1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * This utility function is for doing register extension with an 1318 * optional shift. You will likely want to pass a temporary for the 1319 * destination register. See DecodeRegExtend() in the ARM ARM. 1320 */ 1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1322 int option, unsigned int shift) 1323 { 1324 int extsize = extract32(option, 0, 2); 1325 bool is_signed = extract32(option, 2, 1); 1326 1327 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1328 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1329 } 1330 1331 static inline void gen_check_sp_alignment(DisasContext *s) 1332 { 1333 /* The AArch64 architecture mandates that (if enabled via PSTATE 1334 * or SCTLR bits) there is a check that SP is 16-aligned on every 1335 * SP-relative load or store (with an exception generated if it is not). 1336 * In line with general QEMU practice regarding misaligned accesses, 1337 * we omit these checks for the sake of guest program performance. 1338 * This function is provided as a hook so we can more easily add these 1339 * checks in future (possibly as a "favour catching guest program bugs 1340 * over speed" user selectable option). 1341 */ 1342 } 1343 1344 /* 1345 * This provides a simple table based table lookup decoder. It is 1346 * intended to be used when the relevant bits for decode are too 1347 * awkwardly placed and switch/if based logic would be confusing and 1348 * deeply nested. Since it's a linear search through the table, tables 1349 * should be kept small. 1350 * 1351 * It returns the first handler where insn & mask == pattern, or 1352 * NULL if there is no match. 1353 * The table is terminated by an empty mask (i.e. 0) 1354 */ 1355 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1356 uint32_t insn) 1357 { 1358 const AArch64DecodeTable *tptr = table; 1359 1360 while (tptr->mask) { 1361 if ((insn & tptr->mask) == tptr->pattern) { 1362 return tptr->disas_fn; 1363 } 1364 tptr++; 1365 } 1366 return NULL; 1367 } 1368 1369 /* 1370 * The instruction disassembly implemented here matches 1371 * the instruction encoding classifications in chapter C4 1372 * of the ARM Architecture Reference Manual (DDI0487B_a); 1373 * classification names and decode diagrams here should generally 1374 * match up with those in the manual. 1375 */ 1376 1377 static bool trans_B(DisasContext *s, arg_i *a) 1378 { 1379 reset_btype(s); 1380 gen_goto_tb(s, 0, a->imm); 1381 return true; 1382 } 1383 1384 static bool trans_BL(DisasContext *s, arg_i *a) 1385 { 1386 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1387 reset_btype(s); 1388 gen_goto_tb(s, 0, a->imm); 1389 return true; 1390 } 1391 1392 1393 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1394 { 1395 DisasLabel match; 1396 TCGv_i64 tcg_cmp; 1397 1398 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1399 reset_btype(s); 1400 1401 match = gen_disas_label(s); 1402 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1403 tcg_cmp, 0, match.label); 1404 gen_goto_tb(s, 0, 4); 1405 set_disas_label(s, match); 1406 gen_goto_tb(s, 1, a->imm); 1407 return true; 1408 } 1409 1410 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1411 { 1412 DisasLabel match; 1413 TCGv_i64 tcg_cmp; 1414 1415 tcg_cmp = tcg_temp_new_i64(); 1416 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1417 1418 reset_btype(s); 1419 1420 match = gen_disas_label(s); 1421 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1422 tcg_cmp, 0, match.label); 1423 gen_goto_tb(s, 0, 4); 1424 set_disas_label(s, match); 1425 gen_goto_tb(s, 1, a->imm); 1426 return true; 1427 } 1428 1429 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1430 { 1431 /* BC.cond is only present with FEAT_HBC */ 1432 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1433 return false; 1434 } 1435 reset_btype(s); 1436 if (a->cond < 0x0e) { 1437 /* genuinely conditional branches */ 1438 DisasLabel match = gen_disas_label(s); 1439 arm_gen_test_cc(a->cond, match.label); 1440 gen_goto_tb(s, 0, 4); 1441 set_disas_label(s, match); 1442 gen_goto_tb(s, 1, a->imm); 1443 } else { 1444 /* 0xe and 0xf are both "always" conditions */ 1445 gen_goto_tb(s, 0, a->imm); 1446 } 1447 return true; 1448 } 1449 1450 static void set_btype_for_br(DisasContext *s, int rn) 1451 { 1452 if (dc_isar_feature(aa64_bti, s)) { 1453 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1454 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1455 } 1456 } 1457 1458 static void set_btype_for_blr(DisasContext *s) 1459 { 1460 if (dc_isar_feature(aa64_bti, s)) { 1461 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1462 set_btype(s, 2); 1463 } 1464 } 1465 1466 static bool trans_BR(DisasContext *s, arg_r *a) 1467 { 1468 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1469 set_btype_for_br(s, a->rn); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_BLR(DisasContext *s, arg_r *a) 1475 { 1476 TCGv_i64 dst = cpu_reg(s, a->rn); 1477 TCGv_i64 lr = cpu_reg(s, 30); 1478 if (dst == lr) { 1479 TCGv_i64 tmp = tcg_temp_new_i64(); 1480 tcg_gen_mov_i64(tmp, dst); 1481 dst = tmp; 1482 } 1483 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1484 gen_a64_set_pc(s, dst); 1485 set_btype_for_blr(s); 1486 s->base.is_jmp = DISAS_JUMP; 1487 return true; 1488 } 1489 1490 static bool trans_RET(DisasContext *s, arg_r *a) 1491 { 1492 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1493 s->base.is_jmp = DISAS_JUMP; 1494 return true; 1495 } 1496 1497 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1498 TCGv_i64 modifier, bool use_key_a) 1499 { 1500 TCGv_i64 truedst; 1501 /* 1502 * Return the branch target for a BRAA/RETA/etc, which is either 1503 * just the destination dst, or that value with the pauth check 1504 * done and the code removed from the high bits. 1505 */ 1506 if (!s->pauth_active) { 1507 return dst; 1508 } 1509 1510 truedst = tcg_temp_new_i64(); 1511 if (use_key_a) { 1512 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1513 } else { 1514 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1515 } 1516 return truedst; 1517 } 1518 1519 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (!dc_isar_feature(aa64_pauth, s)) { 1524 return false; 1525 } 1526 1527 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1528 gen_a64_set_pc(s, dst); 1529 set_btype_for_br(s, a->rn); 1530 s->base.is_jmp = DISAS_JUMP; 1531 return true; 1532 } 1533 1534 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1535 { 1536 TCGv_i64 dst, lr; 1537 1538 if (!dc_isar_feature(aa64_pauth, s)) { 1539 return false; 1540 } 1541 1542 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1543 lr = cpu_reg(s, 30); 1544 if (dst == lr) { 1545 TCGv_i64 tmp = tcg_temp_new_i64(); 1546 tcg_gen_mov_i64(tmp, dst); 1547 dst = tmp; 1548 } 1549 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1550 gen_a64_set_pc(s, dst); 1551 set_btype_for_blr(s); 1552 s->base.is_jmp = DISAS_JUMP; 1553 return true; 1554 } 1555 1556 static bool trans_RETA(DisasContext *s, arg_reta *a) 1557 { 1558 TCGv_i64 dst; 1559 1560 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1561 gen_a64_set_pc(s, dst); 1562 s->base.is_jmp = DISAS_JUMP; 1563 return true; 1564 } 1565 1566 static bool trans_BRA(DisasContext *s, arg_bra *a) 1567 { 1568 TCGv_i64 dst; 1569 1570 if (!dc_isar_feature(aa64_pauth, s)) { 1571 return false; 1572 } 1573 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1574 gen_a64_set_pc(s, dst); 1575 set_btype_for_br(s, a->rn); 1576 s->base.is_jmp = DISAS_JUMP; 1577 return true; 1578 } 1579 1580 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1581 { 1582 TCGv_i64 dst, lr; 1583 1584 if (!dc_isar_feature(aa64_pauth, s)) { 1585 return false; 1586 } 1587 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1588 lr = cpu_reg(s, 30); 1589 if (dst == lr) { 1590 TCGv_i64 tmp = tcg_temp_new_i64(); 1591 tcg_gen_mov_i64(tmp, dst); 1592 dst = tmp; 1593 } 1594 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_blr(s); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1602 { 1603 TCGv_i64 dst; 1604 1605 if (s->current_el == 0) { 1606 return false; 1607 } 1608 if (s->trap_eret) { 1609 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1610 return true; 1611 } 1612 dst = tcg_temp_new_i64(); 1613 tcg_gen_ld_i64(dst, tcg_env, 1614 offsetof(CPUARMState, elr_el[s->current_el])); 1615 1616 translator_io_start(&s->base); 1617 1618 gen_helper_exception_return(tcg_env, dst); 1619 /* Must exit loop to check un-masked IRQs */ 1620 s->base.is_jmp = DISAS_EXIT; 1621 return true; 1622 } 1623 1624 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1625 { 1626 TCGv_i64 dst; 1627 1628 if (!dc_isar_feature(aa64_pauth, s)) { 1629 return false; 1630 } 1631 if (s->current_el == 0) { 1632 return false; 1633 } 1634 /* The FGT trap takes precedence over an auth trap. */ 1635 if (s->trap_eret) { 1636 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1637 return true; 1638 } 1639 dst = tcg_temp_new_i64(); 1640 tcg_gen_ld_i64(dst, tcg_env, 1641 offsetof(CPUARMState, elr_el[s->current_el])); 1642 1643 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1644 1645 translator_io_start(&s->base); 1646 1647 gen_helper_exception_return(tcg_env, dst); 1648 /* Must exit loop to check un-masked IRQs */ 1649 s->base.is_jmp = DISAS_EXIT; 1650 return true; 1651 } 1652 1653 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1654 { 1655 return true; 1656 } 1657 1658 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1659 { 1660 /* 1661 * When running in MTTCG we don't generate jumps to the yield and 1662 * WFE helpers as it won't affect the scheduling of other vCPUs. 1663 * If we wanted to more completely model WFE/SEV so we don't busy 1664 * spin unnecessarily we would need to do something more involved. 1665 */ 1666 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1667 s->base.is_jmp = DISAS_YIELD; 1668 } 1669 return true; 1670 } 1671 1672 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1673 { 1674 s->base.is_jmp = DISAS_WFI; 1675 return true; 1676 } 1677 1678 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1679 { 1680 /* 1681 * When running in MTTCG we don't generate jumps to the yield and 1682 * WFE helpers as it won't affect the scheduling of other vCPUs. 1683 * If we wanted to more completely model WFE/SEV so we don't busy 1684 * spin unnecessarily we would need to do something more involved. 1685 */ 1686 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1687 s->base.is_jmp = DISAS_WFE; 1688 } 1689 return true; 1690 } 1691 1692 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1693 { 1694 if (s->pauth_active) { 1695 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1696 } 1697 return true; 1698 } 1699 1700 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1701 { 1702 if (s->pauth_active) { 1703 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1704 } 1705 return true; 1706 } 1707 1708 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1709 { 1710 if (s->pauth_active) { 1711 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1712 } 1713 return true; 1714 } 1715 1716 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1717 { 1718 if (s->pauth_active) { 1719 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1720 } 1721 return true; 1722 } 1723 1724 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1725 { 1726 if (s->pauth_active) { 1727 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1728 } 1729 return true; 1730 } 1731 1732 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1733 { 1734 /* Without RAS, we must implement this as NOP. */ 1735 if (dc_isar_feature(aa64_ras, s)) { 1736 /* 1737 * QEMU does not have a source of physical SErrors, 1738 * so we are only concerned with virtual SErrors. 1739 * The pseudocode in the ARM for this case is 1740 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1741 * AArch64.vESBOperation(); 1742 * Most of the condition can be evaluated at translation time. 1743 * Test for EL2 present, and defer test for SEL2 to runtime. 1744 */ 1745 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1746 gen_helper_vesb(tcg_env); 1747 } 1748 } 1749 return true; 1750 } 1751 1752 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1753 { 1754 if (s->pauth_active) { 1755 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1756 } 1757 return true; 1758 } 1759 1760 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1761 { 1762 if (s->pauth_active) { 1763 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1764 } 1765 return true; 1766 } 1767 1768 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1769 { 1770 if (s->pauth_active) { 1771 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1772 } 1773 return true; 1774 } 1775 1776 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1777 { 1778 if (s->pauth_active) { 1779 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1780 } 1781 return true; 1782 } 1783 1784 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1785 { 1786 if (s->pauth_active) { 1787 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1788 } 1789 return true; 1790 } 1791 1792 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1793 { 1794 if (s->pauth_active) { 1795 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1796 } 1797 return true; 1798 } 1799 1800 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1801 { 1802 if (s->pauth_active) { 1803 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1804 } 1805 return true; 1806 } 1807 1808 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1809 { 1810 if (s->pauth_active) { 1811 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1812 } 1813 return true; 1814 } 1815 1816 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1817 { 1818 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1819 return true; 1820 } 1821 1822 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1823 { 1824 /* We handle DSB and DMB the same way */ 1825 TCGBar bar; 1826 1827 switch (a->types) { 1828 case 1: /* MBReqTypes_Reads */ 1829 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1830 break; 1831 case 2: /* MBReqTypes_Writes */ 1832 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1833 break; 1834 default: /* MBReqTypes_All */ 1835 bar = TCG_BAR_SC | TCG_MO_ALL; 1836 break; 1837 } 1838 tcg_gen_mb(bar); 1839 return true; 1840 } 1841 1842 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1843 { 1844 /* 1845 * We need to break the TB after this insn to execute 1846 * self-modifying code correctly and also to take 1847 * any pending interrupts immediately. 1848 */ 1849 reset_btype(s); 1850 gen_goto_tb(s, 0, 4); 1851 return true; 1852 } 1853 1854 static bool trans_SB(DisasContext *s, arg_SB *a) 1855 { 1856 if (!dc_isar_feature(aa64_sb, s)) { 1857 return false; 1858 } 1859 /* 1860 * TODO: There is no speculation barrier opcode for TCG; 1861 * MB and end the TB instead. 1862 */ 1863 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1864 gen_goto_tb(s, 0, 4); 1865 return true; 1866 } 1867 1868 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1869 { 1870 if (!dc_isar_feature(aa64_condm_4, s)) { 1871 return false; 1872 } 1873 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1874 return true; 1875 } 1876 1877 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1878 { 1879 TCGv_i32 z; 1880 1881 if (!dc_isar_feature(aa64_condm_5, s)) { 1882 return false; 1883 } 1884 1885 z = tcg_temp_new_i32(); 1886 1887 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1888 1889 /* 1890 * (!C & !Z) << 31 1891 * (!(C | Z)) << 31 1892 * ~((C | Z) << 31) 1893 * ~-(C | Z) 1894 * (C | Z) - 1 1895 */ 1896 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1897 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1898 1899 /* !(Z & C) */ 1900 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1901 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1902 1903 /* (!C & Z) << 31 -> -(Z & ~C) */ 1904 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1905 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1906 1907 /* C | Z */ 1908 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1909 1910 return true; 1911 } 1912 1913 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1914 { 1915 if (!dc_isar_feature(aa64_condm_5, s)) { 1916 return false; 1917 } 1918 1919 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1920 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1921 1922 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1923 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1924 1925 tcg_gen_movi_i32(cpu_NF, 0); 1926 tcg_gen_movi_i32(cpu_VF, 0); 1927 1928 return true; 1929 } 1930 1931 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1932 { 1933 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1934 return false; 1935 } 1936 if (a->imm & 1) { 1937 set_pstate_bits(PSTATE_UAO); 1938 } else { 1939 clear_pstate_bits(PSTATE_UAO); 1940 } 1941 gen_rebuild_hflags(s); 1942 s->base.is_jmp = DISAS_TOO_MANY; 1943 return true; 1944 } 1945 1946 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1947 { 1948 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1949 return false; 1950 } 1951 if (a->imm & 1) { 1952 set_pstate_bits(PSTATE_PAN); 1953 } else { 1954 clear_pstate_bits(PSTATE_PAN); 1955 } 1956 gen_rebuild_hflags(s); 1957 s->base.is_jmp = DISAS_TOO_MANY; 1958 return true; 1959 } 1960 1961 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1962 { 1963 if (s->current_el == 0) { 1964 return false; 1965 } 1966 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1967 s->base.is_jmp = DISAS_TOO_MANY; 1968 return true; 1969 } 1970 1971 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1972 { 1973 if (!dc_isar_feature(aa64_ssbs, s)) { 1974 return false; 1975 } 1976 if (a->imm & 1) { 1977 set_pstate_bits(PSTATE_SSBS); 1978 } else { 1979 clear_pstate_bits(PSTATE_SSBS); 1980 } 1981 /* Don't need to rebuild hflags since SSBS is a nop */ 1982 s->base.is_jmp = DISAS_TOO_MANY; 1983 return true; 1984 } 1985 1986 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1987 { 1988 if (!dc_isar_feature(aa64_dit, s)) { 1989 return false; 1990 } 1991 if (a->imm & 1) { 1992 set_pstate_bits(PSTATE_DIT); 1993 } else { 1994 clear_pstate_bits(PSTATE_DIT); 1995 } 1996 /* There's no need to rebuild hflags because DIT is a nop */ 1997 s->base.is_jmp = DISAS_TOO_MANY; 1998 return true; 1999 } 2000 2001 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2002 { 2003 if (dc_isar_feature(aa64_mte, s)) { 2004 /* Full MTE is enabled -- set the TCO bit as directed. */ 2005 if (a->imm & 1) { 2006 set_pstate_bits(PSTATE_TCO); 2007 } else { 2008 clear_pstate_bits(PSTATE_TCO); 2009 } 2010 gen_rebuild_hflags(s); 2011 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2012 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2013 return true; 2014 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2015 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2016 return true; 2017 } else { 2018 /* Insn not present */ 2019 return false; 2020 } 2021 } 2022 2023 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2024 { 2025 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2026 s->base.is_jmp = DISAS_TOO_MANY; 2027 return true; 2028 } 2029 2030 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2031 { 2032 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2033 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2034 s->base.is_jmp = DISAS_UPDATE_EXIT; 2035 return true; 2036 } 2037 2038 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2039 { 2040 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2041 return false; 2042 } 2043 2044 if (a->imm == 0) { 2045 clear_pstate_bits(PSTATE_ALLINT); 2046 } else if (s->current_el > 1) { 2047 set_pstate_bits(PSTATE_ALLINT); 2048 } else { 2049 gen_helper_msr_set_allint_el1(tcg_env); 2050 } 2051 2052 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2053 s->base.is_jmp = DISAS_UPDATE_EXIT; 2054 return true; 2055 } 2056 2057 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2058 { 2059 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2060 return false; 2061 } 2062 if (sme_access_check(s)) { 2063 int old = s->pstate_sm | (s->pstate_za << 1); 2064 int new = a->imm * 3; 2065 2066 if ((old ^ new) & a->mask) { 2067 /* At least one bit changes. */ 2068 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2069 tcg_constant_i32(a->mask)); 2070 s->base.is_jmp = DISAS_TOO_MANY; 2071 } 2072 } 2073 return true; 2074 } 2075 2076 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2077 { 2078 TCGv_i32 tmp = tcg_temp_new_i32(); 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* build bit 31, N */ 2082 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2083 /* build bit 30, Z */ 2084 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2085 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2086 /* build bit 29, C */ 2087 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2088 /* build bit 28, V */ 2089 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2090 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2091 /* generate result */ 2092 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2093 } 2094 2095 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2096 { 2097 TCGv_i32 nzcv = tcg_temp_new_i32(); 2098 2099 /* take NZCV from R[t] */ 2100 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2101 2102 /* bit 31, N */ 2103 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2104 /* bit 30, Z */ 2105 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2106 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2107 /* bit 29, C */ 2108 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2109 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2110 /* bit 28, V */ 2111 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2112 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2113 } 2114 2115 static void gen_sysreg_undef(DisasContext *s, bool isread, 2116 uint8_t op0, uint8_t op1, uint8_t op2, 2117 uint8_t crn, uint8_t crm, uint8_t rt) 2118 { 2119 /* 2120 * Generate code to emit an UNDEF with correct syndrome 2121 * information for a failed system register access. 2122 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2123 * but if FEAT_IDST is implemented then read accesses to registers 2124 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2125 * syndrome. 2126 */ 2127 uint32_t syndrome; 2128 2129 if (isread && dc_isar_feature(aa64_ids, s) && 2130 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 } else { 2133 syndrome = syn_uncategorized(); 2134 } 2135 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2136 } 2137 2138 /* MRS - move from system register 2139 * MSR (register) - move to system register 2140 * SYS 2141 * SYSL 2142 * These are all essentially the same insn in 'read' and 'write' 2143 * versions, with varying op0 fields. 2144 */ 2145 static void handle_sys(DisasContext *s, bool isread, 2146 unsigned int op0, unsigned int op1, unsigned int op2, 2147 unsigned int crn, unsigned int crm, unsigned int rt) 2148 { 2149 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2150 crn, crm, op0, op1, op2); 2151 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2152 bool need_exit_tb = false; 2153 bool nv_trap_to_el2 = false; 2154 bool nv_redirect_reg = false; 2155 bool skip_fp_access_checks = false; 2156 bool nv2_mem_redirect = false; 2157 TCGv_ptr tcg_ri = NULL; 2158 TCGv_i64 tcg_rt; 2159 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2160 2161 if (crn == 11 || crn == 15) { 2162 /* 2163 * Check for TIDCP trap, which must take precedence over 2164 * the UNDEF for "no such register" etc. 2165 */ 2166 switch (s->current_el) { 2167 case 0: 2168 if (dc_isar_feature(aa64_tidcp1, s)) { 2169 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2170 } 2171 break; 2172 case 1: 2173 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2174 break; 2175 } 2176 } 2177 2178 if (!ri) { 2179 /* Unknown register; this might be a guest error or a QEMU 2180 * unimplemented feature. 2181 */ 2182 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2183 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2184 isread ? "read" : "write", op0, op1, crn, crm, op2); 2185 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2186 return; 2187 } 2188 2189 if (s->nv2 && ri->nv2_redirect_offset) { 2190 /* 2191 * Some registers always redirect to memory; some only do so if 2192 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2193 * pairs which share an offset; see the table in R_CSRPQ). 2194 */ 2195 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2196 nv2_mem_redirect = s->nv1; 2197 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2198 nv2_mem_redirect = !s->nv1; 2199 } else { 2200 nv2_mem_redirect = true; 2201 } 2202 } 2203 2204 /* Check access permissions */ 2205 if (!cp_access_ok(s->current_el, ri, isread)) { 2206 /* 2207 * FEAT_NV/NV2 handling does not do the usual FP access checks 2208 * for registers only accessible at EL2 (though it *does* do them 2209 * for registers accessible at EL1). 2210 */ 2211 skip_fp_access_checks = true; 2212 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2213 /* 2214 * This is one of the few EL2 registers which should redirect 2215 * to the equivalent EL1 register. We do that after running 2216 * the EL2 register's accessfn. 2217 */ 2218 nv_redirect_reg = true; 2219 assert(!nv2_mem_redirect); 2220 } else if (nv2_mem_redirect) { 2221 /* 2222 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2223 * UNDEF to EL1. 2224 */ 2225 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2226 /* 2227 * This register / instruction exists and is an EL2 register, so 2228 * we must trap to EL2 if accessed in nested virtualization EL1 2229 * instead of UNDEFing. We'll do that after the usual access checks. 2230 * (This makes a difference only for a couple of registers like 2231 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2232 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2233 * an accessfn which does nothing when called from EL1, because 2234 * the trap-to-EL3 controls which would apply to that register 2235 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2236 */ 2237 nv_trap_to_el2 = true; 2238 } else { 2239 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2240 return; 2241 } 2242 } 2243 2244 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2245 /* Emit code to perform further access permissions checks at 2246 * runtime; this may result in an exception. 2247 */ 2248 gen_a64_update_pc(s, 0); 2249 tcg_ri = tcg_temp_new_ptr(); 2250 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2251 tcg_constant_i32(key), 2252 tcg_constant_i32(syndrome), 2253 tcg_constant_i32(isread)); 2254 } else if (ri->type & ARM_CP_RAISES_EXC) { 2255 /* 2256 * The readfn or writefn might raise an exception; 2257 * synchronize the CPU state in case it does. 2258 */ 2259 gen_a64_update_pc(s, 0); 2260 } 2261 2262 if (!skip_fp_access_checks) { 2263 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2264 return; 2265 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2266 return; 2267 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2268 return; 2269 } 2270 } 2271 2272 if (nv_trap_to_el2) { 2273 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2274 return; 2275 } 2276 2277 if (nv_redirect_reg) { 2278 /* 2279 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2280 * Conveniently in all cases the encoding of the EL1 register is 2281 * identical to the EL2 register except that opc1 is 0. 2282 * Get the reginfo for the EL1 register to use for the actual access. 2283 * We don't use the EL1 register's access function, and 2284 * fine-grained-traps on EL1 also do not apply here. 2285 */ 2286 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2287 crn, crm, op0, 0, op2); 2288 ri = get_arm_cp_reginfo(s->cp_regs, key); 2289 assert(ri); 2290 assert(cp_access_ok(s->current_el, ri, isread)); 2291 /* 2292 * We might not have done an update_pc earlier, so check we don't 2293 * need it. We could support this in future if necessary. 2294 */ 2295 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2296 } 2297 2298 if (nv2_mem_redirect) { 2299 /* 2300 * This system register is being redirected into an EL2 memory access. 2301 * This means it is not an IO operation, doesn't change hflags, 2302 * and need not end the TB, because it has no side effects. 2303 * 2304 * The access is 64-bit single copy atomic, guaranteed aligned because 2305 * of the definition of VCNR_EL2. Its endianness depends on 2306 * SCTLR_EL2.EE, not on the data endianness of EL1. 2307 * It is done under either the EL2 translation regime or the EL2&0 2308 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2309 * PSTATE.PAN is 0. 2310 */ 2311 TCGv_i64 ptr = tcg_temp_new_i64(); 2312 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2313 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2314 int memidx = arm_to_core_mmu_idx(armmemidx); 2315 uint32_t syn; 2316 2317 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2318 2319 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2320 tcg_gen_addi_i64(ptr, ptr, 2321 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2322 tcg_rt = cpu_reg(s, rt); 2323 2324 syn = syn_data_abort_vncr(0, !isread, 0); 2325 disas_set_insn_syndrome(s, syn); 2326 if (isread) { 2327 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2328 } else { 2329 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2330 } 2331 return; 2332 } 2333 2334 /* Handle special cases first */ 2335 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2336 case 0: 2337 break; 2338 case ARM_CP_NOP: 2339 return; 2340 case ARM_CP_NZCV: 2341 tcg_rt = cpu_reg(s, rt); 2342 if (isread) { 2343 gen_get_nzcv(tcg_rt); 2344 } else { 2345 gen_set_nzcv(tcg_rt); 2346 } 2347 return; 2348 case ARM_CP_CURRENTEL: 2349 { 2350 /* 2351 * Reads as current EL value from pstate, which is 2352 * guaranteed to be constant by the tb flags. 2353 * For nested virt we should report EL2. 2354 */ 2355 int el = s->nv ? 2 : s->current_el; 2356 tcg_rt = cpu_reg(s, rt); 2357 tcg_gen_movi_i64(tcg_rt, el << 2); 2358 return; 2359 } 2360 case ARM_CP_DC_ZVA: 2361 /* Writes clear the aligned block of memory which rt points into. */ 2362 if (s->mte_active[0]) { 2363 int desc = 0; 2364 2365 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2366 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2367 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2368 2369 tcg_rt = tcg_temp_new_i64(); 2370 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2371 tcg_constant_i32(desc), cpu_reg(s, rt)); 2372 } else { 2373 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2374 } 2375 gen_helper_dc_zva(tcg_env, tcg_rt); 2376 return; 2377 case ARM_CP_DC_GVA: 2378 { 2379 TCGv_i64 clean_addr, tag; 2380 2381 /* 2382 * DC_GVA, like DC_ZVA, requires that we supply the original 2383 * pointer for an invalid page. Probe that address first. 2384 */ 2385 tcg_rt = cpu_reg(s, rt); 2386 clean_addr = clean_data_tbi(s, tcg_rt); 2387 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2388 2389 if (s->ata[0]) { 2390 /* Extract the tag from the register to match STZGM. */ 2391 tag = tcg_temp_new_i64(); 2392 tcg_gen_shri_i64(tag, tcg_rt, 56); 2393 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2394 } 2395 } 2396 return; 2397 case ARM_CP_DC_GZVA: 2398 { 2399 TCGv_i64 clean_addr, tag; 2400 2401 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2402 tcg_rt = cpu_reg(s, rt); 2403 clean_addr = clean_data_tbi(s, tcg_rt); 2404 gen_helper_dc_zva(tcg_env, clean_addr); 2405 2406 if (s->ata[0]) { 2407 /* Extract the tag from the register to match STZGM. */ 2408 tag = tcg_temp_new_i64(); 2409 tcg_gen_shri_i64(tag, tcg_rt, 56); 2410 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2411 } 2412 } 2413 return; 2414 default: 2415 g_assert_not_reached(); 2416 } 2417 2418 if (ri->type & ARM_CP_IO) { 2419 /* I/O operations must end the TB here (whether read or write) */ 2420 need_exit_tb = translator_io_start(&s->base); 2421 } 2422 2423 tcg_rt = cpu_reg(s, rt); 2424 2425 if (isread) { 2426 if (ri->type & ARM_CP_CONST) { 2427 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2428 } else if (ri->readfn) { 2429 if (!tcg_ri) { 2430 tcg_ri = gen_lookup_cp_reg(key); 2431 } 2432 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2433 } else { 2434 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2435 } 2436 } else { 2437 if (ri->type & ARM_CP_CONST) { 2438 /* If not forbidden by access permissions, treat as WI */ 2439 return; 2440 } else if (ri->writefn) { 2441 if (!tcg_ri) { 2442 tcg_ri = gen_lookup_cp_reg(key); 2443 } 2444 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2445 } else { 2446 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2447 } 2448 } 2449 2450 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2451 /* 2452 * A write to any coprocessor register that ends a TB 2453 * must rebuild the hflags for the next TB. 2454 */ 2455 gen_rebuild_hflags(s); 2456 /* 2457 * We default to ending the TB on a coprocessor register write, 2458 * but allow this to be suppressed by the register definition 2459 * (usually only necessary to work around guest bugs). 2460 */ 2461 need_exit_tb = true; 2462 } 2463 if (need_exit_tb) { 2464 s->base.is_jmp = DISAS_UPDATE_EXIT; 2465 } 2466 } 2467 2468 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2469 { 2470 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2471 return true; 2472 } 2473 2474 static bool trans_SVC(DisasContext *s, arg_i *a) 2475 { 2476 /* 2477 * For SVC, HVC and SMC we advance the single-step state 2478 * machine before taking the exception. This is architecturally 2479 * mandated, to ensure that single-stepping a system call 2480 * instruction works properly. 2481 */ 2482 uint32_t syndrome = syn_aa64_svc(a->imm); 2483 if (s->fgt_svc) { 2484 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2485 return true; 2486 } 2487 gen_ss_advance(s); 2488 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2489 return true; 2490 } 2491 2492 static bool trans_HVC(DisasContext *s, arg_i *a) 2493 { 2494 int target_el = s->current_el == 3 ? 3 : 2; 2495 2496 if (s->current_el == 0) { 2497 unallocated_encoding(s); 2498 return true; 2499 } 2500 /* 2501 * The pre HVC helper handles cases when HVC gets trapped 2502 * as an undefined insn by runtime configuration. 2503 */ 2504 gen_a64_update_pc(s, 0); 2505 gen_helper_pre_hvc(tcg_env); 2506 /* Architecture requires ss advance before we do the actual work */ 2507 gen_ss_advance(s); 2508 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2509 return true; 2510 } 2511 2512 static bool trans_SMC(DisasContext *s, arg_i *a) 2513 { 2514 if (s->current_el == 0) { 2515 unallocated_encoding(s); 2516 return true; 2517 } 2518 gen_a64_update_pc(s, 0); 2519 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2520 /* Architecture requires ss advance before we do the actual work */ 2521 gen_ss_advance(s); 2522 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2523 return true; 2524 } 2525 2526 static bool trans_BRK(DisasContext *s, arg_i *a) 2527 { 2528 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2529 return true; 2530 } 2531 2532 static bool trans_HLT(DisasContext *s, arg_i *a) 2533 { 2534 /* 2535 * HLT. This has two purposes. 2536 * Architecturally, it is an external halting debug instruction. 2537 * Since QEMU doesn't implement external debug, we treat this as 2538 * it is required for halting debug disabled: it will UNDEF. 2539 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2540 */ 2541 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2542 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2543 } else { 2544 unallocated_encoding(s); 2545 } 2546 return true; 2547 } 2548 2549 /* 2550 * Load/Store exclusive instructions are implemented by remembering 2551 * the value/address loaded, and seeing if these are the same 2552 * when the store is performed. This is not actually the architecturally 2553 * mandated semantics, but it works for typical guest code sequences 2554 * and avoids having to monitor regular stores. 2555 * 2556 * The store exclusive uses the atomic cmpxchg primitives to avoid 2557 * races in multi-threaded linux-user and when MTTCG softmmu is 2558 * enabled. 2559 */ 2560 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2561 int size, bool is_pair) 2562 { 2563 int idx = get_mem_index(s); 2564 TCGv_i64 dirty_addr, clean_addr; 2565 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2566 2567 s->is_ldex = true; 2568 dirty_addr = cpu_reg_sp(s, rn); 2569 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2570 2571 g_assert(size <= 3); 2572 if (is_pair) { 2573 g_assert(size >= 2); 2574 if (size == 2) { 2575 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2576 if (s->be_data == MO_LE) { 2577 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2578 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2579 } else { 2580 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2581 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2582 } 2583 } else { 2584 TCGv_i128 t16 = tcg_temp_new_i128(); 2585 2586 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2587 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2590 cpu_exclusive_high, t16); 2591 } else { 2592 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2593 cpu_exclusive_val, t16); 2594 } 2595 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2596 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2597 } 2598 } else { 2599 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2600 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2601 } 2602 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2603 } 2604 2605 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2606 int rn, int size, int is_pair) 2607 { 2608 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2609 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2610 * [addr] = {Rt}; 2611 * if (is_pair) { 2612 * [addr + datasize] = {Rt2}; 2613 * } 2614 * {Rd} = 0; 2615 * } else { 2616 * {Rd} = 1; 2617 * } 2618 * env->exclusive_addr = -1; 2619 */ 2620 TCGLabel *fail_label = gen_new_label(); 2621 TCGLabel *done_label = gen_new_label(); 2622 TCGv_i64 tmp, clean_addr; 2623 MemOp memop; 2624 2625 /* 2626 * FIXME: We are out of spec here. We have recorded only the address 2627 * from load_exclusive, not the entire range, and we assume that the 2628 * size of the access on both sides match. The architecture allows the 2629 * store to be smaller than the load, so long as the stored bytes are 2630 * within the range recorded by the load. 2631 */ 2632 2633 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2634 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2635 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2636 2637 /* 2638 * The write, and any associated faults, only happen if the virtual 2639 * and physical addresses pass the exclusive monitor check. These 2640 * faults are exceedingly unlikely, because normally the guest uses 2641 * the exact same address register for the load_exclusive, and we 2642 * would have recognized these faults there. 2643 * 2644 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2645 * unaligned 4-byte write within the range of an aligned 8-byte load. 2646 * With LSE2, the store would need to cross a 16-byte boundary when the 2647 * load did not, which would mean the store is outside the range 2648 * recorded for the monitor, which would have failed a corrected monitor 2649 * check above. For now, we assume no size change and retain the 2650 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2651 * 2652 * It is possible to trigger an MTE fault, by performing the load with 2653 * a virtual address with a valid tag and performing the store with the 2654 * same virtual address and a different invalid tag. 2655 */ 2656 memop = size + is_pair; 2657 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2658 memop |= MO_ALIGN; 2659 } 2660 memop = finalize_memop(s, memop); 2661 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2662 2663 tmp = tcg_temp_new_i64(); 2664 if (is_pair) { 2665 if (size == 2) { 2666 if (s->be_data == MO_LE) { 2667 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2668 } else { 2669 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2670 } 2671 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2672 cpu_exclusive_val, tmp, 2673 get_mem_index(s), memop); 2674 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2675 } else { 2676 TCGv_i128 t16 = tcg_temp_new_i128(); 2677 TCGv_i128 c16 = tcg_temp_new_i128(); 2678 TCGv_i64 a, b; 2679 2680 if (s->be_data == MO_LE) { 2681 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2682 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2683 cpu_exclusive_high); 2684 } else { 2685 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2686 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2687 cpu_exclusive_val); 2688 } 2689 2690 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2691 get_mem_index(s), memop); 2692 2693 a = tcg_temp_new_i64(); 2694 b = tcg_temp_new_i64(); 2695 if (s->be_data == MO_LE) { 2696 tcg_gen_extr_i128_i64(a, b, t16); 2697 } else { 2698 tcg_gen_extr_i128_i64(b, a, t16); 2699 } 2700 2701 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2702 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2703 tcg_gen_or_i64(tmp, a, b); 2704 2705 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2706 } 2707 } else { 2708 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2709 cpu_reg(s, rt), get_mem_index(s), memop); 2710 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2711 } 2712 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2713 tcg_gen_br(done_label); 2714 2715 gen_set_label(fail_label); 2716 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2717 gen_set_label(done_label); 2718 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2719 } 2720 2721 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2722 int rn, int size) 2723 { 2724 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2725 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2726 int memidx = get_mem_index(s); 2727 TCGv_i64 clean_addr; 2728 MemOp memop; 2729 2730 if (rn == 31) { 2731 gen_check_sp_alignment(s); 2732 } 2733 memop = check_atomic_align(s, rn, size); 2734 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2735 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2736 memidx, memop); 2737 } 2738 2739 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2740 int rn, int size) 2741 { 2742 TCGv_i64 s1 = cpu_reg(s, rs); 2743 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2744 TCGv_i64 t1 = cpu_reg(s, rt); 2745 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2746 TCGv_i64 clean_addr; 2747 int memidx = get_mem_index(s); 2748 MemOp memop; 2749 2750 if (rn == 31) { 2751 gen_check_sp_alignment(s); 2752 } 2753 2754 /* This is a single atomic access, despite the "pair". */ 2755 memop = check_atomic_align(s, rn, size + 1); 2756 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2757 2758 if (size == 2) { 2759 TCGv_i64 cmp = tcg_temp_new_i64(); 2760 TCGv_i64 val = tcg_temp_new_i64(); 2761 2762 if (s->be_data == MO_LE) { 2763 tcg_gen_concat32_i64(val, t1, t2); 2764 tcg_gen_concat32_i64(cmp, s1, s2); 2765 } else { 2766 tcg_gen_concat32_i64(val, t2, t1); 2767 tcg_gen_concat32_i64(cmp, s2, s1); 2768 } 2769 2770 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2771 2772 if (s->be_data == MO_LE) { 2773 tcg_gen_extr32_i64(s1, s2, cmp); 2774 } else { 2775 tcg_gen_extr32_i64(s2, s1, cmp); 2776 } 2777 } else { 2778 TCGv_i128 cmp = tcg_temp_new_i128(); 2779 TCGv_i128 val = tcg_temp_new_i128(); 2780 2781 if (s->be_data == MO_LE) { 2782 tcg_gen_concat_i64_i128(val, t1, t2); 2783 tcg_gen_concat_i64_i128(cmp, s1, s2); 2784 } else { 2785 tcg_gen_concat_i64_i128(val, t2, t1); 2786 tcg_gen_concat_i64_i128(cmp, s2, s1); 2787 } 2788 2789 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2790 2791 if (s->be_data == MO_LE) { 2792 tcg_gen_extr_i128_i64(s1, s2, cmp); 2793 } else { 2794 tcg_gen_extr_i128_i64(s2, s1, cmp); 2795 } 2796 } 2797 } 2798 2799 /* 2800 * Compute the ISS.SF bit for syndrome information if an exception 2801 * is taken on a load or store. This indicates whether the instruction 2802 * is accessing a 32-bit or 64-bit register. This logic is derived 2803 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2804 */ 2805 static bool ldst_iss_sf(int size, bool sign, bool ext) 2806 { 2807 2808 if (sign) { 2809 /* 2810 * Signed loads are 64 bit results if we are not going to 2811 * do a zero-extend from 32 to 64 after the load. 2812 * (For a store, sign and ext are always false.) 2813 */ 2814 return !ext; 2815 } else { 2816 /* Unsigned loads/stores work at the specified size */ 2817 return size == MO_64; 2818 } 2819 } 2820 2821 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2822 { 2823 if (a->rn == 31) { 2824 gen_check_sp_alignment(s); 2825 } 2826 if (a->lasr) { 2827 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2828 } 2829 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2830 return true; 2831 } 2832 2833 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2834 { 2835 if (a->rn == 31) { 2836 gen_check_sp_alignment(s); 2837 } 2838 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2839 if (a->lasr) { 2840 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2841 } 2842 return true; 2843 } 2844 2845 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2846 { 2847 TCGv_i64 clean_addr; 2848 MemOp memop; 2849 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2850 2851 /* 2852 * StoreLORelease is the same as Store-Release for QEMU, but 2853 * needs the feature-test. 2854 */ 2855 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2856 return false; 2857 } 2858 /* Generate ISS for non-exclusive accesses including LASR. */ 2859 if (a->rn == 31) { 2860 gen_check_sp_alignment(s); 2861 } 2862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2863 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2864 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2865 true, a->rn != 31, memop); 2866 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2867 iss_sf, a->lasr); 2868 return true; 2869 } 2870 2871 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2872 { 2873 TCGv_i64 clean_addr; 2874 MemOp memop; 2875 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2876 2877 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2878 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2879 return false; 2880 } 2881 /* Generate ISS for non-exclusive accesses including LASR. */ 2882 if (a->rn == 31) { 2883 gen_check_sp_alignment(s); 2884 } 2885 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2886 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2887 false, a->rn != 31, memop); 2888 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2889 a->rt, iss_sf, a->lasr); 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 return true; 2892 } 2893 2894 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2895 { 2896 if (a->rn == 31) { 2897 gen_check_sp_alignment(s); 2898 } 2899 if (a->lasr) { 2900 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2901 } 2902 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2903 return true; 2904 } 2905 2906 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2907 { 2908 if (a->rn == 31) { 2909 gen_check_sp_alignment(s); 2910 } 2911 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2912 if (a->lasr) { 2913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2914 } 2915 return true; 2916 } 2917 2918 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2919 { 2920 if (!dc_isar_feature(aa64_atomics, s)) { 2921 return false; 2922 } 2923 if (((a->rt | a->rs) & 1) != 0) { 2924 return false; 2925 } 2926 2927 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2928 return true; 2929 } 2930 2931 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2932 { 2933 if (!dc_isar_feature(aa64_atomics, s)) { 2934 return false; 2935 } 2936 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2937 return true; 2938 } 2939 2940 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2941 { 2942 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2943 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2944 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2945 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2946 2947 gen_pc_plus_diff(s, clean_addr, a->imm); 2948 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2949 false, true, a->rt, iss_sf, false); 2950 return true; 2951 } 2952 2953 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2954 { 2955 /* Load register (literal), vector version */ 2956 TCGv_i64 clean_addr; 2957 MemOp memop; 2958 2959 if (!fp_access_check(s)) { 2960 return true; 2961 } 2962 memop = finalize_memop_asimd(s, a->sz); 2963 clean_addr = tcg_temp_new_i64(); 2964 gen_pc_plus_diff(s, clean_addr, a->imm); 2965 do_fp_ld(s, a->rt, clean_addr, memop); 2966 return true; 2967 } 2968 2969 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2970 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2971 uint64_t offset, bool is_store, MemOp mop) 2972 { 2973 if (a->rn == 31) { 2974 gen_check_sp_alignment(s); 2975 } 2976 2977 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2978 if (!a->p) { 2979 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2980 } 2981 2982 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2983 (a->w || a->rn != 31), 2 << a->sz, mop); 2984 } 2985 2986 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2987 TCGv_i64 dirty_addr, uint64_t offset) 2988 { 2989 if (a->w) { 2990 if (a->p) { 2991 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2992 } 2993 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2994 } 2995 } 2996 2997 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2998 { 2999 uint64_t offset = a->imm << a->sz; 3000 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3001 MemOp mop = finalize_memop(s, a->sz); 3002 3003 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3004 tcg_rt = cpu_reg(s, a->rt); 3005 tcg_rt2 = cpu_reg(s, a->rt2); 3006 /* 3007 * We built mop above for the single logical access -- rebuild it 3008 * now for the paired operation. 3009 * 3010 * With LSE2, non-sign-extending pairs are treated atomically if 3011 * aligned, and if unaligned one of the pair will be completely 3012 * within a 16-byte block and that element will be atomic. 3013 * Otherwise each element is separately atomic. 3014 * In all cases, issue one operation with the correct atomicity. 3015 */ 3016 mop = a->sz + 1; 3017 if (s->align_mem) { 3018 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3019 } 3020 mop = finalize_memop_pair(s, mop); 3021 if (a->sz == 2) { 3022 TCGv_i64 tmp = tcg_temp_new_i64(); 3023 3024 if (s->be_data == MO_LE) { 3025 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3026 } else { 3027 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3028 } 3029 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3030 } else { 3031 TCGv_i128 tmp = tcg_temp_new_i128(); 3032 3033 if (s->be_data == MO_LE) { 3034 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3035 } else { 3036 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3037 } 3038 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3039 } 3040 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3041 return true; 3042 } 3043 3044 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3045 { 3046 uint64_t offset = a->imm << a->sz; 3047 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3048 MemOp mop = finalize_memop(s, a->sz); 3049 3050 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3051 tcg_rt = cpu_reg(s, a->rt); 3052 tcg_rt2 = cpu_reg(s, a->rt2); 3053 3054 /* 3055 * We built mop above for the single logical access -- rebuild it 3056 * now for the paired operation. 3057 * 3058 * With LSE2, non-sign-extending pairs are treated atomically if 3059 * aligned, and if unaligned one of the pair will be completely 3060 * within a 16-byte block and that element will be atomic. 3061 * Otherwise each element is separately atomic. 3062 * In all cases, issue one operation with the correct atomicity. 3063 * 3064 * This treats sign-extending loads like zero-extending loads, 3065 * since that reuses the most code below. 3066 */ 3067 mop = a->sz + 1; 3068 if (s->align_mem) { 3069 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3070 } 3071 mop = finalize_memop_pair(s, mop); 3072 if (a->sz == 2) { 3073 int o2 = s->be_data == MO_LE ? 32 : 0; 3074 int o1 = o2 ^ 32; 3075 3076 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3077 if (a->sign) { 3078 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3079 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3080 } else { 3081 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3082 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3083 } 3084 } else { 3085 TCGv_i128 tmp = tcg_temp_new_i128(); 3086 3087 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3088 if (s->be_data == MO_LE) { 3089 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3090 } else { 3091 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3092 } 3093 } 3094 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3095 return true; 3096 } 3097 3098 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3099 { 3100 uint64_t offset = a->imm << a->sz; 3101 TCGv_i64 clean_addr, dirty_addr; 3102 MemOp mop; 3103 3104 if (!fp_access_check(s)) { 3105 return true; 3106 } 3107 3108 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3109 mop = finalize_memop_asimd(s, a->sz); 3110 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3111 do_fp_st(s, a->rt, clean_addr, mop); 3112 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3113 do_fp_st(s, a->rt2, clean_addr, mop); 3114 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3115 return true; 3116 } 3117 3118 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3119 { 3120 uint64_t offset = a->imm << a->sz; 3121 TCGv_i64 clean_addr, dirty_addr; 3122 MemOp mop; 3123 3124 if (!fp_access_check(s)) { 3125 return true; 3126 } 3127 3128 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3129 mop = finalize_memop_asimd(s, a->sz); 3130 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3131 do_fp_ld(s, a->rt, clean_addr, mop); 3132 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3133 do_fp_ld(s, a->rt2, clean_addr, mop); 3134 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3135 return true; 3136 } 3137 3138 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3139 { 3140 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3141 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3142 MemOp mop; 3143 TCGv_i128 tmp; 3144 3145 /* STGP only comes in one size. */ 3146 tcg_debug_assert(a->sz == MO_64); 3147 3148 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3149 return false; 3150 } 3151 3152 if (a->rn == 31) { 3153 gen_check_sp_alignment(s); 3154 } 3155 3156 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3157 if (!a->p) { 3158 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3159 } 3160 3161 clean_addr = clean_data_tbi(s, dirty_addr); 3162 tcg_rt = cpu_reg(s, a->rt); 3163 tcg_rt2 = cpu_reg(s, a->rt2); 3164 3165 /* 3166 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3167 * and one tag operation. We implement it as one single aligned 16-byte 3168 * memory operation for convenience. Note that the alignment ensures 3169 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3170 */ 3171 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3172 3173 tmp = tcg_temp_new_i128(); 3174 if (s->be_data == MO_LE) { 3175 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3176 } else { 3177 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3178 } 3179 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3180 3181 /* Perform the tag store, if tag access enabled. */ 3182 if (s->ata[0]) { 3183 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3184 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3185 } else { 3186 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3187 } 3188 } 3189 3190 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3191 return true; 3192 } 3193 3194 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3195 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3196 uint64_t offset, bool is_store, MemOp mop) 3197 { 3198 int memidx; 3199 3200 if (a->rn == 31) { 3201 gen_check_sp_alignment(s); 3202 } 3203 3204 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3205 if (!a->p) { 3206 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3207 } 3208 memidx = get_a64_user_mem_index(s, a->unpriv); 3209 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3210 a->w || a->rn != 31, 3211 mop, a->unpriv, memidx); 3212 } 3213 3214 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3215 TCGv_i64 dirty_addr, uint64_t offset) 3216 { 3217 if (a->w) { 3218 if (a->p) { 3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3220 } 3221 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3222 } 3223 } 3224 3225 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3226 { 3227 bool iss_sf, iss_valid = !a->w; 3228 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3229 int memidx = get_a64_user_mem_index(s, a->unpriv); 3230 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3231 3232 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3233 3234 tcg_rt = cpu_reg(s, a->rt); 3235 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3236 3237 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3238 iss_valid, a->rt, iss_sf, false); 3239 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3240 return true; 3241 } 3242 3243 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3244 { 3245 bool iss_sf, iss_valid = !a->w; 3246 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3247 int memidx = get_a64_user_mem_index(s, a->unpriv); 3248 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3249 3250 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3251 3252 tcg_rt = cpu_reg(s, a->rt); 3253 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3254 3255 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3256 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3257 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3258 return true; 3259 } 3260 3261 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3262 { 3263 TCGv_i64 clean_addr, dirty_addr; 3264 MemOp mop; 3265 3266 if (!fp_access_check(s)) { 3267 return true; 3268 } 3269 mop = finalize_memop_asimd(s, a->sz); 3270 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3271 do_fp_st(s, a->rt, clean_addr, mop); 3272 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3273 return true; 3274 } 3275 3276 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3277 { 3278 TCGv_i64 clean_addr, dirty_addr; 3279 MemOp mop; 3280 3281 if (!fp_access_check(s)) { 3282 return true; 3283 } 3284 mop = finalize_memop_asimd(s, a->sz); 3285 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3286 do_fp_ld(s, a->rt, clean_addr, mop); 3287 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3288 return true; 3289 } 3290 3291 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3292 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3293 bool is_store, MemOp memop) 3294 { 3295 TCGv_i64 tcg_rm; 3296 3297 if (a->rn == 31) { 3298 gen_check_sp_alignment(s); 3299 } 3300 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3301 3302 tcg_rm = read_cpu_reg(s, a->rm, 1); 3303 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3304 3305 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3306 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3307 } 3308 3309 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3310 { 3311 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3312 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3313 MemOp memop; 3314 3315 if (extract32(a->opt, 1, 1) == 0) { 3316 return false; 3317 } 3318 3319 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3320 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3321 tcg_rt = cpu_reg(s, a->rt); 3322 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3323 a->ext, true, a->rt, iss_sf, false); 3324 return true; 3325 } 3326 3327 static bool trans_STR(DisasContext *s, arg_ldst *a) 3328 { 3329 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3330 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3331 MemOp memop; 3332 3333 if (extract32(a->opt, 1, 1) == 0) { 3334 return false; 3335 } 3336 3337 memop = finalize_memop(s, a->sz); 3338 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3339 tcg_rt = cpu_reg(s, a->rt); 3340 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3341 return true; 3342 } 3343 3344 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3345 { 3346 TCGv_i64 clean_addr, dirty_addr; 3347 MemOp memop; 3348 3349 if (extract32(a->opt, 1, 1) == 0) { 3350 return false; 3351 } 3352 3353 if (!fp_access_check(s)) { 3354 return true; 3355 } 3356 3357 memop = finalize_memop_asimd(s, a->sz); 3358 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3359 do_fp_ld(s, a->rt, clean_addr, memop); 3360 return true; 3361 } 3362 3363 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3364 { 3365 TCGv_i64 clean_addr, dirty_addr; 3366 MemOp memop; 3367 3368 if (extract32(a->opt, 1, 1) == 0) { 3369 return false; 3370 } 3371 3372 if (!fp_access_check(s)) { 3373 return true; 3374 } 3375 3376 memop = finalize_memop_asimd(s, a->sz); 3377 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3378 do_fp_st(s, a->rt, clean_addr, memop); 3379 return true; 3380 } 3381 3382 3383 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3384 int sign, bool invert) 3385 { 3386 MemOp mop = a->sz | sign; 3387 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3388 3389 if (a->rn == 31) { 3390 gen_check_sp_alignment(s); 3391 } 3392 mop = check_atomic_align(s, a->rn, mop); 3393 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3394 a->rn != 31, mop); 3395 tcg_rs = read_cpu_reg(s, a->rs, true); 3396 tcg_rt = cpu_reg(s, a->rt); 3397 if (invert) { 3398 tcg_gen_not_i64(tcg_rs, tcg_rs); 3399 } 3400 /* 3401 * The tcg atomic primitives are all full barriers. Therefore we 3402 * can ignore the Acquire and Release bits of this instruction. 3403 */ 3404 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3405 3406 if (mop & MO_SIGN) { 3407 switch (a->sz) { 3408 case MO_8: 3409 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3410 break; 3411 case MO_16: 3412 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3413 break; 3414 case MO_32: 3415 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3416 break; 3417 case MO_64: 3418 break; 3419 default: 3420 g_assert_not_reached(); 3421 } 3422 } 3423 return true; 3424 } 3425 3426 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3427 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3428 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3429 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3430 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3431 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3432 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3433 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3434 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3435 3436 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3437 { 3438 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3439 TCGv_i64 clean_addr; 3440 MemOp mop; 3441 3442 if (!dc_isar_feature(aa64_atomics, s) || 3443 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3444 return false; 3445 } 3446 if (a->rn == 31) { 3447 gen_check_sp_alignment(s); 3448 } 3449 mop = check_atomic_align(s, a->rn, a->sz); 3450 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3451 a->rn != 31, mop); 3452 /* 3453 * LDAPR* are a special case because they are a simple load, not a 3454 * fetch-and-do-something op. 3455 * The architectural consistency requirements here are weaker than 3456 * full load-acquire (we only need "load-acquire processor consistent"), 3457 * but we choose to implement them as full LDAQ. 3458 */ 3459 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3460 true, a->rt, iss_sf, true); 3461 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3462 return true; 3463 } 3464 3465 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3466 { 3467 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3468 MemOp memop; 3469 3470 /* Load with pointer authentication */ 3471 if (!dc_isar_feature(aa64_pauth, s)) { 3472 return false; 3473 } 3474 3475 if (a->rn == 31) { 3476 gen_check_sp_alignment(s); 3477 } 3478 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3479 3480 if (s->pauth_active) { 3481 if (!a->m) { 3482 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3483 tcg_constant_i64(0)); 3484 } else { 3485 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3486 tcg_constant_i64(0)); 3487 } 3488 } 3489 3490 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3491 3492 memop = finalize_memop(s, MO_64); 3493 3494 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3495 clean_addr = gen_mte_check1(s, dirty_addr, false, 3496 a->w || a->rn != 31, memop); 3497 3498 tcg_rt = cpu_reg(s, a->rt); 3499 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3500 /* extend */ false, /* iss_valid */ !a->w, 3501 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3502 3503 if (a->w) { 3504 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3505 } 3506 return true; 3507 } 3508 3509 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3510 { 3511 TCGv_i64 clean_addr, dirty_addr; 3512 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3513 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3514 3515 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3516 return false; 3517 } 3518 3519 if (a->rn == 31) { 3520 gen_check_sp_alignment(s); 3521 } 3522 3523 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3524 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3525 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3526 clean_addr = clean_data_tbi(s, dirty_addr); 3527 3528 /* 3529 * Load-AcquirePC semantics; we implement as the slightly more 3530 * restrictive Load-Acquire. 3531 */ 3532 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3533 a->rt, iss_sf, true); 3534 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3535 return true; 3536 } 3537 3538 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3539 { 3540 TCGv_i64 clean_addr, dirty_addr; 3541 MemOp mop = a->sz; 3542 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3543 3544 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3545 return false; 3546 } 3547 3548 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3549 3550 if (a->rn == 31) { 3551 gen_check_sp_alignment(s); 3552 } 3553 3554 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3555 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3556 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3557 clean_addr = clean_data_tbi(s, dirty_addr); 3558 3559 /* Store-Release semantics */ 3560 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3561 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3562 return true; 3563 } 3564 3565 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3566 { 3567 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3568 MemOp endian, align, mop; 3569 3570 int total; /* total bytes */ 3571 int elements; /* elements per vector */ 3572 int r; 3573 int size = a->sz; 3574 3575 if (!a->p && a->rm != 0) { 3576 /* For non-postindexed accesses the Rm field must be 0 */ 3577 return false; 3578 } 3579 if (size == 3 && !a->q && a->selem != 1) { 3580 return false; 3581 } 3582 if (!fp_access_check(s)) { 3583 return true; 3584 } 3585 3586 if (a->rn == 31) { 3587 gen_check_sp_alignment(s); 3588 } 3589 3590 /* For our purposes, bytes are always little-endian. */ 3591 endian = s->be_data; 3592 if (size == 0) { 3593 endian = MO_LE; 3594 } 3595 3596 total = a->rpt * a->selem * (a->q ? 16 : 8); 3597 tcg_rn = cpu_reg_sp(s, a->rn); 3598 3599 /* 3600 * Issue the MTE check vs the logical repeat count, before we 3601 * promote consecutive little-endian elements below. 3602 */ 3603 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3604 finalize_memop_asimd(s, size)); 3605 3606 /* 3607 * Consecutive little-endian elements from a single register 3608 * can be promoted to a larger little-endian operation. 3609 */ 3610 align = MO_ALIGN; 3611 if (a->selem == 1 && endian == MO_LE) { 3612 align = pow2_align(size); 3613 size = 3; 3614 } 3615 if (!s->align_mem) { 3616 align = 0; 3617 } 3618 mop = endian | size | align; 3619 3620 elements = (a->q ? 16 : 8) >> size; 3621 tcg_ebytes = tcg_constant_i64(1 << size); 3622 for (r = 0; r < a->rpt; r++) { 3623 int e; 3624 for (e = 0; e < elements; e++) { 3625 int xs; 3626 for (xs = 0; xs < a->selem; xs++) { 3627 int tt = (a->rt + r + xs) % 32; 3628 do_vec_ld(s, tt, e, clean_addr, mop); 3629 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3630 } 3631 } 3632 } 3633 3634 /* 3635 * For non-quad operations, setting a slice of the low 64 bits of 3636 * the register clears the high 64 bits (in the ARM ARM pseudocode 3637 * this is implicit in the fact that 'rval' is a 64 bit wide 3638 * variable). For quad operations, we might still need to zero 3639 * the high bits of SVE. 3640 */ 3641 for (r = 0; r < a->rpt * a->selem; r++) { 3642 int tt = (a->rt + r) % 32; 3643 clear_vec_high(s, a->q, tt); 3644 } 3645 3646 if (a->p) { 3647 if (a->rm == 31) { 3648 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3649 } else { 3650 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3651 } 3652 } 3653 return true; 3654 } 3655 3656 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3657 { 3658 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3659 MemOp endian, align, mop; 3660 3661 int total; /* total bytes */ 3662 int elements; /* elements per vector */ 3663 int r; 3664 int size = a->sz; 3665 3666 if (!a->p && a->rm != 0) { 3667 /* For non-postindexed accesses the Rm field must be 0 */ 3668 return false; 3669 } 3670 if (size == 3 && !a->q && a->selem != 1) { 3671 return false; 3672 } 3673 if (!fp_access_check(s)) { 3674 return true; 3675 } 3676 3677 if (a->rn == 31) { 3678 gen_check_sp_alignment(s); 3679 } 3680 3681 /* For our purposes, bytes are always little-endian. */ 3682 endian = s->be_data; 3683 if (size == 0) { 3684 endian = MO_LE; 3685 } 3686 3687 total = a->rpt * a->selem * (a->q ? 16 : 8); 3688 tcg_rn = cpu_reg_sp(s, a->rn); 3689 3690 /* 3691 * Issue the MTE check vs the logical repeat count, before we 3692 * promote consecutive little-endian elements below. 3693 */ 3694 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3695 finalize_memop_asimd(s, size)); 3696 3697 /* 3698 * Consecutive little-endian elements from a single register 3699 * can be promoted to a larger little-endian operation. 3700 */ 3701 align = MO_ALIGN; 3702 if (a->selem == 1 && endian == MO_LE) { 3703 align = pow2_align(size); 3704 size = 3; 3705 } 3706 if (!s->align_mem) { 3707 align = 0; 3708 } 3709 mop = endian | size | align; 3710 3711 elements = (a->q ? 16 : 8) >> size; 3712 tcg_ebytes = tcg_constant_i64(1 << size); 3713 for (r = 0; r < a->rpt; r++) { 3714 int e; 3715 for (e = 0; e < elements; e++) { 3716 int xs; 3717 for (xs = 0; xs < a->selem; xs++) { 3718 int tt = (a->rt + r + xs) % 32; 3719 do_vec_st(s, tt, e, clean_addr, mop); 3720 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3721 } 3722 } 3723 } 3724 3725 if (a->p) { 3726 if (a->rm == 31) { 3727 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3728 } else { 3729 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3730 } 3731 } 3732 return true; 3733 } 3734 3735 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3736 { 3737 int xs, total, rt; 3738 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3739 MemOp mop; 3740 3741 if (!a->p && a->rm != 0) { 3742 return false; 3743 } 3744 if (!fp_access_check(s)) { 3745 return true; 3746 } 3747 3748 if (a->rn == 31) { 3749 gen_check_sp_alignment(s); 3750 } 3751 3752 total = a->selem << a->scale; 3753 tcg_rn = cpu_reg_sp(s, a->rn); 3754 3755 mop = finalize_memop_asimd(s, a->scale); 3756 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3757 total, mop); 3758 3759 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3760 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3761 do_vec_st(s, rt, a->index, clean_addr, mop); 3762 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3763 } 3764 3765 if (a->p) { 3766 if (a->rm == 31) { 3767 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3768 } else { 3769 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3770 } 3771 } 3772 return true; 3773 } 3774 3775 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3776 { 3777 int xs, total, rt; 3778 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3779 MemOp mop; 3780 3781 if (!a->p && a->rm != 0) { 3782 return false; 3783 } 3784 if (!fp_access_check(s)) { 3785 return true; 3786 } 3787 3788 if (a->rn == 31) { 3789 gen_check_sp_alignment(s); 3790 } 3791 3792 total = a->selem << a->scale; 3793 tcg_rn = cpu_reg_sp(s, a->rn); 3794 3795 mop = finalize_memop_asimd(s, a->scale); 3796 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3797 total, mop); 3798 3799 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3800 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3801 do_vec_ld(s, rt, a->index, clean_addr, mop); 3802 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3803 } 3804 3805 if (a->p) { 3806 if (a->rm == 31) { 3807 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3808 } else { 3809 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3810 } 3811 } 3812 return true; 3813 } 3814 3815 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3816 { 3817 int xs, total, rt; 3818 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3819 MemOp mop; 3820 3821 if (!a->p && a->rm != 0) { 3822 return false; 3823 } 3824 if (!fp_access_check(s)) { 3825 return true; 3826 } 3827 3828 if (a->rn == 31) { 3829 gen_check_sp_alignment(s); 3830 } 3831 3832 total = a->selem << a->scale; 3833 tcg_rn = cpu_reg_sp(s, a->rn); 3834 3835 mop = finalize_memop_asimd(s, a->scale); 3836 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3837 total, mop); 3838 3839 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3840 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3841 /* Load and replicate to all elements */ 3842 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3843 3844 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3845 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3846 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3847 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3848 } 3849 3850 if (a->p) { 3851 if (a->rm == 31) { 3852 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3853 } else { 3854 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3855 } 3856 } 3857 return true; 3858 } 3859 3860 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3861 { 3862 TCGv_i64 addr, clean_addr, tcg_rt; 3863 int size = 4 << s->dcz_blocksize; 3864 3865 if (!dc_isar_feature(aa64_mte, s)) { 3866 return false; 3867 } 3868 if (s->current_el == 0) { 3869 return false; 3870 } 3871 3872 if (a->rn == 31) { 3873 gen_check_sp_alignment(s); 3874 } 3875 3876 addr = read_cpu_reg_sp(s, a->rn, true); 3877 tcg_gen_addi_i64(addr, addr, a->imm); 3878 tcg_rt = cpu_reg(s, a->rt); 3879 3880 if (s->ata[0]) { 3881 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3882 } 3883 /* 3884 * The non-tags portion of STZGM is mostly like DC_ZVA, 3885 * except the alignment happens before the access. 3886 */ 3887 clean_addr = clean_data_tbi(s, addr); 3888 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3889 gen_helper_dc_zva(tcg_env, clean_addr); 3890 return true; 3891 } 3892 3893 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3894 { 3895 TCGv_i64 addr, clean_addr, tcg_rt; 3896 3897 if (!dc_isar_feature(aa64_mte, s)) { 3898 return false; 3899 } 3900 if (s->current_el == 0) { 3901 return false; 3902 } 3903 3904 if (a->rn == 31) { 3905 gen_check_sp_alignment(s); 3906 } 3907 3908 addr = read_cpu_reg_sp(s, a->rn, true); 3909 tcg_gen_addi_i64(addr, addr, a->imm); 3910 tcg_rt = cpu_reg(s, a->rt); 3911 3912 if (s->ata[0]) { 3913 gen_helper_stgm(tcg_env, addr, tcg_rt); 3914 } else { 3915 MMUAccessType acc = MMU_DATA_STORE; 3916 int size = 4 << s->gm_blocksize; 3917 3918 clean_addr = clean_data_tbi(s, addr); 3919 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3920 gen_probe_access(s, clean_addr, acc, size); 3921 } 3922 return true; 3923 } 3924 3925 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3926 { 3927 TCGv_i64 addr, clean_addr, tcg_rt; 3928 3929 if (!dc_isar_feature(aa64_mte, s)) { 3930 return false; 3931 } 3932 if (s->current_el == 0) { 3933 return false; 3934 } 3935 3936 if (a->rn == 31) { 3937 gen_check_sp_alignment(s); 3938 } 3939 3940 addr = read_cpu_reg_sp(s, a->rn, true); 3941 tcg_gen_addi_i64(addr, addr, a->imm); 3942 tcg_rt = cpu_reg(s, a->rt); 3943 3944 if (s->ata[0]) { 3945 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3946 } else { 3947 MMUAccessType acc = MMU_DATA_LOAD; 3948 int size = 4 << s->gm_blocksize; 3949 3950 clean_addr = clean_data_tbi(s, addr); 3951 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3952 gen_probe_access(s, clean_addr, acc, size); 3953 /* The result tags are zeros. */ 3954 tcg_gen_movi_i64(tcg_rt, 0); 3955 } 3956 return true; 3957 } 3958 3959 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3960 { 3961 TCGv_i64 addr, clean_addr, tcg_rt; 3962 3963 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3964 return false; 3965 } 3966 3967 if (a->rn == 31) { 3968 gen_check_sp_alignment(s); 3969 } 3970 3971 addr = read_cpu_reg_sp(s, a->rn, true); 3972 if (!a->p) { 3973 /* pre-index or signed offset */ 3974 tcg_gen_addi_i64(addr, addr, a->imm); 3975 } 3976 3977 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3978 tcg_rt = cpu_reg(s, a->rt); 3979 if (s->ata[0]) { 3980 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3981 } else { 3982 /* 3983 * Tag access disabled: we must check for aborts on the load 3984 * load from [rn+offset], and then insert a 0 tag into rt. 3985 */ 3986 clean_addr = clean_data_tbi(s, addr); 3987 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3988 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3989 } 3990 3991 if (a->w) { 3992 /* pre-index or post-index */ 3993 if (a->p) { 3994 /* post-index */ 3995 tcg_gen_addi_i64(addr, addr, a->imm); 3996 } 3997 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3998 } 3999 return true; 4000 } 4001 4002 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4003 { 4004 TCGv_i64 addr, tcg_rt; 4005 4006 if (a->rn == 31) { 4007 gen_check_sp_alignment(s); 4008 } 4009 4010 addr = read_cpu_reg_sp(s, a->rn, true); 4011 if (!a->p) { 4012 /* pre-index or signed offset */ 4013 tcg_gen_addi_i64(addr, addr, a->imm); 4014 } 4015 tcg_rt = cpu_reg_sp(s, a->rt); 4016 if (!s->ata[0]) { 4017 /* 4018 * For STG and ST2G, we need to check alignment and probe memory. 4019 * TODO: For STZG and STZ2G, we could rely on the stores below, 4020 * at least for system mode; user-only won't enforce alignment. 4021 */ 4022 if (is_pair) { 4023 gen_helper_st2g_stub(tcg_env, addr); 4024 } else { 4025 gen_helper_stg_stub(tcg_env, addr); 4026 } 4027 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4028 if (is_pair) { 4029 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4030 } else { 4031 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4032 } 4033 } else { 4034 if (is_pair) { 4035 gen_helper_st2g(tcg_env, addr, tcg_rt); 4036 } else { 4037 gen_helper_stg(tcg_env, addr, tcg_rt); 4038 } 4039 } 4040 4041 if (is_zero) { 4042 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4043 TCGv_i64 zero64 = tcg_constant_i64(0); 4044 TCGv_i128 zero128 = tcg_temp_new_i128(); 4045 int mem_index = get_mem_index(s); 4046 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4047 4048 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4049 4050 /* This is 1 or 2 atomic 16-byte operations. */ 4051 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4052 if (is_pair) { 4053 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4054 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4055 } 4056 } 4057 4058 if (a->w) { 4059 /* pre-index or post-index */ 4060 if (a->p) { 4061 /* post-index */ 4062 tcg_gen_addi_i64(addr, addr, a->imm); 4063 } 4064 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4065 } 4066 return true; 4067 } 4068 4069 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4070 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4071 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4072 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4073 4074 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4075 4076 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4077 bool is_setg, SetFn fn) 4078 { 4079 int memidx; 4080 uint32_t syndrome, desc = 0; 4081 4082 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4083 return false; 4084 } 4085 4086 /* 4087 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4088 * us to pull this check before the CheckMOPSEnabled() test 4089 * (which we do in the helper function) 4090 */ 4091 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4092 a->rd == 31 || a->rn == 31) { 4093 return false; 4094 } 4095 4096 memidx = get_a64_user_mem_index(s, a->unpriv); 4097 4098 /* 4099 * We pass option_a == true, matching our implementation; 4100 * we pass wrong_option == false: helper function may set that bit. 4101 */ 4102 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4103 is_epilogue, false, true, a->rd, a->rs, a->rn); 4104 4105 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4106 /* We may need to do MTE tag checking, so assemble the descriptor */ 4107 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4108 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4109 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4110 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4111 } 4112 /* The helper function always needs the memidx even with MTE disabled */ 4113 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4114 4115 /* 4116 * The helper needs the register numbers, but since they're in 4117 * the syndrome anyway, we let it extract them from there rather 4118 * than passing in an extra three integer arguments. 4119 */ 4120 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4121 return true; 4122 } 4123 4124 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4125 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4126 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4127 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4128 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4129 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4130 4131 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4132 4133 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4134 { 4135 int rmemidx, wmemidx; 4136 uint32_t syndrome, rdesc = 0, wdesc = 0; 4137 bool wunpriv = extract32(a->options, 0, 1); 4138 bool runpriv = extract32(a->options, 1, 1); 4139 4140 /* 4141 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4142 * us to pull this check before the CheckMOPSEnabled() test 4143 * (which we do in the helper function) 4144 */ 4145 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4146 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4147 return false; 4148 } 4149 4150 rmemidx = get_a64_user_mem_index(s, runpriv); 4151 wmemidx = get_a64_user_mem_index(s, wunpriv); 4152 4153 /* 4154 * We pass option_a == true, matching our implementation; 4155 * we pass wrong_option == false: helper function may set that bit. 4156 */ 4157 syndrome = syn_mop(false, false, a->options, is_epilogue, 4158 false, true, a->rd, a->rs, a->rn); 4159 4160 /* If we need to do MTE tag checking, assemble the descriptors */ 4161 if (s->mte_active[runpriv]) { 4162 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4163 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4164 } 4165 if (s->mte_active[wunpriv]) { 4166 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4167 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4168 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4169 } 4170 /* The helper function needs these parts of the descriptor regardless */ 4171 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4172 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4173 4174 /* 4175 * The helper needs the register numbers, but since they're in 4176 * the syndrome anyway, we let it extract them from there rather 4177 * than passing in an extra three integer arguments. 4178 */ 4179 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4180 tcg_constant_i32(rdesc)); 4181 return true; 4182 } 4183 4184 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4185 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4186 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4187 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4188 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4189 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4190 4191 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4192 4193 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4194 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4195 { 4196 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4197 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4198 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4199 4200 fn(tcg_rd, tcg_rn, tcg_imm); 4201 if (!a->sf) { 4202 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4203 } 4204 return true; 4205 } 4206 4207 /* 4208 * PC-rel. addressing 4209 */ 4210 4211 static bool trans_ADR(DisasContext *s, arg_ri *a) 4212 { 4213 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4214 return true; 4215 } 4216 4217 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4218 { 4219 int64_t offset = (int64_t)a->imm << 12; 4220 4221 /* The page offset is ok for CF_PCREL. */ 4222 offset -= s->pc_curr & 0xfff; 4223 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4224 return true; 4225 } 4226 4227 /* 4228 * Add/subtract (immediate) 4229 */ 4230 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4231 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4232 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4233 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4234 4235 /* 4236 * Add/subtract (immediate, with tags) 4237 */ 4238 4239 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4240 bool sub_op) 4241 { 4242 TCGv_i64 tcg_rn, tcg_rd; 4243 int imm; 4244 4245 imm = a->uimm6 << LOG2_TAG_GRANULE; 4246 if (sub_op) { 4247 imm = -imm; 4248 } 4249 4250 tcg_rn = cpu_reg_sp(s, a->rn); 4251 tcg_rd = cpu_reg_sp(s, a->rd); 4252 4253 if (s->ata[0]) { 4254 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4255 tcg_constant_i32(imm), 4256 tcg_constant_i32(a->uimm4)); 4257 } else { 4258 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4259 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4260 } 4261 return true; 4262 } 4263 4264 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4265 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4266 4267 /* The input should be a value in the bottom e bits (with higher 4268 * bits zero); returns that value replicated into every element 4269 * of size e in a 64 bit integer. 4270 */ 4271 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4272 { 4273 assert(e != 0); 4274 while (e < 64) { 4275 mask |= mask << e; 4276 e *= 2; 4277 } 4278 return mask; 4279 } 4280 4281 /* 4282 * Logical (immediate) 4283 */ 4284 4285 /* 4286 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4287 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4288 * value (ie should cause a guest UNDEF exception), and true if they are 4289 * valid, in which case the decoded bit pattern is written to result. 4290 */ 4291 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4292 unsigned int imms, unsigned int immr) 4293 { 4294 uint64_t mask; 4295 unsigned e, levels, s, r; 4296 int len; 4297 4298 assert(immn < 2 && imms < 64 && immr < 64); 4299 4300 /* The bit patterns we create here are 64 bit patterns which 4301 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4302 * 64 bits each. Each element contains the same value: a run 4303 * of between 1 and e-1 non-zero bits, rotated within the 4304 * element by between 0 and e-1 bits. 4305 * 4306 * The element size and run length are encoded into immn (1 bit) 4307 * and imms (6 bits) as follows: 4308 * 64 bit elements: immn = 1, imms = <length of run - 1> 4309 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4310 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4311 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4312 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4313 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4314 * Notice that immn = 0, imms = 11111x is the only combination 4315 * not covered by one of the above options; this is reserved. 4316 * Further, <length of run - 1> all-ones is a reserved pattern. 4317 * 4318 * In all cases the rotation is by immr % e (and immr is 6 bits). 4319 */ 4320 4321 /* First determine the element size */ 4322 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4323 if (len < 1) { 4324 /* This is the immn == 0, imms == 0x11111x case */ 4325 return false; 4326 } 4327 e = 1 << len; 4328 4329 levels = e - 1; 4330 s = imms & levels; 4331 r = immr & levels; 4332 4333 if (s == levels) { 4334 /* <length of run - 1> mustn't be all-ones. */ 4335 return false; 4336 } 4337 4338 /* Create the value of one element: s+1 set bits rotated 4339 * by r within the element (which is e bits wide)... 4340 */ 4341 mask = MAKE_64BIT_MASK(0, s + 1); 4342 if (r) { 4343 mask = (mask >> r) | (mask << (e - r)); 4344 mask &= MAKE_64BIT_MASK(0, e); 4345 } 4346 /* ...then replicate the element over the whole 64 bit value */ 4347 mask = bitfield_replicate(mask, e); 4348 *result = mask; 4349 return true; 4350 } 4351 4352 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4353 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4354 { 4355 TCGv_i64 tcg_rd, tcg_rn; 4356 uint64_t imm; 4357 4358 /* Some immediate field values are reserved. */ 4359 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4360 extract32(a->dbm, 0, 6), 4361 extract32(a->dbm, 6, 6))) { 4362 return false; 4363 } 4364 if (!a->sf) { 4365 imm &= 0xffffffffull; 4366 } 4367 4368 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4369 tcg_rn = cpu_reg(s, a->rn); 4370 4371 fn(tcg_rd, tcg_rn, imm); 4372 if (set_cc) { 4373 gen_logic_CC(a->sf, tcg_rd); 4374 } 4375 if (!a->sf) { 4376 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4377 } 4378 return true; 4379 } 4380 4381 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4382 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4383 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4384 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4385 4386 /* 4387 * Move wide (immediate) 4388 */ 4389 4390 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4391 { 4392 int pos = a->hw << 4; 4393 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4394 return true; 4395 } 4396 4397 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4398 { 4399 int pos = a->hw << 4; 4400 uint64_t imm = a->imm; 4401 4402 imm = ~(imm << pos); 4403 if (!a->sf) { 4404 imm = (uint32_t)imm; 4405 } 4406 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4407 return true; 4408 } 4409 4410 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4411 { 4412 int pos = a->hw << 4; 4413 TCGv_i64 tcg_rd, tcg_im; 4414 4415 tcg_rd = cpu_reg(s, a->rd); 4416 tcg_im = tcg_constant_i64(a->imm); 4417 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4418 if (!a->sf) { 4419 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4420 } 4421 return true; 4422 } 4423 4424 /* 4425 * Bitfield 4426 */ 4427 4428 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4429 { 4430 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4431 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4432 unsigned int bitsize = a->sf ? 64 : 32; 4433 unsigned int ri = a->immr; 4434 unsigned int si = a->imms; 4435 unsigned int pos, len; 4436 4437 if (si >= ri) { 4438 /* Wd<s-r:0> = Wn<s:r> */ 4439 len = (si - ri) + 1; 4440 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4441 if (!a->sf) { 4442 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4443 } 4444 } else { 4445 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4446 len = si + 1; 4447 pos = (bitsize - ri) & (bitsize - 1); 4448 4449 if (len < ri) { 4450 /* 4451 * Sign extend the destination field from len to fill the 4452 * balance of the word. Let the deposit below insert all 4453 * of those sign bits. 4454 */ 4455 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4456 len = ri; 4457 } 4458 4459 /* 4460 * We start with zero, and we haven't modified any bits outside 4461 * bitsize, therefore no final zero-extension is unneeded for !sf. 4462 */ 4463 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4464 } 4465 return true; 4466 } 4467 4468 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4469 { 4470 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4471 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4472 unsigned int bitsize = a->sf ? 64 : 32; 4473 unsigned int ri = a->immr; 4474 unsigned int si = a->imms; 4475 unsigned int pos, len; 4476 4477 tcg_rd = cpu_reg(s, a->rd); 4478 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4479 4480 if (si >= ri) { 4481 /* Wd<s-r:0> = Wn<s:r> */ 4482 len = (si - ri) + 1; 4483 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4484 } else { 4485 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4486 len = si + 1; 4487 pos = (bitsize - ri) & (bitsize - 1); 4488 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4489 } 4490 return true; 4491 } 4492 4493 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4494 { 4495 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4496 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4497 unsigned int bitsize = a->sf ? 64 : 32; 4498 unsigned int ri = a->immr; 4499 unsigned int si = a->imms; 4500 unsigned int pos, len; 4501 4502 tcg_rd = cpu_reg(s, a->rd); 4503 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4504 4505 if (si >= ri) { 4506 /* Wd<s-r:0> = Wn<s:r> */ 4507 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4508 len = (si - ri) + 1; 4509 pos = 0; 4510 } else { 4511 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4512 len = si + 1; 4513 pos = (bitsize - ri) & (bitsize - 1); 4514 } 4515 4516 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4517 if (!a->sf) { 4518 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4519 } 4520 return true; 4521 } 4522 4523 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4524 { 4525 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 4529 if (unlikely(a->imm == 0)) { 4530 /* 4531 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4532 * so an extract from bit 0 is a special case. 4533 */ 4534 if (a->sf) { 4535 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4536 } else { 4537 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4538 } 4539 } else { 4540 tcg_rm = cpu_reg(s, a->rm); 4541 tcg_rn = cpu_reg(s, a->rn); 4542 4543 if (a->sf) { 4544 /* Specialization to ROR happens in EXTRACT2. */ 4545 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4546 } else { 4547 TCGv_i32 t0 = tcg_temp_new_i32(); 4548 4549 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4550 if (a->rm == a->rn) { 4551 tcg_gen_rotri_i32(t0, t0, a->imm); 4552 } else { 4553 TCGv_i32 t1 = tcg_temp_new_i32(); 4554 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4555 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4556 } 4557 tcg_gen_extu_i32_i64(tcg_rd, t0); 4558 } 4559 } 4560 return true; 4561 } 4562 4563 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4564 * Note that it is the caller's responsibility to ensure that the 4565 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4566 * mandated semantics for out of range shifts. 4567 */ 4568 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4569 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4570 { 4571 switch (shift_type) { 4572 case A64_SHIFT_TYPE_LSL: 4573 tcg_gen_shl_i64(dst, src, shift_amount); 4574 break; 4575 case A64_SHIFT_TYPE_LSR: 4576 tcg_gen_shr_i64(dst, src, shift_amount); 4577 break; 4578 case A64_SHIFT_TYPE_ASR: 4579 if (!sf) { 4580 tcg_gen_ext32s_i64(dst, src); 4581 } 4582 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4583 break; 4584 case A64_SHIFT_TYPE_ROR: 4585 if (sf) { 4586 tcg_gen_rotr_i64(dst, src, shift_amount); 4587 } else { 4588 TCGv_i32 t0, t1; 4589 t0 = tcg_temp_new_i32(); 4590 t1 = tcg_temp_new_i32(); 4591 tcg_gen_extrl_i64_i32(t0, src); 4592 tcg_gen_extrl_i64_i32(t1, shift_amount); 4593 tcg_gen_rotr_i32(t0, t0, t1); 4594 tcg_gen_extu_i32_i64(dst, t0); 4595 } 4596 break; 4597 default: 4598 assert(FALSE); /* all shift types should be handled */ 4599 break; 4600 } 4601 4602 if (!sf) { /* zero extend final result */ 4603 tcg_gen_ext32u_i64(dst, dst); 4604 } 4605 } 4606 4607 /* Shift a TCGv src by immediate, put result in dst. 4608 * The shift amount must be in range (this should always be true as the 4609 * relevant instructions will UNDEF on bad shift immediates). 4610 */ 4611 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4612 enum a64_shift_type shift_type, unsigned int shift_i) 4613 { 4614 assert(shift_i < (sf ? 64 : 32)); 4615 4616 if (shift_i == 0) { 4617 tcg_gen_mov_i64(dst, src); 4618 } else { 4619 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4620 } 4621 } 4622 4623 /* Logical (shifted register) 4624 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4625 * +----+-----+-----------+-------+---+------+--------+------+------+ 4626 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4627 * +----+-----+-----------+-------+---+------+--------+------+------+ 4628 */ 4629 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4630 { 4631 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4632 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4633 4634 sf = extract32(insn, 31, 1); 4635 opc = extract32(insn, 29, 2); 4636 shift_type = extract32(insn, 22, 2); 4637 invert = extract32(insn, 21, 1); 4638 rm = extract32(insn, 16, 5); 4639 shift_amount = extract32(insn, 10, 6); 4640 rn = extract32(insn, 5, 5); 4641 rd = extract32(insn, 0, 5); 4642 4643 if (!sf && (shift_amount & (1 << 5))) { 4644 unallocated_encoding(s); 4645 return; 4646 } 4647 4648 tcg_rd = cpu_reg(s, rd); 4649 4650 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4651 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4652 * register-register MOV and MVN, so it is worth special casing. 4653 */ 4654 tcg_rm = cpu_reg(s, rm); 4655 if (invert) { 4656 tcg_gen_not_i64(tcg_rd, tcg_rm); 4657 if (!sf) { 4658 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4659 } 4660 } else { 4661 if (sf) { 4662 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4663 } else { 4664 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4665 } 4666 } 4667 return; 4668 } 4669 4670 tcg_rm = read_cpu_reg(s, rm, sf); 4671 4672 if (shift_amount) { 4673 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4674 } 4675 4676 tcg_rn = cpu_reg(s, rn); 4677 4678 switch (opc | (invert << 2)) { 4679 case 0: /* AND */ 4680 case 3: /* ANDS */ 4681 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4682 break; 4683 case 1: /* ORR */ 4684 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4685 break; 4686 case 2: /* EOR */ 4687 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4688 break; 4689 case 4: /* BIC */ 4690 case 7: /* BICS */ 4691 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4692 break; 4693 case 5: /* ORN */ 4694 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4695 break; 4696 case 6: /* EON */ 4697 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4698 break; 4699 default: 4700 assert(FALSE); 4701 break; 4702 } 4703 4704 if (!sf) { 4705 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4706 } 4707 4708 if (opc == 3) { 4709 gen_logic_CC(sf, tcg_rd); 4710 } 4711 } 4712 4713 /* 4714 * Add/subtract (extended register) 4715 * 4716 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4717 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4718 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4719 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4720 * 4721 * sf: 0 -> 32bit, 1 -> 64bit 4722 * op: 0 -> add , 1 -> sub 4723 * S: 1 -> set flags 4724 * opt: 00 4725 * option: extension type (see DecodeRegExtend) 4726 * imm3: optional shift to Rm 4727 * 4728 * Rd = Rn + LSL(extend(Rm), amount) 4729 */ 4730 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4731 { 4732 int rd = extract32(insn, 0, 5); 4733 int rn = extract32(insn, 5, 5); 4734 int imm3 = extract32(insn, 10, 3); 4735 int option = extract32(insn, 13, 3); 4736 int rm = extract32(insn, 16, 5); 4737 int opt = extract32(insn, 22, 2); 4738 bool setflags = extract32(insn, 29, 1); 4739 bool sub_op = extract32(insn, 30, 1); 4740 bool sf = extract32(insn, 31, 1); 4741 4742 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4743 TCGv_i64 tcg_rd; 4744 TCGv_i64 tcg_result; 4745 4746 if (imm3 > 4 || opt != 0) { 4747 unallocated_encoding(s); 4748 return; 4749 } 4750 4751 /* non-flag setting ops may use SP */ 4752 if (!setflags) { 4753 tcg_rd = cpu_reg_sp(s, rd); 4754 } else { 4755 tcg_rd = cpu_reg(s, rd); 4756 } 4757 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4758 4759 tcg_rm = read_cpu_reg(s, rm, sf); 4760 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4761 4762 tcg_result = tcg_temp_new_i64(); 4763 4764 if (!setflags) { 4765 if (sub_op) { 4766 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4767 } else { 4768 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4769 } 4770 } else { 4771 if (sub_op) { 4772 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4773 } else { 4774 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4775 } 4776 } 4777 4778 if (sf) { 4779 tcg_gen_mov_i64(tcg_rd, tcg_result); 4780 } else { 4781 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4782 } 4783 } 4784 4785 /* 4786 * Add/subtract (shifted register) 4787 * 4788 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4789 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4790 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4791 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4792 * 4793 * sf: 0 -> 32bit, 1 -> 64bit 4794 * op: 0 -> add , 1 -> sub 4795 * S: 1 -> set flags 4796 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4797 * imm6: Shift amount to apply to Rm before the add/sub 4798 */ 4799 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4800 { 4801 int rd = extract32(insn, 0, 5); 4802 int rn = extract32(insn, 5, 5); 4803 int imm6 = extract32(insn, 10, 6); 4804 int rm = extract32(insn, 16, 5); 4805 int shift_type = extract32(insn, 22, 2); 4806 bool setflags = extract32(insn, 29, 1); 4807 bool sub_op = extract32(insn, 30, 1); 4808 bool sf = extract32(insn, 31, 1); 4809 4810 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4811 TCGv_i64 tcg_rn, tcg_rm; 4812 TCGv_i64 tcg_result; 4813 4814 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4815 unallocated_encoding(s); 4816 return; 4817 } 4818 4819 tcg_rn = read_cpu_reg(s, rn, sf); 4820 tcg_rm = read_cpu_reg(s, rm, sf); 4821 4822 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4823 4824 tcg_result = tcg_temp_new_i64(); 4825 4826 if (!setflags) { 4827 if (sub_op) { 4828 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4829 } else { 4830 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4831 } 4832 } else { 4833 if (sub_op) { 4834 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4835 } else { 4836 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4837 } 4838 } 4839 4840 if (sf) { 4841 tcg_gen_mov_i64(tcg_rd, tcg_result); 4842 } else { 4843 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4844 } 4845 } 4846 4847 /* Data-processing (3 source) 4848 * 4849 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4850 * +--+------+-----------+------+------+----+------+------+------+ 4851 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4852 * +--+------+-----------+------+------+----+------+------+------+ 4853 */ 4854 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4855 { 4856 int rd = extract32(insn, 0, 5); 4857 int rn = extract32(insn, 5, 5); 4858 int ra = extract32(insn, 10, 5); 4859 int rm = extract32(insn, 16, 5); 4860 int op_id = (extract32(insn, 29, 3) << 4) | 4861 (extract32(insn, 21, 3) << 1) | 4862 extract32(insn, 15, 1); 4863 bool sf = extract32(insn, 31, 1); 4864 bool is_sub = extract32(op_id, 0, 1); 4865 bool is_high = extract32(op_id, 2, 1); 4866 bool is_signed = false; 4867 TCGv_i64 tcg_op1; 4868 TCGv_i64 tcg_op2; 4869 TCGv_i64 tcg_tmp; 4870 4871 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4872 switch (op_id) { 4873 case 0x42: /* SMADDL */ 4874 case 0x43: /* SMSUBL */ 4875 case 0x44: /* SMULH */ 4876 is_signed = true; 4877 break; 4878 case 0x0: /* MADD (32bit) */ 4879 case 0x1: /* MSUB (32bit) */ 4880 case 0x40: /* MADD (64bit) */ 4881 case 0x41: /* MSUB (64bit) */ 4882 case 0x4a: /* UMADDL */ 4883 case 0x4b: /* UMSUBL */ 4884 case 0x4c: /* UMULH */ 4885 break; 4886 default: 4887 unallocated_encoding(s); 4888 return; 4889 } 4890 4891 if (is_high) { 4892 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4893 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4894 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4895 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4896 4897 if (is_signed) { 4898 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4899 } else { 4900 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4901 } 4902 return; 4903 } 4904 4905 tcg_op1 = tcg_temp_new_i64(); 4906 tcg_op2 = tcg_temp_new_i64(); 4907 tcg_tmp = tcg_temp_new_i64(); 4908 4909 if (op_id < 0x42) { 4910 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4911 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4912 } else { 4913 if (is_signed) { 4914 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4915 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4916 } else { 4917 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4918 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4919 } 4920 } 4921 4922 if (ra == 31 && !is_sub) { 4923 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4924 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4925 } else { 4926 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4927 if (is_sub) { 4928 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4929 } else { 4930 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4931 } 4932 } 4933 4934 if (!sf) { 4935 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4936 } 4937 } 4938 4939 /* Add/subtract (with carry) 4940 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4941 * +--+--+--+------------------------+------+-------------+------+-----+ 4942 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4943 * +--+--+--+------------------------+------+-------------+------+-----+ 4944 */ 4945 4946 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4947 { 4948 unsigned int sf, op, setflags, rm, rn, rd; 4949 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4950 4951 sf = extract32(insn, 31, 1); 4952 op = extract32(insn, 30, 1); 4953 setflags = extract32(insn, 29, 1); 4954 rm = extract32(insn, 16, 5); 4955 rn = extract32(insn, 5, 5); 4956 rd = extract32(insn, 0, 5); 4957 4958 tcg_rd = cpu_reg(s, rd); 4959 tcg_rn = cpu_reg(s, rn); 4960 4961 if (op) { 4962 tcg_y = tcg_temp_new_i64(); 4963 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4964 } else { 4965 tcg_y = cpu_reg(s, rm); 4966 } 4967 4968 if (setflags) { 4969 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4970 } else { 4971 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4972 } 4973 } 4974 4975 /* 4976 * Rotate right into flags 4977 * 31 30 29 21 15 10 5 4 0 4978 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4979 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4980 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4981 */ 4982 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4983 { 4984 int mask = extract32(insn, 0, 4); 4985 int o2 = extract32(insn, 4, 1); 4986 int rn = extract32(insn, 5, 5); 4987 int imm6 = extract32(insn, 15, 6); 4988 int sf_op_s = extract32(insn, 29, 3); 4989 TCGv_i64 tcg_rn; 4990 TCGv_i32 nzcv; 4991 4992 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4993 unallocated_encoding(s); 4994 return; 4995 } 4996 4997 tcg_rn = read_cpu_reg(s, rn, 1); 4998 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4999 5000 nzcv = tcg_temp_new_i32(); 5001 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5002 5003 if (mask & 8) { /* N */ 5004 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5005 } 5006 if (mask & 4) { /* Z */ 5007 tcg_gen_not_i32(cpu_ZF, nzcv); 5008 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5009 } 5010 if (mask & 2) { /* C */ 5011 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5012 } 5013 if (mask & 1) { /* V */ 5014 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5015 } 5016 } 5017 5018 /* 5019 * Evaluate into flags 5020 * 31 30 29 21 15 14 10 5 4 0 5021 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5022 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5023 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5024 */ 5025 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5026 { 5027 int o3_mask = extract32(insn, 0, 5); 5028 int rn = extract32(insn, 5, 5); 5029 int o2 = extract32(insn, 15, 6); 5030 int sz = extract32(insn, 14, 1); 5031 int sf_op_s = extract32(insn, 29, 3); 5032 TCGv_i32 tmp; 5033 int shift; 5034 5035 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5036 !dc_isar_feature(aa64_condm_4, s)) { 5037 unallocated_encoding(s); 5038 return; 5039 } 5040 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5041 5042 tmp = tcg_temp_new_i32(); 5043 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5044 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5045 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5046 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5047 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5048 } 5049 5050 /* Conditional compare (immediate / register) 5051 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5052 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5053 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5054 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5055 * [1] y [0] [0] 5056 */ 5057 static void disas_cc(DisasContext *s, uint32_t insn) 5058 { 5059 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5060 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5061 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5062 DisasCompare c; 5063 5064 if (!extract32(insn, 29, 1)) { 5065 unallocated_encoding(s); 5066 return; 5067 } 5068 if (insn & (1 << 10 | 1 << 4)) { 5069 unallocated_encoding(s); 5070 return; 5071 } 5072 sf = extract32(insn, 31, 1); 5073 op = extract32(insn, 30, 1); 5074 is_imm = extract32(insn, 11, 1); 5075 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5076 cond = extract32(insn, 12, 4); 5077 rn = extract32(insn, 5, 5); 5078 nzcv = extract32(insn, 0, 4); 5079 5080 /* Set T0 = !COND. */ 5081 tcg_t0 = tcg_temp_new_i32(); 5082 arm_test_cc(&c, cond); 5083 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5084 5085 /* Load the arguments for the new comparison. */ 5086 if (is_imm) { 5087 tcg_y = tcg_temp_new_i64(); 5088 tcg_gen_movi_i64(tcg_y, y); 5089 } else { 5090 tcg_y = cpu_reg(s, y); 5091 } 5092 tcg_rn = cpu_reg(s, rn); 5093 5094 /* Set the flags for the new comparison. */ 5095 tcg_tmp = tcg_temp_new_i64(); 5096 if (op) { 5097 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5098 } else { 5099 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5100 } 5101 5102 /* If COND was false, force the flags to #nzcv. Compute two masks 5103 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5104 * For tcg hosts that support ANDC, we can make do with just T1. 5105 * In either case, allow the tcg optimizer to delete any unused mask. 5106 */ 5107 tcg_t1 = tcg_temp_new_i32(); 5108 tcg_t2 = tcg_temp_new_i32(); 5109 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5110 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5111 5112 if (nzcv & 8) { /* N */ 5113 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5114 } else { 5115 if (TCG_TARGET_HAS_andc_i32) { 5116 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5117 } else { 5118 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5119 } 5120 } 5121 if (nzcv & 4) { /* Z */ 5122 if (TCG_TARGET_HAS_andc_i32) { 5123 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5124 } else { 5125 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5126 } 5127 } else { 5128 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5129 } 5130 if (nzcv & 2) { /* C */ 5131 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5132 } else { 5133 if (TCG_TARGET_HAS_andc_i32) { 5134 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5135 } else { 5136 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5137 } 5138 } 5139 if (nzcv & 1) { /* V */ 5140 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5141 } else { 5142 if (TCG_TARGET_HAS_andc_i32) { 5143 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5144 } else { 5145 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5146 } 5147 } 5148 } 5149 5150 /* Conditional select 5151 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5152 * +----+----+---+-----------------+------+------+-----+------+------+ 5153 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5154 * +----+----+---+-----------------+------+------+-----+------+------+ 5155 */ 5156 static void disas_cond_select(DisasContext *s, uint32_t insn) 5157 { 5158 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5159 TCGv_i64 tcg_rd, zero; 5160 DisasCompare64 c; 5161 5162 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5163 /* S == 1 or op2<1> == 1 */ 5164 unallocated_encoding(s); 5165 return; 5166 } 5167 sf = extract32(insn, 31, 1); 5168 else_inv = extract32(insn, 30, 1); 5169 rm = extract32(insn, 16, 5); 5170 cond = extract32(insn, 12, 4); 5171 else_inc = extract32(insn, 10, 1); 5172 rn = extract32(insn, 5, 5); 5173 rd = extract32(insn, 0, 5); 5174 5175 tcg_rd = cpu_reg(s, rd); 5176 5177 a64_test_cc(&c, cond); 5178 zero = tcg_constant_i64(0); 5179 5180 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5181 /* CSET & CSETM. */ 5182 if (else_inv) { 5183 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5184 tcg_rd, c.value, zero); 5185 } else { 5186 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5187 tcg_rd, c.value, zero); 5188 } 5189 } else { 5190 TCGv_i64 t_true = cpu_reg(s, rn); 5191 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5192 if (else_inv && else_inc) { 5193 tcg_gen_neg_i64(t_false, t_false); 5194 } else if (else_inv) { 5195 tcg_gen_not_i64(t_false, t_false); 5196 } else if (else_inc) { 5197 tcg_gen_addi_i64(t_false, t_false, 1); 5198 } 5199 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5200 } 5201 5202 if (!sf) { 5203 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5204 } 5205 } 5206 5207 static void handle_clz(DisasContext *s, unsigned int sf, 5208 unsigned int rn, unsigned int rd) 5209 { 5210 TCGv_i64 tcg_rd, tcg_rn; 5211 tcg_rd = cpu_reg(s, rd); 5212 tcg_rn = cpu_reg(s, rn); 5213 5214 if (sf) { 5215 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5216 } else { 5217 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5218 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5219 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5220 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5221 } 5222 } 5223 5224 static void handle_cls(DisasContext *s, unsigned int sf, 5225 unsigned int rn, unsigned int rd) 5226 { 5227 TCGv_i64 tcg_rd, tcg_rn; 5228 tcg_rd = cpu_reg(s, rd); 5229 tcg_rn = cpu_reg(s, rn); 5230 5231 if (sf) { 5232 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5233 } else { 5234 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5235 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5236 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5237 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5238 } 5239 } 5240 5241 static void handle_rbit(DisasContext *s, unsigned int sf, 5242 unsigned int rn, unsigned int rd) 5243 { 5244 TCGv_i64 tcg_rd, tcg_rn; 5245 tcg_rd = cpu_reg(s, rd); 5246 tcg_rn = cpu_reg(s, rn); 5247 5248 if (sf) { 5249 gen_helper_rbit64(tcg_rd, tcg_rn); 5250 } else { 5251 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5252 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5253 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5254 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5255 } 5256 } 5257 5258 /* REV with sf==1, opcode==3 ("REV64") */ 5259 static void handle_rev64(DisasContext *s, unsigned int sf, 5260 unsigned int rn, unsigned int rd) 5261 { 5262 if (!sf) { 5263 unallocated_encoding(s); 5264 return; 5265 } 5266 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5267 } 5268 5269 /* REV with sf==0, opcode==2 5270 * REV32 (sf==1, opcode==2) 5271 */ 5272 static void handle_rev32(DisasContext *s, unsigned int sf, 5273 unsigned int rn, unsigned int rd) 5274 { 5275 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5276 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5277 5278 if (sf) { 5279 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5280 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5281 } else { 5282 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5283 } 5284 } 5285 5286 /* REV16 (opcode==1) */ 5287 static void handle_rev16(DisasContext *s, unsigned int sf, 5288 unsigned int rn, unsigned int rd) 5289 { 5290 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5291 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5292 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5293 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5294 5295 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5296 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5297 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5298 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5299 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5300 } 5301 5302 /* Data-processing (1 source) 5303 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5304 * +----+---+---+-----------------+---------+--------+------+------+ 5305 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5306 * +----+---+---+-----------------+---------+--------+------+------+ 5307 */ 5308 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5309 { 5310 unsigned int sf, opcode, opcode2, rn, rd; 5311 TCGv_i64 tcg_rd; 5312 5313 if (extract32(insn, 29, 1)) { 5314 unallocated_encoding(s); 5315 return; 5316 } 5317 5318 sf = extract32(insn, 31, 1); 5319 opcode = extract32(insn, 10, 6); 5320 opcode2 = extract32(insn, 16, 5); 5321 rn = extract32(insn, 5, 5); 5322 rd = extract32(insn, 0, 5); 5323 5324 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5325 5326 switch (MAP(sf, opcode2, opcode)) { 5327 case MAP(0, 0x00, 0x00): /* RBIT */ 5328 case MAP(1, 0x00, 0x00): 5329 handle_rbit(s, sf, rn, rd); 5330 break; 5331 case MAP(0, 0x00, 0x01): /* REV16 */ 5332 case MAP(1, 0x00, 0x01): 5333 handle_rev16(s, sf, rn, rd); 5334 break; 5335 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5336 case MAP(1, 0x00, 0x02): 5337 handle_rev32(s, sf, rn, rd); 5338 break; 5339 case MAP(1, 0x00, 0x03): /* REV64 */ 5340 handle_rev64(s, sf, rn, rd); 5341 break; 5342 case MAP(0, 0x00, 0x04): /* CLZ */ 5343 case MAP(1, 0x00, 0x04): 5344 handle_clz(s, sf, rn, rd); 5345 break; 5346 case MAP(0, 0x00, 0x05): /* CLS */ 5347 case MAP(1, 0x00, 0x05): 5348 handle_cls(s, sf, rn, rd); 5349 break; 5350 case MAP(1, 0x01, 0x00): /* PACIA */ 5351 if (s->pauth_active) { 5352 tcg_rd = cpu_reg(s, rd); 5353 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5354 } else if (!dc_isar_feature(aa64_pauth, s)) { 5355 goto do_unallocated; 5356 } 5357 break; 5358 case MAP(1, 0x01, 0x01): /* PACIB */ 5359 if (s->pauth_active) { 5360 tcg_rd = cpu_reg(s, rd); 5361 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5362 } else if (!dc_isar_feature(aa64_pauth, s)) { 5363 goto do_unallocated; 5364 } 5365 break; 5366 case MAP(1, 0x01, 0x02): /* PACDA */ 5367 if (s->pauth_active) { 5368 tcg_rd = cpu_reg(s, rd); 5369 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5370 } else if (!dc_isar_feature(aa64_pauth, s)) { 5371 goto do_unallocated; 5372 } 5373 break; 5374 case MAP(1, 0x01, 0x03): /* PACDB */ 5375 if (s->pauth_active) { 5376 tcg_rd = cpu_reg(s, rd); 5377 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5378 } else if (!dc_isar_feature(aa64_pauth, s)) { 5379 goto do_unallocated; 5380 } 5381 break; 5382 case MAP(1, 0x01, 0x04): /* AUTIA */ 5383 if (s->pauth_active) { 5384 tcg_rd = cpu_reg(s, rd); 5385 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5386 } else if (!dc_isar_feature(aa64_pauth, s)) { 5387 goto do_unallocated; 5388 } 5389 break; 5390 case MAP(1, 0x01, 0x05): /* AUTIB */ 5391 if (s->pauth_active) { 5392 tcg_rd = cpu_reg(s, rd); 5393 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5394 } else if (!dc_isar_feature(aa64_pauth, s)) { 5395 goto do_unallocated; 5396 } 5397 break; 5398 case MAP(1, 0x01, 0x06): /* AUTDA */ 5399 if (s->pauth_active) { 5400 tcg_rd = cpu_reg(s, rd); 5401 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5402 } else if (!dc_isar_feature(aa64_pauth, s)) { 5403 goto do_unallocated; 5404 } 5405 break; 5406 case MAP(1, 0x01, 0x07): /* AUTDB */ 5407 if (s->pauth_active) { 5408 tcg_rd = cpu_reg(s, rd); 5409 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5410 } else if (!dc_isar_feature(aa64_pauth, s)) { 5411 goto do_unallocated; 5412 } 5413 break; 5414 case MAP(1, 0x01, 0x08): /* PACIZA */ 5415 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5416 goto do_unallocated; 5417 } else if (s->pauth_active) { 5418 tcg_rd = cpu_reg(s, rd); 5419 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5420 } 5421 break; 5422 case MAP(1, 0x01, 0x09): /* PACIZB */ 5423 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5424 goto do_unallocated; 5425 } else if (s->pauth_active) { 5426 tcg_rd = cpu_reg(s, rd); 5427 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5428 } 5429 break; 5430 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5431 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5432 goto do_unallocated; 5433 } else if (s->pauth_active) { 5434 tcg_rd = cpu_reg(s, rd); 5435 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5436 } 5437 break; 5438 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5439 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5440 goto do_unallocated; 5441 } else if (s->pauth_active) { 5442 tcg_rd = cpu_reg(s, rd); 5443 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5444 } 5445 break; 5446 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5447 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5448 goto do_unallocated; 5449 } else if (s->pauth_active) { 5450 tcg_rd = cpu_reg(s, rd); 5451 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5452 } 5453 break; 5454 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5455 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5456 goto do_unallocated; 5457 } else if (s->pauth_active) { 5458 tcg_rd = cpu_reg(s, rd); 5459 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5460 } 5461 break; 5462 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5463 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5464 goto do_unallocated; 5465 } else if (s->pauth_active) { 5466 tcg_rd = cpu_reg(s, rd); 5467 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5468 } 5469 break; 5470 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5471 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5472 goto do_unallocated; 5473 } else if (s->pauth_active) { 5474 tcg_rd = cpu_reg(s, rd); 5475 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5476 } 5477 break; 5478 case MAP(1, 0x01, 0x10): /* XPACI */ 5479 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5480 goto do_unallocated; 5481 } else if (s->pauth_active) { 5482 tcg_rd = cpu_reg(s, rd); 5483 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5484 } 5485 break; 5486 case MAP(1, 0x01, 0x11): /* XPACD */ 5487 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5488 goto do_unallocated; 5489 } else if (s->pauth_active) { 5490 tcg_rd = cpu_reg(s, rd); 5491 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5492 } 5493 break; 5494 default: 5495 do_unallocated: 5496 unallocated_encoding(s); 5497 break; 5498 } 5499 5500 #undef MAP 5501 } 5502 5503 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5504 unsigned int rm, unsigned int rn, unsigned int rd) 5505 { 5506 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5507 tcg_rd = cpu_reg(s, rd); 5508 5509 if (!sf && is_signed) { 5510 tcg_n = tcg_temp_new_i64(); 5511 tcg_m = tcg_temp_new_i64(); 5512 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5513 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5514 } else { 5515 tcg_n = read_cpu_reg(s, rn, sf); 5516 tcg_m = read_cpu_reg(s, rm, sf); 5517 } 5518 5519 if (is_signed) { 5520 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5521 } else { 5522 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5523 } 5524 5525 if (!sf) { /* zero extend final result */ 5526 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5527 } 5528 } 5529 5530 /* LSLV, LSRV, ASRV, RORV */ 5531 static void handle_shift_reg(DisasContext *s, 5532 enum a64_shift_type shift_type, unsigned int sf, 5533 unsigned int rm, unsigned int rn, unsigned int rd) 5534 { 5535 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5536 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5537 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5538 5539 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5540 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5541 } 5542 5543 /* CRC32[BHWX], CRC32C[BHWX] */ 5544 static void handle_crc32(DisasContext *s, 5545 unsigned int sf, unsigned int sz, bool crc32c, 5546 unsigned int rm, unsigned int rn, unsigned int rd) 5547 { 5548 TCGv_i64 tcg_acc, tcg_val; 5549 TCGv_i32 tcg_bytes; 5550 5551 if (!dc_isar_feature(aa64_crc32, s) 5552 || (sf == 1 && sz != 3) 5553 || (sf == 0 && sz == 3)) { 5554 unallocated_encoding(s); 5555 return; 5556 } 5557 5558 if (sz == 3) { 5559 tcg_val = cpu_reg(s, rm); 5560 } else { 5561 uint64_t mask; 5562 switch (sz) { 5563 case 0: 5564 mask = 0xFF; 5565 break; 5566 case 1: 5567 mask = 0xFFFF; 5568 break; 5569 case 2: 5570 mask = 0xFFFFFFFF; 5571 break; 5572 default: 5573 g_assert_not_reached(); 5574 } 5575 tcg_val = tcg_temp_new_i64(); 5576 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5577 } 5578 5579 tcg_acc = cpu_reg(s, rn); 5580 tcg_bytes = tcg_constant_i32(1 << sz); 5581 5582 if (crc32c) { 5583 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5584 } else { 5585 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5586 } 5587 } 5588 5589 /* Data-processing (2 source) 5590 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5591 * +----+---+---+-----------------+------+--------+------+------+ 5592 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5593 * +----+---+---+-----------------+------+--------+------+------+ 5594 */ 5595 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5596 { 5597 unsigned int sf, rm, opcode, rn, rd, setflag; 5598 sf = extract32(insn, 31, 1); 5599 setflag = extract32(insn, 29, 1); 5600 rm = extract32(insn, 16, 5); 5601 opcode = extract32(insn, 10, 6); 5602 rn = extract32(insn, 5, 5); 5603 rd = extract32(insn, 0, 5); 5604 5605 if (setflag && opcode != 0) { 5606 unallocated_encoding(s); 5607 return; 5608 } 5609 5610 switch (opcode) { 5611 case 0: /* SUBP(S) */ 5612 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5613 goto do_unallocated; 5614 } else { 5615 TCGv_i64 tcg_n, tcg_m, tcg_d; 5616 5617 tcg_n = read_cpu_reg_sp(s, rn, true); 5618 tcg_m = read_cpu_reg_sp(s, rm, true); 5619 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5620 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5621 tcg_d = cpu_reg(s, rd); 5622 5623 if (setflag) { 5624 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5625 } else { 5626 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5627 } 5628 } 5629 break; 5630 case 2: /* UDIV */ 5631 handle_div(s, false, sf, rm, rn, rd); 5632 break; 5633 case 3: /* SDIV */ 5634 handle_div(s, true, sf, rm, rn, rd); 5635 break; 5636 case 4: /* IRG */ 5637 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5638 goto do_unallocated; 5639 } 5640 if (s->ata[0]) { 5641 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5642 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5643 } else { 5644 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5645 cpu_reg_sp(s, rn)); 5646 } 5647 break; 5648 case 5: /* GMI */ 5649 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5650 goto do_unallocated; 5651 } else { 5652 TCGv_i64 t = tcg_temp_new_i64(); 5653 5654 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5655 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5656 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5657 } 5658 break; 5659 case 8: /* LSLV */ 5660 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5661 break; 5662 case 9: /* LSRV */ 5663 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5664 break; 5665 case 10: /* ASRV */ 5666 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5667 break; 5668 case 11: /* RORV */ 5669 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5670 break; 5671 case 12: /* PACGA */ 5672 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5673 goto do_unallocated; 5674 } 5675 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5676 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5677 break; 5678 case 16: 5679 case 17: 5680 case 18: 5681 case 19: 5682 case 20: 5683 case 21: 5684 case 22: 5685 case 23: /* CRC32 */ 5686 { 5687 int sz = extract32(opcode, 0, 2); 5688 bool crc32c = extract32(opcode, 2, 1); 5689 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5690 break; 5691 } 5692 default: 5693 do_unallocated: 5694 unallocated_encoding(s); 5695 break; 5696 } 5697 } 5698 5699 /* 5700 * Data processing - register 5701 * 31 30 29 28 25 21 20 16 10 0 5702 * +--+---+--+---+-------+-----+-------+-------+---------+ 5703 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5704 * +--+---+--+---+-------+-----+-------+-------+---------+ 5705 */ 5706 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5707 { 5708 int op0 = extract32(insn, 30, 1); 5709 int op1 = extract32(insn, 28, 1); 5710 int op2 = extract32(insn, 21, 4); 5711 int op3 = extract32(insn, 10, 6); 5712 5713 if (!op1) { 5714 if (op2 & 8) { 5715 if (op2 & 1) { 5716 /* Add/sub (extended register) */ 5717 disas_add_sub_ext_reg(s, insn); 5718 } else { 5719 /* Add/sub (shifted register) */ 5720 disas_add_sub_reg(s, insn); 5721 } 5722 } else { 5723 /* Logical (shifted register) */ 5724 disas_logic_reg(s, insn); 5725 } 5726 return; 5727 } 5728 5729 switch (op2) { 5730 case 0x0: 5731 switch (op3) { 5732 case 0x00: /* Add/subtract (with carry) */ 5733 disas_adc_sbc(s, insn); 5734 break; 5735 5736 case 0x01: /* Rotate right into flags */ 5737 case 0x21: 5738 disas_rotate_right_into_flags(s, insn); 5739 break; 5740 5741 case 0x02: /* Evaluate into flags */ 5742 case 0x12: 5743 case 0x22: 5744 case 0x32: 5745 disas_evaluate_into_flags(s, insn); 5746 break; 5747 5748 default: 5749 goto do_unallocated; 5750 } 5751 break; 5752 5753 case 0x2: /* Conditional compare */ 5754 disas_cc(s, insn); /* both imm and reg forms */ 5755 break; 5756 5757 case 0x4: /* Conditional select */ 5758 disas_cond_select(s, insn); 5759 break; 5760 5761 case 0x6: /* Data-processing */ 5762 if (op0) { /* (1 source) */ 5763 disas_data_proc_1src(s, insn); 5764 } else { /* (2 source) */ 5765 disas_data_proc_2src(s, insn); 5766 } 5767 break; 5768 case 0x8 ... 0xf: /* (3 source) */ 5769 disas_data_proc_3src(s, insn); 5770 break; 5771 5772 default: 5773 do_unallocated: 5774 unallocated_encoding(s); 5775 break; 5776 } 5777 } 5778 5779 static void handle_fp_compare(DisasContext *s, int size, 5780 unsigned int rn, unsigned int rm, 5781 bool cmp_with_zero, bool signal_all_nans) 5782 { 5783 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5784 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5785 5786 if (size == MO_64) { 5787 TCGv_i64 tcg_vn, tcg_vm; 5788 5789 tcg_vn = read_fp_dreg(s, rn); 5790 if (cmp_with_zero) { 5791 tcg_vm = tcg_constant_i64(0); 5792 } else { 5793 tcg_vm = read_fp_dreg(s, rm); 5794 } 5795 if (signal_all_nans) { 5796 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5797 } else { 5798 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5799 } 5800 } else { 5801 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5802 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5803 5804 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5805 if (cmp_with_zero) { 5806 tcg_gen_movi_i32(tcg_vm, 0); 5807 } else { 5808 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5809 } 5810 5811 switch (size) { 5812 case MO_32: 5813 if (signal_all_nans) { 5814 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5815 } else { 5816 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5817 } 5818 break; 5819 case MO_16: 5820 if (signal_all_nans) { 5821 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5822 } else { 5823 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5824 } 5825 break; 5826 default: 5827 g_assert_not_reached(); 5828 } 5829 } 5830 5831 gen_set_nzcv(tcg_flags); 5832 } 5833 5834 /* Floating point compare 5835 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5836 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5837 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5838 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5839 */ 5840 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5841 { 5842 unsigned int mos, type, rm, op, rn, opc, op2r; 5843 int size; 5844 5845 mos = extract32(insn, 29, 3); 5846 type = extract32(insn, 22, 2); 5847 rm = extract32(insn, 16, 5); 5848 op = extract32(insn, 14, 2); 5849 rn = extract32(insn, 5, 5); 5850 opc = extract32(insn, 3, 2); 5851 op2r = extract32(insn, 0, 3); 5852 5853 if (mos || op || op2r) { 5854 unallocated_encoding(s); 5855 return; 5856 } 5857 5858 switch (type) { 5859 case 0: 5860 size = MO_32; 5861 break; 5862 case 1: 5863 size = MO_64; 5864 break; 5865 case 3: 5866 size = MO_16; 5867 if (dc_isar_feature(aa64_fp16, s)) { 5868 break; 5869 } 5870 /* fallthru */ 5871 default: 5872 unallocated_encoding(s); 5873 return; 5874 } 5875 5876 if (!fp_access_check(s)) { 5877 return; 5878 } 5879 5880 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5881 } 5882 5883 /* Floating point conditional compare 5884 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5885 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5886 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5887 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5888 */ 5889 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5890 { 5891 unsigned int mos, type, rm, cond, rn, op, nzcv; 5892 TCGLabel *label_continue = NULL; 5893 int size; 5894 5895 mos = extract32(insn, 29, 3); 5896 type = extract32(insn, 22, 2); 5897 rm = extract32(insn, 16, 5); 5898 cond = extract32(insn, 12, 4); 5899 rn = extract32(insn, 5, 5); 5900 op = extract32(insn, 4, 1); 5901 nzcv = extract32(insn, 0, 4); 5902 5903 if (mos) { 5904 unallocated_encoding(s); 5905 return; 5906 } 5907 5908 switch (type) { 5909 case 0: 5910 size = MO_32; 5911 break; 5912 case 1: 5913 size = MO_64; 5914 break; 5915 case 3: 5916 size = MO_16; 5917 if (dc_isar_feature(aa64_fp16, s)) { 5918 break; 5919 } 5920 /* fallthru */ 5921 default: 5922 unallocated_encoding(s); 5923 return; 5924 } 5925 5926 if (!fp_access_check(s)) { 5927 return; 5928 } 5929 5930 if (cond < 0x0e) { /* not always */ 5931 TCGLabel *label_match = gen_new_label(); 5932 label_continue = gen_new_label(); 5933 arm_gen_test_cc(cond, label_match); 5934 /* nomatch: */ 5935 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5936 tcg_gen_br(label_continue); 5937 gen_set_label(label_match); 5938 } 5939 5940 handle_fp_compare(s, size, rn, rm, false, op); 5941 5942 if (cond < 0x0e) { 5943 gen_set_label(label_continue); 5944 } 5945 } 5946 5947 /* Floating point conditional select 5948 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5949 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5951 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5952 */ 5953 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5954 { 5955 unsigned int mos, type, rm, cond, rn, rd; 5956 TCGv_i64 t_true, t_false; 5957 DisasCompare64 c; 5958 MemOp sz; 5959 5960 mos = extract32(insn, 29, 3); 5961 type = extract32(insn, 22, 2); 5962 rm = extract32(insn, 16, 5); 5963 cond = extract32(insn, 12, 4); 5964 rn = extract32(insn, 5, 5); 5965 rd = extract32(insn, 0, 5); 5966 5967 if (mos) { 5968 unallocated_encoding(s); 5969 return; 5970 } 5971 5972 switch (type) { 5973 case 0: 5974 sz = MO_32; 5975 break; 5976 case 1: 5977 sz = MO_64; 5978 break; 5979 case 3: 5980 sz = MO_16; 5981 if (dc_isar_feature(aa64_fp16, s)) { 5982 break; 5983 } 5984 /* fallthru */ 5985 default: 5986 unallocated_encoding(s); 5987 return; 5988 } 5989 5990 if (!fp_access_check(s)) { 5991 return; 5992 } 5993 5994 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5995 t_true = tcg_temp_new_i64(); 5996 t_false = tcg_temp_new_i64(); 5997 read_vec_element(s, t_true, rn, 0, sz); 5998 read_vec_element(s, t_false, rm, 0, sz); 5999 6000 a64_test_cc(&c, cond); 6001 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6002 t_true, t_false); 6003 6004 /* Note that sregs & hregs write back zeros to the high bits, 6005 and we've already done the zero-extension. */ 6006 write_fp_dreg(s, rd, t_true); 6007 } 6008 6009 /* Floating-point data-processing (1 source) - half precision */ 6010 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6011 { 6012 TCGv_ptr fpst = NULL; 6013 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6014 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6015 6016 switch (opcode) { 6017 case 0x0: /* FMOV */ 6018 tcg_gen_mov_i32(tcg_res, tcg_op); 6019 break; 6020 case 0x1: /* FABS */ 6021 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6022 break; 6023 case 0x2: /* FNEG */ 6024 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6025 break; 6026 case 0x3: /* FSQRT */ 6027 fpst = fpstatus_ptr(FPST_FPCR_F16); 6028 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6029 break; 6030 case 0x8: /* FRINTN */ 6031 case 0x9: /* FRINTP */ 6032 case 0xa: /* FRINTM */ 6033 case 0xb: /* FRINTZ */ 6034 case 0xc: /* FRINTA */ 6035 { 6036 TCGv_i32 tcg_rmode; 6037 6038 fpst = fpstatus_ptr(FPST_FPCR_F16); 6039 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6040 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6041 gen_restore_rmode(tcg_rmode, fpst); 6042 break; 6043 } 6044 case 0xe: /* FRINTX */ 6045 fpst = fpstatus_ptr(FPST_FPCR_F16); 6046 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6047 break; 6048 case 0xf: /* FRINTI */ 6049 fpst = fpstatus_ptr(FPST_FPCR_F16); 6050 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6051 break; 6052 default: 6053 g_assert_not_reached(); 6054 } 6055 6056 write_fp_sreg(s, rd, tcg_res); 6057 } 6058 6059 /* Floating-point data-processing (1 source) - single precision */ 6060 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6061 { 6062 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6063 TCGv_i32 tcg_op, tcg_res; 6064 TCGv_ptr fpst; 6065 int rmode = -1; 6066 6067 tcg_op = read_fp_sreg(s, rn); 6068 tcg_res = tcg_temp_new_i32(); 6069 6070 switch (opcode) { 6071 case 0x0: /* FMOV */ 6072 tcg_gen_mov_i32(tcg_res, tcg_op); 6073 goto done; 6074 case 0x1: /* FABS */ 6075 gen_helper_vfp_abss(tcg_res, tcg_op); 6076 goto done; 6077 case 0x2: /* FNEG */ 6078 gen_helper_vfp_negs(tcg_res, tcg_op); 6079 goto done; 6080 case 0x3: /* FSQRT */ 6081 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6082 goto done; 6083 case 0x6: /* BFCVT */ 6084 gen_fpst = gen_helper_bfcvt; 6085 break; 6086 case 0x8: /* FRINTN */ 6087 case 0x9: /* FRINTP */ 6088 case 0xa: /* FRINTM */ 6089 case 0xb: /* FRINTZ */ 6090 case 0xc: /* FRINTA */ 6091 rmode = opcode & 7; 6092 gen_fpst = gen_helper_rints; 6093 break; 6094 case 0xe: /* FRINTX */ 6095 gen_fpst = gen_helper_rints_exact; 6096 break; 6097 case 0xf: /* FRINTI */ 6098 gen_fpst = gen_helper_rints; 6099 break; 6100 case 0x10: /* FRINT32Z */ 6101 rmode = FPROUNDING_ZERO; 6102 gen_fpst = gen_helper_frint32_s; 6103 break; 6104 case 0x11: /* FRINT32X */ 6105 gen_fpst = gen_helper_frint32_s; 6106 break; 6107 case 0x12: /* FRINT64Z */ 6108 rmode = FPROUNDING_ZERO; 6109 gen_fpst = gen_helper_frint64_s; 6110 break; 6111 case 0x13: /* FRINT64X */ 6112 gen_fpst = gen_helper_frint64_s; 6113 break; 6114 default: 6115 g_assert_not_reached(); 6116 } 6117 6118 fpst = fpstatus_ptr(FPST_FPCR); 6119 if (rmode >= 0) { 6120 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6121 gen_fpst(tcg_res, tcg_op, fpst); 6122 gen_restore_rmode(tcg_rmode, fpst); 6123 } else { 6124 gen_fpst(tcg_res, tcg_op, fpst); 6125 } 6126 6127 done: 6128 write_fp_sreg(s, rd, tcg_res); 6129 } 6130 6131 /* Floating-point data-processing (1 source) - double precision */ 6132 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6133 { 6134 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6135 TCGv_i64 tcg_op, tcg_res; 6136 TCGv_ptr fpst; 6137 int rmode = -1; 6138 6139 switch (opcode) { 6140 case 0x0: /* FMOV */ 6141 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6142 return; 6143 } 6144 6145 tcg_op = read_fp_dreg(s, rn); 6146 tcg_res = tcg_temp_new_i64(); 6147 6148 switch (opcode) { 6149 case 0x1: /* FABS */ 6150 gen_helper_vfp_absd(tcg_res, tcg_op); 6151 goto done; 6152 case 0x2: /* FNEG */ 6153 gen_helper_vfp_negd(tcg_res, tcg_op); 6154 goto done; 6155 case 0x3: /* FSQRT */ 6156 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6157 goto done; 6158 case 0x8: /* FRINTN */ 6159 case 0x9: /* FRINTP */ 6160 case 0xa: /* FRINTM */ 6161 case 0xb: /* FRINTZ */ 6162 case 0xc: /* FRINTA */ 6163 rmode = opcode & 7; 6164 gen_fpst = gen_helper_rintd; 6165 break; 6166 case 0xe: /* FRINTX */ 6167 gen_fpst = gen_helper_rintd_exact; 6168 break; 6169 case 0xf: /* FRINTI */ 6170 gen_fpst = gen_helper_rintd; 6171 break; 6172 case 0x10: /* FRINT32Z */ 6173 rmode = FPROUNDING_ZERO; 6174 gen_fpst = gen_helper_frint32_d; 6175 break; 6176 case 0x11: /* FRINT32X */ 6177 gen_fpst = gen_helper_frint32_d; 6178 break; 6179 case 0x12: /* FRINT64Z */ 6180 rmode = FPROUNDING_ZERO; 6181 gen_fpst = gen_helper_frint64_d; 6182 break; 6183 case 0x13: /* FRINT64X */ 6184 gen_fpst = gen_helper_frint64_d; 6185 break; 6186 default: 6187 g_assert_not_reached(); 6188 } 6189 6190 fpst = fpstatus_ptr(FPST_FPCR); 6191 if (rmode >= 0) { 6192 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6193 gen_fpst(tcg_res, tcg_op, fpst); 6194 gen_restore_rmode(tcg_rmode, fpst); 6195 } else { 6196 gen_fpst(tcg_res, tcg_op, fpst); 6197 } 6198 6199 done: 6200 write_fp_dreg(s, rd, tcg_res); 6201 } 6202 6203 static void handle_fp_fcvt(DisasContext *s, int opcode, 6204 int rd, int rn, int dtype, int ntype) 6205 { 6206 switch (ntype) { 6207 case 0x0: 6208 { 6209 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6210 if (dtype == 1) { 6211 /* Single to double */ 6212 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6213 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6214 write_fp_dreg(s, rd, tcg_rd); 6215 } else { 6216 /* Single to half */ 6217 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6218 TCGv_i32 ahp = get_ahp_flag(); 6219 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6220 6221 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6222 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6223 write_fp_sreg(s, rd, tcg_rd); 6224 } 6225 break; 6226 } 6227 case 0x1: 6228 { 6229 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6230 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6231 if (dtype == 0) { 6232 /* Double to single */ 6233 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6234 } else { 6235 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6236 TCGv_i32 ahp = get_ahp_flag(); 6237 /* Double to half */ 6238 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6239 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6240 } 6241 write_fp_sreg(s, rd, tcg_rd); 6242 break; 6243 } 6244 case 0x3: 6245 { 6246 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6247 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6248 TCGv_i32 tcg_ahp = get_ahp_flag(); 6249 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6250 if (dtype == 0) { 6251 /* Half to single */ 6252 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6253 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6254 write_fp_sreg(s, rd, tcg_rd); 6255 } else { 6256 /* Half to double */ 6257 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6258 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6259 write_fp_dreg(s, rd, tcg_rd); 6260 } 6261 break; 6262 } 6263 default: 6264 g_assert_not_reached(); 6265 } 6266 } 6267 6268 /* Floating point data-processing (1 source) 6269 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6270 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6271 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6272 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6273 */ 6274 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6275 { 6276 int mos = extract32(insn, 29, 3); 6277 int type = extract32(insn, 22, 2); 6278 int opcode = extract32(insn, 15, 6); 6279 int rn = extract32(insn, 5, 5); 6280 int rd = extract32(insn, 0, 5); 6281 6282 if (mos) { 6283 goto do_unallocated; 6284 } 6285 6286 switch (opcode) { 6287 case 0x4: case 0x5: case 0x7: 6288 { 6289 /* FCVT between half, single and double precision */ 6290 int dtype = extract32(opcode, 0, 2); 6291 if (type == 2 || dtype == type) { 6292 goto do_unallocated; 6293 } 6294 if (!fp_access_check(s)) { 6295 return; 6296 } 6297 6298 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6299 break; 6300 } 6301 6302 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6303 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6304 goto do_unallocated; 6305 } 6306 /* fall through */ 6307 case 0x0 ... 0x3: 6308 case 0x8 ... 0xc: 6309 case 0xe ... 0xf: 6310 /* 32-to-32 and 64-to-64 ops */ 6311 switch (type) { 6312 case 0: 6313 if (!fp_access_check(s)) { 6314 return; 6315 } 6316 handle_fp_1src_single(s, opcode, rd, rn); 6317 break; 6318 case 1: 6319 if (!fp_access_check(s)) { 6320 return; 6321 } 6322 handle_fp_1src_double(s, opcode, rd, rn); 6323 break; 6324 case 3: 6325 if (!dc_isar_feature(aa64_fp16, s)) { 6326 goto do_unallocated; 6327 } 6328 6329 if (!fp_access_check(s)) { 6330 return; 6331 } 6332 handle_fp_1src_half(s, opcode, rd, rn); 6333 break; 6334 default: 6335 goto do_unallocated; 6336 } 6337 break; 6338 6339 case 0x6: 6340 switch (type) { 6341 case 1: /* BFCVT */ 6342 if (!dc_isar_feature(aa64_bf16, s)) { 6343 goto do_unallocated; 6344 } 6345 if (!fp_access_check(s)) { 6346 return; 6347 } 6348 handle_fp_1src_single(s, opcode, rd, rn); 6349 break; 6350 default: 6351 goto do_unallocated; 6352 } 6353 break; 6354 6355 default: 6356 do_unallocated: 6357 unallocated_encoding(s); 6358 break; 6359 } 6360 } 6361 6362 /* Floating-point data-processing (2 source) - single precision */ 6363 static void handle_fp_2src_single(DisasContext *s, int opcode, 6364 int rd, int rn, int rm) 6365 { 6366 TCGv_i32 tcg_op1; 6367 TCGv_i32 tcg_op2; 6368 TCGv_i32 tcg_res; 6369 TCGv_ptr fpst; 6370 6371 tcg_res = tcg_temp_new_i32(); 6372 fpst = fpstatus_ptr(FPST_FPCR); 6373 tcg_op1 = read_fp_sreg(s, rn); 6374 tcg_op2 = read_fp_sreg(s, rm); 6375 6376 switch (opcode) { 6377 case 0x0: /* FMUL */ 6378 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6379 break; 6380 case 0x1: /* FDIV */ 6381 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6382 break; 6383 case 0x2: /* FADD */ 6384 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6385 break; 6386 case 0x3: /* FSUB */ 6387 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6388 break; 6389 case 0x4: /* FMAX */ 6390 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6391 break; 6392 case 0x5: /* FMIN */ 6393 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6394 break; 6395 case 0x6: /* FMAXNM */ 6396 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6397 break; 6398 case 0x7: /* FMINNM */ 6399 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6400 break; 6401 case 0x8: /* FNMUL */ 6402 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6403 gen_helper_vfp_negs(tcg_res, tcg_res); 6404 break; 6405 } 6406 6407 write_fp_sreg(s, rd, tcg_res); 6408 } 6409 6410 /* Floating-point data-processing (2 source) - double precision */ 6411 static void handle_fp_2src_double(DisasContext *s, int opcode, 6412 int rd, int rn, int rm) 6413 { 6414 TCGv_i64 tcg_op1; 6415 TCGv_i64 tcg_op2; 6416 TCGv_i64 tcg_res; 6417 TCGv_ptr fpst; 6418 6419 tcg_res = tcg_temp_new_i64(); 6420 fpst = fpstatus_ptr(FPST_FPCR); 6421 tcg_op1 = read_fp_dreg(s, rn); 6422 tcg_op2 = read_fp_dreg(s, rm); 6423 6424 switch (opcode) { 6425 case 0x0: /* FMUL */ 6426 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6427 break; 6428 case 0x1: /* FDIV */ 6429 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6430 break; 6431 case 0x2: /* FADD */ 6432 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6433 break; 6434 case 0x3: /* FSUB */ 6435 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6436 break; 6437 case 0x4: /* FMAX */ 6438 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6439 break; 6440 case 0x5: /* FMIN */ 6441 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6442 break; 6443 case 0x6: /* FMAXNM */ 6444 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6445 break; 6446 case 0x7: /* FMINNM */ 6447 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6448 break; 6449 case 0x8: /* FNMUL */ 6450 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6451 gen_helper_vfp_negd(tcg_res, tcg_res); 6452 break; 6453 } 6454 6455 write_fp_dreg(s, rd, tcg_res); 6456 } 6457 6458 /* Floating-point data-processing (2 source) - half precision */ 6459 static void handle_fp_2src_half(DisasContext *s, int opcode, 6460 int rd, int rn, int rm) 6461 { 6462 TCGv_i32 tcg_op1; 6463 TCGv_i32 tcg_op2; 6464 TCGv_i32 tcg_res; 6465 TCGv_ptr fpst; 6466 6467 tcg_res = tcg_temp_new_i32(); 6468 fpst = fpstatus_ptr(FPST_FPCR_F16); 6469 tcg_op1 = read_fp_hreg(s, rn); 6470 tcg_op2 = read_fp_hreg(s, rm); 6471 6472 switch (opcode) { 6473 case 0x0: /* FMUL */ 6474 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6475 break; 6476 case 0x1: /* FDIV */ 6477 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6478 break; 6479 case 0x2: /* FADD */ 6480 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6481 break; 6482 case 0x3: /* FSUB */ 6483 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6484 break; 6485 case 0x4: /* FMAX */ 6486 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6487 break; 6488 case 0x5: /* FMIN */ 6489 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6490 break; 6491 case 0x6: /* FMAXNM */ 6492 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6493 break; 6494 case 0x7: /* FMINNM */ 6495 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6496 break; 6497 case 0x8: /* FNMUL */ 6498 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6499 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6500 break; 6501 default: 6502 g_assert_not_reached(); 6503 } 6504 6505 write_fp_sreg(s, rd, tcg_res); 6506 } 6507 6508 /* Floating point data-processing (2 source) 6509 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6510 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6511 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6512 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6513 */ 6514 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6515 { 6516 int mos = extract32(insn, 29, 3); 6517 int type = extract32(insn, 22, 2); 6518 int rd = extract32(insn, 0, 5); 6519 int rn = extract32(insn, 5, 5); 6520 int rm = extract32(insn, 16, 5); 6521 int opcode = extract32(insn, 12, 4); 6522 6523 if (opcode > 8 || mos) { 6524 unallocated_encoding(s); 6525 return; 6526 } 6527 6528 switch (type) { 6529 case 0: 6530 if (!fp_access_check(s)) { 6531 return; 6532 } 6533 handle_fp_2src_single(s, opcode, rd, rn, rm); 6534 break; 6535 case 1: 6536 if (!fp_access_check(s)) { 6537 return; 6538 } 6539 handle_fp_2src_double(s, opcode, rd, rn, rm); 6540 break; 6541 case 3: 6542 if (!dc_isar_feature(aa64_fp16, s)) { 6543 unallocated_encoding(s); 6544 return; 6545 } 6546 if (!fp_access_check(s)) { 6547 return; 6548 } 6549 handle_fp_2src_half(s, opcode, rd, rn, rm); 6550 break; 6551 default: 6552 unallocated_encoding(s); 6553 } 6554 } 6555 6556 /* Floating-point data-processing (3 source) - single precision */ 6557 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6558 int rd, int rn, int rm, int ra) 6559 { 6560 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6561 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6562 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6563 6564 tcg_op1 = read_fp_sreg(s, rn); 6565 tcg_op2 = read_fp_sreg(s, rm); 6566 tcg_op3 = read_fp_sreg(s, ra); 6567 6568 /* These are fused multiply-add, and must be done as one 6569 * floating point operation with no rounding between the 6570 * multiplication and addition steps. 6571 * NB that doing the negations here as separate steps is 6572 * correct : an input NaN should come out with its sign bit 6573 * flipped if it is a negated-input. 6574 */ 6575 if (o1 == true) { 6576 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6577 } 6578 6579 if (o0 != o1) { 6580 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6581 } 6582 6583 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6584 6585 write_fp_sreg(s, rd, tcg_res); 6586 } 6587 6588 /* Floating-point data-processing (3 source) - double precision */ 6589 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6590 int rd, int rn, int rm, int ra) 6591 { 6592 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6593 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6594 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6595 6596 tcg_op1 = read_fp_dreg(s, rn); 6597 tcg_op2 = read_fp_dreg(s, rm); 6598 tcg_op3 = read_fp_dreg(s, ra); 6599 6600 /* These are fused multiply-add, and must be done as one 6601 * floating point operation with no rounding between the 6602 * multiplication and addition steps. 6603 * NB that doing the negations here as separate steps is 6604 * correct : an input NaN should come out with its sign bit 6605 * flipped if it is a negated-input. 6606 */ 6607 if (o1 == true) { 6608 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6609 } 6610 6611 if (o0 != o1) { 6612 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6613 } 6614 6615 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6616 6617 write_fp_dreg(s, rd, tcg_res); 6618 } 6619 6620 /* Floating-point data-processing (3 source) - half precision */ 6621 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6622 int rd, int rn, int rm, int ra) 6623 { 6624 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6625 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6626 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6627 6628 tcg_op1 = read_fp_hreg(s, rn); 6629 tcg_op2 = read_fp_hreg(s, rm); 6630 tcg_op3 = read_fp_hreg(s, ra); 6631 6632 /* These are fused multiply-add, and must be done as one 6633 * floating point operation with no rounding between the 6634 * multiplication and addition steps. 6635 * NB that doing the negations here as separate steps is 6636 * correct : an input NaN should come out with its sign bit 6637 * flipped if it is a negated-input. 6638 */ 6639 if (o1 == true) { 6640 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6641 } 6642 6643 if (o0 != o1) { 6644 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6645 } 6646 6647 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6648 6649 write_fp_sreg(s, rd, tcg_res); 6650 } 6651 6652 /* Floating point data-processing (3 source) 6653 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6654 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6655 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6656 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6657 */ 6658 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6659 { 6660 int mos = extract32(insn, 29, 3); 6661 int type = extract32(insn, 22, 2); 6662 int rd = extract32(insn, 0, 5); 6663 int rn = extract32(insn, 5, 5); 6664 int ra = extract32(insn, 10, 5); 6665 int rm = extract32(insn, 16, 5); 6666 bool o0 = extract32(insn, 15, 1); 6667 bool o1 = extract32(insn, 21, 1); 6668 6669 if (mos) { 6670 unallocated_encoding(s); 6671 return; 6672 } 6673 6674 switch (type) { 6675 case 0: 6676 if (!fp_access_check(s)) { 6677 return; 6678 } 6679 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6680 break; 6681 case 1: 6682 if (!fp_access_check(s)) { 6683 return; 6684 } 6685 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6686 break; 6687 case 3: 6688 if (!dc_isar_feature(aa64_fp16, s)) { 6689 unallocated_encoding(s); 6690 return; 6691 } 6692 if (!fp_access_check(s)) { 6693 return; 6694 } 6695 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6696 break; 6697 default: 6698 unallocated_encoding(s); 6699 } 6700 } 6701 6702 /* Floating point immediate 6703 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6704 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6705 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6706 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6707 */ 6708 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6709 { 6710 int rd = extract32(insn, 0, 5); 6711 int imm5 = extract32(insn, 5, 5); 6712 int imm8 = extract32(insn, 13, 8); 6713 int type = extract32(insn, 22, 2); 6714 int mos = extract32(insn, 29, 3); 6715 uint64_t imm; 6716 MemOp sz; 6717 6718 if (mos || imm5) { 6719 unallocated_encoding(s); 6720 return; 6721 } 6722 6723 switch (type) { 6724 case 0: 6725 sz = MO_32; 6726 break; 6727 case 1: 6728 sz = MO_64; 6729 break; 6730 case 3: 6731 sz = MO_16; 6732 if (dc_isar_feature(aa64_fp16, s)) { 6733 break; 6734 } 6735 /* fallthru */ 6736 default: 6737 unallocated_encoding(s); 6738 return; 6739 } 6740 6741 if (!fp_access_check(s)) { 6742 return; 6743 } 6744 6745 imm = vfp_expand_imm(sz, imm8); 6746 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6747 } 6748 6749 /* Handle floating point <=> fixed point conversions. Note that we can 6750 * also deal with fp <=> integer conversions as a special case (scale == 64) 6751 * OPTME: consider handling that special case specially or at least skipping 6752 * the call to scalbn in the helpers for zero shifts. 6753 */ 6754 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6755 bool itof, int rmode, int scale, int sf, int type) 6756 { 6757 bool is_signed = !(opcode & 1); 6758 TCGv_ptr tcg_fpstatus; 6759 TCGv_i32 tcg_shift, tcg_single; 6760 TCGv_i64 tcg_double; 6761 6762 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6763 6764 tcg_shift = tcg_constant_i32(64 - scale); 6765 6766 if (itof) { 6767 TCGv_i64 tcg_int = cpu_reg(s, rn); 6768 if (!sf) { 6769 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6770 6771 if (is_signed) { 6772 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6773 } else { 6774 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6775 } 6776 6777 tcg_int = tcg_extend; 6778 } 6779 6780 switch (type) { 6781 case 1: /* float64 */ 6782 tcg_double = tcg_temp_new_i64(); 6783 if (is_signed) { 6784 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6785 tcg_shift, tcg_fpstatus); 6786 } else { 6787 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6788 tcg_shift, tcg_fpstatus); 6789 } 6790 write_fp_dreg(s, rd, tcg_double); 6791 break; 6792 6793 case 0: /* float32 */ 6794 tcg_single = tcg_temp_new_i32(); 6795 if (is_signed) { 6796 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6797 tcg_shift, tcg_fpstatus); 6798 } else { 6799 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6800 tcg_shift, tcg_fpstatus); 6801 } 6802 write_fp_sreg(s, rd, tcg_single); 6803 break; 6804 6805 case 3: /* float16 */ 6806 tcg_single = tcg_temp_new_i32(); 6807 if (is_signed) { 6808 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6809 tcg_shift, tcg_fpstatus); 6810 } else { 6811 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6812 tcg_shift, tcg_fpstatus); 6813 } 6814 write_fp_sreg(s, rd, tcg_single); 6815 break; 6816 6817 default: 6818 g_assert_not_reached(); 6819 } 6820 } else { 6821 TCGv_i64 tcg_int = cpu_reg(s, rd); 6822 TCGv_i32 tcg_rmode; 6823 6824 if (extract32(opcode, 2, 1)) { 6825 /* There are too many rounding modes to all fit into rmode, 6826 * so FCVTA[US] is a special case. 6827 */ 6828 rmode = FPROUNDING_TIEAWAY; 6829 } 6830 6831 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6832 6833 switch (type) { 6834 case 1: /* float64 */ 6835 tcg_double = read_fp_dreg(s, rn); 6836 if (is_signed) { 6837 if (!sf) { 6838 gen_helper_vfp_tosld(tcg_int, tcg_double, 6839 tcg_shift, tcg_fpstatus); 6840 } else { 6841 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6842 tcg_shift, tcg_fpstatus); 6843 } 6844 } else { 6845 if (!sf) { 6846 gen_helper_vfp_tould(tcg_int, tcg_double, 6847 tcg_shift, tcg_fpstatus); 6848 } else { 6849 gen_helper_vfp_touqd(tcg_int, tcg_double, 6850 tcg_shift, tcg_fpstatus); 6851 } 6852 } 6853 if (!sf) { 6854 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6855 } 6856 break; 6857 6858 case 0: /* float32 */ 6859 tcg_single = read_fp_sreg(s, rn); 6860 if (sf) { 6861 if (is_signed) { 6862 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6863 tcg_shift, tcg_fpstatus); 6864 } else { 6865 gen_helper_vfp_touqs(tcg_int, tcg_single, 6866 tcg_shift, tcg_fpstatus); 6867 } 6868 } else { 6869 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6870 if (is_signed) { 6871 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6872 tcg_shift, tcg_fpstatus); 6873 } else { 6874 gen_helper_vfp_touls(tcg_dest, tcg_single, 6875 tcg_shift, tcg_fpstatus); 6876 } 6877 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6878 } 6879 break; 6880 6881 case 3: /* float16 */ 6882 tcg_single = read_fp_sreg(s, rn); 6883 if (sf) { 6884 if (is_signed) { 6885 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6886 tcg_shift, tcg_fpstatus); 6887 } else { 6888 gen_helper_vfp_touqh(tcg_int, tcg_single, 6889 tcg_shift, tcg_fpstatus); 6890 } 6891 } else { 6892 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6893 if (is_signed) { 6894 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6895 tcg_shift, tcg_fpstatus); 6896 } else { 6897 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6898 tcg_shift, tcg_fpstatus); 6899 } 6900 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6901 } 6902 break; 6903 6904 default: 6905 g_assert_not_reached(); 6906 } 6907 6908 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6909 } 6910 } 6911 6912 /* Floating point <-> fixed point conversions 6913 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6914 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6915 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6916 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6917 */ 6918 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6919 { 6920 int rd = extract32(insn, 0, 5); 6921 int rn = extract32(insn, 5, 5); 6922 int scale = extract32(insn, 10, 6); 6923 int opcode = extract32(insn, 16, 3); 6924 int rmode = extract32(insn, 19, 2); 6925 int type = extract32(insn, 22, 2); 6926 bool sbit = extract32(insn, 29, 1); 6927 bool sf = extract32(insn, 31, 1); 6928 bool itof; 6929 6930 if (sbit || (!sf && scale < 32)) { 6931 unallocated_encoding(s); 6932 return; 6933 } 6934 6935 switch (type) { 6936 case 0: /* float32 */ 6937 case 1: /* float64 */ 6938 break; 6939 case 3: /* float16 */ 6940 if (dc_isar_feature(aa64_fp16, s)) { 6941 break; 6942 } 6943 /* fallthru */ 6944 default: 6945 unallocated_encoding(s); 6946 return; 6947 } 6948 6949 switch ((rmode << 3) | opcode) { 6950 case 0x2: /* SCVTF */ 6951 case 0x3: /* UCVTF */ 6952 itof = true; 6953 break; 6954 case 0x18: /* FCVTZS */ 6955 case 0x19: /* FCVTZU */ 6956 itof = false; 6957 break; 6958 default: 6959 unallocated_encoding(s); 6960 return; 6961 } 6962 6963 if (!fp_access_check(s)) { 6964 return; 6965 } 6966 6967 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6968 } 6969 6970 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6971 { 6972 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6973 * without conversion. 6974 */ 6975 6976 if (itof) { 6977 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6978 TCGv_i64 tmp; 6979 6980 switch (type) { 6981 case 0: 6982 /* 32 bit */ 6983 tmp = tcg_temp_new_i64(); 6984 tcg_gen_ext32u_i64(tmp, tcg_rn); 6985 write_fp_dreg(s, rd, tmp); 6986 break; 6987 case 1: 6988 /* 64 bit */ 6989 write_fp_dreg(s, rd, tcg_rn); 6990 break; 6991 case 2: 6992 /* 64 bit to top half. */ 6993 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6994 clear_vec_high(s, true, rd); 6995 break; 6996 case 3: 6997 /* 16 bit */ 6998 tmp = tcg_temp_new_i64(); 6999 tcg_gen_ext16u_i64(tmp, tcg_rn); 7000 write_fp_dreg(s, rd, tmp); 7001 break; 7002 default: 7003 g_assert_not_reached(); 7004 } 7005 } else { 7006 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7007 7008 switch (type) { 7009 case 0: 7010 /* 32 bit */ 7011 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7012 break; 7013 case 1: 7014 /* 64 bit */ 7015 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7016 break; 7017 case 2: 7018 /* 64 bits from top half */ 7019 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7020 break; 7021 case 3: 7022 /* 16 bit */ 7023 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7024 break; 7025 default: 7026 g_assert_not_reached(); 7027 } 7028 } 7029 } 7030 7031 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7032 { 7033 TCGv_i64 t = read_fp_dreg(s, rn); 7034 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7035 7036 gen_helper_fjcvtzs(t, t, fpstatus); 7037 7038 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7039 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7040 tcg_gen_movi_i32(cpu_CF, 0); 7041 tcg_gen_movi_i32(cpu_NF, 0); 7042 tcg_gen_movi_i32(cpu_VF, 0); 7043 } 7044 7045 /* Floating point <-> integer conversions 7046 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7047 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7048 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7049 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7050 */ 7051 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7052 { 7053 int rd = extract32(insn, 0, 5); 7054 int rn = extract32(insn, 5, 5); 7055 int opcode = extract32(insn, 16, 3); 7056 int rmode = extract32(insn, 19, 2); 7057 int type = extract32(insn, 22, 2); 7058 bool sbit = extract32(insn, 29, 1); 7059 bool sf = extract32(insn, 31, 1); 7060 bool itof = false; 7061 7062 if (sbit) { 7063 goto do_unallocated; 7064 } 7065 7066 switch (opcode) { 7067 case 2: /* SCVTF */ 7068 case 3: /* UCVTF */ 7069 itof = true; 7070 /* fallthru */ 7071 case 4: /* FCVTAS */ 7072 case 5: /* FCVTAU */ 7073 if (rmode != 0) { 7074 goto do_unallocated; 7075 } 7076 /* fallthru */ 7077 case 0: /* FCVT[NPMZ]S */ 7078 case 1: /* FCVT[NPMZ]U */ 7079 switch (type) { 7080 case 0: /* float32 */ 7081 case 1: /* float64 */ 7082 break; 7083 case 3: /* float16 */ 7084 if (!dc_isar_feature(aa64_fp16, s)) { 7085 goto do_unallocated; 7086 } 7087 break; 7088 default: 7089 goto do_unallocated; 7090 } 7091 if (!fp_access_check(s)) { 7092 return; 7093 } 7094 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7095 break; 7096 7097 default: 7098 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7099 case 0b01100110: /* FMOV half <-> 32-bit int */ 7100 case 0b01100111: 7101 case 0b11100110: /* FMOV half <-> 64-bit int */ 7102 case 0b11100111: 7103 if (!dc_isar_feature(aa64_fp16, s)) { 7104 goto do_unallocated; 7105 } 7106 /* fallthru */ 7107 case 0b00000110: /* FMOV 32-bit */ 7108 case 0b00000111: 7109 case 0b10100110: /* FMOV 64-bit */ 7110 case 0b10100111: 7111 case 0b11001110: /* FMOV top half of 128-bit */ 7112 case 0b11001111: 7113 if (!fp_access_check(s)) { 7114 return; 7115 } 7116 itof = opcode & 1; 7117 handle_fmov(s, rd, rn, type, itof); 7118 break; 7119 7120 case 0b00111110: /* FJCVTZS */ 7121 if (!dc_isar_feature(aa64_jscvt, s)) { 7122 goto do_unallocated; 7123 } else if (fp_access_check(s)) { 7124 handle_fjcvtzs(s, rd, rn); 7125 } 7126 break; 7127 7128 default: 7129 do_unallocated: 7130 unallocated_encoding(s); 7131 return; 7132 } 7133 break; 7134 } 7135 } 7136 7137 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7138 * 31 30 29 28 25 24 0 7139 * +---+---+---+---------+-----------------------------+ 7140 * | | 0 | | 1 1 1 1 | | 7141 * +---+---+---+---------+-----------------------------+ 7142 */ 7143 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7144 { 7145 if (extract32(insn, 24, 1)) { 7146 /* Floating point data-processing (3 source) */ 7147 disas_fp_3src(s, insn); 7148 } else if (extract32(insn, 21, 1) == 0) { 7149 /* Floating point to fixed point conversions */ 7150 disas_fp_fixed_conv(s, insn); 7151 } else { 7152 switch (extract32(insn, 10, 2)) { 7153 case 1: 7154 /* Floating point conditional compare */ 7155 disas_fp_ccomp(s, insn); 7156 break; 7157 case 2: 7158 /* Floating point data-processing (2 source) */ 7159 disas_fp_2src(s, insn); 7160 break; 7161 case 3: 7162 /* Floating point conditional select */ 7163 disas_fp_csel(s, insn); 7164 break; 7165 case 0: 7166 switch (ctz32(extract32(insn, 12, 4))) { 7167 case 0: /* [15:12] == xxx1 */ 7168 /* Floating point immediate */ 7169 disas_fp_imm(s, insn); 7170 break; 7171 case 1: /* [15:12] == xx10 */ 7172 /* Floating point compare */ 7173 disas_fp_compare(s, insn); 7174 break; 7175 case 2: /* [15:12] == x100 */ 7176 /* Floating point data-processing (1 source) */ 7177 disas_fp_1src(s, insn); 7178 break; 7179 case 3: /* [15:12] == 1000 */ 7180 unallocated_encoding(s); 7181 break; 7182 default: /* [15:12] == 0000 */ 7183 /* Floating point <-> integer conversions */ 7184 disas_fp_int_conv(s, insn); 7185 break; 7186 } 7187 break; 7188 } 7189 } 7190 } 7191 7192 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7193 int pos) 7194 { 7195 /* Extract 64 bits from the middle of two concatenated 64 bit 7196 * vector register slices left:right. The extracted bits start 7197 * at 'pos' bits into the right (least significant) side. 7198 * We return the result in tcg_right, and guarantee not to 7199 * trash tcg_left. 7200 */ 7201 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7202 assert(pos > 0 && pos < 64); 7203 7204 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7205 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7206 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7207 } 7208 7209 /* EXT 7210 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7211 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7212 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7213 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7214 */ 7215 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7216 { 7217 int is_q = extract32(insn, 30, 1); 7218 int op2 = extract32(insn, 22, 2); 7219 int imm4 = extract32(insn, 11, 4); 7220 int rm = extract32(insn, 16, 5); 7221 int rn = extract32(insn, 5, 5); 7222 int rd = extract32(insn, 0, 5); 7223 int pos = imm4 << 3; 7224 TCGv_i64 tcg_resl, tcg_resh; 7225 7226 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7227 unallocated_encoding(s); 7228 return; 7229 } 7230 7231 if (!fp_access_check(s)) { 7232 return; 7233 } 7234 7235 tcg_resh = tcg_temp_new_i64(); 7236 tcg_resl = tcg_temp_new_i64(); 7237 7238 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7239 * either extracting 128 bits from a 128:128 concatenation, or 7240 * extracting 64 bits from a 64:64 concatenation. 7241 */ 7242 if (!is_q) { 7243 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7244 if (pos != 0) { 7245 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7246 do_ext64(s, tcg_resh, tcg_resl, pos); 7247 } 7248 } else { 7249 TCGv_i64 tcg_hh; 7250 typedef struct { 7251 int reg; 7252 int elt; 7253 } EltPosns; 7254 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7255 EltPosns *elt = eltposns; 7256 7257 if (pos >= 64) { 7258 elt++; 7259 pos -= 64; 7260 } 7261 7262 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7263 elt++; 7264 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7265 elt++; 7266 if (pos != 0) { 7267 do_ext64(s, tcg_resh, tcg_resl, pos); 7268 tcg_hh = tcg_temp_new_i64(); 7269 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7270 do_ext64(s, tcg_hh, tcg_resh, pos); 7271 } 7272 } 7273 7274 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7275 if (is_q) { 7276 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7277 } 7278 clear_vec_high(s, is_q, rd); 7279 } 7280 7281 /* TBL/TBX 7282 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7283 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7284 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7285 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7286 */ 7287 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7288 { 7289 int op2 = extract32(insn, 22, 2); 7290 int is_q = extract32(insn, 30, 1); 7291 int rm = extract32(insn, 16, 5); 7292 int rn = extract32(insn, 5, 5); 7293 int rd = extract32(insn, 0, 5); 7294 int is_tbx = extract32(insn, 12, 1); 7295 int len = (extract32(insn, 13, 2) + 1) * 16; 7296 7297 if (op2 != 0) { 7298 unallocated_encoding(s); 7299 return; 7300 } 7301 7302 if (!fp_access_check(s)) { 7303 return; 7304 } 7305 7306 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7307 vec_full_reg_offset(s, rm), tcg_env, 7308 is_q ? 16 : 8, vec_full_reg_size(s), 7309 (len << 6) | (is_tbx << 5) | rn, 7310 gen_helper_simd_tblx); 7311 } 7312 7313 /* ZIP/UZP/TRN 7314 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7315 * +---+---+-------------+------+---+------+---+------------------+------+ 7316 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7317 * +---+---+-------------+------+---+------+---+------------------+------+ 7318 */ 7319 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7320 { 7321 int rd = extract32(insn, 0, 5); 7322 int rn = extract32(insn, 5, 5); 7323 int rm = extract32(insn, 16, 5); 7324 int size = extract32(insn, 22, 2); 7325 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7326 * bit 2 indicates 1 vs 2 variant of the insn. 7327 */ 7328 int opcode = extract32(insn, 12, 2); 7329 bool part = extract32(insn, 14, 1); 7330 bool is_q = extract32(insn, 30, 1); 7331 int esize = 8 << size; 7332 int i; 7333 int datasize = is_q ? 128 : 64; 7334 int elements = datasize / esize; 7335 TCGv_i64 tcg_res[2], tcg_ele; 7336 7337 if (opcode == 0 || (size == 3 && !is_q)) { 7338 unallocated_encoding(s); 7339 return; 7340 } 7341 7342 if (!fp_access_check(s)) { 7343 return; 7344 } 7345 7346 tcg_res[0] = tcg_temp_new_i64(); 7347 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7348 tcg_ele = tcg_temp_new_i64(); 7349 7350 for (i = 0; i < elements; i++) { 7351 int o, w; 7352 7353 switch (opcode) { 7354 case 1: /* UZP1/2 */ 7355 { 7356 int midpoint = elements / 2; 7357 if (i < midpoint) { 7358 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7359 } else { 7360 read_vec_element(s, tcg_ele, rm, 7361 2 * (i - midpoint) + part, size); 7362 } 7363 break; 7364 } 7365 case 2: /* TRN1/2 */ 7366 if (i & 1) { 7367 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7368 } else { 7369 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7370 } 7371 break; 7372 case 3: /* ZIP1/2 */ 7373 { 7374 int base = part * elements / 2; 7375 if (i & 1) { 7376 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7377 } else { 7378 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7379 } 7380 break; 7381 } 7382 default: 7383 g_assert_not_reached(); 7384 } 7385 7386 w = (i * esize) / 64; 7387 o = (i * esize) % 64; 7388 if (o == 0) { 7389 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7390 } else { 7391 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7392 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7393 } 7394 } 7395 7396 for (i = 0; i <= is_q; ++i) { 7397 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7398 } 7399 clear_vec_high(s, is_q, rd); 7400 } 7401 7402 /* 7403 * do_reduction_op helper 7404 * 7405 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7406 * important for correct NaN propagation that we do these 7407 * operations in exactly the order specified by the pseudocode. 7408 * 7409 * This is a recursive function, TCG temps should be freed by the 7410 * calling function once it is done with the values. 7411 */ 7412 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7413 int esize, int size, int vmap, TCGv_ptr fpst) 7414 { 7415 if (esize == size) { 7416 int element; 7417 MemOp msize = esize == 16 ? MO_16 : MO_32; 7418 TCGv_i32 tcg_elem; 7419 7420 /* We should have one register left here */ 7421 assert(ctpop8(vmap) == 1); 7422 element = ctz32(vmap); 7423 assert(element < 8); 7424 7425 tcg_elem = tcg_temp_new_i32(); 7426 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7427 return tcg_elem; 7428 } else { 7429 int bits = size / 2; 7430 int shift = ctpop8(vmap) / 2; 7431 int vmap_lo = (vmap >> shift) & vmap; 7432 int vmap_hi = (vmap & ~vmap_lo); 7433 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7434 7435 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7436 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7437 tcg_res = tcg_temp_new_i32(); 7438 7439 switch (fpopcode) { 7440 case 0x0c: /* fmaxnmv half-precision */ 7441 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7442 break; 7443 case 0x0f: /* fmaxv half-precision */ 7444 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7445 break; 7446 case 0x1c: /* fminnmv half-precision */ 7447 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7448 break; 7449 case 0x1f: /* fminv half-precision */ 7450 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7451 break; 7452 case 0x2c: /* fmaxnmv */ 7453 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7454 break; 7455 case 0x2f: /* fmaxv */ 7456 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7457 break; 7458 case 0x3c: /* fminnmv */ 7459 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7460 break; 7461 case 0x3f: /* fminv */ 7462 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7463 break; 7464 default: 7465 g_assert_not_reached(); 7466 } 7467 return tcg_res; 7468 } 7469 } 7470 7471 /* AdvSIMD across lanes 7472 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7473 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7474 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7475 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7476 */ 7477 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7478 { 7479 int rd = extract32(insn, 0, 5); 7480 int rn = extract32(insn, 5, 5); 7481 int size = extract32(insn, 22, 2); 7482 int opcode = extract32(insn, 12, 5); 7483 bool is_q = extract32(insn, 30, 1); 7484 bool is_u = extract32(insn, 29, 1); 7485 bool is_fp = false; 7486 bool is_min = false; 7487 int esize; 7488 int elements; 7489 int i; 7490 TCGv_i64 tcg_res, tcg_elt; 7491 7492 switch (opcode) { 7493 case 0x1b: /* ADDV */ 7494 if (is_u) { 7495 unallocated_encoding(s); 7496 return; 7497 } 7498 /* fall through */ 7499 case 0x3: /* SADDLV, UADDLV */ 7500 case 0xa: /* SMAXV, UMAXV */ 7501 case 0x1a: /* SMINV, UMINV */ 7502 if (size == 3 || (size == 2 && !is_q)) { 7503 unallocated_encoding(s); 7504 return; 7505 } 7506 break; 7507 case 0xc: /* FMAXNMV, FMINNMV */ 7508 case 0xf: /* FMAXV, FMINV */ 7509 /* Bit 1 of size field encodes min vs max and the actual size 7510 * depends on the encoding of the U bit. If not set (and FP16 7511 * enabled) then we do half-precision float instead of single 7512 * precision. 7513 */ 7514 is_min = extract32(size, 1, 1); 7515 is_fp = true; 7516 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7517 size = 1; 7518 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7519 unallocated_encoding(s); 7520 return; 7521 } else { 7522 size = 2; 7523 } 7524 break; 7525 default: 7526 unallocated_encoding(s); 7527 return; 7528 } 7529 7530 if (!fp_access_check(s)) { 7531 return; 7532 } 7533 7534 esize = 8 << size; 7535 elements = (is_q ? 128 : 64) / esize; 7536 7537 tcg_res = tcg_temp_new_i64(); 7538 tcg_elt = tcg_temp_new_i64(); 7539 7540 /* These instructions operate across all lanes of a vector 7541 * to produce a single result. We can guarantee that a 64 7542 * bit intermediate is sufficient: 7543 * + for [US]ADDLV the maximum element size is 32 bits, and 7544 * the result type is 64 bits 7545 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7546 * same as the element size, which is 32 bits at most 7547 * For the integer operations we can choose to work at 64 7548 * or 32 bits and truncate at the end; for simplicity 7549 * we use 64 bits always. The floating point 7550 * ops do require 32 bit intermediates, though. 7551 */ 7552 if (!is_fp) { 7553 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7554 7555 for (i = 1; i < elements; i++) { 7556 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7557 7558 switch (opcode) { 7559 case 0x03: /* SADDLV / UADDLV */ 7560 case 0x1b: /* ADDV */ 7561 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7562 break; 7563 case 0x0a: /* SMAXV / UMAXV */ 7564 if (is_u) { 7565 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7566 } else { 7567 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7568 } 7569 break; 7570 case 0x1a: /* SMINV / UMINV */ 7571 if (is_u) { 7572 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7573 } else { 7574 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7575 } 7576 break; 7577 default: 7578 g_assert_not_reached(); 7579 } 7580 7581 } 7582 } else { 7583 /* Floating point vector reduction ops which work across 32 7584 * bit (single) or 16 bit (half-precision) intermediates. 7585 * Note that correct NaN propagation requires that we do these 7586 * operations in exactly the order specified by the pseudocode. 7587 */ 7588 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7589 int fpopcode = opcode | is_min << 4 | is_u << 5; 7590 int vmap = (1 << elements) - 1; 7591 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7592 (is_q ? 128 : 64), vmap, fpst); 7593 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7594 } 7595 7596 /* Now truncate the result to the width required for the final output */ 7597 if (opcode == 0x03) { 7598 /* SADDLV, UADDLV: result is 2*esize */ 7599 size++; 7600 } 7601 7602 switch (size) { 7603 case 0: 7604 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7605 break; 7606 case 1: 7607 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7608 break; 7609 case 2: 7610 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7611 break; 7612 case 3: 7613 break; 7614 default: 7615 g_assert_not_reached(); 7616 } 7617 7618 write_fp_dreg(s, rd, tcg_res); 7619 } 7620 7621 /* DUP (Element, Vector) 7622 * 7623 * 31 30 29 21 20 16 15 10 9 5 4 0 7624 * +---+---+-------------------+--------+-------------+------+------+ 7625 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7626 * +---+---+-------------------+--------+-------------+------+------+ 7627 * 7628 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7629 */ 7630 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7631 int imm5) 7632 { 7633 int size = ctz32(imm5); 7634 int index; 7635 7636 if (size > 3 || (size == 3 && !is_q)) { 7637 unallocated_encoding(s); 7638 return; 7639 } 7640 7641 if (!fp_access_check(s)) { 7642 return; 7643 } 7644 7645 index = imm5 >> (size + 1); 7646 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7647 vec_reg_offset(s, rn, index, size), 7648 is_q ? 16 : 8, vec_full_reg_size(s)); 7649 } 7650 7651 /* DUP (element, scalar) 7652 * 31 21 20 16 15 10 9 5 4 0 7653 * +-----------------------+--------+-------------+------+------+ 7654 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7655 * +-----------------------+--------+-------------+------+------+ 7656 */ 7657 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7658 int imm5) 7659 { 7660 int size = ctz32(imm5); 7661 int index; 7662 TCGv_i64 tmp; 7663 7664 if (size > 3) { 7665 unallocated_encoding(s); 7666 return; 7667 } 7668 7669 if (!fp_access_check(s)) { 7670 return; 7671 } 7672 7673 index = imm5 >> (size + 1); 7674 7675 /* This instruction just extracts the specified element and 7676 * zero-extends it into the bottom of the destination register. 7677 */ 7678 tmp = tcg_temp_new_i64(); 7679 read_vec_element(s, tmp, rn, index, size); 7680 write_fp_dreg(s, rd, tmp); 7681 } 7682 7683 /* DUP (General) 7684 * 7685 * 31 30 29 21 20 16 15 10 9 5 4 0 7686 * +---+---+-------------------+--------+-------------+------+------+ 7687 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7688 * +---+---+-------------------+--------+-------------+------+------+ 7689 * 7690 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7691 */ 7692 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7693 int imm5) 7694 { 7695 int size = ctz32(imm5); 7696 uint32_t dofs, oprsz, maxsz; 7697 7698 if (size > 3 || ((size == 3) && !is_q)) { 7699 unallocated_encoding(s); 7700 return; 7701 } 7702 7703 if (!fp_access_check(s)) { 7704 return; 7705 } 7706 7707 dofs = vec_full_reg_offset(s, rd); 7708 oprsz = is_q ? 16 : 8; 7709 maxsz = vec_full_reg_size(s); 7710 7711 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7712 } 7713 7714 /* INS (Element) 7715 * 7716 * 31 21 20 16 15 14 11 10 9 5 4 0 7717 * +-----------------------+--------+------------+---+------+------+ 7718 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7719 * +-----------------------+--------+------------+---+------+------+ 7720 * 7721 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7722 * index: encoded in imm5<4:size+1> 7723 */ 7724 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7725 int imm4, int imm5) 7726 { 7727 int size = ctz32(imm5); 7728 int src_index, dst_index; 7729 TCGv_i64 tmp; 7730 7731 if (size > 3) { 7732 unallocated_encoding(s); 7733 return; 7734 } 7735 7736 if (!fp_access_check(s)) { 7737 return; 7738 } 7739 7740 dst_index = extract32(imm5, 1+size, 5); 7741 src_index = extract32(imm4, size, 4); 7742 7743 tmp = tcg_temp_new_i64(); 7744 7745 read_vec_element(s, tmp, rn, src_index, size); 7746 write_vec_element(s, tmp, rd, dst_index, size); 7747 7748 /* INS is considered a 128-bit write for SVE. */ 7749 clear_vec_high(s, true, rd); 7750 } 7751 7752 7753 /* INS (General) 7754 * 7755 * 31 21 20 16 15 10 9 5 4 0 7756 * +-----------------------+--------+-------------+------+------+ 7757 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7758 * +-----------------------+--------+-------------+------+------+ 7759 * 7760 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7761 * index: encoded in imm5<4:size+1> 7762 */ 7763 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7764 { 7765 int size = ctz32(imm5); 7766 int idx; 7767 7768 if (size > 3) { 7769 unallocated_encoding(s); 7770 return; 7771 } 7772 7773 if (!fp_access_check(s)) { 7774 return; 7775 } 7776 7777 idx = extract32(imm5, 1 + size, 4 - size); 7778 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7779 7780 /* INS is considered a 128-bit write for SVE. */ 7781 clear_vec_high(s, true, rd); 7782 } 7783 7784 /* 7785 * UMOV (General) 7786 * SMOV (General) 7787 * 7788 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7789 * +---+---+-------------------+--------+-------------+------+------+ 7790 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7791 * +---+---+-------------------+--------+-------------+------+------+ 7792 * 7793 * U: unsigned when set 7794 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7795 */ 7796 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7797 int rn, int rd, int imm5) 7798 { 7799 int size = ctz32(imm5); 7800 int element; 7801 TCGv_i64 tcg_rd; 7802 7803 /* Check for UnallocatedEncodings */ 7804 if (is_signed) { 7805 if (size > 2 || (size == 2 && !is_q)) { 7806 unallocated_encoding(s); 7807 return; 7808 } 7809 } else { 7810 if (size > 3 7811 || (size < 3 && is_q) 7812 || (size == 3 && !is_q)) { 7813 unallocated_encoding(s); 7814 return; 7815 } 7816 } 7817 7818 if (!fp_access_check(s)) { 7819 return; 7820 } 7821 7822 element = extract32(imm5, 1+size, 4); 7823 7824 tcg_rd = cpu_reg(s, rd); 7825 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7826 if (is_signed && !is_q) { 7827 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7828 } 7829 } 7830 7831 /* AdvSIMD copy 7832 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7833 * +---+---+----+-----------------+------+---+------+---+------+------+ 7834 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7835 * +---+---+----+-----------------+------+---+------+---+------+------+ 7836 */ 7837 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7838 { 7839 int rd = extract32(insn, 0, 5); 7840 int rn = extract32(insn, 5, 5); 7841 int imm4 = extract32(insn, 11, 4); 7842 int op = extract32(insn, 29, 1); 7843 int is_q = extract32(insn, 30, 1); 7844 int imm5 = extract32(insn, 16, 5); 7845 7846 if (op) { 7847 if (is_q) { 7848 /* INS (element) */ 7849 handle_simd_inse(s, rd, rn, imm4, imm5); 7850 } else { 7851 unallocated_encoding(s); 7852 } 7853 } else { 7854 switch (imm4) { 7855 case 0: 7856 /* DUP (element - vector) */ 7857 handle_simd_dupe(s, is_q, rd, rn, imm5); 7858 break; 7859 case 1: 7860 /* DUP (general) */ 7861 handle_simd_dupg(s, is_q, rd, rn, imm5); 7862 break; 7863 case 3: 7864 if (is_q) { 7865 /* INS (general) */ 7866 handle_simd_insg(s, rd, rn, imm5); 7867 } else { 7868 unallocated_encoding(s); 7869 } 7870 break; 7871 case 5: 7872 case 7: 7873 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7874 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7875 break; 7876 default: 7877 unallocated_encoding(s); 7878 break; 7879 } 7880 } 7881 } 7882 7883 /* AdvSIMD modified immediate 7884 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7885 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7886 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7887 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7888 * 7889 * There are a number of operations that can be carried out here: 7890 * MOVI - move (shifted) imm into register 7891 * MVNI - move inverted (shifted) imm into register 7892 * ORR - bitwise OR of (shifted) imm with register 7893 * BIC - bitwise clear of (shifted) imm with register 7894 * With ARMv8.2 we also have: 7895 * FMOV half-precision 7896 */ 7897 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7898 { 7899 int rd = extract32(insn, 0, 5); 7900 int cmode = extract32(insn, 12, 4); 7901 int o2 = extract32(insn, 11, 1); 7902 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7903 bool is_neg = extract32(insn, 29, 1); 7904 bool is_q = extract32(insn, 30, 1); 7905 uint64_t imm = 0; 7906 7907 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7908 /* Check for FMOV (vector, immediate) - half-precision */ 7909 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7910 unallocated_encoding(s); 7911 return; 7912 } 7913 } 7914 7915 if (!fp_access_check(s)) { 7916 return; 7917 } 7918 7919 if (cmode == 15 && o2 && !is_neg) { 7920 /* FMOV (vector, immediate) - half-precision */ 7921 imm = vfp_expand_imm(MO_16, abcdefgh); 7922 /* now duplicate across the lanes */ 7923 imm = dup_const(MO_16, imm); 7924 } else { 7925 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7926 } 7927 7928 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7929 /* MOVI or MVNI, with MVNI negation handled above. */ 7930 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7931 vec_full_reg_size(s), imm); 7932 } else { 7933 /* ORR or BIC, with BIC negation to AND handled above. */ 7934 if (is_neg) { 7935 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7936 } else { 7937 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7938 } 7939 } 7940 } 7941 7942 /* AdvSIMD scalar copy 7943 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7944 * +-----+----+-----------------+------+---+------+---+------+------+ 7945 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7946 * +-----+----+-----------------+------+---+------+---+------+------+ 7947 */ 7948 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7949 { 7950 int rd = extract32(insn, 0, 5); 7951 int rn = extract32(insn, 5, 5); 7952 int imm4 = extract32(insn, 11, 4); 7953 int imm5 = extract32(insn, 16, 5); 7954 int op = extract32(insn, 29, 1); 7955 7956 if (op != 0 || imm4 != 0) { 7957 unallocated_encoding(s); 7958 return; 7959 } 7960 7961 /* DUP (element, scalar) */ 7962 handle_simd_dupes(s, rd, rn, imm5); 7963 } 7964 7965 /* AdvSIMD scalar pairwise 7966 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7967 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7968 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7969 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7970 */ 7971 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7972 { 7973 int u = extract32(insn, 29, 1); 7974 int size = extract32(insn, 22, 2); 7975 int opcode = extract32(insn, 12, 5); 7976 int rn = extract32(insn, 5, 5); 7977 int rd = extract32(insn, 0, 5); 7978 TCGv_ptr fpst; 7979 7980 /* For some ops (the FP ones), size[1] is part of the encoding. 7981 * For ADDP strictly it is not but size[1] is always 1 for valid 7982 * encodings. 7983 */ 7984 opcode |= (extract32(size, 1, 1) << 5); 7985 7986 switch (opcode) { 7987 case 0x3b: /* ADDP */ 7988 if (u || size != 3) { 7989 unallocated_encoding(s); 7990 return; 7991 } 7992 if (!fp_access_check(s)) { 7993 return; 7994 } 7995 7996 fpst = NULL; 7997 break; 7998 case 0xc: /* FMAXNMP */ 7999 case 0xd: /* FADDP */ 8000 case 0xf: /* FMAXP */ 8001 case 0x2c: /* FMINNMP */ 8002 case 0x2f: /* FMINP */ 8003 /* FP op, size[0] is 32 or 64 bit*/ 8004 if (!u) { 8005 if (!dc_isar_feature(aa64_fp16, s)) { 8006 unallocated_encoding(s); 8007 return; 8008 } else { 8009 size = MO_16; 8010 } 8011 } else { 8012 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8013 } 8014 8015 if (!fp_access_check(s)) { 8016 return; 8017 } 8018 8019 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8020 break; 8021 default: 8022 unallocated_encoding(s); 8023 return; 8024 } 8025 8026 if (size == MO_64) { 8027 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8028 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8029 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8030 8031 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8032 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8033 8034 switch (opcode) { 8035 case 0x3b: /* ADDP */ 8036 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8037 break; 8038 case 0xc: /* FMAXNMP */ 8039 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8040 break; 8041 case 0xd: /* FADDP */ 8042 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8043 break; 8044 case 0xf: /* FMAXP */ 8045 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8046 break; 8047 case 0x2c: /* FMINNMP */ 8048 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8049 break; 8050 case 0x2f: /* FMINP */ 8051 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8052 break; 8053 default: 8054 g_assert_not_reached(); 8055 } 8056 8057 write_fp_dreg(s, rd, tcg_res); 8058 } else { 8059 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8060 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8061 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8062 8063 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8064 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8065 8066 if (size == MO_16) { 8067 switch (opcode) { 8068 case 0xc: /* FMAXNMP */ 8069 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8070 break; 8071 case 0xd: /* FADDP */ 8072 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8073 break; 8074 case 0xf: /* FMAXP */ 8075 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8076 break; 8077 case 0x2c: /* FMINNMP */ 8078 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8079 break; 8080 case 0x2f: /* FMINP */ 8081 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8082 break; 8083 default: 8084 g_assert_not_reached(); 8085 } 8086 } else { 8087 switch (opcode) { 8088 case 0xc: /* FMAXNMP */ 8089 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8090 break; 8091 case 0xd: /* FADDP */ 8092 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8093 break; 8094 case 0xf: /* FMAXP */ 8095 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8096 break; 8097 case 0x2c: /* FMINNMP */ 8098 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8099 break; 8100 case 0x2f: /* FMINP */ 8101 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8102 break; 8103 default: 8104 g_assert_not_reached(); 8105 } 8106 } 8107 8108 write_fp_sreg(s, rd, tcg_res); 8109 } 8110 } 8111 8112 /* 8113 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8114 * 8115 * This code is handles the common shifting code and is used by both 8116 * the vector and scalar code. 8117 */ 8118 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8119 TCGv_i64 tcg_rnd, bool accumulate, 8120 bool is_u, int size, int shift) 8121 { 8122 bool extended_result = false; 8123 bool round = tcg_rnd != NULL; 8124 int ext_lshift = 0; 8125 TCGv_i64 tcg_src_hi; 8126 8127 if (round && size == 3) { 8128 extended_result = true; 8129 ext_lshift = 64 - shift; 8130 tcg_src_hi = tcg_temp_new_i64(); 8131 } else if (shift == 64) { 8132 if (!accumulate && is_u) { 8133 /* result is zero */ 8134 tcg_gen_movi_i64(tcg_res, 0); 8135 return; 8136 } 8137 } 8138 8139 /* Deal with the rounding step */ 8140 if (round) { 8141 if (extended_result) { 8142 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8143 if (!is_u) { 8144 /* take care of sign extending tcg_res */ 8145 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8146 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8147 tcg_src, tcg_src_hi, 8148 tcg_rnd, tcg_zero); 8149 } else { 8150 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8151 tcg_src, tcg_zero, 8152 tcg_rnd, tcg_zero); 8153 } 8154 } else { 8155 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8156 } 8157 } 8158 8159 /* Now do the shift right */ 8160 if (round && extended_result) { 8161 /* extended case, >64 bit precision required */ 8162 if (ext_lshift == 0) { 8163 /* special case, only high bits matter */ 8164 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8165 } else { 8166 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8167 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8168 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8169 } 8170 } else { 8171 if (is_u) { 8172 if (shift == 64) { 8173 /* essentially shifting in 64 zeros */ 8174 tcg_gen_movi_i64(tcg_src, 0); 8175 } else { 8176 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8177 } 8178 } else { 8179 if (shift == 64) { 8180 /* effectively extending the sign-bit */ 8181 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8182 } else { 8183 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8184 } 8185 } 8186 } 8187 8188 if (accumulate) { 8189 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8190 } else { 8191 tcg_gen_mov_i64(tcg_res, tcg_src); 8192 } 8193 } 8194 8195 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8196 static void handle_scalar_simd_shri(DisasContext *s, 8197 bool is_u, int immh, int immb, 8198 int opcode, int rn, int rd) 8199 { 8200 const int size = 3; 8201 int immhb = immh << 3 | immb; 8202 int shift = 2 * (8 << size) - immhb; 8203 bool accumulate = false; 8204 bool round = false; 8205 bool insert = false; 8206 TCGv_i64 tcg_rn; 8207 TCGv_i64 tcg_rd; 8208 TCGv_i64 tcg_round; 8209 8210 if (!extract32(immh, 3, 1)) { 8211 unallocated_encoding(s); 8212 return; 8213 } 8214 8215 if (!fp_access_check(s)) { 8216 return; 8217 } 8218 8219 switch (opcode) { 8220 case 0x02: /* SSRA / USRA (accumulate) */ 8221 accumulate = true; 8222 break; 8223 case 0x04: /* SRSHR / URSHR (rounding) */ 8224 round = true; 8225 break; 8226 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8227 accumulate = round = true; 8228 break; 8229 case 0x08: /* SRI */ 8230 insert = true; 8231 break; 8232 } 8233 8234 if (round) { 8235 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8236 } else { 8237 tcg_round = NULL; 8238 } 8239 8240 tcg_rn = read_fp_dreg(s, rn); 8241 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8242 8243 if (insert) { 8244 /* shift count same as element size is valid but does nothing; 8245 * special case to avoid potential shift by 64. 8246 */ 8247 int esize = 8 << size; 8248 if (shift != esize) { 8249 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8250 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8251 } 8252 } else { 8253 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8254 accumulate, is_u, size, shift); 8255 } 8256 8257 write_fp_dreg(s, rd, tcg_rd); 8258 } 8259 8260 /* SHL/SLI - Scalar shift left */ 8261 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8262 int immh, int immb, int opcode, 8263 int rn, int rd) 8264 { 8265 int size = 32 - clz32(immh) - 1; 8266 int immhb = immh << 3 | immb; 8267 int shift = immhb - (8 << size); 8268 TCGv_i64 tcg_rn; 8269 TCGv_i64 tcg_rd; 8270 8271 if (!extract32(immh, 3, 1)) { 8272 unallocated_encoding(s); 8273 return; 8274 } 8275 8276 if (!fp_access_check(s)) { 8277 return; 8278 } 8279 8280 tcg_rn = read_fp_dreg(s, rn); 8281 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8282 8283 if (insert) { 8284 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8285 } else { 8286 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8287 } 8288 8289 write_fp_dreg(s, rd, tcg_rd); 8290 } 8291 8292 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8293 * (signed/unsigned) narrowing */ 8294 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8295 bool is_u_shift, bool is_u_narrow, 8296 int immh, int immb, int opcode, 8297 int rn, int rd) 8298 { 8299 int immhb = immh << 3 | immb; 8300 int size = 32 - clz32(immh) - 1; 8301 int esize = 8 << size; 8302 int shift = (2 * esize) - immhb; 8303 int elements = is_scalar ? 1 : (64 / esize); 8304 bool round = extract32(opcode, 0, 1); 8305 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8306 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8307 TCGv_i32 tcg_rd_narrowed; 8308 TCGv_i64 tcg_final; 8309 8310 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8311 { gen_helper_neon_narrow_sat_s8, 8312 gen_helper_neon_unarrow_sat8 }, 8313 { gen_helper_neon_narrow_sat_s16, 8314 gen_helper_neon_unarrow_sat16 }, 8315 { gen_helper_neon_narrow_sat_s32, 8316 gen_helper_neon_unarrow_sat32 }, 8317 { NULL, NULL }, 8318 }; 8319 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8320 gen_helper_neon_narrow_sat_u8, 8321 gen_helper_neon_narrow_sat_u16, 8322 gen_helper_neon_narrow_sat_u32, 8323 NULL 8324 }; 8325 NeonGenNarrowEnvFn *narrowfn; 8326 8327 int i; 8328 8329 assert(size < 4); 8330 8331 if (extract32(immh, 3, 1)) { 8332 unallocated_encoding(s); 8333 return; 8334 } 8335 8336 if (!fp_access_check(s)) { 8337 return; 8338 } 8339 8340 if (is_u_shift) { 8341 narrowfn = unsigned_narrow_fns[size]; 8342 } else { 8343 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8344 } 8345 8346 tcg_rn = tcg_temp_new_i64(); 8347 tcg_rd = tcg_temp_new_i64(); 8348 tcg_rd_narrowed = tcg_temp_new_i32(); 8349 tcg_final = tcg_temp_new_i64(); 8350 8351 if (round) { 8352 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8353 } else { 8354 tcg_round = NULL; 8355 } 8356 8357 for (i = 0; i < elements; i++) { 8358 read_vec_element(s, tcg_rn, rn, i, ldop); 8359 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8360 false, is_u_shift, size+1, shift); 8361 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8362 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8363 if (i == 0) { 8364 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8365 } else { 8366 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8367 } 8368 } 8369 8370 if (!is_q) { 8371 write_vec_element(s, tcg_final, rd, 0, MO_64); 8372 } else { 8373 write_vec_element(s, tcg_final, rd, 1, MO_64); 8374 } 8375 clear_vec_high(s, is_q, rd); 8376 } 8377 8378 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8379 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8380 bool src_unsigned, bool dst_unsigned, 8381 int immh, int immb, int rn, int rd) 8382 { 8383 int immhb = immh << 3 | immb; 8384 int size = 32 - clz32(immh) - 1; 8385 int shift = immhb - (8 << size); 8386 int pass; 8387 8388 assert(immh != 0); 8389 assert(!(scalar && is_q)); 8390 8391 if (!scalar) { 8392 if (!is_q && extract32(immh, 3, 1)) { 8393 unallocated_encoding(s); 8394 return; 8395 } 8396 8397 /* Since we use the variable-shift helpers we must 8398 * replicate the shift count into each element of 8399 * the tcg_shift value. 8400 */ 8401 switch (size) { 8402 case 0: 8403 shift |= shift << 8; 8404 /* fall through */ 8405 case 1: 8406 shift |= shift << 16; 8407 break; 8408 case 2: 8409 case 3: 8410 break; 8411 default: 8412 g_assert_not_reached(); 8413 } 8414 } 8415 8416 if (!fp_access_check(s)) { 8417 return; 8418 } 8419 8420 if (size == 3) { 8421 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8422 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8423 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8424 { NULL, gen_helper_neon_qshl_u64 }, 8425 }; 8426 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8427 int maxpass = is_q ? 2 : 1; 8428 8429 for (pass = 0; pass < maxpass; pass++) { 8430 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8431 8432 read_vec_element(s, tcg_op, rn, pass, MO_64); 8433 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8434 write_vec_element(s, tcg_op, rd, pass, MO_64); 8435 } 8436 clear_vec_high(s, is_q, rd); 8437 } else { 8438 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8439 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8440 { 8441 { gen_helper_neon_qshl_s8, 8442 gen_helper_neon_qshl_s16, 8443 gen_helper_neon_qshl_s32 }, 8444 { gen_helper_neon_qshlu_s8, 8445 gen_helper_neon_qshlu_s16, 8446 gen_helper_neon_qshlu_s32 } 8447 }, { 8448 { NULL, NULL, NULL }, 8449 { gen_helper_neon_qshl_u8, 8450 gen_helper_neon_qshl_u16, 8451 gen_helper_neon_qshl_u32 } 8452 } 8453 }; 8454 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8455 MemOp memop = scalar ? size : MO_32; 8456 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8457 8458 for (pass = 0; pass < maxpass; pass++) { 8459 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8460 8461 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8462 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8463 if (scalar) { 8464 switch (size) { 8465 case 0: 8466 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8467 break; 8468 case 1: 8469 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8470 break; 8471 case 2: 8472 break; 8473 default: 8474 g_assert_not_reached(); 8475 } 8476 write_fp_sreg(s, rd, tcg_op); 8477 } else { 8478 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8479 } 8480 } 8481 8482 if (!scalar) { 8483 clear_vec_high(s, is_q, rd); 8484 } 8485 } 8486 } 8487 8488 /* Common vector code for handling integer to FP conversion */ 8489 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8490 int elements, int is_signed, 8491 int fracbits, int size) 8492 { 8493 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8494 TCGv_i32 tcg_shift = NULL; 8495 8496 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8497 int pass; 8498 8499 if (fracbits || size == MO_64) { 8500 tcg_shift = tcg_constant_i32(fracbits); 8501 } 8502 8503 if (size == MO_64) { 8504 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8505 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8506 8507 for (pass = 0; pass < elements; pass++) { 8508 read_vec_element(s, tcg_int64, rn, pass, mop); 8509 8510 if (is_signed) { 8511 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8512 tcg_shift, tcg_fpst); 8513 } else { 8514 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8515 tcg_shift, tcg_fpst); 8516 } 8517 if (elements == 1) { 8518 write_fp_dreg(s, rd, tcg_double); 8519 } else { 8520 write_vec_element(s, tcg_double, rd, pass, MO_64); 8521 } 8522 } 8523 } else { 8524 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8525 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8526 8527 for (pass = 0; pass < elements; pass++) { 8528 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8529 8530 switch (size) { 8531 case MO_32: 8532 if (fracbits) { 8533 if (is_signed) { 8534 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8535 tcg_shift, tcg_fpst); 8536 } else { 8537 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8538 tcg_shift, tcg_fpst); 8539 } 8540 } else { 8541 if (is_signed) { 8542 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8543 } else { 8544 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8545 } 8546 } 8547 break; 8548 case MO_16: 8549 if (fracbits) { 8550 if (is_signed) { 8551 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8552 tcg_shift, tcg_fpst); 8553 } else { 8554 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8555 tcg_shift, tcg_fpst); 8556 } 8557 } else { 8558 if (is_signed) { 8559 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8560 } else { 8561 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8562 } 8563 } 8564 break; 8565 default: 8566 g_assert_not_reached(); 8567 } 8568 8569 if (elements == 1) { 8570 write_fp_sreg(s, rd, tcg_float); 8571 } else { 8572 write_vec_element_i32(s, tcg_float, rd, pass, size); 8573 } 8574 } 8575 } 8576 8577 clear_vec_high(s, elements << size == 16, rd); 8578 } 8579 8580 /* UCVTF/SCVTF - Integer to FP conversion */ 8581 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8582 bool is_q, bool is_u, 8583 int immh, int immb, int opcode, 8584 int rn, int rd) 8585 { 8586 int size, elements, fracbits; 8587 int immhb = immh << 3 | immb; 8588 8589 if (immh & 8) { 8590 size = MO_64; 8591 if (!is_scalar && !is_q) { 8592 unallocated_encoding(s); 8593 return; 8594 } 8595 } else if (immh & 4) { 8596 size = MO_32; 8597 } else if (immh & 2) { 8598 size = MO_16; 8599 if (!dc_isar_feature(aa64_fp16, s)) { 8600 unallocated_encoding(s); 8601 return; 8602 } 8603 } else { 8604 /* immh == 0 would be a failure of the decode logic */ 8605 g_assert(immh == 1); 8606 unallocated_encoding(s); 8607 return; 8608 } 8609 8610 if (is_scalar) { 8611 elements = 1; 8612 } else { 8613 elements = (8 << is_q) >> size; 8614 } 8615 fracbits = (16 << size) - immhb; 8616 8617 if (!fp_access_check(s)) { 8618 return; 8619 } 8620 8621 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8622 } 8623 8624 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8625 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8626 bool is_q, bool is_u, 8627 int immh, int immb, int rn, int rd) 8628 { 8629 int immhb = immh << 3 | immb; 8630 int pass, size, fracbits; 8631 TCGv_ptr tcg_fpstatus; 8632 TCGv_i32 tcg_rmode, tcg_shift; 8633 8634 if (immh & 0x8) { 8635 size = MO_64; 8636 if (!is_scalar && !is_q) { 8637 unallocated_encoding(s); 8638 return; 8639 } 8640 } else if (immh & 0x4) { 8641 size = MO_32; 8642 } else if (immh & 0x2) { 8643 size = MO_16; 8644 if (!dc_isar_feature(aa64_fp16, s)) { 8645 unallocated_encoding(s); 8646 return; 8647 } 8648 } else { 8649 /* Should have split out AdvSIMD modified immediate earlier. */ 8650 assert(immh == 1); 8651 unallocated_encoding(s); 8652 return; 8653 } 8654 8655 if (!fp_access_check(s)) { 8656 return; 8657 } 8658 8659 assert(!(is_scalar && is_q)); 8660 8661 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8662 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8663 fracbits = (16 << size) - immhb; 8664 tcg_shift = tcg_constant_i32(fracbits); 8665 8666 if (size == MO_64) { 8667 int maxpass = is_scalar ? 1 : 2; 8668 8669 for (pass = 0; pass < maxpass; pass++) { 8670 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8671 8672 read_vec_element(s, tcg_op, rn, pass, MO_64); 8673 if (is_u) { 8674 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8675 } else { 8676 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8677 } 8678 write_vec_element(s, tcg_op, rd, pass, MO_64); 8679 } 8680 clear_vec_high(s, is_q, rd); 8681 } else { 8682 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8683 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8684 8685 switch (size) { 8686 case MO_16: 8687 if (is_u) { 8688 fn = gen_helper_vfp_touhh; 8689 } else { 8690 fn = gen_helper_vfp_toshh; 8691 } 8692 break; 8693 case MO_32: 8694 if (is_u) { 8695 fn = gen_helper_vfp_touls; 8696 } else { 8697 fn = gen_helper_vfp_tosls; 8698 } 8699 break; 8700 default: 8701 g_assert_not_reached(); 8702 } 8703 8704 for (pass = 0; pass < maxpass; pass++) { 8705 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8706 8707 read_vec_element_i32(s, tcg_op, rn, pass, size); 8708 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8709 if (is_scalar) { 8710 write_fp_sreg(s, rd, tcg_op); 8711 } else { 8712 write_vec_element_i32(s, tcg_op, rd, pass, size); 8713 } 8714 } 8715 if (!is_scalar) { 8716 clear_vec_high(s, is_q, rd); 8717 } 8718 } 8719 8720 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8721 } 8722 8723 /* AdvSIMD scalar shift by immediate 8724 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8725 * +-----+---+-------------+------+------+--------+---+------+------+ 8726 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8727 * +-----+---+-------------+------+------+--------+---+------+------+ 8728 * 8729 * This is the scalar version so it works on a fixed sized registers 8730 */ 8731 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8732 { 8733 int rd = extract32(insn, 0, 5); 8734 int rn = extract32(insn, 5, 5); 8735 int opcode = extract32(insn, 11, 5); 8736 int immb = extract32(insn, 16, 3); 8737 int immh = extract32(insn, 19, 4); 8738 bool is_u = extract32(insn, 29, 1); 8739 8740 if (immh == 0) { 8741 unallocated_encoding(s); 8742 return; 8743 } 8744 8745 switch (opcode) { 8746 case 0x08: /* SRI */ 8747 if (!is_u) { 8748 unallocated_encoding(s); 8749 return; 8750 } 8751 /* fall through */ 8752 case 0x00: /* SSHR / USHR */ 8753 case 0x02: /* SSRA / USRA */ 8754 case 0x04: /* SRSHR / URSHR */ 8755 case 0x06: /* SRSRA / URSRA */ 8756 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8757 break; 8758 case 0x0a: /* SHL / SLI */ 8759 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8760 break; 8761 case 0x1c: /* SCVTF, UCVTF */ 8762 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8763 opcode, rn, rd); 8764 break; 8765 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8766 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8767 if (!is_u) { 8768 unallocated_encoding(s); 8769 return; 8770 } 8771 handle_vec_simd_sqshrn(s, true, false, false, true, 8772 immh, immb, opcode, rn, rd); 8773 break; 8774 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8775 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8776 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8777 immh, immb, opcode, rn, rd); 8778 break; 8779 case 0xc: /* SQSHLU */ 8780 if (!is_u) { 8781 unallocated_encoding(s); 8782 return; 8783 } 8784 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8785 break; 8786 case 0xe: /* SQSHL, UQSHL */ 8787 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8788 break; 8789 case 0x1f: /* FCVTZS, FCVTZU */ 8790 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8791 break; 8792 default: 8793 unallocated_encoding(s); 8794 break; 8795 } 8796 } 8797 8798 /* AdvSIMD scalar three different 8799 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8800 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8801 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8802 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8803 */ 8804 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8805 { 8806 bool is_u = extract32(insn, 29, 1); 8807 int size = extract32(insn, 22, 2); 8808 int opcode = extract32(insn, 12, 4); 8809 int rm = extract32(insn, 16, 5); 8810 int rn = extract32(insn, 5, 5); 8811 int rd = extract32(insn, 0, 5); 8812 8813 if (is_u) { 8814 unallocated_encoding(s); 8815 return; 8816 } 8817 8818 switch (opcode) { 8819 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8820 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8821 case 0xd: /* SQDMULL, SQDMULL2 */ 8822 if (size == 0 || size == 3) { 8823 unallocated_encoding(s); 8824 return; 8825 } 8826 break; 8827 default: 8828 unallocated_encoding(s); 8829 return; 8830 } 8831 8832 if (!fp_access_check(s)) { 8833 return; 8834 } 8835 8836 if (size == 2) { 8837 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8838 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8839 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8840 8841 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8842 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8843 8844 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8845 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8846 8847 switch (opcode) { 8848 case 0xd: /* SQDMULL, SQDMULL2 */ 8849 break; 8850 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8851 tcg_gen_neg_i64(tcg_res, tcg_res); 8852 /* fall through */ 8853 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8854 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8855 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8856 tcg_res, tcg_op1); 8857 break; 8858 default: 8859 g_assert_not_reached(); 8860 } 8861 8862 write_fp_dreg(s, rd, tcg_res); 8863 } else { 8864 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8865 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8866 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8867 8868 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8869 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8870 8871 switch (opcode) { 8872 case 0xd: /* SQDMULL, SQDMULL2 */ 8873 break; 8874 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8875 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8876 /* fall through */ 8877 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8878 { 8879 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8880 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8881 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8882 tcg_res, tcg_op3); 8883 break; 8884 } 8885 default: 8886 g_assert_not_reached(); 8887 } 8888 8889 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8890 write_fp_dreg(s, rd, tcg_res); 8891 } 8892 } 8893 8894 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8895 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8896 { 8897 /* Handle 64x64->64 opcodes which are shared between the scalar 8898 * and vector 3-same groups. We cover every opcode where size == 3 8899 * is valid in either the three-reg-same (integer, not pairwise) 8900 * or scalar-three-reg-same groups. 8901 */ 8902 TCGCond cond; 8903 8904 switch (opcode) { 8905 case 0x1: /* SQADD */ 8906 if (u) { 8907 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8908 } else { 8909 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8910 } 8911 break; 8912 case 0x5: /* SQSUB */ 8913 if (u) { 8914 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8915 } else { 8916 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8917 } 8918 break; 8919 case 0x6: /* CMGT, CMHI */ 8920 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8921 do_cmop: 8922 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8923 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8924 break; 8925 case 0x7: /* CMGE, CMHS */ 8926 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8927 goto do_cmop; 8928 case 0x11: /* CMTST, CMEQ */ 8929 if (u) { 8930 cond = TCG_COND_EQ; 8931 goto do_cmop; 8932 } 8933 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8934 break; 8935 case 0x8: /* SSHL, USHL */ 8936 if (u) { 8937 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8938 } else { 8939 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8940 } 8941 break; 8942 case 0x9: /* SQSHL, UQSHL */ 8943 if (u) { 8944 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8945 } else { 8946 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8947 } 8948 break; 8949 case 0xa: /* SRSHL, URSHL */ 8950 if (u) { 8951 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8952 } else { 8953 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8954 } 8955 break; 8956 case 0xb: /* SQRSHL, UQRSHL */ 8957 if (u) { 8958 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8959 } else { 8960 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8961 } 8962 break; 8963 case 0x10: /* ADD, SUB */ 8964 if (u) { 8965 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8966 } else { 8967 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8968 } 8969 break; 8970 default: 8971 g_assert_not_reached(); 8972 } 8973 } 8974 8975 /* Handle the 3-same-operands float operations; shared by the scalar 8976 * and vector encodings. The caller must filter out any encodings 8977 * not allocated for the encoding it is dealing with. 8978 */ 8979 static void handle_3same_float(DisasContext *s, int size, int elements, 8980 int fpopcode, int rd, int rn, int rm) 8981 { 8982 int pass; 8983 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8984 8985 for (pass = 0; pass < elements; pass++) { 8986 if (size) { 8987 /* Double */ 8988 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8989 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8990 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8991 8992 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8993 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8994 8995 switch (fpopcode) { 8996 case 0x39: /* FMLS */ 8997 /* As usual for ARM, separate negation for fused multiply-add */ 8998 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8999 /* fall through */ 9000 case 0x19: /* FMLA */ 9001 read_vec_element(s, tcg_res, rd, pass, MO_64); 9002 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9003 tcg_res, fpst); 9004 break; 9005 case 0x18: /* FMAXNM */ 9006 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9007 break; 9008 case 0x1a: /* FADD */ 9009 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9010 break; 9011 case 0x1b: /* FMULX */ 9012 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9013 break; 9014 case 0x1c: /* FCMEQ */ 9015 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9016 break; 9017 case 0x1e: /* FMAX */ 9018 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9019 break; 9020 case 0x1f: /* FRECPS */ 9021 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9022 break; 9023 case 0x38: /* FMINNM */ 9024 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9025 break; 9026 case 0x3a: /* FSUB */ 9027 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9028 break; 9029 case 0x3e: /* FMIN */ 9030 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9031 break; 9032 case 0x3f: /* FRSQRTS */ 9033 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9034 break; 9035 case 0x5b: /* FMUL */ 9036 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9037 break; 9038 case 0x5c: /* FCMGE */ 9039 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9040 break; 9041 case 0x5d: /* FACGE */ 9042 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9043 break; 9044 case 0x5f: /* FDIV */ 9045 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9046 break; 9047 case 0x7a: /* FABD */ 9048 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9049 gen_helper_vfp_absd(tcg_res, tcg_res); 9050 break; 9051 case 0x7c: /* FCMGT */ 9052 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9053 break; 9054 case 0x7d: /* FACGT */ 9055 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9056 break; 9057 default: 9058 g_assert_not_reached(); 9059 } 9060 9061 write_vec_element(s, tcg_res, rd, pass, MO_64); 9062 } else { 9063 /* Single */ 9064 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9065 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9066 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9067 9068 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9069 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9070 9071 switch (fpopcode) { 9072 case 0x39: /* FMLS */ 9073 /* As usual for ARM, separate negation for fused multiply-add */ 9074 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9075 /* fall through */ 9076 case 0x19: /* FMLA */ 9077 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9078 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9079 tcg_res, fpst); 9080 break; 9081 case 0x1a: /* FADD */ 9082 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9083 break; 9084 case 0x1b: /* FMULX */ 9085 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x1c: /* FCMEQ */ 9088 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x1e: /* FMAX */ 9091 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x1f: /* FRECPS */ 9094 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x18: /* FMAXNM */ 9097 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x38: /* FMINNM */ 9100 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x3a: /* FSUB */ 9103 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x3e: /* FMIN */ 9106 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x3f: /* FRSQRTS */ 9109 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x5b: /* FMUL */ 9112 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x5c: /* FCMGE */ 9115 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 case 0x5d: /* FACGE */ 9118 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x5f: /* FDIV */ 9121 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x7a: /* FABD */ 9124 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9125 gen_helper_vfp_abss(tcg_res, tcg_res); 9126 break; 9127 case 0x7c: /* FCMGT */ 9128 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 case 0x7d: /* FACGT */ 9131 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 default: 9134 g_assert_not_reached(); 9135 } 9136 9137 if (elements == 1) { 9138 /* scalar single so clear high part */ 9139 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9140 9141 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9142 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9143 } else { 9144 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9145 } 9146 } 9147 } 9148 9149 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9150 } 9151 9152 /* AdvSIMD scalar three same 9153 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9154 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9155 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9156 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9157 */ 9158 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9159 { 9160 int rd = extract32(insn, 0, 5); 9161 int rn = extract32(insn, 5, 5); 9162 int opcode = extract32(insn, 11, 5); 9163 int rm = extract32(insn, 16, 5); 9164 int size = extract32(insn, 22, 2); 9165 bool u = extract32(insn, 29, 1); 9166 TCGv_i64 tcg_rd; 9167 9168 if (opcode >= 0x18) { 9169 /* Floating point: U, size[1] and opcode indicate operation */ 9170 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9171 switch (fpopcode) { 9172 case 0x1b: /* FMULX */ 9173 case 0x1f: /* FRECPS */ 9174 case 0x3f: /* FRSQRTS */ 9175 case 0x5d: /* FACGE */ 9176 case 0x7d: /* FACGT */ 9177 case 0x1c: /* FCMEQ */ 9178 case 0x5c: /* FCMGE */ 9179 case 0x7c: /* FCMGT */ 9180 case 0x7a: /* FABD */ 9181 break; 9182 default: 9183 unallocated_encoding(s); 9184 return; 9185 } 9186 9187 if (!fp_access_check(s)) { 9188 return; 9189 } 9190 9191 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9192 return; 9193 } 9194 9195 switch (opcode) { 9196 case 0x1: /* SQADD, UQADD */ 9197 case 0x5: /* SQSUB, UQSUB */ 9198 case 0x9: /* SQSHL, UQSHL */ 9199 case 0xb: /* SQRSHL, UQRSHL */ 9200 break; 9201 case 0x8: /* SSHL, USHL */ 9202 case 0xa: /* SRSHL, URSHL */ 9203 case 0x6: /* CMGT, CMHI */ 9204 case 0x7: /* CMGE, CMHS */ 9205 case 0x11: /* CMTST, CMEQ */ 9206 case 0x10: /* ADD, SUB (vector) */ 9207 if (size != 3) { 9208 unallocated_encoding(s); 9209 return; 9210 } 9211 break; 9212 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9213 if (size != 1 && size != 2) { 9214 unallocated_encoding(s); 9215 return; 9216 } 9217 break; 9218 default: 9219 unallocated_encoding(s); 9220 return; 9221 } 9222 9223 if (!fp_access_check(s)) { 9224 return; 9225 } 9226 9227 tcg_rd = tcg_temp_new_i64(); 9228 9229 if (size == 3) { 9230 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9231 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9232 9233 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9234 } else { 9235 /* Do a single operation on the lowest element in the vector. 9236 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9237 * no side effects for all these operations. 9238 * OPTME: special-purpose helpers would avoid doing some 9239 * unnecessary work in the helper for the 8 and 16 bit cases. 9240 */ 9241 NeonGenTwoOpEnvFn *genenvfn; 9242 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9243 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9244 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9245 9246 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9247 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9248 9249 switch (opcode) { 9250 case 0x1: /* SQADD, UQADD */ 9251 { 9252 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9253 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9254 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9255 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9256 }; 9257 genenvfn = fns[size][u]; 9258 break; 9259 } 9260 case 0x5: /* SQSUB, UQSUB */ 9261 { 9262 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9263 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9264 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9265 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9266 }; 9267 genenvfn = fns[size][u]; 9268 break; 9269 } 9270 case 0x9: /* SQSHL, UQSHL */ 9271 { 9272 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9273 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9274 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9275 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9276 }; 9277 genenvfn = fns[size][u]; 9278 break; 9279 } 9280 case 0xb: /* SQRSHL, UQRSHL */ 9281 { 9282 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9283 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9284 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9285 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9286 }; 9287 genenvfn = fns[size][u]; 9288 break; 9289 } 9290 case 0x16: /* SQDMULH, SQRDMULH */ 9291 { 9292 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9293 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9294 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9295 }; 9296 assert(size == 1 || size == 2); 9297 genenvfn = fns[size - 1][u]; 9298 break; 9299 } 9300 default: 9301 g_assert_not_reached(); 9302 } 9303 9304 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9305 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9306 } 9307 9308 write_fp_dreg(s, rd, tcg_rd); 9309 } 9310 9311 /* AdvSIMD scalar three same FP16 9312 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9313 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9314 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9315 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9316 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9317 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9318 */ 9319 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9320 uint32_t insn) 9321 { 9322 int rd = extract32(insn, 0, 5); 9323 int rn = extract32(insn, 5, 5); 9324 int opcode = extract32(insn, 11, 3); 9325 int rm = extract32(insn, 16, 5); 9326 bool u = extract32(insn, 29, 1); 9327 bool a = extract32(insn, 23, 1); 9328 int fpopcode = opcode | (a << 3) | (u << 4); 9329 TCGv_ptr fpst; 9330 TCGv_i32 tcg_op1; 9331 TCGv_i32 tcg_op2; 9332 TCGv_i32 tcg_res; 9333 9334 switch (fpopcode) { 9335 case 0x03: /* FMULX */ 9336 case 0x04: /* FCMEQ (reg) */ 9337 case 0x07: /* FRECPS */ 9338 case 0x0f: /* FRSQRTS */ 9339 case 0x14: /* FCMGE (reg) */ 9340 case 0x15: /* FACGE */ 9341 case 0x1a: /* FABD */ 9342 case 0x1c: /* FCMGT (reg) */ 9343 case 0x1d: /* FACGT */ 9344 break; 9345 default: 9346 unallocated_encoding(s); 9347 return; 9348 } 9349 9350 if (!dc_isar_feature(aa64_fp16, s)) { 9351 unallocated_encoding(s); 9352 } 9353 9354 if (!fp_access_check(s)) { 9355 return; 9356 } 9357 9358 fpst = fpstatus_ptr(FPST_FPCR_F16); 9359 9360 tcg_op1 = read_fp_hreg(s, rn); 9361 tcg_op2 = read_fp_hreg(s, rm); 9362 tcg_res = tcg_temp_new_i32(); 9363 9364 switch (fpopcode) { 9365 case 0x03: /* FMULX */ 9366 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9367 break; 9368 case 0x04: /* FCMEQ (reg) */ 9369 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9370 break; 9371 case 0x07: /* FRECPS */ 9372 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9373 break; 9374 case 0x0f: /* FRSQRTS */ 9375 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9376 break; 9377 case 0x14: /* FCMGE (reg) */ 9378 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9379 break; 9380 case 0x15: /* FACGE */ 9381 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9382 break; 9383 case 0x1a: /* FABD */ 9384 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9385 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9386 break; 9387 case 0x1c: /* FCMGT (reg) */ 9388 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9389 break; 9390 case 0x1d: /* FACGT */ 9391 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9392 break; 9393 default: 9394 g_assert_not_reached(); 9395 } 9396 9397 write_fp_sreg(s, rd, tcg_res); 9398 } 9399 9400 /* AdvSIMD scalar three same extra 9401 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9402 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9403 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9404 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9405 */ 9406 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9407 uint32_t insn) 9408 { 9409 int rd = extract32(insn, 0, 5); 9410 int rn = extract32(insn, 5, 5); 9411 int opcode = extract32(insn, 11, 4); 9412 int rm = extract32(insn, 16, 5); 9413 int size = extract32(insn, 22, 2); 9414 bool u = extract32(insn, 29, 1); 9415 TCGv_i32 ele1, ele2, ele3; 9416 TCGv_i64 res; 9417 bool feature; 9418 9419 switch (u * 16 + opcode) { 9420 case 0x10: /* SQRDMLAH (vector) */ 9421 case 0x11: /* SQRDMLSH (vector) */ 9422 if (size != 1 && size != 2) { 9423 unallocated_encoding(s); 9424 return; 9425 } 9426 feature = dc_isar_feature(aa64_rdm, s); 9427 break; 9428 default: 9429 unallocated_encoding(s); 9430 return; 9431 } 9432 if (!feature) { 9433 unallocated_encoding(s); 9434 return; 9435 } 9436 if (!fp_access_check(s)) { 9437 return; 9438 } 9439 9440 /* Do a single operation on the lowest element in the vector. 9441 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9442 * with no side effects for all these operations. 9443 * OPTME: special-purpose helpers would avoid doing some 9444 * unnecessary work in the helper for the 16 bit cases. 9445 */ 9446 ele1 = tcg_temp_new_i32(); 9447 ele2 = tcg_temp_new_i32(); 9448 ele3 = tcg_temp_new_i32(); 9449 9450 read_vec_element_i32(s, ele1, rn, 0, size); 9451 read_vec_element_i32(s, ele2, rm, 0, size); 9452 read_vec_element_i32(s, ele3, rd, 0, size); 9453 9454 switch (opcode) { 9455 case 0x0: /* SQRDMLAH */ 9456 if (size == 1) { 9457 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9458 } else { 9459 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9460 } 9461 break; 9462 case 0x1: /* SQRDMLSH */ 9463 if (size == 1) { 9464 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9465 } else { 9466 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9467 } 9468 break; 9469 default: 9470 g_assert_not_reached(); 9471 } 9472 9473 res = tcg_temp_new_i64(); 9474 tcg_gen_extu_i32_i64(res, ele3); 9475 write_fp_dreg(s, rd, res); 9476 } 9477 9478 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9479 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9480 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9481 { 9482 /* Handle 64->64 opcodes which are shared between the scalar and 9483 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9484 * is valid in either group and also the double-precision fp ops. 9485 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9486 * requires them. 9487 */ 9488 TCGCond cond; 9489 9490 switch (opcode) { 9491 case 0x4: /* CLS, CLZ */ 9492 if (u) { 9493 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9494 } else { 9495 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9496 } 9497 break; 9498 case 0x5: /* NOT */ 9499 /* This opcode is shared with CNT and RBIT but we have earlier 9500 * enforced that size == 3 if and only if this is the NOT insn. 9501 */ 9502 tcg_gen_not_i64(tcg_rd, tcg_rn); 9503 break; 9504 case 0x7: /* SQABS, SQNEG */ 9505 if (u) { 9506 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9507 } else { 9508 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9509 } 9510 break; 9511 case 0xa: /* CMLT */ 9512 cond = TCG_COND_LT; 9513 do_cmop: 9514 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9515 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9516 break; 9517 case 0x8: /* CMGT, CMGE */ 9518 cond = u ? TCG_COND_GE : TCG_COND_GT; 9519 goto do_cmop; 9520 case 0x9: /* CMEQ, CMLE */ 9521 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9522 goto do_cmop; 9523 case 0xb: /* ABS, NEG */ 9524 if (u) { 9525 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9526 } else { 9527 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9528 } 9529 break; 9530 case 0x2f: /* FABS */ 9531 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9532 break; 9533 case 0x6f: /* FNEG */ 9534 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9535 break; 9536 case 0x7f: /* FSQRT */ 9537 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9538 break; 9539 case 0x1a: /* FCVTNS */ 9540 case 0x1b: /* FCVTMS */ 9541 case 0x1c: /* FCVTAS */ 9542 case 0x3a: /* FCVTPS */ 9543 case 0x3b: /* FCVTZS */ 9544 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9545 break; 9546 case 0x5a: /* FCVTNU */ 9547 case 0x5b: /* FCVTMU */ 9548 case 0x5c: /* FCVTAU */ 9549 case 0x7a: /* FCVTPU */ 9550 case 0x7b: /* FCVTZU */ 9551 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9552 break; 9553 case 0x18: /* FRINTN */ 9554 case 0x19: /* FRINTM */ 9555 case 0x38: /* FRINTP */ 9556 case 0x39: /* FRINTZ */ 9557 case 0x58: /* FRINTA */ 9558 case 0x79: /* FRINTI */ 9559 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9560 break; 9561 case 0x59: /* FRINTX */ 9562 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9563 break; 9564 case 0x1e: /* FRINT32Z */ 9565 case 0x5e: /* FRINT32X */ 9566 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9567 break; 9568 case 0x1f: /* FRINT64Z */ 9569 case 0x5f: /* FRINT64X */ 9570 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9571 break; 9572 default: 9573 g_assert_not_reached(); 9574 } 9575 } 9576 9577 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9578 bool is_scalar, bool is_u, bool is_q, 9579 int size, int rn, int rd) 9580 { 9581 bool is_double = (size == MO_64); 9582 TCGv_ptr fpst; 9583 9584 if (!fp_access_check(s)) { 9585 return; 9586 } 9587 9588 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9589 9590 if (is_double) { 9591 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9592 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9593 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9594 NeonGenTwoDoubleOpFn *genfn; 9595 bool swap = false; 9596 int pass; 9597 9598 switch (opcode) { 9599 case 0x2e: /* FCMLT (zero) */ 9600 swap = true; 9601 /* fallthrough */ 9602 case 0x2c: /* FCMGT (zero) */ 9603 genfn = gen_helper_neon_cgt_f64; 9604 break; 9605 case 0x2d: /* FCMEQ (zero) */ 9606 genfn = gen_helper_neon_ceq_f64; 9607 break; 9608 case 0x6d: /* FCMLE (zero) */ 9609 swap = true; 9610 /* fall through */ 9611 case 0x6c: /* FCMGE (zero) */ 9612 genfn = gen_helper_neon_cge_f64; 9613 break; 9614 default: 9615 g_assert_not_reached(); 9616 } 9617 9618 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9619 read_vec_element(s, tcg_op, rn, pass, MO_64); 9620 if (swap) { 9621 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9622 } else { 9623 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9624 } 9625 write_vec_element(s, tcg_res, rd, pass, MO_64); 9626 } 9627 9628 clear_vec_high(s, !is_scalar, rd); 9629 } else { 9630 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9631 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9632 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9633 NeonGenTwoSingleOpFn *genfn; 9634 bool swap = false; 9635 int pass, maxpasses; 9636 9637 if (size == MO_16) { 9638 switch (opcode) { 9639 case 0x2e: /* FCMLT (zero) */ 9640 swap = true; 9641 /* fall through */ 9642 case 0x2c: /* FCMGT (zero) */ 9643 genfn = gen_helper_advsimd_cgt_f16; 9644 break; 9645 case 0x2d: /* FCMEQ (zero) */ 9646 genfn = gen_helper_advsimd_ceq_f16; 9647 break; 9648 case 0x6d: /* FCMLE (zero) */ 9649 swap = true; 9650 /* fall through */ 9651 case 0x6c: /* FCMGE (zero) */ 9652 genfn = gen_helper_advsimd_cge_f16; 9653 break; 9654 default: 9655 g_assert_not_reached(); 9656 } 9657 } else { 9658 switch (opcode) { 9659 case 0x2e: /* FCMLT (zero) */ 9660 swap = true; 9661 /* fall through */ 9662 case 0x2c: /* FCMGT (zero) */ 9663 genfn = gen_helper_neon_cgt_f32; 9664 break; 9665 case 0x2d: /* FCMEQ (zero) */ 9666 genfn = gen_helper_neon_ceq_f32; 9667 break; 9668 case 0x6d: /* FCMLE (zero) */ 9669 swap = true; 9670 /* fall through */ 9671 case 0x6c: /* FCMGE (zero) */ 9672 genfn = gen_helper_neon_cge_f32; 9673 break; 9674 default: 9675 g_assert_not_reached(); 9676 } 9677 } 9678 9679 if (is_scalar) { 9680 maxpasses = 1; 9681 } else { 9682 int vector_size = 8 << is_q; 9683 maxpasses = vector_size >> size; 9684 } 9685 9686 for (pass = 0; pass < maxpasses; pass++) { 9687 read_vec_element_i32(s, tcg_op, rn, pass, size); 9688 if (swap) { 9689 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9690 } else { 9691 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9692 } 9693 if (is_scalar) { 9694 write_fp_sreg(s, rd, tcg_res); 9695 } else { 9696 write_vec_element_i32(s, tcg_res, rd, pass, size); 9697 } 9698 } 9699 9700 if (!is_scalar) { 9701 clear_vec_high(s, is_q, rd); 9702 } 9703 } 9704 } 9705 9706 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9707 bool is_scalar, bool is_u, bool is_q, 9708 int size, int rn, int rd) 9709 { 9710 bool is_double = (size == 3); 9711 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9712 9713 if (is_double) { 9714 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9715 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9716 int pass; 9717 9718 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9719 read_vec_element(s, tcg_op, rn, pass, MO_64); 9720 switch (opcode) { 9721 case 0x3d: /* FRECPE */ 9722 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9723 break; 9724 case 0x3f: /* FRECPX */ 9725 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9726 break; 9727 case 0x7d: /* FRSQRTE */ 9728 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9729 break; 9730 default: 9731 g_assert_not_reached(); 9732 } 9733 write_vec_element(s, tcg_res, rd, pass, MO_64); 9734 } 9735 clear_vec_high(s, !is_scalar, rd); 9736 } else { 9737 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9738 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9739 int pass, maxpasses; 9740 9741 if (is_scalar) { 9742 maxpasses = 1; 9743 } else { 9744 maxpasses = is_q ? 4 : 2; 9745 } 9746 9747 for (pass = 0; pass < maxpasses; pass++) { 9748 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9749 9750 switch (opcode) { 9751 case 0x3c: /* URECPE */ 9752 gen_helper_recpe_u32(tcg_res, tcg_op); 9753 break; 9754 case 0x3d: /* FRECPE */ 9755 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9756 break; 9757 case 0x3f: /* FRECPX */ 9758 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9759 break; 9760 case 0x7d: /* FRSQRTE */ 9761 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9762 break; 9763 default: 9764 g_assert_not_reached(); 9765 } 9766 9767 if (is_scalar) { 9768 write_fp_sreg(s, rd, tcg_res); 9769 } else { 9770 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9771 } 9772 } 9773 if (!is_scalar) { 9774 clear_vec_high(s, is_q, rd); 9775 } 9776 } 9777 } 9778 9779 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9780 int opcode, bool u, bool is_q, 9781 int size, int rn, int rd) 9782 { 9783 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9784 * in the source becomes a size element in the destination). 9785 */ 9786 int pass; 9787 TCGv_i32 tcg_res[2]; 9788 int destelt = is_q ? 2 : 0; 9789 int passes = scalar ? 1 : 2; 9790 9791 if (scalar) { 9792 tcg_res[1] = tcg_constant_i32(0); 9793 } 9794 9795 for (pass = 0; pass < passes; pass++) { 9796 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9797 NeonGenNarrowFn *genfn = NULL; 9798 NeonGenNarrowEnvFn *genenvfn = NULL; 9799 9800 if (scalar) { 9801 read_vec_element(s, tcg_op, rn, pass, size + 1); 9802 } else { 9803 read_vec_element(s, tcg_op, rn, pass, MO_64); 9804 } 9805 tcg_res[pass] = tcg_temp_new_i32(); 9806 9807 switch (opcode) { 9808 case 0x12: /* XTN, SQXTUN */ 9809 { 9810 static NeonGenNarrowFn * const xtnfns[3] = { 9811 gen_helper_neon_narrow_u8, 9812 gen_helper_neon_narrow_u16, 9813 tcg_gen_extrl_i64_i32, 9814 }; 9815 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9816 gen_helper_neon_unarrow_sat8, 9817 gen_helper_neon_unarrow_sat16, 9818 gen_helper_neon_unarrow_sat32, 9819 }; 9820 if (u) { 9821 genenvfn = sqxtunfns[size]; 9822 } else { 9823 genfn = xtnfns[size]; 9824 } 9825 break; 9826 } 9827 case 0x14: /* SQXTN, UQXTN */ 9828 { 9829 static NeonGenNarrowEnvFn * const fns[3][2] = { 9830 { gen_helper_neon_narrow_sat_s8, 9831 gen_helper_neon_narrow_sat_u8 }, 9832 { gen_helper_neon_narrow_sat_s16, 9833 gen_helper_neon_narrow_sat_u16 }, 9834 { gen_helper_neon_narrow_sat_s32, 9835 gen_helper_neon_narrow_sat_u32 }, 9836 }; 9837 genenvfn = fns[size][u]; 9838 break; 9839 } 9840 case 0x16: /* FCVTN, FCVTN2 */ 9841 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9842 if (size == 2) { 9843 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9844 } else { 9845 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9846 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9847 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9848 TCGv_i32 ahp = get_ahp_flag(); 9849 9850 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9851 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9852 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9853 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9854 } 9855 break; 9856 case 0x36: /* BFCVTN, BFCVTN2 */ 9857 { 9858 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9859 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9860 } 9861 break; 9862 case 0x56: /* FCVTXN, FCVTXN2 */ 9863 /* 64 bit to 32 bit float conversion 9864 * with von Neumann rounding (round to odd) 9865 */ 9866 assert(size == 2); 9867 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9868 break; 9869 default: 9870 g_assert_not_reached(); 9871 } 9872 9873 if (genfn) { 9874 genfn(tcg_res[pass], tcg_op); 9875 } else if (genenvfn) { 9876 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9877 } 9878 } 9879 9880 for (pass = 0; pass < 2; pass++) { 9881 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9882 } 9883 clear_vec_high(s, is_q, rd); 9884 } 9885 9886 /* Remaining saturating accumulating ops */ 9887 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9888 bool is_q, int size, int rn, int rd) 9889 { 9890 bool is_double = (size == 3); 9891 9892 if (is_double) { 9893 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9894 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9895 int pass; 9896 9897 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9898 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9899 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9900 9901 if (is_u) { /* USQADD */ 9902 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9903 } else { /* SUQADD */ 9904 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9905 } 9906 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9907 } 9908 clear_vec_high(s, !is_scalar, rd); 9909 } else { 9910 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9911 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9912 int pass, maxpasses; 9913 9914 if (is_scalar) { 9915 maxpasses = 1; 9916 } else { 9917 maxpasses = is_q ? 4 : 2; 9918 } 9919 9920 for (pass = 0; pass < maxpasses; pass++) { 9921 if (is_scalar) { 9922 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9923 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9924 } else { 9925 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9926 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9927 } 9928 9929 if (is_u) { /* USQADD */ 9930 switch (size) { 9931 case 0: 9932 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9933 break; 9934 case 1: 9935 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9936 break; 9937 case 2: 9938 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9939 break; 9940 default: 9941 g_assert_not_reached(); 9942 } 9943 } else { /* SUQADD */ 9944 switch (size) { 9945 case 0: 9946 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9947 break; 9948 case 1: 9949 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9950 break; 9951 case 2: 9952 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9953 break; 9954 default: 9955 g_assert_not_reached(); 9956 } 9957 } 9958 9959 if (is_scalar) { 9960 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9961 } 9962 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9963 } 9964 clear_vec_high(s, is_q, rd); 9965 } 9966 } 9967 9968 /* AdvSIMD scalar two reg misc 9969 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9970 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9971 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9972 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9973 */ 9974 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9975 { 9976 int rd = extract32(insn, 0, 5); 9977 int rn = extract32(insn, 5, 5); 9978 int opcode = extract32(insn, 12, 5); 9979 int size = extract32(insn, 22, 2); 9980 bool u = extract32(insn, 29, 1); 9981 bool is_fcvt = false; 9982 int rmode; 9983 TCGv_i32 tcg_rmode; 9984 TCGv_ptr tcg_fpstatus; 9985 9986 switch (opcode) { 9987 case 0x3: /* USQADD / SUQADD*/ 9988 if (!fp_access_check(s)) { 9989 return; 9990 } 9991 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9992 return; 9993 case 0x7: /* SQABS / SQNEG */ 9994 break; 9995 case 0xa: /* CMLT */ 9996 if (u) { 9997 unallocated_encoding(s); 9998 return; 9999 } 10000 /* fall through */ 10001 case 0x8: /* CMGT, CMGE */ 10002 case 0x9: /* CMEQ, CMLE */ 10003 case 0xb: /* ABS, NEG */ 10004 if (size != 3) { 10005 unallocated_encoding(s); 10006 return; 10007 } 10008 break; 10009 case 0x12: /* SQXTUN */ 10010 if (!u) { 10011 unallocated_encoding(s); 10012 return; 10013 } 10014 /* fall through */ 10015 case 0x14: /* SQXTN, UQXTN */ 10016 if (size == 3) { 10017 unallocated_encoding(s); 10018 return; 10019 } 10020 if (!fp_access_check(s)) { 10021 return; 10022 } 10023 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10024 return; 10025 case 0xc ... 0xf: 10026 case 0x16 ... 0x1d: 10027 case 0x1f: 10028 /* Floating point: U, size[1] and opcode indicate operation; 10029 * size[0] indicates single or double precision. 10030 */ 10031 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10032 size = extract32(size, 0, 1) ? 3 : 2; 10033 switch (opcode) { 10034 case 0x2c: /* FCMGT (zero) */ 10035 case 0x2d: /* FCMEQ (zero) */ 10036 case 0x2e: /* FCMLT (zero) */ 10037 case 0x6c: /* FCMGE (zero) */ 10038 case 0x6d: /* FCMLE (zero) */ 10039 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10040 return; 10041 case 0x1d: /* SCVTF */ 10042 case 0x5d: /* UCVTF */ 10043 { 10044 bool is_signed = (opcode == 0x1d); 10045 if (!fp_access_check(s)) { 10046 return; 10047 } 10048 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10049 return; 10050 } 10051 case 0x3d: /* FRECPE */ 10052 case 0x3f: /* FRECPX */ 10053 case 0x7d: /* FRSQRTE */ 10054 if (!fp_access_check(s)) { 10055 return; 10056 } 10057 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10058 return; 10059 case 0x1a: /* FCVTNS */ 10060 case 0x1b: /* FCVTMS */ 10061 case 0x3a: /* FCVTPS */ 10062 case 0x3b: /* FCVTZS */ 10063 case 0x5a: /* FCVTNU */ 10064 case 0x5b: /* FCVTMU */ 10065 case 0x7a: /* FCVTPU */ 10066 case 0x7b: /* FCVTZU */ 10067 is_fcvt = true; 10068 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10069 break; 10070 case 0x1c: /* FCVTAS */ 10071 case 0x5c: /* FCVTAU */ 10072 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10073 is_fcvt = true; 10074 rmode = FPROUNDING_TIEAWAY; 10075 break; 10076 case 0x56: /* FCVTXN, FCVTXN2 */ 10077 if (size == 2) { 10078 unallocated_encoding(s); 10079 return; 10080 } 10081 if (!fp_access_check(s)) { 10082 return; 10083 } 10084 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10085 return; 10086 default: 10087 unallocated_encoding(s); 10088 return; 10089 } 10090 break; 10091 default: 10092 unallocated_encoding(s); 10093 return; 10094 } 10095 10096 if (!fp_access_check(s)) { 10097 return; 10098 } 10099 10100 if (is_fcvt) { 10101 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10102 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10103 } else { 10104 tcg_fpstatus = NULL; 10105 tcg_rmode = NULL; 10106 } 10107 10108 if (size == 3) { 10109 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10110 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10111 10112 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10113 write_fp_dreg(s, rd, tcg_rd); 10114 } else { 10115 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10116 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10117 10118 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10119 10120 switch (opcode) { 10121 case 0x7: /* SQABS, SQNEG */ 10122 { 10123 NeonGenOneOpEnvFn *genfn; 10124 static NeonGenOneOpEnvFn * const fns[3][2] = { 10125 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10126 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10127 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10128 }; 10129 genfn = fns[size][u]; 10130 genfn(tcg_rd, tcg_env, tcg_rn); 10131 break; 10132 } 10133 case 0x1a: /* FCVTNS */ 10134 case 0x1b: /* FCVTMS */ 10135 case 0x1c: /* FCVTAS */ 10136 case 0x3a: /* FCVTPS */ 10137 case 0x3b: /* FCVTZS */ 10138 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10139 tcg_fpstatus); 10140 break; 10141 case 0x5a: /* FCVTNU */ 10142 case 0x5b: /* FCVTMU */ 10143 case 0x5c: /* FCVTAU */ 10144 case 0x7a: /* FCVTPU */ 10145 case 0x7b: /* FCVTZU */ 10146 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10147 tcg_fpstatus); 10148 break; 10149 default: 10150 g_assert_not_reached(); 10151 } 10152 10153 write_fp_sreg(s, rd, tcg_rd); 10154 } 10155 10156 if (is_fcvt) { 10157 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10158 } 10159 } 10160 10161 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10162 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10163 int immh, int immb, int opcode, int rn, int rd) 10164 { 10165 int size = 32 - clz32(immh) - 1; 10166 int immhb = immh << 3 | immb; 10167 int shift = 2 * (8 << size) - immhb; 10168 GVecGen2iFn *gvec_fn; 10169 10170 if (extract32(immh, 3, 1) && !is_q) { 10171 unallocated_encoding(s); 10172 return; 10173 } 10174 tcg_debug_assert(size <= 3); 10175 10176 if (!fp_access_check(s)) { 10177 return; 10178 } 10179 10180 switch (opcode) { 10181 case 0x02: /* SSRA / USRA (accumulate) */ 10182 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10183 break; 10184 10185 case 0x08: /* SRI */ 10186 gvec_fn = gen_gvec_sri; 10187 break; 10188 10189 case 0x00: /* SSHR / USHR */ 10190 if (is_u) { 10191 if (shift == 8 << size) { 10192 /* Shift count the same size as element size produces zero. */ 10193 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10194 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10195 return; 10196 } 10197 gvec_fn = tcg_gen_gvec_shri; 10198 } else { 10199 /* Shift count the same size as element size produces all sign. */ 10200 if (shift == 8 << size) { 10201 shift -= 1; 10202 } 10203 gvec_fn = tcg_gen_gvec_sari; 10204 } 10205 break; 10206 10207 case 0x04: /* SRSHR / URSHR (rounding) */ 10208 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10209 break; 10210 10211 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10212 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10213 break; 10214 10215 default: 10216 g_assert_not_reached(); 10217 } 10218 10219 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10220 } 10221 10222 /* SHL/SLI - Vector shift left */ 10223 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10224 int immh, int immb, int opcode, int rn, int rd) 10225 { 10226 int size = 32 - clz32(immh) - 1; 10227 int immhb = immh << 3 | immb; 10228 int shift = immhb - (8 << size); 10229 10230 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10231 assert(size >= 0 && size <= 3); 10232 10233 if (extract32(immh, 3, 1) && !is_q) { 10234 unallocated_encoding(s); 10235 return; 10236 } 10237 10238 if (!fp_access_check(s)) { 10239 return; 10240 } 10241 10242 if (insert) { 10243 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10244 } else { 10245 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10246 } 10247 } 10248 10249 /* USHLL/SHLL - Vector shift left with widening */ 10250 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10251 int immh, int immb, int opcode, int rn, int rd) 10252 { 10253 int size = 32 - clz32(immh) - 1; 10254 int immhb = immh << 3 | immb; 10255 int shift = immhb - (8 << size); 10256 int dsize = 64; 10257 int esize = 8 << size; 10258 int elements = dsize/esize; 10259 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10260 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10261 int i; 10262 10263 if (size >= 3) { 10264 unallocated_encoding(s); 10265 return; 10266 } 10267 10268 if (!fp_access_check(s)) { 10269 return; 10270 } 10271 10272 /* For the LL variants the store is larger than the load, 10273 * so if rd == rn we would overwrite parts of our input. 10274 * So load everything right now and use shifts in the main loop. 10275 */ 10276 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10277 10278 for (i = 0; i < elements; i++) { 10279 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10280 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10281 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10282 write_vec_element(s, tcg_rd, rd, i, size + 1); 10283 } 10284 } 10285 10286 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10287 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10288 int immh, int immb, int opcode, int rn, int rd) 10289 { 10290 int immhb = immh << 3 | immb; 10291 int size = 32 - clz32(immh) - 1; 10292 int dsize = 64; 10293 int esize = 8 << size; 10294 int elements = dsize/esize; 10295 int shift = (2 * esize) - immhb; 10296 bool round = extract32(opcode, 0, 1); 10297 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10298 TCGv_i64 tcg_round; 10299 int i; 10300 10301 if (extract32(immh, 3, 1)) { 10302 unallocated_encoding(s); 10303 return; 10304 } 10305 10306 if (!fp_access_check(s)) { 10307 return; 10308 } 10309 10310 tcg_rn = tcg_temp_new_i64(); 10311 tcg_rd = tcg_temp_new_i64(); 10312 tcg_final = tcg_temp_new_i64(); 10313 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10314 10315 if (round) { 10316 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10317 } else { 10318 tcg_round = NULL; 10319 } 10320 10321 for (i = 0; i < elements; i++) { 10322 read_vec_element(s, tcg_rn, rn, i, size+1); 10323 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10324 false, true, size+1, shift); 10325 10326 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10327 } 10328 10329 if (!is_q) { 10330 write_vec_element(s, tcg_final, rd, 0, MO_64); 10331 } else { 10332 write_vec_element(s, tcg_final, rd, 1, MO_64); 10333 } 10334 10335 clear_vec_high(s, is_q, rd); 10336 } 10337 10338 10339 /* AdvSIMD shift by immediate 10340 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10341 * +---+---+---+-------------+------+------+--------+---+------+------+ 10342 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10343 * +---+---+---+-------------+------+------+--------+---+------+------+ 10344 */ 10345 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10346 { 10347 int rd = extract32(insn, 0, 5); 10348 int rn = extract32(insn, 5, 5); 10349 int opcode = extract32(insn, 11, 5); 10350 int immb = extract32(insn, 16, 3); 10351 int immh = extract32(insn, 19, 4); 10352 bool is_u = extract32(insn, 29, 1); 10353 bool is_q = extract32(insn, 30, 1); 10354 10355 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10356 assert(immh != 0); 10357 10358 switch (opcode) { 10359 case 0x08: /* SRI */ 10360 if (!is_u) { 10361 unallocated_encoding(s); 10362 return; 10363 } 10364 /* fall through */ 10365 case 0x00: /* SSHR / USHR */ 10366 case 0x02: /* SSRA / USRA (accumulate) */ 10367 case 0x04: /* SRSHR / URSHR (rounding) */ 10368 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10369 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10370 break; 10371 case 0x0a: /* SHL / SLI */ 10372 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10373 break; 10374 case 0x10: /* SHRN */ 10375 case 0x11: /* RSHRN / SQRSHRUN */ 10376 if (is_u) { 10377 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10378 opcode, rn, rd); 10379 } else { 10380 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10381 } 10382 break; 10383 case 0x12: /* SQSHRN / UQSHRN */ 10384 case 0x13: /* SQRSHRN / UQRSHRN */ 10385 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10386 opcode, rn, rd); 10387 break; 10388 case 0x14: /* SSHLL / USHLL */ 10389 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10390 break; 10391 case 0x1c: /* SCVTF / UCVTF */ 10392 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10393 opcode, rn, rd); 10394 break; 10395 case 0xc: /* SQSHLU */ 10396 if (!is_u) { 10397 unallocated_encoding(s); 10398 return; 10399 } 10400 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10401 break; 10402 case 0xe: /* SQSHL, UQSHL */ 10403 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10404 break; 10405 case 0x1f: /* FCVTZS/ FCVTZU */ 10406 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10407 return; 10408 default: 10409 unallocated_encoding(s); 10410 return; 10411 } 10412 } 10413 10414 /* Generate code to do a "long" addition or subtraction, ie one done in 10415 * TCGv_i64 on vector lanes twice the width specified by size. 10416 */ 10417 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10418 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10419 { 10420 static NeonGenTwo64OpFn * const fns[3][2] = { 10421 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10422 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10423 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10424 }; 10425 NeonGenTwo64OpFn *genfn; 10426 assert(size < 3); 10427 10428 genfn = fns[size][is_sub]; 10429 genfn(tcg_res, tcg_op1, tcg_op2); 10430 } 10431 10432 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10433 int opcode, int rd, int rn, int rm) 10434 { 10435 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10436 TCGv_i64 tcg_res[2]; 10437 int pass, accop; 10438 10439 tcg_res[0] = tcg_temp_new_i64(); 10440 tcg_res[1] = tcg_temp_new_i64(); 10441 10442 /* Does this op do an adding accumulate, a subtracting accumulate, 10443 * or no accumulate at all? 10444 */ 10445 switch (opcode) { 10446 case 5: 10447 case 8: 10448 case 9: 10449 accop = 1; 10450 break; 10451 case 10: 10452 case 11: 10453 accop = -1; 10454 break; 10455 default: 10456 accop = 0; 10457 break; 10458 } 10459 10460 if (accop != 0) { 10461 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10462 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10463 } 10464 10465 /* size == 2 means two 32x32->64 operations; this is worth special 10466 * casing because we can generally handle it inline. 10467 */ 10468 if (size == 2) { 10469 for (pass = 0; pass < 2; pass++) { 10470 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10471 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10472 TCGv_i64 tcg_passres; 10473 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10474 10475 int elt = pass + is_q * 2; 10476 10477 read_vec_element(s, tcg_op1, rn, elt, memop); 10478 read_vec_element(s, tcg_op2, rm, elt, memop); 10479 10480 if (accop == 0) { 10481 tcg_passres = tcg_res[pass]; 10482 } else { 10483 tcg_passres = tcg_temp_new_i64(); 10484 } 10485 10486 switch (opcode) { 10487 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10488 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10489 break; 10490 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10491 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10492 break; 10493 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10494 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10495 { 10496 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10497 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10498 10499 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10500 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10501 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10502 tcg_passres, 10503 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10504 break; 10505 } 10506 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10507 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10508 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10509 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10510 break; 10511 case 9: /* SQDMLAL, SQDMLAL2 */ 10512 case 11: /* SQDMLSL, SQDMLSL2 */ 10513 case 13: /* SQDMULL, SQDMULL2 */ 10514 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10515 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10516 tcg_passres, tcg_passres); 10517 break; 10518 default: 10519 g_assert_not_reached(); 10520 } 10521 10522 if (opcode == 9 || opcode == 11) { 10523 /* saturating accumulate ops */ 10524 if (accop < 0) { 10525 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10526 } 10527 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10528 tcg_res[pass], tcg_passres); 10529 } else if (accop > 0) { 10530 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10531 } else if (accop < 0) { 10532 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10533 } 10534 } 10535 } else { 10536 /* size 0 or 1, generally helper functions */ 10537 for (pass = 0; pass < 2; pass++) { 10538 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10539 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10540 TCGv_i64 tcg_passres; 10541 int elt = pass + is_q * 2; 10542 10543 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10544 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10545 10546 if (accop == 0) { 10547 tcg_passres = tcg_res[pass]; 10548 } else { 10549 tcg_passres = tcg_temp_new_i64(); 10550 } 10551 10552 switch (opcode) { 10553 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10554 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10555 { 10556 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10557 static NeonGenWidenFn * const widenfns[2][2] = { 10558 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10559 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10560 }; 10561 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10562 10563 widenfn(tcg_op2_64, tcg_op2); 10564 widenfn(tcg_passres, tcg_op1); 10565 gen_neon_addl(size, (opcode == 2), tcg_passres, 10566 tcg_passres, tcg_op2_64); 10567 break; 10568 } 10569 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10570 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10571 if (size == 0) { 10572 if (is_u) { 10573 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10574 } else { 10575 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10576 } 10577 } else { 10578 if (is_u) { 10579 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10580 } else { 10581 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10582 } 10583 } 10584 break; 10585 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10586 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10587 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10588 if (size == 0) { 10589 if (is_u) { 10590 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10591 } else { 10592 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10593 } 10594 } else { 10595 if (is_u) { 10596 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10597 } else { 10598 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10599 } 10600 } 10601 break; 10602 case 9: /* SQDMLAL, SQDMLAL2 */ 10603 case 11: /* SQDMLSL, SQDMLSL2 */ 10604 case 13: /* SQDMULL, SQDMULL2 */ 10605 assert(size == 1); 10606 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10607 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10608 tcg_passres, tcg_passres); 10609 break; 10610 default: 10611 g_assert_not_reached(); 10612 } 10613 10614 if (accop != 0) { 10615 if (opcode == 9 || opcode == 11) { 10616 /* saturating accumulate ops */ 10617 if (accop < 0) { 10618 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10619 } 10620 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10621 tcg_res[pass], 10622 tcg_passres); 10623 } else { 10624 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10625 tcg_res[pass], tcg_passres); 10626 } 10627 } 10628 } 10629 } 10630 10631 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10632 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10633 } 10634 10635 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10636 int opcode, int rd, int rn, int rm) 10637 { 10638 TCGv_i64 tcg_res[2]; 10639 int part = is_q ? 2 : 0; 10640 int pass; 10641 10642 for (pass = 0; pass < 2; pass++) { 10643 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10644 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10645 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10646 static NeonGenWidenFn * const widenfns[3][2] = { 10647 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10648 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10649 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10650 }; 10651 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10652 10653 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10654 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10655 widenfn(tcg_op2_wide, tcg_op2); 10656 tcg_res[pass] = tcg_temp_new_i64(); 10657 gen_neon_addl(size, (opcode == 3), 10658 tcg_res[pass], tcg_op1, tcg_op2_wide); 10659 } 10660 10661 for (pass = 0; pass < 2; pass++) { 10662 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10663 } 10664 } 10665 10666 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10667 { 10668 tcg_gen_addi_i64(in, in, 1U << 31); 10669 tcg_gen_extrh_i64_i32(res, in); 10670 } 10671 10672 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10673 int opcode, int rd, int rn, int rm) 10674 { 10675 TCGv_i32 tcg_res[2]; 10676 int part = is_q ? 2 : 0; 10677 int pass; 10678 10679 for (pass = 0; pass < 2; pass++) { 10680 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10681 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10682 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10683 static NeonGenNarrowFn * const narrowfns[3][2] = { 10684 { gen_helper_neon_narrow_high_u8, 10685 gen_helper_neon_narrow_round_high_u8 }, 10686 { gen_helper_neon_narrow_high_u16, 10687 gen_helper_neon_narrow_round_high_u16 }, 10688 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10689 }; 10690 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10691 10692 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10693 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10694 10695 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10696 10697 tcg_res[pass] = tcg_temp_new_i32(); 10698 gennarrow(tcg_res[pass], tcg_wideres); 10699 } 10700 10701 for (pass = 0; pass < 2; pass++) { 10702 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10703 } 10704 clear_vec_high(s, is_q, rd); 10705 } 10706 10707 /* AdvSIMD three different 10708 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10709 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10710 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10711 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10712 */ 10713 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10714 { 10715 /* Instructions in this group fall into three basic classes 10716 * (in each case with the operation working on each element in 10717 * the input vectors): 10718 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10719 * 128 bit input) 10720 * (2) wide 64 x 128 -> 128 10721 * (3) narrowing 128 x 128 -> 64 10722 * Here we do initial decode, catch unallocated cases and 10723 * dispatch to separate functions for each class. 10724 */ 10725 int is_q = extract32(insn, 30, 1); 10726 int is_u = extract32(insn, 29, 1); 10727 int size = extract32(insn, 22, 2); 10728 int opcode = extract32(insn, 12, 4); 10729 int rm = extract32(insn, 16, 5); 10730 int rn = extract32(insn, 5, 5); 10731 int rd = extract32(insn, 0, 5); 10732 10733 switch (opcode) { 10734 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10735 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10736 /* 64 x 128 -> 128 */ 10737 if (size == 3) { 10738 unallocated_encoding(s); 10739 return; 10740 } 10741 if (!fp_access_check(s)) { 10742 return; 10743 } 10744 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10745 break; 10746 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10747 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10748 /* 128 x 128 -> 64 */ 10749 if (size == 3) { 10750 unallocated_encoding(s); 10751 return; 10752 } 10753 if (!fp_access_check(s)) { 10754 return; 10755 } 10756 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10757 break; 10758 case 14: /* PMULL, PMULL2 */ 10759 if (is_u) { 10760 unallocated_encoding(s); 10761 return; 10762 } 10763 switch (size) { 10764 case 0: /* PMULL.P8 */ 10765 if (!fp_access_check(s)) { 10766 return; 10767 } 10768 /* The Q field specifies lo/hi half input for this insn. */ 10769 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10770 gen_helper_neon_pmull_h); 10771 break; 10772 10773 case 3: /* PMULL.P64 */ 10774 if (!dc_isar_feature(aa64_pmull, s)) { 10775 unallocated_encoding(s); 10776 return; 10777 } 10778 if (!fp_access_check(s)) { 10779 return; 10780 } 10781 /* The Q field specifies lo/hi half input for this insn. */ 10782 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10783 gen_helper_gvec_pmull_q); 10784 break; 10785 10786 default: 10787 unallocated_encoding(s); 10788 break; 10789 } 10790 return; 10791 case 9: /* SQDMLAL, SQDMLAL2 */ 10792 case 11: /* SQDMLSL, SQDMLSL2 */ 10793 case 13: /* SQDMULL, SQDMULL2 */ 10794 if (is_u || size == 0) { 10795 unallocated_encoding(s); 10796 return; 10797 } 10798 /* fall through */ 10799 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10800 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10801 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10802 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10803 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10804 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10805 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10806 /* 64 x 64 -> 128 */ 10807 if (size == 3) { 10808 unallocated_encoding(s); 10809 return; 10810 } 10811 if (!fp_access_check(s)) { 10812 return; 10813 } 10814 10815 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10816 break; 10817 default: 10818 /* opcode 15 not allocated */ 10819 unallocated_encoding(s); 10820 break; 10821 } 10822 } 10823 10824 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10825 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10826 { 10827 int rd = extract32(insn, 0, 5); 10828 int rn = extract32(insn, 5, 5); 10829 int rm = extract32(insn, 16, 5); 10830 int size = extract32(insn, 22, 2); 10831 bool is_u = extract32(insn, 29, 1); 10832 bool is_q = extract32(insn, 30, 1); 10833 10834 if (!fp_access_check(s)) { 10835 return; 10836 } 10837 10838 switch (size + 4 * is_u) { 10839 case 0: /* AND */ 10840 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10841 return; 10842 case 1: /* BIC */ 10843 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10844 return; 10845 case 2: /* ORR */ 10846 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10847 return; 10848 case 3: /* ORN */ 10849 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10850 return; 10851 case 4: /* EOR */ 10852 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10853 return; 10854 10855 case 5: /* BSL bitwise select */ 10856 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10857 return; 10858 case 6: /* BIT, bitwise insert if true */ 10859 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10860 return; 10861 case 7: /* BIF, bitwise insert if false */ 10862 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10863 return; 10864 10865 default: 10866 g_assert_not_reached(); 10867 } 10868 } 10869 10870 /* Pairwise op subgroup of C3.6.16. 10871 * 10872 * This is called directly or via the handle_3same_float for float pairwise 10873 * operations where the opcode and size are calculated differently. 10874 */ 10875 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10876 int size, int rn, int rm, int rd) 10877 { 10878 TCGv_ptr fpst; 10879 int pass; 10880 10881 /* Floating point operations need fpst */ 10882 if (opcode >= 0x58) { 10883 fpst = fpstatus_ptr(FPST_FPCR); 10884 } else { 10885 fpst = NULL; 10886 } 10887 10888 if (!fp_access_check(s)) { 10889 return; 10890 } 10891 10892 /* These operations work on the concatenated rm:rn, with each pair of 10893 * adjacent elements being operated on to produce an element in the result. 10894 */ 10895 if (size == 3) { 10896 TCGv_i64 tcg_res[2]; 10897 10898 for (pass = 0; pass < 2; pass++) { 10899 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10900 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10901 int passreg = (pass == 0) ? rn : rm; 10902 10903 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10904 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10905 tcg_res[pass] = tcg_temp_new_i64(); 10906 10907 switch (opcode) { 10908 case 0x17: /* ADDP */ 10909 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10910 break; 10911 case 0x58: /* FMAXNMP */ 10912 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10913 break; 10914 case 0x5a: /* FADDP */ 10915 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10916 break; 10917 case 0x5e: /* FMAXP */ 10918 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10919 break; 10920 case 0x78: /* FMINNMP */ 10921 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10922 break; 10923 case 0x7e: /* FMINP */ 10924 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10925 break; 10926 default: 10927 g_assert_not_reached(); 10928 } 10929 } 10930 10931 for (pass = 0; pass < 2; pass++) { 10932 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10933 } 10934 } else { 10935 int maxpass = is_q ? 4 : 2; 10936 TCGv_i32 tcg_res[4]; 10937 10938 for (pass = 0; pass < maxpass; pass++) { 10939 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10940 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10941 NeonGenTwoOpFn *genfn = NULL; 10942 int passreg = pass < (maxpass / 2) ? rn : rm; 10943 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10944 10945 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10946 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10947 tcg_res[pass] = tcg_temp_new_i32(); 10948 10949 switch (opcode) { 10950 case 0x17: /* ADDP */ 10951 { 10952 static NeonGenTwoOpFn * const fns[3] = { 10953 gen_helper_neon_padd_u8, 10954 gen_helper_neon_padd_u16, 10955 tcg_gen_add_i32, 10956 }; 10957 genfn = fns[size]; 10958 break; 10959 } 10960 case 0x14: /* SMAXP, UMAXP */ 10961 { 10962 static NeonGenTwoOpFn * const fns[3][2] = { 10963 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10964 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10965 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10966 }; 10967 genfn = fns[size][u]; 10968 break; 10969 } 10970 case 0x15: /* SMINP, UMINP */ 10971 { 10972 static NeonGenTwoOpFn * const fns[3][2] = { 10973 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10974 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10975 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10976 }; 10977 genfn = fns[size][u]; 10978 break; 10979 } 10980 /* The FP operations are all on single floats (32 bit) */ 10981 case 0x58: /* FMAXNMP */ 10982 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10983 break; 10984 case 0x5a: /* FADDP */ 10985 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10986 break; 10987 case 0x5e: /* FMAXP */ 10988 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10989 break; 10990 case 0x78: /* FMINNMP */ 10991 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10992 break; 10993 case 0x7e: /* FMINP */ 10994 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10995 break; 10996 default: 10997 g_assert_not_reached(); 10998 } 10999 11000 /* FP ops called directly, otherwise call now */ 11001 if (genfn) { 11002 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11003 } 11004 } 11005 11006 for (pass = 0; pass < maxpass; pass++) { 11007 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11008 } 11009 clear_vec_high(s, is_q, rd); 11010 } 11011 } 11012 11013 /* Floating point op subgroup of C3.6.16. */ 11014 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11015 { 11016 /* For floating point ops, the U, size[1] and opcode bits 11017 * together indicate the operation. size[0] indicates single 11018 * or double. 11019 */ 11020 int fpopcode = extract32(insn, 11, 5) 11021 | (extract32(insn, 23, 1) << 5) 11022 | (extract32(insn, 29, 1) << 6); 11023 int is_q = extract32(insn, 30, 1); 11024 int size = extract32(insn, 22, 1); 11025 int rm = extract32(insn, 16, 5); 11026 int rn = extract32(insn, 5, 5); 11027 int rd = extract32(insn, 0, 5); 11028 11029 int datasize = is_q ? 128 : 64; 11030 int esize = 32 << size; 11031 int elements = datasize / esize; 11032 11033 if (size == 1 && !is_q) { 11034 unallocated_encoding(s); 11035 return; 11036 } 11037 11038 switch (fpopcode) { 11039 case 0x58: /* FMAXNMP */ 11040 case 0x5a: /* FADDP */ 11041 case 0x5e: /* FMAXP */ 11042 case 0x78: /* FMINNMP */ 11043 case 0x7e: /* FMINP */ 11044 if (size && !is_q) { 11045 unallocated_encoding(s); 11046 return; 11047 } 11048 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11049 rn, rm, rd); 11050 return; 11051 case 0x1b: /* FMULX */ 11052 case 0x1f: /* FRECPS */ 11053 case 0x3f: /* FRSQRTS */ 11054 case 0x5d: /* FACGE */ 11055 case 0x7d: /* FACGT */ 11056 case 0x19: /* FMLA */ 11057 case 0x39: /* FMLS */ 11058 case 0x18: /* FMAXNM */ 11059 case 0x1a: /* FADD */ 11060 case 0x1c: /* FCMEQ */ 11061 case 0x1e: /* FMAX */ 11062 case 0x38: /* FMINNM */ 11063 case 0x3a: /* FSUB */ 11064 case 0x3e: /* FMIN */ 11065 case 0x5b: /* FMUL */ 11066 case 0x5c: /* FCMGE */ 11067 case 0x5f: /* FDIV */ 11068 case 0x7a: /* FABD */ 11069 case 0x7c: /* FCMGT */ 11070 if (!fp_access_check(s)) { 11071 return; 11072 } 11073 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11074 return; 11075 11076 case 0x1d: /* FMLAL */ 11077 case 0x3d: /* FMLSL */ 11078 case 0x59: /* FMLAL2 */ 11079 case 0x79: /* FMLSL2 */ 11080 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11081 unallocated_encoding(s); 11082 return; 11083 } 11084 if (fp_access_check(s)) { 11085 int is_s = extract32(insn, 23, 1); 11086 int is_2 = extract32(insn, 29, 1); 11087 int data = (is_2 << 1) | is_s; 11088 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11089 vec_full_reg_offset(s, rn), 11090 vec_full_reg_offset(s, rm), tcg_env, 11091 is_q ? 16 : 8, vec_full_reg_size(s), 11092 data, gen_helper_gvec_fmlal_a64); 11093 } 11094 return; 11095 11096 default: 11097 unallocated_encoding(s); 11098 return; 11099 } 11100 } 11101 11102 /* Integer op subgroup of C3.6.16. */ 11103 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11104 { 11105 int is_q = extract32(insn, 30, 1); 11106 int u = extract32(insn, 29, 1); 11107 int size = extract32(insn, 22, 2); 11108 int opcode = extract32(insn, 11, 5); 11109 int rm = extract32(insn, 16, 5); 11110 int rn = extract32(insn, 5, 5); 11111 int rd = extract32(insn, 0, 5); 11112 int pass; 11113 TCGCond cond; 11114 11115 switch (opcode) { 11116 case 0x13: /* MUL, PMUL */ 11117 if (u && size != 0) { 11118 unallocated_encoding(s); 11119 return; 11120 } 11121 /* fall through */ 11122 case 0x0: /* SHADD, UHADD */ 11123 case 0x2: /* SRHADD, URHADD */ 11124 case 0x4: /* SHSUB, UHSUB */ 11125 case 0xc: /* SMAX, UMAX */ 11126 case 0xd: /* SMIN, UMIN */ 11127 case 0xe: /* SABD, UABD */ 11128 case 0xf: /* SABA, UABA */ 11129 case 0x12: /* MLA, MLS */ 11130 if (size == 3) { 11131 unallocated_encoding(s); 11132 return; 11133 } 11134 break; 11135 case 0x16: /* SQDMULH, SQRDMULH */ 11136 if (size == 0 || size == 3) { 11137 unallocated_encoding(s); 11138 return; 11139 } 11140 break; 11141 default: 11142 if (size == 3 && !is_q) { 11143 unallocated_encoding(s); 11144 return; 11145 } 11146 break; 11147 } 11148 11149 if (!fp_access_check(s)) { 11150 return; 11151 } 11152 11153 switch (opcode) { 11154 case 0x01: /* SQADD, UQADD */ 11155 if (u) { 11156 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11157 } else { 11158 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11159 } 11160 return; 11161 case 0x05: /* SQSUB, UQSUB */ 11162 if (u) { 11163 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11164 } else { 11165 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11166 } 11167 return; 11168 case 0x08: /* SSHL, USHL */ 11169 if (u) { 11170 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11171 } else { 11172 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11173 } 11174 return; 11175 case 0x0c: /* SMAX, UMAX */ 11176 if (u) { 11177 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11178 } else { 11179 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11180 } 11181 return; 11182 case 0x0d: /* SMIN, UMIN */ 11183 if (u) { 11184 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11185 } else { 11186 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11187 } 11188 return; 11189 case 0xe: /* SABD, UABD */ 11190 if (u) { 11191 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11192 } else { 11193 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11194 } 11195 return; 11196 case 0xf: /* SABA, UABA */ 11197 if (u) { 11198 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11199 } else { 11200 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11201 } 11202 return; 11203 case 0x10: /* ADD, SUB */ 11204 if (u) { 11205 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11206 } else { 11207 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11208 } 11209 return; 11210 case 0x13: /* MUL, PMUL */ 11211 if (!u) { /* MUL */ 11212 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11213 } else { /* PMUL */ 11214 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11215 } 11216 return; 11217 case 0x12: /* MLA, MLS */ 11218 if (u) { 11219 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11220 } else { 11221 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11222 } 11223 return; 11224 case 0x16: /* SQDMULH, SQRDMULH */ 11225 { 11226 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11227 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11228 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11229 }; 11230 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11231 } 11232 return; 11233 case 0x11: 11234 if (!u) { /* CMTST */ 11235 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11236 return; 11237 } 11238 /* else CMEQ */ 11239 cond = TCG_COND_EQ; 11240 goto do_gvec_cmp; 11241 case 0x06: /* CMGT, CMHI */ 11242 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11243 goto do_gvec_cmp; 11244 case 0x07: /* CMGE, CMHS */ 11245 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11246 do_gvec_cmp: 11247 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11248 vec_full_reg_offset(s, rn), 11249 vec_full_reg_offset(s, rm), 11250 is_q ? 16 : 8, vec_full_reg_size(s)); 11251 return; 11252 } 11253 11254 if (size == 3) { 11255 assert(is_q); 11256 for (pass = 0; pass < 2; pass++) { 11257 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11258 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11259 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11260 11261 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11262 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11263 11264 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11265 11266 write_vec_element(s, tcg_res, rd, pass, MO_64); 11267 } 11268 } else { 11269 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11270 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11271 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11272 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11273 NeonGenTwoOpFn *genfn = NULL; 11274 NeonGenTwoOpEnvFn *genenvfn = NULL; 11275 11276 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11277 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11278 11279 switch (opcode) { 11280 case 0x0: /* SHADD, UHADD */ 11281 { 11282 static NeonGenTwoOpFn * const fns[3][2] = { 11283 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11284 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11285 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11286 }; 11287 genfn = fns[size][u]; 11288 break; 11289 } 11290 case 0x2: /* SRHADD, URHADD */ 11291 { 11292 static NeonGenTwoOpFn * const fns[3][2] = { 11293 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11294 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11295 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11296 }; 11297 genfn = fns[size][u]; 11298 break; 11299 } 11300 case 0x4: /* SHSUB, UHSUB */ 11301 { 11302 static NeonGenTwoOpFn * const fns[3][2] = { 11303 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11304 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11305 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11306 }; 11307 genfn = fns[size][u]; 11308 break; 11309 } 11310 case 0x9: /* SQSHL, UQSHL */ 11311 { 11312 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11313 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11314 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11315 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11316 }; 11317 genenvfn = fns[size][u]; 11318 break; 11319 } 11320 case 0xa: /* SRSHL, URSHL */ 11321 { 11322 static NeonGenTwoOpFn * const fns[3][2] = { 11323 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11324 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11325 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11326 }; 11327 genfn = fns[size][u]; 11328 break; 11329 } 11330 case 0xb: /* SQRSHL, UQRSHL */ 11331 { 11332 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11333 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11334 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11335 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11336 }; 11337 genenvfn = fns[size][u]; 11338 break; 11339 } 11340 default: 11341 g_assert_not_reached(); 11342 } 11343 11344 if (genenvfn) { 11345 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11346 } else { 11347 genfn(tcg_res, tcg_op1, tcg_op2); 11348 } 11349 11350 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11351 } 11352 } 11353 clear_vec_high(s, is_q, rd); 11354 } 11355 11356 /* AdvSIMD three same 11357 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11358 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11359 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11360 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11361 */ 11362 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11363 { 11364 int opcode = extract32(insn, 11, 5); 11365 11366 switch (opcode) { 11367 case 0x3: /* logic ops */ 11368 disas_simd_3same_logic(s, insn); 11369 break; 11370 case 0x17: /* ADDP */ 11371 case 0x14: /* SMAXP, UMAXP */ 11372 case 0x15: /* SMINP, UMINP */ 11373 { 11374 /* Pairwise operations */ 11375 int is_q = extract32(insn, 30, 1); 11376 int u = extract32(insn, 29, 1); 11377 int size = extract32(insn, 22, 2); 11378 int rm = extract32(insn, 16, 5); 11379 int rn = extract32(insn, 5, 5); 11380 int rd = extract32(insn, 0, 5); 11381 if (opcode == 0x17) { 11382 if (u || (size == 3 && !is_q)) { 11383 unallocated_encoding(s); 11384 return; 11385 } 11386 } else { 11387 if (size == 3) { 11388 unallocated_encoding(s); 11389 return; 11390 } 11391 } 11392 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11393 break; 11394 } 11395 case 0x18 ... 0x31: 11396 /* floating point ops, sz[1] and U are part of opcode */ 11397 disas_simd_3same_float(s, insn); 11398 break; 11399 default: 11400 disas_simd_3same_int(s, insn); 11401 break; 11402 } 11403 } 11404 11405 /* 11406 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11407 * 11408 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11409 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11410 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11411 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11412 * 11413 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11414 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11415 * 11416 */ 11417 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11418 { 11419 int opcode = extract32(insn, 11, 3); 11420 int u = extract32(insn, 29, 1); 11421 int a = extract32(insn, 23, 1); 11422 int is_q = extract32(insn, 30, 1); 11423 int rm = extract32(insn, 16, 5); 11424 int rn = extract32(insn, 5, 5); 11425 int rd = extract32(insn, 0, 5); 11426 /* 11427 * For these floating point ops, the U, a and opcode bits 11428 * together indicate the operation. 11429 */ 11430 int fpopcode = opcode | (a << 3) | (u << 4); 11431 int datasize = is_q ? 128 : 64; 11432 int elements = datasize / 16; 11433 bool pairwise; 11434 TCGv_ptr fpst; 11435 int pass; 11436 11437 switch (fpopcode) { 11438 case 0x0: /* FMAXNM */ 11439 case 0x1: /* FMLA */ 11440 case 0x2: /* FADD */ 11441 case 0x3: /* FMULX */ 11442 case 0x4: /* FCMEQ */ 11443 case 0x6: /* FMAX */ 11444 case 0x7: /* FRECPS */ 11445 case 0x8: /* FMINNM */ 11446 case 0x9: /* FMLS */ 11447 case 0xa: /* FSUB */ 11448 case 0xe: /* FMIN */ 11449 case 0xf: /* FRSQRTS */ 11450 case 0x13: /* FMUL */ 11451 case 0x14: /* FCMGE */ 11452 case 0x15: /* FACGE */ 11453 case 0x17: /* FDIV */ 11454 case 0x1a: /* FABD */ 11455 case 0x1c: /* FCMGT */ 11456 case 0x1d: /* FACGT */ 11457 pairwise = false; 11458 break; 11459 case 0x10: /* FMAXNMP */ 11460 case 0x12: /* FADDP */ 11461 case 0x16: /* FMAXP */ 11462 case 0x18: /* FMINNMP */ 11463 case 0x1e: /* FMINP */ 11464 pairwise = true; 11465 break; 11466 default: 11467 unallocated_encoding(s); 11468 return; 11469 } 11470 11471 if (!dc_isar_feature(aa64_fp16, s)) { 11472 unallocated_encoding(s); 11473 return; 11474 } 11475 11476 if (!fp_access_check(s)) { 11477 return; 11478 } 11479 11480 fpst = fpstatus_ptr(FPST_FPCR_F16); 11481 11482 if (pairwise) { 11483 int maxpass = is_q ? 8 : 4; 11484 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11485 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11486 TCGv_i32 tcg_res[8]; 11487 11488 for (pass = 0; pass < maxpass; pass++) { 11489 int passreg = pass < (maxpass / 2) ? rn : rm; 11490 int passelt = (pass << 1) & (maxpass - 1); 11491 11492 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11493 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11494 tcg_res[pass] = tcg_temp_new_i32(); 11495 11496 switch (fpopcode) { 11497 case 0x10: /* FMAXNMP */ 11498 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11499 fpst); 11500 break; 11501 case 0x12: /* FADDP */ 11502 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11503 break; 11504 case 0x16: /* FMAXP */ 11505 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11506 break; 11507 case 0x18: /* FMINNMP */ 11508 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11509 fpst); 11510 break; 11511 case 0x1e: /* FMINP */ 11512 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11513 break; 11514 default: 11515 g_assert_not_reached(); 11516 } 11517 } 11518 11519 for (pass = 0; pass < maxpass; pass++) { 11520 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11521 } 11522 } else { 11523 for (pass = 0; pass < elements; pass++) { 11524 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11525 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11526 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11527 11528 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11529 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11530 11531 switch (fpopcode) { 11532 case 0x0: /* FMAXNM */ 11533 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11534 break; 11535 case 0x1: /* FMLA */ 11536 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11537 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11538 fpst); 11539 break; 11540 case 0x2: /* FADD */ 11541 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11542 break; 11543 case 0x3: /* FMULX */ 11544 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11545 break; 11546 case 0x4: /* FCMEQ */ 11547 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11548 break; 11549 case 0x6: /* FMAX */ 11550 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11551 break; 11552 case 0x7: /* FRECPS */ 11553 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11554 break; 11555 case 0x8: /* FMINNM */ 11556 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11557 break; 11558 case 0x9: /* FMLS */ 11559 /* As usual for ARM, separate negation for fused multiply-add */ 11560 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11561 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11562 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11563 fpst); 11564 break; 11565 case 0xa: /* FSUB */ 11566 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11567 break; 11568 case 0xe: /* FMIN */ 11569 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11570 break; 11571 case 0xf: /* FRSQRTS */ 11572 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11573 break; 11574 case 0x13: /* FMUL */ 11575 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11576 break; 11577 case 0x14: /* FCMGE */ 11578 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11579 break; 11580 case 0x15: /* FACGE */ 11581 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11582 break; 11583 case 0x17: /* FDIV */ 11584 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11585 break; 11586 case 0x1a: /* FABD */ 11587 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11588 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11589 break; 11590 case 0x1c: /* FCMGT */ 11591 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11592 break; 11593 case 0x1d: /* FACGT */ 11594 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11595 break; 11596 default: 11597 g_assert_not_reached(); 11598 } 11599 11600 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11601 } 11602 } 11603 11604 clear_vec_high(s, is_q, rd); 11605 } 11606 11607 /* AdvSIMD three same extra 11608 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11609 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11610 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11611 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11612 */ 11613 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11614 { 11615 int rd = extract32(insn, 0, 5); 11616 int rn = extract32(insn, 5, 5); 11617 int opcode = extract32(insn, 11, 4); 11618 int rm = extract32(insn, 16, 5); 11619 int size = extract32(insn, 22, 2); 11620 bool u = extract32(insn, 29, 1); 11621 bool is_q = extract32(insn, 30, 1); 11622 bool feature; 11623 int rot; 11624 11625 switch (u * 16 + opcode) { 11626 case 0x10: /* SQRDMLAH (vector) */ 11627 case 0x11: /* SQRDMLSH (vector) */ 11628 if (size != 1 && size != 2) { 11629 unallocated_encoding(s); 11630 return; 11631 } 11632 feature = dc_isar_feature(aa64_rdm, s); 11633 break; 11634 case 0x02: /* SDOT (vector) */ 11635 case 0x12: /* UDOT (vector) */ 11636 if (size != MO_32) { 11637 unallocated_encoding(s); 11638 return; 11639 } 11640 feature = dc_isar_feature(aa64_dp, s); 11641 break; 11642 case 0x03: /* USDOT */ 11643 if (size != MO_32) { 11644 unallocated_encoding(s); 11645 return; 11646 } 11647 feature = dc_isar_feature(aa64_i8mm, s); 11648 break; 11649 case 0x04: /* SMMLA */ 11650 case 0x14: /* UMMLA */ 11651 case 0x05: /* USMMLA */ 11652 if (!is_q || size != MO_32) { 11653 unallocated_encoding(s); 11654 return; 11655 } 11656 feature = dc_isar_feature(aa64_i8mm, s); 11657 break; 11658 case 0x18: /* FCMLA, #0 */ 11659 case 0x19: /* FCMLA, #90 */ 11660 case 0x1a: /* FCMLA, #180 */ 11661 case 0x1b: /* FCMLA, #270 */ 11662 case 0x1c: /* FCADD, #90 */ 11663 case 0x1e: /* FCADD, #270 */ 11664 if (size == 0 11665 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11666 || (size == 3 && !is_q)) { 11667 unallocated_encoding(s); 11668 return; 11669 } 11670 feature = dc_isar_feature(aa64_fcma, s); 11671 break; 11672 case 0x1d: /* BFMMLA */ 11673 if (size != MO_16 || !is_q) { 11674 unallocated_encoding(s); 11675 return; 11676 } 11677 feature = dc_isar_feature(aa64_bf16, s); 11678 break; 11679 case 0x1f: 11680 switch (size) { 11681 case 1: /* BFDOT */ 11682 case 3: /* BFMLAL{B,T} */ 11683 feature = dc_isar_feature(aa64_bf16, s); 11684 break; 11685 default: 11686 unallocated_encoding(s); 11687 return; 11688 } 11689 break; 11690 default: 11691 unallocated_encoding(s); 11692 return; 11693 } 11694 if (!feature) { 11695 unallocated_encoding(s); 11696 return; 11697 } 11698 if (!fp_access_check(s)) { 11699 return; 11700 } 11701 11702 switch (opcode) { 11703 case 0x0: /* SQRDMLAH (vector) */ 11704 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11705 return; 11706 11707 case 0x1: /* SQRDMLSH (vector) */ 11708 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11709 return; 11710 11711 case 0x2: /* SDOT / UDOT */ 11712 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11713 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11714 return; 11715 11716 case 0x3: /* USDOT */ 11717 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11718 return; 11719 11720 case 0x04: /* SMMLA, UMMLA */ 11721 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11722 u ? gen_helper_gvec_ummla_b 11723 : gen_helper_gvec_smmla_b); 11724 return; 11725 case 0x05: /* USMMLA */ 11726 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11727 return; 11728 11729 case 0x8: /* FCMLA, #0 */ 11730 case 0x9: /* FCMLA, #90 */ 11731 case 0xa: /* FCMLA, #180 */ 11732 case 0xb: /* FCMLA, #270 */ 11733 rot = extract32(opcode, 0, 2); 11734 switch (size) { 11735 case 1: 11736 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11737 gen_helper_gvec_fcmlah); 11738 break; 11739 case 2: 11740 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11741 gen_helper_gvec_fcmlas); 11742 break; 11743 case 3: 11744 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11745 gen_helper_gvec_fcmlad); 11746 break; 11747 default: 11748 g_assert_not_reached(); 11749 } 11750 return; 11751 11752 case 0xc: /* FCADD, #90 */ 11753 case 0xe: /* FCADD, #270 */ 11754 rot = extract32(opcode, 1, 1); 11755 switch (size) { 11756 case 1: 11757 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11758 gen_helper_gvec_fcaddh); 11759 break; 11760 case 2: 11761 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11762 gen_helper_gvec_fcadds); 11763 break; 11764 case 3: 11765 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11766 gen_helper_gvec_fcaddd); 11767 break; 11768 default: 11769 g_assert_not_reached(); 11770 } 11771 return; 11772 11773 case 0xd: /* BFMMLA */ 11774 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11775 return; 11776 case 0xf: 11777 switch (size) { 11778 case 1: /* BFDOT */ 11779 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11780 break; 11781 case 3: /* BFMLAL{B,T} */ 11782 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11783 gen_helper_gvec_bfmlal); 11784 break; 11785 default: 11786 g_assert_not_reached(); 11787 } 11788 return; 11789 11790 default: 11791 g_assert_not_reached(); 11792 } 11793 } 11794 11795 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11796 int size, int rn, int rd) 11797 { 11798 /* Handle 2-reg-misc ops which are widening (so each size element 11799 * in the source becomes a 2*size element in the destination. 11800 * The only instruction like this is FCVTL. 11801 */ 11802 int pass; 11803 11804 if (size == 3) { 11805 /* 32 -> 64 bit fp conversion */ 11806 TCGv_i64 tcg_res[2]; 11807 int srcelt = is_q ? 2 : 0; 11808 11809 for (pass = 0; pass < 2; pass++) { 11810 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11811 tcg_res[pass] = tcg_temp_new_i64(); 11812 11813 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11814 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11815 } 11816 for (pass = 0; pass < 2; pass++) { 11817 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11818 } 11819 } else { 11820 /* 16 -> 32 bit fp conversion */ 11821 int srcelt = is_q ? 4 : 0; 11822 TCGv_i32 tcg_res[4]; 11823 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11824 TCGv_i32 ahp = get_ahp_flag(); 11825 11826 for (pass = 0; pass < 4; pass++) { 11827 tcg_res[pass] = tcg_temp_new_i32(); 11828 11829 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11830 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11831 fpst, ahp); 11832 } 11833 for (pass = 0; pass < 4; pass++) { 11834 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11835 } 11836 } 11837 } 11838 11839 static void handle_rev(DisasContext *s, int opcode, bool u, 11840 bool is_q, int size, int rn, int rd) 11841 { 11842 int op = (opcode << 1) | u; 11843 int opsz = op + size; 11844 int grp_size = 3 - opsz; 11845 int dsize = is_q ? 128 : 64; 11846 int i; 11847 11848 if (opsz >= 3) { 11849 unallocated_encoding(s); 11850 return; 11851 } 11852 11853 if (!fp_access_check(s)) { 11854 return; 11855 } 11856 11857 if (size == 0) { 11858 /* Special case bytes, use bswap op on each group of elements */ 11859 int groups = dsize / (8 << grp_size); 11860 11861 for (i = 0; i < groups; i++) { 11862 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11863 11864 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11865 switch (grp_size) { 11866 case MO_16: 11867 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11868 break; 11869 case MO_32: 11870 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11871 break; 11872 case MO_64: 11873 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11874 break; 11875 default: 11876 g_assert_not_reached(); 11877 } 11878 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11879 } 11880 clear_vec_high(s, is_q, rd); 11881 } else { 11882 int revmask = (1 << grp_size) - 1; 11883 int esize = 8 << size; 11884 int elements = dsize / esize; 11885 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11886 TCGv_i64 tcg_rd[2]; 11887 11888 for (i = 0; i < 2; i++) { 11889 tcg_rd[i] = tcg_temp_new_i64(); 11890 tcg_gen_movi_i64(tcg_rd[i], 0); 11891 } 11892 11893 for (i = 0; i < elements; i++) { 11894 int e_rev = (i & 0xf) ^ revmask; 11895 int w = (e_rev * esize) / 64; 11896 int o = (e_rev * esize) % 64; 11897 11898 read_vec_element(s, tcg_rn, rn, i, size); 11899 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11900 } 11901 11902 for (i = 0; i < 2; i++) { 11903 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11904 } 11905 clear_vec_high(s, true, rd); 11906 } 11907 } 11908 11909 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11910 bool is_q, int size, int rn, int rd) 11911 { 11912 /* Implement the pairwise operations from 2-misc: 11913 * SADDLP, UADDLP, SADALP, UADALP. 11914 * These all add pairs of elements in the input to produce a 11915 * double-width result element in the output (possibly accumulating). 11916 */ 11917 bool accum = (opcode == 0x6); 11918 int maxpass = is_q ? 2 : 1; 11919 int pass; 11920 TCGv_i64 tcg_res[2]; 11921 11922 if (size == 2) { 11923 /* 32 + 32 -> 64 op */ 11924 MemOp memop = size + (u ? 0 : MO_SIGN); 11925 11926 for (pass = 0; pass < maxpass; pass++) { 11927 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11928 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11929 11930 tcg_res[pass] = tcg_temp_new_i64(); 11931 11932 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11933 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11934 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11935 if (accum) { 11936 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11937 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11938 } 11939 } 11940 } else { 11941 for (pass = 0; pass < maxpass; pass++) { 11942 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11943 NeonGenOne64OpFn *genfn; 11944 static NeonGenOne64OpFn * const fns[2][2] = { 11945 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11946 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11947 }; 11948 11949 genfn = fns[size][u]; 11950 11951 tcg_res[pass] = tcg_temp_new_i64(); 11952 11953 read_vec_element(s, tcg_op, rn, pass, MO_64); 11954 genfn(tcg_res[pass], tcg_op); 11955 11956 if (accum) { 11957 read_vec_element(s, tcg_op, rd, pass, MO_64); 11958 if (size == 0) { 11959 gen_helper_neon_addl_u16(tcg_res[pass], 11960 tcg_res[pass], tcg_op); 11961 } else { 11962 gen_helper_neon_addl_u32(tcg_res[pass], 11963 tcg_res[pass], tcg_op); 11964 } 11965 } 11966 } 11967 } 11968 if (!is_q) { 11969 tcg_res[1] = tcg_constant_i64(0); 11970 } 11971 for (pass = 0; pass < 2; pass++) { 11972 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11973 } 11974 } 11975 11976 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11977 { 11978 /* Implement SHLL and SHLL2 */ 11979 int pass; 11980 int part = is_q ? 2 : 0; 11981 TCGv_i64 tcg_res[2]; 11982 11983 for (pass = 0; pass < 2; pass++) { 11984 static NeonGenWidenFn * const widenfns[3] = { 11985 gen_helper_neon_widen_u8, 11986 gen_helper_neon_widen_u16, 11987 tcg_gen_extu_i32_i64, 11988 }; 11989 NeonGenWidenFn *widenfn = widenfns[size]; 11990 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11991 11992 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11993 tcg_res[pass] = tcg_temp_new_i64(); 11994 widenfn(tcg_res[pass], tcg_op); 11995 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11996 } 11997 11998 for (pass = 0; pass < 2; pass++) { 11999 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12000 } 12001 } 12002 12003 /* AdvSIMD two reg misc 12004 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12005 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12006 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12007 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12008 */ 12009 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12010 { 12011 int size = extract32(insn, 22, 2); 12012 int opcode = extract32(insn, 12, 5); 12013 bool u = extract32(insn, 29, 1); 12014 bool is_q = extract32(insn, 30, 1); 12015 int rn = extract32(insn, 5, 5); 12016 int rd = extract32(insn, 0, 5); 12017 bool need_fpstatus = false; 12018 int rmode = -1; 12019 TCGv_i32 tcg_rmode; 12020 TCGv_ptr tcg_fpstatus; 12021 12022 switch (opcode) { 12023 case 0x0: /* REV64, REV32 */ 12024 case 0x1: /* REV16 */ 12025 handle_rev(s, opcode, u, is_q, size, rn, rd); 12026 return; 12027 case 0x5: /* CNT, NOT, RBIT */ 12028 if (u && size == 0) { 12029 /* NOT */ 12030 break; 12031 } else if (u && size == 1) { 12032 /* RBIT */ 12033 break; 12034 } else if (!u && size == 0) { 12035 /* CNT */ 12036 break; 12037 } 12038 unallocated_encoding(s); 12039 return; 12040 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12041 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12042 if (size == 3) { 12043 unallocated_encoding(s); 12044 return; 12045 } 12046 if (!fp_access_check(s)) { 12047 return; 12048 } 12049 12050 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12051 return; 12052 case 0x4: /* CLS, CLZ */ 12053 if (size == 3) { 12054 unallocated_encoding(s); 12055 return; 12056 } 12057 break; 12058 case 0x2: /* SADDLP, UADDLP */ 12059 case 0x6: /* SADALP, UADALP */ 12060 if (size == 3) { 12061 unallocated_encoding(s); 12062 return; 12063 } 12064 if (!fp_access_check(s)) { 12065 return; 12066 } 12067 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12068 return; 12069 case 0x13: /* SHLL, SHLL2 */ 12070 if (u == 0 || size == 3) { 12071 unallocated_encoding(s); 12072 return; 12073 } 12074 if (!fp_access_check(s)) { 12075 return; 12076 } 12077 handle_shll(s, is_q, size, rn, rd); 12078 return; 12079 case 0xa: /* CMLT */ 12080 if (u == 1) { 12081 unallocated_encoding(s); 12082 return; 12083 } 12084 /* fall through */ 12085 case 0x8: /* CMGT, CMGE */ 12086 case 0x9: /* CMEQ, CMLE */ 12087 case 0xb: /* ABS, NEG */ 12088 if (size == 3 && !is_q) { 12089 unallocated_encoding(s); 12090 return; 12091 } 12092 break; 12093 case 0x3: /* SUQADD, USQADD */ 12094 if (size == 3 && !is_q) { 12095 unallocated_encoding(s); 12096 return; 12097 } 12098 if (!fp_access_check(s)) { 12099 return; 12100 } 12101 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12102 return; 12103 case 0x7: /* SQABS, SQNEG */ 12104 if (size == 3 && !is_q) { 12105 unallocated_encoding(s); 12106 return; 12107 } 12108 break; 12109 case 0xc ... 0xf: 12110 case 0x16 ... 0x1f: 12111 { 12112 /* Floating point: U, size[1] and opcode indicate operation; 12113 * size[0] indicates single or double precision. 12114 */ 12115 int is_double = extract32(size, 0, 1); 12116 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12117 size = is_double ? 3 : 2; 12118 switch (opcode) { 12119 case 0x2f: /* FABS */ 12120 case 0x6f: /* FNEG */ 12121 if (size == 3 && !is_q) { 12122 unallocated_encoding(s); 12123 return; 12124 } 12125 break; 12126 case 0x1d: /* SCVTF */ 12127 case 0x5d: /* UCVTF */ 12128 { 12129 bool is_signed = (opcode == 0x1d) ? true : false; 12130 int elements = is_double ? 2 : is_q ? 4 : 2; 12131 if (is_double && !is_q) { 12132 unallocated_encoding(s); 12133 return; 12134 } 12135 if (!fp_access_check(s)) { 12136 return; 12137 } 12138 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12139 return; 12140 } 12141 case 0x2c: /* FCMGT (zero) */ 12142 case 0x2d: /* FCMEQ (zero) */ 12143 case 0x2e: /* FCMLT (zero) */ 12144 case 0x6c: /* FCMGE (zero) */ 12145 case 0x6d: /* FCMLE (zero) */ 12146 if (size == 3 && !is_q) { 12147 unallocated_encoding(s); 12148 return; 12149 } 12150 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12151 return; 12152 case 0x7f: /* FSQRT */ 12153 if (size == 3 && !is_q) { 12154 unallocated_encoding(s); 12155 return; 12156 } 12157 break; 12158 case 0x1a: /* FCVTNS */ 12159 case 0x1b: /* FCVTMS */ 12160 case 0x3a: /* FCVTPS */ 12161 case 0x3b: /* FCVTZS */ 12162 case 0x5a: /* FCVTNU */ 12163 case 0x5b: /* FCVTMU */ 12164 case 0x7a: /* FCVTPU */ 12165 case 0x7b: /* FCVTZU */ 12166 need_fpstatus = true; 12167 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12168 if (size == 3 && !is_q) { 12169 unallocated_encoding(s); 12170 return; 12171 } 12172 break; 12173 case 0x5c: /* FCVTAU */ 12174 case 0x1c: /* FCVTAS */ 12175 need_fpstatus = true; 12176 rmode = FPROUNDING_TIEAWAY; 12177 if (size == 3 && !is_q) { 12178 unallocated_encoding(s); 12179 return; 12180 } 12181 break; 12182 case 0x3c: /* URECPE */ 12183 if (size == 3) { 12184 unallocated_encoding(s); 12185 return; 12186 } 12187 /* fall through */ 12188 case 0x3d: /* FRECPE */ 12189 case 0x7d: /* FRSQRTE */ 12190 if (size == 3 && !is_q) { 12191 unallocated_encoding(s); 12192 return; 12193 } 12194 if (!fp_access_check(s)) { 12195 return; 12196 } 12197 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12198 return; 12199 case 0x56: /* FCVTXN, FCVTXN2 */ 12200 if (size == 2) { 12201 unallocated_encoding(s); 12202 return; 12203 } 12204 /* fall through */ 12205 case 0x16: /* FCVTN, FCVTN2 */ 12206 /* handle_2misc_narrow does a 2*size -> size operation, but these 12207 * instructions encode the source size rather than dest size. 12208 */ 12209 if (!fp_access_check(s)) { 12210 return; 12211 } 12212 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12213 return; 12214 case 0x36: /* BFCVTN, BFCVTN2 */ 12215 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 if (!fp_access_check(s)) { 12220 return; 12221 } 12222 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12223 return; 12224 case 0x17: /* FCVTL, FCVTL2 */ 12225 if (!fp_access_check(s)) { 12226 return; 12227 } 12228 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12229 return; 12230 case 0x18: /* FRINTN */ 12231 case 0x19: /* FRINTM */ 12232 case 0x38: /* FRINTP */ 12233 case 0x39: /* FRINTZ */ 12234 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12235 /* fall through */ 12236 case 0x59: /* FRINTX */ 12237 case 0x79: /* FRINTI */ 12238 need_fpstatus = true; 12239 if (size == 3 && !is_q) { 12240 unallocated_encoding(s); 12241 return; 12242 } 12243 break; 12244 case 0x58: /* FRINTA */ 12245 rmode = FPROUNDING_TIEAWAY; 12246 need_fpstatus = true; 12247 if (size == 3 && !is_q) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 break; 12252 case 0x7c: /* URSQRTE */ 12253 if (size == 3) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 break; 12258 case 0x1e: /* FRINT32Z */ 12259 case 0x1f: /* FRINT64Z */ 12260 rmode = FPROUNDING_ZERO; 12261 /* fall through */ 12262 case 0x5e: /* FRINT32X */ 12263 case 0x5f: /* FRINT64X */ 12264 need_fpstatus = true; 12265 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12266 unallocated_encoding(s); 12267 return; 12268 } 12269 break; 12270 default: 12271 unallocated_encoding(s); 12272 return; 12273 } 12274 break; 12275 } 12276 default: 12277 unallocated_encoding(s); 12278 return; 12279 } 12280 12281 if (!fp_access_check(s)) { 12282 return; 12283 } 12284 12285 if (need_fpstatus || rmode >= 0) { 12286 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12287 } else { 12288 tcg_fpstatus = NULL; 12289 } 12290 if (rmode >= 0) { 12291 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12292 } else { 12293 tcg_rmode = NULL; 12294 } 12295 12296 switch (opcode) { 12297 case 0x5: 12298 if (u && size == 0) { /* NOT */ 12299 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12300 return; 12301 } 12302 break; 12303 case 0x8: /* CMGT, CMGE */ 12304 if (u) { 12305 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12306 } else { 12307 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12308 } 12309 return; 12310 case 0x9: /* CMEQ, CMLE */ 12311 if (u) { 12312 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12313 } else { 12314 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12315 } 12316 return; 12317 case 0xa: /* CMLT */ 12318 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12319 return; 12320 case 0xb: 12321 if (u) { /* ABS, NEG */ 12322 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12323 } else { 12324 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12325 } 12326 return; 12327 } 12328 12329 if (size == 3) { 12330 /* All 64-bit element operations can be shared with scalar 2misc */ 12331 int pass; 12332 12333 /* Coverity claims (size == 3 && !is_q) has been eliminated 12334 * from all paths leading to here. 12335 */ 12336 tcg_debug_assert(is_q); 12337 for (pass = 0; pass < 2; pass++) { 12338 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12339 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12340 12341 read_vec_element(s, tcg_op, rn, pass, MO_64); 12342 12343 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12344 tcg_rmode, tcg_fpstatus); 12345 12346 write_vec_element(s, tcg_res, rd, pass, MO_64); 12347 } 12348 } else { 12349 int pass; 12350 12351 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12352 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12353 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12354 12355 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12356 12357 if (size == 2) { 12358 /* Special cases for 32 bit elements */ 12359 switch (opcode) { 12360 case 0x4: /* CLS */ 12361 if (u) { 12362 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12363 } else { 12364 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12365 } 12366 break; 12367 case 0x7: /* SQABS, SQNEG */ 12368 if (u) { 12369 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12370 } else { 12371 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12372 } 12373 break; 12374 case 0x2f: /* FABS */ 12375 gen_helper_vfp_abss(tcg_res, tcg_op); 12376 break; 12377 case 0x6f: /* FNEG */ 12378 gen_helper_vfp_negs(tcg_res, tcg_op); 12379 break; 12380 case 0x7f: /* FSQRT */ 12381 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12382 break; 12383 case 0x1a: /* FCVTNS */ 12384 case 0x1b: /* FCVTMS */ 12385 case 0x1c: /* FCVTAS */ 12386 case 0x3a: /* FCVTPS */ 12387 case 0x3b: /* FCVTZS */ 12388 gen_helper_vfp_tosls(tcg_res, tcg_op, 12389 tcg_constant_i32(0), tcg_fpstatus); 12390 break; 12391 case 0x5a: /* FCVTNU */ 12392 case 0x5b: /* FCVTMU */ 12393 case 0x5c: /* FCVTAU */ 12394 case 0x7a: /* FCVTPU */ 12395 case 0x7b: /* FCVTZU */ 12396 gen_helper_vfp_touls(tcg_res, tcg_op, 12397 tcg_constant_i32(0), tcg_fpstatus); 12398 break; 12399 case 0x18: /* FRINTN */ 12400 case 0x19: /* FRINTM */ 12401 case 0x38: /* FRINTP */ 12402 case 0x39: /* FRINTZ */ 12403 case 0x58: /* FRINTA */ 12404 case 0x79: /* FRINTI */ 12405 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12406 break; 12407 case 0x59: /* FRINTX */ 12408 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12409 break; 12410 case 0x7c: /* URSQRTE */ 12411 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12412 break; 12413 case 0x1e: /* FRINT32Z */ 12414 case 0x5e: /* FRINT32X */ 12415 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12416 break; 12417 case 0x1f: /* FRINT64Z */ 12418 case 0x5f: /* FRINT64X */ 12419 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12420 break; 12421 default: 12422 g_assert_not_reached(); 12423 } 12424 } else { 12425 /* Use helpers for 8 and 16 bit elements */ 12426 switch (opcode) { 12427 case 0x5: /* CNT, RBIT */ 12428 /* For these two insns size is part of the opcode specifier 12429 * (handled earlier); they always operate on byte elements. 12430 */ 12431 if (u) { 12432 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12433 } else { 12434 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12435 } 12436 break; 12437 case 0x7: /* SQABS, SQNEG */ 12438 { 12439 NeonGenOneOpEnvFn *genfn; 12440 static NeonGenOneOpEnvFn * const fns[2][2] = { 12441 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12442 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12443 }; 12444 genfn = fns[size][u]; 12445 genfn(tcg_res, tcg_env, tcg_op); 12446 break; 12447 } 12448 case 0x4: /* CLS, CLZ */ 12449 if (u) { 12450 if (size == 0) { 12451 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12452 } else { 12453 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12454 } 12455 } else { 12456 if (size == 0) { 12457 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12458 } else { 12459 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12460 } 12461 } 12462 break; 12463 default: 12464 g_assert_not_reached(); 12465 } 12466 } 12467 12468 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12469 } 12470 } 12471 clear_vec_high(s, is_q, rd); 12472 12473 if (tcg_rmode) { 12474 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12475 } 12476 } 12477 12478 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12479 * 12480 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12481 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12482 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12483 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12484 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12485 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12486 * 12487 * This actually covers two groups where scalar access is governed by 12488 * bit 28. A bunch of the instructions (float to integral) only exist 12489 * in the vector form and are un-allocated for the scalar decode. Also 12490 * in the scalar decode Q is always 1. 12491 */ 12492 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12493 { 12494 int fpop, opcode, a, u; 12495 int rn, rd; 12496 bool is_q; 12497 bool is_scalar; 12498 bool only_in_vector = false; 12499 12500 int pass; 12501 TCGv_i32 tcg_rmode = NULL; 12502 TCGv_ptr tcg_fpstatus = NULL; 12503 bool need_fpst = true; 12504 int rmode = -1; 12505 12506 if (!dc_isar_feature(aa64_fp16, s)) { 12507 unallocated_encoding(s); 12508 return; 12509 } 12510 12511 rd = extract32(insn, 0, 5); 12512 rn = extract32(insn, 5, 5); 12513 12514 a = extract32(insn, 23, 1); 12515 u = extract32(insn, 29, 1); 12516 is_scalar = extract32(insn, 28, 1); 12517 is_q = extract32(insn, 30, 1); 12518 12519 opcode = extract32(insn, 12, 5); 12520 fpop = deposit32(opcode, 5, 1, a); 12521 fpop = deposit32(fpop, 6, 1, u); 12522 12523 switch (fpop) { 12524 case 0x1d: /* SCVTF */ 12525 case 0x5d: /* UCVTF */ 12526 { 12527 int elements; 12528 12529 if (is_scalar) { 12530 elements = 1; 12531 } else { 12532 elements = (is_q ? 8 : 4); 12533 } 12534 12535 if (!fp_access_check(s)) { 12536 return; 12537 } 12538 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12539 return; 12540 } 12541 break; 12542 case 0x2c: /* FCMGT (zero) */ 12543 case 0x2d: /* FCMEQ (zero) */ 12544 case 0x2e: /* FCMLT (zero) */ 12545 case 0x6c: /* FCMGE (zero) */ 12546 case 0x6d: /* FCMLE (zero) */ 12547 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12548 return; 12549 case 0x3d: /* FRECPE */ 12550 case 0x3f: /* FRECPX */ 12551 break; 12552 case 0x18: /* FRINTN */ 12553 only_in_vector = true; 12554 rmode = FPROUNDING_TIEEVEN; 12555 break; 12556 case 0x19: /* FRINTM */ 12557 only_in_vector = true; 12558 rmode = FPROUNDING_NEGINF; 12559 break; 12560 case 0x38: /* FRINTP */ 12561 only_in_vector = true; 12562 rmode = FPROUNDING_POSINF; 12563 break; 12564 case 0x39: /* FRINTZ */ 12565 only_in_vector = true; 12566 rmode = FPROUNDING_ZERO; 12567 break; 12568 case 0x58: /* FRINTA */ 12569 only_in_vector = true; 12570 rmode = FPROUNDING_TIEAWAY; 12571 break; 12572 case 0x59: /* FRINTX */ 12573 case 0x79: /* FRINTI */ 12574 only_in_vector = true; 12575 /* current rounding mode */ 12576 break; 12577 case 0x1a: /* FCVTNS */ 12578 rmode = FPROUNDING_TIEEVEN; 12579 break; 12580 case 0x1b: /* FCVTMS */ 12581 rmode = FPROUNDING_NEGINF; 12582 break; 12583 case 0x1c: /* FCVTAS */ 12584 rmode = FPROUNDING_TIEAWAY; 12585 break; 12586 case 0x3a: /* FCVTPS */ 12587 rmode = FPROUNDING_POSINF; 12588 break; 12589 case 0x3b: /* FCVTZS */ 12590 rmode = FPROUNDING_ZERO; 12591 break; 12592 case 0x5a: /* FCVTNU */ 12593 rmode = FPROUNDING_TIEEVEN; 12594 break; 12595 case 0x5b: /* FCVTMU */ 12596 rmode = FPROUNDING_NEGINF; 12597 break; 12598 case 0x5c: /* FCVTAU */ 12599 rmode = FPROUNDING_TIEAWAY; 12600 break; 12601 case 0x7a: /* FCVTPU */ 12602 rmode = FPROUNDING_POSINF; 12603 break; 12604 case 0x7b: /* FCVTZU */ 12605 rmode = FPROUNDING_ZERO; 12606 break; 12607 case 0x2f: /* FABS */ 12608 case 0x6f: /* FNEG */ 12609 need_fpst = false; 12610 break; 12611 case 0x7d: /* FRSQRTE */ 12612 case 0x7f: /* FSQRT (vector) */ 12613 break; 12614 default: 12615 unallocated_encoding(s); 12616 return; 12617 } 12618 12619 12620 /* Check additional constraints for the scalar encoding */ 12621 if (is_scalar) { 12622 if (!is_q) { 12623 unallocated_encoding(s); 12624 return; 12625 } 12626 /* FRINTxx is only in the vector form */ 12627 if (only_in_vector) { 12628 unallocated_encoding(s); 12629 return; 12630 } 12631 } 12632 12633 if (!fp_access_check(s)) { 12634 return; 12635 } 12636 12637 if (rmode >= 0 || need_fpst) { 12638 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12639 } 12640 12641 if (rmode >= 0) { 12642 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12643 } 12644 12645 if (is_scalar) { 12646 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12647 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12648 12649 switch (fpop) { 12650 case 0x1a: /* FCVTNS */ 12651 case 0x1b: /* FCVTMS */ 12652 case 0x1c: /* FCVTAS */ 12653 case 0x3a: /* FCVTPS */ 12654 case 0x3b: /* FCVTZS */ 12655 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12656 break; 12657 case 0x3d: /* FRECPE */ 12658 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12659 break; 12660 case 0x3f: /* FRECPX */ 12661 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12662 break; 12663 case 0x5a: /* FCVTNU */ 12664 case 0x5b: /* FCVTMU */ 12665 case 0x5c: /* FCVTAU */ 12666 case 0x7a: /* FCVTPU */ 12667 case 0x7b: /* FCVTZU */ 12668 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12669 break; 12670 case 0x6f: /* FNEG */ 12671 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12672 break; 12673 case 0x7d: /* FRSQRTE */ 12674 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12675 break; 12676 default: 12677 g_assert_not_reached(); 12678 } 12679 12680 /* limit any sign extension going on */ 12681 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12682 write_fp_sreg(s, rd, tcg_res); 12683 } else { 12684 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12685 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12686 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12687 12688 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12689 12690 switch (fpop) { 12691 case 0x1a: /* FCVTNS */ 12692 case 0x1b: /* FCVTMS */ 12693 case 0x1c: /* FCVTAS */ 12694 case 0x3a: /* FCVTPS */ 12695 case 0x3b: /* FCVTZS */ 12696 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12697 break; 12698 case 0x3d: /* FRECPE */ 12699 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 case 0x5a: /* FCVTNU */ 12702 case 0x5b: /* FCVTMU */ 12703 case 0x5c: /* FCVTAU */ 12704 case 0x7a: /* FCVTPU */ 12705 case 0x7b: /* FCVTZU */ 12706 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12707 break; 12708 case 0x18: /* FRINTN */ 12709 case 0x19: /* FRINTM */ 12710 case 0x38: /* FRINTP */ 12711 case 0x39: /* FRINTZ */ 12712 case 0x58: /* FRINTA */ 12713 case 0x79: /* FRINTI */ 12714 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12715 break; 12716 case 0x59: /* FRINTX */ 12717 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12718 break; 12719 case 0x2f: /* FABS */ 12720 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12721 break; 12722 case 0x6f: /* FNEG */ 12723 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12724 break; 12725 case 0x7d: /* FRSQRTE */ 12726 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12727 break; 12728 case 0x7f: /* FSQRT */ 12729 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12730 break; 12731 default: 12732 g_assert_not_reached(); 12733 } 12734 12735 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12736 } 12737 12738 clear_vec_high(s, is_q, rd); 12739 } 12740 12741 if (tcg_rmode) { 12742 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12743 } 12744 } 12745 12746 /* AdvSIMD scalar x indexed element 12747 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12748 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12749 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12750 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12751 * AdvSIMD vector x indexed element 12752 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12753 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12754 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12755 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12756 */ 12757 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12758 { 12759 /* This encoding has two kinds of instruction: 12760 * normal, where we perform elt x idxelt => elt for each 12761 * element in the vector 12762 * long, where we perform elt x idxelt and generate a result of 12763 * double the width of the input element 12764 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12765 */ 12766 bool is_scalar = extract32(insn, 28, 1); 12767 bool is_q = extract32(insn, 30, 1); 12768 bool u = extract32(insn, 29, 1); 12769 int size = extract32(insn, 22, 2); 12770 int l = extract32(insn, 21, 1); 12771 int m = extract32(insn, 20, 1); 12772 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12773 int rm = extract32(insn, 16, 4); 12774 int opcode = extract32(insn, 12, 4); 12775 int h = extract32(insn, 11, 1); 12776 int rn = extract32(insn, 5, 5); 12777 int rd = extract32(insn, 0, 5); 12778 bool is_long = false; 12779 int is_fp = 0; 12780 bool is_fp16 = false; 12781 int index; 12782 TCGv_ptr fpst; 12783 12784 switch (16 * u + opcode) { 12785 case 0x08: /* MUL */ 12786 case 0x10: /* MLA */ 12787 case 0x14: /* MLS */ 12788 if (is_scalar) { 12789 unallocated_encoding(s); 12790 return; 12791 } 12792 break; 12793 case 0x02: /* SMLAL, SMLAL2 */ 12794 case 0x12: /* UMLAL, UMLAL2 */ 12795 case 0x06: /* SMLSL, SMLSL2 */ 12796 case 0x16: /* UMLSL, UMLSL2 */ 12797 case 0x0a: /* SMULL, SMULL2 */ 12798 case 0x1a: /* UMULL, UMULL2 */ 12799 if (is_scalar) { 12800 unallocated_encoding(s); 12801 return; 12802 } 12803 is_long = true; 12804 break; 12805 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12806 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12807 case 0x0b: /* SQDMULL, SQDMULL2 */ 12808 is_long = true; 12809 break; 12810 case 0x0c: /* SQDMULH */ 12811 case 0x0d: /* SQRDMULH */ 12812 break; 12813 case 0x01: /* FMLA */ 12814 case 0x05: /* FMLS */ 12815 case 0x09: /* FMUL */ 12816 case 0x19: /* FMULX */ 12817 is_fp = 1; 12818 break; 12819 case 0x1d: /* SQRDMLAH */ 12820 case 0x1f: /* SQRDMLSH */ 12821 if (!dc_isar_feature(aa64_rdm, s)) { 12822 unallocated_encoding(s); 12823 return; 12824 } 12825 break; 12826 case 0x0e: /* SDOT */ 12827 case 0x1e: /* UDOT */ 12828 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12829 unallocated_encoding(s); 12830 return; 12831 } 12832 break; 12833 case 0x0f: 12834 switch (size) { 12835 case 0: /* SUDOT */ 12836 case 2: /* USDOT */ 12837 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12838 unallocated_encoding(s); 12839 return; 12840 } 12841 size = MO_32; 12842 break; 12843 case 1: /* BFDOT */ 12844 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12845 unallocated_encoding(s); 12846 return; 12847 } 12848 size = MO_32; 12849 break; 12850 case 3: /* BFMLAL{B,T} */ 12851 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12852 unallocated_encoding(s); 12853 return; 12854 } 12855 /* can't set is_fp without other incorrect size checks */ 12856 size = MO_16; 12857 break; 12858 default: 12859 unallocated_encoding(s); 12860 return; 12861 } 12862 break; 12863 case 0x11: /* FCMLA #0 */ 12864 case 0x13: /* FCMLA #90 */ 12865 case 0x15: /* FCMLA #180 */ 12866 case 0x17: /* FCMLA #270 */ 12867 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12868 unallocated_encoding(s); 12869 return; 12870 } 12871 is_fp = 2; 12872 break; 12873 case 0x00: /* FMLAL */ 12874 case 0x04: /* FMLSL */ 12875 case 0x18: /* FMLAL2 */ 12876 case 0x1c: /* FMLSL2 */ 12877 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12878 unallocated_encoding(s); 12879 return; 12880 } 12881 size = MO_16; 12882 /* is_fp, but we pass tcg_env not fp_status. */ 12883 break; 12884 default: 12885 unallocated_encoding(s); 12886 return; 12887 } 12888 12889 switch (is_fp) { 12890 case 1: /* normal fp */ 12891 /* convert insn encoded size to MemOp size */ 12892 switch (size) { 12893 case 0: /* half-precision */ 12894 size = MO_16; 12895 is_fp16 = true; 12896 break; 12897 case MO_32: /* single precision */ 12898 case MO_64: /* double precision */ 12899 break; 12900 default: 12901 unallocated_encoding(s); 12902 return; 12903 } 12904 break; 12905 12906 case 2: /* complex fp */ 12907 /* Each indexable element is a complex pair. */ 12908 size += 1; 12909 switch (size) { 12910 case MO_32: 12911 if (h && !is_q) { 12912 unallocated_encoding(s); 12913 return; 12914 } 12915 is_fp16 = true; 12916 break; 12917 case MO_64: 12918 break; 12919 default: 12920 unallocated_encoding(s); 12921 return; 12922 } 12923 break; 12924 12925 default: /* integer */ 12926 switch (size) { 12927 case MO_8: 12928 case MO_64: 12929 unallocated_encoding(s); 12930 return; 12931 } 12932 break; 12933 } 12934 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12935 unallocated_encoding(s); 12936 return; 12937 } 12938 12939 /* Given MemOp size, adjust register and indexing. */ 12940 switch (size) { 12941 case MO_16: 12942 index = h << 2 | l << 1 | m; 12943 break; 12944 case MO_32: 12945 index = h << 1 | l; 12946 rm |= m << 4; 12947 break; 12948 case MO_64: 12949 if (l || !is_q) { 12950 unallocated_encoding(s); 12951 return; 12952 } 12953 index = h; 12954 rm |= m << 4; 12955 break; 12956 default: 12957 g_assert_not_reached(); 12958 } 12959 12960 if (!fp_access_check(s)) { 12961 return; 12962 } 12963 12964 if (is_fp) { 12965 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12966 } else { 12967 fpst = NULL; 12968 } 12969 12970 switch (16 * u + opcode) { 12971 case 0x0e: /* SDOT */ 12972 case 0x1e: /* UDOT */ 12973 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12974 u ? gen_helper_gvec_udot_idx_b 12975 : gen_helper_gvec_sdot_idx_b); 12976 return; 12977 case 0x0f: 12978 switch (extract32(insn, 22, 2)) { 12979 case 0: /* SUDOT */ 12980 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12981 gen_helper_gvec_sudot_idx_b); 12982 return; 12983 case 1: /* BFDOT */ 12984 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12985 gen_helper_gvec_bfdot_idx); 12986 return; 12987 case 2: /* USDOT */ 12988 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12989 gen_helper_gvec_usdot_idx_b); 12990 return; 12991 case 3: /* BFMLAL{B,T} */ 12992 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12993 gen_helper_gvec_bfmlal_idx); 12994 return; 12995 } 12996 g_assert_not_reached(); 12997 case 0x11: /* FCMLA #0 */ 12998 case 0x13: /* FCMLA #90 */ 12999 case 0x15: /* FCMLA #180 */ 13000 case 0x17: /* FCMLA #270 */ 13001 { 13002 int rot = extract32(insn, 13, 2); 13003 int data = (index << 2) | rot; 13004 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13005 vec_full_reg_offset(s, rn), 13006 vec_full_reg_offset(s, rm), 13007 vec_full_reg_offset(s, rd), fpst, 13008 is_q ? 16 : 8, vec_full_reg_size(s), data, 13009 size == MO_64 13010 ? gen_helper_gvec_fcmlas_idx 13011 : gen_helper_gvec_fcmlah_idx); 13012 } 13013 return; 13014 13015 case 0x00: /* FMLAL */ 13016 case 0x04: /* FMLSL */ 13017 case 0x18: /* FMLAL2 */ 13018 case 0x1c: /* FMLSL2 */ 13019 { 13020 int is_s = extract32(opcode, 2, 1); 13021 int is_2 = u; 13022 int data = (index << 2) | (is_2 << 1) | is_s; 13023 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13024 vec_full_reg_offset(s, rn), 13025 vec_full_reg_offset(s, rm), tcg_env, 13026 is_q ? 16 : 8, vec_full_reg_size(s), 13027 data, gen_helper_gvec_fmlal_idx_a64); 13028 } 13029 return; 13030 13031 case 0x08: /* MUL */ 13032 if (!is_long && !is_scalar) { 13033 static gen_helper_gvec_3 * const fns[3] = { 13034 gen_helper_gvec_mul_idx_h, 13035 gen_helper_gvec_mul_idx_s, 13036 gen_helper_gvec_mul_idx_d, 13037 }; 13038 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13039 vec_full_reg_offset(s, rn), 13040 vec_full_reg_offset(s, rm), 13041 is_q ? 16 : 8, vec_full_reg_size(s), 13042 index, fns[size - 1]); 13043 return; 13044 } 13045 break; 13046 13047 case 0x10: /* MLA */ 13048 if (!is_long && !is_scalar) { 13049 static gen_helper_gvec_4 * const fns[3] = { 13050 gen_helper_gvec_mla_idx_h, 13051 gen_helper_gvec_mla_idx_s, 13052 gen_helper_gvec_mla_idx_d, 13053 }; 13054 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13055 vec_full_reg_offset(s, rn), 13056 vec_full_reg_offset(s, rm), 13057 vec_full_reg_offset(s, rd), 13058 is_q ? 16 : 8, vec_full_reg_size(s), 13059 index, fns[size - 1]); 13060 return; 13061 } 13062 break; 13063 13064 case 0x14: /* MLS */ 13065 if (!is_long && !is_scalar) { 13066 static gen_helper_gvec_4 * const fns[3] = { 13067 gen_helper_gvec_mls_idx_h, 13068 gen_helper_gvec_mls_idx_s, 13069 gen_helper_gvec_mls_idx_d, 13070 }; 13071 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13072 vec_full_reg_offset(s, rn), 13073 vec_full_reg_offset(s, rm), 13074 vec_full_reg_offset(s, rd), 13075 is_q ? 16 : 8, vec_full_reg_size(s), 13076 index, fns[size - 1]); 13077 return; 13078 } 13079 break; 13080 } 13081 13082 if (size == 3) { 13083 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13084 int pass; 13085 13086 assert(is_fp && is_q && !is_long); 13087 13088 read_vec_element(s, tcg_idx, rm, index, MO_64); 13089 13090 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13091 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13092 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13093 13094 read_vec_element(s, tcg_op, rn, pass, MO_64); 13095 13096 switch (16 * u + opcode) { 13097 case 0x05: /* FMLS */ 13098 /* As usual for ARM, separate negation for fused multiply-add */ 13099 gen_helper_vfp_negd(tcg_op, tcg_op); 13100 /* fall through */ 13101 case 0x01: /* FMLA */ 13102 read_vec_element(s, tcg_res, rd, pass, MO_64); 13103 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13104 break; 13105 case 0x09: /* FMUL */ 13106 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13107 break; 13108 case 0x19: /* FMULX */ 13109 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13110 break; 13111 default: 13112 g_assert_not_reached(); 13113 } 13114 13115 write_vec_element(s, tcg_res, rd, pass, MO_64); 13116 } 13117 13118 clear_vec_high(s, !is_scalar, rd); 13119 } else if (!is_long) { 13120 /* 32 bit floating point, or 16 or 32 bit integer. 13121 * For the 16 bit scalar case we use the usual Neon helpers and 13122 * rely on the fact that 0 op 0 == 0 with no side effects. 13123 */ 13124 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13125 int pass, maxpasses; 13126 13127 if (is_scalar) { 13128 maxpasses = 1; 13129 } else { 13130 maxpasses = is_q ? 4 : 2; 13131 } 13132 13133 read_vec_element_i32(s, tcg_idx, rm, index, size); 13134 13135 if (size == 1 && !is_scalar) { 13136 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13137 * the index into both halves of the 32 bit tcg_idx and then use 13138 * the usual Neon helpers. 13139 */ 13140 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13141 } 13142 13143 for (pass = 0; pass < maxpasses; pass++) { 13144 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13145 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13146 13147 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13148 13149 switch (16 * u + opcode) { 13150 case 0x08: /* MUL */ 13151 case 0x10: /* MLA */ 13152 case 0x14: /* MLS */ 13153 { 13154 static NeonGenTwoOpFn * const fns[2][2] = { 13155 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13156 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13157 }; 13158 NeonGenTwoOpFn *genfn; 13159 bool is_sub = opcode == 0x4; 13160 13161 if (size == 1) { 13162 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13163 } else { 13164 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13165 } 13166 if (opcode == 0x8) { 13167 break; 13168 } 13169 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13170 genfn = fns[size - 1][is_sub]; 13171 genfn(tcg_res, tcg_op, tcg_res); 13172 break; 13173 } 13174 case 0x05: /* FMLS */ 13175 case 0x01: /* FMLA */ 13176 read_vec_element_i32(s, tcg_res, rd, pass, 13177 is_scalar ? size : MO_32); 13178 switch (size) { 13179 case 1: 13180 if (opcode == 0x5) { 13181 /* As usual for ARM, separate negation for fused 13182 * multiply-add */ 13183 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13184 } 13185 if (is_scalar) { 13186 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13187 tcg_res, fpst); 13188 } else { 13189 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13190 tcg_res, fpst); 13191 } 13192 break; 13193 case 2: 13194 if (opcode == 0x5) { 13195 /* As usual for ARM, separate negation for 13196 * fused multiply-add */ 13197 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13198 } 13199 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13200 tcg_res, fpst); 13201 break; 13202 default: 13203 g_assert_not_reached(); 13204 } 13205 break; 13206 case 0x09: /* FMUL */ 13207 switch (size) { 13208 case 1: 13209 if (is_scalar) { 13210 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13211 tcg_idx, fpst); 13212 } else { 13213 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13214 tcg_idx, fpst); 13215 } 13216 break; 13217 case 2: 13218 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13219 break; 13220 default: 13221 g_assert_not_reached(); 13222 } 13223 break; 13224 case 0x19: /* FMULX */ 13225 switch (size) { 13226 case 1: 13227 if (is_scalar) { 13228 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13229 tcg_idx, fpst); 13230 } else { 13231 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13232 tcg_idx, fpst); 13233 } 13234 break; 13235 case 2: 13236 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13237 break; 13238 default: 13239 g_assert_not_reached(); 13240 } 13241 break; 13242 case 0x0c: /* SQDMULH */ 13243 if (size == 1) { 13244 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13245 tcg_op, tcg_idx); 13246 } else { 13247 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13248 tcg_op, tcg_idx); 13249 } 13250 break; 13251 case 0x0d: /* SQRDMULH */ 13252 if (size == 1) { 13253 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13254 tcg_op, tcg_idx); 13255 } else { 13256 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13257 tcg_op, tcg_idx); 13258 } 13259 break; 13260 case 0x1d: /* SQRDMLAH */ 13261 read_vec_element_i32(s, tcg_res, rd, pass, 13262 is_scalar ? size : MO_32); 13263 if (size == 1) { 13264 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13265 tcg_op, tcg_idx, tcg_res); 13266 } else { 13267 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13268 tcg_op, tcg_idx, tcg_res); 13269 } 13270 break; 13271 case 0x1f: /* SQRDMLSH */ 13272 read_vec_element_i32(s, tcg_res, rd, pass, 13273 is_scalar ? size : MO_32); 13274 if (size == 1) { 13275 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13276 tcg_op, tcg_idx, tcg_res); 13277 } else { 13278 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13279 tcg_op, tcg_idx, tcg_res); 13280 } 13281 break; 13282 default: 13283 g_assert_not_reached(); 13284 } 13285 13286 if (is_scalar) { 13287 write_fp_sreg(s, rd, tcg_res); 13288 } else { 13289 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13290 } 13291 } 13292 13293 clear_vec_high(s, is_q, rd); 13294 } else { 13295 /* long ops: 16x16->32 or 32x32->64 */ 13296 TCGv_i64 tcg_res[2]; 13297 int pass; 13298 bool satop = extract32(opcode, 0, 1); 13299 MemOp memop = MO_32; 13300 13301 if (satop || !u) { 13302 memop |= MO_SIGN; 13303 } 13304 13305 if (size == 2) { 13306 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13307 13308 read_vec_element(s, tcg_idx, rm, index, memop); 13309 13310 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13311 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13312 TCGv_i64 tcg_passres; 13313 int passelt; 13314 13315 if (is_scalar) { 13316 passelt = 0; 13317 } else { 13318 passelt = pass + (is_q * 2); 13319 } 13320 13321 read_vec_element(s, tcg_op, rn, passelt, memop); 13322 13323 tcg_res[pass] = tcg_temp_new_i64(); 13324 13325 if (opcode == 0xa || opcode == 0xb) { 13326 /* Non-accumulating ops */ 13327 tcg_passres = tcg_res[pass]; 13328 } else { 13329 tcg_passres = tcg_temp_new_i64(); 13330 } 13331 13332 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13333 13334 if (satop) { 13335 /* saturating, doubling */ 13336 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13337 tcg_passres, tcg_passres); 13338 } 13339 13340 if (opcode == 0xa || opcode == 0xb) { 13341 continue; 13342 } 13343 13344 /* Accumulating op: handle accumulate step */ 13345 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13346 13347 switch (opcode) { 13348 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13349 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13350 break; 13351 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13352 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13353 break; 13354 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13355 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13356 /* fall through */ 13357 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13358 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13359 tcg_res[pass], 13360 tcg_passres); 13361 break; 13362 default: 13363 g_assert_not_reached(); 13364 } 13365 } 13366 13367 clear_vec_high(s, !is_scalar, rd); 13368 } else { 13369 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13370 13371 assert(size == 1); 13372 read_vec_element_i32(s, tcg_idx, rm, index, size); 13373 13374 if (!is_scalar) { 13375 /* The simplest way to handle the 16x16 indexed ops is to 13376 * duplicate the index into both halves of the 32 bit tcg_idx 13377 * and then use the usual Neon helpers. 13378 */ 13379 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13380 } 13381 13382 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13383 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13384 TCGv_i64 tcg_passres; 13385 13386 if (is_scalar) { 13387 read_vec_element_i32(s, tcg_op, rn, pass, size); 13388 } else { 13389 read_vec_element_i32(s, tcg_op, rn, 13390 pass + (is_q * 2), MO_32); 13391 } 13392 13393 tcg_res[pass] = tcg_temp_new_i64(); 13394 13395 if (opcode == 0xa || opcode == 0xb) { 13396 /* Non-accumulating ops */ 13397 tcg_passres = tcg_res[pass]; 13398 } else { 13399 tcg_passres = tcg_temp_new_i64(); 13400 } 13401 13402 if (memop & MO_SIGN) { 13403 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13404 } else { 13405 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13406 } 13407 if (satop) { 13408 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13409 tcg_passres, tcg_passres); 13410 } 13411 13412 if (opcode == 0xa || opcode == 0xb) { 13413 continue; 13414 } 13415 13416 /* Accumulating op: handle accumulate step */ 13417 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13418 13419 switch (opcode) { 13420 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13421 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13422 tcg_passres); 13423 break; 13424 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13425 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13426 tcg_passres); 13427 break; 13428 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13429 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13430 /* fall through */ 13431 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13432 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13433 tcg_res[pass], 13434 tcg_passres); 13435 break; 13436 default: 13437 g_assert_not_reached(); 13438 } 13439 } 13440 13441 if (is_scalar) { 13442 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13443 } 13444 } 13445 13446 if (is_scalar) { 13447 tcg_res[1] = tcg_constant_i64(0); 13448 } 13449 13450 for (pass = 0; pass < 2; pass++) { 13451 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13452 } 13453 } 13454 } 13455 13456 /* Crypto AES 13457 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13458 * +-----------------+------+-----------+--------+-----+------+------+ 13459 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13460 * +-----------------+------+-----------+--------+-----+------+------+ 13461 */ 13462 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13463 { 13464 int size = extract32(insn, 22, 2); 13465 int opcode = extract32(insn, 12, 5); 13466 int rn = extract32(insn, 5, 5); 13467 int rd = extract32(insn, 0, 5); 13468 gen_helper_gvec_2 *genfn2 = NULL; 13469 gen_helper_gvec_3 *genfn3 = NULL; 13470 13471 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13472 unallocated_encoding(s); 13473 return; 13474 } 13475 13476 switch (opcode) { 13477 case 0x4: /* AESE */ 13478 genfn3 = gen_helper_crypto_aese; 13479 break; 13480 case 0x6: /* AESMC */ 13481 genfn2 = gen_helper_crypto_aesmc; 13482 break; 13483 case 0x5: /* AESD */ 13484 genfn3 = gen_helper_crypto_aesd; 13485 break; 13486 case 0x7: /* AESIMC */ 13487 genfn2 = gen_helper_crypto_aesimc; 13488 break; 13489 default: 13490 unallocated_encoding(s); 13491 return; 13492 } 13493 13494 if (!fp_access_check(s)) { 13495 return; 13496 } 13497 if (genfn2) { 13498 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13499 } else { 13500 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13501 } 13502 } 13503 13504 /* Crypto three-reg SHA 13505 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13506 * +-----------------+------+---+------+---+--------+-----+------+------+ 13507 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13508 * +-----------------+------+---+------+---+--------+-----+------+------+ 13509 */ 13510 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13511 { 13512 int size = extract32(insn, 22, 2); 13513 int opcode = extract32(insn, 12, 3); 13514 int rm = extract32(insn, 16, 5); 13515 int rn = extract32(insn, 5, 5); 13516 int rd = extract32(insn, 0, 5); 13517 gen_helper_gvec_3 *genfn; 13518 bool feature; 13519 13520 if (size != 0) { 13521 unallocated_encoding(s); 13522 return; 13523 } 13524 13525 switch (opcode) { 13526 case 0: /* SHA1C */ 13527 genfn = gen_helper_crypto_sha1c; 13528 feature = dc_isar_feature(aa64_sha1, s); 13529 break; 13530 case 1: /* SHA1P */ 13531 genfn = gen_helper_crypto_sha1p; 13532 feature = dc_isar_feature(aa64_sha1, s); 13533 break; 13534 case 2: /* SHA1M */ 13535 genfn = gen_helper_crypto_sha1m; 13536 feature = dc_isar_feature(aa64_sha1, s); 13537 break; 13538 case 3: /* SHA1SU0 */ 13539 genfn = gen_helper_crypto_sha1su0; 13540 feature = dc_isar_feature(aa64_sha1, s); 13541 break; 13542 case 4: /* SHA256H */ 13543 genfn = gen_helper_crypto_sha256h; 13544 feature = dc_isar_feature(aa64_sha256, s); 13545 break; 13546 case 5: /* SHA256H2 */ 13547 genfn = gen_helper_crypto_sha256h2; 13548 feature = dc_isar_feature(aa64_sha256, s); 13549 break; 13550 case 6: /* SHA256SU1 */ 13551 genfn = gen_helper_crypto_sha256su1; 13552 feature = dc_isar_feature(aa64_sha256, s); 13553 break; 13554 default: 13555 unallocated_encoding(s); 13556 return; 13557 } 13558 13559 if (!feature) { 13560 unallocated_encoding(s); 13561 return; 13562 } 13563 13564 if (!fp_access_check(s)) { 13565 return; 13566 } 13567 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13568 } 13569 13570 /* Crypto two-reg SHA 13571 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13572 * +-----------------+------+-----------+--------+-----+------+------+ 13573 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13574 * +-----------------+------+-----------+--------+-----+------+------+ 13575 */ 13576 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13577 { 13578 int size = extract32(insn, 22, 2); 13579 int opcode = extract32(insn, 12, 5); 13580 int rn = extract32(insn, 5, 5); 13581 int rd = extract32(insn, 0, 5); 13582 gen_helper_gvec_2 *genfn; 13583 bool feature; 13584 13585 if (size != 0) { 13586 unallocated_encoding(s); 13587 return; 13588 } 13589 13590 switch (opcode) { 13591 case 0: /* SHA1H */ 13592 feature = dc_isar_feature(aa64_sha1, s); 13593 genfn = gen_helper_crypto_sha1h; 13594 break; 13595 case 1: /* SHA1SU1 */ 13596 feature = dc_isar_feature(aa64_sha1, s); 13597 genfn = gen_helper_crypto_sha1su1; 13598 break; 13599 case 2: /* SHA256SU0 */ 13600 feature = dc_isar_feature(aa64_sha256, s); 13601 genfn = gen_helper_crypto_sha256su0; 13602 break; 13603 default: 13604 unallocated_encoding(s); 13605 return; 13606 } 13607 13608 if (!feature) { 13609 unallocated_encoding(s); 13610 return; 13611 } 13612 13613 if (!fp_access_check(s)) { 13614 return; 13615 } 13616 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13617 } 13618 13619 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13620 { 13621 tcg_gen_rotli_i64(d, m, 1); 13622 tcg_gen_xor_i64(d, d, n); 13623 } 13624 13625 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13626 { 13627 tcg_gen_rotli_vec(vece, d, m, 1); 13628 tcg_gen_xor_vec(vece, d, d, n); 13629 } 13630 13631 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13632 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13633 { 13634 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13635 static const GVecGen3 op = { 13636 .fni8 = gen_rax1_i64, 13637 .fniv = gen_rax1_vec, 13638 .opt_opc = vecop_list, 13639 .fno = gen_helper_crypto_rax1, 13640 .vece = MO_64, 13641 }; 13642 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13643 } 13644 13645 /* Crypto three-reg SHA512 13646 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13647 * +-----------------------+------+---+---+-----+--------+------+------+ 13648 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13649 * +-----------------------+------+---+---+-----+--------+------+------+ 13650 */ 13651 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13652 { 13653 int opcode = extract32(insn, 10, 2); 13654 int o = extract32(insn, 14, 1); 13655 int rm = extract32(insn, 16, 5); 13656 int rn = extract32(insn, 5, 5); 13657 int rd = extract32(insn, 0, 5); 13658 bool feature; 13659 gen_helper_gvec_3 *oolfn = NULL; 13660 GVecGen3Fn *gvecfn = NULL; 13661 13662 if (o == 0) { 13663 switch (opcode) { 13664 case 0: /* SHA512H */ 13665 feature = dc_isar_feature(aa64_sha512, s); 13666 oolfn = gen_helper_crypto_sha512h; 13667 break; 13668 case 1: /* SHA512H2 */ 13669 feature = dc_isar_feature(aa64_sha512, s); 13670 oolfn = gen_helper_crypto_sha512h2; 13671 break; 13672 case 2: /* SHA512SU1 */ 13673 feature = dc_isar_feature(aa64_sha512, s); 13674 oolfn = gen_helper_crypto_sha512su1; 13675 break; 13676 case 3: /* RAX1 */ 13677 feature = dc_isar_feature(aa64_sha3, s); 13678 gvecfn = gen_gvec_rax1; 13679 break; 13680 default: 13681 g_assert_not_reached(); 13682 } 13683 } else { 13684 switch (opcode) { 13685 case 0: /* SM3PARTW1 */ 13686 feature = dc_isar_feature(aa64_sm3, s); 13687 oolfn = gen_helper_crypto_sm3partw1; 13688 break; 13689 case 1: /* SM3PARTW2 */ 13690 feature = dc_isar_feature(aa64_sm3, s); 13691 oolfn = gen_helper_crypto_sm3partw2; 13692 break; 13693 case 2: /* SM4EKEY */ 13694 feature = dc_isar_feature(aa64_sm4, s); 13695 oolfn = gen_helper_crypto_sm4ekey; 13696 break; 13697 default: 13698 unallocated_encoding(s); 13699 return; 13700 } 13701 } 13702 13703 if (!feature) { 13704 unallocated_encoding(s); 13705 return; 13706 } 13707 13708 if (!fp_access_check(s)) { 13709 return; 13710 } 13711 13712 if (oolfn) { 13713 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13714 } else { 13715 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13716 } 13717 } 13718 13719 /* Crypto two-reg SHA512 13720 * 31 12 11 10 9 5 4 0 13721 * +-----------------------------------------+--------+------+------+ 13722 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13723 * +-----------------------------------------+--------+------+------+ 13724 */ 13725 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13726 { 13727 int opcode = extract32(insn, 10, 2); 13728 int rn = extract32(insn, 5, 5); 13729 int rd = extract32(insn, 0, 5); 13730 bool feature; 13731 13732 switch (opcode) { 13733 case 0: /* SHA512SU0 */ 13734 feature = dc_isar_feature(aa64_sha512, s); 13735 break; 13736 case 1: /* SM4E */ 13737 feature = dc_isar_feature(aa64_sm4, s); 13738 break; 13739 default: 13740 unallocated_encoding(s); 13741 return; 13742 } 13743 13744 if (!feature) { 13745 unallocated_encoding(s); 13746 return; 13747 } 13748 13749 if (!fp_access_check(s)) { 13750 return; 13751 } 13752 13753 switch (opcode) { 13754 case 0: /* SHA512SU0 */ 13755 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13756 break; 13757 case 1: /* SM4E */ 13758 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13759 break; 13760 default: 13761 g_assert_not_reached(); 13762 } 13763 } 13764 13765 /* Crypto four-register 13766 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13767 * +-------------------+-----+------+---+------+------+------+ 13768 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13769 * +-------------------+-----+------+---+------+------+------+ 13770 */ 13771 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13772 { 13773 int op0 = extract32(insn, 21, 2); 13774 int rm = extract32(insn, 16, 5); 13775 int ra = extract32(insn, 10, 5); 13776 int rn = extract32(insn, 5, 5); 13777 int rd = extract32(insn, 0, 5); 13778 bool feature; 13779 13780 switch (op0) { 13781 case 0: /* EOR3 */ 13782 case 1: /* BCAX */ 13783 feature = dc_isar_feature(aa64_sha3, s); 13784 break; 13785 case 2: /* SM3SS1 */ 13786 feature = dc_isar_feature(aa64_sm3, s); 13787 break; 13788 default: 13789 unallocated_encoding(s); 13790 return; 13791 } 13792 13793 if (!feature) { 13794 unallocated_encoding(s); 13795 return; 13796 } 13797 13798 if (!fp_access_check(s)) { 13799 return; 13800 } 13801 13802 if (op0 < 2) { 13803 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13804 int pass; 13805 13806 tcg_op1 = tcg_temp_new_i64(); 13807 tcg_op2 = tcg_temp_new_i64(); 13808 tcg_op3 = tcg_temp_new_i64(); 13809 tcg_res[0] = tcg_temp_new_i64(); 13810 tcg_res[1] = tcg_temp_new_i64(); 13811 13812 for (pass = 0; pass < 2; pass++) { 13813 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13814 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13815 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13816 13817 if (op0 == 0) { 13818 /* EOR3 */ 13819 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13820 } else { 13821 /* BCAX */ 13822 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13823 } 13824 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13825 } 13826 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13827 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13828 } else { 13829 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13830 13831 tcg_op1 = tcg_temp_new_i32(); 13832 tcg_op2 = tcg_temp_new_i32(); 13833 tcg_op3 = tcg_temp_new_i32(); 13834 tcg_res = tcg_temp_new_i32(); 13835 tcg_zero = tcg_constant_i32(0); 13836 13837 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13838 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13839 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13840 13841 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13842 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13843 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13844 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13845 13846 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13847 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13848 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13849 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13850 } 13851 } 13852 13853 /* Crypto XAR 13854 * 31 21 20 16 15 10 9 5 4 0 13855 * +-----------------------+------+--------+------+------+ 13856 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13857 * +-----------------------+------+--------+------+------+ 13858 */ 13859 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13860 { 13861 int rm = extract32(insn, 16, 5); 13862 int imm6 = extract32(insn, 10, 6); 13863 int rn = extract32(insn, 5, 5); 13864 int rd = extract32(insn, 0, 5); 13865 13866 if (!dc_isar_feature(aa64_sha3, s)) { 13867 unallocated_encoding(s); 13868 return; 13869 } 13870 13871 if (!fp_access_check(s)) { 13872 return; 13873 } 13874 13875 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13876 vec_full_reg_offset(s, rn), 13877 vec_full_reg_offset(s, rm), imm6, 16, 13878 vec_full_reg_size(s)); 13879 } 13880 13881 /* Crypto three-reg imm2 13882 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13883 * +-----------------------+------+-----+------+--------+------+------+ 13884 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13885 * +-----------------------+------+-----+------+--------+------+------+ 13886 */ 13887 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13888 { 13889 static gen_helper_gvec_3 * const fns[4] = { 13890 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13891 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13892 }; 13893 int opcode = extract32(insn, 10, 2); 13894 int imm2 = extract32(insn, 12, 2); 13895 int rm = extract32(insn, 16, 5); 13896 int rn = extract32(insn, 5, 5); 13897 int rd = extract32(insn, 0, 5); 13898 13899 if (!dc_isar_feature(aa64_sm3, s)) { 13900 unallocated_encoding(s); 13901 return; 13902 } 13903 13904 if (!fp_access_check(s)) { 13905 return; 13906 } 13907 13908 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13909 } 13910 13911 /* C3.6 Data processing - SIMD, inc Crypto 13912 * 13913 * As the decode gets a little complex we are using a table based 13914 * approach for this part of the decode. 13915 */ 13916 static const AArch64DecodeTable data_proc_simd[] = { 13917 /* pattern , mask , fn */ 13918 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13919 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13920 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13921 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13922 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13923 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13924 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13925 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13926 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13927 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13928 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13929 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13930 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13931 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13932 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13933 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13934 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13935 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13936 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13937 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13938 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13939 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13940 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13941 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13942 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13943 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13944 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13945 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13946 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13947 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13948 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13949 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13950 { 0x00000000, 0x00000000, NULL } 13951 }; 13952 13953 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13954 { 13955 /* Note that this is called with all non-FP cases from 13956 * table C3-6 so it must UNDEF for entries not specifically 13957 * allocated to instructions in that table. 13958 */ 13959 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13960 if (fn) { 13961 fn(s, insn); 13962 } else { 13963 unallocated_encoding(s); 13964 } 13965 } 13966 13967 /* C3.6 Data processing - SIMD and floating point */ 13968 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13969 { 13970 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13971 disas_data_proc_fp(s, insn); 13972 } else { 13973 /* SIMD, including crypto */ 13974 disas_data_proc_simd(s, insn); 13975 } 13976 } 13977 13978 static bool trans_OK(DisasContext *s, arg_OK *a) 13979 { 13980 return true; 13981 } 13982 13983 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13984 { 13985 s->is_nonstreaming = true; 13986 return true; 13987 } 13988 13989 /** 13990 * is_guarded_page: 13991 * @env: The cpu environment 13992 * @s: The DisasContext 13993 * 13994 * Return true if the page is guarded. 13995 */ 13996 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13997 { 13998 uint64_t addr = s->base.pc_first; 13999 #ifdef CONFIG_USER_ONLY 14000 return page_get_flags(addr) & PAGE_BTI; 14001 #else 14002 CPUTLBEntryFull *full; 14003 void *host; 14004 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14005 int flags; 14006 14007 /* 14008 * We test this immediately after reading an insn, which means 14009 * that the TLB entry must be present and valid, and thus this 14010 * access will never raise an exception. 14011 */ 14012 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14013 false, &host, &full, 0); 14014 assert(!(flags & TLB_INVALID_MASK)); 14015 14016 return full->extra.arm.guarded; 14017 #endif 14018 } 14019 14020 /** 14021 * btype_destination_ok: 14022 * @insn: The instruction at the branch destination 14023 * @bt: SCTLR_ELx.BT 14024 * @btype: PSTATE.BTYPE, and is non-zero 14025 * 14026 * On a guarded page, there are a limited number of insns 14027 * that may be present at the branch target: 14028 * - branch target identifiers, 14029 * - paciasp, pacibsp, 14030 * - BRK insn 14031 * - HLT insn 14032 * Anything else causes a Branch Target Exception. 14033 * 14034 * Return true if the branch is compatible, false to raise BTITRAP. 14035 */ 14036 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14037 { 14038 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14039 /* HINT space */ 14040 switch (extract32(insn, 5, 7)) { 14041 case 0b011001: /* PACIASP */ 14042 case 0b011011: /* PACIBSP */ 14043 /* 14044 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14045 * with btype == 3. Otherwise all btype are ok. 14046 */ 14047 return !bt || btype != 3; 14048 case 0b100000: /* BTI */ 14049 /* Not compatible with any btype. */ 14050 return false; 14051 case 0b100010: /* BTI c */ 14052 /* Not compatible with btype == 3 */ 14053 return btype != 3; 14054 case 0b100100: /* BTI j */ 14055 /* Not compatible with btype == 2 */ 14056 return btype != 2; 14057 case 0b100110: /* BTI jc */ 14058 /* Compatible with any btype. */ 14059 return true; 14060 } 14061 } else { 14062 switch (insn & 0xffe0001fu) { 14063 case 0xd4200000u: /* BRK */ 14064 case 0xd4400000u: /* HLT */ 14065 /* Give priority to the breakpoint exception. */ 14066 return true; 14067 } 14068 } 14069 return false; 14070 } 14071 14072 /* C3.1 A64 instruction index by encoding */ 14073 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14074 { 14075 switch (extract32(insn, 25, 4)) { 14076 case 0x5: 14077 case 0xd: /* Data processing - register */ 14078 disas_data_proc_reg(s, insn); 14079 break; 14080 case 0x7: 14081 case 0xf: /* Data processing - SIMD and floating point */ 14082 disas_data_proc_simd_fp(s, insn); 14083 break; 14084 default: 14085 unallocated_encoding(s); 14086 break; 14087 } 14088 } 14089 14090 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14091 CPUState *cpu) 14092 { 14093 DisasContext *dc = container_of(dcbase, DisasContext, base); 14094 CPUARMState *env = cpu_env(cpu); 14095 ARMCPU *arm_cpu = env_archcpu(env); 14096 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14097 int bound, core_mmu_idx; 14098 14099 dc->isar = &arm_cpu->isar; 14100 dc->condjmp = 0; 14101 dc->pc_save = dc->base.pc_first; 14102 dc->aarch64 = true; 14103 dc->thumb = false; 14104 dc->sctlr_b = 0; 14105 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14106 dc->condexec_mask = 0; 14107 dc->condexec_cond = 0; 14108 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14109 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14110 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14111 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14112 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14113 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14114 #if !defined(CONFIG_USER_ONLY) 14115 dc->user = (dc->current_el == 0); 14116 #endif 14117 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14118 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14119 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14120 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14121 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14122 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14123 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14124 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14125 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14126 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14127 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14128 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14129 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14130 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14131 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14132 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14133 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14134 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14135 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14136 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14137 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14138 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14139 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14140 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 14141 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 14142 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 14143 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 14144 dc->vec_len = 0; 14145 dc->vec_stride = 0; 14146 dc->cp_regs = arm_cpu->cp_regs; 14147 dc->features = env->features; 14148 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14149 dc->gm_blocksize = arm_cpu->gm_blocksize; 14150 14151 #ifdef CONFIG_USER_ONLY 14152 /* In sve_probe_page, we assume TBI is enabled. */ 14153 tcg_debug_assert(dc->tbid & 1); 14154 #endif 14155 14156 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14157 14158 /* Single step state. The code-generation logic here is: 14159 * SS_ACTIVE == 0: 14160 * generate code with no special handling for single-stepping (except 14161 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14162 * this happens anyway because those changes are all system register or 14163 * PSTATE writes). 14164 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14165 * emit code for one insn 14166 * emit code to clear PSTATE.SS 14167 * emit code to generate software step exception for completed step 14168 * end TB (as usual for having generated an exception) 14169 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14170 * emit code to generate a software step exception 14171 * end the TB 14172 */ 14173 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14174 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14175 dc->is_ldex = false; 14176 14177 /* Bound the number of insns to execute to those left on the page. */ 14178 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14179 14180 /* If architectural single step active, limit to 1. */ 14181 if (dc->ss_active) { 14182 bound = 1; 14183 } 14184 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14185 } 14186 14187 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14188 { 14189 } 14190 14191 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14192 { 14193 DisasContext *dc = container_of(dcbase, DisasContext, base); 14194 target_ulong pc_arg = dc->base.pc_next; 14195 14196 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14197 pc_arg &= ~TARGET_PAGE_MASK; 14198 } 14199 tcg_gen_insn_start(pc_arg, 0, 0); 14200 dc->insn_start_updated = false; 14201 } 14202 14203 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14204 { 14205 DisasContext *s = container_of(dcbase, DisasContext, base); 14206 CPUARMState *env = cpu_env(cpu); 14207 uint64_t pc = s->base.pc_next; 14208 uint32_t insn; 14209 14210 /* Singlestep exceptions have the highest priority. */ 14211 if (s->ss_active && !s->pstate_ss) { 14212 /* Singlestep state is Active-pending. 14213 * If we're in this state at the start of a TB then either 14214 * a) we just took an exception to an EL which is being debugged 14215 * and this is the first insn in the exception handler 14216 * b) debug exceptions were masked and we just unmasked them 14217 * without changing EL (eg by clearing PSTATE.D) 14218 * In either case we're going to take a swstep exception in the 14219 * "did not step an insn" case, and so the syndrome ISV and EX 14220 * bits should be zero. 14221 */ 14222 assert(s->base.num_insns == 1); 14223 gen_swstep_exception(s, 0, 0); 14224 s->base.is_jmp = DISAS_NORETURN; 14225 s->base.pc_next = pc + 4; 14226 return; 14227 } 14228 14229 if (pc & 3) { 14230 /* 14231 * PC alignment fault. This has priority over the instruction abort 14232 * that we would receive from a translation fault via arm_ldl_code. 14233 * This should only be possible after an indirect branch, at the 14234 * start of the TB. 14235 */ 14236 assert(s->base.num_insns == 1); 14237 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14238 s->base.is_jmp = DISAS_NORETURN; 14239 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14240 return; 14241 } 14242 14243 s->pc_curr = pc; 14244 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14245 s->insn = insn; 14246 s->base.pc_next = pc + 4; 14247 14248 s->fp_access_checked = false; 14249 s->sve_access_checked = false; 14250 14251 if (s->pstate_il) { 14252 /* 14253 * Illegal execution state. This has priority over BTI 14254 * exceptions, but comes after instruction abort exceptions. 14255 */ 14256 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14257 return; 14258 } 14259 14260 if (dc_isar_feature(aa64_bti, s)) { 14261 if (s->base.num_insns == 1) { 14262 /* 14263 * At the first insn of the TB, compute s->guarded_page. 14264 * We delayed computing this until successfully reading 14265 * the first insn of the TB, above. This (mostly) ensures 14266 * that the softmmu tlb entry has been populated, and the 14267 * page table GP bit is available. 14268 * 14269 * Note that we need to compute this even if btype == 0, 14270 * because this value is used for BR instructions later 14271 * where ENV is not available. 14272 */ 14273 s->guarded_page = is_guarded_page(env, s); 14274 14275 /* First insn can have btype set to non-zero. */ 14276 tcg_debug_assert(s->btype >= 0); 14277 14278 /* 14279 * Note that the Branch Target Exception has fairly high 14280 * priority -- below debugging exceptions but above most 14281 * everything else. This allows us to handle this now 14282 * instead of waiting until the insn is otherwise decoded. 14283 */ 14284 if (s->btype != 0 14285 && s->guarded_page 14286 && !btype_destination_ok(insn, s->bt, s->btype)) { 14287 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14288 return; 14289 } 14290 } else { 14291 /* Not the first insn: btype must be 0. */ 14292 tcg_debug_assert(s->btype == 0); 14293 } 14294 } 14295 14296 s->is_nonstreaming = false; 14297 if (s->sme_trap_nonstreaming) { 14298 disas_sme_fa64(s, insn); 14299 } 14300 14301 if (!disas_a64(s, insn) && 14302 !disas_sme(s, insn) && 14303 !disas_sve(s, insn)) { 14304 disas_a64_legacy(s, insn); 14305 } 14306 14307 /* 14308 * After execution of most insns, btype is reset to 0. 14309 * Note that we set btype == -1 when the insn sets btype. 14310 */ 14311 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14312 reset_btype(s); 14313 } 14314 } 14315 14316 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14317 { 14318 DisasContext *dc = container_of(dcbase, DisasContext, base); 14319 14320 if (unlikely(dc->ss_active)) { 14321 /* Note that this means single stepping WFI doesn't halt the CPU. 14322 * For conditional branch insns this is harmless unreachable code as 14323 * gen_goto_tb() has already handled emitting the debug exception 14324 * (and thus a tb-jump is not possible when singlestepping). 14325 */ 14326 switch (dc->base.is_jmp) { 14327 default: 14328 gen_a64_update_pc(dc, 4); 14329 /* fall through */ 14330 case DISAS_EXIT: 14331 case DISAS_JUMP: 14332 gen_step_complete_exception(dc); 14333 break; 14334 case DISAS_NORETURN: 14335 break; 14336 } 14337 } else { 14338 switch (dc->base.is_jmp) { 14339 case DISAS_NEXT: 14340 case DISAS_TOO_MANY: 14341 gen_goto_tb(dc, 1, 4); 14342 break; 14343 default: 14344 case DISAS_UPDATE_EXIT: 14345 gen_a64_update_pc(dc, 4); 14346 /* fall through */ 14347 case DISAS_EXIT: 14348 tcg_gen_exit_tb(NULL, 0); 14349 break; 14350 case DISAS_UPDATE_NOCHAIN: 14351 gen_a64_update_pc(dc, 4); 14352 /* fall through */ 14353 case DISAS_JUMP: 14354 tcg_gen_lookup_and_goto_ptr(); 14355 break; 14356 case DISAS_NORETURN: 14357 case DISAS_SWI: 14358 break; 14359 case DISAS_WFE: 14360 gen_a64_update_pc(dc, 4); 14361 gen_helper_wfe(tcg_env); 14362 break; 14363 case DISAS_YIELD: 14364 gen_a64_update_pc(dc, 4); 14365 gen_helper_yield(tcg_env); 14366 break; 14367 case DISAS_WFI: 14368 /* 14369 * This is a special case because we don't want to just halt 14370 * the CPU if trying to debug across a WFI. 14371 */ 14372 gen_a64_update_pc(dc, 4); 14373 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14374 /* 14375 * The helper doesn't necessarily throw an exception, but we 14376 * must go back to the main loop to check for interrupts anyway. 14377 */ 14378 tcg_gen_exit_tb(NULL, 0); 14379 break; 14380 } 14381 } 14382 } 14383 14384 const TranslatorOps aarch64_translator_ops = { 14385 .init_disas_context = aarch64_tr_init_disas_context, 14386 .tb_start = aarch64_tr_tb_start, 14387 .insn_start = aarch64_tr_insn_start, 14388 .translate_insn = aarch64_tr_translate_insn, 14389 .tb_stop = aarch64_tr_tb_stop, 14390 }; 14391