162 int immhb = immh << 3 | immb; 10163 int shift = immhb - (8 << size); 10164 10165 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10166 assert(size >= 0 && size <= 3); 10167 10168 if (extract32(immh, 3, 1) && !is_q) { 10169 unallocated_encoding(s); 10170 return; 10171 } 10172 10173 if (!fp_access_check(s)) { 10174 return; 10175 } 10176 10177 if (insert) { 10178 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10179 } else { 10180 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10181 } 10182 } 10183 10184 /* USHLL/SHLL - Vector shift left with widening */ 10185 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10186 int immh, int immb, int opcode, int rn, int rd) 10187 { 10188 int size = 32 - clz32(immh) - 1; 10189 int immhb = immh << 3 | immb; 10190 int shift = immhb - (8 << size); 10191 int dsize = 64; 10192 int esize = 8 << size; 10193 int elements = dsize/esize; 10194 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10195 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10196 int i; 10197 10198 if (size >= 3) { 10199 unallocated_encoding(s); 10200 return; 10201 } 10202 10203 if (!fp_access_check(s)) { 10204 return; 10205 } 10206 10207 /* For the LL variants the store is larger than the load, 10208 * so if rd == rn we would overwrite parts of our input. 10209 * So load everything right now and use shifts in the main loop. 10210 */ 10211 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10212 10213 for (i = 0; i < elements; i++) { 10214 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10215 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10216 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10217 write_vec_element(s, tcg_rd, rd, i, size + 1); 10218 } 10219 } 10220 10221 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10222 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10223 int immh, int immb, int opcode, int rn, int rd) 10224 { 10225 int immhb = immh << 3 | immb; 10226 int size = 32 - clz32(immh) - 1; 10227 int dsize = 64; 10228 int esize = 8 << size; 10229 int elements = dsize/esize; 10230 int shift = (2 * esize) - immhb; 10231 bool round = extract32(opcode, 0, 1); 10232 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10233 TCGv_i64 tcg_round; 10234 int i; 10235 10236 if (extract32(immh, 3, 1)) { 10237 unallocated_encoding(s); 10238 return; 10239 } 10240 10241 if (!fp_access_check(s)) { 10242 return; 10243 } 10244 10245 tcg_rn = tcg_temp_new_i64(); 10246 tcg_rd = tcg_temp_new_i64(); 10247 tcg_final = tcg_temp_new_i64(); 10248 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10249 10250 if (round) { 10251 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10252 } else { 10253 tcg_round = NULL; 10254 } 10255 10256 for (i = 0; i < elements; i++) { 10257 read_vec_element(s, tcg_rn, rn, i, size+1); 10258 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10259 false, true, size+1, shift); 10260 10261 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10262 } 10263 10264 if (!is_q) { 10265 write_vec_element(s, tcg_final, rd, 0, MO_64); 10266 } else { 10267 write_vec_element(s, tcg_final, rd, 1, MO_64); 10268 } 10269 10270 clear_vec_high(s, is_q, rd); 10271 } 10272 10273 10274 /* AdvSIMD shift by immediate 10275 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10276 * +---+---+---+-------------+------+------+--------+---+------+------+ 10277 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10278 * +---+---+---+-------------+------+------+--------+---+------+------+ 10279 */ 10280 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10281 { 10282 int rd = extract32(insn, 0, 5); 10283 int rn = extract32(insn, 5, 5); 10284 int opcode = extract32(insn, 11, 5); 10285 int immb = extract32(insn, 16, 3); 10286 int immh = extract32(insn, 19, 4); 10287 bool is_u = extract32(insn, 29, 1); 10288 bool is_q = extract32(insn, 30, 1); 10289 10290 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10291 assert(immh != 0); 10292 10293 switch (opcode) { 10294 case 0x08: /* SRI */ 10295 if (!is_u) { 10296 unallocated_encoding(s); 10297 return; 10298 } 10299 /* fall through */ 10300 case 0x00: /* SSHR / USHR */ 10301 case 0x02: /* SSRA / USRA (accumulate) */ 10302 case 0x04: /* SRSHR / URSHR (rounding) */ 10303 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10304 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10305 break; 10306 case 0x0a: /* SHL / SLI */ 10307 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10308 break; 10309 case 0x10: /* SHRN */ 10310 case 0x11: /* RSHRN / SQRSHRUN */ 10311 if (is_u) { 10312 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10313 opcode, rn, rd); 10314 } else { 10315 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10316 } 10317 break; 10318 case 0x12: /* SQSHRN / UQSHRN */ 10319 case 0x13: /* SQRSHRN / UQRSHRN */ 10320 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10321 opcode, rn, rd); 10322 break; 10323 case 0x14: /* SSHLL / USHLL */ 10324 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10325 break; 10326 case 0x1c: /* SCVTF / UCVTF */ 10327 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10328 opcode, rn, rd); 10329 break; 10330 case 0xc: /* SQSHLU */ 10331 if (!is_u) { 10332 unallocated_encoding(s); 10333 return; 10334 } 10335 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10336 break; 10337 case 0xe: /* SQSHL, UQSHL */ 10338 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10339 break; 10340 case 0x1f: /* FCVTZS/ FCVTZU */ 10341 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10342 return; 10343 default: 10344 unallocated_encoding(s); 10345 return; 10346 } 10347 } 10348 10349 /* Generate code to do a "long" addition or subtraction, ie one done in 10350 * TCGv_i64 on vector lanes twice the width specified by size. 10351 */ 10352 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10353 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10354 { 10355 static NeonGenTwo64OpFn * const fns[3][2] = { 10356 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10357 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10358 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10359 }; 10360 NeonGenTwo64OpFn *genfn; 10361 assert(size < 3); 10362 10363 genfn = fns[size][is_sub]; 10364 genfn(tcg_res, tcg_op1, tcg_op2); 10365 } 10366 10367 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10368 int opcode, int rd, int rn, int rm) 10369 { 10370 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10371 TCGv_i64 tcg_res[2]; 10372 int pass, accop; 10373 10374 tcg_res[0] = tcg_temp_new_i64(); 10375 tcg_res[1] = tcg_temp_new_i64(); 10376 10377 /* Does this op do an adding accumulate, a subtracting accumulate, 10378 * or no accumulate at all? 10379 */ 10380 switch (opcode) { 10381 case 5: 10382 case 8: 10383 case 9: 10384 accop = 1; 10385 break; 10386 case 10: 10387 case 11: 10388 accop = -1; 10389 break; 10390 default: 10391 accop = 0; 10392 break; 10393 } 10394 10395 if (accop != 0) { 10396 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10397 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10398 } 10399 10400 /* size == 2 means two 32x32->64 operations; this is worth special 10401 * casing because we can generally handle it inline. 10402 */ 10403 if (size == 2) { 10404 for (pass = 0; pass < 2; pass++) { 10405 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10406 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10407 TCGv_i64 tcg_passres; 10408 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10409 10410 int elt = pass + is_q * 2; 10411 10412 read_vec_element(s, tcg_op1, rn, elt, memop); 10413 read_vec_element(s, tcg_op2, rm, elt, memop); 10414 10415 if (accop == 0) { 10416 tcg_passres = tcg_res[pass]; 10417 } else { 10418 tcg_passres = tcg_temp_new_i64(); 10419 } 10420 10421 switch (opcode) { 10422 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10423 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10424 break; 10425 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10426 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10427 break; 10428 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10429 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10430 { 10431 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10432 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10433 10434 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10435 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10436 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10437 tcg_passres, 10438 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10439 break; 10440 } 10441 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10442 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10443 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10444 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10445 break; 10446 case 9: /* SQDMLAL, SQDMLAL2 */ 10447 case 11: /* SQDMLSL, SQDMLSL2 */ 10448 case 13: /* SQDMULL, SQDMULL2 */ 10449 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10450 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10451 tcg_passres, tcg_passres); 10452 break; 10453 default: 10454 g_assert_not_reached(); 10455 } 10456 10457 if (opcode == 9 || opcode == 11) { 10458 /* saturating accumulate ops */ 10459 if (accop < 0) { 10460 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10461 } 10462 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10463 tcg_res[pass], tcg_passres); 10464 } else if (accop > 0) { 10465 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10466 } else if (accop < 0) { 10467 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10468 } 10469 } 10470 } else { 10471 /* size 0 or 1, generally helper functions */ 10472 for (pass = 0; pass < 2; pass++) { 10473 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10474 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10475 TCGv_i64 tcg_passres; 10476 int elt = pass + is_q * 2; 10477 10478 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10479 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10480 10481 if (accop == 0) { 10482 tcg_passres = tcg_res[pass]; 10483 } else { 10484 tcg_passres = tcg_temp_new_i64(); 10485 } 10486 10487 switch (opcode) { 10488 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10489 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10490 { 10491 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10492 static NeonGenWidenFn * const widenfns[2][2] = { 10493 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10494 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10495 }; 10496 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10497 10498 widenfn(tcg_op2_64, tcg_op2); 10499 widenfn(tcg_passres, tcg_op1); 10500 gen_neon_addl(size, (opcode == 2), tcg_passres, 10501 tcg_passres, tcg_op2_64); 10502 break; 10503 } 10504 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10505 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10506 if (size == 0) { 10507 if (is_u) { 10508 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10509 } else { 10510 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10511 } 10512 } else { 10513 if (is_u) { 10514 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10515 } else { 10516 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10517 } 10518 } 10519 break; 10520 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10521 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10522 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10523 if (size == 0) { 10524 if (is_u) { 10525 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10526 } else { 10527 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10528 } 10529 } else { 10530 if (is_u) { 10531 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10532 } else { 10533 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10534 } 10535 } 10536 break; 10537 case 9: /* SQDMLAL, SQDMLAL2 */ 10538 case 11: /* SQDMLSL, SQDMLSL2 */ 10539 case 13: /* SQDMULL, SQDMULL2 */ 10540 assert(size == 1); 10541 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10542 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10543 tcg_passres, tcg_passres); 10544 break; 10545 default: 10546 g_assert_not_reached(); 10547 } 10548 10549 if (accop != 0) { 10550 if (opcode == 9 || opcode == 11) { 10551 /* saturating accumulate ops */ 10552 if (accop < 0) { 10553 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10554 } 10555 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10556 tcg_res[pass], 10557 tcg_passres); 10558 } else { 10559 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10560 tcg_res[pass], tcg_passres); 10561 } 10562 } 10563 } 10564 } 10565 10566 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10567 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10568 } 10569 10570 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10571 int opcode, int rd, int rn, int rm) 10572 { 10573 TCGv_i64 tcg_res[2]; 10574 int part = is_q ? 2 : 0; 10575 int pass; 10576 10577 for (pass = 0; pass < 2; pass++) { 10578 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10579 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10580 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10581 static NeonGenWidenFn * const widenfns[3][2] = { 10582 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10583 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10584 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10585 }; 10586 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10587 10588 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10589 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10590 widenfn(tcg_op2_wide, tcg_op2); 10591 tcg_res[pass] = tcg_temp_new_i64(); 10592 gen_neon_addl(size, (opcode == 3), 10593 tcg_res[pass], tcg_op1, tcg_op2_wide); 10594 } 10595 10596 for (pass = 0; pass < 2; pass++) { 10597 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10598 } 10599 } 10600 10601 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10602 { 10603 tcg_gen_addi_i64(in, in, 1U << 31); 10604 tcg_gen_extrh_i64_i32(res, in); 10605 } 10606 10607 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10608 int opcode, int rd, int rn, int rm) 10609 { 10610 TCGv_i32 tcg_res[2]; 10611 int part = is_q ? 2 : 0; 10612 int pass; 10613 10614 for (pass = 0; pass < 2; pass++) { 10615 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10616 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10617 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10618 static NeonGenNarrowFn * const narrowfns[3][2] = { 10619 { gen_helper_neon_narrow_high_u8, 10620 gen_helper_neon_narrow_round_high_u8 }, 10621 { gen_helper_neon_narrow_high_u16, 10622 gen_helper_neon_narrow_round_high_u16 }, 10623 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10624 }; 10625 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10626 10627 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10628 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10629 10630 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10631 10632 tcg_res[pass] = tcg_temp_new_i32(); 10633 gennarrow(tcg_res[pass], tcg_wideres); 10634 } 10635 10636 for (pass = 0; pass < 2; pass++) { 10637 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10638 } 10639 clear_vec_high(s, is_q, rd); 10640 } 10641 10642 /* AdvSIMD three different 10643 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10644 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10645 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10646 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10647 */ 10648 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10649 { 10650 /* Instructions in this group fall into three basic classes 10651 * (in each case with the operation working on each element in 10652 * the input vectors): 10653 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10654 * 128 bit input) 10655 * (2) wide 64 x 128 -> 128 10656 * (3) narrowing 128 x 128 -> 64 10657 * Here we do initial decode, catch unallocated cases and 10658 * dispatch to separate functions for each class. 10659 */ 10660 int is_q = extract32(insn, 30, 1); 10661 int is_u = extract32(insn, 29, 1); 10662 int size = extract32(insn, 22, 2); 10663 int opcode = extract32(insn, 12, 4); 10664 int rm = extract32(insn, 16, 5); 10665 int rn = extract32(insn, 5, 5); 10666 int rd = extract32(insn, 0, 5); 10667 10668 switch (opcode) { 10669 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10670 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10671 /* 64 x 128 -> 128 */ 10672 if (size == 3) { 10673 unallocated_encoding(s); 10674 return; 10675 } 10676 if (!fp_access_check(s)) { 10677 return; 10678 } 10679 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10680 break; 10681 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10682 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10683 /* 128 x 128 -> 64 */ 10684 if (size == 3) { 10685 unallocated_encoding(s); 10686 return; 10687 } 10688 if (!fp_access_check(s)) { 10689 return; 10690 } 10691 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10692 break; 10693 case 14: /* PMULL, PMULL2 */ 10694 if (is_u) { 10695 unallocated_encoding(s); 10696 return; 10697 } 10698 switch (size) { 10699 case 0: /* PMULL.P8 */ 10700 if (!fp_access_check(s)) { 10701 return; 10702 } 10703 /* The Q field specifies lo/hi half input for this insn. */ 10704 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10705 gen_helper_neon_pmull_h); 10706 break; 10707 10708 case 3: /* PMULL.P64 */ 10709 if (!dc_isar_feature(aa64_pmull, s)) { 10710 unallocated_encoding(s); 10711 return; 10712 } 10713 if (!fp_access_check(s)) { 10714 return; 10715 } 10716 /* The Q field specifies lo/hi half input for this insn. */ 10717 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10718 gen_helper_gvec_pmull_q); 10719 break; 10720 10721 default: 10722 unallocated_encoding(s); 10723 break; 10724 } 10725 return; 10726 case 9: /* SQDMLAL, SQDMLAL2 */ 10727 case 11: /* SQDMLSL, SQDMLSL2 */ 10728 case 13: /* SQDMULL, SQDMULL2 */ 10729 if (is_u || size == 0) { 10730 unallocated_encoding(s); 10731 return; 10732 } 10733 /* fall through */ 10734 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10735 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10736 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10737 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10738 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10739 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10740 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10741 /* 64 x 64 -> 128 */ 10742 if (size == 3) { 10743 unallocated_encoding(s); 10744 return; 10745 } 10746 if (!fp_access_check(s)) { 10747 return; 10748 } 10749 10750 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10751 break; 10752 default: 10753 /* opcode 15 not allocated */ 10754 unallocated_encoding(s); 10755 break; 10756 } 10757 } 10758 10759 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10760 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10761 { 10762 int rd = extract32(insn, 0, 5); 10763 int rn = extract32(insn, 5, 5); 10764 int rm = extract32(insn, 16, 5); 10765 int size = extract32(insn, 22, 2); 10766 bool is_u = extract32(insn, 29, 1); 10767 bool is_q = extract32(insn, 30, 1); 10768 10769 if (!fp_access_check(s)) { 10770 return; 10771 } 10772 10773 switch (size + 4 * is_u) { 10774 case 0: /* AND */ 10775 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10776 return; 10777 case 1: /* BIC */ 10778 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10779 return; 10780 case 2: /* ORR */ 10781 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10782 return; 10783 case 3: /* ORN */ 10784 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10785 return; 10786 case 4: /* EOR */ 10787 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10788 return; 10789 10790 case 5: /* BSL bitwise select */ 10791 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10792 return; 10793 case 6: /* BIT, bitwise insert if true */ 10794 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10795 return; 10796 case 7: /* BIF, bitwise insert if false */ 10797 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10798 return; 10799 10800 default: 10801 g_assert_not_reached(); 10802 } 10803 } 10804 10805 /* Pairwise op subgroup of C3.6.16. 10806 * 10807 * This is called directly or via the handle_3same_float for float pairwise 10808 * operations where the opcode and size are calculated differently. 10809 */ 10810 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10811 int size, int rn, int rm, int rd) 10812 { 10813 TCGv_ptr fpst; 10814 int pass; 10815 10816 /* Floating point operations need fpst */ 10817 if (opcode >= 0x58) { 10818 fpst = fpstatus_ptr(FPST_FPCR); 10819 } else { 10820 fpst = NULL; 10821 } 10822 10823 if (!fp_access_check(s)) { 10824 return; 10825 } 10826 10827 /* These operations work on the concatenated rm:rn, with each pair of 10828 * adjacent elements being operated on to produce an element in the result. 10829 */ 10830 if (size == 3) { 10831 TCGv_i64 tcg_res[2]; 10832 10833 for (pass = 0; pass < 2; pass++) { 10834 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10835 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10836 int passreg = (pass == 0) ? rn : rm; 10837 10838 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10839 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10840 tcg_res[pass] = tcg_temp_new_i64(); 10841 10842 switch (opcode) { 10843 case 0x17: /* ADDP */ 10844 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10845 break; 10846 case 0x58: /* FMAXNMP */ 10847 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10848 break; 10849 case 0x5a: /* FADDP */ 10850 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10851 break; 10852 case 0x5e: /* FMAXP */ 10853 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10854 break; 10855 case 0x78: /* FMINNMP */ 10856 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10857 break; 10858 case 0x7e: /* FMINP */ 10859 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10860 break; 10861 default: 10862 g_assert_not_reached(); 10863 } 10864 } 10865 10866 for (pass = 0; pass < 2; pass++) { 10867 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10868 } 10869 } else { 10870 int maxpass = is_q ? 4 : 2; 10871 TCGv_i32 tcg_res[4]; 10872 10873 for (pass = 0; pass < maxpass; pass++) { 10874 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10875 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10876 NeonGenTwoOpFn *genfn = NULL; 10877 int passreg = pass < (maxpass / 2) ? rn : rm; 10878 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10879 10880 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10881 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10882 tcg_res[pass] = tcg_temp_new_i32(); 10883 10884 switch (opcode) { 10885 case 0x17: /* ADDP */ 10886 { 10887 static NeonGenTwoOpFn * const fns[3] = { 10888 gen_helper_neon_padd_u8, 10889 gen_helper_neon_padd_u16, 10890 tcg_gen_add_i32, 10891 }; 10892 genfn = fns[size]; 10893 break; 10894 } 10895 case 0x14: /* SMAXP, UMAXP */ 10896 { 10897 static NeonGenTwoOpFn * const fns[3][2] = { 10898 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10899 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10900 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10901 }; 10902 genfn = fns[size][u]; 10903 break; 10904 } 10905 case 0x15: /* SMINP, UMINP */ 10906 { 10907 static NeonGenTwoOpFn * const fns[3][2] = { 10908 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10909 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10910 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10911 }; 10912 genfn = fns[size][u]; 10913 break; 10914 } 10915 /* The FP operations are all on single floats (32 bit) */ 10916 case 0x58: /* FMAXNMP */ 10917 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10918 break; 10919 case 0x5a: /* FADDP */ 10920 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10921 break; 10922 case 0x5e: /* FMAXP */ 10923 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10924 break; 10925 case 0x78: /* FMINNMP */ 10926 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10927 break; 10928 case 0x7e: /* FMINP */ 10929 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10930 break; 10931 default: 10932 g_assert_not_reached(); 10933 } 10934 10935 /* FP ops called directly, otherwise call now */ 10936 if (genfn) { 10937 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10938 } 10939 } 10940 10941 for (pass = 0; pass < maxpass; pass++) { 10942 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10943 } 10944 clear_vec_high(s, is_q, rd); 10945 } 10946 } 10947 10948 /* Floating point op subgroup of C3.6.16. */ 10949 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10950 { 10951 /* For floating point ops, the U, size[1] and opcode bits 10952 * together indicate the operation. size[0] indicates single 10953 * or double. 10954 */ 10955 int fpopcode = extract32(insn, 11, 5) 10956 | (extract32(insn, 23, 1) << 5) 10957 | (extract32(insn, 29, 1) << 6); 10958 int is_q = extract32(insn, 30, 1); 10959 int size = extract32(insn, 22, 1); 10960 int rm = extract32(insn, 16, 5); 10961 int rn = extract32(insn, 5, 5); 10962 int rd = extract32(insn, 0, 5); 10963 10964 int datasize = is_q ? 128 : 64; 10965 int esize = 32 << size; 10966 int elements = datasize / esize; 10967 10968 if (size == 1 && !is_q) { 10969 unallocated_encoding(s); 10970 return; 10971 } 10972 10973 switch (fpopcode) { 10974 case 0x58: /* FMAXNMP */ 10975 case 0x5a: /* FADDP */ 10976 case 0x5e: /* FMAXP */ 10977 case 0x78: /* FMINNMP */ 10978 case 0x7e: /* FMINP */ 10979 if (size && !is_q) { 10980 unallocated_encoding(s); 10981 return; 10982 } 10983 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10984 rn, rm, rd); 10985 return; 10986 case 0x1b: /* FMULX */ 10987 case 0x1f: /* FRECPS */ 10988 case 0x3f: /* FRSQRTS */ 10989 case 0x5d: /* FACGE */ 10990 case 0x7d: /* FACGT */ 10991 case 0x19: /* FMLA */ 10992 case 0x39: /* FMLS */ 10993 case 0x18: /* FMAXNM */ 10994 case 0x1a: /* FADD */ 10995 case 0x1c: /* FCMEQ */ 10996 case 0x1e: /* FMAX */ 10997 case 0x38: /* FMINNM */ 10998 case 0x3a: /* FSUB */ 10999 case 0x3e: /* FMIN */ 11000 case 0x5b: /* FMUL */ 11001 case 0x5c: /* FCMGE */ 11002 case 0x5f: /* FDIV */ 11003 case 0x7a: /* FABD */ 11004 case 0x7c: /* FCMGT */ 11005 if (!fp_access_check(s)) { 11006 return; 11007 } 11008 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11009 return; 11010 11011 case 0x1d: /* FMLAL */ 11012 case 0x3d: /* FMLSL */ 11013 case 0x59: /* FMLAL2 */ 11014 case 0x79: /* FMLSL2 */ 11015 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11016 unallocated_encoding(s); 11017 return; 11018 } 11019 if (fp_access_check(s)) { 11020 int is_s = extract32(insn, 23, 1); 11021 int is_2 = extract32(insn, 29, 1); 11022 int data = (is_2 << 1) | is_s; 11023 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11024 vec_full_reg_offset(s, rn), 11025 vec_full_reg_offset(s, rm), cpu_env, 11026 is_q ? 16 : 8, vec_full_reg_size(s), 11027 data, gen_helper_gvec_fmlal_a64); 11028 } 11029 return; 11030 11031 default: 11032 unallocated_encoding(s); 11033 return; 11034 } 11035 } 11036 11037 /* Integer op subgroup of C3.6.16. */ 11038 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11039 { 11040 int is_q = extract32(insn, 30, 1); 11041 int u = extract32(insn, 29, 1); 11042 int size = extract32(insn, 22, 2); 11043 int opcode = extract32(insn, 11, 5); 11044 int rm = extract32(insn, 16, 5); 11045 int rn = extract32(insn, 5, 5); 11046 int rd = extract32(insn, 0, 5); 11047 int pass; 11048 TCGCond cond; 11049 11050 switch (opcode) { 11051 case 0x13: /* MUL, PMUL */ 11052 if (u && size != 0) { 11053 unallocated_encoding(s); 11054 return; 11055 } 11056 /* fall through */ 11057 case 0x0: /* SHADD, UHADD */ 11058 case 0x2: /* SRHADD, URHADD */ 11059 case 0x4: /* SHSUB, UHSUB */ 11060 case 0xc: /* SMAX, UMAX */ 11061 case 0xd: /* SMIN, UMIN */ 11062 case 0xe: /* SABD, UABD */ 11063 case 0xf: /* SABA, UABA */ 11064 case 0x12: /* MLA, MLS */ 11065 if (size == 3) { 11066 unallocated_encoding(s); 11067 return; 11068 } 11069 break; 11070 case 0x16: /* SQDMULH, SQRDMULH */ 11071 if (size == 0 || size == 3) { 11072 unallocated_encoding(s); 11073 return; 11074 } 11075 break; 11076 default: 11077 if (size == 3 && !is_q) { 11078 unallocated_encoding(s); 11079 return; 11080 } 11081 break; 11082 } 11083 11084 if (!fp_access_check(s)) { 11085 return; 11086 } 11087 11088 switch (opcode) { 11089 case 0x01: /* SQADD, UQADD */ 11090 if (u) { 11091 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11092 } else { 11093 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11094 } 11095 return; 11096 case 0x05: /* SQSUB, UQSUB */ 11097 if (u) { 11098 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11099 } else { 11100 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11101 } 11102 return; 11103 case 0x08: /* SSHL, USHL */ 11104 if (u) { 11105 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11106 } else { 11107 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11108 } 11109 return; 11110 case 0x0c: /* SMAX, UMAX */ 11111 if (u) { 11112 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11113 } else { 11114 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11115 } 11116 return; 11117 case 0x0d: /* SMIN, UMIN */ 11118 if (u) { 11119 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11120 } else { 11121 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11122 } 11123 return; 11124 case 0xe: /* SABD, UABD */ 11125 if (u) { 11126 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11127 } else { 11128 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11129 } 11130 return; 11131 case 0xf: /* SABA, UABA */ 11132 if (u) { 11133 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11134 } else { 11135 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11136 } 11137 return; 11138 case 0x10: /* ADD, SUB */ 11139 if (u) { 11140 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11141 } else { 11142 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11143 } 11144 return; 11145 case 0x13: /* MUL, PMUL */ 11146 if (!u) { /* MUL */ 11147 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11148 } else { /* PMUL */ 11149 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11150 } 11151 return; 11152 case 0x12: /* MLA, MLS */ 11153 if (u) { 11154 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11155 } else { 11156 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11157 } 11158 return; 11159 case 0x16: /* SQDMULH, SQRDMULH */ 11160 { 11161 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11162 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11163 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11164 }; 11165 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11166 } 11167 return; 11168 case 0x11: 11169 if (!u) { /* CMTST */ 11170 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11171 return; 11172 } 11173 /* else CMEQ */ 11174 cond = TCG_COND_EQ; 11175 goto do_gvec_cmp; 11176 case 0x06: /* CMGT, CMHI */ 11177 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11178 goto do_gvec_cmp; 11179 case 0x07: /* CMGE, CMHS */ 11180 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11181 do_gvec_cmp: 11182 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11183 vec_full_reg_offset(s, rn), 11184 vec_full_reg_offset(s, rm), 11185 is_q ? 16 : 8, vec_full_reg_size(s)); 11186 return; 11187 } 11188 11189 if (size == 3) { 11190 assert(is_q); 11191 for (pass = 0; pass < 2; pass++) { 11192 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11193 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11194 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11195 11196 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11197 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11198 11199 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11200 11201 write_vec_element(s, tcg_res, rd, pass, MO_64); 11202 } 11203 } else { 11204 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11205 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11206 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11207 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11208 NeonGenTwoOpFn *genfn = NULL; 11209 NeonGenTwoOpEnvFn *genenvfn = NULL; 11210 11211 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11212 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11213 11214 switch (opcode) { 11215 case 0x0: /* SHADD, UHADD */ 11216 { 11217 static NeonGenTwoOpFn * const fns[3][2] = { 11218 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11219 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11220 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11221 }; 11222 genfn = fns[size][u]; 11223 break; 11224 } 11225 case 0x2: /* SRHADD, URHADD */ 11226 { 11227 static NeonGenTwoOpFn * const fns[3][2] = { 11228 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11229 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11230 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11231 }; 11232 genfn = fns[size][u]; 11233 break; 11234 } 11235 case 0x4: /* SHSUB, UHSUB */ 11236 { 11237 static NeonGenTwoOpFn * const fns[3][2] = { 11238 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11239 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11240 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11241 }; 11242 genfn = fns[size][u]; 11243 break; 11244 } 11245 case 0x9: /* SQSHL, UQSHL */ 11246 { 11247 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11248 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11249 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11250 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11251 }; 11252 genenvfn = fns[size][u]; 11253 break; 11254 } 11255 case 0xa: /* SRSHL, URSHL */ 11256 { 11257 static NeonGenTwoOpFn * const fns[3][2] = { 11258 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11259 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11260 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11261 }; 11262 genfn = fns[size][u]; 11263 break; 11264 } 11265 case 0xb: /* SQRSHL, UQRSHL */ 11266 { 11267 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11268 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11269 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11270 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11271 }; 11272 genenvfn = fns[size][u]; 11273 break; 11274 } 11275 default: 11276 g_assert_not_reached(); 11277 } 11278 11279 if (genenvfn) { 11280 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11281 } else { 11282 genfn(tcg_res, tcg_op1, tcg_op2); 11283 } 11284 11285 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11286 } 11287 } 11288 clear_vec_high(s, is_q, rd); 11289 } 11290 11291 /* AdvSIMD three same 11292 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11293 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11294 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11295 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11296 */ 11297 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11298 { 11299 int opcode = extract32(insn, 11, 5); 11300 11301 switch (opcode) { 11302 case 0x3: /* logic ops */ 11303 disas_simd_3same_logic(s, insn); 11304 break; 11305 case 0x17: /* ADDP */ 11306 case 0x14: /* SMAXP, UMAXP */ 11307 case 0x15: /* SMINP, UMINP */ 11308 { 11309 /* Pairwise operations */ 11310 int is_q = extract32(insn, 30, 1); 11311 int u = extract32(insn, 29, 1); 11312 int size = extract32(insn, 22, 2); 11313 int rm = extract32(insn, 16, 5); 11314 int rn = extract32(insn, 5, 5); 11315 int rd = extract32(insn, 0, 5); 11316 if (opcode == 0x17) { 11317 if (u || (size == 3 && !is_q)) { 11318 unallocated_encoding(s); 11319 return; 11320 } 11321 } else { 11322 if (size == 3) { 11323 unallocated_encoding(s); 11324 return; 11325 } 11326 } 11327 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11328 break; 11329 } 11330 case 0x18 ... 0x31: 11331 /* floating point ops, sz[1] and U are part of opcode */ 11332 disas_simd_3same_float(s, insn); 11333 break; 11334 default: 11335 disas_simd_3same_int(s, insn); 11336 break; 11337 } 11338 } 11339 11340 /* 11341 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11342 * 11343 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11344 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11345 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11346 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11347 * 11348 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11349 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11350 * 11351 */ 11352 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11353 { 11354 int opcode = extract32(insn, 11, 3); 11355 int u = extract32(insn, 29, 1); 11356 int a = extract32(insn, 23, 1); 11357 int is_q = extract32(insn, 30, 1); 11358 int rm = extract32(insn, 16, 5); 11359 int rn = extract32(insn, 5, 5); 11360 int rd = extract32(insn, 0, 5); 11361 /* 11362 * For these floating point ops, the U, a and opcode bits 11363 * together indicate the operation. 11364 */ 11365 int fpopcode = opcode | (a << 3) | (u << 4); 11366 int datasize = is_q ? 128 : 64; 11367 int elements = datasize / 16; 11368 bool pairwise; 11369 TCGv_ptr fpst; 11370 int pass; 11371 11372 switch (fpopcode) { 11373 case 0x0: /* FMAXNM */ 11374 case 0x1: /* FMLA */ 11375 case 0x2: /* FADD */ 11376 case 0x3: /* FMULX */ 11377 case 0x4: /* FCMEQ */ 11378 case 0x6: /* FMAX */ 11379 case 0x7: /* FRECPS */ 11380 case 0x8: /* FMINNM */ 11381 case 0x9: /* FMLS */ 11382 case 0xa: /* FSUB */ 11383 case 0xe: /* FMIN */ 11384 case 0xf: /* FRSQRTS */ 11385 case 0x13: /* FMUL */ 11386 case 0x14: /* FCMGE */ 11387 case 0x15: /* FACGE */ 11388 case 0x17: /* FDIV */ 11389 case 0x1a: /* FABD */ 11390 case 0x1c: /* FCMGT */ 11391 case 0x1d: /* FACGT */ 11392 pairwise = false; 11393 break; 11394 case 0x10: /* FMAXNMP */ 11395 case 0x12: /* FADDP */ 11396 case 0x16: /* FMAXP */ 11397 case 0x18: /* FMINNMP */ 11398 case 0x1e: /* FMINP */ 11399 pairwise = true; 11400 break; 11401 default: 11402 unallocated_encoding(s); 11403 return; 11404 } 11405 11406 if (!dc_isar_feature(aa64_fp16, s)) { 11407 unallocated_encoding(s); 11408 return; 11409 } 11410 11411 if (!fp_access_check(s)) { 11412 return; 11413 } 11414 11415 fpst = fpstatus_ptr(FPST_FPCR_F16); 11416 11417 if (pairwise) { 11418 int maxpass = is_q ? 8 : 4; 11419 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11420 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11421 TCGv_i32 tcg_res[8]; 11422 11423 for (pass = 0; pass < maxpass; pass++) { 11424 int passreg = pass < (maxpass / 2) ? rn : rm; 11425 int passelt = (pass << 1) & (maxpass - 1); 11426 11427 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11428 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11429 tcg_res[pass] = tcg_temp_new_i32(); 11430 11431 switch (fpopcode) { 11432 case 0x10: /* FMAXNMP */ 11433 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11434 fpst); 11435 break; 11436 case 0x12: /* FADDP */ 11437 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11438 break; 11439 case 0x16: /* FMAXP */ 11440 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11441 break; 11442 case 0x18: /* FMINNMP */ 11443 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11444 fpst); 11445 break; 11446 case 0x1e: /* FMINP */ 11447 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11448 break; 11449 default: 11450 g_assert_not_reached(); 11451 } 11452 } 11453 11454 for (pass = 0; pass < maxpass; pass++) { 11455 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11456 } 11457 } else { 11458 for (pass = 0; pass < elements; pass++) { 11459 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11460 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11461 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11462 11463 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11464 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11465 11466 switch (fpopcode) { 11467 case 0x0: /* FMAXNM */ 11468 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11469 break; 11470 case 0x1: /* FMLA */ 11471 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11472 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11473 fpst); 11474 break; 11475 case 0x2: /* FADD */ 11476 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11477 break; 11478 case 0x3: /* FMULX */ 11479 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11480 break; 11481 case 0x4: /* FCMEQ */ 11482 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11483 break; 11484 case 0x6: /* FMAX */ 11485 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11486 break; 11487 case 0x7: /* FRECPS */ 11488 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11489 break; 11490 case 0x8: /* FMINNM */ 11491 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11492 break; 11493 case 0x9: /* FMLS */ 11494 /* As usual for ARM, separate negation for fused multiply-add */ 11495 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11496 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11497 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11498 fpst); 11499 break; 11500 case 0xa: /* FSUB */ 11501 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11502 break; 11503 case 0xe: /* FMIN */ 11504 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11505 break; 11506 case 0xf: /* FRSQRTS */ 11507 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11508 break; 11509 case 0x13: /* FMUL */ 11510 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11511 break; 11512 case 0x14: /* FCMGE */ 11513 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11514 break; 11515 case 0x15: /* FACGE */ 11516 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11517 break; 11518 case 0x17: /* FDIV */ 11519 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11520 break; 11521 case 0x1a: /* FABD */ 11522 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11523 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11524 break; 11525 case 0x1c: /* FCMGT */ 11526 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11527 break; 11528 case 0x1d: /* FACGT */ 11529 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 default: 11532 g_assert_not_reached(); 11533 } 11534 11535 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11536 } 11537 } 11538 11539 clear_vec_high(s, is_q, rd); 11540 } 11541 11542 /* AdvSIMD three same extra 11543 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11544 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11545 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11546 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11547 */ 11548 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11549 { 11550 int rd = extract32(insn, 0, 5); 11551 int rn = extract32(insn, 5, 5); 11552 int opcode = extract32(insn, 11, 4); 11553 int rm = extract32(insn, 16, 5); 11554 int size = extract32(insn, 22, 2); 11555 bool u = extract32(insn, 29, 1); 11556 bool is_q = extract32(insn, 30, 1); 11557 bool feature; 11558 int rot; 11559 11560 switch (u * 16 + opcode) { 11561 case 0x10: /* SQRDMLAH (vector) */ 11562 case 0x11: /* SQRDMLSH (vector) */ 11563 if (size != 1 && size != 2) { 11564 unallocated_encoding(s); 11565 return; 11566 } 11567 feature = dc_isar_feature(aa64_rdm, s); 11568 break; 11569 case 0x02: /* SDOT (vector) */ 11570 case 0x12: /* UDOT (vector) */ 11571 if (size != MO_32) { 11572 unallocated_encoding(s); 11573 return; 11574 } 11575 feature = dc_isar_feature(aa64_dp, s); 11576 break; 11577 case 0x03: /* USDOT */ 11578 if (size != MO_32) { 11579 unallocated_encoding(s); 11580 return; 11581 } 11582 feature = dc_isar_feature(aa64_i8mm, s); 11583 break; 11584 case 0x04: /* SMMLA */ 11585 case 0x14: /* UMMLA */ 11586 case 0x05: /* USMMLA */ 11587 if (!is_q || size != MO_32) { 11588 unallocated_encoding(s); 11589 return; 11590 } 11591 feature = dc_isar_feature(aa64_i8mm, s); 11592 break; 11593 case 0x18: /* FCMLA, #0 */ 11594 case 0x19: /* FCMLA, #90 */ 11595 case 0x1a: /* FCMLA, #180 */ 11596 case 0x1b: /* FCMLA, #270 */ 11597 case 0x1c: /* FCADD, #90 */ 11598 case 0x1e: /* FCADD, #270 */ 11599 if (size == 0 11600 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11601 || (size == 3 && !is_q)) { 11602 unallocated_encoding(s); 11603 return; 11604 } 11605 feature = dc_isar_feature(aa64_fcma, s); 11606 break; 11607 case 0x1d: /* BFMMLA */ 11608 if (size != MO_16 || !is_q) { 11609 unallocated_encoding(s); 11610 return; 11611 } 11612 feature = dc_isar_feature(aa64_bf16, s); 11613 break; 11614 case 0x1f: 11615 switch (size) { 11616 case 1: /* BFDOT */ 11617 case 3: /* BFMLAL{B,T} */ 11618 feature = dc_isar_feature(aa64_bf16, s); 11619 break; 11620 default: 11621 unallocated_encoding(s); 11622 return; 11623 } 11624 break; 11625 default: 11626 unallocated_encoding(s); 11627 return; 11628 } 11629 if (!feature) { 11630 unallocated_encoding(s); 11631 return; 11632 } 11633 if (!fp_access_check(s)) { 11634 return; 11635 } 11636 11637 switch (opcode) { 11638 case 0x0: /* SQRDMLAH (vector) */ 11639 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11640 return; 11641 11642 case 0x1: /* SQRDMLSH (vector) */ 11643 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11644 return; 11645 11646 case 0x2: /* SDOT / UDOT */ 11647 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11648 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11649 return; 11650 11651 case 0x3: /* USDOT */ 11652 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11653 return; 11654 11655 case 0x04: /* SMMLA, UMMLA */ 11656 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11657 u ? gen_helper_gvec_ummla_b 11658 : gen_helper_gvec_smmla_b); 11659 return; 11660 case 0x05: /* USMMLA */ 11661 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11662 return; 11663 11664 case 0x8: /* FCMLA, #0 */ 11665 case 0x9: /* FCMLA, #90 */ 11666 case 0xa: /* FCMLA, #180 */ 11667 case 0xb: /* FCMLA, #270 */ 11668 rot = extract32(opcode, 0, 2); 11669 switch (size) { 11670 case 1: 11671 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11672 gen_helper_gvec_fcmlah); 11673 break; 11674 case 2: 11675 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11676 gen_helper_gvec_fcmlas); 11677 break; 11678 case 3: 11679 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11680 gen_helper_gvec_fcmlad); 11681 break; 11682 default: 11683 g_assert_not_reached(); 11684 } 11685 return; 11686 11687 case 0xc: /* FCADD, #90 */ 11688 case 0xe: /* FCADD, #270 */ 11689 rot = extract32(opcode, 1, 1); 11690 switch (size) { 11691 case 1: 11692 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11693 gen_helper_gvec_fcaddh); 11694 break; 11695 case 2: 11696 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11697 gen_helper_gvec_fcadds); 11698 break; 11699 case 3: 11700 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11701 gen_helper_gvec_fcaddd); 11702 break; 11703 default: 11704 g_assert_not_reached(); 11705 } 11706 return; 11707 11708 case 0xd: /* BFMMLA */ 11709 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11710 return; 11711 case 0xf: 11712 switch (size) { 11713 case 1: /* BFDOT */ 11714 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11715 break; 11716 case 3: /* BFMLAL{B,T} */ 11717 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11718 gen_helper_gvec_bfmlal); 11719 break; 11720 default: 11721 g_assert_not_reached(); 11722 } 11723 return; 11724 11725 default: 11726 g_assert_not_reached(); 11727 } 11728 } 11729 11730 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11731 int size, int rn, int rd) 11732 { 11733 /* Handle 2-reg-misc ops which are widening (so each size element 11734 * in the source becomes a 2*size element in the destination. 11735 * The only instruction like this is FCVTL. 11736 */ 11737 int pass; 11738 11739 if (size == 3) { 11740 /* 32 -> 64 bit fp conversion */ 11741 TCGv_i64 tcg_res[2]; 11742 int srcelt = is_q ? 2 : 0; 11743 11744 for (pass = 0; pass < 2; pass++) { 11745 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11746 tcg_res[pass] = tcg_temp_new_i64(); 11747 11748 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11749 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11750 } 11751 for (pass = 0; pass < 2; pass++) { 11752 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11753 } 11754 } else { 11755 /* 16 -> 32 bit fp conversion */ 11756 int srcelt = is_q ? 4 : 0; 11757 TCGv_i32 tcg_res[4]; 11758 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11759 TCGv_i32 ahp = get_ahp_flag(); 11760 11761 for (pass = 0; pass < 4; pass++) { 11762 tcg_res[pass] = tcg_temp_new_i32(); 11763 11764 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11765 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11766 fpst, ahp); 11767 } 11768 for (pass = 0; pass < 4; pass++) { 11769 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11770 } 11771 } 11772 } 11773 11774 static void handle_rev(DisasContext *s, int opcode, bool u, 11775 bool is_q, int size, int rn, int rd) 11776 { 11777 int op = (opcode << 1) | u; 11778 int opsz = op + size; 11779 int grp_size = 3 - opsz; 11780 int dsize = is_q ? 128 : 64; 11781 int i; 11782 11783 if (opsz >= 3) { 11784 unallocated_encoding(s); 11785 return; 11786 } 11787 11788 if (!fp_access_check(s)) { 11789 return; 11790 } 11791 11792 if (size == 0) { 11793 /* Special case bytes, use bswap op on each group of elements */ 11794 int groups = dsize / (8 << grp_size); 11795 11796 for (i = 0; i < groups; i++) { 11797 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11798 11799 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11800 switch (grp_size) { 11801 case MO_16: 11802 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11803 break; 11804 case MO_32: 11805 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11806 break; 11807 case MO_64: 11808 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11809 break; 11810 default: 11811 g_assert_not_reached(); 11812 } 11813 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11814 } 11815 clear_vec_high(s, is_q, rd); 11816 } else { 11817 int revmask = (1 << grp_size) - 1; 11818 int esize = 8 << size; 11819 int elements = dsize / esize; 11820 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11821 TCGv_i64 tcg_rd[2]; 11822 11823 for (i = 0; i < 2; i++) { 11824 tcg_rd[i] = tcg_temp_new_i64(); 11825 tcg_gen_movi_i64(tcg_rd[i], 0); 11826 } 11827 11828 for (i = 0; i < elements; i++) { 11829 int e_rev = (i & 0xf) ^ revmask; 11830 int w = (e_rev * esize) / 64; 11831 int o = (e_rev * esize) % 64; 11832 11833 read_vec_element(s, tcg_rn, rn, i, size); 11834 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11835 } 11836 11837 for (i = 0; i < 2; i++) { 11838 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11839 } 11840 clear_vec_high(s, true, rd); 11841 } 11842 } 11843 11844 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11845 bool is_q, int size, int rn, int rd) 11846 { 11847 /* Implement the pairwise operations from 2-misc: 11848 * SADDLP, UADDLP, SADALP, UADALP. 11849 * These all add pairs of elements in the input to produce a 11850 * double-width result element in the output (possibly accumulating). 11851 */ 11852 bool accum = (opcode == 0x6); 11853 int maxpass = is_q ? 2 : 1; 11854 int pass; 11855 TCGv_i64 tcg_res[2]; 11856 11857 if (size == 2) { 11858 /* 32 + 32 -> 64 op */ 11859 MemOp memop = size + (u ? 0 : MO_SIGN); 11860 11861 for (pass = 0; pass < maxpass; pass++) { 11862 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11863 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11864 11865 tcg_res[pass] = tcg_temp_new_i64(); 11866 11867 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11868 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11869 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11870 if (accum) { 11871 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11872 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11873 } 11874 } 11875 } else { 11876 for (pass = 0; pass < maxpass; pass++) { 11877 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11878 NeonGenOne64OpFn *genfn; 11879 static NeonGenOne64OpFn * const fns[2][2] = { 11880 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11881 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11882 }; 11883 11884 genfn = fns[size][u]; 11885 11886 tcg_res[pass] = tcg_temp_new_i64(); 11887 11888 read_vec_element(s, tcg_op, rn, pass, MO_64); 11889 genfn(tcg_res[pass], tcg_op); 11890 11891 if (accum) { 11892 read_vec_element(s, tcg_op, rd, pass, MO_64); 11893 if (size == 0) { 11894 gen_helper_neon_addl_u16(tcg_res[pass], 11895 tcg_res[pass], tcg_op); 11896 } else { 11897 gen_helper_neon_addl_u32(tcg_res[pass], 11898 tcg_res[pass], tcg_op); 11899 } 11900 } 11901 } 11902 } 11903 if (!is_q) { 11904 tcg_res[1] = tcg_constant_i64(0); 11905 } 11906 for (pass = 0; pass < 2; pass++) { 11907 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11908 } 11909 } 11910 11911 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11912 { 11913 /* Implement SHLL and SHLL2 */ 11914 int pass; 11915 int part = is_q ? 2 : 0; 11916 TCGv_i64 tcg_res[2]; 11917 11918 for (pass = 0; pass < 2; pass++) { 11919 static NeonGenWidenFn * const widenfns[3] = { 11920 gen_helper_neon_widen_u8, 11921 gen_helper_neon_widen_u16, 11922 tcg_gen_extu_i32_i64, 11923 }; 11924 NeonGenWidenFn *widenfn = widenfns[size]; 11925 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11926 11927 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11928 tcg_res[pass] = tcg_temp_new_i64(); 11929 widenfn(tcg_res[pass], tcg_op); 11930 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11931 } 11932 11933 for (pass = 0; pass < 2; pass++) { 11934 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11935 } 11936 } 11937 11938 /* AdvSIMD two reg misc 11939 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11940 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11941 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11942 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11943 */ 11944 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11945 { 11946 int size = extract32(insn, 22, 2); 11947 int opcode = extract32(insn, 12, 5); 11948 bool u = extract32(insn, 29, 1); 11949 bool is_q = extract32(insn, 30, 1); 11950 int rn = extract32(insn, 5, 5); 11951 int rd = extract32(insn, 0, 5); 11952 bool need_fpstatus = false; 11953 int rmode = -1; 11954 TCGv_i32 tcg_rmode; 11955 TCGv_ptr tcg_fpstatus; 11956 11957 switch (opcode) { 11958 case 0x0: /* REV64, REV32 */ 11959 case 0x1: /* REV16 */ 11960 handle_rev(s, opcode, u, is_q, size, rn, rd); 11961 return; 11962 case 0x5: /* CNT, NOT, RBIT */ 11963 if (u && size == 0) { 11964 /* NOT */ 11965 break; 11966 } else if (u && size == 1) { 11967 /* RBIT */ 11968 break; 11969 } else if (!u && size == 0) { 11970 /* CNT */ 11971 break; 11972 } 11973 unallocated_encoding(s); 11974 return; 11975 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11976 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11977 if (size == 3) { 11978 unallocated_encoding(s); 11979 return; 11980 } 11981 if (!fp_access_check(s)) { 11982 return; 11983 } 11984 11985 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11986 return; 11987 case 0x4: /* CLS, CLZ */ 11988 if (size == 3) { 11989 unallocated_encoding(s); 11990 return; 11991 } 11992 break; 11993 case 0x2: /* SADDLP, UADDLP */ 11994 case 0x6: /* SADALP, UADALP */ 11995 if (size == 3) { 11996 unallocated_encoding(s); 11997 return; 11998 } 11999 if (!fp_access_check(s)) { 12000 return; 12001 } 12002 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12003 return; 12004 case 0x13: /* SHLL, SHLL2 */ 12005 if (u == 0 || size == 3) { 12006 unallocated_encoding(s); 12007 return; 12008 } 12009 if (!fp_access_check(s)) { 12010 return; 12011 } 12012 handle_shll(s, is_q, size, rn, rd); 12013 return; 12014 case 0xa: /* CMLT */ 12015 if (u == 1) { 12016 unallocated_encoding(s); 12017 return; 12018 } 12019 /* fall through */ 12020 case 0x8: /* CMGT, CMGE */ 12021 case 0x9: /* CMEQ, CMLE */ 12022 case 0xb: /* ABS, NEG */ 12023 if (size == 3 && !is_q) { 12024 unallocated_encoding(s); 12025 return; 12026 } 12027 break; 12028 case 0x3: /* SUQADD, USQADD */ 12029 if (size == 3 && !is_q) { 12030 unallocated_encoding(s); 12031 return; 12032 } 12033 if (!fp_access_check(s)) { 12034 return; 12035 } 12036 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12037 return; 12038 case 0x7: /* SQABS, SQNEG */ 12039 if (size == 3 && !is_q) { 12040 unallocated_encoding(s); 12041 return; 12042 } 12043 break; 12044 case 0xc ... 0xf: 12045 case 0x16 ... 0x1f: 12046 { 12047 /* Floating point: U, size[1] and opcode indicate operation; 12048 * size[0] indicates single or double precision. 12049 */ 12050 int is_double = extract32(size, 0, 1); 12051 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12052 size = is_double ? 3 : 2; 12053 switch (opcode) { 12054 case 0x2f: /* FABS */ 12055 case 0x6f: /* FNEG */ 12056 if (size == 3 && !is_q) { 12057 unallocated_encoding(s); 12058 return; 12059 } 12060 break; 12061 case 0x1d: /* SCVTF */ 12062 case 0x5d: /* UCVTF */ 12063 { 12064 bool is_signed = (opcode == 0x1d) ? true : false; 12065 int elements = is_double ? 2 : is_q ? 4 : 2; 12066 if (is_double && !is_q) { 12067 unallocated_encoding(s); 12068 return; 12069 } 12070 if (!fp_access_check(s)) { 12071 return; 12072 } 12073 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12074 return; 12075 } 12076 case 0x2c: /* FCMGT (zero) */ 12077 case 0x2d: /* FCMEQ (zero) */ 12078 case 0x2e: /* FCMLT (zero) */ 12079 case 0x6c: /* FCMGE (zero) */ 12080 case 0x6d: /* FCMLE (zero) */ 12081 if (size == 3 && !is_q) { 12082 unallocated_encoding(s); 12083 return; 12084 } 12085 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12086 return; 12087 case 0x7f: /* FSQRT */ 12088 if (size == 3 && !is_q) { 12089 unallocated_encoding(s); 12090 return; 12091 } 12092 break; 12093 case 0x1a: /* FCVTNS */ 12094 case 0x1b: /* FCVTMS */ 12095 case 0x3a: /* FCVTPS */ 12096 case 0x3b: /* FCVTZS */ 12097 case 0x5a: /* FCVTNU */ 12098 case 0x5b: /* FCVTMU */ 12099 case 0x7a: /* FCVTPU */ 12100 case 0x7b: /* FCVTZU */ 12101 need_fpstatus = true; 12102 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12103 if (size == 3 && !is_q) { 12104 unallocated_encoding(s); 12105 return; 12106 } 12107 break; 12108 case 0x5c: /* FCVTAU */ 12109 case 0x1c: /* FCVTAS */ 12110 need_fpstatus = true; 12111 rmode = FPROUNDING_TIEAWAY; 12112 if (size == 3 && !is_q) { 12113 unallocated_encoding(s); 12114 return; 12115 } 12116 break; 12117 case 0x3c: /* URECPE */ 12118 if (size == 3) { 12119 unallocated_encoding(s); 12120 return; 12121 } 12122 /* fall through */ 12123 case 0x3d: /* FRECPE */ 12124 case 0x7d: /* FRSQRTE */ 12125 if (size == 3 && !is_q) { 12126 unallocated_encoding(s); 12127 return; 12128 } 12129 if (!fp_access_check(s)) { 12130 return; 12131 } 12132 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12133 return; 12134 case 0x56: /* FCVTXN, FCVTXN2 */ 12135 if (size == 2) { 12136 unallocated_encoding(s); 12137 return; 12138 } 12139 /* fall through */ 12140 case 0x16: /* FCVTN, FCVTN2 */ 12141 /* handle_2misc_narrow does a 2*size -> size operation, but these 12142 * instructions encode the source size rather than dest size. 12143 */ 12144 if (!fp_access_check(s)) { 12145 return; 12146 } 12147 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12148 return; 12149 case 0x36: /* BFCVTN, BFCVTN2 */ 12150 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12151 unallocated_encoding(s); 12152 return; 12153 } 12154 if (!fp_access_check(s)) { 12155 return; 12156 } 12157 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12158 return; 12159 case 0x17: /* FCVTL, FCVTL2 */ 12160 if (!fp_access_check(s)) { 12161 return; 12162 } 12163 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12164 return; 12165 case 0x18: /* FRINTN */ 12166 case 0x19: /* FRINTM */ 12167 case 0x38: /* FRINTP */ 12168 case 0x39: /* FRINTZ */ 12169 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12170 /* fall through */ 12171 case 0x59: /* FRINTX */ 12172 case 0x79: /* FRINTI */ 12173 need_fpstatus = true; 12174 if (size == 3 && !is_q) { 12175 unallocated_encoding(s); 12176 return; 12177 } 12178 break; 12179 case 0x58: /* FRINTA */ 12180 rmode = FPROUNDING_TIEAWAY; 12181 need_fpstatus = true; 12182 if (size == 3 && !is_q) { 12183 unallocated_encoding(s); 12184 return; 12185 } 12186 break; 12187 case 0x7c: /* URSQRTE */ 12188 if (size == 3) { 12189 unallocated_encoding(s); 12190 return; 12191 } 12192 break; 12193 case 0x1e: /* FRINT32Z */ 12194 case 0x1f: /* FRINT64Z */ 12195 rmode = FPROUNDING_ZERO; 12196 /* fall through */ 12197 case 0x5e: /* FRINT32X */ 12198 case 0x5f: /* FRINT64X */ 12199 need_fpstatus = true; 12200 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12201 unallocated_encoding(s); 12202 return; 12203 } 12204 break; 12205 default: 12206 unallocated_encoding(s); 12207 return; 12208 } 12209 break; 12210 } 12211 default: 12212 unallocated_encoding(s); 12213 return; 12214 } 12215 12216 if (!fp_access_check(s)) { 12217 return; 12218 } 12219 12220 if (need_fpstatus || rmode >= 0) { 12221 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12222 } else { 12223 tcg_fpstatus = NULL; 12224 } 12225 if (rmode >= 0) { 12226 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12227 } else { 12228 tcg_rmode = NULL; 12229 } 12230 12231 switch (opcode) { 12232 case 0x5: 12233 if (u && size == 0) { /* NOT */ 12234 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12235 return; 12236 } 12237 break; 12238 case 0x8: /* CMGT, CMGE */ 12239 if (u) { 12240 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12241 } else { 12242 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12243 } 12244 return; 12245 case 0x9: /* CMEQ, CMLE */ 12246 if (u) { 12247 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12248 } else { 12249 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12250 } 12251 return; 12252 case 0xa: /* CMLT */ 12253 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12254 return; 12255 case 0xb: 12256 if (u) { /* ABS, NEG */ 12257 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12258 } else { 12259 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12260 } 12261 return; 12262 } 12263 12264 if (size == 3) { 12265 /* All 64-bit element operations can be shared with scalar 2misc */ 12266 int pass; 12267 12268 /* Coverity claims (size == 3 && !is_q) has been eliminated 12269 * from all paths leading to here. 12270 */ 12271 tcg_debug_assert(is_q); 12272 for (pass = 0; pass < 2; pass++) { 12273 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12274 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12275 12276 read_vec_element(s, tcg_op, rn, pass, MO_64); 12277 12278 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12279 tcg_rmode, tcg_fpstatus); 12280 12281 write_vec_element(s, tcg_res, rd, pass, MO_64); 12282 } 12283 } else { 12284 int pass; 12285 12286 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12287 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12288 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12289 12290 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12291 12292 if (size == 2) { 12293 /* Special cases for 32 bit elements */ 12294 switch (opcode) { 12295 case 0x4: /* CLS */ 12296 if (u) { 12297 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12298 } else { 12299 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12300 } 12301 break; 12302 case 0x7: /* SQABS, SQNEG */ 12303 if (u) { 12304 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12305 } else { 12306 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12307 } 12308 break; 12309 case 0x2f: /* FABS */ 12310 gen_helper_vfp_abss(tcg_res, tcg_op); 12311 break; 12312 case 0x6f: /* FNEG */ 12313 gen_helper_vfp_negs(tcg_res, tcg_op); 12314 break; 12315 case 0x7f: /* FSQRT */ 12316 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12317 break; 12318 case 0x1a: /* FCVTNS */ 12319 case 0x1b: /* FCVTMS */ 12320 case 0x1c: /* FCVTAS */ 12321 case 0x3a: /* FCVTPS */ 12322 case 0x3b: /* FCVTZS */ 12323 gen_helper_vfp_tosls(tcg_res, tcg_op, 12324 tcg_constant_i32(0), tcg_fpstatus); 12325 break; 12326 case 0x5a: /* FCVTNU */ 12327 case 0x5b: /* FCVTMU */ 12328 case 0x5c: /* FCVTAU */ 12329 case 0x7a: /* FCVTPU */ 12330 case 0x7b: /* FCVTZU */ 12331 gen_helper_vfp_touls(tcg_res, tcg_op, 12332 tcg_constant_i32(0), tcg_fpstatus); 12333 break; 12334 case 0x18: /* FRINTN */ 12335 case 0x19: /* FRINTM */ 12336 case 0x38: /* FRINTP */ 12337 case 0x39: /* FRINTZ */ 12338 case 0x58: /* FRINTA */ 12339 case 0x79: /* FRINTI */ 12340 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12341 break; 12342 case 0x59: /* FRINTX */ 12343 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12344 break; 12345 case 0x7c: /* URSQRTE */ 12346 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12347 break; 12348 case 0x1e: /* FRINT32Z */ 12349 case 0x5e: /* FRINT32X */ 12350 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12351 break; 12352 case 0x1f: /* FRINT64Z */ 12353 case 0x5f: /* FRINT64X */ 12354 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12355 break; 12356 default: 12357 g_assert_not_reached(); 12358 } 12359 } else { 12360 /* Use helpers for 8 and 16 bit elements */ 12361 switch (opcode) { 12362 case 0x5: /* CNT, RBIT */ 12363 /* For these two insns size is part of the opcode specifier 12364 * (handled earlier); they always operate on byte elements. 12365 */ 12366 if (u) { 12367 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12368 } else { 12369 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12370 } 12371 break; 12372 case 0x7: /* SQABS, SQNEG */ 12373 { 12374 NeonGenOneOpEnvFn *genfn; 12375 static NeonGenOneOpEnvFn * const fns[2][2] = { 12376 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12377 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12378 }; 12379 genfn = fns[size][u]; 12380 genfn(tcg_res, cpu_env, tcg_op); 12381 break; 12382 } 12383 case 0x4: /* CLS, CLZ */ 12384 if (u) { 12385 if (size == 0) { 12386 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12387 } else { 12388 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12389 } 12390 } else { 12391 if (size == 0) { 12392 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12393 } else { 12394 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12395 } 12396 } 12397 break; 12398 default: 12399 g_assert_not_reached(); 12400 } 12401 } 12402 12403 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12404 } 12405 } 12406 clear_vec_high(s, is_q, rd); 12407 12408 if (tcg_rmode) { 12409 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12410 } 12411 } 12412 12413 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12414 * 12415 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12416 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12417 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12418 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12419 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12420 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12421 * 12422 * This actually covers two groups where scalar access is governed by 12423 * bit 28. A bunch of the instructions (float to integral) only exist 12424 * in the vector form and are un-allocated for the scalar decode. Also 12425 * in the scalar decode Q is always 1. 12426 */ 12427 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12428 { 12429 int fpop, opcode, a, u; 12430 int rn, rd; 12431 bool is_q; 12432 bool is_scalar; 12433 bool only_in_vector = false; 12434 12435 int pass; 12436 TCGv_i32 tcg_rmode = NULL; 12437 TCGv_ptr tcg_fpstatus = NULL; 12438 bool need_fpst = true; 12439 int rmode = -1; 12440 12441 if (!dc_isar_feature(aa64_fp16, s)) { 12442 unallocated_encoding(s); 12443 return; 12444 } 12445 12446 rd = extract32(insn, 0, 5); 12447 rn = extract32(insn, 5, 5); 12448 12449 a = extract32(insn, 23, 1); 12450 u = extract32(insn, 29, 1); 12451 is_scalar = extract32(insn, 28, 1); 12452 is_q = extract32(insn, 30, 1); 12453 12454 opcode = extract32(insn, 12, 5); 12455 fpop = deposit32(opcode, 5, 1, a); 12456 fpop = deposit32(fpop, 6, 1, u); 12457 12458 switch (fpop) { 12459 case 0x1d: /* SCVTF */ 12460 case 0x5d: /* UCVTF */ 12461 { 12462 int elements; 12463 12464 if (is_scalar) { 12465 elements = 1; 12466 } else { 12467 elements = (is_q ? 8 : 4); 12468 } 12469 12470 if (!fp_access_check(s)) { 12471 return; 12472 } 12473 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12474 return; 12475 } 12476 break; 12477 case 0x2c: /* FCMGT (zero) */ 12478 case 0x2d: /* FCMEQ (zero) */ 12479 case 0x2e: /* FCMLT (zero) */ 12480 case 0x6c: /* FCMGE (zero) */ 12481 case 0x6d: /* FCMLE (zero) */ 12482 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12483 return; 12484 case 0x3d: /* FRECPE */ 12485 case 0x3f: /* FRECPX */ 12486 break; 12487 case 0x18: /* FRINTN */ 12488 only_in_vector = true; 12489 rmode = FPROUNDING_TIEEVEN; 12490 break; 12491 case 0x19: /* FRINTM */ 12492 only_in_vector = true; 12493 rmode = FPROUNDING_NEGINF; 12494 break; 12495 case 0x38: /* FRINTP */ 12496 only_in_vector = true; 12497 rmode = FPROUNDING_POSINF; 12498 break; 12499 case 0x39: /* FRINTZ */ 12500 only_in_vector = true; 12501 rmode = FPROUNDING_ZERO; 12502 break; 12503 case 0x58: /* FRINTA */ 12504 only_in_vector = true; 12505 rmode = FPROUNDING_TIEAWAY; 12506 break; 12507 case 0x59: /* FRINTX */ 12508 case 0x79: /* FRINTI */ 12509 only_in_vector = true; 12510 /* current rounding mode */ 12511 break; 12512 case 0x1a: /* FCVTNS */ 12513 rmode = FPROUNDING_TIEEVEN; 12514 break; 12515 case 0x1b: /* FCVTMS */ 12516 rmode = FPROUNDING_NEGINF; 12517 break; 12518 case 0x1c: /* FCVTAS */ 12519 rmode = FPROUNDING_TIEAWAY; 12520 break; 12521 case 0x3a: /* FCVTPS */ 12522 rmode = FPROUNDING_POSINF; 12523 break; 12524 case 0x3b: /* FCVTZS */ 12525 rmode = FPROUNDING_ZERO; 12526 break; 12527 case 0x5a: /* FCVTNU */ 12528 rmode = FPROUNDING_TIEEVEN; 12529 break; 12530 case 0x5b: /* FCVTMU */ 12531 rmode = FPROUNDING_NEGINF; 12532 break; 12533 case 0x5c: /* FCVTAU */ 12534 rmode = FPROUNDING_TIEAWAY; 12535 break; 12536 case 0x7a: /* FCVTPU */ 12537 rmode = FPROUNDING_POSINF; 12538 break; 12539 case 0x7b: /* FCVTZU */ 12540 rmode = FPROUNDING_ZERO; 12541 break; 12542 case 0x2f: /* FABS */ 12543 case 0x6f: /* FNEG */ 12544 need_fpst = false; 12545 break; 12546 case 0x7d: /* FRSQRTE */ 12547 case 0x7f: /* FSQRT (vector) */ 12548 break; 12549 default: 12550 unallocated_encoding(s); 12551 return; 12552 } 12553 12554 12555 /* Check additional constraints for the scalar encoding */ 12556 if (is_scalar) { 12557 if (!is_q) { 12558 unallocated_encoding(s); 12559 return; 12560 } 12561 /* FRINTxx is only in the vector form */ 12562 if (only_in_vector) { 12563 unallocated_encoding(s); 12564 return; 12565 } 12566 } 12567 12568 if (!fp_access_check(s)) { 12569 return; 12570 } 12571 12572 if (rmode >= 0 || need_fpst) { 12573 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12574 } 12575 12576 if (rmode >= 0) { 12577 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12578 } 12579 12580 if (is_scalar) { 12581 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12582 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12583 12584 switch (fpop) { 12585 case 0x1a: /* FCVTNS */ 12586 case 0x1b: /* FCVTMS */ 12587 case 0x1c: /* FCVTAS */ 12588 case 0x3a: /* FCVTPS */ 12589 case 0x3b: /* FCVTZS */ 12590 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12591 break; 12592 case 0x3d: /* FRECPE */ 12593 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12594 break; 12595 case 0x3f: /* FRECPX */ 12596 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12597 break; 12598 case 0x5a: /* FCVTNU */ 12599 case 0x5b: /* FCVTMU */ 12600 case 0x5c: /* FCVTAU */ 12601 case 0x7a: /* FCVTPU */ 12602 case 0x7b: /* FCVTZU */ 12603 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12604 break; 12605 case 0x6f: /* FNEG */ 12606 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12607 break; 12608 case 0x7d: /* FRSQRTE */ 12609 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12610 break; 12611 default: 12612 g_assert_not_reached(); 12613 } 12614 12615 /* limit any sign extension going on */ 12616 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12617 write_fp_sreg(s, rd, tcg_res); 12618 } else { 12619 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12620 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12621 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12622 12623 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12624 12625 switch (fpop) { 12626 case 0x1a: /* FCVTNS */ 12627 case 0x1b: /* FCVTMS */ 12628 case 0x1c: /* FCVTAS */ 12629 case 0x3a: /* FCVTPS */ 12630 case 0x3b: /* FCVTZS */ 12631 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12632 break; 12633 case 0x3d: /* FRECPE */ 12634 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12635 break; 12636 case 0x5a: /* FCVTNU */ 12637 case 0x5b: /* FCVTMU */ 12638 case 0x5c: /* FCVTAU */ 12639 case 0x7a: /* FCVTPU */ 12640 case 0x7b: /* FCVTZU */ 12641 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12642 break; 12643 case 0x18: /* FRINTN */ 12644 case 0x19: /* FRINTM */ 12645 case 0x38: /* FRINTP */ 12646 case 0x39: /* FRINTZ */ 12647 case 0x58: /* FRINTA */ 12648 case 0x79: /* FRINTI */ 12649 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12650 break; 12651 case 0x59: /* FRINTX */ 12652 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12653 break; 12654 case 0x2f: /* FABS */ 12655 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12656 break; 12657 case 0x6f: /* FNEG */ 12658 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12659 break; 12660 case 0x7d: /* FRSQRTE */ 12661 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12662 break; 12663 case 0x7f: /* FSQRT */ 12664 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12665 break; 12666 default: 12667 g_assert_not_reached(); 12668 } 12669 12670 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12671 } 12672 12673 clear_vec_high(s, is_q, rd); 12674 } 12675 12676 if (tcg_rmode) { 12677 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12678 } 12679 } 12680 12681 /* AdvSIMD scalar x indexed element 12682 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12683 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12684 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12685 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12686 * AdvSIMD vector x indexed element 12687 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12688 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12689 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12690 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12691 */ 12692 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12693 { 12694 /* This encoding has two kinds of instruction: 12695 * normal, where we perform elt x idxelt => elt for each 12696 * element in the vector 12697 * long, where we perform elt x idxelt and generate a result of 12698 * double the width of the input element 12699 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12700 */ 12701 bool is_scalar = extract32(insn, 28, 1); 12702 bool is_q = extract32(insn, 30, 1); 12703 bool u = extract32(insn, 29, 1); 12704 int size = extract32(insn, 22, 2); 12705 int l = extract32(insn, 21, 1); 12706 int m = extract32(insn, 20, 1); 12707 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12708 int rm = extract32(insn, 16, 4); 12709 int opcode = extract32(insn, 12, 4); 12710 int h = extract32(insn, 11, 1); 12711 int rn = extract32(insn, 5, 5); 12712 int rd = extract32(insn, 0, 5); 12713 bool is_long = false; 12714 int is_fp = 0; 12715 bool is_fp16 = false; 12716 int index; 12717 TCGv_ptr fpst; 12718 12719 switch (16 * u + opcode) { 12720 case 0x08: /* MUL */ 12721 case 0x10: /* MLA */ 12722 case 0x14: /* MLS */ 12723 if (is_scalar) { 12724 unallocated_encoding(s); 12725 return; 12726 } 12727 break; 12728 case 0x02: /* SMLAL, SMLAL2 */ 12729 case 0x12: /* UMLAL, UMLAL2 */ 12730 case 0x06: /* SMLSL, SMLSL2 */ 12731 case 0x16: /* UMLSL, UMLSL2 */ 12732 case 0x0a: /* SMULL, SMULL2 */ 12733 case 0x1a: /* UMULL, UMULL2 */ 12734 if (is_scalar) { 12735 unallocated_encoding(s); 12736 return; 12737 } 12738 is_long = true; 12739 break; 12740 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12741 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12742 case 0x0b: /* SQDMULL, SQDMULL2 */ 12743 is_long = true; 12744 break; 12745 case 0x0c: /* SQDMULH */ 12746 case 0x0d: /* SQRDMULH */ 12747 break; 12748 case 0x01: /* FMLA */ 12749 case 0x05: /* FMLS */ 12750 case 0x09: /* FMUL */ 12751 case 0x19: /* FMULX */ 12752 is_fp = 1; 12753 break; 12754 case 0x1d: /* SQRDMLAH */ 12755 case 0x1f: /* SQRDMLSH */ 12756 if (!dc_isar_feature(aa64_rdm, s)) { 12757 unallocated_encoding(s); 12758 return; 12759 } 12760 break; 12761 case 0x0e: /* SDOT */ 12762 case 0x1e: /* UDOT */ 12763 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12764 unallocated_encoding(s); 12765 return; 12766 } 12767 break; 12768 case 0x0f: 12769 switch (size) { 12770 case 0: /* SUDOT */ 12771 case 2: /* USDOT */ 12772 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12773 unallocated_encoding(s); 12774 return; 12775 } 12776 size = MO_32; 12777 break; 12778 case 1: /* BFDOT */ 12779 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 size = MO_32; 12784 break; 12785 case 3: /* BFMLAL{B,T} */ 12786 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12787 unallocated_encoding(s); 12788 return; 12789 } 12790 /* can't set is_fp without other incorrect size checks */ 12791 size = MO_16; 12792 break; 12793 default: 12794 unallocated_encoding(s); 12795 return; 12796 } 12797 break; 12798 case 0x11: /* FCMLA #0 */ 12799 case 0x13: /* FCMLA #90 */ 12800 case 0x15: /* FCMLA #180 */ 12801 case 0x17: /* FCMLA #270 */ 12802 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 is_fp = 2; 12807 break; 12808 case 0x00: /* FMLAL */ 12809 case 0x04: /* FMLSL */ 12810 case 0x18: /* FMLAL2 */ 12811 case 0x1c: /* FMLSL2 */ 12812 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12813 unallocated_encoding(s); 12814 return; 12815 } 12816 size = MO_16; 12817 /* is_fp, but we pass cpu_env not fp_status. */ 12818 break; 12819 default: 12820 unallocated_encoding(s); 12821 return; 12822 } 12823 12824 switch (is_fp) { 12825 case 1: /* normal fp */ 12826 /* convert insn encoded size to MemOp size */ 12827 switch (size) { 12828 case 0: /* half-precision */ 12829 size = MO_16; 12830 is_fp16 = true; 12831 break; 12832 case MO_32: /* single precision */ 12833 case MO_64: /* double precision */ 12834 break; 12835 default: 12836 unallocated_encoding(s); 12837 return; 12838 } 12839 break; 12840 12841 case 2: /* complex fp */ 12842 /* Each indexable element is a complex pair. */ 12843 size += 1; 12844 switch (size) { 12845 case MO_32: 12846 if (h && !is_q) { 12847 unallocated_encoding(s); 12848 return; 12849 } 12850 is_fp16 = true; 12851 break; 12852 case MO_64: 12853 break; 12854 default: 12855 unallocated_encoding(s); 12856 return; 12857 } 12858 break; 12859 12860 default: /* integer */ 12861 switch (size) { 12862 case MO_8: 12863 case MO_64: 12864 unallocated_encoding(s); 12865 return; 12866 } 12867 break; 12868 } 12869 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12870 unallocated_encoding(s); 12871 return; 12872 } 12873 12874 /* Given MemOp size, adjust register and indexing. */ 12875 switch (size) { 12876 case MO_16: 12877 index = h << 2 | l << 1 | m; 12878 break; 12879 case MO_32: 12880 index = h << 1 | l; 12881 rm |= m << 4; 12882 break; 12883 case MO_64: 12884 if (l || !is_q) { 12885 unallocated_encoding(s); 12886 return; 12887 } 12888 index = h; 12889 rm |= m << 4; 12890 break; 12891 default: 12892 g_assert_not_reached(); 12893 } 12894 12895 if (!fp_access_check(s)) { 12896 return; 12897 } 12898 12899 if (is_fp) { 12900 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12901 } else { 12902 fpst = NULL; 12903 } 12904 12905 switch (16 * u + opcode) { 12906 case 0x0e: /* SDOT */ 12907 case 0x1e: /* UDOT */ 12908 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12909 u ? gen_helper_gvec_udot_idx_b 12910 : gen_helper_gvec_sdot_idx_b); 12911 return; 12912 case 0x0f: 12913 switch (extract32(insn, 22, 2)) { 12914 case 0: /* SUDOT */ 12915 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12916 gen_helper_gvec_sudot_idx_b); 12917 return; 12918 case 1: /* BFDOT */ 12919 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12920 gen_helper_gvec_bfdot_idx); 12921 return; 12922 case 2: /* USDOT */ 12923 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12924 gen_helper_gvec_usdot_idx_b); 12925 return; 12926 case 3: /* BFMLAL{B,T} */ 12927 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12928 gen_helper_gvec_bfmlal_idx); 12929 return; 12930 } 12931 g_assert_not_reached(); 12932 case 0x11: /* FCMLA #0 */ 12933 case 0x13: /* FCMLA #90 */ 12934 case 0x15: /* FCMLA #180 */ 12935 case 0x17: /* FCMLA #270 */ 12936 { 12937 int rot = extract32(insn, 13, 2); 12938 int data = (index << 2) | rot; 12939 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12940 vec_full_reg_offset(s, rn), 12941 vec_full_reg_offset(s, rm), 12942 vec_full_reg_offset(s, rd), fpst, 12943 is_q ? 16 : 8, vec_full_reg_size(s), data, 12944 size == MO_64 12945 ? gen_helper_gvec_fcmlas_idx 12946 : gen_helper_gvec_fcmlah_idx); 12947 } 12948 return; 12949 12950 case 0x00: /* FMLAL */ 12951 case 0x04: /* FMLSL */ 12952 case 0x18: /* FMLAL2 */ 12953 case 0x1c: /* FMLSL2 */ 12954 { 12955 int is_s = extract32(opcode, 2, 1); 12956 int is_2 = u; 12957 int data = (index << 2) | (is_2 << 1) | is_s; 12958 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12959 vec_full_reg_offset(s, rn), 12960 vec_full_reg_offset(s, rm), cpu_env, 12961 is_q ? 16 : 8, vec_full_reg_size(s), 12962 data, gen_helper_gvec_fmlal_idx_a64); 12963 } 12964 return; 12965 12966 case 0x08: /* MUL */ 12967 if (!is_long && !is_scalar) { 12968 static gen_helper_gvec_3 * const fns[3] = { 12969 gen_helper_gvec_mul_idx_h, 12970 gen_helper_gvec_mul_idx_s, 12971 gen_helper_gvec_mul_idx_d, 12972 }; 12973 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12974 vec_full_reg_offset(s, rn), 12975 vec_full_reg_offset(s, rm), 12976 is_q ? 16 : 8, vec_full_reg_size(s), 12977 index, fns[size - 1]); 12978 return; 12979 } 12980 break; 12981 12982 case 0x10: /* MLA */ 12983 if (!is_long && !is_scalar) { 12984 static gen_helper_gvec_4 * const fns[3] = { 12985 gen_helper_gvec_mla_idx_h, 12986 gen_helper_gvec_mla_idx_s, 12987 gen_helper_gvec_mla_idx_d, 12988 }; 12989 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12990 vec_full_reg_offset(s, rn), 12991 vec_full_reg_offset(s, rm), 12992 vec_full_reg_offset(s, rd), 12993 is_q ? 16 : 8, vec_full_reg_size(s), 12994 index, fns[size - 1]); 12995 return; 12996 } 12997 break; 12998 12999 case 0x14: /* MLS */ 13000 if (!is_long && !is_scalar) { 13001 static gen_helper_gvec_4 * const fns[3] = { 13002 gen_helper_gvec_mls_idx_h, 13003 gen_helper_gvec_mls_idx_s, 13004 gen_helper_gvec_mls_idx_d, 13005 }; 13006 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13007 vec_full_reg_offset(s, rn), 13008 vec_full_reg_offset(s, rm), 13009 vec_full_reg_offset(s, rd), 13010 is_q ? 16 : 8, vec_full_reg_size(s), 13011 index, fns[size - 1]); 13012 return; 13013 } 13014 break; 13015 } 13016 13017 if (size == 3) { 13018 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13019 int pass; 13020 13021 assert(is_fp && is_q && !is_long); 13022 13023 read_vec_element(s, tcg_idx, rm, index, MO_64); 13024 13025 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13026 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13027 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13028 13029 read_vec_element(s, tcg_op, rn, pass, MO_64); 13030 13031 switch (16 * u + opcode) { 13032 case 0x05: /* FMLS */ 13033 /* As usual for ARM, separate negation for fused multiply-add */ 13034 gen_helper_vfp_negd(tcg_op, tcg_op); 13035 /* fall through */ 13036 case 0x01: /* FMLA */ 13037 read_vec_element(s, tcg_res, rd, pass, MO_64); 13038 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13039 break; 13040 case 0x09: /* FMUL */ 13041 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13042 break; 13043 case 0x19: /* FMULX */ 13044 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13045 break; 13046 default: 13047 g_assert_not_reached(); 13048 } 13049 13050 write_vec_element(s, tcg_res, rd, pass, MO_64); 13051 } 13052 13053 clear_vec_high(s, !is_scalar, rd); 13054 } else if (!is_long) { 13055 /* 32 bit floating point, or 16 or 32 bit integer. 13056 * For the 16 bit scalar case we use the usual Neon helpers and 13057 * rely on the fact that 0 op 0 == 0 with no side effects. 13058 */ 13059 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13060 int pass, maxpasses; 13061 13062 if (is_scalar) { 13063 maxpasses = 1; 13064 } else { 13065 maxpasses = is_q ? 4 : 2; 13066 } 13067 13068 read_vec_element_i32(s, tcg_idx, rm, index, size); 13069 13070 if (size == 1 && !is_scalar) { 13071 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13072 * the index into both halves of the 32 bit tcg_idx and then use 13073 * the usual Neon helpers. 13074 */ 13075 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13076 } 13077 13078 for (pass = 0; pass < maxpasses; pass++) { 13079 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13080 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13081 13082 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13083 13084 switch (16 * u + opcode) { 13085 case 0x08: /* MUL */ 13086 case 0x10: /* MLA */ 13087 case 0x14: /* MLS */ 13088 { 13089 static NeonGenTwoOpFn * const fns[2][2] = { 13090 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13091 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13092 }; 13093 NeonGenTwoOpFn *genfn; 13094 bool is_sub = opcode == 0x4; 13095 13096 if (size == 1) { 13097 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13098 } else { 13099 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13100 } 13101 if (opcode == 0x8) { 13102 break; 13103 } 13104 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13105 genfn = fns[size - 1][is_sub]; 13106 genfn(tcg_res, tcg_op, tcg_res); 13107 break; 13108 } 13109 case 0x05: /* FMLS */ 13110 case 0x01: /* FMLA */ 13111 read_vec_element_i32(s, tcg_res, rd, pass, 13112 is_scalar ? size : MO_32); 13113 switch (size) { 13114 case 1: 13115 if (opcode == 0x5) { 13116 /* As usual for ARM, separate negation for fused 13117 * multiply-add */ 13118 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13119 } 13120 if (is_scalar) { 13121 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13122 tcg_res, fpst); 13123 } else { 13124 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13125 tcg_res, fpst); 13126 } 13127 break; 13128 case 2: 13129 if (opcode == 0x5) { 13130 /* As usual for ARM, separate negation for 13131 * fused multiply-add */ 13132 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13133 } 13134 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13135 tcg_res, fpst); 13136 break; 13137 default: 13138 g_assert_not_reached(); 13139 } 13140 break; 13141 case 0x09: /* FMUL */ 13142 switch (size) { 13143 case 1: 13144 if (is_scalar) { 13145 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13146 tcg_idx, fpst); 13147 } else { 13148 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13149 tcg_idx, fpst); 13150 } 13151 break; 13152 case 2: 13153 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13154 break; 13155 default: 13156 g_assert_not_reached(); 13157 } 13158 break; 13159 case 0x19: /* FMULX */ 13160 switch (size) { 13161 case 1: 13162 if (is_scalar) { 13163 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13164 tcg_idx, fpst); 13165 } else { 13166 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13167 tcg_idx, fpst); 13168 } 13169 break; 13170 case 2: 13171 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13172 break; 13173 default: 13174 g_assert_not_reached(); 13175 } 13176 break; 13177 case 0x0c: /* SQDMULH */ 13178 if (size == 1) { 13179 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13180 tcg_op, tcg_idx); 13181 } else { 13182 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13183 tcg_op, tcg_idx); 13184 } 13185 break; 13186 case 0x0d: /* SQRDMULH */ 13187 if (size == 1) { 13188 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13189 tcg_op, tcg_idx); 13190 } else { 13191 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13192 tcg_op, tcg_idx); 13193 } 13194 break; 13195 case 0x1d: /* SQRDMLAH */ 13196 read_vec_element_i32(s, tcg_res, rd, pass, 13197 is_scalar ? size : MO_32); 13198 if (size == 1) { 13199 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13200 tcg_op, tcg_idx, tcg_res); 13201 } else { 13202 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13203 tcg_op, tcg_idx, tcg_res); 13204 } 13205 break; 13206 case 0x1f: /* SQRDMLSH */ 13207 read_vec_element_i32(s, tcg_res, rd, pass, 13208 is_scalar ? size : MO_32); 13209 if (size == 1) { 13210 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13211 tcg_op, tcg_idx, tcg_res); 13212 } else { 13213 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13214 tcg_op, tcg_idx, tcg_res); 13215 } 13216 break; 13217 default: 13218 g_assert_not_reached(); 13219 } 13220 13221 if (is_scalar) { 13222 write_fp_sreg(s, rd, tcg_res); 13223 } else { 13224 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13225 } 13226 } 13227 13228 clear_vec_high(s, is_q, rd); 13229 } else { 13230 /* long ops: 16x16->32 or 32x32->64 */ 13231 TCGv_i64 tcg_res[2]; 13232 int pass; 13233 bool satop = extract32(opcode, 0, 1); 13234 MemOp memop = MO_32; 13235 13236 if (satop || !u) { 13237 memop |= MO_SIGN; 13238 } 13239 13240 if (size == 2) { 13241 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13242 13243 read_vec_element(s, tcg_idx, rm, index, memop); 13244 13245 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13246 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13247 TCGv_i64 tcg_passres; 13248 int passelt; 13249 13250 if (is_scalar) { 13251 passelt = 0; 13252 } else { 13253 passelt = pass + (is_q * 2); 13254 } 13255 13256 read_vec_element(s, tcg_op, rn, passelt, memop); 13257 13258 tcg_res[pass] = tcg_temp_new_i64(); 13259 13260 if (opcode == 0xa || opcode == 0xb) { 13261 /* Non-accumulating ops */ 13262 tcg_passres = tcg_res[pass]; 13263 } else { 13264 tcg_passres = tcg_temp_new_i64(); 13265 } 13266 13267 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13268 13269 if (satop) { 13270 /* saturating, doubling */ 13271 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13272 tcg_passres, tcg_passres); 13273 } 13274 13275 if (opcode == 0xa || opcode == 0xb) { 13276 continue; 13277 } 13278 13279 /* Accumulating op: handle accumulate step */ 13280 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13281 13282 switch (opcode) { 13283 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13284 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13285 break; 13286 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13287 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13288 break; 13289 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13290 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13291 /* fall through */ 13292 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13293 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13294 tcg_res[pass], 13295 tcg_passres); 13296 break; 13297 default: 13298 g_assert_not_reached(); 13299 } 13300 } 13301 13302 clear_vec_high(s, !is_scalar, rd); 13303 } else { 13304 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13305 13306 assert(size == 1); 13307 read_vec_element_i32(s, tcg_idx, rm, index, size); 13308 13309 if (!is_scalar) { 13310 /* The simplest way to handle the 16x16 indexed ops is to 13311 * duplicate the index into both halves of the 32 bit tcg_idx 13312 * and then use the usual Neon helpers. 13313 */ 13314 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13315 } 13316 13317 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13318 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13319 TCGv_i64 tcg_passres; 13320 13321 if (is_scalar) { 13322 read_vec_element_i32(s, tcg_op, rn, pass, size); 13323 } else { 13324 read_vec_element_i32(s, tcg_op, rn, 13325 pass + (is_q * 2), MO_32); 13326 } 13327 13328 tcg_res[pass] = tcg_temp_new_i64(); 13329 13330 if (opcode == 0xa || opcode == 0xb) { 13331 /* Non-accumulating ops */ 13332 tcg_passres = tcg_res[pass]; 13333 } else { 13334 tcg_passres = tcg_temp_new_i64(); 13335 } 13336 13337 if (memop & MO_SIGN) { 13338 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13339 } else { 13340 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13341 } 13342 if (satop) { 13343 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13344 tcg_passres, tcg_passres); 13345 } 13346 13347 if (opcode == 0xa || opcode == 0xb) { 13348 continue; 13349 } 13350 13351 /* Accumulating op: handle accumulate step */ 13352 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13353 13354 switch (opcode) { 13355 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13356 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13357 tcg_passres); 13358 break; 13359 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13360 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13361 tcg_passres); 13362 break; 13363 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13364 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13365 /* fall through */ 13366 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13367 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13368 tcg_res[pass], 13369 tcg_passres); 13370 break; 13371 default: 13372 g_assert_not_reached(); 13373 } 13374 } 13375 13376 if (is_scalar) { 13377 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13378 } 13379 } 13380 13381 if (is_scalar) { 13382 tcg_res[1] = tcg_constant_i64(0); 13383 } 13384 13385 for (pass = 0; pass < 2; pass++) { 13386 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13387 } 13388 } 13389 } 13390 13391 /* Crypto AES 13392 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13393 * +-----------------+------+-----------+--------+-----+------+------+ 13394 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13395 * +-----------------+------+-----------+--------+-----+------+------+ 13396 */ 13397 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13398 { 13399 int size = extract32(insn, 22, 2); 13400 int opcode = extract32(insn, 12, 5); 13401 int rn = extract32(insn, 5, 5); 13402 int rd = extract32(insn, 0, 5); 13403 int decrypt; 13404 gen_helper_gvec_2 *genfn2 = NULL; 13405 gen_helper_gvec_3 *genfn3 = NULL; 13406 13407 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13408 unallocated_encoding(s); 13409 return; 13410 } 13411 13412 switch (opcode) { 13413 case 0x4: /* AESE */ 13414 decrypt = 0; 13415 genfn3 = gen_helper_crypto_aese; 13416 break; 13417 case 0x6: /* AESMC */ 13418 decrypt = 0; 13419 genfn2 = gen_helper_crypto_aesmc; 13420 break; 13421 case 0x5: /* AESD */ 13422 decrypt = 1; 13423 genfn3 = gen_helper_crypto_aese; 13424 break; 13425 case 0x7: /* AESIMC */ 13426 decrypt = 1; 13427 genfn2 = gen_helper_crypto_aesmc; 13428 break; 13429 default: 13430 unallocated_encoding(s); 13431 return; 13432 } 13433 13434 if (!fp_access_check(s)) { 13435 return; 13436 } 13437 if (genfn2) { 13438 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13439 } else { 13440 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13441 } 13442 } 13443 13444 /* Crypto three-reg SHA 13445 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13446 * +-----------------+------+---+------+---+--------+-----+------+------+ 13447 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13448 * +-----------------+------+---+------+---+--------+-----+------+------+ 13449 */ 13450 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13451 { 13452 int size = extract32(insn, 22, 2); 13453 int opcode = extract32(insn, 12, 3); 13454 int rm = extract32(insn, 16, 5); 13455 int rn = extract32(insn, 5, 5); 13456 int rd = extract32(insn, 0, 5); 13457 gen_helper_gvec_3 *genfn; 13458 bool feature; 13459 13460 if (size != 0) { 13461 unallocated_encoding(s); 13462 return; 13463 } 13464 13465 switch (opcode) { 13466 case 0: /* SHA1C */ 13467 genfn = gen_helper_crypto_sha1c; 13468 feature = dc_isar_feature(aa64_sha1, s); 13469 break; 13470 case 1: /* SHA1P */ 13471 genfn = gen_helper_crypto_sha1p; 13472 feature = dc_isar_feature(aa64_sha1, s); 13473 break; 13474 case 2: /* SHA1M */ 13475 genfn = gen_helper_crypto_sha1m; 13476 feature = dc_isar_feature(aa64_sha1, s); 13477 break; 13478 case 3: /* SHA1SU0 */ 13479 genfn = gen_helper_crypto_sha1su0; 13480 feature = dc_isar_feature(aa64_sha1, s); 13481 break; 13482 case 4: /* SHA256H */ 13483 genfn = gen_helper_crypto_sha256h; 13484 feature = dc_isar_feature(aa64_sha256, s); 13485 break; 13486 case 5: /* SHA256H2 */ 13487 genfn = gen_helper_crypto_sha256h2; 13488 feature = dc_isar_feature(aa64_sha256, s); 13489 break; 13490 case 6: /* SHA256SU1 */ 13491 genfn = gen_helper_crypto_sha256su1; 13492 feature = dc_isar_feature(aa64_sha256, s); 13493 break; 13494 default: 13495 unallocated_encoding(s); 13496 return; 13497 } 13498 13499 if (!feature) { 13500 unallocated_encoding(s); 13501 return; 13502 } 13503 13504 if (!fp_access_check(s)) { 13505 return; 13506 } 13507 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13508 } 13509 13510 /* Crypto two-reg SHA 13511 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13512 * +-----------------+------+-----------+--------+-----+------+------+ 13513 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13514 * +-----------------+------+-----------+--------+-----+------+------+ 13515 */ 13516 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13517 { 13518 int size = extract32(insn, 22, 2); 13519 int opcode = extract32(insn, 12, 5); 13520 int rn = extract32(insn, 5, 5); 13521 int rd = extract32(insn, 0, 5); 13522 gen_helper_gvec_2 *genfn; 13523 bool feature; 13524 13525 if (size != 0) { 13526 unallocated_encoding(s); 13527 return; 13528 } 13529 13530 switch (opcode) { 13531 case 0: /* SHA1H */ 13532 feature = dc_isar_feature(aa64_sha1, s); 13533 genfn = gen_helper_crypto_sha1h; 13534 break; 13535 case 1: /* SHA1SU1 */ 13536 feature = dc_isar_feature(aa64_sha1, s); 13537 genfn = gen_helper_crypto_sha1su1; 13538 break; 13539 case 2: /* SHA256SU0 */ 13540 feature = dc_isar_feature(aa64_sha256, s); 13541 genfn = gen_helper_crypto_sha256su0; 13542 break; 13543 default: 13544 unallocated_encoding(s); 13545 return; 13546 } 13547 13548 if (!feature) { 13549 unallocated_encoding(s); 13550 return; 13551 } 13552 13553 if (!fp_access_check(s)) { 13554 return; 13555 } 13556 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13557 } 13558 13559 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13560 { 13561 tcg_gen_rotli_i64(d, m, 1); 13562 tcg_gen_xor_i64(d, d, n); 13563 } 13564 13565 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13566 { 13567 tcg_gen_rotli_vec(vece, d, m, 1); 13568 tcg_gen_xor_vec(vece, d, d, n); 13569 } 13570 13571 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13572 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13573 { 13574 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13575 static const GVecGen3 op = { 13576 .fni8 = gen_rax1_i64, 13577 .fniv = gen_rax1_vec, 13578 .opt_opc = vecop_list, 13579 .fno = gen_helper_crypto_rax1, 13580 .vece = MO_64, 13581 }; 13582 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13583 } 13584 13585 /* Crypto three-reg SHA512 13586 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13587 * +-----------------------+------+---+---+-----+--------+------+------+ 13588 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13589 * +-----------------------+------+---+---+-----+--------+------+------+ 13590 */ 13591 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13592 { 13593 int opcode = extract32(insn, 10, 2); 13594 int o = extract32(insn, 14, 1); 13595 int rm = extract32(insn, 16, 5); 13596 int rn = extract32(insn, 5, 5); 13597 int rd = extract32(insn, 0, 5); 13598 bool feature; 13599 gen_helper_gvec_3 *oolfn = NULL; 13600 GVecGen3Fn *gvecfn = NULL; 13601 13602 if (o == 0) { 13603 switch (opcode) { 13604 case 0: /* SHA512H */ 13605 feature = dc_isar_feature(aa64_sha512, s); 13606 oolfn = gen_helper_crypto_sha512h; 13607 break; 13608 case 1: /* SHA512H2 */ 13609 feature = dc_isar_feature(aa64_sha512, s); 13610 oolfn = gen_helper_crypto_sha512h2; 13611 break; 13612 case 2: /* SHA512SU1 */ 13613 feature = dc_isar_feature(aa64_sha512, s); 13614 oolfn = gen_helper_crypto_sha512su1; 13615 break; 13616 case 3: /* RAX1 */ 13617 feature = dc_isar_feature(aa64_sha3, s); 13618 gvecfn = gen_gvec_rax1; 13619 break; 13620 default: 13621 g_assert_not_reached(); 13622 } 13623 } else { 13624 switch (opcode) { 13625 case 0: /* SM3PARTW1 */ 13626 feature = dc_isar_feature(aa64_sm3, s); 13627 oolfn = gen_helper_crypto_sm3partw1; 13628 break; 13629 case 1: /* SM3PARTW2 */ 13630 feature = dc_isar_feature(aa64_sm3, s); 13631 oolfn = gen_helper_crypto_sm3partw2; 13632 break; 13633 case 2: /* SM4EKEY */ 13634 feature = dc_isar_feature(aa64_sm4, s); 13635 oolfn = gen_helper_crypto_sm4ekey; 13636 break; 13637 default: 13638 unallocated_encoding(s); 13639 return; 13640 } 13641 } 13642 13643 if (!feature) { 13644 unallocated_encoding(s); 13645 return; 13646 } 13647 13648 if (!fp_access_check(s)) { 13649 return; 13650 } 13651 13652 if (oolfn) { 13653 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13654 } else { 13655 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13656 } 13657 } 13658 13659 /* Crypto two-reg SHA512 13660 * 31 12 11 10 9 5 4 0 13661 * +-----------------------------------------+--------+------+------+ 13662 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13663 * +-----------------------------------------+--------+------+------+ 13664 */ 13665 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13666 { 13667 int opcode = extract32(insn, 10, 2); 13668 int rn = extract32(insn, 5, 5); 13669 int rd = extract32(insn, 0, 5); 13670 bool feature; 13671 13672 switch (opcode) { 13673 case 0: /* SHA512SU0 */ 13674 feature = dc_isar_feature(aa64_sha512, s); 13675 break; 13676 case 1: /* SM4E */ 13677 feature = dc_isar_feature(aa64_sm4, s); 13678 break; 13679 default: 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 13684 if (!feature) { 13685 unallocated_encoding(s); 13686 return; 13687 } 13688 13689 if (!fp_access_check(s)) { 13690 return; 13691 } 13692 13693 switch (opcode) { 13694 case 0: /* SHA512SU0 */ 13695 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13696 break; 13697 case 1: /* SM4E */ 13698 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13699 break; 13700 default: 13701 g_assert_not_reached(); 13702 } 13703 } 13704 13705 /* Crypto four-register 13706 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13707 * +-------------------+-----+------+---+------+------+------+ 13708 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13709 * +-------------------+-----+------+---+------+------+------+ 13710 */ 13711 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13712 { 13713 int op0 = extract32(insn, 21, 2); 13714 int rm = extract32(insn, 16, 5); 13715 int ra = extract32(insn, 10, 5); 13716 int rn = extract32(insn, 5, 5); 13717 int rd = extract32(insn, 0, 5); 13718 bool feature; 13719 13720 switch (op0) { 13721 case 0: /* EOR3 */ 13722 case 1: /* BCAX */ 13723 feature = dc_isar_feature(aa64_sha3, s); 13724 break; 13725 case 2: /* SM3SS1 */ 13726 feature = dc_isar_feature(aa64_sm3, s); 13727 break; 13728 default: 13729 unallocated_encoding(s); 13730 return; 13731 } 13732 13733 if (!feature) { 13734 unallocated_encoding(s); 13735 return; 13736 } 13737 13738 if (!fp_access_check(s)) { 13739 return; 13740 } 13741 13742 if (op0 < 2) { 13743 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13744 int pass; 13745 13746 tcg_op1 = tcg_temp_new_i64(); 13747 tcg_op2 = tcg_temp_new_i64(); 13748 tcg_op3 = tcg_temp_new_i64(); 13749 tcg_res[0] = tcg_temp_new_i64(); 13750 tcg_res[1] = tcg_temp_new_i64(); 13751 13752 for (pass = 0; pass < 2; pass++) { 13753 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13754 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13755 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13756 13757 if (op0 == 0) { 13758 /* EOR3 */ 13759 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13760 } else { 13761 /* BCAX */ 13762 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13763 } 13764 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13765 } 13766 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13767 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13768 } else { 13769 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13770 13771 tcg_op1 = tcg_temp_new_i32(); 13772 tcg_op2 = tcg_temp_new_i32(); 13773 tcg_op3 = tcg_temp_new_i32(); 13774 tcg_res = tcg_temp_new_i32(); 13775 tcg_zero = tcg_constant_i32(0); 13776 13777 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13778 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13779 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13780 13781 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13782 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13783 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13784 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13785 13786 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13787 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13788 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13789 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13790 } 13791 } 13792 13793 /* Crypto XAR 13794 * 31 21 20 16 15 10 9 5 4 0 13795 * +-----------------------+------+--------+------+------+ 13796 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13797 * +-----------------------+------+--------+------+------+ 13798 */ 13799 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13800 { 13801 int rm = extract32(insn, 16, 5); 13802 int imm6 = extract32(insn, 10, 6); 13803 int rn = extract32(insn, 5, 5); 13804 int rd = extract32(insn, 0, 5); 13805 13806 if (!dc_isar_feature(aa64_sha3, s)) { 13807 unallocated_encoding(s); 13808 return; 13809 } 13810 13811 if (!fp_access_check(s)) { 13812 return; 13813 } 13814 13815 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13816 vec_full_reg_offset(s, rn), 13817 vec_full_reg_offset(s, rm), imm6, 16, 13818 vec_full_reg_size(s)); 13819 } 13820 13821 /* Crypto three-reg imm2 13822 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13823 * +-----------------------+------+-----+------+--------+------+------+ 13824 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13825 * +-----------------------+------+-----+------+--------+------+------+ 13826 */ 13827 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13828 { 13829 static gen_helper_gvec_3 * const fns[4] = { 13830 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13831 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13832 }; 13833 int opcode = extract32(insn, 10, 2); 13834 int imm2 = extract32(insn, 12, 2); 13835 int rm = extract32(insn, 16, 5); 13836 int rn = extract32(insn, 5, 5); 13837 int rd = extract32(insn, 0, 5); 13838 13839 if (!dc_isar_feature(aa64_sm3, s)) { 13840 unallocated_encoding(s); 13841 return; 13842 } 13843 13844 if (!fp_access_check(s)) { 13845 return; 13846 } 13847 13848 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13849 } 13850 13851 /* C3.6 Data processing - SIMD, inc Crypto 13852 * 13853 * As the decode gets a little complex we are using a table based 13854 * approach for this part of the decode. 13855 */ 13856 static const AArch64DecodeTable data_proc_simd[] = { 13857 /* pattern , mask , fn */ 13858 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13859 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13860 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13861 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13862 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13863 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13864 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13865 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13866 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13867 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13868 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13869 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13870 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13871 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13872 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13873 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13874 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13875 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13876 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13877 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13878 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13879 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13880 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13881 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13882 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13883 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13884 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13885 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13886 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13887 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13888 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13889 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13890 { 0x00000000, 0x00000000, NULL } 13891 }; 13892 13893 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13894 { 13895 /* Note that this is called with all non-FP cases from 13896 * table C3-6 so it must UNDEF for entries not specifically 13897 * allocated to instructions in that table. 13898 */ 13899 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13900 if (fn) { 13901 fn(s, insn); 13902 } else { 13903 unallocated_encoding(s); 13904 } 13905 } 13906 13907 /* C3.6 Data processing - SIMD and floating point */ 13908 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13909 { 13910 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13911 disas_data_proc_fp(s, insn); 13912 } else { 13913 /* SIMD, including crypto */ 13914 disas_data_proc_simd(s, insn); 13915 } 13916 } 13917 13918 static bool trans_OK(DisasContext *s, arg_OK *a) 13919 { 13920 return true; 13921 } 13922 13923 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13924 { 13925 s->is_nonstreaming = true; 13926 return true; 13927 } 13928 13929 /** 13930 * is_guarded_page: 13931 * @env: The cpu environment 13932 * @s: The DisasContext 13933 * 13934 * Return true if the page is guarded. 13935 */ 13936 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13937 { 13938 uint64_t addr = s->base.pc_first; 13939 #ifdef CONFIG_USER_ONLY 13940 return page_get_flags(addr) & PAGE_BTI; 13941 #else 13942 CPUTLBEntryFull *full; 13943 void *host; 13944 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13945 int flags; 13946 13947 /* 13948 * We test this immediately after reading an insn, which means 13949 * that the TLB entry must be present and valid, and thus this 13950 * access will never raise an exception. 13951 */ 13952 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13953 false, &host, &full, 0); 13954 assert(!(flags & TLB_INVALID_MASK)); 13955 13956 return full->guarded; 13957 #endif 13958 } 13959 13960 /** 13961 * btype_destination_ok: 13962 * @insn: The instruction at the branch destination 13963 * @bt: SCTLR_ELx.BT 13964 * @btype: PSTATE.BTYPE, and is non-zero 13965 * 13966 * On a guarded page, there are a limited number of insns 13967 * that may be present at the branch target: 13968 * - branch target identifiers, 13969 * - paciasp, pacibsp, 13970 * - BRK insn 13971 * - HLT insn 13972 * Anything else causes a Branch Target Exception. 13973 * 13974 * Return true if the branch is compatible, false to raise BTITRAP. 13975 */ 13976 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13977 { 13978 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13979 /* HINT space */ 13980 switch (extract32(insn, 5, 7)) { 13981 case 0b011001: /* PACIASP */ 13982 case 0b011011: /* PACIBSP */ 13983 /* 13984 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13985 * with btype == 3. Otherwise all btype are ok. 13986 */ 13987 return !bt || btype != 3; 13988 case 0b100000: /* BTI */ 13989 /* Not compatible with any btype. */ 13990 return false; 13991 case 0b100010: /* BTI c */ 13992 /* Not compatible with btype == 3 */ 13993 return btype != 3; 13994 case 0b100100: /* BTI j */ 13995 /* Not compatible with btype == 2 */ 13996 return btype != 2; 13997 case 0b100110: /* BTI jc */ 13998 /* Compatible with any btype. */ 13999 return true; 14000 } 14001 } else { 14002 switch (insn & 0xffe0001fu) { 14003 case 0xd4200000u: /* BRK */ 14004 case 0xd4400000u: /* HLT */ 14005 /* Give priority to the breakpoint exception. */ 14006 return true; 14007 } 14008 } 14009 return false; 14010 } 14011 14012 /* C3.1 A64 instruction index by encoding */ 14013 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14014 { 14015 switch (extract32(insn, 25, 4)) { 14016 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14017 disas_b_exc_sys(s, insn); 14018 break; 14019 case 0x4: 14020 case 0x6: 14021 case 0xc: 14022 case 0xe: /* Loads and stores */ 14023 disas_ldst(s, insn); 14024 break; 14025 case 0x5: 14026 case 0xd: /* Data processing - register */ 14027 disas_data_proc_reg(s, insn); 14028 break; 14029 case 0x7: 14030 case 0xf: /* Data processing - SIMD and floating point */ 14031 disas_data_proc_simd_fp(s, insn); 14032 break; 14033 default: 14034 unallocated_encoding(s); 14035 break; 14036 } 14037 } 14038 14039 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14040 CPUState *cpu) 14041 { 14042 DisasContext *dc = container_of(dcbase, DisasContext, base); 14043 CPUARMState *env = cpu->env_ptr; 14044 ARMCPU *arm_cpu = env_archcpu(env); 14045 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14046 int bound, core_mmu_idx; 14047 14048 dc->isar = &arm_cpu->isar; 14049 dc->condjmp = 0; 14050 dc->pc_save = dc->base.pc_first; 14051 dc->aarch64 = true; 14052 dc->thumb = false; 14053 dc->sctlr_b = 0; 14054 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14055 dc->condexec_mask = 0; 14056 dc->condexec_cond = 0; 14057 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14058 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14059 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14060 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14061 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14062 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14063 #if !defined(CONFIG_USER_ONLY) 14064 dc->user = (dc->current_el == 0); 14065 #endif 14066 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14067 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14068 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14069 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14070 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14071 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14072 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14073 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14074 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14075 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14076 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14077 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14078 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14079 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14080 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14081 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14082 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14083 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14084 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14085 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14086 dc->vec_len = 0; 14087 dc->vec_stride = 0; 14088 dc->cp_regs = arm_cpu->cp_regs; 14089 dc->features = env->features; 14090 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14091 14092 #ifdef CONFIG_USER_ONLY 14093 /* In sve_probe_page, we assume TBI is enabled. */ 14094 tcg_debug_assert(dc->tbid & 1); 14095 #endif 14096 14097 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14098 14099 /* Single step state. The code-generation logic here is: 14100 * SS_ACTIVE == 0: 14101 * generate code with no special handling for single-stepping (except 14102 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14103 * this happens anyway because those changes are all system register or 14104 * PSTATE writes). 14105 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14106 * emit code for one insn 14107 * emit code to clear PSTATE.SS 14108 * emit code to generate software step exception for completed step 14109 * end TB (as usual for having generated an exception) 14110 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14111 * emit code to generate a software step exception 14112 * end the TB 14113 */ 14114 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14115 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14116 dc->is_ldex = false; 14117 14118 /* Bound the number of insns to execute to those left on the page. */ 14119 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14120 14121 /* If architectural single step active, limit to 1. */ 14122 if (dc->ss_active) { 14123 bound = 1; 14124 } 14125 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14126 } 14127 14128 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14129 { 14130 } 14131 14132 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14133 { 14134 DisasContext *dc = container_of(dcbase, DisasContext, base); 14135 target_ulong pc_arg = dc->base.pc_next; 14136 14137 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14138 pc_arg &= ~TARGET_PAGE_MASK; 14139 } 14140 tcg_gen_insn_start(pc_arg, 0, 0); 14141 dc->insn_start = tcg_last_op(); 14142 } 14143 14144 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14145 { 14146 DisasContext *s = container_of(dcbase, DisasContext, base); 14147 CPUARMState *env = cpu->env_ptr; 14148 uint64_t pc = s->base.pc_next; 14149 uint32_t insn; 14150 14151 /* Singlestep exceptions have the highest priority. */ 14152 if (s->ss_active && !s->pstate_ss) { 14153 /* Singlestep state is Active-pending. 14154 * If we're in this state at the start of a TB then either 14155 * a) we just took an exception to an EL which is being debugged 14156 * and this is the first insn in the exception handler 14157 * b) debug exceptions were masked and we just unmasked them 14158 * without changing EL (eg by clearing PSTATE.D) 14159 * In either case we're going to take a swstep exception in the 14160 * "did not step an insn" case, and so the syndrome ISV and EX 14161 * bits should be zero. 14162 */ 14163 assert(s->base.num_insns == 1); 14164 gen_swstep_exception(s, 0, 0); 14165 s->base.is_jmp = DISAS_NORETURN; 14166 s->base.pc_next = pc + 4; 14167 return; 14168 } 14169 14170 if (pc & 3) { 14171 /* 14172 * PC alignment fault. This has priority over the instruction abort 14173 * that we would receive from a translation fault via arm_ldl_code. 14174 * This should only be possible after an indirect branch, at the 14175 * start of the TB. 14176 */ 14177 assert(s->base.num_insns == 1); 14178 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14179 s->base.is_jmp = DISAS_NORETURN; 14180 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14181 return; 14182 } 14183 14184 s->pc_curr = pc; 14185 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14186 s->insn = insn; 14187 s->base.pc_next = pc + 4; 14188 14189 s->fp_access_checked = false; 14190 s->sve_access_checked = false; 14191 14192 if (s->pstate_il) { 14193 /* 14194 * Illegal execution state. This has priority over BTI 14195 * exceptions, but comes after instruction abort exceptions. 14196 */ 14197 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14198 return; 14199 } 14200 14201 if (dc_isar_feature(aa64_bti, s)) { 14202 if (s->base.num_insns == 1) { 14203 /* 14204 * At the first insn of the TB, compute s->guarded_page. 14205 * We delayed computing this until successfully reading 14206 * the first insn of the TB, above. This (mostly) ensures 14207 * that the softmmu tlb entry has been populated, and the 14208 * page table GP bit is available. 14209 * 14210 * Note that we need to compute this even if btype == 0, 14211 * because this value is used for BR instructions later 14212 * where ENV is not available. 14213 */ 14214 s->guarded_page = is_guarded_page(env, s); 14215 14216 /* First insn can have btype set to non-zero. */ 14217 tcg_debug_assert(s->btype >= 0); 14218 14219 /* 14220 * Note that the Branch Target Exception has fairly high 14221 * priority -- below debugging exceptions but above most 14222 * everything else. This allows us to handle this now 14223 * instead of waiting until the insn is otherwise decoded. 14224 */ 14225 if (s->btype != 0 14226 && s->guarded_page 14227 && !btype_destination_ok(insn, s->bt, s->btype)) { 14228 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14229 return; 14230 } 14231 } else { 14232 /* Not the first insn: btype must be 0. */ 14233 tcg_debug_assert(s->btype == 0); 14234 } 14235 } 14236 14237 s->is_nonstreaming = false; 14238 if (s->sme_trap_nonstreaming) { 14239 disas_sme_fa64(s, insn); 14240 } 14241 14242 if (!disas_a64(s, insn) && 14243 !disas_sme(s, insn) && 14244 !disas_sve(s, insn)) { 14245 disas_a64_legacy(s, insn); 14246 } 14247 14248 /* 14249 * After execution of most insns, btype is reset to 0. 14250 * Note that we set btype == -1 when the insn sets btype. 14251 */ 14252 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14253 reset_btype(s); 14254 } 14255 } 14256 14257 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14258 { 14259 DisasContext *dc = container_of(dcbase, DisasContext, base); 14260 14261 if (unlikely(dc->ss_active)) { 14262 /* Note that this means single stepping WFI doesn't halt the CPU. 14263 * For conditional branch insns this is harmless unreachable code as 14264 * gen_goto_tb() has already handled emitting the debug exception 14265 * (and thus a tb-jump is not possible when singlestepping). 14266 */ 14267 switch (dc->base.is_jmp) { 14268 default: 14269 gen_a64_update_pc(dc, 4); 14270 /* fall through */ 14271 case DISAS_EXIT: 14272 case DISAS_JUMP: 14273 gen_step_complete_exception(dc); 14274 break; 14275 case DISAS_NORETURN: 14276 break; 14277 } 14278 } else { 14279 switch (dc->base.is_jmp) { 14280 case DISAS_NEXT: 14281 case DISAS_TOO_MANY: 14282 gen_goto_tb(dc, 1, 4); 14283 break; 14284 default: 14285 case DISAS_UPDATE_EXIT: 14286 gen_a64_update_pc(dc, 4); 14287 /* fall through */ 14288 case DISAS_EXIT: 14289 tcg_gen_exit_tb(NULL, 0); 14290 break; 14291 case DISAS_UPDATE_NOCHAIN: 14292 gen_a64_update_pc(dc, 4); 14293 /* fall through */ 14294 case DISAS_JUMP: 14295 tcg_gen_lookup_and_goto_ptr(); 14296 break; 14297 case DISAS_NORETURN: 14298 case DISAS_SWI: 14299 break; 14300 case DISAS_WFE: 14301 gen_a64_update_pc(dc, 4); 14302 gen_helper_wfe(cpu_env); 14303 break; 14304 case DISAS_YIELD: 14305 gen_a64_update_pc(dc, 4); 14306 gen_helper_yield(cpu_env); 14307 break; 14308 case DISAS_WFI: 14309 /* 14310 * This is a special case because we don't want to just halt 14311 * the CPU if trying to debug across a WFI. 14312 */ 14313 gen_a64_update_pc(dc, 4); 14314 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14315 /* 14316 * The helper doesn't necessarily throw an exception, but we 14317 * must go back to the main loop to check for interrupts anyway. 14318 */ 14319 tcg_gen_exit_tb(NULL, 0); 14320 break; 14321 } 14322 } 14323 } 14324 14325 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14326 CPUState *cpu, FILE *logfile) 14327 { 14328 DisasContext *dc = container_of(dcbase, DisasContext, base); 14329 14330 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14331 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14332 } 14333 14334 const TranslatorOps aarch64_translator_ops = { 14335 .init_disas_context = aarch64_tr_init_disas_context, 14336 .tb_start = aarch64_tr_tb_start, 14337 .insn_start = aarch64_tr_insn_start, 14338 .translate_insn = aarch64_tr_translate_insn, 14339 .tb_stop = aarch64_tr_tb_stop, 14340 .disas_log = aarch64_tr_disas_log, 14341 }; 14342