1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 /* HINT instruction group, including various allocated HINTs */ 1653 static void handle_hint(DisasContext *s, uint32_t insn, 1654 unsigned int op1, unsigned int op2, unsigned int crm) 1655 { 1656 unsigned int selector = crm << 3 | op2; 1657 1658 if (op1 != 3) { 1659 unallocated_encoding(s); 1660 return; 1661 } 1662 1663 switch (selector) { 1664 case 0b00000: /* NOP */ 1665 break; 1666 case 0b00011: /* WFI */ 1667 s->base.is_jmp = DISAS_WFI; 1668 break; 1669 case 0b00001: /* YIELD */ 1670 /* When running in MTTCG we don't generate jumps to the yield and 1671 * WFE helpers as it won't affect the scheduling of other vCPUs. 1672 * If we wanted to more completely model WFE/SEV so we don't busy 1673 * spin unnecessarily we would need to do something more involved. 1674 */ 1675 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1676 s->base.is_jmp = DISAS_YIELD; 1677 } 1678 break; 1679 case 0b00010: /* WFE */ 1680 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1681 s->base.is_jmp = DISAS_WFE; 1682 } 1683 break; 1684 case 0b00100: /* SEV */ 1685 case 0b00101: /* SEVL */ 1686 case 0b00110: /* DGH */ 1687 /* we treat all as NOP at least for now */ 1688 break; 1689 case 0b00111: /* XPACLRI */ 1690 if (s->pauth_active) { 1691 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1692 } 1693 break; 1694 case 0b01000: /* PACIA1716 */ 1695 if (s->pauth_active) { 1696 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1697 } 1698 break; 1699 case 0b01010: /* PACIB1716 */ 1700 if (s->pauth_active) { 1701 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1702 } 1703 break; 1704 case 0b01100: /* AUTIA1716 */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1707 } 1708 break; 1709 case 0b01110: /* AUTIB1716 */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1712 } 1713 break; 1714 case 0b10000: /* ESB */ 1715 /* Without RAS, we must implement this as NOP. */ 1716 if (dc_isar_feature(aa64_ras, s)) { 1717 /* 1718 * QEMU does not have a source of physical SErrors, 1719 * so we are only concerned with virtual SErrors. 1720 * The pseudocode in the ARM for this case is 1721 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1722 * AArch64.vESBOperation(); 1723 * Most of the condition can be evaluated at translation time. 1724 * Test for EL2 present, and defer test for SEL2 to runtime. 1725 */ 1726 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1727 gen_helper_vesb(cpu_env); 1728 } 1729 } 1730 break; 1731 case 0b11000: /* PACIAZ */ 1732 if (s->pauth_active) { 1733 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1734 tcg_constant_i64(0)); 1735 } 1736 break; 1737 case 0b11001: /* PACIASP */ 1738 if (s->pauth_active) { 1739 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1740 } 1741 break; 1742 case 0b11010: /* PACIBZ */ 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1745 tcg_constant_i64(0)); 1746 } 1747 break; 1748 case 0b11011: /* PACIBSP */ 1749 if (s->pauth_active) { 1750 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1751 } 1752 break; 1753 case 0b11100: /* AUTIAZ */ 1754 if (s->pauth_active) { 1755 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1756 tcg_constant_i64(0)); 1757 } 1758 break; 1759 case 0b11101: /* AUTIASP */ 1760 if (s->pauth_active) { 1761 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1762 } 1763 break; 1764 case 0b11110: /* AUTIBZ */ 1765 if (s->pauth_active) { 1766 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1767 tcg_constant_i64(0)); 1768 } 1769 break; 1770 case 0b11111: /* AUTIBSP */ 1771 if (s->pauth_active) { 1772 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1773 } 1774 break; 1775 default: 1776 /* default specified as NOP equivalent */ 1777 break; 1778 } 1779 } 1780 1781 static void gen_clrex(DisasContext *s, uint32_t insn) 1782 { 1783 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1784 } 1785 1786 /* CLREX, DSB, DMB, ISB */ 1787 static void handle_sync(DisasContext *s, uint32_t insn, 1788 unsigned int op1, unsigned int op2, unsigned int crm) 1789 { 1790 TCGBar bar; 1791 1792 if (op1 != 3) { 1793 unallocated_encoding(s); 1794 return; 1795 } 1796 1797 switch (op2) { 1798 case 2: /* CLREX */ 1799 gen_clrex(s, insn); 1800 return; 1801 case 4: /* DSB */ 1802 case 5: /* DMB */ 1803 switch (crm & 3) { 1804 case 1: /* MBReqTypes_Reads */ 1805 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1806 break; 1807 case 2: /* MBReqTypes_Writes */ 1808 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1809 break; 1810 default: /* MBReqTypes_All */ 1811 bar = TCG_BAR_SC | TCG_MO_ALL; 1812 break; 1813 } 1814 tcg_gen_mb(bar); 1815 return; 1816 case 6: /* ISB */ 1817 /* We need to break the TB after this insn to execute 1818 * a self-modified code correctly and also to take 1819 * any pending interrupts immediately. 1820 */ 1821 reset_btype(s); 1822 gen_goto_tb(s, 0, 4); 1823 return; 1824 1825 case 7: /* SB */ 1826 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1827 goto do_unallocated; 1828 } 1829 /* 1830 * TODO: There is no speculation barrier opcode for TCG; 1831 * MB and end the TB instead. 1832 */ 1833 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1834 gen_goto_tb(s, 0, 4); 1835 return; 1836 1837 default: 1838 do_unallocated: 1839 unallocated_encoding(s); 1840 return; 1841 } 1842 } 1843 1844 static void gen_xaflag(void) 1845 { 1846 TCGv_i32 z = tcg_temp_new_i32(); 1847 1848 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1849 1850 /* 1851 * (!C & !Z) << 31 1852 * (!(C | Z)) << 31 1853 * ~((C | Z) << 31) 1854 * ~-(C | Z) 1855 * (C | Z) - 1 1856 */ 1857 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1858 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1859 1860 /* !(Z & C) */ 1861 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1862 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1863 1864 /* (!C & Z) << 31 -> -(Z & ~C) */ 1865 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1866 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1867 1868 /* C | Z */ 1869 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1870 } 1871 1872 static void gen_axflag(void) 1873 { 1874 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1875 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1876 1877 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1878 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1879 1880 tcg_gen_movi_i32(cpu_NF, 0); 1881 tcg_gen_movi_i32(cpu_VF, 0); 1882 } 1883 1884 /* MSR (immediate) - move immediate to processor state field */ 1885 static void handle_msr_i(DisasContext *s, uint32_t insn, 1886 unsigned int op1, unsigned int op2, unsigned int crm) 1887 { 1888 int op = op1 << 3 | op2; 1889 1890 /* End the TB by default, chaining is ok. */ 1891 s->base.is_jmp = DISAS_TOO_MANY; 1892 1893 switch (op) { 1894 case 0x00: /* CFINV */ 1895 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1896 goto do_unallocated; 1897 } 1898 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1899 s->base.is_jmp = DISAS_NEXT; 1900 break; 1901 1902 case 0x01: /* XAFlag */ 1903 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1904 goto do_unallocated; 1905 } 1906 gen_xaflag(); 1907 s->base.is_jmp = DISAS_NEXT; 1908 break; 1909 1910 case 0x02: /* AXFlag */ 1911 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1912 goto do_unallocated; 1913 } 1914 gen_axflag(); 1915 s->base.is_jmp = DISAS_NEXT; 1916 break; 1917 1918 case 0x03: /* UAO */ 1919 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1920 goto do_unallocated; 1921 } 1922 if (crm & 1) { 1923 set_pstate_bits(PSTATE_UAO); 1924 } else { 1925 clear_pstate_bits(PSTATE_UAO); 1926 } 1927 gen_rebuild_hflags(s); 1928 break; 1929 1930 case 0x04: /* PAN */ 1931 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1932 goto do_unallocated; 1933 } 1934 if (crm & 1) { 1935 set_pstate_bits(PSTATE_PAN); 1936 } else { 1937 clear_pstate_bits(PSTATE_PAN); 1938 } 1939 gen_rebuild_hflags(s); 1940 break; 1941 1942 case 0x05: /* SPSel */ 1943 if (s->current_el == 0) { 1944 goto do_unallocated; 1945 } 1946 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1947 break; 1948 1949 case 0x19: /* SSBS */ 1950 if (!dc_isar_feature(aa64_ssbs, s)) { 1951 goto do_unallocated; 1952 } 1953 if (crm & 1) { 1954 set_pstate_bits(PSTATE_SSBS); 1955 } else { 1956 clear_pstate_bits(PSTATE_SSBS); 1957 } 1958 /* Don't need to rebuild hflags since SSBS is a nop */ 1959 break; 1960 1961 case 0x1a: /* DIT */ 1962 if (!dc_isar_feature(aa64_dit, s)) { 1963 goto do_unallocated; 1964 } 1965 if (crm & 1) { 1966 set_pstate_bits(PSTATE_DIT); 1967 } else { 1968 clear_pstate_bits(PSTATE_DIT); 1969 } 1970 /* There's no need to rebuild hflags because DIT is a nop */ 1971 break; 1972 1973 case 0x1e: /* DAIFSet */ 1974 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1975 break; 1976 1977 case 0x1f: /* DAIFClear */ 1978 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1979 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1980 s->base.is_jmp = DISAS_UPDATE_EXIT; 1981 break; 1982 1983 case 0x1c: /* TCO */ 1984 if (dc_isar_feature(aa64_mte, s)) { 1985 /* Full MTE is enabled -- set the TCO bit as directed. */ 1986 if (crm & 1) { 1987 set_pstate_bits(PSTATE_TCO); 1988 } else { 1989 clear_pstate_bits(PSTATE_TCO); 1990 } 1991 gen_rebuild_hflags(s); 1992 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1993 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1994 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1995 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1996 s->base.is_jmp = DISAS_NEXT; 1997 } else { 1998 goto do_unallocated; 1999 } 2000 break; 2001 2002 case 0x1b: /* SVCR* */ 2003 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2004 goto do_unallocated; 2005 } 2006 if (sme_access_check(s)) { 2007 int old = s->pstate_sm | (s->pstate_za << 1); 2008 int new = (crm & 1) * 3; 2009 int msk = (crm >> 1) & 3; 2010 2011 if ((old ^ new) & msk) { 2012 /* At least one bit changes. */ 2013 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2014 tcg_constant_i32(msk)); 2015 } else { 2016 s->base.is_jmp = DISAS_NEXT; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 do_unallocated: 2023 unallocated_encoding(s); 2024 return; 2025 } 2026 } 2027 2028 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2029 { 2030 TCGv_i32 tmp = tcg_temp_new_i32(); 2031 TCGv_i32 nzcv = tcg_temp_new_i32(); 2032 2033 /* build bit 31, N */ 2034 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2035 /* build bit 30, Z */ 2036 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2037 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2038 /* build bit 29, C */ 2039 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2040 /* build bit 28, V */ 2041 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2042 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2043 /* generate result */ 2044 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2045 } 2046 2047 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2048 { 2049 TCGv_i32 nzcv = tcg_temp_new_i32(); 2050 2051 /* take NZCV from R[t] */ 2052 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2053 2054 /* bit 31, N */ 2055 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2056 /* bit 30, Z */ 2057 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2059 /* bit 29, C */ 2060 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2061 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2062 /* bit 28, V */ 2063 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2064 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2065 } 2066 2067 static void gen_sysreg_undef(DisasContext *s, bool isread, 2068 uint8_t op0, uint8_t op1, uint8_t op2, 2069 uint8_t crn, uint8_t crm, uint8_t rt) 2070 { 2071 /* 2072 * Generate code to emit an UNDEF with correct syndrome 2073 * information for a failed system register access. 2074 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2075 * but if FEAT_IDST is implemented then read accesses to registers 2076 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2077 * syndrome. 2078 */ 2079 uint32_t syndrome; 2080 2081 if (isread && dc_isar_feature(aa64_ids, s) && 2082 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2083 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2084 } else { 2085 syndrome = syn_uncategorized(); 2086 } 2087 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2088 } 2089 2090 /* MRS - move from system register 2091 * MSR (register) - move to system register 2092 * SYS 2093 * SYSL 2094 * These are all essentially the same insn in 'read' and 'write' 2095 * versions, with varying op0 fields. 2096 */ 2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2098 unsigned int op0, unsigned int op1, unsigned int op2, 2099 unsigned int crn, unsigned int crm, unsigned int rt) 2100 { 2101 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2102 crn, crm, op0, op1, op2); 2103 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2104 bool need_exit_tb = false; 2105 TCGv_ptr tcg_ri = NULL; 2106 TCGv_i64 tcg_rt; 2107 2108 if (!ri) { 2109 /* Unknown register; this might be a guest error or a QEMU 2110 * unimplemented feature. 2111 */ 2112 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2113 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2114 isread ? "read" : "write", op0, op1, crn, crm, op2); 2115 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2116 return; 2117 } 2118 2119 /* Check access permissions */ 2120 if (!cp_access_ok(s->current_el, ri, isread)) { 2121 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2122 return; 2123 } 2124 2125 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2126 /* Emit code to perform further access permissions checks at 2127 * runtime; this may result in an exception. 2128 */ 2129 uint32_t syndrome; 2130 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 gen_a64_update_pc(s, 0); 2133 tcg_ri = tcg_temp_new_ptr(); 2134 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2135 tcg_constant_i32(key), 2136 tcg_constant_i32(syndrome), 2137 tcg_constant_i32(isread)); 2138 } else if (ri->type & ARM_CP_RAISES_EXC) { 2139 /* 2140 * The readfn or writefn might raise an exception; 2141 * synchronize the CPU state in case it does. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 } 2145 2146 /* Handle special cases first */ 2147 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2148 case 0: 2149 break; 2150 case ARM_CP_NOP: 2151 return; 2152 case ARM_CP_NZCV: 2153 tcg_rt = cpu_reg(s, rt); 2154 if (isread) { 2155 gen_get_nzcv(tcg_rt); 2156 } else { 2157 gen_set_nzcv(tcg_rt); 2158 } 2159 return; 2160 case ARM_CP_CURRENTEL: 2161 /* Reads as current EL value from pstate, which is 2162 * guaranteed to be constant by the tb flags. 2163 */ 2164 tcg_rt = cpu_reg(s, rt); 2165 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2166 return; 2167 case ARM_CP_DC_ZVA: 2168 /* Writes clear the aligned block of memory which rt points into. */ 2169 if (s->mte_active[0]) { 2170 int desc = 0; 2171 2172 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2173 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2174 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2175 2176 tcg_rt = tcg_temp_new_i64(); 2177 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2178 tcg_constant_i32(desc), cpu_reg(s, rt)); 2179 } else { 2180 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2181 } 2182 gen_helper_dc_zva(cpu_env, tcg_rt); 2183 return; 2184 case ARM_CP_DC_GVA: 2185 { 2186 TCGv_i64 clean_addr, tag; 2187 2188 /* 2189 * DC_GVA, like DC_ZVA, requires that we supply the original 2190 * pointer for an invalid page. Probe that address first. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 clean_addr = clean_data_tbi(s, tcg_rt); 2194 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2195 2196 if (s->ata) { 2197 /* Extract the tag from the register to match STZGM. */ 2198 tag = tcg_temp_new_i64(); 2199 tcg_gen_shri_i64(tag, tcg_rt, 56); 2200 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2201 } 2202 } 2203 return; 2204 case ARM_CP_DC_GZVA: 2205 { 2206 TCGv_i64 clean_addr, tag; 2207 2208 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2209 tcg_rt = cpu_reg(s, rt); 2210 clean_addr = clean_data_tbi(s, tcg_rt); 2211 gen_helper_dc_zva(cpu_env, clean_addr); 2212 2213 if (s->ata) { 2214 /* Extract the tag from the register to match STZGM. */ 2215 tag = tcg_temp_new_i64(); 2216 tcg_gen_shri_i64(tag, tcg_rt, 56); 2217 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2218 } 2219 } 2220 return; 2221 default: 2222 g_assert_not_reached(); 2223 } 2224 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2225 return; 2226 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2227 return; 2228 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2229 return; 2230 } 2231 2232 if (ri->type & ARM_CP_IO) { 2233 /* I/O operations must end the TB here (whether read or write) */ 2234 need_exit_tb = translator_io_start(&s->base); 2235 } 2236 2237 tcg_rt = cpu_reg(s, rt); 2238 2239 if (isread) { 2240 if (ri->type & ARM_CP_CONST) { 2241 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2242 } else if (ri->readfn) { 2243 if (!tcg_ri) { 2244 tcg_ri = gen_lookup_cp_reg(key); 2245 } 2246 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2247 } else { 2248 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2249 } 2250 } else { 2251 if (ri->type & ARM_CP_CONST) { 2252 /* If not forbidden by access permissions, treat as WI */ 2253 return; 2254 } else if (ri->writefn) { 2255 if (!tcg_ri) { 2256 tcg_ri = gen_lookup_cp_reg(key); 2257 } 2258 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2259 } else { 2260 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2261 } 2262 } 2263 2264 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2265 /* 2266 * A write to any coprocessor regiser that ends a TB 2267 * must rebuild the hflags for the next TB. 2268 */ 2269 gen_rebuild_hflags(s); 2270 /* 2271 * We default to ending the TB on a coprocessor register write, 2272 * but allow this to be suppressed by the register definition 2273 * (usually only necessary to work around guest bugs). 2274 */ 2275 need_exit_tb = true; 2276 } 2277 if (need_exit_tb) { 2278 s->base.is_jmp = DISAS_UPDATE_EXIT; 2279 } 2280 } 2281 2282 /* System 2283 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2284 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2285 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2286 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2287 */ 2288 static void disas_system(DisasContext *s, uint32_t insn) 2289 { 2290 unsigned int l, op0, op1, crn, crm, op2, rt; 2291 l = extract32(insn, 21, 1); 2292 op0 = extract32(insn, 19, 2); 2293 op1 = extract32(insn, 16, 3); 2294 crn = extract32(insn, 12, 4); 2295 crm = extract32(insn, 8, 4); 2296 op2 = extract32(insn, 5, 3); 2297 rt = extract32(insn, 0, 5); 2298 2299 if (op0 == 0) { 2300 if (l || rt != 31) { 2301 unallocated_encoding(s); 2302 return; 2303 } 2304 switch (crn) { 2305 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2306 handle_hint(s, insn, op1, op2, crm); 2307 break; 2308 case 3: /* CLREX, DSB, DMB, ISB */ 2309 handle_sync(s, insn, op1, op2, crm); 2310 break; 2311 case 4: /* MSR (immediate) */ 2312 handle_msr_i(s, insn, op1, op2, crm); 2313 break; 2314 default: 2315 unallocated_encoding(s); 2316 break; 2317 } 2318 return; 2319 } 2320 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2321 } 2322 2323 /* Exception generation 2324 * 2325 * 31 24 23 21 20 5 4 2 1 0 2326 * +-----------------+-----+------------------------+-----+----+ 2327 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2328 * +-----------------------+------------------------+----------+ 2329 */ 2330 static void disas_exc(DisasContext *s, uint32_t insn) 2331 { 2332 int opc = extract32(insn, 21, 3); 2333 int op2_ll = extract32(insn, 0, 5); 2334 int imm16 = extract32(insn, 5, 16); 2335 uint32_t syndrome; 2336 2337 switch (opc) { 2338 case 0: 2339 /* For SVC, HVC and SMC we advance the single-step state 2340 * machine before taking the exception. This is architecturally 2341 * mandated, to ensure that single-stepping a system call 2342 * instruction works properly. 2343 */ 2344 switch (op2_ll) { 2345 case 1: /* SVC */ 2346 syndrome = syn_aa64_svc(imm16); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 break; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 break; 2354 case 2: /* HVC */ 2355 if (s->current_el == 0) { 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 /* The pre HVC helper handles cases when HVC gets trapped 2360 * as an undefined insn by runtime configuration. 2361 */ 2362 gen_a64_update_pc(s, 0); 2363 gen_helper_pre_hvc(cpu_env); 2364 gen_ss_advance(s); 2365 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2366 break; 2367 case 3: /* SMC */ 2368 if (s->current_el == 0) { 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 gen_a64_update_pc(s, 0); 2373 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2374 gen_ss_advance(s); 2375 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2376 break; 2377 default: 2378 unallocated_encoding(s); 2379 break; 2380 } 2381 break; 2382 case 1: 2383 if (op2_ll != 0) { 2384 unallocated_encoding(s); 2385 break; 2386 } 2387 /* BRK */ 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2389 break; 2390 case 2: 2391 if (op2_ll != 0) { 2392 unallocated_encoding(s); 2393 break; 2394 } 2395 /* HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 break; 2407 case 5: 2408 if (op2_ll < 1 || op2_ll > 3) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* DCPS1, DCPS2, DCPS3 */ 2413 unallocated_encoding(s); 2414 break; 2415 default: 2416 unallocated_encoding(s); 2417 break; 2418 } 2419 } 2420 2421 /* Branches, exception generating and system instructions */ 2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2423 { 2424 switch (extract32(insn, 25, 7)) { 2425 case 0x6a: /* Exception generation / System */ 2426 if (insn & (1 << 24)) { 2427 if (extract32(insn, 22, 2) == 0) { 2428 disas_system(s, insn); 2429 } else { 2430 unallocated_encoding(s); 2431 } 2432 } else { 2433 disas_exc(s, insn); 2434 } 2435 break; 2436 default: 2437 unallocated_encoding(s); 2438 break; 2439 } 2440 } 2441 2442 /* 2443 * Load/Store exclusive instructions are implemented by remembering 2444 * the value/address loaded, and seeing if these are the same 2445 * when the store is performed. This is not actually the architecturally 2446 * mandated semantics, but it works for typical guest code sequences 2447 * and avoids having to monitor regular stores. 2448 * 2449 * The store exclusive uses the atomic cmpxchg primitives to avoid 2450 * races in multi-threaded linux-user and when MTTCG softmmu is 2451 * enabled. 2452 */ 2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2454 int size, bool is_pair) 2455 { 2456 int idx = get_mem_index(s); 2457 TCGv_i64 dirty_addr, clean_addr; 2458 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2459 2460 s->is_ldex = true; 2461 dirty_addr = cpu_reg_sp(s, rn); 2462 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2463 2464 g_assert(size <= 3); 2465 if (is_pair) { 2466 g_assert(size >= 2); 2467 if (size == 2) { 2468 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2469 if (s->be_data == MO_LE) { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2472 } else { 2473 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2474 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2475 } 2476 } else { 2477 TCGv_i128 t16 = tcg_temp_new_i128(); 2478 2479 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2480 2481 if (s->be_data == MO_LE) { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2483 cpu_exclusive_high, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2486 cpu_exclusive_val, t16); 2487 } 2488 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2489 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2490 } 2491 } else { 2492 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2493 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2494 } 2495 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2496 } 2497 2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2499 int rn, int size, int is_pair) 2500 { 2501 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2502 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2503 * [addr] = {Rt}; 2504 * if (is_pair) { 2505 * [addr + datasize] = {Rt2}; 2506 * } 2507 * {Rd} = 0; 2508 * } else { 2509 * {Rd} = 1; 2510 * } 2511 * env->exclusive_addr = -1; 2512 */ 2513 TCGLabel *fail_label = gen_new_label(); 2514 TCGLabel *done_label = gen_new_label(); 2515 TCGv_i64 tmp, dirty_addr, clean_addr; 2516 MemOp memop; 2517 2518 memop = (size + is_pair) | MO_ALIGN; 2519 memop = finalize_memop(s, memop); 2520 2521 dirty_addr = cpu_reg_sp(s, rn); 2522 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, memop); 2523 2524 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2525 2526 tmp = tcg_temp_new_i64(); 2527 if (is_pair) { 2528 if (size == 2) { 2529 if (s->be_data == MO_LE) { 2530 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2531 } else { 2532 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2533 } 2534 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2535 cpu_exclusive_val, tmp, 2536 get_mem_index(s), memop); 2537 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2538 } else { 2539 TCGv_i128 t16 = tcg_temp_new_i128(); 2540 TCGv_i128 c16 = tcg_temp_new_i128(); 2541 TCGv_i64 a, b; 2542 2543 if (s->be_data == MO_LE) { 2544 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2545 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2546 cpu_exclusive_high); 2547 } else { 2548 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2549 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2550 cpu_exclusive_val); 2551 } 2552 2553 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2554 get_mem_index(s), memop); 2555 2556 a = tcg_temp_new_i64(); 2557 b = tcg_temp_new_i64(); 2558 if (s->be_data == MO_LE) { 2559 tcg_gen_extr_i128_i64(a, b, t16); 2560 } else { 2561 tcg_gen_extr_i128_i64(b, a, t16); 2562 } 2563 2564 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2565 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2566 tcg_gen_or_i64(tmp, a, b); 2567 2568 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2569 } 2570 } else { 2571 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2572 cpu_reg(s, rt), get_mem_index(s), memop); 2573 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2574 } 2575 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2576 tcg_gen_br(done_label); 2577 2578 gen_set_label(fail_label); 2579 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2580 gen_set_label(done_label); 2581 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2582 } 2583 2584 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2585 int rn, int size) 2586 { 2587 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2588 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2589 int memidx = get_mem_index(s); 2590 TCGv_i64 clean_addr; 2591 MemOp memop; 2592 2593 if (rn == 31) { 2594 gen_check_sp_alignment(s); 2595 } 2596 memop = check_atomic_align(s, rn, size); 2597 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2598 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2599 memidx, memop); 2600 } 2601 2602 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2603 int rn, int size) 2604 { 2605 TCGv_i64 s1 = cpu_reg(s, rs); 2606 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2607 TCGv_i64 t1 = cpu_reg(s, rt); 2608 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2609 TCGv_i64 clean_addr; 2610 int memidx = get_mem_index(s); 2611 MemOp memop; 2612 2613 if (rn == 31) { 2614 gen_check_sp_alignment(s); 2615 } 2616 2617 /* This is a single atomic access, despite the "pair". */ 2618 memop = check_atomic_align(s, rn, size + 1); 2619 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2620 2621 if (size == 2) { 2622 TCGv_i64 cmp = tcg_temp_new_i64(); 2623 TCGv_i64 val = tcg_temp_new_i64(); 2624 2625 if (s->be_data == MO_LE) { 2626 tcg_gen_concat32_i64(val, t1, t2); 2627 tcg_gen_concat32_i64(cmp, s1, s2); 2628 } else { 2629 tcg_gen_concat32_i64(val, t2, t1); 2630 tcg_gen_concat32_i64(cmp, s2, s1); 2631 } 2632 2633 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2634 2635 if (s->be_data == MO_LE) { 2636 tcg_gen_extr32_i64(s1, s2, cmp); 2637 } else { 2638 tcg_gen_extr32_i64(s2, s1, cmp); 2639 } 2640 } else { 2641 TCGv_i128 cmp = tcg_temp_new_i128(); 2642 TCGv_i128 val = tcg_temp_new_i128(); 2643 2644 if (s->be_data == MO_LE) { 2645 tcg_gen_concat_i64_i128(val, t1, t2); 2646 tcg_gen_concat_i64_i128(cmp, s1, s2); 2647 } else { 2648 tcg_gen_concat_i64_i128(val, t2, t1); 2649 tcg_gen_concat_i64_i128(cmp, s2, s1); 2650 } 2651 2652 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2653 2654 if (s->be_data == MO_LE) { 2655 tcg_gen_extr_i128_i64(s1, s2, cmp); 2656 } else { 2657 tcg_gen_extr_i128_i64(s2, s1, cmp); 2658 } 2659 } 2660 } 2661 2662 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2663 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2664 */ 2665 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2666 { 2667 int opc0 = extract32(opc, 0, 1); 2668 int regsize; 2669 2670 if (is_signed) { 2671 regsize = opc0 ? 32 : 64; 2672 } else { 2673 regsize = size == 3 ? 64 : 32; 2674 } 2675 return regsize == 64; 2676 } 2677 2678 /* Load/store exclusive 2679 * 2680 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2681 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2682 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2683 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2684 * 2685 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2686 * L: 0 -> store, 1 -> load 2687 * o2: 0 -> exclusive, 1 -> not 2688 * o1: 0 -> single register, 1 -> register pair 2689 * o0: 1 -> load-acquire/store-release, 0 -> not 2690 */ 2691 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2692 { 2693 int rt = extract32(insn, 0, 5); 2694 int rn = extract32(insn, 5, 5); 2695 int rt2 = extract32(insn, 10, 5); 2696 int rs = extract32(insn, 16, 5); 2697 int is_lasr = extract32(insn, 15, 1); 2698 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2699 int size = extract32(insn, 30, 2); 2700 TCGv_i64 clean_addr; 2701 MemOp memop; 2702 2703 switch (o2_L_o1_o0) { 2704 case 0x0: /* STXR */ 2705 case 0x1: /* STLXR */ 2706 if (rn == 31) { 2707 gen_check_sp_alignment(s); 2708 } 2709 if (is_lasr) { 2710 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2711 } 2712 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2713 return; 2714 2715 case 0x4: /* LDXR */ 2716 case 0x5: /* LDAXR */ 2717 if (rn == 31) { 2718 gen_check_sp_alignment(s); 2719 } 2720 gen_load_exclusive(s, rt, rt2, rn, size, false); 2721 if (is_lasr) { 2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2723 } 2724 return; 2725 2726 case 0x8: /* STLLR */ 2727 if (!dc_isar_feature(aa64_lor, s)) { 2728 break; 2729 } 2730 /* StoreLORelease is the same as Store-Release for QEMU. */ 2731 /* fall through */ 2732 case 0x9: /* STLR */ 2733 /* Generate ISS for non-exclusive accesses including LASR. */ 2734 if (rn == 31) { 2735 gen_check_sp_alignment(s); 2736 } 2737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2738 memop = check_ordered_align(s, rn, 0, true, size); 2739 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2740 true, rn != 31, memop); 2741 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2742 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2743 return; 2744 2745 case 0xc: /* LDLAR */ 2746 if (!dc_isar_feature(aa64_lor, s)) { 2747 break; 2748 } 2749 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2750 /* fall through */ 2751 case 0xd: /* LDAR */ 2752 /* Generate ISS for non-exclusive accesses including LASR. */ 2753 if (rn == 31) { 2754 gen_check_sp_alignment(s); 2755 } 2756 memop = check_ordered_align(s, rn, 0, false, size); 2757 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2758 false, rn != 31, memop); 2759 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2760 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2761 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2762 return; 2763 2764 case 0x2: case 0x3: /* CASP / STXP */ 2765 if (size & 2) { /* STXP / STLXP */ 2766 if (rn == 31) { 2767 gen_check_sp_alignment(s); 2768 } 2769 if (is_lasr) { 2770 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2771 } 2772 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2773 return; 2774 } 2775 if (rt2 == 31 2776 && ((rt | rs) & 1) == 0 2777 && dc_isar_feature(aa64_atomics, s)) { 2778 /* CASP / CASPL */ 2779 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2780 return; 2781 } 2782 break; 2783 2784 case 0x6: case 0x7: /* CASPA / LDXP */ 2785 if (size & 2) { /* LDXP / LDAXP */ 2786 if (rn == 31) { 2787 gen_check_sp_alignment(s); 2788 } 2789 gen_load_exclusive(s, rt, rt2, rn, size, true); 2790 if (is_lasr) { 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2792 } 2793 return; 2794 } 2795 if (rt2 == 31 2796 && ((rt | rs) & 1) == 0 2797 && dc_isar_feature(aa64_atomics, s)) { 2798 /* CASPA / CASPAL */ 2799 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2800 return; 2801 } 2802 break; 2803 2804 case 0xa: /* CAS */ 2805 case 0xb: /* CASL */ 2806 case 0xe: /* CASA */ 2807 case 0xf: /* CASAL */ 2808 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2809 gen_compare_and_swap(s, rs, rt, rn, size); 2810 return; 2811 } 2812 break; 2813 } 2814 unallocated_encoding(s); 2815 } 2816 2817 /* 2818 * Load register (literal) 2819 * 2820 * 31 30 29 27 26 25 24 23 5 4 0 2821 * +-----+-------+---+-----+-------------------+-------+ 2822 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2823 * +-----+-------+---+-----+-------------------+-------+ 2824 * 2825 * V: 1 -> vector (simd/fp) 2826 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2827 * 10-> 32 bit signed, 11 -> prefetch 2828 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2829 */ 2830 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2831 { 2832 int rt = extract32(insn, 0, 5); 2833 int64_t imm = sextract32(insn, 5, 19) << 2; 2834 bool is_vector = extract32(insn, 26, 1); 2835 int opc = extract32(insn, 30, 2); 2836 bool is_signed = false; 2837 int size = 2; 2838 TCGv_i64 tcg_rt, clean_addr; 2839 MemOp memop; 2840 2841 if (is_vector) { 2842 if (opc == 3) { 2843 unallocated_encoding(s); 2844 return; 2845 } 2846 size = 2 + opc; 2847 if (!fp_access_check(s)) { 2848 return; 2849 } 2850 memop = finalize_memop_asimd(s, size); 2851 } else { 2852 if (opc == 3) { 2853 /* PRFM (literal) : prefetch */ 2854 return; 2855 } 2856 size = 2 + extract32(opc, 0, 1); 2857 is_signed = extract32(opc, 1, 1); 2858 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2859 } 2860 2861 tcg_rt = cpu_reg(s, rt); 2862 2863 clean_addr = tcg_temp_new_i64(); 2864 gen_pc_plus_diff(s, clean_addr, imm); 2865 2866 if (is_vector) { 2867 do_fp_ld(s, rt, clean_addr, memop); 2868 } else { 2869 /* Only unsigned 32bit loads target 32bit registers. */ 2870 bool iss_sf = opc != 0; 2871 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2872 } 2873 } 2874 2875 /* 2876 * LDNP (Load Pair - non-temporal hint) 2877 * LDP (Load Pair - non vector) 2878 * LDPSW (Load Pair Signed Word - non vector) 2879 * STNP (Store Pair - non-temporal hint) 2880 * STP (Store Pair - non vector) 2881 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2882 * LDP (Load Pair of SIMD&FP) 2883 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2884 * STP (Store Pair of SIMD&FP) 2885 * 2886 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2887 * +-----+-------+---+---+-------+---+-----------------------------+ 2888 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2889 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2890 * 2891 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2892 * LDPSW/STGP 01 2893 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2894 * V: 0 -> GPR, 1 -> Vector 2895 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2896 * 10 -> signed offset, 11 -> pre-index 2897 * L: 0 -> Store 1 -> Load 2898 * 2899 * Rt, Rt2 = GPR or SIMD registers to be stored 2900 * Rn = general purpose register containing address 2901 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2902 */ 2903 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2904 { 2905 int rt = extract32(insn, 0, 5); 2906 int rn = extract32(insn, 5, 5); 2907 int rt2 = extract32(insn, 10, 5); 2908 uint64_t offset = sextract64(insn, 15, 7); 2909 int index = extract32(insn, 23, 2); 2910 bool is_vector = extract32(insn, 26, 1); 2911 bool is_load = extract32(insn, 22, 1); 2912 int opc = extract32(insn, 30, 2); 2913 bool is_signed = false; 2914 bool postindex = false; 2915 bool wback = false; 2916 bool set_tag = false; 2917 TCGv_i64 clean_addr, dirty_addr; 2918 MemOp mop; 2919 int size; 2920 2921 if (opc == 3) { 2922 unallocated_encoding(s); 2923 return; 2924 } 2925 2926 if (is_vector) { 2927 size = 2 + opc; 2928 } else if (opc == 1 && !is_load) { 2929 /* STGP */ 2930 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2931 unallocated_encoding(s); 2932 return; 2933 } 2934 size = 3; 2935 set_tag = true; 2936 } else { 2937 size = 2 + extract32(opc, 1, 1); 2938 is_signed = extract32(opc, 0, 1); 2939 if (!is_load && is_signed) { 2940 unallocated_encoding(s); 2941 return; 2942 } 2943 } 2944 2945 switch (index) { 2946 case 1: /* post-index */ 2947 postindex = true; 2948 wback = true; 2949 break; 2950 case 0: 2951 /* signed offset with "non-temporal" hint. Since we don't emulate 2952 * caches we don't care about hints to the cache system about 2953 * data access patterns, and handle this identically to plain 2954 * signed offset. 2955 */ 2956 if (is_signed) { 2957 /* There is no non-temporal-hint version of LDPSW */ 2958 unallocated_encoding(s); 2959 return; 2960 } 2961 postindex = false; 2962 break; 2963 case 2: /* signed offset, rn not updated */ 2964 postindex = false; 2965 break; 2966 case 3: /* pre-index */ 2967 postindex = false; 2968 wback = true; 2969 break; 2970 } 2971 2972 if (is_vector && !fp_access_check(s)) { 2973 return; 2974 } 2975 2976 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2977 2978 if (rn == 31) { 2979 gen_check_sp_alignment(s); 2980 } 2981 2982 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2983 if (!postindex) { 2984 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2985 } 2986 2987 if (set_tag) { 2988 if (!s->ata) { 2989 /* 2990 * TODO: We could rely on the stores below, at least for 2991 * system mode, if we arrange to add MO_ALIGN_16. 2992 */ 2993 gen_helper_stg_stub(cpu_env, dirty_addr); 2994 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2995 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2996 } else { 2997 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2998 } 2999 } 3000 3001 if (is_vector) { 3002 mop = finalize_memop_asimd(s, size); 3003 } else { 3004 mop = finalize_memop(s, size); 3005 } 3006 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3007 (wback || rn != 31) && !set_tag, 3008 2 << size, mop); 3009 3010 if (is_vector) { 3011 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3012 if (is_load) { 3013 do_fp_ld(s, rt, clean_addr, mop); 3014 } else { 3015 do_fp_st(s, rt, clean_addr, mop); 3016 } 3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3018 if (is_load) { 3019 do_fp_ld(s, rt2, clean_addr, mop); 3020 } else { 3021 do_fp_st(s, rt2, clean_addr, mop); 3022 } 3023 } else { 3024 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3025 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3026 3027 /* 3028 * We built mop above for the single logical access -- rebuild it 3029 * now for the paired operation. 3030 * 3031 * With LSE2, non-sign-extending pairs are treated atomically if 3032 * aligned, and if unaligned one of the pair will be completely 3033 * within a 16-byte block and that element will be atomic. 3034 * Otherwise each element is separately atomic. 3035 * In all cases, issue one operation with the correct atomicity. 3036 * 3037 * This treats sign-extending loads like zero-extending loads, 3038 * since that reuses the most code below. 3039 */ 3040 mop = size + 1; 3041 if (s->align_mem) { 3042 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3043 } 3044 mop = finalize_memop_pair(s, mop); 3045 3046 if (is_load) { 3047 if (size == 2) { 3048 int o2 = s->be_data == MO_LE ? 32 : 0; 3049 int o1 = o2 ^ 32; 3050 3051 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3052 if (is_signed) { 3053 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3054 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3055 } else { 3056 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3057 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3058 } 3059 } else { 3060 TCGv_i128 tmp = tcg_temp_new_i128(); 3061 3062 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3063 if (s->be_data == MO_LE) { 3064 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3065 } else { 3066 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3067 } 3068 } 3069 } else { 3070 if (size == 2) { 3071 TCGv_i64 tmp = tcg_temp_new_i64(); 3072 3073 if (s->be_data == MO_LE) { 3074 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3075 } else { 3076 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3077 } 3078 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3079 } else { 3080 TCGv_i128 tmp = tcg_temp_new_i128(); 3081 3082 if (s->be_data == MO_LE) { 3083 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3084 } else { 3085 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3086 } 3087 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3088 } 3089 } 3090 } 3091 3092 if (wback) { 3093 if (postindex) { 3094 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3095 } 3096 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3097 } 3098 } 3099 3100 /* 3101 * Load/store (immediate post-indexed) 3102 * Load/store (immediate pre-indexed) 3103 * Load/store (unscaled immediate) 3104 * 3105 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3106 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3107 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3108 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3109 * 3110 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3111 10 -> unprivileged 3112 * V = 0 -> non-vector 3113 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3114 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3115 */ 3116 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3117 int opc, 3118 int size, 3119 int rt, 3120 bool is_vector) 3121 { 3122 int rn = extract32(insn, 5, 5); 3123 int imm9 = sextract32(insn, 12, 9); 3124 int idx = extract32(insn, 10, 2); 3125 bool is_signed = false; 3126 bool is_store = false; 3127 bool is_extended = false; 3128 bool is_unpriv = (idx == 2); 3129 bool iss_valid; 3130 bool post_index; 3131 bool writeback; 3132 int memidx; 3133 MemOp memop; 3134 TCGv_i64 clean_addr, dirty_addr; 3135 3136 if (is_vector) { 3137 size |= (opc & 2) << 1; 3138 if (size > 4 || is_unpriv) { 3139 unallocated_encoding(s); 3140 return; 3141 } 3142 is_store = ((opc & 1) == 0); 3143 if (!fp_access_check(s)) { 3144 return; 3145 } 3146 memop = finalize_memop_asimd(s, size); 3147 } else { 3148 if (size == 3 && opc == 2) { 3149 /* PRFM - prefetch */ 3150 if (idx != 0) { 3151 unallocated_encoding(s); 3152 return; 3153 } 3154 return; 3155 } 3156 if (opc == 3 && size > 1) { 3157 unallocated_encoding(s); 3158 return; 3159 } 3160 is_store = (opc == 0); 3161 is_signed = !is_store && extract32(opc, 1, 1); 3162 is_extended = (size < 3) && extract32(opc, 0, 1); 3163 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3164 } 3165 3166 switch (idx) { 3167 case 0: 3168 case 2: 3169 post_index = false; 3170 writeback = false; 3171 break; 3172 case 1: 3173 post_index = true; 3174 writeback = true; 3175 break; 3176 case 3: 3177 post_index = false; 3178 writeback = true; 3179 break; 3180 default: 3181 g_assert_not_reached(); 3182 } 3183 3184 iss_valid = !is_vector && !writeback; 3185 3186 if (rn == 31) { 3187 gen_check_sp_alignment(s); 3188 } 3189 3190 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3191 if (!post_index) { 3192 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3193 } 3194 3195 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3196 3197 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3198 writeback || rn != 31, 3199 size, is_unpriv, memidx); 3200 3201 if (is_vector) { 3202 if (is_store) { 3203 do_fp_st(s, rt, clean_addr, memop); 3204 } else { 3205 do_fp_ld(s, rt, clean_addr, memop); 3206 } 3207 } else { 3208 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3209 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3210 3211 if (is_store) { 3212 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3213 iss_valid, rt, iss_sf, false); 3214 } else { 3215 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3216 is_extended, memidx, 3217 iss_valid, rt, iss_sf, false); 3218 } 3219 } 3220 3221 if (writeback) { 3222 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3223 if (post_index) { 3224 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3225 } 3226 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3227 } 3228 } 3229 3230 /* 3231 * Load/store (register offset) 3232 * 3233 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3234 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3235 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3236 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3237 * 3238 * For non-vector: 3239 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3240 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3241 * For vector: 3242 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3243 * opc<0>: 0 -> store, 1 -> load 3244 * V: 1 -> vector/simd 3245 * opt: extend encoding (see DecodeRegExtend) 3246 * S: if S=1 then scale (essentially index by sizeof(size)) 3247 * Rt: register to transfer into/out of 3248 * Rn: address register or SP for base 3249 * Rm: offset register or ZR for offset 3250 */ 3251 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3252 int opc, 3253 int size, 3254 int rt, 3255 bool is_vector) 3256 { 3257 int rn = extract32(insn, 5, 5); 3258 int shift = extract32(insn, 12, 1); 3259 int rm = extract32(insn, 16, 5); 3260 int opt = extract32(insn, 13, 3); 3261 bool is_signed = false; 3262 bool is_store = false; 3263 bool is_extended = false; 3264 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3265 MemOp memop; 3266 3267 if (extract32(opt, 1, 1) == 0) { 3268 unallocated_encoding(s); 3269 return; 3270 } 3271 3272 if (is_vector) { 3273 size |= (opc & 2) << 1; 3274 if (size > 4) { 3275 unallocated_encoding(s); 3276 return; 3277 } 3278 is_store = !extract32(opc, 0, 1); 3279 if (!fp_access_check(s)) { 3280 return; 3281 } 3282 } else { 3283 if (size == 3 && opc == 2) { 3284 /* PRFM - prefetch */ 3285 return; 3286 } 3287 if (opc == 3 && size > 1) { 3288 unallocated_encoding(s); 3289 return; 3290 } 3291 is_store = (opc == 0); 3292 is_signed = !is_store && extract32(opc, 1, 1); 3293 is_extended = (size < 3) && extract32(opc, 0, 1); 3294 } 3295 3296 if (rn == 31) { 3297 gen_check_sp_alignment(s); 3298 } 3299 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3300 3301 tcg_rm = read_cpu_reg(s, rm, 1); 3302 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3303 3304 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3305 3306 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3307 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3308 3309 if (is_vector) { 3310 if (is_store) { 3311 do_fp_st(s, rt, clean_addr, memop); 3312 } else { 3313 do_fp_ld(s, rt, clean_addr, memop); 3314 } 3315 } else { 3316 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3317 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3318 3319 if (is_store) { 3320 do_gpr_st(s, tcg_rt, clean_addr, memop, 3321 true, rt, iss_sf, false); 3322 } else { 3323 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3324 is_extended, true, rt, iss_sf, false); 3325 } 3326 } 3327 } 3328 3329 /* 3330 * Load/store (unsigned immediate) 3331 * 3332 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3333 * +----+-------+---+-----+-----+------------+-------+------+ 3334 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3335 * +----+-------+---+-----+-----+------------+-------+------+ 3336 * 3337 * For non-vector: 3338 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3339 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3340 * For vector: 3341 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3342 * opc<0>: 0 -> store, 1 -> load 3343 * Rn: base address register (inc SP) 3344 * Rt: target register 3345 */ 3346 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3347 int opc, 3348 int size, 3349 int rt, 3350 bool is_vector) 3351 { 3352 int rn = extract32(insn, 5, 5); 3353 unsigned int imm12 = extract32(insn, 10, 12); 3354 unsigned int offset; 3355 TCGv_i64 clean_addr, dirty_addr; 3356 bool is_store; 3357 bool is_signed = false; 3358 bool is_extended = false; 3359 MemOp memop; 3360 3361 if (is_vector) { 3362 size |= (opc & 2) << 1; 3363 if (size > 4) { 3364 unallocated_encoding(s); 3365 return; 3366 } 3367 is_store = !extract32(opc, 0, 1); 3368 if (!fp_access_check(s)) { 3369 return; 3370 } 3371 } else { 3372 if (size == 3 && opc == 2) { 3373 /* PRFM - prefetch */ 3374 return; 3375 } 3376 if (opc == 3 && size > 1) { 3377 unallocated_encoding(s); 3378 return; 3379 } 3380 is_store = (opc == 0); 3381 is_signed = !is_store && extract32(opc, 1, 1); 3382 is_extended = (size < 3) && extract32(opc, 0, 1); 3383 } 3384 3385 if (rn == 31) { 3386 gen_check_sp_alignment(s); 3387 } 3388 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3389 offset = imm12 << size; 3390 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3391 3392 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3393 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3394 3395 if (is_vector) { 3396 if (is_store) { 3397 do_fp_st(s, rt, clean_addr, memop); 3398 } else { 3399 do_fp_ld(s, rt, clean_addr, memop); 3400 } 3401 } else { 3402 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3403 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3404 if (is_store) { 3405 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3406 } else { 3407 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3408 is_extended, true, rt, iss_sf, false); 3409 } 3410 } 3411 } 3412 3413 /* Atomic memory operations 3414 * 3415 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3416 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3417 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3418 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3419 * 3420 * Rt: the result register 3421 * Rn: base address or SP 3422 * Rs: the source register for the operation 3423 * V: vector flag (always 0 as of v8.3) 3424 * A: acquire flag 3425 * R: release flag 3426 */ 3427 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3428 int size, int rt, bool is_vector) 3429 { 3430 int rs = extract32(insn, 16, 5); 3431 int rn = extract32(insn, 5, 5); 3432 int o3_opc = extract32(insn, 12, 4); 3433 bool r = extract32(insn, 22, 1); 3434 bool a = extract32(insn, 23, 1); 3435 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3436 AtomicThreeOpFn *fn = NULL; 3437 MemOp mop = size; 3438 3439 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3440 unallocated_encoding(s); 3441 return; 3442 } 3443 switch (o3_opc) { 3444 case 000: /* LDADD */ 3445 fn = tcg_gen_atomic_fetch_add_i64; 3446 break; 3447 case 001: /* LDCLR */ 3448 fn = tcg_gen_atomic_fetch_and_i64; 3449 break; 3450 case 002: /* LDEOR */ 3451 fn = tcg_gen_atomic_fetch_xor_i64; 3452 break; 3453 case 003: /* LDSET */ 3454 fn = tcg_gen_atomic_fetch_or_i64; 3455 break; 3456 case 004: /* LDSMAX */ 3457 fn = tcg_gen_atomic_fetch_smax_i64; 3458 mop |= MO_SIGN; 3459 break; 3460 case 005: /* LDSMIN */ 3461 fn = tcg_gen_atomic_fetch_smin_i64; 3462 mop |= MO_SIGN; 3463 break; 3464 case 006: /* LDUMAX */ 3465 fn = tcg_gen_atomic_fetch_umax_i64; 3466 break; 3467 case 007: /* LDUMIN */ 3468 fn = tcg_gen_atomic_fetch_umin_i64; 3469 break; 3470 case 010: /* SWP */ 3471 fn = tcg_gen_atomic_xchg_i64; 3472 break; 3473 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3474 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3475 rs != 31 || a != 1 || r != 0) { 3476 unallocated_encoding(s); 3477 return; 3478 } 3479 break; 3480 default: 3481 unallocated_encoding(s); 3482 return; 3483 } 3484 3485 if (rn == 31) { 3486 gen_check_sp_alignment(s); 3487 } 3488 3489 mop = check_atomic_align(s, rn, mop); 3490 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3491 3492 if (o3_opc == 014) { 3493 /* 3494 * LDAPR* are a special case because they are a simple load, not a 3495 * fetch-and-do-something op. 3496 * The architectural consistency requirements here are weaker than 3497 * full load-acquire (we only need "load-acquire processor consistent"), 3498 * but we choose to implement them as full LDAQ. 3499 */ 3500 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3501 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3502 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3503 return; 3504 } 3505 3506 tcg_rs = read_cpu_reg(s, rs, true); 3507 tcg_rt = cpu_reg(s, rt); 3508 3509 if (o3_opc == 1) { /* LDCLR */ 3510 tcg_gen_not_i64(tcg_rs, tcg_rs); 3511 } 3512 3513 /* The tcg atomic primitives are all full barriers. Therefore we 3514 * can ignore the Acquire and Release bits of this instruction. 3515 */ 3516 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3517 3518 if ((mop & MO_SIGN) && size != MO_64) { 3519 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3520 } 3521 } 3522 3523 /* 3524 * PAC memory operations 3525 * 3526 * 31 30 27 26 24 22 21 12 11 10 5 0 3527 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3528 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3529 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3530 * 3531 * Rt: the result register 3532 * Rn: base address or SP 3533 * V: vector flag (always 0 as of v8.3) 3534 * M: clear for key DA, set for key DB 3535 * W: pre-indexing flag 3536 * S: sign for imm9. 3537 */ 3538 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3539 int size, int rt, bool is_vector) 3540 { 3541 int rn = extract32(insn, 5, 5); 3542 bool is_wback = extract32(insn, 11, 1); 3543 bool use_key_a = !extract32(insn, 23, 1); 3544 int offset; 3545 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3546 MemOp memop; 3547 3548 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3549 unallocated_encoding(s); 3550 return; 3551 } 3552 3553 if (rn == 31) { 3554 gen_check_sp_alignment(s); 3555 } 3556 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3557 3558 if (s->pauth_active) { 3559 if (use_key_a) { 3560 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3561 tcg_constant_i64(0)); 3562 } else { 3563 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3564 tcg_constant_i64(0)); 3565 } 3566 } 3567 3568 /* Form the 10-bit signed, scaled offset. */ 3569 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3570 offset = sextract32(offset << size, 0, 10 + size); 3571 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3572 3573 memop = finalize_memop(s, size); 3574 3575 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3576 clean_addr = gen_mte_check1(s, dirty_addr, false, 3577 is_wback || rn != 31, memop); 3578 3579 tcg_rt = cpu_reg(s, rt); 3580 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3581 /* extend */ false, /* iss_valid */ !is_wback, 3582 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3583 3584 if (is_wback) { 3585 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3586 } 3587 } 3588 3589 /* 3590 * LDAPR/STLR (unscaled immediate) 3591 * 3592 * 31 30 24 22 21 12 10 5 0 3593 * +------+-------------+-----+---+--------+-----+----+-----+ 3594 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3595 * +------+-------------+-----+---+--------+-----+----+-----+ 3596 * 3597 * Rt: source or destination register 3598 * Rn: base register 3599 * imm9: unscaled immediate offset 3600 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3601 * size: size of load/store 3602 */ 3603 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3604 { 3605 int rt = extract32(insn, 0, 5); 3606 int rn = extract32(insn, 5, 5); 3607 int offset = sextract32(insn, 12, 9); 3608 int opc = extract32(insn, 22, 2); 3609 int size = extract32(insn, 30, 2); 3610 TCGv_i64 clean_addr, dirty_addr; 3611 bool is_store = false; 3612 bool extend = false; 3613 bool iss_sf; 3614 MemOp mop = size; 3615 3616 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3617 unallocated_encoding(s); 3618 return; 3619 } 3620 3621 switch (opc) { 3622 case 0: /* STLURB */ 3623 is_store = true; 3624 break; 3625 case 1: /* LDAPUR* */ 3626 break; 3627 case 2: /* LDAPURS* 64-bit variant */ 3628 if (size == 3) { 3629 unallocated_encoding(s); 3630 return; 3631 } 3632 mop |= MO_SIGN; 3633 break; 3634 case 3: /* LDAPURS* 32-bit variant */ 3635 if (size > 1) { 3636 unallocated_encoding(s); 3637 return; 3638 } 3639 mop |= MO_SIGN; 3640 extend = true; /* zero-extend 32->64 after signed load */ 3641 break; 3642 default: 3643 g_assert_not_reached(); 3644 } 3645 3646 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3647 3648 if (rn == 31) { 3649 gen_check_sp_alignment(s); 3650 } 3651 3652 mop = check_ordered_align(s, rn, offset, is_store, mop); 3653 3654 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3655 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3656 clean_addr = clean_data_tbi(s, dirty_addr); 3657 3658 if (is_store) { 3659 /* Store-Release semantics */ 3660 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3661 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3662 } else { 3663 /* 3664 * Load-AcquirePC semantics; we implement as the slightly more 3665 * restrictive Load-Acquire. 3666 */ 3667 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3668 extend, true, rt, iss_sf, true); 3669 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3670 } 3671 } 3672 3673 /* Load/store register (all forms) */ 3674 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3675 { 3676 int rt = extract32(insn, 0, 5); 3677 int opc = extract32(insn, 22, 2); 3678 bool is_vector = extract32(insn, 26, 1); 3679 int size = extract32(insn, 30, 2); 3680 3681 switch (extract32(insn, 24, 2)) { 3682 case 0: 3683 if (extract32(insn, 21, 1) == 0) { 3684 /* Load/store register (unscaled immediate) 3685 * Load/store immediate pre/post-indexed 3686 * Load/store register unprivileged 3687 */ 3688 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3689 return; 3690 } 3691 switch (extract32(insn, 10, 2)) { 3692 case 0: 3693 disas_ldst_atomic(s, insn, size, rt, is_vector); 3694 return; 3695 case 2: 3696 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3697 return; 3698 default: 3699 disas_ldst_pac(s, insn, size, rt, is_vector); 3700 return; 3701 } 3702 break; 3703 case 1: 3704 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3705 return; 3706 } 3707 unallocated_encoding(s); 3708 } 3709 3710 /* AdvSIMD load/store multiple structures 3711 * 3712 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3713 * +---+---+---------------+---+-------------+--------+------+------+------+ 3714 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3715 * +---+---+---------------+---+-------------+--------+------+------+------+ 3716 * 3717 * AdvSIMD load/store multiple structures (post-indexed) 3718 * 3719 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3720 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3721 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3722 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3723 * 3724 * Rt: first (or only) SIMD&FP register to be transferred 3725 * Rn: base address or SP 3726 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3727 */ 3728 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3729 { 3730 int rt = extract32(insn, 0, 5); 3731 int rn = extract32(insn, 5, 5); 3732 int rm = extract32(insn, 16, 5); 3733 int size = extract32(insn, 10, 2); 3734 int opcode = extract32(insn, 12, 4); 3735 bool is_store = !extract32(insn, 22, 1); 3736 bool is_postidx = extract32(insn, 23, 1); 3737 bool is_q = extract32(insn, 30, 1); 3738 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3739 MemOp endian, align, mop; 3740 3741 int total; /* total bytes */ 3742 int elements; /* elements per vector */ 3743 int rpt; /* num iterations */ 3744 int selem; /* structure elements */ 3745 int r; 3746 3747 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3748 unallocated_encoding(s); 3749 return; 3750 } 3751 3752 if (!is_postidx && rm != 0) { 3753 unallocated_encoding(s); 3754 return; 3755 } 3756 3757 /* From the shared decode logic */ 3758 switch (opcode) { 3759 case 0x0: 3760 rpt = 1; 3761 selem = 4; 3762 break; 3763 case 0x2: 3764 rpt = 4; 3765 selem = 1; 3766 break; 3767 case 0x4: 3768 rpt = 1; 3769 selem = 3; 3770 break; 3771 case 0x6: 3772 rpt = 3; 3773 selem = 1; 3774 break; 3775 case 0x7: 3776 rpt = 1; 3777 selem = 1; 3778 break; 3779 case 0x8: 3780 rpt = 1; 3781 selem = 2; 3782 break; 3783 case 0xa: 3784 rpt = 2; 3785 selem = 1; 3786 break; 3787 default: 3788 unallocated_encoding(s); 3789 return; 3790 } 3791 3792 if (size == 3 && !is_q && selem != 1) { 3793 /* reserved */ 3794 unallocated_encoding(s); 3795 return; 3796 } 3797 3798 if (!fp_access_check(s)) { 3799 return; 3800 } 3801 3802 if (rn == 31) { 3803 gen_check_sp_alignment(s); 3804 } 3805 3806 /* For our purposes, bytes are always little-endian. */ 3807 endian = s->be_data; 3808 if (size == 0) { 3809 endian = MO_LE; 3810 } 3811 3812 total = rpt * selem * (is_q ? 16 : 8); 3813 tcg_rn = cpu_reg_sp(s, rn); 3814 3815 /* 3816 * Issue the MTE check vs the logical repeat count, before we 3817 * promote consecutive little-endian elements below. 3818 */ 3819 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3820 total, finalize_memop(s, size)); 3821 3822 /* 3823 * Consecutive little-endian elements from a single register 3824 * can be promoted to a larger little-endian operation. 3825 */ 3826 align = MO_ALIGN; 3827 if (selem == 1 && endian == MO_LE) { 3828 align = pow2_align(size); 3829 size = 3; 3830 } 3831 if (!s->align_mem) { 3832 align = 0; 3833 } 3834 mop = endian | size | align; 3835 3836 elements = (is_q ? 16 : 8) >> size; 3837 tcg_ebytes = tcg_constant_i64(1 << size); 3838 for (r = 0; r < rpt; r++) { 3839 int e; 3840 for (e = 0; e < elements; e++) { 3841 int xs; 3842 for (xs = 0; xs < selem; xs++) { 3843 int tt = (rt + r + xs) % 32; 3844 if (is_store) { 3845 do_vec_st(s, tt, e, clean_addr, mop); 3846 } else { 3847 do_vec_ld(s, tt, e, clean_addr, mop); 3848 } 3849 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3850 } 3851 } 3852 } 3853 3854 if (!is_store) { 3855 /* For non-quad operations, setting a slice of the low 3856 * 64 bits of the register clears the high 64 bits (in 3857 * the ARM ARM pseudocode this is implicit in the fact 3858 * that 'rval' is a 64 bit wide variable). 3859 * For quad operations, we might still need to zero the 3860 * high bits of SVE. 3861 */ 3862 for (r = 0; r < rpt * selem; r++) { 3863 int tt = (rt + r) % 32; 3864 clear_vec_high(s, is_q, tt); 3865 } 3866 } 3867 3868 if (is_postidx) { 3869 if (rm == 31) { 3870 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3871 } else { 3872 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3873 } 3874 } 3875 } 3876 3877 /* AdvSIMD load/store single structure 3878 * 3879 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3880 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3881 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3882 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3883 * 3884 * AdvSIMD load/store single structure (post-indexed) 3885 * 3886 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3887 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3888 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3889 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3890 * 3891 * Rt: first (or only) SIMD&FP register to be transferred 3892 * Rn: base address or SP 3893 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3894 * index = encoded in Q:S:size dependent on size 3895 * 3896 * lane_size = encoded in R, opc 3897 * transfer width = encoded in opc, S, size 3898 */ 3899 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3900 { 3901 int rt = extract32(insn, 0, 5); 3902 int rn = extract32(insn, 5, 5); 3903 int rm = extract32(insn, 16, 5); 3904 int size = extract32(insn, 10, 2); 3905 int S = extract32(insn, 12, 1); 3906 int opc = extract32(insn, 13, 3); 3907 int R = extract32(insn, 21, 1); 3908 int is_load = extract32(insn, 22, 1); 3909 int is_postidx = extract32(insn, 23, 1); 3910 int is_q = extract32(insn, 30, 1); 3911 3912 int scale = extract32(opc, 1, 2); 3913 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3914 bool replicate = false; 3915 int index = is_q << 3 | S << 2 | size; 3916 int xs, total; 3917 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3918 MemOp mop; 3919 3920 if (extract32(insn, 31, 1)) { 3921 unallocated_encoding(s); 3922 return; 3923 } 3924 if (!is_postidx && rm != 0) { 3925 unallocated_encoding(s); 3926 return; 3927 } 3928 3929 switch (scale) { 3930 case 3: 3931 if (!is_load || S) { 3932 unallocated_encoding(s); 3933 return; 3934 } 3935 scale = size; 3936 replicate = true; 3937 break; 3938 case 0: 3939 break; 3940 case 1: 3941 if (extract32(size, 0, 1)) { 3942 unallocated_encoding(s); 3943 return; 3944 } 3945 index >>= 1; 3946 break; 3947 case 2: 3948 if (extract32(size, 1, 1)) { 3949 unallocated_encoding(s); 3950 return; 3951 } 3952 if (!extract32(size, 0, 1)) { 3953 index >>= 2; 3954 } else { 3955 if (S) { 3956 unallocated_encoding(s); 3957 return; 3958 } 3959 index >>= 3; 3960 scale = 3; 3961 } 3962 break; 3963 default: 3964 g_assert_not_reached(); 3965 } 3966 3967 if (!fp_access_check(s)) { 3968 return; 3969 } 3970 3971 if (rn == 31) { 3972 gen_check_sp_alignment(s); 3973 } 3974 3975 total = selem << scale; 3976 tcg_rn = cpu_reg_sp(s, rn); 3977 3978 mop = finalize_memop(s, scale); 3979 3980 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3981 total, mop); 3982 3983 tcg_ebytes = tcg_constant_i64(1 << scale); 3984 for (xs = 0; xs < selem; xs++) { 3985 if (replicate) { 3986 /* Load and replicate to all elements */ 3987 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3988 3989 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3990 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3991 (is_q + 1) * 8, vec_full_reg_size(s), 3992 tcg_tmp); 3993 } else { 3994 /* Load/store one element per register */ 3995 if (is_load) { 3996 do_vec_ld(s, rt, index, clean_addr, mop); 3997 } else { 3998 do_vec_st(s, rt, index, clean_addr, mop); 3999 } 4000 } 4001 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4002 rt = (rt + 1) % 32; 4003 } 4004 4005 if (is_postidx) { 4006 if (rm == 31) { 4007 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4008 } else { 4009 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4010 } 4011 } 4012 } 4013 4014 /* 4015 * Load/Store memory tags 4016 * 4017 * 31 30 29 24 22 21 12 10 5 0 4018 * +-----+-------------+-----+---+------+-----+------+------+ 4019 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4020 * +-----+-------------+-----+---+------+-----+------+------+ 4021 */ 4022 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4023 { 4024 int rt = extract32(insn, 0, 5); 4025 int rn = extract32(insn, 5, 5); 4026 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4027 int op2 = extract32(insn, 10, 2); 4028 int op1 = extract32(insn, 22, 2); 4029 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4030 int index = 0; 4031 TCGv_i64 addr, clean_addr, tcg_rt; 4032 4033 /* We checked insn bits [29:24,21] in the caller. */ 4034 if (extract32(insn, 30, 2) != 3) { 4035 goto do_unallocated; 4036 } 4037 4038 /* 4039 * @index is a tri-state variable which has 3 states: 4040 * < 0 : post-index, writeback 4041 * = 0 : signed offset 4042 * > 0 : pre-index, writeback 4043 */ 4044 switch (op1) { 4045 case 0: 4046 if (op2 != 0) { 4047 /* STG */ 4048 index = op2 - 2; 4049 } else { 4050 /* STZGM */ 4051 if (s->current_el == 0 || offset != 0) { 4052 goto do_unallocated; 4053 } 4054 is_mult = is_zero = true; 4055 } 4056 break; 4057 case 1: 4058 if (op2 != 0) { 4059 /* STZG */ 4060 is_zero = true; 4061 index = op2 - 2; 4062 } else { 4063 /* LDG */ 4064 is_load = true; 4065 } 4066 break; 4067 case 2: 4068 if (op2 != 0) { 4069 /* ST2G */ 4070 is_pair = true; 4071 index = op2 - 2; 4072 } else { 4073 /* STGM */ 4074 if (s->current_el == 0 || offset != 0) { 4075 goto do_unallocated; 4076 } 4077 is_mult = true; 4078 } 4079 break; 4080 case 3: 4081 if (op2 != 0) { 4082 /* STZ2G */ 4083 is_pair = is_zero = true; 4084 index = op2 - 2; 4085 } else { 4086 /* LDGM */ 4087 if (s->current_el == 0 || offset != 0) { 4088 goto do_unallocated; 4089 } 4090 is_mult = is_load = true; 4091 } 4092 break; 4093 4094 default: 4095 do_unallocated: 4096 unallocated_encoding(s); 4097 return; 4098 } 4099 4100 if (is_mult 4101 ? !dc_isar_feature(aa64_mte, s) 4102 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4103 goto do_unallocated; 4104 } 4105 4106 if (rn == 31) { 4107 gen_check_sp_alignment(s); 4108 } 4109 4110 addr = read_cpu_reg_sp(s, rn, true); 4111 if (index >= 0) { 4112 /* pre-index or signed offset */ 4113 tcg_gen_addi_i64(addr, addr, offset); 4114 } 4115 4116 if (is_mult) { 4117 tcg_rt = cpu_reg(s, rt); 4118 4119 if (is_zero) { 4120 int size = 4 << s->dcz_blocksize; 4121 4122 if (s->ata) { 4123 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4124 } 4125 /* 4126 * The non-tags portion of STZGM is mostly like DC_ZVA, 4127 * except the alignment happens before the access. 4128 */ 4129 clean_addr = clean_data_tbi(s, addr); 4130 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4131 gen_helper_dc_zva(cpu_env, clean_addr); 4132 } else if (s->ata) { 4133 if (is_load) { 4134 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4135 } else { 4136 gen_helper_stgm(cpu_env, addr, tcg_rt); 4137 } 4138 } else { 4139 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4140 int size = 4 << GMID_EL1_BS; 4141 4142 clean_addr = clean_data_tbi(s, addr); 4143 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4144 gen_probe_access(s, clean_addr, acc, size); 4145 4146 if (is_load) { 4147 /* The result tags are zeros. */ 4148 tcg_gen_movi_i64(tcg_rt, 0); 4149 } 4150 } 4151 return; 4152 } 4153 4154 if (is_load) { 4155 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4156 tcg_rt = cpu_reg(s, rt); 4157 if (s->ata) { 4158 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4159 } else { 4160 clean_addr = clean_data_tbi(s, addr); 4161 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4162 gen_address_with_allocation_tag0(tcg_rt, addr); 4163 } 4164 } else { 4165 tcg_rt = cpu_reg_sp(s, rt); 4166 if (!s->ata) { 4167 /* 4168 * For STG and ST2G, we need to check alignment and probe memory. 4169 * TODO: For STZG and STZ2G, we could rely on the stores below, 4170 * at least for system mode; user-only won't enforce alignment. 4171 */ 4172 if (is_pair) { 4173 gen_helper_st2g_stub(cpu_env, addr); 4174 } else { 4175 gen_helper_stg_stub(cpu_env, addr); 4176 } 4177 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4178 if (is_pair) { 4179 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4180 } else { 4181 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4182 } 4183 } else { 4184 if (is_pair) { 4185 gen_helper_st2g(cpu_env, addr, tcg_rt); 4186 } else { 4187 gen_helper_stg(cpu_env, addr, tcg_rt); 4188 } 4189 } 4190 } 4191 4192 if (is_zero) { 4193 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4194 TCGv_i64 zero64 = tcg_constant_i64(0); 4195 TCGv_i128 zero128 = tcg_temp_new_i128(); 4196 int mem_index = get_mem_index(s); 4197 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4198 4199 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4200 4201 /* This is 1 or 2 atomic 16-byte operations. */ 4202 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4203 if (is_pair) { 4204 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4205 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4206 } 4207 } 4208 4209 if (index != 0) { 4210 /* pre-index or post-index */ 4211 if (index < 0) { 4212 /* post-index */ 4213 tcg_gen_addi_i64(addr, addr, offset); 4214 } 4215 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4216 } 4217 } 4218 4219 /* Loads and stores */ 4220 static void disas_ldst(DisasContext *s, uint32_t insn) 4221 { 4222 switch (extract32(insn, 24, 6)) { 4223 case 0x08: /* Load/store exclusive */ 4224 disas_ldst_excl(s, insn); 4225 break; 4226 case 0x18: case 0x1c: /* Load register (literal) */ 4227 disas_ld_lit(s, insn); 4228 break; 4229 case 0x28: case 0x29: 4230 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4231 disas_ldst_pair(s, insn); 4232 break; 4233 case 0x38: case 0x39: 4234 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4235 disas_ldst_reg(s, insn); 4236 break; 4237 case 0x0c: /* AdvSIMD load/store multiple structures */ 4238 disas_ldst_multiple_struct(s, insn); 4239 break; 4240 case 0x0d: /* AdvSIMD load/store single structure */ 4241 disas_ldst_single_struct(s, insn); 4242 break; 4243 case 0x19: 4244 if (extract32(insn, 21, 1) != 0) { 4245 disas_ldst_tag(s, insn); 4246 } else if (extract32(insn, 10, 2) == 0) { 4247 disas_ldst_ldapr_stlr(s, insn); 4248 } else { 4249 unallocated_encoding(s); 4250 } 4251 break; 4252 default: 4253 unallocated_encoding(s); 4254 break; 4255 } 4256 } 4257 4258 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4259 4260 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4261 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4262 { 4263 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4264 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4265 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4266 4267 fn(tcg_rd, tcg_rn, tcg_imm); 4268 if (!a->sf) { 4269 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4270 } 4271 return true; 4272 } 4273 4274 /* 4275 * PC-rel. addressing 4276 */ 4277 4278 static bool trans_ADR(DisasContext *s, arg_ri *a) 4279 { 4280 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4281 return true; 4282 } 4283 4284 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4285 { 4286 int64_t offset = (int64_t)a->imm << 12; 4287 4288 /* The page offset is ok for CF_PCREL. */ 4289 offset -= s->pc_curr & 0xfff; 4290 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4291 return true; 4292 } 4293 4294 /* 4295 * Add/subtract (immediate) 4296 */ 4297 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4298 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4299 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4300 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4301 4302 /* 4303 * Add/subtract (immediate, with tags) 4304 */ 4305 4306 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4307 bool sub_op) 4308 { 4309 TCGv_i64 tcg_rn, tcg_rd; 4310 int imm; 4311 4312 imm = a->uimm6 << LOG2_TAG_GRANULE; 4313 if (sub_op) { 4314 imm = -imm; 4315 } 4316 4317 tcg_rn = cpu_reg_sp(s, a->rn); 4318 tcg_rd = cpu_reg_sp(s, a->rd); 4319 4320 if (s->ata) { 4321 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4322 tcg_constant_i32(imm), 4323 tcg_constant_i32(a->uimm4)); 4324 } else { 4325 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4326 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4327 } 4328 return true; 4329 } 4330 4331 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4332 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4333 4334 /* The input should be a value in the bottom e bits (with higher 4335 * bits zero); returns that value replicated into every element 4336 * of size e in a 64 bit integer. 4337 */ 4338 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4339 { 4340 assert(e != 0); 4341 while (e < 64) { 4342 mask |= mask << e; 4343 e *= 2; 4344 } 4345 return mask; 4346 } 4347 4348 /* 4349 * Logical (immediate) 4350 */ 4351 4352 /* 4353 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4354 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4355 * value (ie should cause a guest UNDEF exception), and true if they are 4356 * valid, in which case the decoded bit pattern is written to result. 4357 */ 4358 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4359 unsigned int imms, unsigned int immr) 4360 { 4361 uint64_t mask; 4362 unsigned e, levels, s, r; 4363 int len; 4364 4365 assert(immn < 2 && imms < 64 && immr < 64); 4366 4367 /* The bit patterns we create here are 64 bit patterns which 4368 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4369 * 64 bits each. Each element contains the same value: a run 4370 * of between 1 and e-1 non-zero bits, rotated within the 4371 * element by between 0 and e-1 bits. 4372 * 4373 * The element size and run length are encoded into immn (1 bit) 4374 * and imms (6 bits) as follows: 4375 * 64 bit elements: immn = 1, imms = <length of run - 1> 4376 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4377 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4378 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4379 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4380 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4381 * Notice that immn = 0, imms = 11111x is the only combination 4382 * not covered by one of the above options; this is reserved. 4383 * Further, <length of run - 1> all-ones is a reserved pattern. 4384 * 4385 * In all cases the rotation is by immr % e (and immr is 6 bits). 4386 */ 4387 4388 /* First determine the element size */ 4389 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4390 if (len < 1) { 4391 /* This is the immn == 0, imms == 0x11111x case */ 4392 return false; 4393 } 4394 e = 1 << len; 4395 4396 levels = e - 1; 4397 s = imms & levels; 4398 r = immr & levels; 4399 4400 if (s == levels) { 4401 /* <length of run - 1> mustn't be all-ones. */ 4402 return false; 4403 } 4404 4405 /* Create the value of one element: s+1 set bits rotated 4406 * by r within the element (which is e bits wide)... 4407 */ 4408 mask = MAKE_64BIT_MASK(0, s + 1); 4409 if (r) { 4410 mask = (mask >> r) | (mask << (e - r)); 4411 mask &= MAKE_64BIT_MASK(0, e); 4412 } 4413 /* ...then replicate the element over the whole 64 bit value */ 4414 mask = bitfield_replicate(mask, e); 4415 *result = mask; 4416 return true; 4417 } 4418 4419 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4420 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4421 { 4422 TCGv_i64 tcg_rd, tcg_rn; 4423 uint64_t imm; 4424 4425 /* Some immediate field values are reserved. */ 4426 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4427 extract32(a->dbm, 0, 6), 4428 extract32(a->dbm, 6, 6))) { 4429 return false; 4430 } 4431 if (!a->sf) { 4432 imm &= 0xffffffffull; 4433 } 4434 4435 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4436 tcg_rn = cpu_reg(s, a->rn); 4437 4438 fn(tcg_rd, tcg_rn, imm); 4439 if (set_cc) { 4440 gen_logic_CC(a->sf, tcg_rd); 4441 } 4442 if (!a->sf) { 4443 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4444 } 4445 return true; 4446 } 4447 4448 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4449 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4450 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4451 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4452 4453 /* 4454 * Move wide (immediate) 4455 */ 4456 4457 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4458 { 4459 int pos = a->hw << 4; 4460 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4461 return true; 4462 } 4463 4464 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4465 { 4466 int pos = a->hw << 4; 4467 uint64_t imm = a->imm; 4468 4469 imm = ~(imm << pos); 4470 if (!a->sf) { 4471 imm = (uint32_t)imm; 4472 } 4473 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4474 return true; 4475 } 4476 4477 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4478 { 4479 int pos = a->hw << 4; 4480 TCGv_i64 tcg_rd, tcg_im; 4481 4482 tcg_rd = cpu_reg(s, a->rd); 4483 tcg_im = tcg_constant_i64(a->imm); 4484 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4485 if (!a->sf) { 4486 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4487 } 4488 return true; 4489 } 4490 4491 /* 4492 * Bitfield 4493 */ 4494 4495 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4496 { 4497 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4498 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4499 unsigned int bitsize = a->sf ? 64 : 32; 4500 unsigned int ri = a->immr; 4501 unsigned int si = a->imms; 4502 unsigned int pos, len; 4503 4504 if (si >= ri) { 4505 /* Wd<s-r:0> = Wn<s:r> */ 4506 len = (si - ri) + 1; 4507 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4508 if (!a->sf) { 4509 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4510 } 4511 } else { 4512 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4513 len = si + 1; 4514 pos = (bitsize - ri) & (bitsize - 1); 4515 4516 if (len < ri) { 4517 /* 4518 * Sign extend the destination field from len to fill the 4519 * balance of the word. Let the deposit below insert all 4520 * of those sign bits. 4521 */ 4522 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4523 len = ri; 4524 } 4525 4526 /* 4527 * We start with zero, and we haven't modified any bits outside 4528 * bitsize, therefore no final zero-extension is unneeded for !sf. 4529 */ 4530 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4531 } 4532 return true; 4533 } 4534 4535 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4536 { 4537 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4538 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4539 unsigned int bitsize = a->sf ? 64 : 32; 4540 unsigned int ri = a->immr; 4541 unsigned int si = a->imms; 4542 unsigned int pos, len; 4543 4544 tcg_rd = cpu_reg(s, a->rd); 4545 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4546 4547 if (si >= ri) { 4548 /* Wd<s-r:0> = Wn<s:r> */ 4549 len = (si - ri) + 1; 4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4551 } else { 4552 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4553 len = si + 1; 4554 pos = (bitsize - ri) & (bitsize - 1); 4555 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4556 } 4557 return true; 4558 } 4559 4560 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4561 { 4562 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4563 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4564 unsigned int bitsize = a->sf ? 64 : 32; 4565 unsigned int ri = a->immr; 4566 unsigned int si = a->imms; 4567 unsigned int pos, len; 4568 4569 tcg_rd = cpu_reg(s, a->rd); 4570 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4571 4572 if (si >= ri) { 4573 /* Wd<s-r:0> = Wn<s:r> */ 4574 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4575 len = (si - ri) + 1; 4576 pos = 0; 4577 } else { 4578 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4579 len = si + 1; 4580 pos = (bitsize - ri) & (bitsize - 1); 4581 } 4582 4583 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4584 if (!a->sf) { 4585 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4586 } 4587 return true; 4588 } 4589 4590 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4591 { 4592 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4593 4594 tcg_rd = cpu_reg(s, a->rd); 4595 4596 if (unlikely(a->imm == 0)) { 4597 /* 4598 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4599 * so an extract from bit 0 is a special case. 4600 */ 4601 if (a->sf) { 4602 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4603 } else { 4604 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4605 } 4606 } else { 4607 tcg_rm = cpu_reg(s, a->rm); 4608 tcg_rn = cpu_reg(s, a->rn); 4609 4610 if (a->sf) { 4611 /* Specialization to ROR happens in EXTRACT2. */ 4612 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4613 } else { 4614 TCGv_i32 t0 = tcg_temp_new_i32(); 4615 4616 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4617 if (a->rm == a->rn) { 4618 tcg_gen_rotri_i32(t0, t0, a->imm); 4619 } else { 4620 TCGv_i32 t1 = tcg_temp_new_i32(); 4621 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4622 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4623 } 4624 tcg_gen_extu_i32_i64(tcg_rd, t0); 4625 } 4626 } 4627 return true; 4628 } 4629 4630 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4631 * Note that it is the caller's responsibility to ensure that the 4632 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4633 * mandated semantics for out of range shifts. 4634 */ 4635 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4636 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4637 { 4638 switch (shift_type) { 4639 case A64_SHIFT_TYPE_LSL: 4640 tcg_gen_shl_i64(dst, src, shift_amount); 4641 break; 4642 case A64_SHIFT_TYPE_LSR: 4643 tcg_gen_shr_i64(dst, src, shift_amount); 4644 break; 4645 case A64_SHIFT_TYPE_ASR: 4646 if (!sf) { 4647 tcg_gen_ext32s_i64(dst, src); 4648 } 4649 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4650 break; 4651 case A64_SHIFT_TYPE_ROR: 4652 if (sf) { 4653 tcg_gen_rotr_i64(dst, src, shift_amount); 4654 } else { 4655 TCGv_i32 t0, t1; 4656 t0 = tcg_temp_new_i32(); 4657 t1 = tcg_temp_new_i32(); 4658 tcg_gen_extrl_i64_i32(t0, src); 4659 tcg_gen_extrl_i64_i32(t1, shift_amount); 4660 tcg_gen_rotr_i32(t0, t0, t1); 4661 tcg_gen_extu_i32_i64(dst, t0); 4662 } 4663 break; 4664 default: 4665 assert(FALSE); /* all shift types should be handled */ 4666 break; 4667 } 4668 4669 if (!sf) { /* zero extend final result */ 4670 tcg_gen_ext32u_i64(dst, dst); 4671 } 4672 } 4673 4674 /* Shift a TCGv src by immediate, put result in dst. 4675 * The shift amount must be in range (this should always be true as the 4676 * relevant instructions will UNDEF on bad shift immediates). 4677 */ 4678 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4679 enum a64_shift_type shift_type, unsigned int shift_i) 4680 { 4681 assert(shift_i < (sf ? 64 : 32)); 4682 4683 if (shift_i == 0) { 4684 tcg_gen_mov_i64(dst, src); 4685 } else { 4686 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4687 } 4688 } 4689 4690 /* Logical (shifted register) 4691 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4692 * +----+-----+-----------+-------+---+------+--------+------+------+ 4693 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4694 * +----+-----+-----------+-------+---+------+--------+------+------+ 4695 */ 4696 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4697 { 4698 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4699 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4700 4701 sf = extract32(insn, 31, 1); 4702 opc = extract32(insn, 29, 2); 4703 shift_type = extract32(insn, 22, 2); 4704 invert = extract32(insn, 21, 1); 4705 rm = extract32(insn, 16, 5); 4706 shift_amount = extract32(insn, 10, 6); 4707 rn = extract32(insn, 5, 5); 4708 rd = extract32(insn, 0, 5); 4709 4710 if (!sf && (shift_amount & (1 << 5))) { 4711 unallocated_encoding(s); 4712 return; 4713 } 4714 4715 tcg_rd = cpu_reg(s, rd); 4716 4717 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4718 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4719 * register-register MOV and MVN, so it is worth special casing. 4720 */ 4721 tcg_rm = cpu_reg(s, rm); 4722 if (invert) { 4723 tcg_gen_not_i64(tcg_rd, tcg_rm); 4724 if (!sf) { 4725 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4726 } 4727 } else { 4728 if (sf) { 4729 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4730 } else { 4731 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4732 } 4733 } 4734 return; 4735 } 4736 4737 tcg_rm = read_cpu_reg(s, rm, sf); 4738 4739 if (shift_amount) { 4740 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4741 } 4742 4743 tcg_rn = cpu_reg(s, rn); 4744 4745 switch (opc | (invert << 2)) { 4746 case 0: /* AND */ 4747 case 3: /* ANDS */ 4748 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4749 break; 4750 case 1: /* ORR */ 4751 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4752 break; 4753 case 2: /* EOR */ 4754 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4755 break; 4756 case 4: /* BIC */ 4757 case 7: /* BICS */ 4758 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4759 break; 4760 case 5: /* ORN */ 4761 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4762 break; 4763 case 6: /* EON */ 4764 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4765 break; 4766 default: 4767 assert(FALSE); 4768 break; 4769 } 4770 4771 if (!sf) { 4772 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4773 } 4774 4775 if (opc == 3) { 4776 gen_logic_CC(sf, tcg_rd); 4777 } 4778 } 4779 4780 /* 4781 * Add/subtract (extended register) 4782 * 4783 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4784 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4785 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4786 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4787 * 4788 * sf: 0 -> 32bit, 1 -> 64bit 4789 * op: 0 -> add , 1 -> sub 4790 * S: 1 -> set flags 4791 * opt: 00 4792 * option: extension type (see DecodeRegExtend) 4793 * imm3: optional shift to Rm 4794 * 4795 * Rd = Rn + LSL(extend(Rm), amount) 4796 */ 4797 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4798 { 4799 int rd = extract32(insn, 0, 5); 4800 int rn = extract32(insn, 5, 5); 4801 int imm3 = extract32(insn, 10, 3); 4802 int option = extract32(insn, 13, 3); 4803 int rm = extract32(insn, 16, 5); 4804 int opt = extract32(insn, 22, 2); 4805 bool setflags = extract32(insn, 29, 1); 4806 bool sub_op = extract32(insn, 30, 1); 4807 bool sf = extract32(insn, 31, 1); 4808 4809 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4810 TCGv_i64 tcg_rd; 4811 TCGv_i64 tcg_result; 4812 4813 if (imm3 > 4 || opt != 0) { 4814 unallocated_encoding(s); 4815 return; 4816 } 4817 4818 /* non-flag setting ops may use SP */ 4819 if (!setflags) { 4820 tcg_rd = cpu_reg_sp(s, rd); 4821 } else { 4822 tcg_rd = cpu_reg(s, rd); 4823 } 4824 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4825 4826 tcg_rm = read_cpu_reg(s, rm, sf); 4827 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4828 4829 tcg_result = tcg_temp_new_i64(); 4830 4831 if (!setflags) { 4832 if (sub_op) { 4833 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4834 } else { 4835 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4836 } 4837 } else { 4838 if (sub_op) { 4839 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4840 } else { 4841 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4842 } 4843 } 4844 4845 if (sf) { 4846 tcg_gen_mov_i64(tcg_rd, tcg_result); 4847 } else { 4848 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4849 } 4850 } 4851 4852 /* 4853 * Add/subtract (shifted register) 4854 * 4855 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4856 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4857 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4858 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4859 * 4860 * sf: 0 -> 32bit, 1 -> 64bit 4861 * op: 0 -> add , 1 -> sub 4862 * S: 1 -> set flags 4863 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4864 * imm6: Shift amount to apply to Rm before the add/sub 4865 */ 4866 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4867 { 4868 int rd = extract32(insn, 0, 5); 4869 int rn = extract32(insn, 5, 5); 4870 int imm6 = extract32(insn, 10, 6); 4871 int rm = extract32(insn, 16, 5); 4872 int shift_type = extract32(insn, 22, 2); 4873 bool setflags = extract32(insn, 29, 1); 4874 bool sub_op = extract32(insn, 30, 1); 4875 bool sf = extract32(insn, 31, 1); 4876 4877 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4878 TCGv_i64 tcg_rn, tcg_rm; 4879 TCGv_i64 tcg_result; 4880 4881 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4882 unallocated_encoding(s); 4883 return; 4884 } 4885 4886 tcg_rn = read_cpu_reg(s, rn, sf); 4887 tcg_rm = read_cpu_reg(s, rm, sf); 4888 4889 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4890 4891 tcg_result = tcg_temp_new_i64(); 4892 4893 if (!setflags) { 4894 if (sub_op) { 4895 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4896 } else { 4897 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4898 } 4899 } else { 4900 if (sub_op) { 4901 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4902 } else { 4903 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4904 } 4905 } 4906 4907 if (sf) { 4908 tcg_gen_mov_i64(tcg_rd, tcg_result); 4909 } else { 4910 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4911 } 4912 } 4913 4914 /* Data-processing (3 source) 4915 * 4916 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4917 * +--+------+-----------+------+------+----+------+------+------+ 4918 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4919 * +--+------+-----------+------+------+----+------+------+------+ 4920 */ 4921 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4922 { 4923 int rd = extract32(insn, 0, 5); 4924 int rn = extract32(insn, 5, 5); 4925 int ra = extract32(insn, 10, 5); 4926 int rm = extract32(insn, 16, 5); 4927 int op_id = (extract32(insn, 29, 3) << 4) | 4928 (extract32(insn, 21, 3) << 1) | 4929 extract32(insn, 15, 1); 4930 bool sf = extract32(insn, 31, 1); 4931 bool is_sub = extract32(op_id, 0, 1); 4932 bool is_high = extract32(op_id, 2, 1); 4933 bool is_signed = false; 4934 TCGv_i64 tcg_op1; 4935 TCGv_i64 tcg_op2; 4936 TCGv_i64 tcg_tmp; 4937 4938 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4939 switch (op_id) { 4940 case 0x42: /* SMADDL */ 4941 case 0x43: /* SMSUBL */ 4942 case 0x44: /* SMULH */ 4943 is_signed = true; 4944 break; 4945 case 0x0: /* MADD (32bit) */ 4946 case 0x1: /* MSUB (32bit) */ 4947 case 0x40: /* MADD (64bit) */ 4948 case 0x41: /* MSUB (64bit) */ 4949 case 0x4a: /* UMADDL */ 4950 case 0x4b: /* UMSUBL */ 4951 case 0x4c: /* UMULH */ 4952 break; 4953 default: 4954 unallocated_encoding(s); 4955 return; 4956 } 4957 4958 if (is_high) { 4959 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4960 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4961 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4962 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4963 4964 if (is_signed) { 4965 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4966 } else { 4967 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4968 } 4969 return; 4970 } 4971 4972 tcg_op1 = tcg_temp_new_i64(); 4973 tcg_op2 = tcg_temp_new_i64(); 4974 tcg_tmp = tcg_temp_new_i64(); 4975 4976 if (op_id < 0x42) { 4977 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4978 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4979 } else { 4980 if (is_signed) { 4981 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4982 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4983 } else { 4984 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4985 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4986 } 4987 } 4988 4989 if (ra == 31 && !is_sub) { 4990 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4991 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4992 } else { 4993 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4994 if (is_sub) { 4995 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4996 } else { 4997 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4998 } 4999 } 5000 5001 if (!sf) { 5002 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5003 } 5004 } 5005 5006 /* Add/subtract (with carry) 5007 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5008 * +--+--+--+------------------------+------+-------------+------+-----+ 5009 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5010 * +--+--+--+------------------------+------+-------------+------+-----+ 5011 */ 5012 5013 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5014 { 5015 unsigned int sf, op, setflags, rm, rn, rd; 5016 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5017 5018 sf = extract32(insn, 31, 1); 5019 op = extract32(insn, 30, 1); 5020 setflags = extract32(insn, 29, 1); 5021 rm = extract32(insn, 16, 5); 5022 rn = extract32(insn, 5, 5); 5023 rd = extract32(insn, 0, 5); 5024 5025 tcg_rd = cpu_reg(s, rd); 5026 tcg_rn = cpu_reg(s, rn); 5027 5028 if (op) { 5029 tcg_y = tcg_temp_new_i64(); 5030 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5031 } else { 5032 tcg_y = cpu_reg(s, rm); 5033 } 5034 5035 if (setflags) { 5036 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5037 } else { 5038 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5039 } 5040 } 5041 5042 /* 5043 * Rotate right into flags 5044 * 31 30 29 21 15 10 5 4 0 5045 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5046 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5047 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5048 */ 5049 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5050 { 5051 int mask = extract32(insn, 0, 4); 5052 int o2 = extract32(insn, 4, 1); 5053 int rn = extract32(insn, 5, 5); 5054 int imm6 = extract32(insn, 15, 6); 5055 int sf_op_s = extract32(insn, 29, 3); 5056 TCGv_i64 tcg_rn; 5057 TCGv_i32 nzcv; 5058 5059 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5060 unallocated_encoding(s); 5061 return; 5062 } 5063 5064 tcg_rn = read_cpu_reg(s, rn, 1); 5065 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5066 5067 nzcv = tcg_temp_new_i32(); 5068 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5069 5070 if (mask & 8) { /* N */ 5071 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5072 } 5073 if (mask & 4) { /* Z */ 5074 tcg_gen_not_i32(cpu_ZF, nzcv); 5075 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5076 } 5077 if (mask & 2) { /* C */ 5078 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5079 } 5080 if (mask & 1) { /* V */ 5081 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5082 } 5083 } 5084 5085 /* 5086 * Evaluate into flags 5087 * 31 30 29 21 15 14 10 5 4 0 5088 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5089 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5090 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5091 */ 5092 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5093 { 5094 int o3_mask = extract32(insn, 0, 5); 5095 int rn = extract32(insn, 5, 5); 5096 int o2 = extract32(insn, 15, 6); 5097 int sz = extract32(insn, 14, 1); 5098 int sf_op_s = extract32(insn, 29, 3); 5099 TCGv_i32 tmp; 5100 int shift; 5101 5102 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5103 !dc_isar_feature(aa64_condm_4, s)) { 5104 unallocated_encoding(s); 5105 return; 5106 } 5107 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5108 5109 tmp = tcg_temp_new_i32(); 5110 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5111 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5112 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5113 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5114 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5115 } 5116 5117 /* Conditional compare (immediate / register) 5118 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5119 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5120 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5121 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5122 * [1] y [0] [0] 5123 */ 5124 static void disas_cc(DisasContext *s, uint32_t insn) 5125 { 5126 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5127 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5128 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5129 DisasCompare c; 5130 5131 if (!extract32(insn, 29, 1)) { 5132 unallocated_encoding(s); 5133 return; 5134 } 5135 if (insn & (1 << 10 | 1 << 4)) { 5136 unallocated_encoding(s); 5137 return; 5138 } 5139 sf = extract32(insn, 31, 1); 5140 op = extract32(insn, 30, 1); 5141 is_imm = extract32(insn, 11, 1); 5142 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5143 cond = extract32(insn, 12, 4); 5144 rn = extract32(insn, 5, 5); 5145 nzcv = extract32(insn, 0, 4); 5146 5147 /* Set T0 = !COND. */ 5148 tcg_t0 = tcg_temp_new_i32(); 5149 arm_test_cc(&c, cond); 5150 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5151 5152 /* Load the arguments for the new comparison. */ 5153 if (is_imm) { 5154 tcg_y = tcg_temp_new_i64(); 5155 tcg_gen_movi_i64(tcg_y, y); 5156 } else { 5157 tcg_y = cpu_reg(s, y); 5158 } 5159 tcg_rn = cpu_reg(s, rn); 5160 5161 /* Set the flags for the new comparison. */ 5162 tcg_tmp = tcg_temp_new_i64(); 5163 if (op) { 5164 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5165 } else { 5166 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5167 } 5168 5169 /* If COND was false, force the flags to #nzcv. Compute two masks 5170 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5171 * For tcg hosts that support ANDC, we can make do with just T1. 5172 * In either case, allow the tcg optimizer to delete any unused mask. 5173 */ 5174 tcg_t1 = tcg_temp_new_i32(); 5175 tcg_t2 = tcg_temp_new_i32(); 5176 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5177 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5178 5179 if (nzcv & 8) { /* N */ 5180 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5181 } else { 5182 if (TCG_TARGET_HAS_andc_i32) { 5183 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5184 } else { 5185 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5186 } 5187 } 5188 if (nzcv & 4) { /* Z */ 5189 if (TCG_TARGET_HAS_andc_i32) { 5190 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5191 } else { 5192 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5193 } 5194 } else { 5195 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5196 } 5197 if (nzcv & 2) { /* C */ 5198 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5199 } else { 5200 if (TCG_TARGET_HAS_andc_i32) { 5201 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5202 } else { 5203 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5204 } 5205 } 5206 if (nzcv & 1) { /* V */ 5207 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5208 } else { 5209 if (TCG_TARGET_HAS_andc_i32) { 5210 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5211 } else { 5212 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5213 } 5214 } 5215 } 5216 5217 /* Conditional select 5218 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5219 * +----+----+---+-----------------+------+------+-----+------+------+ 5220 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5221 * +----+----+---+-----------------+------+------+-----+------+------+ 5222 */ 5223 static void disas_cond_select(DisasContext *s, uint32_t insn) 5224 { 5225 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5226 TCGv_i64 tcg_rd, zero; 5227 DisasCompare64 c; 5228 5229 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5230 /* S == 1 or op2<1> == 1 */ 5231 unallocated_encoding(s); 5232 return; 5233 } 5234 sf = extract32(insn, 31, 1); 5235 else_inv = extract32(insn, 30, 1); 5236 rm = extract32(insn, 16, 5); 5237 cond = extract32(insn, 12, 4); 5238 else_inc = extract32(insn, 10, 1); 5239 rn = extract32(insn, 5, 5); 5240 rd = extract32(insn, 0, 5); 5241 5242 tcg_rd = cpu_reg(s, rd); 5243 5244 a64_test_cc(&c, cond); 5245 zero = tcg_constant_i64(0); 5246 5247 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5248 /* CSET & CSETM. */ 5249 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5250 if (else_inv) { 5251 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5252 } 5253 } else { 5254 TCGv_i64 t_true = cpu_reg(s, rn); 5255 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5256 if (else_inv && else_inc) { 5257 tcg_gen_neg_i64(t_false, t_false); 5258 } else if (else_inv) { 5259 tcg_gen_not_i64(t_false, t_false); 5260 } else if (else_inc) { 5261 tcg_gen_addi_i64(t_false, t_false, 1); 5262 } 5263 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5264 } 5265 5266 if (!sf) { 5267 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5268 } 5269 } 5270 5271 static void handle_clz(DisasContext *s, unsigned int sf, 5272 unsigned int rn, unsigned int rd) 5273 { 5274 TCGv_i64 tcg_rd, tcg_rn; 5275 tcg_rd = cpu_reg(s, rd); 5276 tcg_rn = cpu_reg(s, rn); 5277 5278 if (sf) { 5279 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5280 } else { 5281 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5282 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5283 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5284 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5285 } 5286 } 5287 5288 static void handle_cls(DisasContext *s, unsigned int sf, 5289 unsigned int rn, unsigned int rd) 5290 { 5291 TCGv_i64 tcg_rd, tcg_rn; 5292 tcg_rd = cpu_reg(s, rd); 5293 tcg_rn = cpu_reg(s, rn); 5294 5295 if (sf) { 5296 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5297 } else { 5298 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5299 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5300 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5301 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5302 } 5303 } 5304 5305 static void handle_rbit(DisasContext *s, unsigned int sf, 5306 unsigned int rn, unsigned int rd) 5307 { 5308 TCGv_i64 tcg_rd, tcg_rn; 5309 tcg_rd = cpu_reg(s, rd); 5310 tcg_rn = cpu_reg(s, rn); 5311 5312 if (sf) { 5313 gen_helper_rbit64(tcg_rd, tcg_rn); 5314 } else { 5315 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5316 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5317 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5318 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5319 } 5320 } 5321 5322 /* REV with sf==1, opcode==3 ("REV64") */ 5323 static void handle_rev64(DisasContext *s, unsigned int sf, 5324 unsigned int rn, unsigned int rd) 5325 { 5326 if (!sf) { 5327 unallocated_encoding(s); 5328 return; 5329 } 5330 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5331 } 5332 5333 /* REV with sf==0, opcode==2 5334 * REV32 (sf==1, opcode==2) 5335 */ 5336 static void handle_rev32(DisasContext *s, unsigned int sf, 5337 unsigned int rn, unsigned int rd) 5338 { 5339 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5340 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5341 5342 if (sf) { 5343 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5344 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5345 } else { 5346 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5347 } 5348 } 5349 5350 /* REV16 (opcode==1) */ 5351 static void handle_rev16(DisasContext *s, unsigned int sf, 5352 unsigned int rn, unsigned int rd) 5353 { 5354 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5355 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5356 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5357 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5358 5359 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5360 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5361 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5362 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5363 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5364 } 5365 5366 /* Data-processing (1 source) 5367 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5368 * +----+---+---+-----------------+---------+--------+------+------+ 5369 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5370 * +----+---+---+-----------------+---------+--------+------+------+ 5371 */ 5372 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5373 { 5374 unsigned int sf, opcode, opcode2, rn, rd; 5375 TCGv_i64 tcg_rd; 5376 5377 if (extract32(insn, 29, 1)) { 5378 unallocated_encoding(s); 5379 return; 5380 } 5381 5382 sf = extract32(insn, 31, 1); 5383 opcode = extract32(insn, 10, 6); 5384 opcode2 = extract32(insn, 16, 5); 5385 rn = extract32(insn, 5, 5); 5386 rd = extract32(insn, 0, 5); 5387 5388 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5389 5390 switch (MAP(sf, opcode2, opcode)) { 5391 case MAP(0, 0x00, 0x00): /* RBIT */ 5392 case MAP(1, 0x00, 0x00): 5393 handle_rbit(s, sf, rn, rd); 5394 break; 5395 case MAP(0, 0x00, 0x01): /* REV16 */ 5396 case MAP(1, 0x00, 0x01): 5397 handle_rev16(s, sf, rn, rd); 5398 break; 5399 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5400 case MAP(1, 0x00, 0x02): 5401 handle_rev32(s, sf, rn, rd); 5402 break; 5403 case MAP(1, 0x00, 0x03): /* REV64 */ 5404 handle_rev64(s, sf, rn, rd); 5405 break; 5406 case MAP(0, 0x00, 0x04): /* CLZ */ 5407 case MAP(1, 0x00, 0x04): 5408 handle_clz(s, sf, rn, rd); 5409 break; 5410 case MAP(0, 0x00, 0x05): /* CLS */ 5411 case MAP(1, 0x00, 0x05): 5412 handle_cls(s, sf, rn, rd); 5413 break; 5414 case MAP(1, 0x01, 0x00): /* PACIA */ 5415 if (s->pauth_active) { 5416 tcg_rd = cpu_reg(s, rd); 5417 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5418 } else if (!dc_isar_feature(aa64_pauth, s)) { 5419 goto do_unallocated; 5420 } 5421 break; 5422 case MAP(1, 0x01, 0x01): /* PACIB */ 5423 if (s->pauth_active) { 5424 tcg_rd = cpu_reg(s, rd); 5425 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5426 } else if (!dc_isar_feature(aa64_pauth, s)) { 5427 goto do_unallocated; 5428 } 5429 break; 5430 case MAP(1, 0x01, 0x02): /* PACDA */ 5431 if (s->pauth_active) { 5432 tcg_rd = cpu_reg(s, rd); 5433 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5434 } else if (!dc_isar_feature(aa64_pauth, s)) { 5435 goto do_unallocated; 5436 } 5437 break; 5438 case MAP(1, 0x01, 0x03): /* PACDB */ 5439 if (s->pauth_active) { 5440 tcg_rd = cpu_reg(s, rd); 5441 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5442 } else if (!dc_isar_feature(aa64_pauth, s)) { 5443 goto do_unallocated; 5444 } 5445 break; 5446 case MAP(1, 0x01, 0x04): /* AUTIA */ 5447 if (s->pauth_active) { 5448 tcg_rd = cpu_reg(s, rd); 5449 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5450 } else if (!dc_isar_feature(aa64_pauth, s)) { 5451 goto do_unallocated; 5452 } 5453 break; 5454 case MAP(1, 0x01, 0x05): /* AUTIB */ 5455 if (s->pauth_active) { 5456 tcg_rd = cpu_reg(s, rd); 5457 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5458 } else if (!dc_isar_feature(aa64_pauth, s)) { 5459 goto do_unallocated; 5460 } 5461 break; 5462 case MAP(1, 0x01, 0x06): /* AUTDA */ 5463 if (s->pauth_active) { 5464 tcg_rd = cpu_reg(s, rd); 5465 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5466 } else if (!dc_isar_feature(aa64_pauth, s)) { 5467 goto do_unallocated; 5468 } 5469 break; 5470 case MAP(1, 0x01, 0x07): /* AUTDB */ 5471 if (s->pauth_active) { 5472 tcg_rd = cpu_reg(s, rd); 5473 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5474 } else if (!dc_isar_feature(aa64_pauth, s)) { 5475 goto do_unallocated; 5476 } 5477 break; 5478 case MAP(1, 0x01, 0x08): /* PACIZA */ 5479 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5480 goto do_unallocated; 5481 } else if (s->pauth_active) { 5482 tcg_rd = cpu_reg(s, rd); 5483 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5484 } 5485 break; 5486 case MAP(1, 0x01, 0x09): /* PACIZB */ 5487 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5488 goto do_unallocated; 5489 } else if (s->pauth_active) { 5490 tcg_rd = cpu_reg(s, rd); 5491 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5492 } 5493 break; 5494 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5495 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5496 goto do_unallocated; 5497 } else if (s->pauth_active) { 5498 tcg_rd = cpu_reg(s, rd); 5499 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5500 } 5501 break; 5502 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5503 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5504 goto do_unallocated; 5505 } else if (s->pauth_active) { 5506 tcg_rd = cpu_reg(s, rd); 5507 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5508 } 5509 break; 5510 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5511 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5512 goto do_unallocated; 5513 } else if (s->pauth_active) { 5514 tcg_rd = cpu_reg(s, rd); 5515 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5516 } 5517 break; 5518 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5519 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5520 goto do_unallocated; 5521 } else if (s->pauth_active) { 5522 tcg_rd = cpu_reg(s, rd); 5523 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5524 } 5525 break; 5526 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5527 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5528 goto do_unallocated; 5529 } else if (s->pauth_active) { 5530 tcg_rd = cpu_reg(s, rd); 5531 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5532 } 5533 break; 5534 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5535 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5536 goto do_unallocated; 5537 } else if (s->pauth_active) { 5538 tcg_rd = cpu_reg(s, rd); 5539 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5540 } 5541 break; 5542 case MAP(1, 0x01, 0x10): /* XPACI */ 5543 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5544 goto do_unallocated; 5545 } else if (s->pauth_active) { 5546 tcg_rd = cpu_reg(s, rd); 5547 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5548 } 5549 break; 5550 case MAP(1, 0x01, 0x11): /* XPACD */ 5551 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5552 goto do_unallocated; 5553 } else if (s->pauth_active) { 5554 tcg_rd = cpu_reg(s, rd); 5555 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5556 } 5557 break; 5558 default: 5559 do_unallocated: 5560 unallocated_encoding(s); 5561 break; 5562 } 5563 5564 #undef MAP 5565 } 5566 5567 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5568 unsigned int rm, unsigned int rn, unsigned int rd) 5569 { 5570 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5571 tcg_rd = cpu_reg(s, rd); 5572 5573 if (!sf && is_signed) { 5574 tcg_n = tcg_temp_new_i64(); 5575 tcg_m = tcg_temp_new_i64(); 5576 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5577 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5578 } else { 5579 tcg_n = read_cpu_reg(s, rn, sf); 5580 tcg_m = read_cpu_reg(s, rm, sf); 5581 } 5582 5583 if (is_signed) { 5584 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5585 } else { 5586 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5587 } 5588 5589 if (!sf) { /* zero extend final result */ 5590 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5591 } 5592 } 5593 5594 /* LSLV, LSRV, ASRV, RORV */ 5595 static void handle_shift_reg(DisasContext *s, 5596 enum a64_shift_type shift_type, unsigned int sf, 5597 unsigned int rm, unsigned int rn, unsigned int rd) 5598 { 5599 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5600 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5601 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5602 5603 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5604 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5605 } 5606 5607 /* CRC32[BHWX], CRC32C[BHWX] */ 5608 static void handle_crc32(DisasContext *s, 5609 unsigned int sf, unsigned int sz, bool crc32c, 5610 unsigned int rm, unsigned int rn, unsigned int rd) 5611 { 5612 TCGv_i64 tcg_acc, tcg_val; 5613 TCGv_i32 tcg_bytes; 5614 5615 if (!dc_isar_feature(aa64_crc32, s) 5616 || (sf == 1 && sz != 3) 5617 || (sf == 0 && sz == 3)) { 5618 unallocated_encoding(s); 5619 return; 5620 } 5621 5622 if (sz == 3) { 5623 tcg_val = cpu_reg(s, rm); 5624 } else { 5625 uint64_t mask; 5626 switch (sz) { 5627 case 0: 5628 mask = 0xFF; 5629 break; 5630 case 1: 5631 mask = 0xFFFF; 5632 break; 5633 case 2: 5634 mask = 0xFFFFFFFF; 5635 break; 5636 default: 5637 g_assert_not_reached(); 5638 } 5639 tcg_val = tcg_temp_new_i64(); 5640 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5641 } 5642 5643 tcg_acc = cpu_reg(s, rn); 5644 tcg_bytes = tcg_constant_i32(1 << sz); 5645 5646 if (crc32c) { 5647 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5648 } else { 5649 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5650 } 5651 } 5652 5653 /* Data-processing (2 source) 5654 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5655 * +----+---+---+-----------------+------+--------+------+------+ 5656 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5657 * +----+---+---+-----------------+------+--------+------+------+ 5658 */ 5659 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5660 { 5661 unsigned int sf, rm, opcode, rn, rd, setflag; 5662 sf = extract32(insn, 31, 1); 5663 setflag = extract32(insn, 29, 1); 5664 rm = extract32(insn, 16, 5); 5665 opcode = extract32(insn, 10, 6); 5666 rn = extract32(insn, 5, 5); 5667 rd = extract32(insn, 0, 5); 5668 5669 if (setflag && opcode != 0) { 5670 unallocated_encoding(s); 5671 return; 5672 } 5673 5674 switch (opcode) { 5675 case 0: /* SUBP(S) */ 5676 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5677 goto do_unallocated; 5678 } else { 5679 TCGv_i64 tcg_n, tcg_m, tcg_d; 5680 5681 tcg_n = read_cpu_reg_sp(s, rn, true); 5682 tcg_m = read_cpu_reg_sp(s, rm, true); 5683 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5684 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5685 tcg_d = cpu_reg(s, rd); 5686 5687 if (setflag) { 5688 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5689 } else { 5690 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5691 } 5692 } 5693 break; 5694 case 2: /* UDIV */ 5695 handle_div(s, false, sf, rm, rn, rd); 5696 break; 5697 case 3: /* SDIV */ 5698 handle_div(s, true, sf, rm, rn, rd); 5699 break; 5700 case 4: /* IRG */ 5701 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5702 goto do_unallocated; 5703 } 5704 if (s->ata) { 5705 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5706 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5707 } else { 5708 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5709 cpu_reg_sp(s, rn)); 5710 } 5711 break; 5712 case 5: /* GMI */ 5713 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5714 goto do_unallocated; 5715 } else { 5716 TCGv_i64 t = tcg_temp_new_i64(); 5717 5718 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5719 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5720 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5721 } 5722 break; 5723 case 8: /* LSLV */ 5724 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5725 break; 5726 case 9: /* LSRV */ 5727 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5728 break; 5729 case 10: /* ASRV */ 5730 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5731 break; 5732 case 11: /* RORV */ 5733 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5734 break; 5735 case 12: /* PACGA */ 5736 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5737 goto do_unallocated; 5738 } 5739 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5740 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5741 break; 5742 case 16: 5743 case 17: 5744 case 18: 5745 case 19: 5746 case 20: 5747 case 21: 5748 case 22: 5749 case 23: /* CRC32 */ 5750 { 5751 int sz = extract32(opcode, 0, 2); 5752 bool crc32c = extract32(opcode, 2, 1); 5753 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5754 break; 5755 } 5756 default: 5757 do_unallocated: 5758 unallocated_encoding(s); 5759 break; 5760 } 5761 } 5762 5763 /* 5764 * Data processing - register 5765 * 31 30 29 28 25 21 20 16 10 0 5766 * +--+---+--+---+-------+-----+-------+-------+---------+ 5767 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5768 * +--+---+--+---+-------+-----+-------+-------+---------+ 5769 */ 5770 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5771 { 5772 int op0 = extract32(insn, 30, 1); 5773 int op1 = extract32(insn, 28, 1); 5774 int op2 = extract32(insn, 21, 4); 5775 int op3 = extract32(insn, 10, 6); 5776 5777 if (!op1) { 5778 if (op2 & 8) { 5779 if (op2 & 1) { 5780 /* Add/sub (extended register) */ 5781 disas_add_sub_ext_reg(s, insn); 5782 } else { 5783 /* Add/sub (shifted register) */ 5784 disas_add_sub_reg(s, insn); 5785 } 5786 } else { 5787 /* Logical (shifted register) */ 5788 disas_logic_reg(s, insn); 5789 } 5790 return; 5791 } 5792 5793 switch (op2) { 5794 case 0x0: 5795 switch (op3) { 5796 case 0x00: /* Add/subtract (with carry) */ 5797 disas_adc_sbc(s, insn); 5798 break; 5799 5800 case 0x01: /* Rotate right into flags */ 5801 case 0x21: 5802 disas_rotate_right_into_flags(s, insn); 5803 break; 5804 5805 case 0x02: /* Evaluate into flags */ 5806 case 0x12: 5807 case 0x22: 5808 case 0x32: 5809 disas_evaluate_into_flags(s, insn); 5810 break; 5811 5812 default: 5813 goto do_unallocated; 5814 } 5815 break; 5816 5817 case 0x2: /* Conditional compare */ 5818 disas_cc(s, insn); /* both imm and reg forms */ 5819 break; 5820 5821 case 0x4: /* Conditional select */ 5822 disas_cond_select(s, insn); 5823 break; 5824 5825 case 0x6: /* Data-processing */ 5826 if (op0) { /* (1 source) */ 5827 disas_data_proc_1src(s, insn); 5828 } else { /* (2 source) */ 5829 disas_data_proc_2src(s, insn); 5830 } 5831 break; 5832 case 0x8 ... 0xf: /* (3 source) */ 5833 disas_data_proc_3src(s, insn); 5834 break; 5835 5836 default: 5837 do_unallocated: 5838 unallocated_encoding(s); 5839 break; 5840 } 5841 } 5842 5843 static void handle_fp_compare(DisasContext *s, int size, 5844 unsigned int rn, unsigned int rm, 5845 bool cmp_with_zero, bool signal_all_nans) 5846 { 5847 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5848 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5849 5850 if (size == MO_64) { 5851 TCGv_i64 tcg_vn, tcg_vm; 5852 5853 tcg_vn = read_fp_dreg(s, rn); 5854 if (cmp_with_zero) { 5855 tcg_vm = tcg_constant_i64(0); 5856 } else { 5857 tcg_vm = read_fp_dreg(s, rm); 5858 } 5859 if (signal_all_nans) { 5860 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5861 } else { 5862 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5863 } 5864 } else { 5865 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5866 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5867 5868 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5869 if (cmp_with_zero) { 5870 tcg_gen_movi_i32(tcg_vm, 0); 5871 } else { 5872 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5873 } 5874 5875 switch (size) { 5876 case MO_32: 5877 if (signal_all_nans) { 5878 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5879 } else { 5880 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5881 } 5882 break; 5883 case MO_16: 5884 if (signal_all_nans) { 5885 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5886 } else { 5887 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5888 } 5889 break; 5890 default: 5891 g_assert_not_reached(); 5892 } 5893 } 5894 5895 gen_set_nzcv(tcg_flags); 5896 } 5897 5898 /* Floating point compare 5899 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5900 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5901 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5902 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5903 */ 5904 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5905 { 5906 unsigned int mos, type, rm, op, rn, opc, op2r; 5907 int size; 5908 5909 mos = extract32(insn, 29, 3); 5910 type = extract32(insn, 22, 2); 5911 rm = extract32(insn, 16, 5); 5912 op = extract32(insn, 14, 2); 5913 rn = extract32(insn, 5, 5); 5914 opc = extract32(insn, 3, 2); 5915 op2r = extract32(insn, 0, 3); 5916 5917 if (mos || op || op2r) { 5918 unallocated_encoding(s); 5919 return; 5920 } 5921 5922 switch (type) { 5923 case 0: 5924 size = MO_32; 5925 break; 5926 case 1: 5927 size = MO_64; 5928 break; 5929 case 3: 5930 size = MO_16; 5931 if (dc_isar_feature(aa64_fp16, s)) { 5932 break; 5933 } 5934 /* fallthru */ 5935 default: 5936 unallocated_encoding(s); 5937 return; 5938 } 5939 5940 if (!fp_access_check(s)) { 5941 return; 5942 } 5943 5944 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5945 } 5946 5947 /* Floating point conditional compare 5948 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5949 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5951 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5952 */ 5953 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5954 { 5955 unsigned int mos, type, rm, cond, rn, op, nzcv; 5956 TCGLabel *label_continue = NULL; 5957 int size; 5958 5959 mos = extract32(insn, 29, 3); 5960 type = extract32(insn, 22, 2); 5961 rm = extract32(insn, 16, 5); 5962 cond = extract32(insn, 12, 4); 5963 rn = extract32(insn, 5, 5); 5964 op = extract32(insn, 4, 1); 5965 nzcv = extract32(insn, 0, 4); 5966 5967 if (mos) { 5968 unallocated_encoding(s); 5969 return; 5970 } 5971 5972 switch (type) { 5973 case 0: 5974 size = MO_32; 5975 break; 5976 case 1: 5977 size = MO_64; 5978 break; 5979 case 3: 5980 size = MO_16; 5981 if (dc_isar_feature(aa64_fp16, s)) { 5982 break; 5983 } 5984 /* fallthru */ 5985 default: 5986 unallocated_encoding(s); 5987 return; 5988 } 5989 5990 if (!fp_access_check(s)) { 5991 return; 5992 } 5993 5994 if (cond < 0x0e) { /* not always */ 5995 TCGLabel *label_match = gen_new_label(); 5996 label_continue = gen_new_label(); 5997 arm_gen_test_cc(cond, label_match); 5998 /* nomatch: */ 5999 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6000 tcg_gen_br(label_continue); 6001 gen_set_label(label_match); 6002 } 6003 6004 handle_fp_compare(s, size, rn, rm, false, op); 6005 6006 if (cond < 0x0e) { 6007 gen_set_label(label_continue); 6008 } 6009 } 6010 6011 /* Floating point conditional select 6012 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6013 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6014 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6015 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6016 */ 6017 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6018 { 6019 unsigned int mos, type, rm, cond, rn, rd; 6020 TCGv_i64 t_true, t_false; 6021 DisasCompare64 c; 6022 MemOp sz; 6023 6024 mos = extract32(insn, 29, 3); 6025 type = extract32(insn, 22, 2); 6026 rm = extract32(insn, 16, 5); 6027 cond = extract32(insn, 12, 4); 6028 rn = extract32(insn, 5, 5); 6029 rd = extract32(insn, 0, 5); 6030 6031 if (mos) { 6032 unallocated_encoding(s); 6033 return; 6034 } 6035 6036 switch (type) { 6037 case 0: 6038 sz = MO_32; 6039 break; 6040 case 1: 6041 sz = MO_64; 6042 break; 6043 case 3: 6044 sz = MO_16; 6045 if (dc_isar_feature(aa64_fp16, s)) { 6046 break; 6047 } 6048 /* fallthru */ 6049 default: 6050 unallocated_encoding(s); 6051 return; 6052 } 6053 6054 if (!fp_access_check(s)) { 6055 return; 6056 } 6057 6058 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6059 t_true = tcg_temp_new_i64(); 6060 t_false = tcg_temp_new_i64(); 6061 read_vec_element(s, t_true, rn, 0, sz); 6062 read_vec_element(s, t_false, rm, 0, sz); 6063 6064 a64_test_cc(&c, cond); 6065 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6066 t_true, t_false); 6067 6068 /* Note that sregs & hregs write back zeros to the high bits, 6069 and we've already done the zero-extension. */ 6070 write_fp_dreg(s, rd, t_true); 6071 } 6072 6073 /* Floating-point data-processing (1 source) - half precision */ 6074 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6075 { 6076 TCGv_ptr fpst = NULL; 6077 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6078 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6079 6080 switch (opcode) { 6081 case 0x0: /* FMOV */ 6082 tcg_gen_mov_i32(tcg_res, tcg_op); 6083 break; 6084 case 0x1: /* FABS */ 6085 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6086 break; 6087 case 0x2: /* FNEG */ 6088 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6089 break; 6090 case 0x3: /* FSQRT */ 6091 fpst = fpstatus_ptr(FPST_FPCR_F16); 6092 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6093 break; 6094 case 0x8: /* FRINTN */ 6095 case 0x9: /* FRINTP */ 6096 case 0xa: /* FRINTM */ 6097 case 0xb: /* FRINTZ */ 6098 case 0xc: /* FRINTA */ 6099 { 6100 TCGv_i32 tcg_rmode; 6101 6102 fpst = fpstatus_ptr(FPST_FPCR_F16); 6103 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6104 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6105 gen_restore_rmode(tcg_rmode, fpst); 6106 break; 6107 } 6108 case 0xe: /* FRINTX */ 6109 fpst = fpstatus_ptr(FPST_FPCR_F16); 6110 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6111 break; 6112 case 0xf: /* FRINTI */ 6113 fpst = fpstatus_ptr(FPST_FPCR_F16); 6114 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6115 break; 6116 default: 6117 g_assert_not_reached(); 6118 } 6119 6120 write_fp_sreg(s, rd, tcg_res); 6121 } 6122 6123 /* Floating-point data-processing (1 source) - single precision */ 6124 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6125 { 6126 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6127 TCGv_i32 tcg_op, tcg_res; 6128 TCGv_ptr fpst; 6129 int rmode = -1; 6130 6131 tcg_op = read_fp_sreg(s, rn); 6132 tcg_res = tcg_temp_new_i32(); 6133 6134 switch (opcode) { 6135 case 0x0: /* FMOV */ 6136 tcg_gen_mov_i32(tcg_res, tcg_op); 6137 goto done; 6138 case 0x1: /* FABS */ 6139 gen_helper_vfp_abss(tcg_res, tcg_op); 6140 goto done; 6141 case 0x2: /* FNEG */ 6142 gen_helper_vfp_negs(tcg_res, tcg_op); 6143 goto done; 6144 case 0x3: /* FSQRT */ 6145 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6146 goto done; 6147 case 0x6: /* BFCVT */ 6148 gen_fpst = gen_helper_bfcvt; 6149 break; 6150 case 0x8: /* FRINTN */ 6151 case 0x9: /* FRINTP */ 6152 case 0xa: /* FRINTM */ 6153 case 0xb: /* FRINTZ */ 6154 case 0xc: /* FRINTA */ 6155 rmode = opcode & 7; 6156 gen_fpst = gen_helper_rints; 6157 break; 6158 case 0xe: /* FRINTX */ 6159 gen_fpst = gen_helper_rints_exact; 6160 break; 6161 case 0xf: /* FRINTI */ 6162 gen_fpst = gen_helper_rints; 6163 break; 6164 case 0x10: /* FRINT32Z */ 6165 rmode = FPROUNDING_ZERO; 6166 gen_fpst = gen_helper_frint32_s; 6167 break; 6168 case 0x11: /* FRINT32X */ 6169 gen_fpst = gen_helper_frint32_s; 6170 break; 6171 case 0x12: /* FRINT64Z */ 6172 rmode = FPROUNDING_ZERO; 6173 gen_fpst = gen_helper_frint64_s; 6174 break; 6175 case 0x13: /* FRINT64X */ 6176 gen_fpst = gen_helper_frint64_s; 6177 break; 6178 default: 6179 g_assert_not_reached(); 6180 } 6181 6182 fpst = fpstatus_ptr(FPST_FPCR); 6183 if (rmode >= 0) { 6184 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6185 gen_fpst(tcg_res, tcg_op, fpst); 6186 gen_restore_rmode(tcg_rmode, fpst); 6187 } else { 6188 gen_fpst(tcg_res, tcg_op, fpst); 6189 } 6190 6191 done: 6192 write_fp_sreg(s, rd, tcg_res); 6193 } 6194 6195 /* Floating-point data-processing (1 source) - double precision */ 6196 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6197 { 6198 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6199 TCGv_i64 tcg_op, tcg_res; 6200 TCGv_ptr fpst; 6201 int rmode = -1; 6202 6203 switch (opcode) { 6204 case 0x0: /* FMOV */ 6205 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6206 return; 6207 } 6208 6209 tcg_op = read_fp_dreg(s, rn); 6210 tcg_res = tcg_temp_new_i64(); 6211 6212 switch (opcode) { 6213 case 0x1: /* FABS */ 6214 gen_helper_vfp_absd(tcg_res, tcg_op); 6215 goto done; 6216 case 0x2: /* FNEG */ 6217 gen_helper_vfp_negd(tcg_res, tcg_op); 6218 goto done; 6219 case 0x3: /* FSQRT */ 6220 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6221 goto done; 6222 case 0x8: /* FRINTN */ 6223 case 0x9: /* FRINTP */ 6224 case 0xa: /* FRINTM */ 6225 case 0xb: /* FRINTZ */ 6226 case 0xc: /* FRINTA */ 6227 rmode = opcode & 7; 6228 gen_fpst = gen_helper_rintd; 6229 break; 6230 case 0xe: /* FRINTX */ 6231 gen_fpst = gen_helper_rintd_exact; 6232 break; 6233 case 0xf: /* FRINTI */ 6234 gen_fpst = gen_helper_rintd; 6235 break; 6236 case 0x10: /* FRINT32Z */ 6237 rmode = FPROUNDING_ZERO; 6238 gen_fpst = gen_helper_frint32_d; 6239 break; 6240 case 0x11: /* FRINT32X */ 6241 gen_fpst = gen_helper_frint32_d; 6242 break; 6243 case 0x12: /* FRINT64Z */ 6244 rmode = FPROUNDING_ZERO; 6245 gen_fpst = gen_helper_frint64_d; 6246 break; 6247 case 0x13: /* FRINT64X */ 6248 gen_fpst = gen_helper_frint64_d; 6249 break; 6250 default: 6251 g_assert_not_reached(); 6252 } 6253 6254 fpst = fpstatus_ptr(FPST_FPCR); 6255 if (rmode >= 0) { 6256 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6257 gen_fpst(tcg_res, tcg_op, fpst); 6258 gen_restore_rmode(tcg_rmode, fpst); 6259 } else { 6260 gen_fpst(tcg_res, tcg_op, fpst); 6261 } 6262 6263 done: 6264 write_fp_dreg(s, rd, tcg_res); 6265 } 6266 6267 static void handle_fp_fcvt(DisasContext *s, int opcode, 6268 int rd, int rn, int dtype, int ntype) 6269 { 6270 switch (ntype) { 6271 case 0x0: 6272 { 6273 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6274 if (dtype == 1) { 6275 /* Single to double */ 6276 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6277 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6278 write_fp_dreg(s, rd, tcg_rd); 6279 } else { 6280 /* Single to half */ 6281 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6282 TCGv_i32 ahp = get_ahp_flag(); 6283 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6284 6285 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6286 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6287 write_fp_sreg(s, rd, tcg_rd); 6288 } 6289 break; 6290 } 6291 case 0x1: 6292 { 6293 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6294 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6295 if (dtype == 0) { 6296 /* Double to single */ 6297 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6298 } else { 6299 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6300 TCGv_i32 ahp = get_ahp_flag(); 6301 /* Double to half */ 6302 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6303 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6304 } 6305 write_fp_sreg(s, rd, tcg_rd); 6306 break; 6307 } 6308 case 0x3: 6309 { 6310 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6311 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6312 TCGv_i32 tcg_ahp = get_ahp_flag(); 6313 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6314 if (dtype == 0) { 6315 /* Half to single */ 6316 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6317 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6318 write_fp_sreg(s, rd, tcg_rd); 6319 } else { 6320 /* Half to double */ 6321 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6322 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6323 write_fp_dreg(s, rd, tcg_rd); 6324 } 6325 break; 6326 } 6327 default: 6328 g_assert_not_reached(); 6329 } 6330 } 6331 6332 /* Floating point data-processing (1 source) 6333 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6334 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6335 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6336 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6337 */ 6338 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6339 { 6340 int mos = extract32(insn, 29, 3); 6341 int type = extract32(insn, 22, 2); 6342 int opcode = extract32(insn, 15, 6); 6343 int rn = extract32(insn, 5, 5); 6344 int rd = extract32(insn, 0, 5); 6345 6346 if (mos) { 6347 goto do_unallocated; 6348 } 6349 6350 switch (opcode) { 6351 case 0x4: case 0x5: case 0x7: 6352 { 6353 /* FCVT between half, single and double precision */ 6354 int dtype = extract32(opcode, 0, 2); 6355 if (type == 2 || dtype == type) { 6356 goto do_unallocated; 6357 } 6358 if (!fp_access_check(s)) { 6359 return; 6360 } 6361 6362 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6363 break; 6364 } 6365 6366 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6367 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6368 goto do_unallocated; 6369 } 6370 /* fall through */ 6371 case 0x0 ... 0x3: 6372 case 0x8 ... 0xc: 6373 case 0xe ... 0xf: 6374 /* 32-to-32 and 64-to-64 ops */ 6375 switch (type) { 6376 case 0: 6377 if (!fp_access_check(s)) { 6378 return; 6379 } 6380 handle_fp_1src_single(s, opcode, rd, rn); 6381 break; 6382 case 1: 6383 if (!fp_access_check(s)) { 6384 return; 6385 } 6386 handle_fp_1src_double(s, opcode, rd, rn); 6387 break; 6388 case 3: 6389 if (!dc_isar_feature(aa64_fp16, s)) { 6390 goto do_unallocated; 6391 } 6392 6393 if (!fp_access_check(s)) { 6394 return; 6395 } 6396 handle_fp_1src_half(s, opcode, rd, rn); 6397 break; 6398 default: 6399 goto do_unallocated; 6400 } 6401 break; 6402 6403 case 0x6: 6404 switch (type) { 6405 case 1: /* BFCVT */ 6406 if (!dc_isar_feature(aa64_bf16, s)) { 6407 goto do_unallocated; 6408 } 6409 if (!fp_access_check(s)) { 6410 return; 6411 } 6412 handle_fp_1src_single(s, opcode, rd, rn); 6413 break; 6414 default: 6415 goto do_unallocated; 6416 } 6417 break; 6418 6419 default: 6420 do_unallocated: 6421 unallocated_encoding(s); 6422 break; 6423 } 6424 } 6425 6426 /* Floating-point data-processing (2 source) - single precision */ 6427 static void handle_fp_2src_single(DisasContext *s, int opcode, 6428 int rd, int rn, int rm) 6429 { 6430 TCGv_i32 tcg_op1; 6431 TCGv_i32 tcg_op2; 6432 TCGv_i32 tcg_res; 6433 TCGv_ptr fpst; 6434 6435 tcg_res = tcg_temp_new_i32(); 6436 fpst = fpstatus_ptr(FPST_FPCR); 6437 tcg_op1 = read_fp_sreg(s, rn); 6438 tcg_op2 = read_fp_sreg(s, rm); 6439 6440 switch (opcode) { 6441 case 0x0: /* FMUL */ 6442 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6443 break; 6444 case 0x1: /* FDIV */ 6445 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6446 break; 6447 case 0x2: /* FADD */ 6448 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6449 break; 6450 case 0x3: /* FSUB */ 6451 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6452 break; 6453 case 0x4: /* FMAX */ 6454 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6455 break; 6456 case 0x5: /* FMIN */ 6457 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6458 break; 6459 case 0x6: /* FMAXNM */ 6460 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6461 break; 6462 case 0x7: /* FMINNM */ 6463 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6464 break; 6465 case 0x8: /* FNMUL */ 6466 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6467 gen_helper_vfp_negs(tcg_res, tcg_res); 6468 break; 6469 } 6470 6471 write_fp_sreg(s, rd, tcg_res); 6472 } 6473 6474 /* Floating-point data-processing (2 source) - double precision */ 6475 static void handle_fp_2src_double(DisasContext *s, int opcode, 6476 int rd, int rn, int rm) 6477 { 6478 TCGv_i64 tcg_op1; 6479 TCGv_i64 tcg_op2; 6480 TCGv_i64 tcg_res; 6481 TCGv_ptr fpst; 6482 6483 tcg_res = tcg_temp_new_i64(); 6484 fpst = fpstatus_ptr(FPST_FPCR); 6485 tcg_op1 = read_fp_dreg(s, rn); 6486 tcg_op2 = read_fp_dreg(s, rm); 6487 6488 switch (opcode) { 6489 case 0x0: /* FMUL */ 6490 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x1: /* FDIV */ 6493 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x2: /* FADD */ 6496 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6497 break; 6498 case 0x3: /* FSUB */ 6499 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6500 break; 6501 case 0x4: /* FMAX */ 6502 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6503 break; 6504 case 0x5: /* FMIN */ 6505 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6506 break; 6507 case 0x6: /* FMAXNM */ 6508 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6509 break; 6510 case 0x7: /* FMINNM */ 6511 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6512 break; 6513 case 0x8: /* FNMUL */ 6514 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6515 gen_helper_vfp_negd(tcg_res, tcg_res); 6516 break; 6517 } 6518 6519 write_fp_dreg(s, rd, tcg_res); 6520 } 6521 6522 /* Floating-point data-processing (2 source) - half precision */ 6523 static void handle_fp_2src_half(DisasContext *s, int opcode, 6524 int rd, int rn, int rm) 6525 { 6526 TCGv_i32 tcg_op1; 6527 TCGv_i32 tcg_op2; 6528 TCGv_i32 tcg_res; 6529 TCGv_ptr fpst; 6530 6531 tcg_res = tcg_temp_new_i32(); 6532 fpst = fpstatus_ptr(FPST_FPCR_F16); 6533 tcg_op1 = read_fp_hreg(s, rn); 6534 tcg_op2 = read_fp_hreg(s, rm); 6535 6536 switch (opcode) { 6537 case 0x0: /* FMUL */ 6538 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x1: /* FDIV */ 6541 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x2: /* FADD */ 6544 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6545 break; 6546 case 0x3: /* FSUB */ 6547 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6548 break; 6549 case 0x4: /* FMAX */ 6550 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6551 break; 6552 case 0x5: /* FMIN */ 6553 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6554 break; 6555 case 0x6: /* FMAXNM */ 6556 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6557 break; 6558 case 0x7: /* FMINNM */ 6559 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6560 break; 6561 case 0x8: /* FNMUL */ 6562 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6563 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6564 break; 6565 default: 6566 g_assert_not_reached(); 6567 } 6568 6569 write_fp_sreg(s, rd, tcg_res); 6570 } 6571 6572 /* Floating point data-processing (2 source) 6573 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6574 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6575 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6576 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6577 */ 6578 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6579 { 6580 int mos = extract32(insn, 29, 3); 6581 int type = extract32(insn, 22, 2); 6582 int rd = extract32(insn, 0, 5); 6583 int rn = extract32(insn, 5, 5); 6584 int rm = extract32(insn, 16, 5); 6585 int opcode = extract32(insn, 12, 4); 6586 6587 if (opcode > 8 || mos) { 6588 unallocated_encoding(s); 6589 return; 6590 } 6591 6592 switch (type) { 6593 case 0: 6594 if (!fp_access_check(s)) { 6595 return; 6596 } 6597 handle_fp_2src_single(s, opcode, rd, rn, rm); 6598 break; 6599 case 1: 6600 if (!fp_access_check(s)) { 6601 return; 6602 } 6603 handle_fp_2src_double(s, opcode, rd, rn, rm); 6604 break; 6605 case 3: 6606 if (!dc_isar_feature(aa64_fp16, s)) { 6607 unallocated_encoding(s); 6608 return; 6609 } 6610 if (!fp_access_check(s)) { 6611 return; 6612 } 6613 handle_fp_2src_half(s, opcode, rd, rn, rm); 6614 break; 6615 default: 6616 unallocated_encoding(s); 6617 } 6618 } 6619 6620 /* Floating-point data-processing (3 source) - single precision */ 6621 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6622 int rd, int rn, int rm, int ra) 6623 { 6624 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6625 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6626 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6627 6628 tcg_op1 = read_fp_sreg(s, rn); 6629 tcg_op2 = read_fp_sreg(s, rm); 6630 tcg_op3 = read_fp_sreg(s, ra); 6631 6632 /* These are fused multiply-add, and must be done as one 6633 * floating point operation with no rounding between the 6634 * multiplication and addition steps. 6635 * NB that doing the negations here as separate steps is 6636 * correct : an input NaN should come out with its sign bit 6637 * flipped if it is a negated-input. 6638 */ 6639 if (o1 == true) { 6640 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6641 } 6642 6643 if (o0 != o1) { 6644 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6645 } 6646 6647 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6648 6649 write_fp_sreg(s, rd, tcg_res); 6650 } 6651 6652 /* Floating-point data-processing (3 source) - double precision */ 6653 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6654 int rd, int rn, int rm, int ra) 6655 { 6656 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6657 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6658 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6659 6660 tcg_op1 = read_fp_dreg(s, rn); 6661 tcg_op2 = read_fp_dreg(s, rm); 6662 tcg_op3 = read_fp_dreg(s, ra); 6663 6664 /* These are fused multiply-add, and must be done as one 6665 * floating point operation with no rounding between the 6666 * multiplication and addition steps. 6667 * NB that doing the negations here as separate steps is 6668 * correct : an input NaN should come out with its sign bit 6669 * flipped if it is a negated-input. 6670 */ 6671 if (o1 == true) { 6672 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6673 } 6674 6675 if (o0 != o1) { 6676 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6677 } 6678 6679 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6680 6681 write_fp_dreg(s, rd, tcg_res); 6682 } 6683 6684 /* Floating-point data-processing (3 source) - half precision */ 6685 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6686 int rd, int rn, int rm, int ra) 6687 { 6688 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6689 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6690 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6691 6692 tcg_op1 = read_fp_hreg(s, rn); 6693 tcg_op2 = read_fp_hreg(s, rm); 6694 tcg_op3 = read_fp_hreg(s, ra); 6695 6696 /* These are fused multiply-add, and must be done as one 6697 * floating point operation with no rounding between the 6698 * multiplication and addition steps. 6699 * NB that doing the negations here as separate steps is 6700 * correct : an input NaN should come out with its sign bit 6701 * flipped if it is a negated-input. 6702 */ 6703 if (o1 == true) { 6704 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6705 } 6706 6707 if (o0 != o1) { 6708 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6709 } 6710 6711 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6712 6713 write_fp_sreg(s, rd, tcg_res); 6714 } 6715 6716 /* Floating point data-processing (3 source) 6717 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6718 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6719 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6720 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6721 */ 6722 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6723 { 6724 int mos = extract32(insn, 29, 3); 6725 int type = extract32(insn, 22, 2); 6726 int rd = extract32(insn, 0, 5); 6727 int rn = extract32(insn, 5, 5); 6728 int ra = extract32(insn, 10, 5); 6729 int rm = extract32(insn, 16, 5); 6730 bool o0 = extract32(insn, 15, 1); 6731 bool o1 = extract32(insn, 21, 1); 6732 6733 if (mos) { 6734 unallocated_encoding(s); 6735 return; 6736 } 6737 6738 switch (type) { 6739 case 0: 6740 if (!fp_access_check(s)) { 6741 return; 6742 } 6743 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6744 break; 6745 case 1: 6746 if (!fp_access_check(s)) { 6747 return; 6748 } 6749 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6750 break; 6751 case 3: 6752 if (!dc_isar_feature(aa64_fp16, s)) { 6753 unallocated_encoding(s); 6754 return; 6755 } 6756 if (!fp_access_check(s)) { 6757 return; 6758 } 6759 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6760 break; 6761 default: 6762 unallocated_encoding(s); 6763 } 6764 } 6765 6766 /* Floating point immediate 6767 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6768 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6769 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6770 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6771 */ 6772 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6773 { 6774 int rd = extract32(insn, 0, 5); 6775 int imm5 = extract32(insn, 5, 5); 6776 int imm8 = extract32(insn, 13, 8); 6777 int type = extract32(insn, 22, 2); 6778 int mos = extract32(insn, 29, 3); 6779 uint64_t imm; 6780 MemOp sz; 6781 6782 if (mos || imm5) { 6783 unallocated_encoding(s); 6784 return; 6785 } 6786 6787 switch (type) { 6788 case 0: 6789 sz = MO_32; 6790 break; 6791 case 1: 6792 sz = MO_64; 6793 break; 6794 case 3: 6795 sz = MO_16; 6796 if (dc_isar_feature(aa64_fp16, s)) { 6797 break; 6798 } 6799 /* fallthru */ 6800 default: 6801 unallocated_encoding(s); 6802 return; 6803 } 6804 6805 if (!fp_access_check(s)) { 6806 return; 6807 } 6808 6809 imm = vfp_expand_imm(sz, imm8); 6810 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6811 } 6812 6813 /* Handle floating point <=> fixed point conversions. Note that we can 6814 * also deal with fp <=> integer conversions as a special case (scale == 64) 6815 * OPTME: consider handling that special case specially or at least skipping 6816 * the call to scalbn in the helpers for zero shifts. 6817 */ 6818 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6819 bool itof, int rmode, int scale, int sf, int type) 6820 { 6821 bool is_signed = !(opcode & 1); 6822 TCGv_ptr tcg_fpstatus; 6823 TCGv_i32 tcg_shift, tcg_single; 6824 TCGv_i64 tcg_double; 6825 6826 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6827 6828 tcg_shift = tcg_constant_i32(64 - scale); 6829 6830 if (itof) { 6831 TCGv_i64 tcg_int = cpu_reg(s, rn); 6832 if (!sf) { 6833 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6834 6835 if (is_signed) { 6836 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6837 } else { 6838 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6839 } 6840 6841 tcg_int = tcg_extend; 6842 } 6843 6844 switch (type) { 6845 case 1: /* float64 */ 6846 tcg_double = tcg_temp_new_i64(); 6847 if (is_signed) { 6848 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6849 tcg_shift, tcg_fpstatus); 6850 } else { 6851 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6852 tcg_shift, tcg_fpstatus); 6853 } 6854 write_fp_dreg(s, rd, tcg_double); 6855 break; 6856 6857 case 0: /* float32 */ 6858 tcg_single = tcg_temp_new_i32(); 6859 if (is_signed) { 6860 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6861 tcg_shift, tcg_fpstatus); 6862 } else { 6863 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6864 tcg_shift, tcg_fpstatus); 6865 } 6866 write_fp_sreg(s, rd, tcg_single); 6867 break; 6868 6869 case 3: /* float16 */ 6870 tcg_single = tcg_temp_new_i32(); 6871 if (is_signed) { 6872 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6873 tcg_shift, tcg_fpstatus); 6874 } else { 6875 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6876 tcg_shift, tcg_fpstatus); 6877 } 6878 write_fp_sreg(s, rd, tcg_single); 6879 break; 6880 6881 default: 6882 g_assert_not_reached(); 6883 } 6884 } else { 6885 TCGv_i64 tcg_int = cpu_reg(s, rd); 6886 TCGv_i32 tcg_rmode; 6887 6888 if (extract32(opcode, 2, 1)) { 6889 /* There are too many rounding modes to all fit into rmode, 6890 * so FCVTA[US] is a special case. 6891 */ 6892 rmode = FPROUNDING_TIEAWAY; 6893 } 6894 6895 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6896 6897 switch (type) { 6898 case 1: /* float64 */ 6899 tcg_double = read_fp_dreg(s, rn); 6900 if (is_signed) { 6901 if (!sf) { 6902 gen_helper_vfp_tosld(tcg_int, tcg_double, 6903 tcg_shift, tcg_fpstatus); 6904 } else { 6905 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6906 tcg_shift, tcg_fpstatus); 6907 } 6908 } else { 6909 if (!sf) { 6910 gen_helper_vfp_tould(tcg_int, tcg_double, 6911 tcg_shift, tcg_fpstatus); 6912 } else { 6913 gen_helper_vfp_touqd(tcg_int, tcg_double, 6914 tcg_shift, tcg_fpstatus); 6915 } 6916 } 6917 if (!sf) { 6918 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6919 } 6920 break; 6921 6922 case 0: /* float32 */ 6923 tcg_single = read_fp_sreg(s, rn); 6924 if (sf) { 6925 if (is_signed) { 6926 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6927 tcg_shift, tcg_fpstatus); 6928 } else { 6929 gen_helper_vfp_touqs(tcg_int, tcg_single, 6930 tcg_shift, tcg_fpstatus); 6931 } 6932 } else { 6933 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6934 if (is_signed) { 6935 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6936 tcg_shift, tcg_fpstatus); 6937 } else { 6938 gen_helper_vfp_touls(tcg_dest, tcg_single, 6939 tcg_shift, tcg_fpstatus); 6940 } 6941 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6942 } 6943 break; 6944 6945 case 3: /* float16 */ 6946 tcg_single = read_fp_sreg(s, rn); 6947 if (sf) { 6948 if (is_signed) { 6949 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6950 tcg_shift, tcg_fpstatus); 6951 } else { 6952 gen_helper_vfp_touqh(tcg_int, tcg_single, 6953 tcg_shift, tcg_fpstatus); 6954 } 6955 } else { 6956 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6957 if (is_signed) { 6958 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6959 tcg_shift, tcg_fpstatus); 6960 } else { 6961 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6962 tcg_shift, tcg_fpstatus); 6963 } 6964 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6965 } 6966 break; 6967 6968 default: 6969 g_assert_not_reached(); 6970 } 6971 6972 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6973 } 6974 } 6975 6976 /* Floating point <-> fixed point conversions 6977 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6978 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6979 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6980 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6981 */ 6982 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6983 { 6984 int rd = extract32(insn, 0, 5); 6985 int rn = extract32(insn, 5, 5); 6986 int scale = extract32(insn, 10, 6); 6987 int opcode = extract32(insn, 16, 3); 6988 int rmode = extract32(insn, 19, 2); 6989 int type = extract32(insn, 22, 2); 6990 bool sbit = extract32(insn, 29, 1); 6991 bool sf = extract32(insn, 31, 1); 6992 bool itof; 6993 6994 if (sbit || (!sf && scale < 32)) { 6995 unallocated_encoding(s); 6996 return; 6997 } 6998 6999 switch (type) { 7000 case 0: /* float32 */ 7001 case 1: /* float64 */ 7002 break; 7003 case 3: /* float16 */ 7004 if (dc_isar_feature(aa64_fp16, s)) { 7005 break; 7006 } 7007 /* fallthru */ 7008 default: 7009 unallocated_encoding(s); 7010 return; 7011 } 7012 7013 switch ((rmode << 3) | opcode) { 7014 case 0x2: /* SCVTF */ 7015 case 0x3: /* UCVTF */ 7016 itof = true; 7017 break; 7018 case 0x18: /* FCVTZS */ 7019 case 0x19: /* FCVTZU */ 7020 itof = false; 7021 break; 7022 default: 7023 unallocated_encoding(s); 7024 return; 7025 } 7026 7027 if (!fp_access_check(s)) { 7028 return; 7029 } 7030 7031 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7032 } 7033 7034 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7035 { 7036 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7037 * without conversion. 7038 */ 7039 7040 if (itof) { 7041 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7042 TCGv_i64 tmp; 7043 7044 switch (type) { 7045 case 0: 7046 /* 32 bit */ 7047 tmp = tcg_temp_new_i64(); 7048 tcg_gen_ext32u_i64(tmp, tcg_rn); 7049 write_fp_dreg(s, rd, tmp); 7050 break; 7051 case 1: 7052 /* 64 bit */ 7053 write_fp_dreg(s, rd, tcg_rn); 7054 break; 7055 case 2: 7056 /* 64 bit to top half. */ 7057 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7058 clear_vec_high(s, true, rd); 7059 break; 7060 case 3: 7061 /* 16 bit */ 7062 tmp = tcg_temp_new_i64(); 7063 tcg_gen_ext16u_i64(tmp, tcg_rn); 7064 write_fp_dreg(s, rd, tmp); 7065 break; 7066 default: 7067 g_assert_not_reached(); 7068 } 7069 } else { 7070 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7071 7072 switch (type) { 7073 case 0: 7074 /* 32 bit */ 7075 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7076 break; 7077 case 1: 7078 /* 64 bit */ 7079 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7080 break; 7081 case 2: 7082 /* 64 bits from top half */ 7083 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7084 break; 7085 case 3: 7086 /* 16 bit */ 7087 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7088 break; 7089 default: 7090 g_assert_not_reached(); 7091 } 7092 } 7093 } 7094 7095 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7096 { 7097 TCGv_i64 t = read_fp_dreg(s, rn); 7098 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7099 7100 gen_helper_fjcvtzs(t, t, fpstatus); 7101 7102 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7103 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7104 tcg_gen_movi_i32(cpu_CF, 0); 7105 tcg_gen_movi_i32(cpu_NF, 0); 7106 tcg_gen_movi_i32(cpu_VF, 0); 7107 } 7108 7109 /* Floating point <-> integer conversions 7110 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7111 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7112 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7113 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7114 */ 7115 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7116 { 7117 int rd = extract32(insn, 0, 5); 7118 int rn = extract32(insn, 5, 5); 7119 int opcode = extract32(insn, 16, 3); 7120 int rmode = extract32(insn, 19, 2); 7121 int type = extract32(insn, 22, 2); 7122 bool sbit = extract32(insn, 29, 1); 7123 bool sf = extract32(insn, 31, 1); 7124 bool itof = false; 7125 7126 if (sbit) { 7127 goto do_unallocated; 7128 } 7129 7130 switch (opcode) { 7131 case 2: /* SCVTF */ 7132 case 3: /* UCVTF */ 7133 itof = true; 7134 /* fallthru */ 7135 case 4: /* FCVTAS */ 7136 case 5: /* FCVTAU */ 7137 if (rmode != 0) { 7138 goto do_unallocated; 7139 } 7140 /* fallthru */ 7141 case 0: /* FCVT[NPMZ]S */ 7142 case 1: /* FCVT[NPMZ]U */ 7143 switch (type) { 7144 case 0: /* float32 */ 7145 case 1: /* float64 */ 7146 break; 7147 case 3: /* float16 */ 7148 if (!dc_isar_feature(aa64_fp16, s)) { 7149 goto do_unallocated; 7150 } 7151 break; 7152 default: 7153 goto do_unallocated; 7154 } 7155 if (!fp_access_check(s)) { 7156 return; 7157 } 7158 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7159 break; 7160 7161 default: 7162 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7163 case 0b01100110: /* FMOV half <-> 32-bit int */ 7164 case 0b01100111: 7165 case 0b11100110: /* FMOV half <-> 64-bit int */ 7166 case 0b11100111: 7167 if (!dc_isar_feature(aa64_fp16, s)) { 7168 goto do_unallocated; 7169 } 7170 /* fallthru */ 7171 case 0b00000110: /* FMOV 32-bit */ 7172 case 0b00000111: 7173 case 0b10100110: /* FMOV 64-bit */ 7174 case 0b10100111: 7175 case 0b11001110: /* FMOV top half of 128-bit */ 7176 case 0b11001111: 7177 if (!fp_access_check(s)) { 7178 return; 7179 } 7180 itof = opcode & 1; 7181 handle_fmov(s, rd, rn, type, itof); 7182 break; 7183 7184 case 0b00111110: /* FJCVTZS */ 7185 if (!dc_isar_feature(aa64_jscvt, s)) { 7186 goto do_unallocated; 7187 } else if (fp_access_check(s)) { 7188 handle_fjcvtzs(s, rd, rn); 7189 } 7190 break; 7191 7192 default: 7193 do_unallocated: 7194 unallocated_encoding(s); 7195 return; 7196 } 7197 break; 7198 } 7199 } 7200 7201 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7202 * 31 30 29 28 25 24 0 7203 * +---+---+---+---------+-----------------------------+ 7204 * | | 0 | | 1 1 1 1 | | 7205 * +---+---+---+---------+-----------------------------+ 7206 */ 7207 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7208 { 7209 if (extract32(insn, 24, 1)) { 7210 /* Floating point data-processing (3 source) */ 7211 disas_fp_3src(s, insn); 7212 } else if (extract32(insn, 21, 1) == 0) { 7213 /* Floating point to fixed point conversions */ 7214 disas_fp_fixed_conv(s, insn); 7215 } else { 7216 switch (extract32(insn, 10, 2)) { 7217 case 1: 7218 /* Floating point conditional compare */ 7219 disas_fp_ccomp(s, insn); 7220 break; 7221 case 2: 7222 /* Floating point data-processing (2 source) */ 7223 disas_fp_2src(s, insn); 7224 break; 7225 case 3: 7226 /* Floating point conditional select */ 7227 disas_fp_csel(s, insn); 7228 break; 7229 case 0: 7230 switch (ctz32(extract32(insn, 12, 4))) { 7231 case 0: /* [15:12] == xxx1 */ 7232 /* Floating point immediate */ 7233 disas_fp_imm(s, insn); 7234 break; 7235 case 1: /* [15:12] == xx10 */ 7236 /* Floating point compare */ 7237 disas_fp_compare(s, insn); 7238 break; 7239 case 2: /* [15:12] == x100 */ 7240 /* Floating point data-processing (1 source) */ 7241 disas_fp_1src(s, insn); 7242 break; 7243 case 3: /* [15:12] == 1000 */ 7244 unallocated_encoding(s); 7245 break; 7246 default: /* [15:12] == 0000 */ 7247 /* Floating point <-> integer conversions */ 7248 disas_fp_int_conv(s, insn); 7249 break; 7250 } 7251 break; 7252 } 7253 } 7254 } 7255 7256 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7257 int pos) 7258 { 7259 /* Extract 64 bits from the middle of two concatenated 64 bit 7260 * vector register slices left:right. The extracted bits start 7261 * at 'pos' bits into the right (least significant) side. 7262 * We return the result in tcg_right, and guarantee not to 7263 * trash tcg_left. 7264 */ 7265 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7266 assert(pos > 0 && pos < 64); 7267 7268 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7269 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7270 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7271 } 7272 7273 /* EXT 7274 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7275 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7276 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7277 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7278 */ 7279 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7280 { 7281 int is_q = extract32(insn, 30, 1); 7282 int op2 = extract32(insn, 22, 2); 7283 int imm4 = extract32(insn, 11, 4); 7284 int rm = extract32(insn, 16, 5); 7285 int rn = extract32(insn, 5, 5); 7286 int rd = extract32(insn, 0, 5); 7287 int pos = imm4 << 3; 7288 TCGv_i64 tcg_resl, tcg_resh; 7289 7290 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7291 unallocated_encoding(s); 7292 return; 7293 } 7294 7295 if (!fp_access_check(s)) { 7296 return; 7297 } 7298 7299 tcg_resh = tcg_temp_new_i64(); 7300 tcg_resl = tcg_temp_new_i64(); 7301 7302 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7303 * either extracting 128 bits from a 128:128 concatenation, or 7304 * extracting 64 bits from a 64:64 concatenation. 7305 */ 7306 if (!is_q) { 7307 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7308 if (pos != 0) { 7309 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7310 do_ext64(s, tcg_resh, tcg_resl, pos); 7311 } 7312 } else { 7313 TCGv_i64 tcg_hh; 7314 typedef struct { 7315 int reg; 7316 int elt; 7317 } EltPosns; 7318 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7319 EltPosns *elt = eltposns; 7320 7321 if (pos >= 64) { 7322 elt++; 7323 pos -= 64; 7324 } 7325 7326 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7327 elt++; 7328 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7329 elt++; 7330 if (pos != 0) { 7331 do_ext64(s, tcg_resh, tcg_resl, pos); 7332 tcg_hh = tcg_temp_new_i64(); 7333 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7334 do_ext64(s, tcg_hh, tcg_resh, pos); 7335 } 7336 } 7337 7338 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7339 if (is_q) { 7340 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7341 } 7342 clear_vec_high(s, is_q, rd); 7343 } 7344 7345 /* TBL/TBX 7346 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7347 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7348 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7349 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7350 */ 7351 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7352 { 7353 int op2 = extract32(insn, 22, 2); 7354 int is_q = extract32(insn, 30, 1); 7355 int rm = extract32(insn, 16, 5); 7356 int rn = extract32(insn, 5, 5); 7357 int rd = extract32(insn, 0, 5); 7358 int is_tbx = extract32(insn, 12, 1); 7359 int len = (extract32(insn, 13, 2) + 1) * 16; 7360 7361 if (op2 != 0) { 7362 unallocated_encoding(s); 7363 return; 7364 } 7365 7366 if (!fp_access_check(s)) { 7367 return; 7368 } 7369 7370 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7371 vec_full_reg_offset(s, rm), cpu_env, 7372 is_q ? 16 : 8, vec_full_reg_size(s), 7373 (len << 6) | (is_tbx << 5) | rn, 7374 gen_helper_simd_tblx); 7375 } 7376 7377 /* ZIP/UZP/TRN 7378 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7379 * +---+---+-------------+------+---+------+---+------------------+------+ 7380 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7381 * +---+---+-------------+------+---+------+---+------------------+------+ 7382 */ 7383 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7384 { 7385 int rd = extract32(insn, 0, 5); 7386 int rn = extract32(insn, 5, 5); 7387 int rm = extract32(insn, 16, 5); 7388 int size = extract32(insn, 22, 2); 7389 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7390 * bit 2 indicates 1 vs 2 variant of the insn. 7391 */ 7392 int opcode = extract32(insn, 12, 2); 7393 bool part = extract32(insn, 14, 1); 7394 bool is_q = extract32(insn, 30, 1); 7395 int esize = 8 << size; 7396 int i; 7397 int datasize = is_q ? 128 : 64; 7398 int elements = datasize / esize; 7399 TCGv_i64 tcg_res[2], tcg_ele; 7400 7401 if (opcode == 0 || (size == 3 && !is_q)) { 7402 unallocated_encoding(s); 7403 return; 7404 } 7405 7406 if (!fp_access_check(s)) { 7407 return; 7408 } 7409 7410 tcg_res[0] = tcg_temp_new_i64(); 7411 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7412 tcg_ele = tcg_temp_new_i64(); 7413 7414 for (i = 0; i < elements; i++) { 7415 int o, w; 7416 7417 switch (opcode) { 7418 case 1: /* UZP1/2 */ 7419 { 7420 int midpoint = elements / 2; 7421 if (i < midpoint) { 7422 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7423 } else { 7424 read_vec_element(s, tcg_ele, rm, 7425 2 * (i - midpoint) + part, size); 7426 } 7427 break; 7428 } 7429 case 2: /* TRN1/2 */ 7430 if (i & 1) { 7431 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7432 } else { 7433 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7434 } 7435 break; 7436 case 3: /* ZIP1/2 */ 7437 { 7438 int base = part * elements / 2; 7439 if (i & 1) { 7440 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7441 } else { 7442 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7443 } 7444 break; 7445 } 7446 default: 7447 g_assert_not_reached(); 7448 } 7449 7450 w = (i * esize) / 64; 7451 o = (i * esize) % 64; 7452 if (o == 0) { 7453 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7454 } else { 7455 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7456 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7457 } 7458 } 7459 7460 for (i = 0; i <= is_q; ++i) { 7461 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7462 } 7463 clear_vec_high(s, is_q, rd); 7464 } 7465 7466 /* 7467 * do_reduction_op helper 7468 * 7469 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7470 * important for correct NaN propagation that we do these 7471 * operations in exactly the order specified by the pseudocode. 7472 * 7473 * This is a recursive function, TCG temps should be freed by the 7474 * calling function once it is done with the values. 7475 */ 7476 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7477 int esize, int size, int vmap, TCGv_ptr fpst) 7478 { 7479 if (esize == size) { 7480 int element; 7481 MemOp msize = esize == 16 ? MO_16 : MO_32; 7482 TCGv_i32 tcg_elem; 7483 7484 /* We should have one register left here */ 7485 assert(ctpop8(vmap) == 1); 7486 element = ctz32(vmap); 7487 assert(element < 8); 7488 7489 tcg_elem = tcg_temp_new_i32(); 7490 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7491 return tcg_elem; 7492 } else { 7493 int bits = size / 2; 7494 int shift = ctpop8(vmap) / 2; 7495 int vmap_lo = (vmap >> shift) & vmap; 7496 int vmap_hi = (vmap & ~vmap_lo); 7497 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7498 7499 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7500 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7501 tcg_res = tcg_temp_new_i32(); 7502 7503 switch (fpopcode) { 7504 case 0x0c: /* fmaxnmv half-precision */ 7505 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7506 break; 7507 case 0x0f: /* fmaxv half-precision */ 7508 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7509 break; 7510 case 0x1c: /* fminnmv half-precision */ 7511 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7512 break; 7513 case 0x1f: /* fminv half-precision */ 7514 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7515 break; 7516 case 0x2c: /* fmaxnmv */ 7517 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7518 break; 7519 case 0x2f: /* fmaxv */ 7520 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7521 break; 7522 case 0x3c: /* fminnmv */ 7523 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7524 break; 7525 case 0x3f: /* fminv */ 7526 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7527 break; 7528 default: 7529 g_assert_not_reached(); 7530 } 7531 return tcg_res; 7532 } 7533 } 7534 7535 /* AdvSIMD across lanes 7536 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7537 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7538 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7539 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7540 */ 7541 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7542 { 7543 int rd = extract32(insn, 0, 5); 7544 int rn = extract32(insn, 5, 5); 7545 int size = extract32(insn, 22, 2); 7546 int opcode = extract32(insn, 12, 5); 7547 bool is_q = extract32(insn, 30, 1); 7548 bool is_u = extract32(insn, 29, 1); 7549 bool is_fp = false; 7550 bool is_min = false; 7551 int esize; 7552 int elements; 7553 int i; 7554 TCGv_i64 tcg_res, tcg_elt; 7555 7556 switch (opcode) { 7557 case 0x1b: /* ADDV */ 7558 if (is_u) { 7559 unallocated_encoding(s); 7560 return; 7561 } 7562 /* fall through */ 7563 case 0x3: /* SADDLV, UADDLV */ 7564 case 0xa: /* SMAXV, UMAXV */ 7565 case 0x1a: /* SMINV, UMINV */ 7566 if (size == 3 || (size == 2 && !is_q)) { 7567 unallocated_encoding(s); 7568 return; 7569 } 7570 break; 7571 case 0xc: /* FMAXNMV, FMINNMV */ 7572 case 0xf: /* FMAXV, FMINV */ 7573 /* Bit 1 of size field encodes min vs max and the actual size 7574 * depends on the encoding of the U bit. If not set (and FP16 7575 * enabled) then we do half-precision float instead of single 7576 * precision. 7577 */ 7578 is_min = extract32(size, 1, 1); 7579 is_fp = true; 7580 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7581 size = 1; 7582 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7583 unallocated_encoding(s); 7584 return; 7585 } else { 7586 size = 2; 7587 } 7588 break; 7589 default: 7590 unallocated_encoding(s); 7591 return; 7592 } 7593 7594 if (!fp_access_check(s)) { 7595 return; 7596 } 7597 7598 esize = 8 << size; 7599 elements = (is_q ? 128 : 64) / esize; 7600 7601 tcg_res = tcg_temp_new_i64(); 7602 tcg_elt = tcg_temp_new_i64(); 7603 7604 /* These instructions operate across all lanes of a vector 7605 * to produce a single result. We can guarantee that a 64 7606 * bit intermediate is sufficient: 7607 * + for [US]ADDLV the maximum element size is 32 bits, and 7608 * the result type is 64 bits 7609 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7610 * same as the element size, which is 32 bits at most 7611 * For the integer operations we can choose to work at 64 7612 * or 32 bits and truncate at the end; for simplicity 7613 * we use 64 bits always. The floating point 7614 * ops do require 32 bit intermediates, though. 7615 */ 7616 if (!is_fp) { 7617 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7618 7619 for (i = 1; i < elements; i++) { 7620 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7621 7622 switch (opcode) { 7623 case 0x03: /* SADDLV / UADDLV */ 7624 case 0x1b: /* ADDV */ 7625 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7626 break; 7627 case 0x0a: /* SMAXV / UMAXV */ 7628 if (is_u) { 7629 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7630 } else { 7631 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7632 } 7633 break; 7634 case 0x1a: /* SMINV / UMINV */ 7635 if (is_u) { 7636 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7637 } else { 7638 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7639 } 7640 break; 7641 default: 7642 g_assert_not_reached(); 7643 } 7644 7645 } 7646 } else { 7647 /* Floating point vector reduction ops which work across 32 7648 * bit (single) or 16 bit (half-precision) intermediates. 7649 * Note that correct NaN propagation requires that we do these 7650 * operations in exactly the order specified by the pseudocode. 7651 */ 7652 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7653 int fpopcode = opcode | is_min << 4 | is_u << 5; 7654 int vmap = (1 << elements) - 1; 7655 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7656 (is_q ? 128 : 64), vmap, fpst); 7657 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7658 } 7659 7660 /* Now truncate the result to the width required for the final output */ 7661 if (opcode == 0x03) { 7662 /* SADDLV, UADDLV: result is 2*esize */ 7663 size++; 7664 } 7665 7666 switch (size) { 7667 case 0: 7668 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7669 break; 7670 case 1: 7671 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7672 break; 7673 case 2: 7674 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7675 break; 7676 case 3: 7677 break; 7678 default: 7679 g_assert_not_reached(); 7680 } 7681 7682 write_fp_dreg(s, rd, tcg_res); 7683 } 7684 7685 /* DUP (Element, Vector) 7686 * 7687 * 31 30 29 21 20 16 15 10 9 5 4 0 7688 * +---+---+-------------------+--------+-------------+------+------+ 7689 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7690 * +---+---+-------------------+--------+-------------+------+------+ 7691 * 7692 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7693 */ 7694 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7695 int imm5) 7696 { 7697 int size = ctz32(imm5); 7698 int index; 7699 7700 if (size > 3 || (size == 3 && !is_q)) { 7701 unallocated_encoding(s); 7702 return; 7703 } 7704 7705 if (!fp_access_check(s)) { 7706 return; 7707 } 7708 7709 index = imm5 >> (size + 1); 7710 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7711 vec_reg_offset(s, rn, index, size), 7712 is_q ? 16 : 8, vec_full_reg_size(s)); 7713 } 7714 7715 /* DUP (element, scalar) 7716 * 31 21 20 16 15 10 9 5 4 0 7717 * +-----------------------+--------+-------------+------+------+ 7718 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7719 * +-----------------------+--------+-------------+------+------+ 7720 */ 7721 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7722 int imm5) 7723 { 7724 int size = ctz32(imm5); 7725 int index; 7726 TCGv_i64 tmp; 7727 7728 if (size > 3) { 7729 unallocated_encoding(s); 7730 return; 7731 } 7732 7733 if (!fp_access_check(s)) { 7734 return; 7735 } 7736 7737 index = imm5 >> (size + 1); 7738 7739 /* This instruction just extracts the specified element and 7740 * zero-extends it into the bottom of the destination register. 7741 */ 7742 tmp = tcg_temp_new_i64(); 7743 read_vec_element(s, tmp, rn, index, size); 7744 write_fp_dreg(s, rd, tmp); 7745 } 7746 7747 /* DUP (General) 7748 * 7749 * 31 30 29 21 20 16 15 10 9 5 4 0 7750 * +---+---+-------------------+--------+-------------+------+------+ 7751 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7752 * +---+---+-------------------+--------+-------------+------+------+ 7753 * 7754 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7755 */ 7756 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7757 int imm5) 7758 { 7759 int size = ctz32(imm5); 7760 uint32_t dofs, oprsz, maxsz; 7761 7762 if (size > 3 || ((size == 3) && !is_q)) { 7763 unallocated_encoding(s); 7764 return; 7765 } 7766 7767 if (!fp_access_check(s)) { 7768 return; 7769 } 7770 7771 dofs = vec_full_reg_offset(s, rd); 7772 oprsz = is_q ? 16 : 8; 7773 maxsz = vec_full_reg_size(s); 7774 7775 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7776 } 7777 7778 /* INS (Element) 7779 * 7780 * 31 21 20 16 15 14 11 10 9 5 4 0 7781 * +-----------------------+--------+------------+---+------+------+ 7782 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7783 * +-----------------------+--------+------------+---+------+------+ 7784 * 7785 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7786 * index: encoded in imm5<4:size+1> 7787 */ 7788 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7789 int imm4, int imm5) 7790 { 7791 int size = ctz32(imm5); 7792 int src_index, dst_index; 7793 TCGv_i64 tmp; 7794 7795 if (size > 3) { 7796 unallocated_encoding(s); 7797 return; 7798 } 7799 7800 if (!fp_access_check(s)) { 7801 return; 7802 } 7803 7804 dst_index = extract32(imm5, 1+size, 5); 7805 src_index = extract32(imm4, size, 4); 7806 7807 tmp = tcg_temp_new_i64(); 7808 7809 read_vec_element(s, tmp, rn, src_index, size); 7810 write_vec_element(s, tmp, rd, dst_index, size); 7811 7812 /* INS is considered a 128-bit write for SVE. */ 7813 clear_vec_high(s, true, rd); 7814 } 7815 7816 7817 /* INS (General) 7818 * 7819 * 31 21 20 16 15 10 9 5 4 0 7820 * +-----------------------+--------+-------------+------+------+ 7821 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7822 * +-----------------------+--------+-------------+------+------+ 7823 * 7824 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7825 * index: encoded in imm5<4:size+1> 7826 */ 7827 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7828 { 7829 int size = ctz32(imm5); 7830 int idx; 7831 7832 if (size > 3) { 7833 unallocated_encoding(s); 7834 return; 7835 } 7836 7837 if (!fp_access_check(s)) { 7838 return; 7839 } 7840 7841 idx = extract32(imm5, 1 + size, 4 - size); 7842 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7843 7844 /* INS is considered a 128-bit write for SVE. */ 7845 clear_vec_high(s, true, rd); 7846 } 7847 7848 /* 7849 * UMOV (General) 7850 * SMOV (General) 7851 * 7852 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7853 * +---+---+-------------------+--------+-------------+------+------+ 7854 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7855 * +---+---+-------------------+--------+-------------+------+------+ 7856 * 7857 * U: unsigned when set 7858 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7859 */ 7860 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7861 int rn, int rd, int imm5) 7862 { 7863 int size = ctz32(imm5); 7864 int element; 7865 TCGv_i64 tcg_rd; 7866 7867 /* Check for UnallocatedEncodings */ 7868 if (is_signed) { 7869 if (size > 2 || (size == 2 && !is_q)) { 7870 unallocated_encoding(s); 7871 return; 7872 } 7873 } else { 7874 if (size > 3 7875 || (size < 3 && is_q) 7876 || (size == 3 && !is_q)) { 7877 unallocated_encoding(s); 7878 return; 7879 } 7880 } 7881 7882 if (!fp_access_check(s)) { 7883 return; 7884 } 7885 7886 element = extract32(imm5, 1+size, 4); 7887 7888 tcg_rd = cpu_reg(s, rd); 7889 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7890 if (is_signed && !is_q) { 7891 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7892 } 7893 } 7894 7895 /* AdvSIMD copy 7896 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7897 * +---+---+----+-----------------+------+---+------+---+------+------+ 7898 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7899 * +---+---+----+-----------------+------+---+------+---+------+------+ 7900 */ 7901 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7902 { 7903 int rd = extract32(insn, 0, 5); 7904 int rn = extract32(insn, 5, 5); 7905 int imm4 = extract32(insn, 11, 4); 7906 int op = extract32(insn, 29, 1); 7907 int is_q = extract32(insn, 30, 1); 7908 int imm5 = extract32(insn, 16, 5); 7909 7910 if (op) { 7911 if (is_q) { 7912 /* INS (element) */ 7913 handle_simd_inse(s, rd, rn, imm4, imm5); 7914 } else { 7915 unallocated_encoding(s); 7916 } 7917 } else { 7918 switch (imm4) { 7919 case 0: 7920 /* DUP (element - vector) */ 7921 handle_simd_dupe(s, is_q, rd, rn, imm5); 7922 break; 7923 case 1: 7924 /* DUP (general) */ 7925 handle_simd_dupg(s, is_q, rd, rn, imm5); 7926 break; 7927 case 3: 7928 if (is_q) { 7929 /* INS (general) */ 7930 handle_simd_insg(s, rd, rn, imm5); 7931 } else { 7932 unallocated_encoding(s); 7933 } 7934 break; 7935 case 5: 7936 case 7: 7937 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7938 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7939 break; 7940 default: 7941 unallocated_encoding(s); 7942 break; 7943 } 7944 } 7945 } 7946 7947 /* AdvSIMD modified immediate 7948 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7949 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7950 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7951 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7952 * 7953 * There are a number of operations that can be carried out here: 7954 * MOVI - move (shifted) imm into register 7955 * MVNI - move inverted (shifted) imm into register 7956 * ORR - bitwise OR of (shifted) imm with register 7957 * BIC - bitwise clear of (shifted) imm with register 7958 * With ARMv8.2 we also have: 7959 * FMOV half-precision 7960 */ 7961 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7962 { 7963 int rd = extract32(insn, 0, 5); 7964 int cmode = extract32(insn, 12, 4); 7965 int o2 = extract32(insn, 11, 1); 7966 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7967 bool is_neg = extract32(insn, 29, 1); 7968 bool is_q = extract32(insn, 30, 1); 7969 uint64_t imm = 0; 7970 7971 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7972 /* Check for FMOV (vector, immediate) - half-precision */ 7973 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7974 unallocated_encoding(s); 7975 return; 7976 } 7977 } 7978 7979 if (!fp_access_check(s)) { 7980 return; 7981 } 7982 7983 if (cmode == 15 && o2 && !is_neg) { 7984 /* FMOV (vector, immediate) - half-precision */ 7985 imm = vfp_expand_imm(MO_16, abcdefgh); 7986 /* now duplicate across the lanes */ 7987 imm = dup_const(MO_16, imm); 7988 } else { 7989 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7990 } 7991 7992 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7993 /* MOVI or MVNI, with MVNI negation handled above. */ 7994 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7995 vec_full_reg_size(s), imm); 7996 } else { 7997 /* ORR or BIC, with BIC negation to AND handled above. */ 7998 if (is_neg) { 7999 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8000 } else { 8001 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8002 } 8003 } 8004 } 8005 8006 /* AdvSIMD scalar copy 8007 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8008 * +-----+----+-----------------+------+---+------+---+------+------+ 8009 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8010 * +-----+----+-----------------+------+---+------+---+------+------+ 8011 */ 8012 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8013 { 8014 int rd = extract32(insn, 0, 5); 8015 int rn = extract32(insn, 5, 5); 8016 int imm4 = extract32(insn, 11, 4); 8017 int imm5 = extract32(insn, 16, 5); 8018 int op = extract32(insn, 29, 1); 8019 8020 if (op != 0 || imm4 != 0) { 8021 unallocated_encoding(s); 8022 return; 8023 } 8024 8025 /* DUP (element, scalar) */ 8026 handle_simd_dupes(s, rd, rn, imm5); 8027 } 8028 8029 /* AdvSIMD scalar pairwise 8030 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8031 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8032 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8033 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8034 */ 8035 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8036 { 8037 int u = extract32(insn, 29, 1); 8038 int size = extract32(insn, 22, 2); 8039 int opcode = extract32(insn, 12, 5); 8040 int rn = extract32(insn, 5, 5); 8041 int rd = extract32(insn, 0, 5); 8042 TCGv_ptr fpst; 8043 8044 /* For some ops (the FP ones), size[1] is part of the encoding. 8045 * For ADDP strictly it is not but size[1] is always 1 for valid 8046 * encodings. 8047 */ 8048 opcode |= (extract32(size, 1, 1) << 5); 8049 8050 switch (opcode) { 8051 case 0x3b: /* ADDP */ 8052 if (u || size != 3) { 8053 unallocated_encoding(s); 8054 return; 8055 } 8056 if (!fp_access_check(s)) { 8057 return; 8058 } 8059 8060 fpst = NULL; 8061 break; 8062 case 0xc: /* FMAXNMP */ 8063 case 0xd: /* FADDP */ 8064 case 0xf: /* FMAXP */ 8065 case 0x2c: /* FMINNMP */ 8066 case 0x2f: /* FMINP */ 8067 /* FP op, size[0] is 32 or 64 bit*/ 8068 if (!u) { 8069 if (!dc_isar_feature(aa64_fp16, s)) { 8070 unallocated_encoding(s); 8071 return; 8072 } else { 8073 size = MO_16; 8074 } 8075 } else { 8076 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8077 } 8078 8079 if (!fp_access_check(s)) { 8080 return; 8081 } 8082 8083 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8084 break; 8085 default: 8086 unallocated_encoding(s); 8087 return; 8088 } 8089 8090 if (size == MO_64) { 8091 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8092 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8093 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8094 8095 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8096 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8097 8098 switch (opcode) { 8099 case 0x3b: /* ADDP */ 8100 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8101 break; 8102 case 0xc: /* FMAXNMP */ 8103 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8104 break; 8105 case 0xd: /* FADDP */ 8106 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8107 break; 8108 case 0xf: /* FMAXP */ 8109 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8110 break; 8111 case 0x2c: /* FMINNMP */ 8112 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8113 break; 8114 case 0x2f: /* FMINP */ 8115 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8116 break; 8117 default: 8118 g_assert_not_reached(); 8119 } 8120 8121 write_fp_dreg(s, rd, tcg_res); 8122 } else { 8123 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8124 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8125 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8126 8127 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8128 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8129 8130 if (size == MO_16) { 8131 switch (opcode) { 8132 case 0xc: /* FMAXNMP */ 8133 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8134 break; 8135 case 0xd: /* FADDP */ 8136 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8137 break; 8138 case 0xf: /* FMAXP */ 8139 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8140 break; 8141 case 0x2c: /* FMINNMP */ 8142 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8143 break; 8144 case 0x2f: /* FMINP */ 8145 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8146 break; 8147 default: 8148 g_assert_not_reached(); 8149 } 8150 } else { 8151 switch (opcode) { 8152 case 0xc: /* FMAXNMP */ 8153 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8154 break; 8155 case 0xd: /* FADDP */ 8156 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8157 break; 8158 case 0xf: /* FMAXP */ 8159 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8160 break; 8161 case 0x2c: /* FMINNMP */ 8162 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8163 break; 8164 case 0x2f: /* FMINP */ 8165 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8166 break; 8167 default: 8168 g_assert_not_reached(); 8169 } 8170 } 8171 8172 write_fp_sreg(s, rd, tcg_res); 8173 } 8174 } 8175 8176 /* 8177 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8178 * 8179 * This code is handles the common shifting code and is used by both 8180 * the vector and scalar code. 8181 */ 8182 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8183 TCGv_i64 tcg_rnd, bool accumulate, 8184 bool is_u, int size, int shift) 8185 { 8186 bool extended_result = false; 8187 bool round = tcg_rnd != NULL; 8188 int ext_lshift = 0; 8189 TCGv_i64 tcg_src_hi; 8190 8191 if (round && size == 3) { 8192 extended_result = true; 8193 ext_lshift = 64 - shift; 8194 tcg_src_hi = tcg_temp_new_i64(); 8195 } else if (shift == 64) { 8196 if (!accumulate && is_u) { 8197 /* result is zero */ 8198 tcg_gen_movi_i64(tcg_res, 0); 8199 return; 8200 } 8201 } 8202 8203 /* Deal with the rounding step */ 8204 if (round) { 8205 if (extended_result) { 8206 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8207 if (!is_u) { 8208 /* take care of sign extending tcg_res */ 8209 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8210 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8211 tcg_src, tcg_src_hi, 8212 tcg_rnd, tcg_zero); 8213 } else { 8214 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8215 tcg_src, tcg_zero, 8216 tcg_rnd, tcg_zero); 8217 } 8218 } else { 8219 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8220 } 8221 } 8222 8223 /* Now do the shift right */ 8224 if (round && extended_result) { 8225 /* extended case, >64 bit precision required */ 8226 if (ext_lshift == 0) { 8227 /* special case, only high bits matter */ 8228 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8229 } else { 8230 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8231 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8232 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8233 } 8234 } else { 8235 if (is_u) { 8236 if (shift == 64) { 8237 /* essentially shifting in 64 zeros */ 8238 tcg_gen_movi_i64(tcg_src, 0); 8239 } else { 8240 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8241 } 8242 } else { 8243 if (shift == 64) { 8244 /* effectively extending the sign-bit */ 8245 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8246 } else { 8247 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8248 } 8249 } 8250 } 8251 8252 if (accumulate) { 8253 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8254 } else { 8255 tcg_gen_mov_i64(tcg_res, tcg_src); 8256 } 8257 } 8258 8259 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8260 static void handle_scalar_simd_shri(DisasContext *s, 8261 bool is_u, int immh, int immb, 8262 int opcode, int rn, int rd) 8263 { 8264 const int size = 3; 8265 int immhb = immh << 3 | immb; 8266 int shift = 2 * (8 << size) - immhb; 8267 bool accumulate = false; 8268 bool round = false; 8269 bool insert = false; 8270 TCGv_i64 tcg_rn; 8271 TCGv_i64 tcg_rd; 8272 TCGv_i64 tcg_round; 8273 8274 if (!extract32(immh, 3, 1)) { 8275 unallocated_encoding(s); 8276 return; 8277 } 8278 8279 if (!fp_access_check(s)) { 8280 return; 8281 } 8282 8283 switch (opcode) { 8284 case 0x02: /* SSRA / USRA (accumulate) */ 8285 accumulate = true; 8286 break; 8287 case 0x04: /* SRSHR / URSHR (rounding) */ 8288 round = true; 8289 break; 8290 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8291 accumulate = round = true; 8292 break; 8293 case 0x08: /* SRI */ 8294 insert = true; 8295 break; 8296 } 8297 8298 if (round) { 8299 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8300 } else { 8301 tcg_round = NULL; 8302 } 8303 8304 tcg_rn = read_fp_dreg(s, rn); 8305 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8306 8307 if (insert) { 8308 /* shift count same as element size is valid but does nothing; 8309 * special case to avoid potential shift by 64. 8310 */ 8311 int esize = 8 << size; 8312 if (shift != esize) { 8313 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8314 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8315 } 8316 } else { 8317 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8318 accumulate, is_u, size, shift); 8319 } 8320 8321 write_fp_dreg(s, rd, tcg_rd); 8322 } 8323 8324 /* SHL/SLI - Scalar shift left */ 8325 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8326 int immh, int immb, int opcode, 8327 int rn, int rd) 8328 { 8329 int size = 32 - clz32(immh) - 1; 8330 int immhb = immh << 3 | immb; 8331 int shift = immhb - (8 << size); 8332 TCGv_i64 tcg_rn; 8333 TCGv_i64 tcg_rd; 8334 8335 if (!extract32(immh, 3, 1)) { 8336 unallocated_encoding(s); 8337 return; 8338 } 8339 8340 if (!fp_access_check(s)) { 8341 return; 8342 } 8343 8344 tcg_rn = read_fp_dreg(s, rn); 8345 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8346 8347 if (insert) { 8348 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8349 } else { 8350 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8351 } 8352 8353 write_fp_dreg(s, rd, tcg_rd); 8354 } 8355 8356 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8357 * (signed/unsigned) narrowing */ 8358 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8359 bool is_u_shift, bool is_u_narrow, 8360 int immh, int immb, int opcode, 8361 int rn, int rd) 8362 { 8363 int immhb = immh << 3 | immb; 8364 int size = 32 - clz32(immh) - 1; 8365 int esize = 8 << size; 8366 int shift = (2 * esize) - immhb; 8367 int elements = is_scalar ? 1 : (64 / esize); 8368 bool round = extract32(opcode, 0, 1); 8369 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8370 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8371 TCGv_i32 tcg_rd_narrowed; 8372 TCGv_i64 tcg_final; 8373 8374 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8375 { gen_helper_neon_narrow_sat_s8, 8376 gen_helper_neon_unarrow_sat8 }, 8377 { gen_helper_neon_narrow_sat_s16, 8378 gen_helper_neon_unarrow_sat16 }, 8379 { gen_helper_neon_narrow_sat_s32, 8380 gen_helper_neon_unarrow_sat32 }, 8381 { NULL, NULL }, 8382 }; 8383 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8384 gen_helper_neon_narrow_sat_u8, 8385 gen_helper_neon_narrow_sat_u16, 8386 gen_helper_neon_narrow_sat_u32, 8387 NULL 8388 }; 8389 NeonGenNarrowEnvFn *narrowfn; 8390 8391 int i; 8392 8393 assert(size < 4); 8394 8395 if (extract32(immh, 3, 1)) { 8396 unallocated_encoding(s); 8397 return; 8398 } 8399 8400 if (!fp_access_check(s)) { 8401 return; 8402 } 8403 8404 if (is_u_shift) { 8405 narrowfn = unsigned_narrow_fns[size]; 8406 } else { 8407 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8408 } 8409 8410 tcg_rn = tcg_temp_new_i64(); 8411 tcg_rd = tcg_temp_new_i64(); 8412 tcg_rd_narrowed = tcg_temp_new_i32(); 8413 tcg_final = tcg_temp_new_i64(); 8414 8415 if (round) { 8416 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8417 } else { 8418 tcg_round = NULL; 8419 } 8420 8421 for (i = 0; i < elements; i++) { 8422 read_vec_element(s, tcg_rn, rn, i, ldop); 8423 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8424 false, is_u_shift, size+1, shift); 8425 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8426 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8427 if (i == 0) { 8428 tcg_gen_mov_i64(tcg_final, tcg_rd); 8429 } else { 8430 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8431 } 8432 } 8433 8434 if (!is_q) { 8435 write_vec_element(s, tcg_final, rd, 0, MO_64); 8436 } else { 8437 write_vec_element(s, tcg_final, rd, 1, MO_64); 8438 } 8439 clear_vec_high(s, is_q, rd); 8440 } 8441 8442 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8443 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8444 bool src_unsigned, bool dst_unsigned, 8445 int immh, int immb, int rn, int rd) 8446 { 8447 int immhb = immh << 3 | immb; 8448 int size = 32 - clz32(immh) - 1; 8449 int shift = immhb - (8 << size); 8450 int pass; 8451 8452 assert(immh != 0); 8453 assert(!(scalar && is_q)); 8454 8455 if (!scalar) { 8456 if (!is_q && extract32(immh, 3, 1)) { 8457 unallocated_encoding(s); 8458 return; 8459 } 8460 8461 /* Since we use the variable-shift helpers we must 8462 * replicate the shift count into each element of 8463 * the tcg_shift value. 8464 */ 8465 switch (size) { 8466 case 0: 8467 shift |= shift << 8; 8468 /* fall through */ 8469 case 1: 8470 shift |= shift << 16; 8471 break; 8472 case 2: 8473 case 3: 8474 break; 8475 default: 8476 g_assert_not_reached(); 8477 } 8478 } 8479 8480 if (!fp_access_check(s)) { 8481 return; 8482 } 8483 8484 if (size == 3) { 8485 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8486 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8487 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8488 { NULL, gen_helper_neon_qshl_u64 }, 8489 }; 8490 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8491 int maxpass = is_q ? 2 : 1; 8492 8493 for (pass = 0; pass < maxpass; pass++) { 8494 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8495 8496 read_vec_element(s, tcg_op, rn, pass, MO_64); 8497 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8498 write_vec_element(s, tcg_op, rd, pass, MO_64); 8499 } 8500 clear_vec_high(s, is_q, rd); 8501 } else { 8502 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8503 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8504 { 8505 { gen_helper_neon_qshl_s8, 8506 gen_helper_neon_qshl_s16, 8507 gen_helper_neon_qshl_s32 }, 8508 { gen_helper_neon_qshlu_s8, 8509 gen_helper_neon_qshlu_s16, 8510 gen_helper_neon_qshlu_s32 } 8511 }, { 8512 { NULL, NULL, NULL }, 8513 { gen_helper_neon_qshl_u8, 8514 gen_helper_neon_qshl_u16, 8515 gen_helper_neon_qshl_u32 } 8516 } 8517 }; 8518 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8519 MemOp memop = scalar ? size : MO_32; 8520 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8521 8522 for (pass = 0; pass < maxpass; pass++) { 8523 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8524 8525 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8526 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8527 if (scalar) { 8528 switch (size) { 8529 case 0: 8530 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8531 break; 8532 case 1: 8533 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8534 break; 8535 case 2: 8536 break; 8537 default: 8538 g_assert_not_reached(); 8539 } 8540 write_fp_sreg(s, rd, tcg_op); 8541 } else { 8542 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8543 } 8544 } 8545 8546 if (!scalar) { 8547 clear_vec_high(s, is_q, rd); 8548 } 8549 } 8550 } 8551 8552 /* Common vector code for handling integer to FP conversion */ 8553 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8554 int elements, int is_signed, 8555 int fracbits, int size) 8556 { 8557 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8558 TCGv_i32 tcg_shift = NULL; 8559 8560 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8561 int pass; 8562 8563 if (fracbits || size == MO_64) { 8564 tcg_shift = tcg_constant_i32(fracbits); 8565 } 8566 8567 if (size == MO_64) { 8568 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8569 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8570 8571 for (pass = 0; pass < elements; pass++) { 8572 read_vec_element(s, tcg_int64, rn, pass, mop); 8573 8574 if (is_signed) { 8575 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8576 tcg_shift, tcg_fpst); 8577 } else { 8578 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8579 tcg_shift, tcg_fpst); 8580 } 8581 if (elements == 1) { 8582 write_fp_dreg(s, rd, tcg_double); 8583 } else { 8584 write_vec_element(s, tcg_double, rd, pass, MO_64); 8585 } 8586 } 8587 } else { 8588 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8589 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8590 8591 for (pass = 0; pass < elements; pass++) { 8592 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8593 8594 switch (size) { 8595 case MO_32: 8596 if (fracbits) { 8597 if (is_signed) { 8598 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8599 tcg_shift, tcg_fpst); 8600 } else { 8601 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8602 tcg_shift, tcg_fpst); 8603 } 8604 } else { 8605 if (is_signed) { 8606 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8607 } else { 8608 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8609 } 8610 } 8611 break; 8612 case MO_16: 8613 if (fracbits) { 8614 if (is_signed) { 8615 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8616 tcg_shift, tcg_fpst); 8617 } else { 8618 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8619 tcg_shift, tcg_fpst); 8620 } 8621 } else { 8622 if (is_signed) { 8623 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8624 } else { 8625 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8626 } 8627 } 8628 break; 8629 default: 8630 g_assert_not_reached(); 8631 } 8632 8633 if (elements == 1) { 8634 write_fp_sreg(s, rd, tcg_float); 8635 } else { 8636 write_vec_element_i32(s, tcg_float, rd, pass, size); 8637 } 8638 } 8639 } 8640 8641 clear_vec_high(s, elements << size == 16, rd); 8642 } 8643 8644 /* UCVTF/SCVTF - Integer to FP conversion */ 8645 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8646 bool is_q, bool is_u, 8647 int immh, int immb, int opcode, 8648 int rn, int rd) 8649 { 8650 int size, elements, fracbits; 8651 int immhb = immh << 3 | immb; 8652 8653 if (immh & 8) { 8654 size = MO_64; 8655 if (!is_scalar && !is_q) { 8656 unallocated_encoding(s); 8657 return; 8658 } 8659 } else if (immh & 4) { 8660 size = MO_32; 8661 } else if (immh & 2) { 8662 size = MO_16; 8663 if (!dc_isar_feature(aa64_fp16, s)) { 8664 unallocated_encoding(s); 8665 return; 8666 } 8667 } else { 8668 /* immh == 0 would be a failure of the decode logic */ 8669 g_assert(immh == 1); 8670 unallocated_encoding(s); 8671 return; 8672 } 8673 8674 if (is_scalar) { 8675 elements = 1; 8676 } else { 8677 elements = (8 << is_q) >> size; 8678 } 8679 fracbits = (16 << size) - immhb; 8680 8681 if (!fp_access_check(s)) { 8682 return; 8683 } 8684 8685 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8686 } 8687 8688 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8689 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8690 bool is_q, bool is_u, 8691 int immh, int immb, int rn, int rd) 8692 { 8693 int immhb = immh << 3 | immb; 8694 int pass, size, fracbits; 8695 TCGv_ptr tcg_fpstatus; 8696 TCGv_i32 tcg_rmode, tcg_shift; 8697 8698 if (immh & 0x8) { 8699 size = MO_64; 8700 if (!is_scalar && !is_q) { 8701 unallocated_encoding(s); 8702 return; 8703 } 8704 } else if (immh & 0x4) { 8705 size = MO_32; 8706 } else if (immh & 0x2) { 8707 size = MO_16; 8708 if (!dc_isar_feature(aa64_fp16, s)) { 8709 unallocated_encoding(s); 8710 return; 8711 } 8712 } else { 8713 /* Should have split out AdvSIMD modified immediate earlier. */ 8714 assert(immh == 1); 8715 unallocated_encoding(s); 8716 return; 8717 } 8718 8719 if (!fp_access_check(s)) { 8720 return; 8721 } 8722 8723 assert(!(is_scalar && is_q)); 8724 8725 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8726 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8727 fracbits = (16 << size) - immhb; 8728 tcg_shift = tcg_constant_i32(fracbits); 8729 8730 if (size == MO_64) { 8731 int maxpass = is_scalar ? 1 : 2; 8732 8733 for (pass = 0; pass < maxpass; pass++) { 8734 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8735 8736 read_vec_element(s, tcg_op, rn, pass, MO_64); 8737 if (is_u) { 8738 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8739 } else { 8740 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8741 } 8742 write_vec_element(s, tcg_op, rd, pass, MO_64); 8743 } 8744 clear_vec_high(s, is_q, rd); 8745 } else { 8746 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8747 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8748 8749 switch (size) { 8750 case MO_16: 8751 if (is_u) { 8752 fn = gen_helper_vfp_touhh; 8753 } else { 8754 fn = gen_helper_vfp_toshh; 8755 } 8756 break; 8757 case MO_32: 8758 if (is_u) { 8759 fn = gen_helper_vfp_touls; 8760 } else { 8761 fn = gen_helper_vfp_tosls; 8762 } 8763 break; 8764 default: 8765 g_assert_not_reached(); 8766 } 8767 8768 for (pass = 0; pass < maxpass; pass++) { 8769 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8770 8771 read_vec_element_i32(s, tcg_op, rn, pass, size); 8772 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8773 if (is_scalar) { 8774 write_fp_sreg(s, rd, tcg_op); 8775 } else { 8776 write_vec_element_i32(s, tcg_op, rd, pass, size); 8777 } 8778 } 8779 if (!is_scalar) { 8780 clear_vec_high(s, is_q, rd); 8781 } 8782 } 8783 8784 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8785 } 8786 8787 /* AdvSIMD scalar shift by immediate 8788 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8789 * +-----+---+-------------+------+------+--------+---+------+------+ 8790 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8791 * +-----+---+-------------+------+------+--------+---+------+------+ 8792 * 8793 * This is the scalar version so it works on a fixed sized registers 8794 */ 8795 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8796 { 8797 int rd = extract32(insn, 0, 5); 8798 int rn = extract32(insn, 5, 5); 8799 int opcode = extract32(insn, 11, 5); 8800 int immb = extract32(insn, 16, 3); 8801 int immh = extract32(insn, 19, 4); 8802 bool is_u = extract32(insn, 29, 1); 8803 8804 if (immh == 0) { 8805 unallocated_encoding(s); 8806 return; 8807 } 8808 8809 switch (opcode) { 8810 case 0x08: /* SRI */ 8811 if (!is_u) { 8812 unallocated_encoding(s); 8813 return; 8814 } 8815 /* fall through */ 8816 case 0x00: /* SSHR / USHR */ 8817 case 0x02: /* SSRA / USRA */ 8818 case 0x04: /* SRSHR / URSHR */ 8819 case 0x06: /* SRSRA / URSRA */ 8820 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8821 break; 8822 case 0x0a: /* SHL / SLI */ 8823 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8824 break; 8825 case 0x1c: /* SCVTF, UCVTF */ 8826 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8827 opcode, rn, rd); 8828 break; 8829 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8830 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8831 if (!is_u) { 8832 unallocated_encoding(s); 8833 return; 8834 } 8835 handle_vec_simd_sqshrn(s, true, false, false, true, 8836 immh, immb, opcode, rn, rd); 8837 break; 8838 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8839 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8840 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8841 immh, immb, opcode, rn, rd); 8842 break; 8843 case 0xc: /* SQSHLU */ 8844 if (!is_u) { 8845 unallocated_encoding(s); 8846 return; 8847 } 8848 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8849 break; 8850 case 0xe: /* SQSHL, UQSHL */ 8851 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8852 break; 8853 case 0x1f: /* FCVTZS, FCVTZU */ 8854 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8855 break; 8856 default: 8857 unallocated_encoding(s); 8858 break; 8859 } 8860 } 8861 8862 /* AdvSIMD scalar three different 8863 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8864 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8865 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8866 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8867 */ 8868 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8869 { 8870 bool is_u = extract32(insn, 29, 1); 8871 int size = extract32(insn, 22, 2); 8872 int opcode = extract32(insn, 12, 4); 8873 int rm = extract32(insn, 16, 5); 8874 int rn = extract32(insn, 5, 5); 8875 int rd = extract32(insn, 0, 5); 8876 8877 if (is_u) { 8878 unallocated_encoding(s); 8879 return; 8880 } 8881 8882 switch (opcode) { 8883 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8884 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8885 case 0xd: /* SQDMULL, SQDMULL2 */ 8886 if (size == 0 || size == 3) { 8887 unallocated_encoding(s); 8888 return; 8889 } 8890 break; 8891 default: 8892 unallocated_encoding(s); 8893 return; 8894 } 8895 8896 if (!fp_access_check(s)) { 8897 return; 8898 } 8899 8900 if (size == 2) { 8901 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8902 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8903 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8904 8905 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8906 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8907 8908 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8909 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8910 8911 switch (opcode) { 8912 case 0xd: /* SQDMULL, SQDMULL2 */ 8913 break; 8914 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8915 tcg_gen_neg_i64(tcg_res, tcg_res); 8916 /* fall through */ 8917 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8918 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8919 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8920 tcg_res, tcg_op1); 8921 break; 8922 default: 8923 g_assert_not_reached(); 8924 } 8925 8926 write_fp_dreg(s, rd, tcg_res); 8927 } else { 8928 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8929 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8930 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8931 8932 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8933 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8934 8935 switch (opcode) { 8936 case 0xd: /* SQDMULL, SQDMULL2 */ 8937 break; 8938 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8939 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8940 /* fall through */ 8941 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8942 { 8943 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8944 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8945 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8946 tcg_res, tcg_op3); 8947 break; 8948 } 8949 default: 8950 g_assert_not_reached(); 8951 } 8952 8953 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8954 write_fp_dreg(s, rd, tcg_res); 8955 } 8956 } 8957 8958 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8959 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8960 { 8961 /* Handle 64x64->64 opcodes which are shared between the scalar 8962 * and vector 3-same groups. We cover every opcode where size == 3 8963 * is valid in either the three-reg-same (integer, not pairwise) 8964 * or scalar-three-reg-same groups. 8965 */ 8966 TCGCond cond; 8967 8968 switch (opcode) { 8969 case 0x1: /* SQADD */ 8970 if (u) { 8971 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8972 } else { 8973 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8974 } 8975 break; 8976 case 0x5: /* SQSUB */ 8977 if (u) { 8978 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8979 } else { 8980 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8981 } 8982 break; 8983 case 0x6: /* CMGT, CMHI */ 8984 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8985 * We implement this using setcond (test) and then negating. 8986 */ 8987 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8988 do_cmop: 8989 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8990 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8991 break; 8992 case 0x7: /* CMGE, CMHS */ 8993 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8994 goto do_cmop; 8995 case 0x11: /* CMTST, CMEQ */ 8996 if (u) { 8997 cond = TCG_COND_EQ; 8998 goto do_cmop; 8999 } 9000 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9001 break; 9002 case 0x8: /* SSHL, USHL */ 9003 if (u) { 9004 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9005 } else { 9006 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9007 } 9008 break; 9009 case 0x9: /* SQSHL, UQSHL */ 9010 if (u) { 9011 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9012 } else { 9013 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9014 } 9015 break; 9016 case 0xa: /* SRSHL, URSHL */ 9017 if (u) { 9018 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9019 } else { 9020 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9021 } 9022 break; 9023 case 0xb: /* SQRSHL, UQRSHL */ 9024 if (u) { 9025 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9026 } else { 9027 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9028 } 9029 break; 9030 case 0x10: /* ADD, SUB */ 9031 if (u) { 9032 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9033 } else { 9034 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9035 } 9036 break; 9037 default: 9038 g_assert_not_reached(); 9039 } 9040 } 9041 9042 /* Handle the 3-same-operands float operations; shared by the scalar 9043 * and vector encodings. The caller must filter out any encodings 9044 * not allocated for the encoding it is dealing with. 9045 */ 9046 static void handle_3same_float(DisasContext *s, int size, int elements, 9047 int fpopcode, int rd, int rn, int rm) 9048 { 9049 int pass; 9050 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9051 9052 for (pass = 0; pass < elements; pass++) { 9053 if (size) { 9054 /* Double */ 9055 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9056 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9057 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9058 9059 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9060 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9061 9062 switch (fpopcode) { 9063 case 0x39: /* FMLS */ 9064 /* As usual for ARM, separate negation for fused multiply-add */ 9065 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9066 /* fall through */ 9067 case 0x19: /* FMLA */ 9068 read_vec_element(s, tcg_res, rd, pass, MO_64); 9069 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9070 tcg_res, fpst); 9071 break; 9072 case 0x18: /* FMAXNM */ 9073 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9074 break; 9075 case 0x1a: /* FADD */ 9076 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9077 break; 9078 case 0x1b: /* FMULX */ 9079 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9080 break; 9081 case 0x1c: /* FCMEQ */ 9082 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9083 break; 9084 case 0x1e: /* FMAX */ 9085 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9086 break; 9087 case 0x1f: /* FRECPS */ 9088 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9089 break; 9090 case 0x38: /* FMINNM */ 9091 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9092 break; 9093 case 0x3a: /* FSUB */ 9094 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9095 break; 9096 case 0x3e: /* FMIN */ 9097 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9098 break; 9099 case 0x3f: /* FRSQRTS */ 9100 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x5b: /* FMUL */ 9103 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x5c: /* FCMGE */ 9106 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x5d: /* FACGE */ 9109 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x5f: /* FDIV */ 9112 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x7a: /* FABD */ 9115 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9116 gen_helper_vfp_absd(tcg_res, tcg_res); 9117 break; 9118 case 0x7c: /* FCMGT */ 9119 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9120 break; 9121 case 0x7d: /* FACGT */ 9122 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 default: 9125 g_assert_not_reached(); 9126 } 9127 9128 write_vec_element(s, tcg_res, rd, pass, MO_64); 9129 } else { 9130 /* Single */ 9131 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9132 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9133 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9134 9135 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9136 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9137 9138 switch (fpopcode) { 9139 case 0x39: /* FMLS */ 9140 /* As usual for ARM, separate negation for fused multiply-add */ 9141 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9142 /* fall through */ 9143 case 0x19: /* FMLA */ 9144 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9145 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9146 tcg_res, fpst); 9147 break; 9148 case 0x1a: /* FADD */ 9149 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x1b: /* FMULX */ 9152 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x1c: /* FCMEQ */ 9155 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x1e: /* FMAX */ 9158 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x1f: /* FRECPS */ 9161 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x18: /* FMAXNM */ 9164 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9165 break; 9166 case 0x38: /* FMINNM */ 9167 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x3a: /* FSUB */ 9170 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 case 0x3e: /* FMIN */ 9173 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9174 break; 9175 case 0x3f: /* FRSQRTS */ 9176 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9177 break; 9178 case 0x5b: /* FMUL */ 9179 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9180 break; 9181 case 0x5c: /* FCMGE */ 9182 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9183 break; 9184 case 0x5d: /* FACGE */ 9185 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9186 break; 9187 case 0x5f: /* FDIV */ 9188 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9189 break; 9190 case 0x7a: /* FABD */ 9191 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9192 gen_helper_vfp_abss(tcg_res, tcg_res); 9193 break; 9194 case 0x7c: /* FCMGT */ 9195 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9196 break; 9197 case 0x7d: /* FACGT */ 9198 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9199 break; 9200 default: 9201 g_assert_not_reached(); 9202 } 9203 9204 if (elements == 1) { 9205 /* scalar single so clear high part */ 9206 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9207 9208 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9209 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9210 } else { 9211 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9212 } 9213 } 9214 } 9215 9216 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9217 } 9218 9219 /* AdvSIMD scalar three same 9220 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9221 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9222 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9223 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9224 */ 9225 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9226 { 9227 int rd = extract32(insn, 0, 5); 9228 int rn = extract32(insn, 5, 5); 9229 int opcode = extract32(insn, 11, 5); 9230 int rm = extract32(insn, 16, 5); 9231 int size = extract32(insn, 22, 2); 9232 bool u = extract32(insn, 29, 1); 9233 TCGv_i64 tcg_rd; 9234 9235 if (opcode >= 0x18) { 9236 /* Floating point: U, size[1] and opcode indicate operation */ 9237 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9238 switch (fpopcode) { 9239 case 0x1b: /* FMULX */ 9240 case 0x1f: /* FRECPS */ 9241 case 0x3f: /* FRSQRTS */ 9242 case 0x5d: /* FACGE */ 9243 case 0x7d: /* FACGT */ 9244 case 0x1c: /* FCMEQ */ 9245 case 0x5c: /* FCMGE */ 9246 case 0x7c: /* FCMGT */ 9247 case 0x7a: /* FABD */ 9248 break; 9249 default: 9250 unallocated_encoding(s); 9251 return; 9252 } 9253 9254 if (!fp_access_check(s)) { 9255 return; 9256 } 9257 9258 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9259 return; 9260 } 9261 9262 switch (opcode) { 9263 case 0x1: /* SQADD, UQADD */ 9264 case 0x5: /* SQSUB, UQSUB */ 9265 case 0x9: /* SQSHL, UQSHL */ 9266 case 0xb: /* SQRSHL, UQRSHL */ 9267 break; 9268 case 0x8: /* SSHL, USHL */ 9269 case 0xa: /* SRSHL, URSHL */ 9270 case 0x6: /* CMGT, CMHI */ 9271 case 0x7: /* CMGE, CMHS */ 9272 case 0x11: /* CMTST, CMEQ */ 9273 case 0x10: /* ADD, SUB (vector) */ 9274 if (size != 3) { 9275 unallocated_encoding(s); 9276 return; 9277 } 9278 break; 9279 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9280 if (size != 1 && size != 2) { 9281 unallocated_encoding(s); 9282 return; 9283 } 9284 break; 9285 default: 9286 unallocated_encoding(s); 9287 return; 9288 } 9289 9290 if (!fp_access_check(s)) { 9291 return; 9292 } 9293 9294 tcg_rd = tcg_temp_new_i64(); 9295 9296 if (size == 3) { 9297 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9298 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9299 9300 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9301 } else { 9302 /* Do a single operation on the lowest element in the vector. 9303 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9304 * no side effects for all these operations. 9305 * OPTME: special-purpose helpers would avoid doing some 9306 * unnecessary work in the helper for the 8 and 16 bit cases. 9307 */ 9308 NeonGenTwoOpEnvFn *genenvfn; 9309 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9310 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9311 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9312 9313 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9314 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9315 9316 switch (opcode) { 9317 case 0x1: /* SQADD, UQADD */ 9318 { 9319 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9320 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9321 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9322 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9323 }; 9324 genenvfn = fns[size][u]; 9325 break; 9326 } 9327 case 0x5: /* SQSUB, UQSUB */ 9328 { 9329 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9330 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9331 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9332 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9333 }; 9334 genenvfn = fns[size][u]; 9335 break; 9336 } 9337 case 0x9: /* SQSHL, UQSHL */ 9338 { 9339 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9340 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9341 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9342 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9343 }; 9344 genenvfn = fns[size][u]; 9345 break; 9346 } 9347 case 0xb: /* SQRSHL, UQRSHL */ 9348 { 9349 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9350 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9351 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9352 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9353 }; 9354 genenvfn = fns[size][u]; 9355 break; 9356 } 9357 case 0x16: /* SQDMULH, SQRDMULH */ 9358 { 9359 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9360 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9361 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9362 }; 9363 assert(size == 1 || size == 2); 9364 genenvfn = fns[size - 1][u]; 9365 break; 9366 } 9367 default: 9368 g_assert_not_reached(); 9369 } 9370 9371 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9372 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9373 } 9374 9375 write_fp_dreg(s, rd, tcg_rd); 9376 } 9377 9378 /* AdvSIMD scalar three same FP16 9379 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9380 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9381 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9382 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9383 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9384 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9385 */ 9386 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9387 uint32_t insn) 9388 { 9389 int rd = extract32(insn, 0, 5); 9390 int rn = extract32(insn, 5, 5); 9391 int opcode = extract32(insn, 11, 3); 9392 int rm = extract32(insn, 16, 5); 9393 bool u = extract32(insn, 29, 1); 9394 bool a = extract32(insn, 23, 1); 9395 int fpopcode = opcode | (a << 3) | (u << 4); 9396 TCGv_ptr fpst; 9397 TCGv_i32 tcg_op1; 9398 TCGv_i32 tcg_op2; 9399 TCGv_i32 tcg_res; 9400 9401 switch (fpopcode) { 9402 case 0x03: /* FMULX */ 9403 case 0x04: /* FCMEQ (reg) */ 9404 case 0x07: /* FRECPS */ 9405 case 0x0f: /* FRSQRTS */ 9406 case 0x14: /* FCMGE (reg) */ 9407 case 0x15: /* FACGE */ 9408 case 0x1a: /* FABD */ 9409 case 0x1c: /* FCMGT (reg) */ 9410 case 0x1d: /* FACGT */ 9411 break; 9412 default: 9413 unallocated_encoding(s); 9414 return; 9415 } 9416 9417 if (!dc_isar_feature(aa64_fp16, s)) { 9418 unallocated_encoding(s); 9419 } 9420 9421 if (!fp_access_check(s)) { 9422 return; 9423 } 9424 9425 fpst = fpstatus_ptr(FPST_FPCR_F16); 9426 9427 tcg_op1 = read_fp_hreg(s, rn); 9428 tcg_op2 = read_fp_hreg(s, rm); 9429 tcg_res = tcg_temp_new_i32(); 9430 9431 switch (fpopcode) { 9432 case 0x03: /* FMULX */ 9433 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9434 break; 9435 case 0x04: /* FCMEQ (reg) */ 9436 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9437 break; 9438 case 0x07: /* FRECPS */ 9439 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9440 break; 9441 case 0x0f: /* FRSQRTS */ 9442 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9443 break; 9444 case 0x14: /* FCMGE (reg) */ 9445 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9446 break; 9447 case 0x15: /* FACGE */ 9448 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9449 break; 9450 case 0x1a: /* FABD */ 9451 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9452 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9453 break; 9454 case 0x1c: /* FCMGT (reg) */ 9455 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9456 break; 9457 case 0x1d: /* FACGT */ 9458 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9459 break; 9460 default: 9461 g_assert_not_reached(); 9462 } 9463 9464 write_fp_sreg(s, rd, tcg_res); 9465 } 9466 9467 /* AdvSIMD scalar three same extra 9468 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9469 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9470 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9471 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9472 */ 9473 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9474 uint32_t insn) 9475 { 9476 int rd = extract32(insn, 0, 5); 9477 int rn = extract32(insn, 5, 5); 9478 int opcode = extract32(insn, 11, 4); 9479 int rm = extract32(insn, 16, 5); 9480 int size = extract32(insn, 22, 2); 9481 bool u = extract32(insn, 29, 1); 9482 TCGv_i32 ele1, ele2, ele3; 9483 TCGv_i64 res; 9484 bool feature; 9485 9486 switch (u * 16 + opcode) { 9487 case 0x10: /* SQRDMLAH (vector) */ 9488 case 0x11: /* SQRDMLSH (vector) */ 9489 if (size != 1 && size != 2) { 9490 unallocated_encoding(s); 9491 return; 9492 } 9493 feature = dc_isar_feature(aa64_rdm, s); 9494 break; 9495 default: 9496 unallocated_encoding(s); 9497 return; 9498 } 9499 if (!feature) { 9500 unallocated_encoding(s); 9501 return; 9502 } 9503 if (!fp_access_check(s)) { 9504 return; 9505 } 9506 9507 /* Do a single operation on the lowest element in the vector. 9508 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9509 * with no side effects for all these operations. 9510 * OPTME: special-purpose helpers would avoid doing some 9511 * unnecessary work in the helper for the 16 bit cases. 9512 */ 9513 ele1 = tcg_temp_new_i32(); 9514 ele2 = tcg_temp_new_i32(); 9515 ele3 = tcg_temp_new_i32(); 9516 9517 read_vec_element_i32(s, ele1, rn, 0, size); 9518 read_vec_element_i32(s, ele2, rm, 0, size); 9519 read_vec_element_i32(s, ele3, rd, 0, size); 9520 9521 switch (opcode) { 9522 case 0x0: /* SQRDMLAH */ 9523 if (size == 1) { 9524 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9525 } else { 9526 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9527 } 9528 break; 9529 case 0x1: /* SQRDMLSH */ 9530 if (size == 1) { 9531 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9532 } else { 9533 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9534 } 9535 break; 9536 default: 9537 g_assert_not_reached(); 9538 } 9539 9540 res = tcg_temp_new_i64(); 9541 tcg_gen_extu_i32_i64(res, ele3); 9542 write_fp_dreg(s, rd, res); 9543 } 9544 9545 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9546 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9547 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9548 { 9549 /* Handle 64->64 opcodes which are shared between the scalar and 9550 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9551 * is valid in either group and also the double-precision fp ops. 9552 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9553 * requires them. 9554 */ 9555 TCGCond cond; 9556 9557 switch (opcode) { 9558 case 0x4: /* CLS, CLZ */ 9559 if (u) { 9560 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9561 } else { 9562 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9563 } 9564 break; 9565 case 0x5: /* NOT */ 9566 /* This opcode is shared with CNT and RBIT but we have earlier 9567 * enforced that size == 3 if and only if this is the NOT insn. 9568 */ 9569 tcg_gen_not_i64(tcg_rd, tcg_rn); 9570 break; 9571 case 0x7: /* SQABS, SQNEG */ 9572 if (u) { 9573 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9574 } else { 9575 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9576 } 9577 break; 9578 case 0xa: /* CMLT */ 9579 /* 64 bit integer comparison against zero, result is 9580 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9581 * subtracting 1. 9582 */ 9583 cond = TCG_COND_LT; 9584 do_cmop: 9585 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9586 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9587 break; 9588 case 0x8: /* CMGT, CMGE */ 9589 cond = u ? TCG_COND_GE : TCG_COND_GT; 9590 goto do_cmop; 9591 case 0x9: /* CMEQ, CMLE */ 9592 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9593 goto do_cmop; 9594 case 0xb: /* ABS, NEG */ 9595 if (u) { 9596 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9597 } else { 9598 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9599 } 9600 break; 9601 case 0x2f: /* FABS */ 9602 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9603 break; 9604 case 0x6f: /* FNEG */ 9605 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9606 break; 9607 case 0x7f: /* FSQRT */ 9608 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9609 break; 9610 case 0x1a: /* FCVTNS */ 9611 case 0x1b: /* FCVTMS */ 9612 case 0x1c: /* FCVTAS */ 9613 case 0x3a: /* FCVTPS */ 9614 case 0x3b: /* FCVTZS */ 9615 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9616 break; 9617 case 0x5a: /* FCVTNU */ 9618 case 0x5b: /* FCVTMU */ 9619 case 0x5c: /* FCVTAU */ 9620 case 0x7a: /* FCVTPU */ 9621 case 0x7b: /* FCVTZU */ 9622 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9623 break; 9624 case 0x18: /* FRINTN */ 9625 case 0x19: /* FRINTM */ 9626 case 0x38: /* FRINTP */ 9627 case 0x39: /* FRINTZ */ 9628 case 0x58: /* FRINTA */ 9629 case 0x79: /* FRINTI */ 9630 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9631 break; 9632 case 0x59: /* FRINTX */ 9633 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9634 break; 9635 case 0x1e: /* FRINT32Z */ 9636 case 0x5e: /* FRINT32X */ 9637 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9638 break; 9639 case 0x1f: /* FRINT64Z */ 9640 case 0x5f: /* FRINT64X */ 9641 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9642 break; 9643 default: 9644 g_assert_not_reached(); 9645 } 9646 } 9647 9648 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9649 bool is_scalar, bool is_u, bool is_q, 9650 int size, int rn, int rd) 9651 { 9652 bool is_double = (size == MO_64); 9653 TCGv_ptr fpst; 9654 9655 if (!fp_access_check(s)) { 9656 return; 9657 } 9658 9659 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9660 9661 if (is_double) { 9662 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9663 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9664 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9665 NeonGenTwoDoubleOpFn *genfn; 9666 bool swap = false; 9667 int pass; 9668 9669 switch (opcode) { 9670 case 0x2e: /* FCMLT (zero) */ 9671 swap = true; 9672 /* fallthrough */ 9673 case 0x2c: /* FCMGT (zero) */ 9674 genfn = gen_helper_neon_cgt_f64; 9675 break; 9676 case 0x2d: /* FCMEQ (zero) */ 9677 genfn = gen_helper_neon_ceq_f64; 9678 break; 9679 case 0x6d: /* FCMLE (zero) */ 9680 swap = true; 9681 /* fall through */ 9682 case 0x6c: /* FCMGE (zero) */ 9683 genfn = gen_helper_neon_cge_f64; 9684 break; 9685 default: 9686 g_assert_not_reached(); 9687 } 9688 9689 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9690 read_vec_element(s, tcg_op, rn, pass, MO_64); 9691 if (swap) { 9692 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9693 } else { 9694 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9695 } 9696 write_vec_element(s, tcg_res, rd, pass, MO_64); 9697 } 9698 9699 clear_vec_high(s, !is_scalar, rd); 9700 } else { 9701 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9702 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9703 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9704 NeonGenTwoSingleOpFn *genfn; 9705 bool swap = false; 9706 int pass, maxpasses; 9707 9708 if (size == MO_16) { 9709 switch (opcode) { 9710 case 0x2e: /* FCMLT (zero) */ 9711 swap = true; 9712 /* fall through */ 9713 case 0x2c: /* FCMGT (zero) */ 9714 genfn = gen_helper_advsimd_cgt_f16; 9715 break; 9716 case 0x2d: /* FCMEQ (zero) */ 9717 genfn = gen_helper_advsimd_ceq_f16; 9718 break; 9719 case 0x6d: /* FCMLE (zero) */ 9720 swap = true; 9721 /* fall through */ 9722 case 0x6c: /* FCMGE (zero) */ 9723 genfn = gen_helper_advsimd_cge_f16; 9724 break; 9725 default: 9726 g_assert_not_reached(); 9727 } 9728 } else { 9729 switch (opcode) { 9730 case 0x2e: /* FCMLT (zero) */ 9731 swap = true; 9732 /* fall through */ 9733 case 0x2c: /* FCMGT (zero) */ 9734 genfn = gen_helper_neon_cgt_f32; 9735 break; 9736 case 0x2d: /* FCMEQ (zero) */ 9737 genfn = gen_helper_neon_ceq_f32; 9738 break; 9739 case 0x6d: /* FCMLE (zero) */ 9740 swap = true; 9741 /* fall through */ 9742 case 0x6c: /* FCMGE (zero) */ 9743 genfn = gen_helper_neon_cge_f32; 9744 break; 9745 default: 9746 g_assert_not_reached(); 9747 } 9748 } 9749 9750 if (is_scalar) { 9751 maxpasses = 1; 9752 } else { 9753 int vector_size = 8 << is_q; 9754 maxpasses = vector_size >> size; 9755 } 9756 9757 for (pass = 0; pass < maxpasses; pass++) { 9758 read_vec_element_i32(s, tcg_op, rn, pass, size); 9759 if (swap) { 9760 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9761 } else { 9762 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9763 } 9764 if (is_scalar) { 9765 write_fp_sreg(s, rd, tcg_res); 9766 } else { 9767 write_vec_element_i32(s, tcg_res, rd, pass, size); 9768 } 9769 } 9770 9771 if (!is_scalar) { 9772 clear_vec_high(s, is_q, rd); 9773 } 9774 } 9775 } 9776 9777 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9778 bool is_scalar, bool is_u, bool is_q, 9779 int size, int rn, int rd) 9780 { 9781 bool is_double = (size == 3); 9782 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9783 9784 if (is_double) { 9785 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9786 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9787 int pass; 9788 9789 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9790 read_vec_element(s, tcg_op, rn, pass, MO_64); 9791 switch (opcode) { 9792 case 0x3d: /* FRECPE */ 9793 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9794 break; 9795 case 0x3f: /* FRECPX */ 9796 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9797 break; 9798 case 0x7d: /* FRSQRTE */ 9799 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9800 break; 9801 default: 9802 g_assert_not_reached(); 9803 } 9804 write_vec_element(s, tcg_res, rd, pass, MO_64); 9805 } 9806 clear_vec_high(s, !is_scalar, rd); 9807 } else { 9808 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9809 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9810 int pass, maxpasses; 9811 9812 if (is_scalar) { 9813 maxpasses = 1; 9814 } else { 9815 maxpasses = is_q ? 4 : 2; 9816 } 9817 9818 for (pass = 0; pass < maxpasses; pass++) { 9819 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9820 9821 switch (opcode) { 9822 case 0x3c: /* URECPE */ 9823 gen_helper_recpe_u32(tcg_res, tcg_op); 9824 break; 9825 case 0x3d: /* FRECPE */ 9826 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9827 break; 9828 case 0x3f: /* FRECPX */ 9829 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9830 break; 9831 case 0x7d: /* FRSQRTE */ 9832 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9833 break; 9834 default: 9835 g_assert_not_reached(); 9836 } 9837 9838 if (is_scalar) { 9839 write_fp_sreg(s, rd, tcg_res); 9840 } else { 9841 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9842 } 9843 } 9844 if (!is_scalar) { 9845 clear_vec_high(s, is_q, rd); 9846 } 9847 } 9848 } 9849 9850 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9851 int opcode, bool u, bool is_q, 9852 int size, int rn, int rd) 9853 { 9854 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9855 * in the source becomes a size element in the destination). 9856 */ 9857 int pass; 9858 TCGv_i32 tcg_res[2]; 9859 int destelt = is_q ? 2 : 0; 9860 int passes = scalar ? 1 : 2; 9861 9862 if (scalar) { 9863 tcg_res[1] = tcg_constant_i32(0); 9864 } 9865 9866 for (pass = 0; pass < passes; pass++) { 9867 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9868 NeonGenNarrowFn *genfn = NULL; 9869 NeonGenNarrowEnvFn *genenvfn = NULL; 9870 9871 if (scalar) { 9872 read_vec_element(s, tcg_op, rn, pass, size + 1); 9873 } else { 9874 read_vec_element(s, tcg_op, rn, pass, MO_64); 9875 } 9876 tcg_res[pass] = tcg_temp_new_i32(); 9877 9878 switch (opcode) { 9879 case 0x12: /* XTN, SQXTUN */ 9880 { 9881 static NeonGenNarrowFn * const xtnfns[3] = { 9882 gen_helper_neon_narrow_u8, 9883 gen_helper_neon_narrow_u16, 9884 tcg_gen_extrl_i64_i32, 9885 }; 9886 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9887 gen_helper_neon_unarrow_sat8, 9888 gen_helper_neon_unarrow_sat16, 9889 gen_helper_neon_unarrow_sat32, 9890 }; 9891 if (u) { 9892 genenvfn = sqxtunfns[size]; 9893 } else { 9894 genfn = xtnfns[size]; 9895 } 9896 break; 9897 } 9898 case 0x14: /* SQXTN, UQXTN */ 9899 { 9900 static NeonGenNarrowEnvFn * const fns[3][2] = { 9901 { gen_helper_neon_narrow_sat_s8, 9902 gen_helper_neon_narrow_sat_u8 }, 9903 { gen_helper_neon_narrow_sat_s16, 9904 gen_helper_neon_narrow_sat_u16 }, 9905 { gen_helper_neon_narrow_sat_s32, 9906 gen_helper_neon_narrow_sat_u32 }, 9907 }; 9908 genenvfn = fns[size][u]; 9909 break; 9910 } 9911 case 0x16: /* FCVTN, FCVTN2 */ 9912 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9913 if (size == 2) { 9914 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9915 } else { 9916 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9917 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9918 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9919 TCGv_i32 ahp = get_ahp_flag(); 9920 9921 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9922 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9923 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9924 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9925 } 9926 break; 9927 case 0x36: /* BFCVTN, BFCVTN2 */ 9928 { 9929 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9930 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9931 } 9932 break; 9933 case 0x56: /* FCVTXN, FCVTXN2 */ 9934 /* 64 bit to 32 bit float conversion 9935 * with von Neumann rounding (round to odd) 9936 */ 9937 assert(size == 2); 9938 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9939 break; 9940 default: 9941 g_assert_not_reached(); 9942 } 9943 9944 if (genfn) { 9945 genfn(tcg_res[pass], tcg_op); 9946 } else if (genenvfn) { 9947 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9948 } 9949 } 9950 9951 for (pass = 0; pass < 2; pass++) { 9952 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9953 } 9954 clear_vec_high(s, is_q, rd); 9955 } 9956 9957 /* Remaining saturating accumulating ops */ 9958 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9959 bool is_q, int size, int rn, int rd) 9960 { 9961 bool is_double = (size == 3); 9962 9963 if (is_double) { 9964 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9965 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9966 int pass; 9967 9968 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9969 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9970 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9971 9972 if (is_u) { /* USQADD */ 9973 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9974 } else { /* SUQADD */ 9975 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9976 } 9977 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9978 } 9979 clear_vec_high(s, !is_scalar, rd); 9980 } else { 9981 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9982 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9983 int pass, maxpasses; 9984 9985 if (is_scalar) { 9986 maxpasses = 1; 9987 } else { 9988 maxpasses = is_q ? 4 : 2; 9989 } 9990 9991 for (pass = 0; pass < maxpasses; pass++) { 9992 if (is_scalar) { 9993 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9994 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9995 } else { 9996 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9997 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9998 } 9999 10000 if (is_u) { /* USQADD */ 10001 switch (size) { 10002 case 0: 10003 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10004 break; 10005 case 1: 10006 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10007 break; 10008 case 2: 10009 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10010 break; 10011 default: 10012 g_assert_not_reached(); 10013 } 10014 } else { /* SUQADD */ 10015 switch (size) { 10016 case 0: 10017 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10018 break; 10019 case 1: 10020 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10021 break; 10022 case 2: 10023 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10024 break; 10025 default: 10026 g_assert_not_reached(); 10027 } 10028 } 10029 10030 if (is_scalar) { 10031 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10032 } 10033 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10034 } 10035 clear_vec_high(s, is_q, rd); 10036 } 10037 } 10038 10039 /* AdvSIMD scalar two reg misc 10040 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10041 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10042 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10043 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10044 */ 10045 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10046 { 10047 int rd = extract32(insn, 0, 5); 10048 int rn = extract32(insn, 5, 5); 10049 int opcode = extract32(insn, 12, 5); 10050 int size = extract32(insn, 22, 2); 10051 bool u = extract32(insn, 29, 1); 10052 bool is_fcvt = false; 10053 int rmode; 10054 TCGv_i32 tcg_rmode; 10055 TCGv_ptr tcg_fpstatus; 10056 10057 switch (opcode) { 10058 case 0x3: /* USQADD / SUQADD*/ 10059 if (!fp_access_check(s)) { 10060 return; 10061 } 10062 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10063 return; 10064 case 0x7: /* SQABS / SQNEG */ 10065 break; 10066 case 0xa: /* CMLT */ 10067 if (u) { 10068 unallocated_encoding(s); 10069 return; 10070 } 10071 /* fall through */ 10072 case 0x8: /* CMGT, CMGE */ 10073 case 0x9: /* CMEQ, CMLE */ 10074 case 0xb: /* ABS, NEG */ 10075 if (size != 3) { 10076 unallocated_encoding(s); 10077 return; 10078 } 10079 break; 10080 case 0x12: /* SQXTUN */ 10081 if (!u) { 10082 unallocated_encoding(s); 10083 return; 10084 } 10085 /* fall through */ 10086 case 0x14: /* SQXTN, UQXTN */ 10087 if (size == 3) { 10088 unallocated_encoding(s); 10089 return; 10090 } 10091 if (!fp_access_check(s)) { 10092 return; 10093 } 10094 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10095 return; 10096 case 0xc ... 0xf: 10097 case 0x16 ... 0x1d: 10098 case 0x1f: 10099 /* Floating point: U, size[1] and opcode indicate operation; 10100 * size[0] indicates single or double precision. 10101 */ 10102 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10103 size = extract32(size, 0, 1) ? 3 : 2; 10104 switch (opcode) { 10105 case 0x2c: /* FCMGT (zero) */ 10106 case 0x2d: /* FCMEQ (zero) */ 10107 case 0x2e: /* FCMLT (zero) */ 10108 case 0x6c: /* FCMGE (zero) */ 10109 case 0x6d: /* FCMLE (zero) */ 10110 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10111 return; 10112 case 0x1d: /* SCVTF */ 10113 case 0x5d: /* UCVTF */ 10114 { 10115 bool is_signed = (opcode == 0x1d); 10116 if (!fp_access_check(s)) { 10117 return; 10118 } 10119 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10120 return; 10121 } 10122 case 0x3d: /* FRECPE */ 10123 case 0x3f: /* FRECPX */ 10124 case 0x7d: /* FRSQRTE */ 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10129 return; 10130 case 0x1a: /* FCVTNS */ 10131 case 0x1b: /* FCVTMS */ 10132 case 0x3a: /* FCVTPS */ 10133 case 0x3b: /* FCVTZS */ 10134 case 0x5a: /* FCVTNU */ 10135 case 0x5b: /* FCVTMU */ 10136 case 0x7a: /* FCVTPU */ 10137 case 0x7b: /* FCVTZU */ 10138 is_fcvt = true; 10139 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10140 break; 10141 case 0x1c: /* FCVTAS */ 10142 case 0x5c: /* FCVTAU */ 10143 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10144 is_fcvt = true; 10145 rmode = FPROUNDING_TIEAWAY; 10146 break; 10147 case 0x56: /* FCVTXN, FCVTXN2 */ 10148 if (size == 2) { 10149 unallocated_encoding(s); 10150 return; 10151 } 10152 if (!fp_access_check(s)) { 10153 return; 10154 } 10155 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10156 return; 10157 default: 10158 unallocated_encoding(s); 10159 return; 10160 } 10161 break; 10162 default: 10163 unallocated_encoding(s); 10164 return; 10165 } 10166 10167 if (!fp_access_check(s)) { 10168 return; 10169 } 10170 10171 if (is_fcvt) { 10172 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10173 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10174 } else { 10175 tcg_fpstatus = NULL; 10176 tcg_rmode = NULL; 10177 } 10178 10179 if (size == 3) { 10180 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10181 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10182 10183 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10184 write_fp_dreg(s, rd, tcg_rd); 10185 } else { 10186 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10187 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10188 10189 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10190 10191 switch (opcode) { 10192 case 0x7: /* SQABS, SQNEG */ 10193 { 10194 NeonGenOneOpEnvFn *genfn; 10195 static NeonGenOneOpEnvFn * const fns[3][2] = { 10196 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10197 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10198 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10199 }; 10200 genfn = fns[size][u]; 10201 genfn(tcg_rd, cpu_env, tcg_rn); 10202 break; 10203 } 10204 case 0x1a: /* FCVTNS */ 10205 case 0x1b: /* FCVTMS */ 10206 case 0x1c: /* FCVTAS */ 10207 case 0x3a: /* FCVTPS */ 10208 case 0x3b: /* FCVTZS */ 10209 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10210 tcg_fpstatus); 10211 break; 10212 case 0x5a: /* FCVTNU */ 10213 case 0x5b: /* FCVTMU */ 10214 case 0x5c: /* FCVTAU */ 10215 case 0x7a: /* FCVTPU */ 10216 case 0x7b: /* FCVTZU */ 10217 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10218 tcg_fpstatus); 10219 break; 10220 default: 10221 g_assert_not_reached(); 10222 } 10223 10224 write_fp_sreg(s, rd, tcg_rd); 10225 } 10226 10227 if (is_fcvt) { 10228 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10229 } 10230 } 10231 10232 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10233 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10234 int immh, int immb, int opcode, int rn, int rd) 10235 { 10236 int size = 32 - clz32(immh) - 1; 10237 int immhb = immh << 3 | immb; 10238 int shift = 2 * (8 << size) - immhb; 10239 GVecGen2iFn *gvec_fn; 10240 10241 if (extract32(immh, 3, 1) && !is_q) { 10242 unallocated_encoding(s); 10243 return; 10244 } 10245 tcg_debug_assert(size <= 3); 10246 10247 if (!fp_access_check(s)) { 10248 return; 10249 } 10250 10251 switch (opcode) { 10252 case 0x02: /* SSRA / USRA (accumulate) */ 10253 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10254 break; 10255 10256 case 0x08: /* SRI */ 10257 gvec_fn = gen_gvec_sri; 10258 break; 10259 10260 case 0x00: /* SSHR / USHR */ 10261 if (is_u) { 10262 if (shift == 8 << size) { 10263 /* Shift count the same size as element size produces zero. */ 10264 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10265 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10266 return; 10267 } 10268 gvec_fn = tcg_gen_gvec_shri; 10269 } else { 10270 /* Shift count the same size as element size produces all sign. */ 10271 if (shift == 8 << size) { 10272 shift -= 1; 10273 } 10274 gvec_fn = tcg_gen_gvec_sari; 10275 } 10276 break; 10277 10278 case 0x04: /* SRSHR / URSHR (rounding) */ 10279 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10280 break; 10281 10282 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10283 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10284 break; 10285 10286 default: 10287 g_assert_not_reached(); 10288 } 10289 10290 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10291 } 10292 10293 /* SHL/SLI - Vector shift left */ 10294 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10295 int immh, int immb, int opcode, int rn, int rd) 10296 { 10297 int size = 32 - clz32(immh) - 1; 10298 int immhb = immh << 3 | immb; 10299 int shift = immhb - (8 << size); 10300 10301 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10302 assert(size >= 0 && size <= 3); 10303 10304 if (extract32(immh, 3, 1) && !is_q) { 10305 unallocated_encoding(s); 10306 return; 10307 } 10308 10309 if (!fp_access_check(s)) { 10310 return; 10311 } 10312 10313 if (insert) { 10314 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10315 } else { 10316 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10317 } 10318 } 10319 10320 /* USHLL/SHLL - Vector shift left with widening */ 10321 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10322 int immh, int immb, int opcode, int rn, int rd) 10323 { 10324 int size = 32 - clz32(immh) - 1; 10325 int immhb = immh << 3 | immb; 10326 int shift = immhb - (8 << size); 10327 int dsize = 64; 10328 int esize = 8 << size; 10329 int elements = dsize/esize; 10330 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10331 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10332 int i; 10333 10334 if (size >= 3) { 10335 unallocated_encoding(s); 10336 return; 10337 } 10338 10339 if (!fp_access_check(s)) { 10340 return; 10341 } 10342 10343 /* For the LL variants the store is larger than the load, 10344 * so if rd == rn we would overwrite parts of our input. 10345 * So load everything right now and use shifts in the main loop. 10346 */ 10347 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10348 10349 for (i = 0; i < elements; i++) { 10350 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10351 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10352 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10353 write_vec_element(s, tcg_rd, rd, i, size + 1); 10354 } 10355 } 10356 10357 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10358 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10359 int immh, int immb, int opcode, int rn, int rd) 10360 { 10361 int immhb = immh << 3 | immb; 10362 int size = 32 - clz32(immh) - 1; 10363 int dsize = 64; 10364 int esize = 8 << size; 10365 int elements = dsize/esize; 10366 int shift = (2 * esize) - immhb; 10367 bool round = extract32(opcode, 0, 1); 10368 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10369 TCGv_i64 tcg_round; 10370 int i; 10371 10372 if (extract32(immh, 3, 1)) { 10373 unallocated_encoding(s); 10374 return; 10375 } 10376 10377 if (!fp_access_check(s)) { 10378 return; 10379 } 10380 10381 tcg_rn = tcg_temp_new_i64(); 10382 tcg_rd = tcg_temp_new_i64(); 10383 tcg_final = tcg_temp_new_i64(); 10384 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10385 10386 if (round) { 10387 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10388 } else { 10389 tcg_round = NULL; 10390 } 10391 10392 for (i = 0; i < elements; i++) { 10393 read_vec_element(s, tcg_rn, rn, i, size+1); 10394 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10395 false, true, size+1, shift); 10396 10397 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10398 } 10399 10400 if (!is_q) { 10401 write_vec_element(s, tcg_final, rd, 0, MO_64); 10402 } else { 10403 write_vec_element(s, tcg_final, rd, 1, MO_64); 10404 } 10405 10406 clear_vec_high(s, is_q, rd); 10407 } 10408 10409 10410 /* AdvSIMD shift by immediate 10411 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10412 * +---+---+---+-------------+------+------+--------+---+------+------+ 10413 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10414 * +---+---+---+-------------+------+------+--------+---+------+------+ 10415 */ 10416 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10417 { 10418 int rd = extract32(insn, 0, 5); 10419 int rn = extract32(insn, 5, 5); 10420 int opcode = extract32(insn, 11, 5); 10421 int immb = extract32(insn, 16, 3); 10422 int immh = extract32(insn, 19, 4); 10423 bool is_u = extract32(insn, 29, 1); 10424 bool is_q = extract32(insn, 30, 1); 10425 10426 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10427 assert(immh != 0); 10428 10429 switch (opcode) { 10430 case 0x08: /* SRI */ 10431 if (!is_u) { 10432 unallocated_encoding(s); 10433 return; 10434 } 10435 /* fall through */ 10436 case 0x00: /* SSHR / USHR */ 10437 case 0x02: /* SSRA / USRA (accumulate) */ 10438 case 0x04: /* SRSHR / URSHR (rounding) */ 10439 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10440 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10441 break; 10442 case 0x0a: /* SHL / SLI */ 10443 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10444 break; 10445 case 0x10: /* SHRN */ 10446 case 0x11: /* RSHRN / SQRSHRUN */ 10447 if (is_u) { 10448 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10449 opcode, rn, rd); 10450 } else { 10451 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10452 } 10453 break; 10454 case 0x12: /* SQSHRN / UQSHRN */ 10455 case 0x13: /* SQRSHRN / UQRSHRN */ 10456 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10457 opcode, rn, rd); 10458 break; 10459 case 0x14: /* SSHLL / USHLL */ 10460 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10461 break; 10462 case 0x1c: /* SCVTF / UCVTF */ 10463 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10464 opcode, rn, rd); 10465 break; 10466 case 0xc: /* SQSHLU */ 10467 if (!is_u) { 10468 unallocated_encoding(s); 10469 return; 10470 } 10471 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10472 break; 10473 case 0xe: /* SQSHL, UQSHL */ 10474 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10475 break; 10476 case 0x1f: /* FCVTZS/ FCVTZU */ 10477 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10478 return; 10479 default: 10480 unallocated_encoding(s); 10481 return; 10482 } 10483 } 10484 10485 /* Generate code to do a "long" addition or subtraction, ie one done in 10486 * TCGv_i64 on vector lanes twice the width specified by size. 10487 */ 10488 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10489 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10490 { 10491 static NeonGenTwo64OpFn * const fns[3][2] = { 10492 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10493 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10494 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10495 }; 10496 NeonGenTwo64OpFn *genfn; 10497 assert(size < 3); 10498 10499 genfn = fns[size][is_sub]; 10500 genfn(tcg_res, tcg_op1, tcg_op2); 10501 } 10502 10503 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10504 int opcode, int rd, int rn, int rm) 10505 { 10506 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10507 TCGv_i64 tcg_res[2]; 10508 int pass, accop; 10509 10510 tcg_res[0] = tcg_temp_new_i64(); 10511 tcg_res[1] = tcg_temp_new_i64(); 10512 10513 /* Does this op do an adding accumulate, a subtracting accumulate, 10514 * or no accumulate at all? 10515 */ 10516 switch (opcode) { 10517 case 5: 10518 case 8: 10519 case 9: 10520 accop = 1; 10521 break; 10522 case 10: 10523 case 11: 10524 accop = -1; 10525 break; 10526 default: 10527 accop = 0; 10528 break; 10529 } 10530 10531 if (accop != 0) { 10532 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10533 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10534 } 10535 10536 /* size == 2 means two 32x32->64 operations; this is worth special 10537 * casing because we can generally handle it inline. 10538 */ 10539 if (size == 2) { 10540 for (pass = 0; pass < 2; pass++) { 10541 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10542 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10543 TCGv_i64 tcg_passres; 10544 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10545 10546 int elt = pass + is_q * 2; 10547 10548 read_vec_element(s, tcg_op1, rn, elt, memop); 10549 read_vec_element(s, tcg_op2, rm, elt, memop); 10550 10551 if (accop == 0) { 10552 tcg_passres = tcg_res[pass]; 10553 } else { 10554 tcg_passres = tcg_temp_new_i64(); 10555 } 10556 10557 switch (opcode) { 10558 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10559 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10560 break; 10561 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10562 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10563 break; 10564 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10565 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10566 { 10567 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10568 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10569 10570 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10571 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10572 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10573 tcg_passres, 10574 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10575 break; 10576 } 10577 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10578 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10579 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10580 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10581 break; 10582 case 9: /* SQDMLAL, SQDMLAL2 */ 10583 case 11: /* SQDMLSL, SQDMLSL2 */ 10584 case 13: /* SQDMULL, SQDMULL2 */ 10585 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10586 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10587 tcg_passres, tcg_passres); 10588 break; 10589 default: 10590 g_assert_not_reached(); 10591 } 10592 10593 if (opcode == 9 || opcode == 11) { 10594 /* saturating accumulate ops */ 10595 if (accop < 0) { 10596 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10597 } 10598 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10599 tcg_res[pass], tcg_passres); 10600 } else if (accop > 0) { 10601 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10602 } else if (accop < 0) { 10603 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10604 } 10605 } 10606 } else { 10607 /* size 0 or 1, generally helper functions */ 10608 for (pass = 0; pass < 2; pass++) { 10609 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10610 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10611 TCGv_i64 tcg_passres; 10612 int elt = pass + is_q * 2; 10613 10614 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10615 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10616 10617 if (accop == 0) { 10618 tcg_passres = tcg_res[pass]; 10619 } else { 10620 tcg_passres = tcg_temp_new_i64(); 10621 } 10622 10623 switch (opcode) { 10624 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10625 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10626 { 10627 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10628 static NeonGenWidenFn * const widenfns[2][2] = { 10629 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10630 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10631 }; 10632 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10633 10634 widenfn(tcg_op2_64, tcg_op2); 10635 widenfn(tcg_passres, tcg_op1); 10636 gen_neon_addl(size, (opcode == 2), tcg_passres, 10637 tcg_passres, tcg_op2_64); 10638 break; 10639 } 10640 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10641 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10642 if (size == 0) { 10643 if (is_u) { 10644 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10645 } else { 10646 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10647 } 10648 } else { 10649 if (is_u) { 10650 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10651 } else { 10652 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10653 } 10654 } 10655 break; 10656 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10657 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10658 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10659 if (size == 0) { 10660 if (is_u) { 10661 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10662 } else { 10663 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10664 } 10665 } else { 10666 if (is_u) { 10667 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10668 } else { 10669 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10670 } 10671 } 10672 break; 10673 case 9: /* SQDMLAL, SQDMLAL2 */ 10674 case 11: /* SQDMLSL, SQDMLSL2 */ 10675 case 13: /* SQDMULL, SQDMULL2 */ 10676 assert(size == 1); 10677 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10678 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10679 tcg_passres, tcg_passres); 10680 break; 10681 default: 10682 g_assert_not_reached(); 10683 } 10684 10685 if (accop != 0) { 10686 if (opcode == 9 || opcode == 11) { 10687 /* saturating accumulate ops */ 10688 if (accop < 0) { 10689 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10690 } 10691 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10692 tcg_res[pass], 10693 tcg_passres); 10694 } else { 10695 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10696 tcg_res[pass], tcg_passres); 10697 } 10698 } 10699 } 10700 } 10701 10702 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10703 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10704 } 10705 10706 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10707 int opcode, int rd, int rn, int rm) 10708 { 10709 TCGv_i64 tcg_res[2]; 10710 int part = is_q ? 2 : 0; 10711 int pass; 10712 10713 for (pass = 0; pass < 2; pass++) { 10714 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10715 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10716 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10717 static NeonGenWidenFn * const widenfns[3][2] = { 10718 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10719 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10720 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10721 }; 10722 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10723 10724 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10725 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10726 widenfn(tcg_op2_wide, tcg_op2); 10727 tcg_res[pass] = tcg_temp_new_i64(); 10728 gen_neon_addl(size, (opcode == 3), 10729 tcg_res[pass], tcg_op1, tcg_op2_wide); 10730 } 10731 10732 for (pass = 0; pass < 2; pass++) { 10733 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10734 } 10735 } 10736 10737 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10738 { 10739 tcg_gen_addi_i64(in, in, 1U << 31); 10740 tcg_gen_extrh_i64_i32(res, in); 10741 } 10742 10743 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10744 int opcode, int rd, int rn, int rm) 10745 { 10746 TCGv_i32 tcg_res[2]; 10747 int part = is_q ? 2 : 0; 10748 int pass; 10749 10750 for (pass = 0; pass < 2; pass++) { 10751 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10752 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10753 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10754 static NeonGenNarrowFn * const narrowfns[3][2] = { 10755 { gen_helper_neon_narrow_high_u8, 10756 gen_helper_neon_narrow_round_high_u8 }, 10757 { gen_helper_neon_narrow_high_u16, 10758 gen_helper_neon_narrow_round_high_u16 }, 10759 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10760 }; 10761 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10762 10763 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10764 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10765 10766 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10767 10768 tcg_res[pass] = tcg_temp_new_i32(); 10769 gennarrow(tcg_res[pass], tcg_wideres); 10770 } 10771 10772 for (pass = 0; pass < 2; pass++) { 10773 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10774 } 10775 clear_vec_high(s, is_q, rd); 10776 } 10777 10778 /* AdvSIMD three different 10779 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10780 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10781 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10782 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10783 */ 10784 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10785 { 10786 /* Instructions in this group fall into three basic classes 10787 * (in each case with the operation working on each element in 10788 * the input vectors): 10789 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10790 * 128 bit input) 10791 * (2) wide 64 x 128 -> 128 10792 * (3) narrowing 128 x 128 -> 64 10793 * Here we do initial decode, catch unallocated cases and 10794 * dispatch to separate functions for each class. 10795 */ 10796 int is_q = extract32(insn, 30, 1); 10797 int is_u = extract32(insn, 29, 1); 10798 int size = extract32(insn, 22, 2); 10799 int opcode = extract32(insn, 12, 4); 10800 int rm = extract32(insn, 16, 5); 10801 int rn = extract32(insn, 5, 5); 10802 int rd = extract32(insn, 0, 5); 10803 10804 switch (opcode) { 10805 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10806 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10807 /* 64 x 128 -> 128 */ 10808 if (size == 3) { 10809 unallocated_encoding(s); 10810 return; 10811 } 10812 if (!fp_access_check(s)) { 10813 return; 10814 } 10815 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10816 break; 10817 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10818 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10819 /* 128 x 128 -> 64 */ 10820 if (size == 3) { 10821 unallocated_encoding(s); 10822 return; 10823 } 10824 if (!fp_access_check(s)) { 10825 return; 10826 } 10827 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10828 break; 10829 case 14: /* PMULL, PMULL2 */ 10830 if (is_u) { 10831 unallocated_encoding(s); 10832 return; 10833 } 10834 switch (size) { 10835 case 0: /* PMULL.P8 */ 10836 if (!fp_access_check(s)) { 10837 return; 10838 } 10839 /* The Q field specifies lo/hi half input for this insn. */ 10840 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10841 gen_helper_neon_pmull_h); 10842 break; 10843 10844 case 3: /* PMULL.P64 */ 10845 if (!dc_isar_feature(aa64_pmull, s)) { 10846 unallocated_encoding(s); 10847 return; 10848 } 10849 if (!fp_access_check(s)) { 10850 return; 10851 } 10852 /* The Q field specifies lo/hi half input for this insn. */ 10853 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10854 gen_helper_gvec_pmull_q); 10855 break; 10856 10857 default: 10858 unallocated_encoding(s); 10859 break; 10860 } 10861 return; 10862 case 9: /* SQDMLAL, SQDMLAL2 */ 10863 case 11: /* SQDMLSL, SQDMLSL2 */ 10864 case 13: /* SQDMULL, SQDMULL2 */ 10865 if (is_u || size == 0) { 10866 unallocated_encoding(s); 10867 return; 10868 } 10869 /* fall through */ 10870 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10871 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10872 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10873 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10874 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10875 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10876 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10877 /* 64 x 64 -> 128 */ 10878 if (size == 3) { 10879 unallocated_encoding(s); 10880 return; 10881 } 10882 if (!fp_access_check(s)) { 10883 return; 10884 } 10885 10886 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10887 break; 10888 default: 10889 /* opcode 15 not allocated */ 10890 unallocated_encoding(s); 10891 break; 10892 } 10893 } 10894 10895 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10896 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10897 { 10898 int rd = extract32(insn, 0, 5); 10899 int rn = extract32(insn, 5, 5); 10900 int rm = extract32(insn, 16, 5); 10901 int size = extract32(insn, 22, 2); 10902 bool is_u = extract32(insn, 29, 1); 10903 bool is_q = extract32(insn, 30, 1); 10904 10905 if (!fp_access_check(s)) { 10906 return; 10907 } 10908 10909 switch (size + 4 * is_u) { 10910 case 0: /* AND */ 10911 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10912 return; 10913 case 1: /* BIC */ 10914 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10915 return; 10916 case 2: /* ORR */ 10917 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10918 return; 10919 case 3: /* ORN */ 10920 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10921 return; 10922 case 4: /* EOR */ 10923 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10924 return; 10925 10926 case 5: /* BSL bitwise select */ 10927 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10928 return; 10929 case 6: /* BIT, bitwise insert if true */ 10930 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10931 return; 10932 case 7: /* BIF, bitwise insert if false */ 10933 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10934 return; 10935 10936 default: 10937 g_assert_not_reached(); 10938 } 10939 } 10940 10941 /* Pairwise op subgroup of C3.6.16. 10942 * 10943 * This is called directly or via the handle_3same_float for float pairwise 10944 * operations where the opcode and size are calculated differently. 10945 */ 10946 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10947 int size, int rn, int rm, int rd) 10948 { 10949 TCGv_ptr fpst; 10950 int pass; 10951 10952 /* Floating point operations need fpst */ 10953 if (opcode >= 0x58) { 10954 fpst = fpstatus_ptr(FPST_FPCR); 10955 } else { 10956 fpst = NULL; 10957 } 10958 10959 if (!fp_access_check(s)) { 10960 return; 10961 } 10962 10963 /* These operations work on the concatenated rm:rn, with each pair of 10964 * adjacent elements being operated on to produce an element in the result. 10965 */ 10966 if (size == 3) { 10967 TCGv_i64 tcg_res[2]; 10968 10969 for (pass = 0; pass < 2; pass++) { 10970 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10971 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10972 int passreg = (pass == 0) ? rn : rm; 10973 10974 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10975 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10976 tcg_res[pass] = tcg_temp_new_i64(); 10977 10978 switch (opcode) { 10979 case 0x17: /* ADDP */ 10980 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10981 break; 10982 case 0x58: /* FMAXNMP */ 10983 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10984 break; 10985 case 0x5a: /* FADDP */ 10986 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10987 break; 10988 case 0x5e: /* FMAXP */ 10989 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10990 break; 10991 case 0x78: /* FMINNMP */ 10992 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10993 break; 10994 case 0x7e: /* FMINP */ 10995 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10996 break; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 } 11001 11002 for (pass = 0; pass < 2; pass++) { 11003 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11004 } 11005 } else { 11006 int maxpass = is_q ? 4 : 2; 11007 TCGv_i32 tcg_res[4]; 11008 11009 for (pass = 0; pass < maxpass; pass++) { 11010 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11011 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11012 NeonGenTwoOpFn *genfn = NULL; 11013 int passreg = pass < (maxpass / 2) ? rn : rm; 11014 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11015 11016 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11017 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11018 tcg_res[pass] = tcg_temp_new_i32(); 11019 11020 switch (opcode) { 11021 case 0x17: /* ADDP */ 11022 { 11023 static NeonGenTwoOpFn * const fns[3] = { 11024 gen_helper_neon_padd_u8, 11025 gen_helper_neon_padd_u16, 11026 tcg_gen_add_i32, 11027 }; 11028 genfn = fns[size]; 11029 break; 11030 } 11031 case 0x14: /* SMAXP, UMAXP */ 11032 { 11033 static NeonGenTwoOpFn * const fns[3][2] = { 11034 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11035 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11036 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11037 }; 11038 genfn = fns[size][u]; 11039 break; 11040 } 11041 case 0x15: /* SMINP, UMINP */ 11042 { 11043 static NeonGenTwoOpFn * const fns[3][2] = { 11044 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11045 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11046 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11047 }; 11048 genfn = fns[size][u]; 11049 break; 11050 } 11051 /* The FP operations are all on single floats (32 bit) */ 11052 case 0x58: /* FMAXNMP */ 11053 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11054 break; 11055 case 0x5a: /* FADDP */ 11056 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11057 break; 11058 case 0x5e: /* FMAXP */ 11059 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11060 break; 11061 case 0x78: /* FMINNMP */ 11062 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11063 break; 11064 case 0x7e: /* FMINP */ 11065 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11066 break; 11067 default: 11068 g_assert_not_reached(); 11069 } 11070 11071 /* FP ops called directly, otherwise call now */ 11072 if (genfn) { 11073 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11074 } 11075 } 11076 11077 for (pass = 0; pass < maxpass; pass++) { 11078 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11079 } 11080 clear_vec_high(s, is_q, rd); 11081 } 11082 } 11083 11084 /* Floating point op subgroup of C3.6.16. */ 11085 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11086 { 11087 /* For floating point ops, the U, size[1] and opcode bits 11088 * together indicate the operation. size[0] indicates single 11089 * or double. 11090 */ 11091 int fpopcode = extract32(insn, 11, 5) 11092 | (extract32(insn, 23, 1) << 5) 11093 | (extract32(insn, 29, 1) << 6); 11094 int is_q = extract32(insn, 30, 1); 11095 int size = extract32(insn, 22, 1); 11096 int rm = extract32(insn, 16, 5); 11097 int rn = extract32(insn, 5, 5); 11098 int rd = extract32(insn, 0, 5); 11099 11100 int datasize = is_q ? 128 : 64; 11101 int esize = 32 << size; 11102 int elements = datasize / esize; 11103 11104 if (size == 1 && !is_q) { 11105 unallocated_encoding(s); 11106 return; 11107 } 11108 11109 switch (fpopcode) { 11110 case 0x58: /* FMAXNMP */ 11111 case 0x5a: /* FADDP */ 11112 case 0x5e: /* FMAXP */ 11113 case 0x78: /* FMINNMP */ 11114 case 0x7e: /* FMINP */ 11115 if (size && !is_q) { 11116 unallocated_encoding(s); 11117 return; 11118 } 11119 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11120 rn, rm, rd); 11121 return; 11122 case 0x1b: /* FMULX */ 11123 case 0x1f: /* FRECPS */ 11124 case 0x3f: /* FRSQRTS */ 11125 case 0x5d: /* FACGE */ 11126 case 0x7d: /* FACGT */ 11127 case 0x19: /* FMLA */ 11128 case 0x39: /* FMLS */ 11129 case 0x18: /* FMAXNM */ 11130 case 0x1a: /* FADD */ 11131 case 0x1c: /* FCMEQ */ 11132 case 0x1e: /* FMAX */ 11133 case 0x38: /* FMINNM */ 11134 case 0x3a: /* FSUB */ 11135 case 0x3e: /* FMIN */ 11136 case 0x5b: /* FMUL */ 11137 case 0x5c: /* FCMGE */ 11138 case 0x5f: /* FDIV */ 11139 case 0x7a: /* FABD */ 11140 case 0x7c: /* FCMGT */ 11141 if (!fp_access_check(s)) { 11142 return; 11143 } 11144 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11145 return; 11146 11147 case 0x1d: /* FMLAL */ 11148 case 0x3d: /* FMLSL */ 11149 case 0x59: /* FMLAL2 */ 11150 case 0x79: /* FMLSL2 */ 11151 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11152 unallocated_encoding(s); 11153 return; 11154 } 11155 if (fp_access_check(s)) { 11156 int is_s = extract32(insn, 23, 1); 11157 int is_2 = extract32(insn, 29, 1); 11158 int data = (is_2 << 1) | is_s; 11159 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11160 vec_full_reg_offset(s, rn), 11161 vec_full_reg_offset(s, rm), cpu_env, 11162 is_q ? 16 : 8, vec_full_reg_size(s), 11163 data, gen_helper_gvec_fmlal_a64); 11164 } 11165 return; 11166 11167 default: 11168 unallocated_encoding(s); 11169 return; 11170 } 11171 } 11172 11173 /* Integer op subgroup of C3.6.16. */ 11174 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11175 { 11176 int is_q = extract32(insn, 30, 1); 11177 int u = extract32(insn, 29, 1); 11178 int size = extract32(insn, 22, 2); 11179 int opcode = extract32(insn, 11, 5); 11180 int rm = extract32(insn, 16, 5); 11181 int rn = extract32(insn, 5, 5); 11182 int rd = extract32(insn, 0, 5); 11183 int pass; 11184 TCGCond cond; 11185 11186 switch (opcode) { 11187 case 0x13: /* MUL, PMUL */ 11188 if (u && size != 0) { 11189 unallocated_encoding(s); 11190 return; 11191 } 11192 /* fall through */ 11193 case 0x0: /* SHADD, UHADD */ 11194 case 0x2: /* SRHADD, URHADD */ 11195 case 0x4: /* SHSUB, UHSUB */ 11196 case 0xc: /* SMAX, UMAX */ 11197 case 0xd: /* SMIN, UMIN */ 11198 case 0xe: /* SABD, UABD */ 11199 case 0xf: /* SABA, UABA */ 11200 case 0x12: /* MLA, MLS */ 11201 if (size == 3) { 11202 unallocated_encoding(s); 11203 return; 11204 } 11205 break; 11206 case 0x16: /* SQDMULH, SQRDMULH */ 11207 if (size == 0 || size == 3) { 11208 unallocated_encoding(s); 11209 return; 11210 } 11211 break; 11212 default: 11213 if (size == 3 && !is_q) { 11214 unallocated_encoding(s); 11215 return; 11216 } 11217 break; 11218 } 11219 11220 if (!fp_access_check(s)) { 11221 return; 11222 } 11223 11224 switch (opcode) { 11225 case 0x01: /* SQADD, UQADD */ 11226 if (u) { 11227 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11228 } else { 11229 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11230 } 11231 return; 11232 case 0x05: /* SQSUB, UQSUB */ 11233 if (u) { 11234 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11235 } else { 11236 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11237 } 11238 return; 11239 case 0x08: /* SSHL, USHL */ 11240 if (u) { 11241 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11242 } else { 11243 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11244 } 11245 return; 11246 case 0x0c: /* SMAX, UMAX */ 11247 if (u) { 11248 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11249 } else { 11250 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11251 } 11252 return; 11253 case 0x0d: /* SMIN, UMIN */ 11254 if (u) { 11255 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11256 } else { 11257 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11258 } 11259 return; 11260 case 0xe: /* SABD, UABD */ 11261 if (u) { 11262 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11263 } else { 11264 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11265 } 11266 return; 11267 case 0xf: /* SABA, UABA */ 11268 if (u) { 11269 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11270 } else { 11271 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11272 } 11273 return; 11274 case 0x10: /* ADD, SUB */ 11275 if (u) { 11276 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11277 } else { 11278 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11279 } 11280 return; 11281 case 0x13: /* MUL, PMUL */ 11282 if (!u) { /* MUL */ 11283 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11284 } else { /* PMUL */ 11285 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11286 } 11287 return; 11288 case 0x12: /* MLA, MLS */ 11289 if (u) { 11290 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11291 } else { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11293 } 11294 return; 11295 case 0x16: /* SQDMULH, SQRDMULH */ 11296 { 11297 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11298 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11299 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11300 }; 11301 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11302 } 11303 return; 11304 case 0x11: 11305 if (!u) { /* CMTST */ 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11307 return; 11308 } 11309 /* else CMEQ */ 11310 cond = TCG_COND_EQ; 11311 goto do_gvec_cmp; 11312 case 0x06: /* CMGT, CMHI */ 11313 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11314 goto do_gvec_cmp; 11315 case 0x07: /* CMGE, CMHS */ 11316 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11317 do_gvec_cmp: 11318 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11319 vec_full_reg_offset(s, rn), 11320 vec_full_reg_offset(s, rm), 11321 is_q ? 16 : 8, vec_full_reg_size(s)); 11322 return; 11323 } 11324 11325 if (size == 3) { 11326 assert(is_q); 11327 for (pass = 0; pass < 2; pass++) { 11328 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11329 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11330 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11331 11332 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11333 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11334 11335 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11336 11337 write_vec_element(s, tcg_res, rd, pass, MO_64); 11338 } 11339 } else { 11340 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11341 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11342 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11343 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11344 NeonGenTwoOpFn *genfn = NULL; 11345 NeonGenTwoOpEnvFn *genenvfn = NULL; 11346 11347 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11348 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11349 11350 switch (opcode) { 11351 case 0x0: /* SHADD, UHADD */ 11352 { 11353 static NeonGenTwoOpFn * const fns[3][2] = { 11354 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11355 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11356 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11357 }; 11358 genfn = fns[size][u]; 11359 break; 11360 } 11361 case 0x2: /* SRHADD, URHADD */ 11362 { 11363 static NeonGenTwoOpFn * const fns[3][2] = { 11364 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11365 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11366 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11367 }; 11368 genfn = fns[size][u]; 11369 break; 11370 } 11371 case 0x4: /* SHSUB, UHSUB */ 11372 { 11373 static NeonGenTwoOpFn * const fns[3][2] = { 11374 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11375 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11376 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11377 }; 11378 genfn = fns[size][u]; 11379 break; 11380 } 11381 case 0x9: /* SQSHL, UQSHL */ 11382 { 11383 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11384 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11385 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11386 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11387 }; 11388 genenvfn = fns[size][u]; 11389 break; 11390 } 11391 case 0xa: /* SRSHL, URSHL */ 11392 { 11393 static NeonGenTwoOpFn * const fns[3][2] = { 11394 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11395 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11396 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11397 }; 11398 genfn = fns[size][u]; 11399 break; 11400 } 11401 case 0xb: /* SQRSHL, UQRSHL */ 11402 { 11403 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11404 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11405 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11406 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11407 }; 11408 genenvfn = fns[size][u]; 11409 break; 11410 } 11411 default: 11412 g_assert_not_reached(); 11413 } 11414 11415 if (genenvfn) { 11416 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11417 } else { 11418 genfn(tcg_res, tcg_op1, tcg_op2); 11419 } 11420 11421 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11422 } 11423 } 11424 clear_vec_high(s, is_q, rd); 11425 } 11426 11427 /* AdvSIMD three same 11428 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11429 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11430 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11431 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11432 */ 11433 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11434 { 11435 int opcode = extract32(insn, 11, 5); 11436 11437 switch (opcode) { 11438 case 0x3: /* logic ops */ 11439 disas_simd_3same_logic(s, insn); 11440 break; 11441 case 0x17: /* ADDP */ 11442 case 0x14: /* SMAXP, UMAXP */ 11443 case 0x15: /* SMINP, UMINP */ 11444 { 11445 /* Pairwise operations */ 11446 int is_q = extract32(insn, 30, 1); 11447 int u = extract32(insn, 29, 1); 11448 int size = extract32(insn, 22, 2); 11449 int rm = extract32(insn, 16, 5); 11450 int rn = extract32(insn, 5, 5); 11451 int rd = extract32(insn, 0, 5); 11452 if (opcode == 0x17) { 11453 if (u || (size == 3 && !is_q)) { 11454 unallocated_encoding(s); 11455 return; 11456 } 11457 } else { 11458 if (size == 3) { 11459 unallocated_encoding(s); 11460 return; 11461 } 11462 } 11463 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11464 break; 11465 } 11466 case 0x18 ... 0x31: 11467 /* floating point ops, sz[1] and U are part of opcode */ 11468 disas_simd_3same_float(s, insn); 11469 break; 11470 default: 11471 disas_simd_3same_int(s, insn); 11472 break; 11473 } 11474 } 11475 11476 /* 11477 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11478 * 11479 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11480 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11481 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11482 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11483 * 11484 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11485 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11486 * 11487 */ 11488 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11489 { 11490 int opcode = extract32(insn, 11, 3); 11491 int u = extract32(insn, 29, 1); 11492 int a = extract32(insn, 23, 1); 11493 int is_q = extract32(insn, 30, 1); 11494 int rm = extract32(insn, 16, 5); 11495 int rn = extract32(insn, 5, 5); 11496 int rd = extract32(insn, 0, 5); 11497 /* 11498 * For these floating point ops, the U, a and opcode bits 11499 * together indicate the operation. 11500 */ 11501 int fpopcode = opcode | (a << 3) | (u << 4); 11502 int datasize = is_q ? 128 : 64; 11503 int elements = datasize / 16; 11504 bool pairwise; 11505 TCGv_ptr fpst; 11506 int pass; 11507 11508 switch (fpopcode) { 11509 case 0x0: /* FMAXNM */ 11510 case 0x1: /* FMLA */ 11511 case 0x2: /* FADD */ 11512 case 0x3: /* FMULX */ 11513 case 0x4: /* FCMEQ */ 11514 case 0x6: /* FMAX */ 11515 case 0x7: /* FRECPS */ 11516 case 0x8: /* FMINNM */ 11517 case 0x9: /* FMLS */ 11518 case 0xa: /* FSUB */ 11519 case 0xe: /* FMIN */ 11520 case 0xf: /* FRSQRTS */ 11521 case 0x13: /* FMUL */ 11522 case 0x14: /* FCMGE */ 11523 case 0x15: /* FACGE */ 11524 case 0x17: /* FDIV */ 11525 case 0x1a: /* FABD */ 11526 case 0x1c: /* FCMGT */ 11527 case 0x1d: /* FACGT */ 11528 pairwise = false; 11529 break; 11530 case 0x10: /* FMAXNMP */ 11531 case 0x12: /* FADDP */ 11532 case 0x16: /* FMAXP */ 11533 case 0x18: /* FMINNMP */ 11534 case 0x1e: /* FMINP */ 11535 pairwise = true; 11536 break; 11537 default: 11538 unallocated_encoding(s); 11539 return; 11540 } 11541 11542 if (!dc_isar_feature(aa64_fp16, s)) { 11543 unallocated_encoding(s); 11544 return; 11545 } 11546 11547 if (!fp_access_check(s)) { 11548 return; 11549 } 11550 11551 fpst = fpstatus_ptr(FPST_FPCR_F16); 11552 11553 if (pairwise) { 11554 int maxpass = is_q ? 8 : 4; 11555 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11556 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11557 TCGv_i32 tcg_res[8]; 11558 11559 for (pass = 0; pass < maxpass; pass++) { 11560 int passreg = pass < (maxpass / 2) ? rn : rm; 11561 int passelt = (pass << 1) & (maxpass - 1); 11562 11563 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11564 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11565 tcg_res[pass] = tcg_temp_new_i32(); 11566 11567 switch (fpopcode) { 11568 case 0x10: /* FMAXNMP */ 11569 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11570 fpst); 11571 break; 11572 case 0x12: /* FADDP */ 11573 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11574 break; 11575 case 0x16: /* FMAXP */ 11576 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11577 break; 11578 case 0x18: /* FMINNMP */ 11579 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11580 fpst); 11581 break; 11582 case 0x1e: /* FMINP */ 11583 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11584 break; 11585 default: 11586 g_assert_not_reached(); 11587 } 11588 } 11589 11590 for (pass = 0; pass < maxpass; pass++) { 11591 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11592 } 11593 } else { 11594 for (pass = 0; pass < elements; pass++) { 11595 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11596 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11597 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11598 11599 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11600 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11601 11602 switch (fpopcode) { 11603 case 0x0: /* FMAXNM */ 11604 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11605 break; 11606 case 0x1: /* FMLA */ 11607 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11608 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11609 fpst); 11610 break; 11611 case 0x2: /* FADD */ 11612 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11613 break; 11614 case 0x3: /* FMULX */ 11615 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11616 break; 11617 case 0x4: /* FCMEQ */ 11618 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11619 break; 11620 case 0x6: /* FMAX */ 11621 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11622 break; 11623 case 0x7: /* FRECPS */ 11624 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11625 break; 11626 case 0x8: /* FMINNM */ 11627 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11628 break; 11629 case 0x9: /* FMLS */ 11630 /* As usual for ARM, separate negation for fused multiply-add */ 11631 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11632 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11633 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11634 fpst); 11635 break; 11636 case 0xa: /* FSUB */ 11637 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11638 break; 11639 case 0xe: /* FMIN */ 11640 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11641 break; 11642 case 0xf: /* FRSQRTS */ 11643 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11644 break; 11645 case 0x13: /* FMUL */ 11646 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11647 break; 11648 case 0x14: /* FCMGE */ 11649 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11650 break; 11651 case 0x15: /* FACGE */ 11652 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11653 break; 11654 case 0x17: /* FDIV */ 11655 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11656 break; 11657 case 0x1a: /* FABD */ 11658 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11659 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11660 break; 11661 case 0x1c: /* FCMGT */ 11662 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11663 break; 11664 case 0x1d: /* FACGT */ 11665 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11666 break; 11667 default: 11668 g_assert_not_reached(); 11669 } 11670 11671 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11672 } 11673 } 11674 11675 clear_vec_high(s, is_q, rd); 11676 } 11677 11678 /* AdvSIMD three same extra 11679 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11680 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11681 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11682 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11683 */ 11684 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11685 { 11686 int rd = extract32(insn, 0, 5); 11687 int rn = extract32(insn, 5, 5); 11688 int opcode = extract32(insn, 11, 4); 11689 int rm = extract32(insn, 16, 5); 11690 int size = extract32(insn, 22, 2); 11691 bool u = extract32(insn, 29, 1); 11692 bool is_q = extract32(insn, 30, 1); 11693 bool feature; 11694 int rot; 11695 11696 switch (u * 16 + opcode) { 11697 case 0x10: /* SQRDMLAH (vector) */ 11698 case 0x11: /* SQRDMLSH (vector) */ 11699 if (size != 1 && size != 2) { 11700 unallocated_encoding(s); 11701 return; 11702 } 11703 feature = dc_isar_feature(aa64_rdm, s); 11704 break; 11705 case 0x02: /* SDOT (vector) */ 11706 case 0x12: /* UDOT (vector) */ 11707 if (size != MO_32) { 11708 unallocated_encoding(s); 11709 return; 11710 } 11711 feature = dc_isar_feature(aa64_dp, s); 11712 break; 11713 case 0x03: /* USDOT */ 11714 if (size != MO_32) { 11715 unallocated_encoding(s); 11716 return; 11717 } 11718 feature = dc_isar_feature(aa64_i8mm, s); 11719 break; 11720 case 0x04: /* SMMLA */ 11721 case 0x14: /* UMMLA */ 11722 case 0x05: /* USMMLA */ 11723 if (!is_q || size != MO_32) { 11724 unallocated_encoding(s); 11725 return; 11726 } 11727 feature = dc_isar_feature(aa64_i8mm, s); 11728 break; 11729 case 0x18: /* FCMLA, #0 */ 11730 case 0x19: /* FCMLA, #90 */ 11731 case 0x1a: /* FCMLA, #180 */ 11732 case 0x1b: /* FCMLA, #270 */ 11733 case 0x1c: /* FCADD, #90 */ 11734 case 0x1e: /* FCADD, #270 */ 11735 if (size == 0 11736 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11737 || (size == 3 && !is_q)) { 11738 unallocated_encoding(s); 11739 return; 11740 } 11741 feature = dc_isar_feature(aa64_fcma, s); 11742 break; 11743 case 0x1d: /* BFMMLA */ 11744 if (size != MO_16 || !is_q) { 11745 unallocated_encoding(s); 11746 return; 11747 } 11748 feature = dc_isar_feature(aa64_bf16, s); 11749 break; 11750 case 0x1f: 11751 switch (size) { 11752 case 1: /* BFDOT */ 11753 case 3: /* BFMLAL{B,T} */ 11754 feature = dc_isar_feature(aa64_bf16, s); 11755 break; 11756 default: 11757 unallocated_encoding(s); 11758 return; 11759 } 11760 break; 11761 default: 11762 unallocated_encoding(s); 11763 return; 11764 } 11765 if (!feature) { 11766 unallocated_encoding(s); 11767 return; 11768 } 11769 if (!fp_access_check(s)) { 11770 return; 11771 } 11772 11773 switch (opcode) { 11774 case 0x0: /* SQRDMLAH (vector) */ 11775 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11776 return; 11777 11778 case 0x1: /* SQRDMLSH (vector) */ 11779 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11780 return; 11781 11782 case 0x2: /* SDOT / UDOT */ 11783 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11784 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11785 return; 11786 11787 case 0x3: /* USDOT */ 11788 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11789 return; 11790 11791 case 0x04: /* SMMLA, UMMLA */ 11792 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11793 u ? gen_helper_gvec_ummla_b 11794 : gen_helper_gvec_smmla_b); 11795 return; 11796 case 0x05: /* USMMLA */ 11797 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11798 return; 11799 11800 case 0x8: /* FCMLA, #0 */ 11801 case 0x9: /* FCMLA, #90 */ 11802 case 0xa: /* FCMLA, #180 */ 11803 case 0xb: /* FCMLA, #270 */ 11804 rot = extract32(opcode, 0, 2); 11805 switch (size) { 11806 case 1: 11807 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11808 gen_helper_gvec_fcmlah); 11809 break; 11810 case 2: 11811 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11812 gen_helper_gvec_fcmlas); 11813 break; 11814 case 3: 11815 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11816 gen_helper_gvec_fcmlad); 11817 break; 11818 default: 11819 g_assert_not_reached(); 11820 } 11821 return; 11822 11823 case 0xc: /* FCADD, #90 */ 11824 case 0xe: /* FCADD, #270 */ 11825 rot = extract32(opcode, 1, 1); 11826 switch (size) { 11827 case 1: 11828 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11829 gen_helper_gvec_fcaddh); 11830 break; 11831 case 2: 11832 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11833 gen_helper_gvec_fcadds); 11834 break; 11835 case 3: 11836 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11837 gen_helper_gvec_fcaddd); 11838 break; 11839 default: 11840 g_assert_not_reached(); 11841 } 11842 return; 11843 11844 case 0xd: /* BFMMLA */ 11845 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11846 return; 11847 case 0xf: 11848 switch (size) { 11849 case 1: /* BFDOT */ 11850 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11851 break; 11852 case 3: /* BFMLAL{B,T} */ 11853 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11854 gen_helper_gvec_bfmlal); 11855 break; 11856 default: 11857 g_assert_not_reached(); 11858 } 11859 return; 11860 11861 default: 11862 g_assert_not_reached(); 11863 } 11864 } 11865 11866 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11867 int size, int rn, int rd) 11868 { 11869 /* Handle 2-reg-misc ops which are widening (so each size element 11870 * in the source becomes a 2*size element in the destination. 11871 * The only instruction like this is FCVTL. 11872 */ 11873 int pass; 11874 11875 if (size == 3) { 11876 /* 32 -> 64 bit fp conversion */ 11877 TCGv_i64 tcg_res[2]; 11878 int srcelt = is_q ? 2 : 0; 11879 11880 for (pass = 0; pass < 2; pass++) { 11881 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11882 tcg_res[pass] = tcg_temp_new_i64(); 11883 11884 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11885 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11886 } 11887 for (pass = 0; pass < 2; pass++) { 11888 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11889 } 11890 } else { 11891 /* 16 -> 32 bit fp conversion */ 11892 int srcelt = is_q ? 4 : 0; 11893 TCGv_i32 tcg_res[4]; 11894 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11895 TCGv_i32 ahp = get_ahp_flag(); 11896 11897 for (pass = 0; pass < 4; pass++) { 11898 tcg_res[pass] = tcg_temp_new_i32(); 11899 11900 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11901 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11902 fpst, ahp); 11903 } 11904 for (pass = 0; pass < 4; pass++) { 11905 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11906 } 11907 } 11908 } 11909 11910 static void handle_rev(DisasContext *s, int opcode, bool u, 11911 bool is_q, int size, int rn, int rd) 11912 { 11913 int op = (opcode << 1) | u; 11914 int opsz = op + size; 11915 int grp_size = 3 - opsz; 11916 int dsize = is_q ? 128 : 64; 11917 int i; 11918 11919 if (opsz >= 3) { 11920 unallocated_encoding(s); 11921 return; 11922 } 11923 11924 if (!fp_access_check(s)) { 11925 return; 11926 } 11927 11928 if (size == 0) { 11929 /* Special case bytes, use bswap op on each group of elements */ 11930 int groups = dsize / (8 << grp_size); 11931 11932 for (i = 0; i < groups; i++) { 11933 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11934 11935 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11936 switch (grp_size) { 11937 case MO_16: 11938 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11939 break; 11940 case MO_32: 11941 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11942 break; 11943 case MO_64: 11944 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11945 break; 11946 default: 11947 g_assert_not_reached(); 11948 } 11949 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11950 } 11951 clear_vec_high(s, is_q, rd); 11952 } else { 11953 int revmask = (1 << grp_size) - 1; 11954 int esize = 8 << size; 11955 int elements = dsize / esize; 11956 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11957 TCGv_i64 tcg_rd[2]; 11958 11959 for (i = 0; i < 2; i++) { 11960 tcg_rd[i] = tcg_temp_new_i64(); 11961 tcg_gen_movi_i64(tcg_rd[i], 0); 11962 } 11963 11964 for (i = 0; i < elements; i++) { 11965 int e_rev = (i & 0xf) ^ revmask; 11966 int w = (e_rev * esize) / 64; 11967 int o = (e_rev * esize) % 64; 11968 11969 read_vec_element(s, tcg_rn, rn, i, size); 11970 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11971 } 11972 11973 for (i = 0; i < 2; i++) { 11974 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11975 } 11976 clear_vec_high(s, true, rd); 11977 } 11978 } 11979 11980 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11981 bool is_q, int size, int rn, int rd) 11982 { 11983 /* Implement the pairwise operations from 2-misc: 11984 * SADDLP, UADDLP, SADALP, UADALP. 11985 * These all add pairs of elements in the input to produce a 11986 * double-width result element in the output (possibly accumulating). 11987 */ 11988 bool accum = (opcode == 0x6); 11989 int maxpass = is_q ? 2 : 1; 11990 int pass; 11991 TCGv_i64 tcg_res[2]; 11992 11993 if (size == 2) { 11994 /* 32 + 32 -> 64 op */ 11995 MemOp memop = size + (u ? 0 : MO_SIGN); 11996 11997 for (pass = 0; pass < maxpass; pass++) { 11998 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11999 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12000 12001 tcg_res[pass] = tcg_temp_new_i64(); 12002 12003 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12004 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12005 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12006 if (accum) { 12007 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12008 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12009 } 12010 } 12011 } else { 12012 for (pass = 0; pass < maxpass; pass++) { 12013 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12014 NeonGenOne64OpFn *genfn; 12015 static NeonGenOne64OpFn * const fns[2][2] = { 12016 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12017 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12018 }; 12019 12020 genfn = fns[size][u]; 12021 12022 tcg_res[pass] = tcg_temp_new_i64(); 12023 12024 read_vec_element(s, tcg_op, rn, pass, MO_64); 12025 genfn(tcg_res[pass], tcg_op); 12026 12027 if (accum) { 12028 read_vec_element(s, tcg_op, rd, pass, MO_64); 12029 if (size == 0) { 12030 gen_helper_neon_addl_u16(tcg_res[pass], 12031 tcg_res[pass], tcg_op); 12032 } else { 12033 gen_helper_neon_addl_u32(tcg_res[pass], 12034 tcg_res[pass], tcg_op); 12035 } 12036 } 12037 } 12038 } 12039 if (!is_q) { 12040 tcg_res[1] = tcg_constant_i64(0); 12041 } 12042 for (pass = 0; pass < 2; pass++) { 12043 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12044 } 12045 } 12046 12047 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12048 { 12049 /* Implement SHLL and SHLL2 */ 12050 int pass; 12051 int part = is_q ? 2 : 0; 12052 TCGv_i64 tcg_res[2]; 12053 12054 for (pass = 0; pass < 2; pass++) { 12055 static NeonGenWidenFn * const widenfns[3] = { 12056 gen_helper_neon_widen_u8, 12057 gen_helper_neon_widen_u16, 12058 tcg_gen_extu_i32_i64, 12059 }; 12060 NeonGenWidenFn *widenfn = widenfns[size]; 12061 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12062 12063 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12064 tcg_res[pass] = tcg_temp_new_i64(); 12065 widenfn(tcg_res[pass], tcg_op); 12066 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12067 } 12068 12069 for (pass = 0; pass < 2; pass++) { 12070 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12071 } 12072 } 12073 12074 /* AdvSIMD two reg misc 12075 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12076 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12077 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12078 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12079 */ 12080 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12081 { 12082 int size = extract32(insn, 22, 2); 12083 int opcode = extract32(insn, 12, 5); 12084 bool u = extract32(insn, 29, 1); 12085 bool is_q = extract32(insn, 30, 1); 12086 int rn = extract32(insn, 5, 5); 12087 int rd = extract32(insn, 0, 5); 12088 bool need_fpstatus = false; 12089 int rmode = -1; 12090 TCGv_i32 tcg_rmode; 12091 TCGv_ptr tcg_fpstatus; 12092 12093 switch (opcode) { 12094 case 0x0: /* REV64, REV32 */ 12095 case 0x1: /* REV16 */ 12096 handle_rev(s, opcode, u, is_q, size, rn, rd); 12097 return; 12098 case 0x5: /* CNT, NOT, RBIT */ 12099 if (u && size == 0) { 12100 /* NOT */ 12101 break; 12102 } else if (u && size == 1) { 12103 /* RBIT */ 12104 break; 12105 } else if (!u && size == 0) { 12106 /* CNT */ 12107 break; 12108 } 12109 unallocated_encoding(s); 12110 return; 12111 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12112 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12113 if (size == 3) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 if (!fp_access_check(s)) { 12118 return; 12119 } 12120 12121 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12122 return; 12123 case 0x4: /* CLS, CLZ */ 12124 if (size == 3) { 12125 unallocated_encoding(s); 12126 return; 12127 } 12128 break; 12129 case 0x2: /* SADDLP, UADDLP */ 12130 case 0x6: /* SADALP, UADALP */ 12131 if (size == 3) { 12132 unallocated_encoding(s); 12133 return; 12134 } 12135 if (!fp_access_check(s)) { 12136 return; 12137 } 12138 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12139 return; 12140 case 0x13: /* SHLL, SHLL2 */ 12141 if (u == 0 || size == 3) { 12142 unallocated_encoding(s); 12143 return; 12144 } 12145 if (!fp_access_check(s)) { 12146 return; 12147 } 12148 handle_shll(s, is_q, size, rn, rd); 12149 return; 12150 case 0xa: /* CMLT */ 12151 if (u == 1) { 12152 unallocated_encoding(s); 12153 return; 12154 } 12155 /* fall through */ 12156 case 0x8: /* CMGT, CMGE */ 12157 case 0x9: /* CMEQ, CMLE */ 12158 case 0xb: /* ABS, NEG */ 12159 if (size == 3 && !is_q) { 12160 unallocated_encoding(s); 12161 return; 12162 } 12163 break; 12164 case 0x3: /* SUQADD, USQADD */ 12165 if (size == 3 && !is_q) { 12166 unallocated_encoding(s); 12167 return; 12168 } 12169 if (!fp_access_check(s)) { 12170 return; 12171 } 12172 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12173 return; 12174 case 0x7: /* SQABS, SQNEG */ 12175 if (size == 3 && !is_q) { 12176 unallocated_encoding(s); 12177 return; 12178 } 12179 break; 12180 case 0xc ... 0xf: 12181 case 0x16 ... 0x1f: 12182 { 12183 /* Floating point: U, size[1] and opcode indicate operation; 12184 * size[0] indicates single or double precision. 12185 */ 12186 int is_double = extract32(size, 0, 1); 12187 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12188 size = is_double ? 3 : 2; 12189 switch (opcode) { 12190 case 0x2f: /* FABS */ 12191 case 0x6f: /* FNEG */ 12192 if (size == 3 && !is_q) { 12193 unallocated_encoding(s); 12194 return; 12195 } 12196 break; 12197 case 0x1d: /* SCVTF */ 12198 case 0x5d: /* UCVTF */ 12199 { 12200 bool is_signed = (opcode == 0x1d) ? true : false; 12201 int elements = is_double ? 2 : is_q ? 4 : 2; 12202 if (is_double && !is_q) { 12203 unallocated_encoding(s); 12204 return; 12205 } 12206 if (!fp_access_check(s)) { 12207 return; 12208 } 12209 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12210 return; 12211 } 12212 case 0x2c: /* FCMGT (zero) */ 12213 case 0x2d: /* FCMEQ (zero) */ 12214 case 0x2e: /* FCMLT (zero) */ 12215 case 0x6c: /* FCMGE (zero) */ 12216 case 0x6d: /* FCMLE (zero) */ 12217 if (size == 3 && !is_q) { 12218 unallocated_encoding(s); 12219 return; 12220 } 12221 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12222 return; 12223 case 0x7f: /* FSQRT */ 12224 if (size == 3 && !is_q) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 break; 12229 case 0x1a: /* FCVTNS */ 12230 case 0x1b: /* FCVTMS */ 12231 case 0x3a: /* FCVTPS */ 12232 case 0x3b: /* FCVTZS */ 12233 case 0x5a: /* FCVTNU */ 12234 case 0x5b: /* FCVTMU */ 12235 case 0x7a: /* FCVTPU */ 12236 case 0x7b: /* FCVTZU */ 12237 need_fpstatus = true; 12238 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12239 if (size == 3 && !is_q) { 12240 unallocated_encoding(s); 12241 return; 12242 } 12243 break; 12244 case 0x5c: /* FCVTAU */ 12245 case 0x1c: /* FCVTAS */ 12246 need_fpstatus = true; 12247 rmode = FPROUNDING_TIEAWAY; 12248 if (size == 3 && !is_q) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 break; 12253 case 0x3c: /* URECPE */ 12254 if (size == 3) { 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 /* fall through */ 12259 case 0x3d: /* FRECPE */ 12260 case 0x7d: /* FRSQRTE */ 12261 if (size == 3 && !is_q) { 12262 unallocated_encoding(s); 12263 return; 12264 } 12265 if (!fp_access_check(s)) { 12266 return; 12267 } 12268 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12269 return; 12270 case 0x56: /* FCVTXN, FCVTXN2 */ 12271 if (size == 2) { 12272 unallocated_encoding(s); 12273 return; 12274 } 12275 /* fall through */ 12276 case 0x16: /* FCVTN, FCVTN2 */ 12277 /* handle_2misc_narrow does a 2*size -> size operation, but these 12278 * instructions encode the source size rather than dest size. 12279 */ 12280 if (!fp_access_check(s)) { 12281 return; 12282 } 12283 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12284 return; 12285 case 0x36: /* BFCVTN, BFCVTN2 */ 12286 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12287 unallocated_encoding(s); 12288 return; 12289 } 12290 if (!fp_access_check(s)) { 12291 return; 12292 } 12293 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12294 return; 12295 case 0x17: /* FCVTL, FCVTL2 */ 12296 if (!fp_access_check(s)) { 12297 return; 12298 } 12299 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12300 return; 12301 case 0x18: /* FRINTN */ 12302 case 0x19: /* FRINTM */ 12303 case 0x38: /* FRINTP */ 12304 case 0x39: /* FRINTZ */ 12305 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12306 /* fall through */ 12307 case 0x59: /* FRINTX */ 12308 case 0x79: /* FRINTI */ 12309 need_fpstatus = true; 12310 if (size == 3 && !is_q) { 12311 unallocated_encoding(s); 12312 return; 12313 } 12314 break; 12315 case 0x58: /* FRINTA */ 12316 rmode = FPROUNDING_TIEAWAY; 12317 need_fpstatus = true; 12318 if (size == 3 && !is_q) { 12319 unallocated_encoding(s); 12320 return; 12321 } 12322 break; 12323 case 0x7c: /* URSQRTE */ 12324 if (size == 3) { 12325 unallocated_encoding(s); 12326 return; 12327 } 12328 break; 12329 case 0x1e: /* FRINT32Z */ 12330 case 0x1f: /* FRINT64Z */ 12331 rmode = FPROUNDING_ZERO; 12332 /* fall through */ 12333 case 0x5e: /* FRINT32X */ 12334 case 0x5f: /* FRINT64X */ 12335 need_fpstatus = true; 12336 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12337 unallocated_encoding(s); 12338 return; 12339 } 12340 break; 12341 default: 12342 unallocated_encoding(s); 12343 return; 12344 } 12345 break; 12346 } 12347 default: 12348 unallocated_encoding(s); 12349 return; 12350 } 12351 12352 if (!fp_access_check(s)) { 12353 return; 12354 } 12355 12356 if (need_fpstatus || rmode >= 0) { 12357 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12358 } else { 12359 tcg_fpstatus = NULL; 12360 } 12361 if (rmode >= 0) { 12362 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12363 } else { 12364 tcg_rmode = NULL; 12365 } 12366 12367 switch (opcode) { 12368 case 0x5: 12369 if (u && size == 0) { /* NOT */ 12370 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12371 return; 12372 } 12373 break; 12374 case 0x8: /* CMGT, CMGE */ 12375 if (u) { 12376 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12377 } else { 12378 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12379 } 12380 return; 12381 case 0x9: /* CMEQ, CMLE */ 12382 if (u) { 12383 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12384 } else { 12385 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12386 } 12387 return; 12388 case 0xa: /* CMLT */ 12389 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12390 return; 12391 case 0xb: 12392 if (u) { /* ABS, NEG */ 12393 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12394 } else { 12395 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12396 } 12397 return; 12398 } 12399 12400 if (size == 3) { 12401 /* All 64-bit element operations can be shared with scalar 2misc */ 12402 int pass; 12403 12404 /* Coverity claims (size == 3 && !is_q) has been eliminated 12405 * from all paths leading to here. 12406 */ 12407 tcg_debug_assert(is_q); 12408 for (pass = 0; pass < 2; pass++) { 12409 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12410 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12411 12412 read_vec_element(s, tcg_op, rn, pass, MO_64); 12413 12414 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12415 tcg_rmode, tcg_fpstatus); 12416 12417 write_vec_element(s, tcg_res, rd, pass, MO_64); 12418 } 12419 } else { 12420 int pass; 12421 12422 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12423 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12424 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12425 12426 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12427 12428 if (size == 2) { 12429 /* Special cases for 32 bit elements */ 12430 switch (opcode) { 12431 case 0x4: /* CLS */ 12432 if (u) { 12433 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12434 } else { 12435 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12436 } 12437 break; 12438 case 0x7: /* SQABS, SQNEG */ 12439 if (u) { 12440 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12441 } else { 12442 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12443 } 12444 break; 12445 case 0x2f: /* FABS */ 12446 gen_helper_vfp_abss(tcg_res, tcg_op); 12447 break; 12448 case 0x6f: /* FNEG */ 12449 gen_helper_vfp_negs(tcg_res, tcg_op); 12450 break; 12451 case 0x7f: /* FSQRT */ 12452 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12453 break; 12454 case 0x1a: /* FCVTNS */ 12455 case 0x1b: /* FCVTMS */ 12456 case 0x1c: /* FCVTAS */ 12457 case 0x3a: /* FCVTPS */ 12458 case 0x3b: /* FCVTZS */ 12459 gen_helper_vfp_tosls(tcg_res, tcg_op, 12460 tcg_constant_i32(0), tcg_fpstatus); 12461 break; 12462 case 0x5a: /* FCVTNU */ 12463 case 0x5b: /* FCVTMU */ 12464 case 0x5c: /* FCVTAU */ 12465 case 0x7a: /* FCVTPU */ 12466 case 0x7b: /* FCVTZU */ 12467 gen_helper_vfp_touls(tcg_res, tcg_op, 12468 tcg_constant_i32(0), tcg_fpstatus); 12469 break; 12470 case 0x18: /* FRINTN */ 12471 case 0x19: /* FRINTM */ 12472 case 0x38: /* FRINTP */ 12473 case 0x39: /* FRINTZ */ 12474 case 0x58: /* FRINTA */ 12475 case 0x79: /* FRINTI */ 12476 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12477 break; 12478 case 0x59: /* FRINTX */ 12479 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12480 break; 12481 case 0x7c: /* URSQRTE */ 12482 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12483 break; 12484 case 0x1e: /* FRINT32Z */ 12485 case 0x5e: /* FRINT32X */ 12486 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12487 break; 12488 case 0x1f: /* FRINT64Z */ 12489 case 0x5f: /* FRINT64X */ 12490 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12491 break; 12492 default: 12493 g_assert_not_reached(); 12494 } 12495 } else { 12496 /* Use helpers for 8 and 16 bit elements */ 12497 switch (opcode) { 12498 case 0x5: /* CNT, RBIT */ 12499 /* For these two insns size is part of the opcode specifier 12500 * (handled earlier); they always operate on byte elements. 12501 */ 12502 if (u) { 12503 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12504 } else { 12505 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12506 } 12507 break; 12508 case 0x7: /* SQABS, SQNEG */ 12509 { 12510 NeonGenOneOpEnvFn *genfn; 12511 static NeonGenOneOpEnvFn * const fns[2][2] = { 12512 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12513 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12514 }; 12515 genfn = fns[size][u]; 12516 genfn(tcg_res, cpu_env, tcg_op); 12517 break; 12518 } 12519 case 0x4: /* CLS, CLZ */ 12520 if (u) { 12521 if (size == 0) { 12522 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12523 } else { 12524 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12525 } 12526 } else { 12527 if (size == 0) { 12528 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12529 } else { 12530 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12531 } 12532 } 12533 break; 12534 default: 12535 g_assert_not_reached(); 12536 } 12537 } 12538 12539 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12540 } 12541 } 12542 clear_vec_high(s, is_q, rd); 12543 12544 if (tcg_rmode) { 12545 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12546 } 12547 } 12548 12549 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12550 * 12551 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12552 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12553 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12554 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12555 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12556 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12557 * 12558 * This actually covers two groups where scalar access is governed by 12559 * bit 28. A bunch of the instructions (float to integral) only exist 12560 * in the vector form and are un-allocated for the scalar decode. Also 12561 * in the scalar decode Q is always 1. 12562 */ 12563 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12564 { 12565 int fpop, opcode, a, u; 12566 int rn, rd; 12567 bool is_q; 12568 bool is_scalar; 12569 bool only_in_vector = false; 12570 12571 int pass; 12572 TCGv_i32 tcg_rmode = NULL; 12573 TCGv_ptr tcg_fpstatus = NULL; 12574 bool need_fpst = true; 12575 int rmode = -1; 12576 12577 if (!dc_isar_feature(aa64_fp16, s)) { 12578 unallocated_encoding(s); 12579 return; 12580 } 12581 12582 rd = extract32(insn, 0, 5); 12583 rn = extract32(insn, 5, 5); 12584 12585 a = extract32(insn, 23, 1); 12586 u = extract32(insn, 29, 1); 12587 is_scalar = extract32(insn, 28, 1); 12588 is_q = extract32(insn, 30, 1); 12589 12590 opcode = extract32(insn, 12, 5); 12591 fpop = deposit32(opcode, 5, 1, a); 12592 fpop = deposit32(fpop, 6, 1, u); 12593 12594 switch (fpop) { 12595 case 0x1d: /* SCVTF */ 12596 case 0x5d: /* UCVTF */ 12597 { 12598 int elements; 12599 12600 if (is_scalar) { 12601 elements = 1; 12602 } else { 12603 elements = (is_q ? 8 : 4); 12604 } 12605 12606 if (!fp_access_check(s)) { 12607 return; 12608 } 12609 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12610 return; 12611 } 12612 break; 12613 case 0x2c: /* FCMGT (zero) */ 12614 case 0x2d: /* FCMEQ (zero) */ 12615 case 0x2e: /* FCMLT (zero) */ 12616 case 0x6c: /* FCMGE (zero) */ 12617 case 0x6d: /* FCMLE (zero) */ 12618 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12619 return; 12620 case 0x3d: /* FRECPE */ 12621 case 0x3f: /* FRECPX */ 12622 break; 12623 case 0x18: /* FRINTN */ 12624 only_in_vector = true; 12625 rmode = FPROUNDING_TIEEVEN; 12626 break; 12627 case 0x19: /* FRINTM */ 12628 only_in_vector = true; 12629 rmode = FPROUNDING_NEGINF; 12630 break; 12631 case 0x38: /* FRINTP */ 12632 only_in_vector = true; 12633 rmode = FPROUNDING_POSINF; 12634 break; 12635 case 0x39: /* FRINTZ */ 12636 only_in_vector = true; 12637 rmode = FPROUNDING_ZERO; 12638 break; 12639 case 0x58: /* FRINTA */ 12640 only_in_vector = true; 12641 rmode = FPROUNDING_TIEAWAY; 12642 break; 12643 case 0x59: /* FRINTX */ 12644 case 0x79: /* FRINTI */ 12645 only_in_vector = true; 12646 /* current rounding mode */ 12647 break; 12648 case 0x1a: /* FCVTNS */ 12649 rmode = FPROUNDING_TIEEVEN; 12650 break; 12651 case 0x1b: /* FCVTMS */ 12652 rmode = FPROUNDING_NEGINF; 12653 break; 12654 case 0x1c: /* FCVTAS */ 12655 rmode = FPROUNDING_TIEAWAY; 12656 break; 12657 case 0x3a: /* FCVTPS */ 12658 rmode = FPROUNDING_POSINF; 12659 break; 12660 case 0x3b: /* FCVTZS */ 12661 rmode = FPROUNDING_ZERO; 12662 break; 12663 case 0x5a: /* FCVTNU */ 12664 rmode = FPROUNDING_TIEEVEN; 12665 break; 12666 case 0x5b: /* FCVTMU */ 12667 rmode = FPROUNDING_NEGINF; 12668 break; 12669 case 0x5c: /* FCVTAU */ 12670 rmode = FPROUNDING_TIEAWAY; 12671 break; 12672 case 0x7a: /* FCVTPU */ 12673 rmode = FPROUNDING_POSINF; 12674 break; 12675 case 0x7b: /* FCVTZU */ 12676 rmode = FPROUNDING_ZERO; 12677 break; 12678 case 0x2f: /* FABS */ 12679 case 0x6f: /* FNEG */ 12680 need_fpst = false; 12681 break; 12682 case 0x7d: /* FRSQRTE */ 12683 case 0x7f: /* FSQRT (vector) */ 12684 break; 12685 default: 12686 unallocated_encoding(s); 12687 return; 12688 } 12689 12690 12691 /* Check additional constraints for the scalar encoding */ 12692 if (is_scalar) { 12693 if (!is_q) { 12694 unallocated_encoding(s); 12695 return; 12696 } 12697 /* FRINTxx is only in the vector form */ 12698 if (only_in_vector) { 12699 unallocated_encoding(s); 12700 return; 12701 } 12702 } 12703 12704 if (!fp_access_check(s)) { 12705 return; 12706 } 12707 12708 if (rmode >= 0 || need_fpst) { 12709 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12710 } 12711 12712 if (rmode >= 0) { 12713 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12714 } 12715 12716 if (is_scalar) { 12717 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12718 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12719 12720 switch (fpop) { 12721 case 0x1a: /* FCVTNS */ 12722 case 0x1b: /* FCVTMS */ 12723 case 0x1c: /* FCVTAS */ 12724 case 0x3a: /* FCVTPS */ 12725 case 0x3b: /* FCVTZS */ 12726 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12727 break; 12728 case 0x3d: /* FRECPE */ 12729 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12730 break; 12731 case 0x3f: /* FRECPX */ 12732 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12733 break; 12734 case 0x5a: /* FCVTNU */ 12735 case 0x5b: /* FCVTMU */ 12736 case 0x5c: /* FCVTAU */ 12737 case 0x7a: /* FCVTPU */ 12738 case 0x7b: /* FCVTZU */ 12739 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12740 break; 12741 case 0x6f: /* FNEG */ 12742 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12743 break; 12744 case 0x7d: /* FRSQRTE */ 12745 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12746 break; 12747 default: 12748 g_assert_not_reached(); 12749 } 12750 12751 /* limit any sign extension going on */ 12752 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12753 write_fp_sreg(s, rd, tcg_res); 12754 } else { 12755 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12756 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12757 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12758 12759 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12760 12761 switch (fpop) { 12762 case 0x1a: /* FCVTNS */ 12763 case 0x1b: /* FCVTMS */ 12764 case 0x1c: /* FCVTAS */ 12765 case 0x3a: /* FCVTPS */ 12766 case 0x3b: /* FCVTZS */ 12767 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12768 break; 12769 case 0x3d: /* FRECPE */ 12770 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12771 break; 12772 case 0x5a: /* FCVTNU */ 12773 case 0x5b: /* FCVTMU */ 12774 case 0x5c: /* FCVTAU */ 12775 case 0x7a: /* FCVTPU */ 12776 case 0x7b: /* FCVTZU */ 12777 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12778 break; 12779 case 0x18: /* FRINTN */ 12780 case 0x19: /* FRINTM */ 12781 case 0x38: /* FRINTP */ 12782 case 0x39: /* FRINTZ */ 12783 case 0x58: /* FRINTA */ 12784 case 0x79: /* FRINTI */ 12785 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12786 break; 12787 case 0x59: /* FRINTX */ 12788 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12789 break; 12790 case 0x2f: /* FABS */ 12791 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12792 break; 12793 case 0x6f: /* FNEG */ 12794 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12795 break; 12796 case 0x7d: /* FRSQRTE */ 12797 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12798 break; 12799 case 0x7f: /* FSQRT */ 12800 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12801 break; 12802 default: 12803 g_assert_not_reached(); 12804 } 12805 12806 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12807 } 12808 12809 clear_vec_high(s, is_q, rd); 12810 } 12811 12812 if (tcg_rmode) { 12813 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12814 } 12815 } 12816 12817 /* AdvSIMD scalar x indexed element 12818 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12819 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12820 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12821 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12822 * AdvSIMD vector x indexed element 12823 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12824 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12825 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12826 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12827 */ 12828 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12829 { 12830 /* This encoding has two kinds of instruction: 12831 * normal, where we perform elt x idxelt => elt for each 12832 * element in the vector 12833 * long, where we perform elt x idxelt and generate a result of 12834 * double the width of the input element 12835 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12836 */ 12837 bool is_scalar = extract32(insn, 28, 1); 12838 bool is_q = extract32(insn, 30, 1); 12839 bool u = extract32(insn, 29, 1); 12840 int size = extract32(insn, 22, 2); 12841 int l = extract32(insn, 21, 1); 12842 int m = extract32(insn, 20, 1); 12843 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12844 int rm = extract32(insn, 16, 4); 12845 int opcode = extract32(insn, 12, 4); 12846 int h = extract32(insn, 11, 1); 12847 int rn = extract32(insn, 5, 5); 12848 int rd = extract32(insn, 0, 5); 12849 bool is_long = false; 12850 int is_fp = 0; 12851 bool is_fp16 = false; 12852 int index; 12853 TCGv_ptr fpst; 12854 12855 switch (16 * u + opcode) { 12856 case 0x08: /* MUL */ 12857 case 0x10: /* MLA */ 12858 case 0x14: /* MLS */ 12859 if (is_scalar) { 12860 unallocated_encoding(s); 12861 return; 12862 } 12863 break; 12864 case 0x02: /* SMLAL, SMLAL2 */ 12865 case 0x12: /* UMLAL, UMLAL2 */ 12866 case 0x06: /* SMLSL, SMLSL2 */ 12867 case 0x16: /* UMLSL, UMLSL2 */ 12868 case 0x0a: /* SMULL, SMULL2 */ 12869 case 0x1a: /* UMULL, UMULL2 */ 12870 if (is_scalar) { 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 is_long = true; 12875 break; 12876 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12877 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12878 case 0x0b: /* SQDMULL, SQDMULL2 */ 12879 is_long = true; 12880 break; 12881 case 0x0c: /* SQDMULH */ 12882 case 0x0d: /* SQRDMULH */ 12883 break; 12884 case 0x01: /* FMLA */ 12885 case 0x05: /* FMLS */ 12886 case 0x09: /* FMUL */ 12887 case 0x19: /* FMULX */ 12888 is_fp = 1; 12889 break; 12890 case 0x1d: /* SQRDMLAH */ 12891 case 0x1f: /* SQRDMLSH */ 12892 if (!dc_isar_feature(aa64_rdm, s)) { 12893 unallocated_encoding(s); 12894 return; 12895 } 12896 break; 12897 case 0x0e: /* SDOT */ 12898 case 0x1e: /* UDOT */ 12899 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12900 unallocated_encoding(s); 12901 return; 12902 } 12903 break; 12904 case 0x0f: 12905 switch (size) { 12906 case 0: /* SUDOT */ 12907 case 2: /* USDOT */ 12908 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12909 unallocated_encoding(s); 12910 return; 12911 } 12912 size = MO_32; 12913 break; 12914 case 1: /* BFDOT */ 12915 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12916 unallocated_encoding(s); 12917 return; 12918 } 12919 size = MO_32; 12920 break; 12921 case 3: /* BFMLAL{B,T} */ 12922 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 /* can't set is_fp without other incorrect size checks */ 12927 size = MO_16; 12928 break; 12929 default: 12930 unallocated_encoding(s); 12931 return; 12932 } 12933 break; 12934 case 0x11: /* FCMLA #0 */ 12935 case 0x13: /* FCMLA #90 */ 12936 case 0x15: /* FCMLA #180 */ 12937 case 0x17: /* FCMLA #270 */ 12938 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12939 unallocated_encoding(s); 12940 return; 12941 } 12942 is_fp = 2; 12943 break; 12944 case 0x00: /* FMLAL */ 12945 case 0x04: /* FMLSL */ 12946 case 0x18: /* FMLAL2 */ 12947 case 0x1c: /* FMLSL2 */ 12948 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12949 unallocated_encoding(s); 12950 return; 12951 } 12952 size = MO_16; 12953 /* is_fp, but we pass cpu_env not fp_status. */ 12954 break; 12955 default: 12956 unallocated_encoding(s); 12957 return; 12958 } 12959 12960 switch (is_fp) { 12961 case 1: /* normal fp */ 12962 /* convert insn encoded size to MemOp size */ 12963 switch (size) { 12964 case 0: /* half-precision */ 12965 size = MO_16; 12966 is_fp16 = true; 12967 break; 12968 case MO_32: /* single precision */ 12969 case MO_64: /* double precision */ 12970 break; 12971 default: 12972 unallocated_encoding(s); 12973 return; 12974 } 12975 break; 12976 12977 case 2: /* complex fp */ 12978 /* Each indexable element is a complex pair. */ 12979 size += 1; 12980 switch (size) { 12981 case MO_32: 12982 if (h && !is_q) { 12983 unallocated_encoding(s); 12984 return; 12985 } 12986 is_fp16 = true; 12987 break; 12988 case MO_64: 12989 break; 12990 default: 12991 unallocated_encoding(s); 12992 return; 12993 } 12994 break; 12995 12996 default: /* integer */ 12997 switch (size) { 12998 case MO_8: 12999 case MO_64: 13000 unallocated_encoding(s); 13001 return; 13002 } 13003 break; 13004 } 13005 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13006 unallocated_encoding(s); 13007 return; 13008 } 13009 13010 /* Given MemOp size, adjust register and indexing. */ 13011 switch (size) { 13012 case MO_16: 13013 index = h << 2 | l << 1 | m; 13014 break; 13015 case MO_32: 13016 index = h << 1 | l; 13017 rm |= m << 4; 13018 break; 13019 case MO_64: 13020 if (l || !is_q) { 13021 unallocated_encoding(s); 13022 return; 13023 } 13024 index = h; 13025 rm |= m << 4; 13026 break; 13027 default: 13028 g_assert_not_reached(); 13029 } 13030 13031 if (!fp_access_check(s)) { 13032 return; 13033 } 13034 13035 if (is_fp) { 13036 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13037 } else { 13038 fpst = NULL; 13039 } 13040 13041 switch (16 * u + opcode) { 13042 case 0x0e: /* SDOT */ 13043 case 0x1e: /* UDOT */ 13044 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13045 u ? gen_helper_gvec_udot_idx_b 13046 : gen_helper_gvec_sdot_idx_b); 13047 return; 13048 case 0x0f: 13049 switch (extract32(insn, 22, 2)) { 13050 case 0: /* SUDOT */ 13051 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13052 gen_helper_gvec_sudot_idx_b); 13053 return; 13054 case 1: /* BFDOT */ 13055 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13056 gen_helper_gvec_bfdot_idx); 13057 return; 13058 case 2: /* USDOT */ 13059 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13060 gen_helper_gvec_usdot_idx_b); 13061 return; 13062 case 3: /* BFMLAL{B,T} */ 13063 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13064 gen_helper_gvec_bfmlal_idx); 13065 return; 13066 } 13067 g_assert_not_reached(); 13068 case 0x11: /* FCMLA #0 */ 13069 case 0x13: /* FCMLA #90 */ 13070 case 0x15: /* FCMLA #180 */ 13071 case 0x17: /* FCMLA #270 */ 13072 { 13073 int rot = extract32(insn, 13, 2); 13074 int data = (index << 2) | rot; 13075 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13076 vec_full_reg_offset(s, rn), 13077 vec_full_reg_offset(s, rm), 13078 vec_full_reg_offset(s, rd), fpst, 13079 is_q ? 16 : 8, vec_full_reg_size(s), data, 13080 size == MO_64 13081 ? gen_helper_gvec_fcmlas_idx 13082 : gen_helper_gvec_fcmlah_idx); 13083 } 13084 return; 13085 13086 case 0x00: /* FMLAL */ 13087 case 0x04: /* FMLSL */ 13088 case 0x18: /* FMLAL2 */ 13089 case 0x1c: /* FMLSL2 */ 13090 { 13091 int is_s = extract32(opcode, 2, 1); 13092 int is_2 = u; 13093 int data = (index << 2) | (is_2 << 1) | is_s; 13094 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13095 vec_full_reg_offset(s, rn), 13096 vec_full_reg_offset(s, rm), cpu_env, 13097 is_q ? 16 : 8, vec_full_reg_size(s), 13098 data, gen_helper_gvec_fmlal_idx_a64); 13099 } 13100 return; 13101 13102 case 0x08: /* MUL */ 13103 if (!is_long && !is_scalar) { 13104 static gen_helper_gvec_3 * const fns[3] = { 13105 gen_helper_gvec_mul_idx_h, 13106 gen_helper_gvec_mul_idx_s, 13107 gen_helper_gvec_mul_idx_d, 13108 }; 13109 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13110 vec_full_reg_offset(s, rn), 13111 vec_full_reg_offset(s, rm), 13112 is_q ? 16 : 8, vec_full_reg_size(s), 13113 index, fns[size - 1]); 13114 return; 13115 } 13116 break; 13117 13118 case 0x10: /* MLA */ 13119 if (!is_long && !is_scalar) { 13120 static gen_helper_gvec_4 * const fns[3] = { 13121 gen_helper_gvec_mla_idx_h, 13122 gen_helper_gvec_mla_idx_s, 13123 gen_helper_gvec_mla_idx_d, 13124 }; 13125 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13126 vec_full_reg_offset(s, rn), 13127 vec_full_reg_offset(s, rm), 13128 vec_full_reg_offset(s, rd), 13129 is_q ? 16 : 8, vec_full_reg_size(s), 13130 index, fns[size - 1]); 13131 return; 13132 } 13133 break; 13134 13135 case 0x14: /* MLS */ 13136 if (!is_long && !is_scalar) { 13137 static gen_helper_gvec_4 * const fns[3] = { 13138 gen_helper_gvec_mls_idx_h, 13139 gen_helper_gvec_mls_idx_s, 13140 gen_helper_gvec_mls_idx_d, 13141 }; 13142 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13143 vec_full_reg_offset(s, rn), 13144 vec_full_reg_offset(s, rm), 13145 vec_full_reg_offset(s, rd), 13146 is_q ? 16 : 8, vec_full_reg_size(s), 13147 index, fns[size - 1]); 13148 return; 13149 } 13150 break; 13151 } 13152 13153 if (size == 3) { 13154 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13155 int pass; 13156 13157 assert(is_fp && is_q && !is_long); 13158 13159 read_vec_element(s, tcg_idx, rm, index, MO_64); 13160 13161 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13162 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13163 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13164 13165 read_vec_element(s, tcg_op, rn, pass, MO_64); 13166 13167 switch (16 * u + opcode) { 13168 case 0x05: /* FMLS */ 13169 /* As usual for ARM, separate negation for fused multiply-add */ 13170 gen_helper_vfp_negd(tcg_op, tcg_op); 13171 /* fall through */ 13172 case 0x01: /* FMLA */ 13173 read_vec_element(s, tcg_res, rd, pass, MO_64); 13174 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13175 break; 13176 case 0x09: /* FMUL */ 13177 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13178 break; 13179 case 0x19: /* FMULX */ 13180 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13181 break; 13182 default: 13183 g_assert_not_reached(); 13184 } 13185 13186 write_vec_element(s, tcg_res, rd, pass, MO_64); 13187 } 13188 13189 clear_vec_high(s, !is_scalar, rd); 13190 } else if (!is_long) { 13191 /* 32 bit floating point, or 16 or 32 bit integer. 13192 * For the 16 bit scalar case we use the usual Neon helpers and 13193 * rely on the fact that 0 op 0 == 0 with no side effects. 13194 */ 13195 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13196 int pass, maxpasses; 13197 13198 if (is_scalar) { 13199 maxpasses = 1; 13200 } else { 13201 maxpasses = is_q ? 4 : 2; 13202 } 13203 13204 read_vec_element_i32(s, tcg_idx, rm, index, size); 13205 13206 if (size == 1 && !is_scalar) { 13207 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13208 * the index into both halves of the 32 bit tcg_idx and then use 13209 * the usual Neon helpers. 13210 */ 13211 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13212 } 13213 13214 for (pass = 0; pass < maxpasses; pass++) { 13215 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13216 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13217 13218 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13219 13220 switch (16 * u + opcode) { 13221 case 0x08: /* MUL */ 13222 case 0x10: /* MLA */ 13223 case 0x14: /* MLS */ 13224 { 13225 static NeonGenTwoOpFn * const fns[2][2] = { 13226 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13227 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13228 }; 13229 NeonGenTwoOpFn *genfn; 13230 bool is_sub = opcode == 0x4; 13231 13232 if (size == 1) { 13233 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13234 } else { 13235 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13236 } 13237 if (opcode == 0x8) { 13238 break; 13239 } 13240 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13241 genfn = fns[size - 1][is_sub]; 13242 genfn(tcg_res, tcg_op, tcg_res); 13243 break; 13244 } 13245 case 0x05: /* FMLS */ 13246 case 0x01: /* FMLA */ 13247 read_vec_element_i32(s, tcg_res, rd, pass, 13248 is_scalar ? size : MO_32); 13249 switch (size) { 13250 case 1: 13251 if (opcode == 0x5) { 13252 /* As usual for ARM, separate negation for fused 13253 * multiply-add */ 13254 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13255 } 13256 if (is_scalar) { 13257 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13258 tcg_res, fpst); 13259 } else { 13260 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13261 tcg_res, fpst); 13262 } 13263 break; 13264 case 2: 13265 if (opcode == 0x5) { 13266 /* As usual for ARM, separate negation for 13267 * fused multiply-add */ 13268 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13269 } 13270 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13271 tcg_res, fpst); 13272 break; 13273 default: 13274 g_assert_not_reached(); 13275 } 13276 break; 13277 case 0x09: /* FMUL */ 13278 switch (size) { 13279 case 1: 13280 if (is_scalar) { 13281 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13282 tcg_idx, fpst); 13283 } else { 13284 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13285 tcg_idx, fpst); 13286 } 13287 break; 13288 case 2: 13289 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13290 break; 13291 default: 13292 g_assert_not_reached(); 13293 } 13294 break; 13295 case 0x19: /* FMULX */ 13296 switch (size) { 13297 case 1: 13298 if (is_scalar) { 13299 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13300 tcg_idx, fpst); 13301 } else { 13302 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13303 tcg_idx, fpst); 13304 } 13305 break; 13306 case 2: 13307 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13308 break; 13309 default: 13310 g_assert_not_reached(); 13311 } 13312 break; 13313 case 0x0c: /* SQDMULH */ 13314 if (size == 1) { 13315 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13316 tcg_op, tcg_idx); 13317 } else { 13318 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13319 tcg_op, tcg_idx); 13320 } 13321 break; 13322 case 0x0d: /* SQRDMULH */ 13323 if (size == 1) { 13324 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13325 tcg_op, tcg_idx); 13326 } else { 13327 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13328 tcg_op, tcg_idx); 13329 } 13330 break; 13331 case 0x1d: /* SQRDMLAH */ 13332 read_vec_element_i32(s, tcg_res, rd, pass, 13333 is_scalar ? size : MO_32); 13334 if (size == 1) { 13335 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13336 tcg_op, tcg_idx, tcg_res); 13337 } else { 13338 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13339 tcg_op, tcg_idx, tcg_res); 13340 } 13341 break; 13342 case 0x1f: /* SQRDMLSH */ 13343 read_vec_element_i32(s, tcg_res, rd, pass, 13344 is_scalar ? size : MO_32); 13345 if (size == 1) { 13346 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13347 tcg_op, tcg_idx, tcg_res); 13348 } else { 13349 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13350 tcg_op, tcg_idx, tcg_res); 13351 } 13352 break; 13353 default: 13354 g_assert_not_reached(); 13355 } 13356 13357 if (is_scalar) { 13358 write_fp_sreg(s, rd, tcg_res); 13359 } else { 13360 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13361 } 13362 } 13363 13364 clear_vec_high(s, is_q, rd); 13365 } else { 13366 /* long ops: 16x16->32 or 32x32->64 */ 13367 TCGv_i64 tcg_res[2]; 13368 int pass; 13369 bool satop = extract32(opcode, 0, 1); 13370 MemOp memop = MO_32; 13371 13372 if (satop || !u) { 13373 memop |= MO_SIGN; 13374 } 13375 13376 if (size == 2) { 13377 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13378 13379 read_vec_element(s, tcg_idx, rm, index, memop); 13380 13381 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13382 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13383 TCGv_i64 tcg_passres; 13384 int passelt; 13385 13386 if (is_scalar) { 13387 passelt = 0; 13388 } else { 13389 passelt = pass + (is_q * 2); 13390 } 13391 13392 read_vec_element(s, tcg_op, rn, passelt, memop); 13393 13394 tcg_res[pass] = tcg_temp_new_i64(); 13395 13396 if (opcode == 0xa || opcode == 0xb) { 13397 /* Non-accumulating ops */ 13398 tcg_passres = tcg_res[pass]; 13399 } else { 13400 tcg_passres = tcg_temp_new_i64(); 13401 } 13402 13403 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13404 13405 if (satop) { 13406 /* saturating, doubling */ 13407 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13408 tcg_passres, tcg_passres); 13409 } 13410 13411 if (opcode == 0xa || opcode == 0xb) { 13412 continue; 13413 } 13414 13415 /* Accumulating op: handle accumulate step */ 13416 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13417 13418 switch (opcode) { 13419 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13420 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13421 break; 13422 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13423 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13424 break; 13425 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13426 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13427 /* fall through */ 13428 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13429 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13430 tcg_res[pass], 13431 tcg_passres); 13432 break; 13433 default: 13434 g_assert_not_reached(); 13435 } 13436 } 13437 13438 clear_vec_high(s, !is_scalar, rd); 13439 } else { 13440 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13441 13442 assert(size == 1); 13443 read_vec_element_i32(s, tcg_idx, rm, index, size); 13444 13445 if (!is_scalar) { 13446 /* The simplest way to handle the 16x16 indexed ops is to 13447 * duplicate the index into both halves of the 32 bit tcg_idx 13448 * and then use the usual Neon helpers. 13449 */ 13450 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13451 } 13452 13453 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13454 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13455 TCGv_i64 tcg_passres; 13456 13457 if (is_scalar) { 13458 read_vec_element_i32(s, tcg_op, rn, pass, size); 13459 } else { 13460 read_vec_element_i32(s, tcg_op, rn, 13461 pass + (is_q * 2), MO_32); 13462 } 13463 13464 tcg_res[pass] = tcg_temp_new_i64(); 13465 13466 if (opcode == 0xa || opcode == 0xb) { 13467 /* Non-accumulating ops */ 13468 tcg_passres = tcg_res[pass]; 13469 } else { 13470 tcg_passres = tcg_temp_new_i64(); 13471 } 13472 13473 if (memop & MO_SIGN) { 13474 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13475 } else { 13476 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13477 } 13478 if (satop) { 13479 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13480 tcg_passres, tcg_passres); 13481 } 13482 13483 if (opcode == 0xa || opcode == 0xb) { 13484 continue; 13485 } 13486 13487 /* Accumulating op: handle accumulate step */ 13488 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13489 13490 switch (opcode) { 13491 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13492 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13493 tcg_passres); 13494 break; 13495 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13496 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13497 tcg_passres); 13498 break; 13499 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13500 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13501 /* fall through */ 13502 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13503 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13504 tcg_res[pass], 13505 tcg_passres); 13506 break; 13507 default: 13508 g_assert_not_reached(); 13509 } 13510 } 13511 13512 if (is_scalar) { 13513 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13514 } 13515 } 13516 13517 if (is_scalar) { 13518 tcg_res[1] = tcg_constant_i64(0); 13519 } 13520 13521 for (pass = 0; pass < 2; pass++) { 13522 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13523 } 13524 } 13525 } 13526 13527 /* Crypto AES 13528 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13529 * +-----------------+------+-----------+--------+-----+------+------+ 13530 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13531 * +-----------------+------+-----------+--------+-----+------+------+ 13532 */ 13533 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13534 { 13535 int size = extract32(insn, 22, 2); 13536 int opcode = extract32(insn, 12, 5); 13537 int rn = extract32(insn, 5, 5); 13538 int rd = extract32(insn, 0, 5); 13539 int decrypt; 13540 gen_helper_gvec_2 *genfn2 = NULL; 13541 gen_helper_gvec_3 *genfn3 = NULL; 13542 13543 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13544 unallocated_encoding(s); 13545 return; 13546 } 13547 13548 switch (opcode) { 13549 case 0x4: /* AESE */ 13550 decrypt = 0; 13551 genfn3 = gen_helper_crypto_aese; 13552 break; 13553 case 0x6: /* AESMC */ 13554 decrypt = 0; 13555 genfn2 = gen_helper_crypto_aesmc; 13556 break; 13557 case 0x5: /* AESD */ 13558 decrypt = 1; 13559 genfn3 = gen_helper_crypto_aese; 13560 break; 13561 case 0x7: /* AESIMC */ 13562 decrypt = 1; 13563 genfn2 = gen_helper_crypto_aesmc; 13564 break; 13565 default: 13566 unallocated_encoding(s); 13567 return; 13568 } 13569 13570 if (!fp_access_check(s)) { 13571 return; 13572 } 13573 if (genfn2) { 13574 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13575 } else { 13576 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13577 } 13578 } 13579 13580 /* Crypto three-reg SHA 13581 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13582 * +-----------------+------+---+------+---+--------+-----+------+------+ 13583 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13584 * +-----------------+------+---+------+---+--------+-----+------+------+ 13585 */ 13586 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13587 { 13588 int size = extract32(insn, 22, 2); 13589 int opcode = extract32(insn, 12, 3); 13590 int rm = extract32(insn, 16, 5); 13591 int rn = extract32(insn, 5, 5); 13592 int rd = extract32(insn, 0, 5); 13593 gen_helper_gvec_3 *genfn; 13594 bool feature; 13595 13596 if (size != 0) { 13597 unallocated_encoding(s); 13598 return; 13599 } 13600 13601 switch (opcode) { 13602 case 0: /* SHA1C */ 13603 genfn = gen_helper_crypto_sha1c; 13604 feature = dc_isar_feature(aa64_sha1, s); 13605 break; 13606 case 1: /* SHA1P */ 13607 genfn = gen_helper_crypto_sha1p; 13608 feature = dc_isar_feature(aa64_sha1, s); 13609 break; 13610 case 2: /* SHA1M */ 13611 genfn = gen_helper_crypto_sha1m; 13612 feature = dc_isar_feature(aa64_sha1, s); 13613 break; 13614 case 3: /* SHA1SU0 */ 13615 genfn = gen_helper_crypto_sha1su0; 13616 feature = dc_isar_feature(aa64_sha1, s); 13617 break; 13618 case 4: /* SHA256H */ 13619 genfn = gen_helper_crypto_sha256h; 13620 feature = dc_isar_feature(aa64_sha256, s); 13621 break; 13622 case 5: /* SHA256H2 */ 13623 genfn = gen_helper_crypto_sha256h2; 13624 feature = dc_isar_feature(aa64_sha256, s); 13625 break; 13626 case 6: /* SHA256SU1 */ 13627 genfn = gen_helper_crypto_sha256su1; 13628 feature = dc_isar_feature(aa64_sha256, s); 13629 break; 13630 default: 13631 unallocated_encoding(s); 13632 return; 13633 } 13634 13635 if (!feature) { 13636 unallocated_encoding(s); 13637 return; 13638 } 13639 13640 if (!fp_access_check(s)) { 13641 return; 13642 } 13643 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13644 } 13645 13646 /* Crypto two-reg SHA 13647 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13648 * +-----------------+------+-----------+--------+-----+------+------+ 13649 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13650 * +-----------------+------+-----------+--------+-----+------+------+ 13651 */ 13652 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13653 { 13654 int size = extract32(insn, 22, 2); 13655 int opcode = extract32(insn, 12, 5); 13656 int rn = extract32(insn, 5, 5); 13657 int rd = extract32(insn, 0, 5); 13658 gen_helper_gvec_2 *genfn; 13659 bool feature; 13660 13661 if (size != 0) { 13662 unallocated_encoding(s); 13663 return; 13664 } 13665 13666 switch (opcode) { 13667 case 0: /* SHA1H */ 13668 feature = dc_isar_feature(aa64_sha1, s); 13669 genfn = gen_helper_crypto_sha1h; 13670 break; 13671 case 1: /* SHA1SU1 */ 13672 feature = dc_isar_feature(aa64_sha1, s); 13673 genfn = gen_helper_crypto_sha1su1; 13674 break; 13675 case 2: /* SHA256SU0 */ 13676 feature = dc_isar_feature(aa64_sha256, s); 13677 genfn = gen_helper_crypto_sha256su0; 13678 break; 13679 default: 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 13684 if (!feature) { 13685 unallocated_encoding(s); 13686 return; 13687 } 13688 13689 if (!fp_access_check(s)) { 13690 return; 13691 } 13692 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13693 } 13694 13695 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13696 { 13697 tcg_gen_rotli_i64(d, m, 1); 13698 tcg_gen_xor_i64(d, d, n); 13699 } 13700 13701 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13702 { 13703 tcg_gen_rotli_vec(vece, d, m, 1); 13704 tcg_gen_xor_vec(vece, d, d, n); 13705 } 13706 13707 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13708 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13709 { 13710 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13711 static const GVecGen3 op = { 13712 .fni8 = gen_rax1_i64, 13713 .fniv = gen_rax1_vec, 13714 .opt_opc = vecop_list, 13715 .fno = gen_helper_crypto_rax1, 13716 .vece = MO_64, 13717 }; 13718 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13719 } 13720 13721 /* Crypto three-reg SHA512 13722 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13723 * +-----------------------+------+---+---+-----+--------+------+------+ 13724 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13725 * +-----------------------+------+---+---+-----+--------+------+------+ 13726 */ 13727 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13728 { 13729 int opcode = extract32(insn, 10, 2); 13730 int o = extract32(insn, 14, 1); 13731 int rm = extract32(insn, 16, 5); 13732 int rn = extract32(insn, 5, 5); 13733 int rd = extract32(insn, 0, 5); 13734 bool feature; 13735 gen_helper_gvec_3 *oolfn = NULL; 13736 GVecGen3Fn *gvecfn = NULL; 13737 13738 if (o == 0) { 13739 switch (opcode) { 13740 case 0: /* SHA512H */ 13741 feature = dc_isar_feature(aa64_sha512, s); 13742 oolfn = gen_helper_crypto_sha512h; 13743 break; 13744 case 1: /* SHA512H2 */ 13745 feature = dc_isar_feature(aa64_sha512, s); 13746 oolfn = gen_helper_crypto_sha512h2; 13747 break; 13748 case 2: /* SHA512SU1 */ 13749 feature = dc_isar_feature(aa64_sha512, s); 13750 oolfn = gen_helper_crypto_sha512su1; 13751 break; 13752 case 3: /* RAX1 */ 13753 feature = dc_isar_feature(aa64_sha3, s); 13754 gvecfn = gen_gvec_rax1; 13755 break; 13756 default: 13757 g_assert_not_reached(); 13758 } 13759 } else { 13760 switch (opcode) { 13761 case 0: /* SM3PARTW1 */ 13762 feature = dc_isar_feature(aa64_sm3, s); 13763 oolfn = gen_helper_crypto_sm3partw1; 13764 break; 13765 case 1: /* SM3PARTW2 */ 13766 feature = dc_isar_feature(aa64_sm3, s); 13767 oolfn = gen_helper_crypto_sm3partw2; 13768 break; 13769 case 2: /* SM4EKEY */ 13770 feature = dc_isar_feature(aa64_sm4, s); 13771 oolfn = gen_helper_crypto_sm4ekey; 13772 break; 13773 default: 13774 unallocated_encoding(s); 13775 return; 13776 } 13777 } 13778 13779 if (!feature) { 13780 unallocated_encoding(s); 13781 return; 13782 } 13783 13784 if (!fp_access_check(s)) { 13785 return; 13786 } 13787 13788 if (oolfn) { 13789 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13790 } else { 13791 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13792 } 13793 } 13794 13795 /* Crypto two-reg SHA512 13796 * 31 12 11 10 9 5 4 0 13797 * +-----------------------------------------+--------+------+------+ 13798 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13799 * +-----------------------------------------+--------+------+------+ 13800 */ 13801 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13802 { 13803 int opcode = extract32(insn, 10, 2); 13804 int rn = extract32(insn, 5, 5); 13805 int rd = extract32(insn, 0, 5); 13806 bool feature; 13807 13808 switch (opcode) { 13809 case 0: /* SHA512SU0 */ 13810 feature = dc_isar_feature(aa64_sha512, s); 13811 break; 13812 case 1: /* SM4E */ 13813 feature = dc_isar_feature(aa64_sm4, s); 13814 break; 13815 default: 13816 unallocated_encoding(s); 13817 return; 13818 } 13819 13820 if (!feature) { 13821 unallocated_encoding(s); 13822 return; 13823 } 13824 13825 if (!fp_access_check(s)) { 13826 return; 13827 } 13828 13829 switch (opcode) { 13830 case 0: /* SHA512SU0 */ 13831 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13832 break; 13833 case 1: /* SM4E */ 13834 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13835 break; 13836 default: 13837 g_assert_not_reached(); 13838 } 13839 } 13840 13841 /* Crypto four-register 13842 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13843 * +-------------------+-----+------+---+------+------+------+ 13844 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13845 * +-------------------+-----+------+---+------+------+------+ 13846 */ 13847 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13848 { 13849 int op0 = extract32(insn, 21, 2); 13850 int rm = extract32(insn, 16, 5); 13851 int ra = extract32(insn, 10, 5); 13852 int rn = extract32(insn, 5, 5); 13853 int rd = extract32(insn, 0, 5); 13854 bool feature; 13855 13856 switch (op0) { 13857 case 0: /* EOR3 */ 13858 case 1: /* BCAX */ 13859 feature = dc_isar_feature(aa64_sha3, s); 13860 break; 13861 case 2: /* SM3SS1 */ 13862 feature = dc_isar_feature(aa64_sm3, s); 13863 break; 13864 default: 13865 unallocated_encoding(s); 13866 return; 13867 } 13868 13869 if (!feature) { 13870 unallocated_encoding(s); 13871 return; 13872 } 13873 13874 if (!fp_access_check(s)) { 13875 return; 13876 } 13877 13878 if (op0 < 2) { 13879 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13880 int pass; 13881 13882 tcg_op1 = tcg_temp_new_i64(); 13883 tcg_op2 = tcg_temp_new_i64(); 13884 tcg_op3 = tcg_temp_new_i64(); 13885 tcg_res[0] = tcg_temp_new_i64(); 13886 tcg_res[1] = tcg_temp_new_i64(); 13887 13888 for (pass = 0; pass < 2; pass++) { 13889 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13890 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13891 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13892 13893 if (op0 == 0) { 13894 /* EOR3 */ 13895 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13896 } else { 13897 /* BCAX */ 13898 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13899 } 13900 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13901 } 13902 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13903 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13904 } else { 13905 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13906 13907 tcg_op1 = tcg_temp_new_i32(); 13908 tcg_op2 = tcg_temp_new_i32(); 13909 tcg_op3 = tcg_temp_new_i32(); 13910 tcg_res = tcg_temp_new_i32(); 13911 tcg_zero = tcg_constant_i32(0); 13912 13913 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13914 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13915 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13916 13917 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13918 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13919 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13920 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13921 13922 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13923 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13924 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13925 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13926 } 13927 } 13928 13929 /* Crypto XAR 13930 * 31 21 20 16 15 10 9 5 4 0 13931 * +-----------------------+------+--------+------+------+ 13932 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13933 * +-----------------------+------+--------+------+------+ 13934 */ 13935 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13936 { 13937 int rm = extract32(insn, 16, 5); 13938 int imm6 = extract32(insn, 10, 6); 13939 int rn = extract32(insn, 5, 5); 13940 int rd = extract32(insn, 0, 5); 13941 13942 if (!dc_isar_feature(aa64_sha3, s)) { 13943 unallocated_encoding(s); 13944 return; 13945 } 13946 13947 if (!fp_access_check(s)) { 13948 return; 13949 } 13950 13951 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13952 vec_full_reg_offset(s, rn), 13953 vec_full_reg_offset(s, rm), imm6, 16, 13954 vec_full_reg_size(s)); 13955 } 13956 13957 /* Crypto three-reg imm2 13958 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13959 * +-----------------------+------+-----+------+--------+------+------+ 13960 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13961 * +-----------------------+------+-----+------+--------+------+------+ 13962 */ 13963 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13964 { 13965 static gen_helper_gvec_3 * const fns[4] = { 13966 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13967 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13968 }; 13969 int opcode = extract32(insn, 10, 2); 13970 int imm2 = extract32(insn, 12, 2); 13971 int rm = extract32(insn, 16, 5); 13972 int rn = extract32(insn, 5, 5); 13973 int rd = extract32(insn, 0, 5); 13974 13975 if (!dc_isar_feature(aa64_sm3, s)) { 13976 unallocated_encoding(s); 13977 return; 13978 } 13979 13980 if (!fp_access_check(s)) { 13981 return; 13982 } 13983 13984 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13985 } 13986 13987 /* C3.6 Data processing - SIMD, inc Crypto 13988 * 13989 * As the decode gets a little complex we are using a table based 13990 * approach for this part of the decode. 13991 */ 13992 static const AArch64DecodeTable data_proc_simd[] = { 13993 /* pattern , mask , fn */ 13994 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13995 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13996 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13997 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13998 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13999 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14000 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14001 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14002 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14003 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14004 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14005 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14006 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14007 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14008 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14009 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14010 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14011 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14012 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14013 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14014 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14015 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14016 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14017 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14018 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14019 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14020 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14021 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14022 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14023 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14024 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14025 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14026 { 0x00000000, 0x00000000, NULL } 14027 }; 14028 14029 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14030 { 14031 /* Note that this is called with all non-FP cases from 14032 * table C3-6 so it must UNDEF for entries not specifically 14033 * allocated to instructions in that table. 14034 */ 14035 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14036 if (fn) { 14037 fn(s, insn); 14038 } else { 14039 unallocated_encoding(s); 14040 } 14041 } 14042 14043 /* C3.6 Data processing - SIMD and floating point */ 14044 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14045 { 14046 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14047 disas_data_proc_fp(s, insn); 14048 } else { 14049 /* SIMD, including crypto */ 14050 disas_data_proc_simd(s, insn); 14051 } 14052 } 14053 14054 static bool trans_OK(DisasContext *s, arg_OK *a) 14055 { 14056 return true; 14057 } 14058 14059 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14060 { 14061 s->is_nonstreaming = true; 14062 return true; 14063 } 14064 14065 /** 14066 * is_guarded_page: 14067 * @env: The cpu environment 14068 * @s: The DisasContext 14069 * 14070 * Return true if the page is guarded. 14071 */ 14072 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14073 { 14074 uint64_t addr = s->base.pc_first; 14075 #ifdef CONFIG_USER_ONLY 14076 return page_get_flags(addr) & PAGE_BTI; 14077 #else 14078 CPUTLBEntryFull *full; 14079 void *host; 14080 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14081 int flags; 14082 14083 /* 14084 * We test this immediately after reading an insn, which means 14085 * that the TLB entry must be present and valid, and thus this 14086 * access will never raise an exception. 14087 */ 14088 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14089 false, &host, &full, 0); 14090 assert(!(flags & TLB_INVALID_MASK)); 14091 14092 return full->guarded; 14093 #endif 14094 } 14095 14096 /** 14097 * btype_destination_ok: 14098 * @insn: The instruction at the branch destination 14099 * @bt: SCTLR_ELx.BT 14100 * @btype: PSTATE.BTYPE, and is non-zero 14101 * 14102 * On a guarded page, there are a limited number of insns 14103 * that may be present at the branch target: 14104 * - branch target identifiers, 14105 * - paciasp, pacibsp, 14106 * - BRK insn 14107 * - HLT insn 14108 * Anything else causes a Branch Target Exception. 14109 * 14110 * Return true if the branch is compatible, false to raise BTITRAP. 14111 */ 14112 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14113 { 14114 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14115 /* HINT space */ 14116 switch (extract32(insn, 5, 7)) { 14117 case 0b011001: /* PACIASP */ 14118 case 0b011011: /* PACIBSP */ 14119 /* 14120 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14121 * with btype == 3. Otherwise all btype are ok. 14122 */ 14123 return !bt || btype != 3; 14124 case 0b100000: /* BTI */ 14125 /* Not compatible with any btype. */ 14126 return false; 14127 case 0b100010: /* BTI c */ 14128 /* Not compatible with btype == 3 */ 14129 return btype != 3; 14130 case 0b100100: /* BTI j */ 14131 /* Not compatible with btype == 2 */ 14132 return btype != 2; 14133 case 0b100110: /* BTI jc */ 14134 /* Compatible with any btype. */ 14135 return true; 14136 } 14137 } else { 14138 switch (insn & 0xffe0001fu) { 14139 case 0xd4200000u: /* BRK */ 14140 case 0xd4400000u: /* HLT */ 14141 /* Give priority to the breakpoint exception. */ 14142 return true; 14143 } 14144 } 14145 return false; 14146 } 14147 14148 /* C3.1 A64 instruction index by encoding */ 14149 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14150 { 14151 switch (extract32(insn, 25, 4)) { 14152 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14153 disas_b_exc_sys(s, insn); 14154 break; 14155 case 0x4: 14156 case 0x6: 14157 case 0xc: 14158 case 0xe: /* Loads and stores */ 14159 disas_ldst(s, insn); 14160 break; 14161 case 0x5: 14162 case 0xd: /* Data processing - register */ 14163 disas_data_proc_reg(s, insn); 14164 break; 14165 case 0x7: 14166 case 0xf: /* Data processing - SIMD and floating point */ 14167 disas_data_proc_simd_fp(s, insn); 14168 break; 14169 default: 14170 unallocated_encoding(s); 14171 break; 14172 } 14173 } 14174 14175 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14176 CPUState *cpu) 14177 { 14178 DisasContext *dc = container_of(dcbase, DisasContext, base); 14179 CPUARMState *env = cpu->env_ptr; 14180 ARMCPU *arm_cpu = env_archcpu(env); 14181 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14182 int bound, core_mmu_idx; 14183 14184 dc->isar = &arm_cpu->isar; 14185 dc->condjmp = 0; 14186 dc->pc_save = dc->base.pc_first; 14187 dc->aarch64 = true; 14188 dc->thumb = false; 14189 dc->sctlr_b = 0; 14190 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14191 dc->condexec_mask = 0; 14192 dc->condexec_cond = 0; 14193 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14194 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14195 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14196 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14197 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14198 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14199 #if !defined(CONFIG_USER_ONLY) 14200 dc->user = (dc->current_el == 0); 14201 #endif 14202 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14203 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14204 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14205 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14206 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14207 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14208 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14209 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14210 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14211 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14212 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14213 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14214 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14215 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14216 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14217 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14218 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14219 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14220 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14221 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14222 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14223 dc->vec_len = 0; 14224 dc->vec_stride = 0; 14225 dc->cp_regs = arm_cpu->cp_regs; 14226 dc->features = env->features; 14227 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14228 14229 #ifdef CONFIG_USER_ONLY 14230 /* In sve_probe_page, we assume TBI is enabled. */ 14231 tcg_debug_assert(dc->tbid & 1); 14232 #endif 14233 14234 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14235 14236 /* Single step state. The code-generation logic here is: 14237 * SS_ACTIVE == 0: 14238 * generate code with no special handling for single-stepping (except 14239 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14240 * this happens anyway because those changes are all system register or 14241 * PSTATE writes). 14242 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14243 * emit code for one insn 14244 * emit code to clear PSTATE.SS 14245 * emit code to generate software step exception for completed step 14246 * end TB (as usual for having generated an exception) 14247 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14248 * emit code to generate a software step exception 14249 * end the TB 14250 */ 14251 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14252 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14253 dc->is_ldex = false; 14254 14255 /* Bound the number of insns to execute to those left on the page. */ 14256 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14257 14258 /* If architectural single step active, limit to 1. */ 14259 if (dc->ss_active) { 14260 bound = 1; 14261 } 14262 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14263 } 14264 14265 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14266 { 14267 } 14268 14269 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14270 { 14271 DisasContext *dc = container_of(dcbase, DisasContext, base); 14272 target_ulong pc_arg = dc->base.pc_next; 14273 14274 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14275 pc_arg &= ~TARGET_PAGE_MASK; 14276 } 14277 tcg_gen_insn_start(pc_arg, 0, 0); 14278 dc->insn_start = tcg_last_op(); 14279 } 14280 14281 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14282 { 14283 DisasContext *s = container_of(dcbase, DisasContext, base); 14284 CPUARMState *env = cpu->env_ptr; 14285 uint64_t pc = s->base.pc_next; 14286 uint32_t insn; 14287 14288 /* Singlestep exceptions have the highest priority. */ 14289 if (s->ss_active && !s->pstate_ss) { 14290 /* Singlestep state is Active-pending. 14291 * If we're in this state at the start of a TB then either 14292 * a) we just took an exception to an EL which is being debugged 14293 * and this is the first insn in the exception handler 14294 * b) debug exceptions were masked and we just unmasked them 14295 * without changing EL (eg by clearing PSTATE.D) 14296 * In either case we're going to take a swstep exception in the 14297 * "did not step an insn" case, and so the syndrome ISV and EX 14298 * bits should be zero. 14299 */ 14300 assert(s->base.num_insns == 1); 14301 gen_swstep_exception(s, 0, 0); 14302 s->base.is_jmp = DISAS_NORETURN; 14303 s->base.pc_next = pc + 4; 14304 return; 14305 } 14306 14307 if (pc & 3) { 14308 /* 14309 * PC alignment fault. This has priority over the instruction abort 14310 * that we would receive from a translation fault via arm_ldl_code. 14311 * This should only be possible after an indirect branch, at the 14312 * start of the TB. 14313 */ 14314 assert(s->base.num_insns == 1); 14315 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14316 s->base.is_jmp = DISAS_NORETURN; 14317 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14318 return; 14319 } 14320 14321 s->pc_curr = pc; 14322 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14323 s->insn = insn; 14324 s->base.pc_next = pc + 4; 14325 14326 s->fp_access_checked = false; 14327 s->sve_access_checked = false; 14328 14329 if (s->pstate_il) { 14330 /* 14331 * Illegal execution state. This has priority over BTI 14332 * exceptions, but comes after instruction abort exceptions. 14333 */ 14334 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14335 return; 14336 } 14337 14338 if (dc_isar_feature(aa64_bti, s)) { 14339 if (s->base.num_insns == 1) { 14340 /* 14341 * At the first insn of the TB, compute s->guarded_page. 14342 * We delayed computing this until successfully reading 14343 * the first insn of the TB, above. This (mostly) ensures 14344 * that the softmmu tlb entry has been populated, and the 14345 * page table GP bit is available. 14346 * 14347 * Note that we need to compute this even if btype == 0, 14348 * because this value is used for BR instructions later 14349 * where ENV is not available. 14350 */ 14351 s->guarded_page = is_guarded_page(env, s); 14352 14353 /* First insn can have btype set to non-zero. */ 14354 tcg_debug_assert(s->btype >= 0); 14355 14356 /* 14357 * Note that the Branch Target Exception has fairly high 14358 * priority -- below debugging exceptions but above most 14359 * everything else. This allows us to handle this now 14360 * instead of waiting until the insn is otherwise decoded. 14361 */ 14362 if (s->btype != 0 14363 && s->guarded_page 14364 && !btype_destination_ok(insn, s->bt, s->btype)) { 14365 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14366 return; 14367 } 14368 } else { 14369 /* Not the first insn: btype must be 0. */ 14370 tcg_debug_assert(s->btype == 0); 14371 } 14372 } 14373 14374 s->is_nonstreaming = false; 14375 if (s->sme_trap_nonstreaming) { 14376 disas_sme_fa64(s, insn); 14377 } 14378 14379 if (!disas_a64(s, insn) && 14380 !disas_sme(s, insn) && 14381 !disas_sve(s, insn)) { 14382 disas_a64_legacy(s, insn); 14383 } 14384 14385 /* 14386 * After execution of most insns, btype is reset to 0. 14387 * Note that we set btype == -1 when the insn sets btype. 14388 */ 14389 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14390 reset_btype(s); 14391 } 14392 } 14393 14394 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14395 { 14396 DisasContext *dc = container_of(dcbase, DisasContext, base); 14397 14398 if (unlikely(dc->ss_active)) { 14399 /* Note that this means single stepping WFI doesn't halt the CPU. 14400 * For conditional branch insns this is harmless unreachable code as 14401 * gen_goto_tb() has already handled emitting the debug exception 14402 * (and thus a tb-jump is not possible when singlestepping). 14403 */ 14404 switch (dc->base.is_jmp) { 14405 default: 14406 gen_a64_update_pc(dc, 4); 14407 /* fall through */ 14408 case DISAS_EXIT: 14409 case DISAS_JUMP: 14410 gen_step_complete_exception(dc); 14411 break; 14412 case DISAS_NORETURN: 14413 break; 14414 } 14415 } else { 14416 switch (dc->base.is_jmp) { 14417 case DISAS_NEXT: 14418 case DISAS_TOO_MANY: 14419 gen_goto_tb(dc, 1, 4); 14420 break; 14421 default: 14422 case DISAS_UPDATE_EXIT: 14423 gen_a64_update_pc(dc, 4); 14424 /* fall through */ 14425 case DISAS_EXIT: 14426 tcg_gen_exit_tb(NULL, 0); 14427 break; 14428 case DISAS_UPDATE_NOCHAIN: 14429 gen_a64_update_pc(dc, 4); 14430 /* fall through */ 14431 case DISAS_JUMP: 14432 tcg_gen_lookup_and_goto_ptr(); 14433 break; 14434 case DISAS_NORETURN: 14435 case DISAS_SWI: 14436 break; 14437 case DISAS_WFE: 14438 gen_a64_update_pc(dc, 4); 14439 gen_helper_wfe(cpu_env); 14440 break; 14441 case DISAS_YIELD: 14442 gen_a64_update_pc(dc, 4); 14443 gen_helper_yield(cpu_env); 14444 break; 14445 case DISAS_WFI: 14446 /* 14447 * This is a special case because we don't want to just halt 14448 * the CPU if trying to debug across a WFI. 14449 */ 14450 gen_a64_update_pc(dc, 4); 14451 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14452 /* 14453 * The helper doesn't necessarily throw an exception, but we 14454 * must go back to the main loop to check for interrupts anyway. 14455 */ 14456 tcg_gen_exit_tb(NULL, 0); 14457 break; 14458 } 14459 } 14460 } 14461 14462 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14463 CPUState *cpu, FILE *logfile) 14464 { 14465 DisasContext *dc = container_of(dcbase, DisasContext, base); 14466 14467 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14468 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14469 } 14470 14471 const TranslatorOps aarch64_translator_ops = { 14472 .init_disas_context = aarch64_tr_init_disas_context, 14473 .tb_start = aarch64_tr_tb_start, 14474 .insn_start = aarch64_tr_insn_start, 14475 .translate_insn = aarch64_tr_translate_insn, 14476 .tb_stop = aarch64_tr_tb_stop, 14477 .disas_log = aarch64_tr_disas_log, 14478 }; 14479