1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->trap_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->trap_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2040 { 2041 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2042 return false; 2043 } 2044 2045 if (a->imm == 0) { 2046 clear_pstate_bits(PSTATE_ALLINT); 2047 } else if (s->current_el > 1) { 2048 set_pstate_bits(PSTATE_ALLINT); 2049 } else { 2050 gen_helper_msr_set_allint_el1(tcg_env); 2051 } 2052 2053 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2054 s->base.is_jmp = DISAS_UPDATE_EXIT; 2055 return true; 2056 } 2057 2058 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2059 { 2060 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2061 return false; 2062 } 2063 if (sme_access_check(s)) { 2064 int old = s->pstate_sm | (s->pstate_za << 1); 2065 int new = a->imm * 3; 2066 2067 if ((old ^ new) & a->mask) { 2068 /* At least one bit changes. */ 2069 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2070 tcg_constant_i32(a->mask)); 2071 s->base.is_jmp = DISAS_TOO_MANY; 2072 } 2073 } 2074 return true; 2075 } 2076 2077 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 tmp = tcg_temp_new_i32(); 2080 TCGv_i32 nzcv = tcg_temp_new_i32(); 2081 2082 /* build bit 31, N */ 2083 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2084 /* build bit 30, Z */ 2085 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2086 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2087 /* build bit 29, C */ 2088 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2089 /* build bit 28, V */ 2090 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2091 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2092 /* generate result */ 2093 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2094 } 2095 2096 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2097 { 2098 TCGv_i32 nzcv = tcg_temp_new_i32(); 2099 2100 /* take NZCV from R[t] */ 2101 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2102 2103 /* bit 31, N */ 2104 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2105 /* bit 30, Z */ 2106 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2107 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2108 /* bit 29, C */ 2109 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2110 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2111 /* bit 28, V */ 2112 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2113 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2114 } 2115 2116 static void gen_sysreg_undef(DisasContext *s, bool isread, 2117 uint8_t op0, uint8_t op1, uint8_t op2, 2118 uint8_t crn, uint8_t crm, uint8_t rt) 2119 { 2120 /* 2121 * Generate code to emit an UNDEF with correct syndrome 2122 * information for a failed system register access. 2123 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2124 * but if FEAT_IDST is implemented then read accesses to registers 2125 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2126 * syndrome. 2127 */ 2128 uint32_t syndrome; 2129 2130 if (isread && dc_isar_feature(aa64_ids, s) && 2131 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2132 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2133 } else { 2134 syndrome = syn_uncategorized(); 2135 } 2136 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2137 } 2138 2139 /* MRS - move from system register 2140 * MSR (register) - move to system register 2141 * SYS 2142 * SYSL 2143 * These are all essentially the same insn in 'read' and 'write' 2144 * versions, with varying op0 fields. 2145 */ 2146 static void handle_sys(DisasContext *s, bool isread, 2147 unsigned int op0, unsigned int op1, unsigned int op2, 2148 unsigned int crn, unsigned int crm, unsigned int rt) 2149 { 2150 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2151 crn, crm, op0, op1, op2); 2152 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2153 bool need_exit_tb = false; 2154 bool nv_trap_to_el2 = false; 2155 bool nv_redirect_reg = false; 2156 bool skip_fp_access_checks = false; 2157 bool nv2_mem_redirect = false; 2158 TCGv_ptr tcg_ri = NULL; 2159 TCGv_i64 tcg_rt; 2160 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2161 2162 if (crn == 11 || crn == 15) { 2163 /* 2164 * Check for TIDCP trap, which must take precedence over 2165 * the UNDEF for "no such register" etc. 2166 */ 2167 switch (s->current_el) { 2168 case 0: 2169 if (dc_isar_feature(aa64_tidcp1, s)) { 2170 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2171 } 2172 break; 2173 case 1: 2174 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2175 break; 2176 } 2177 } 2178 2179 if (!ri) { 2180 /* Unknown register; this might be a guest error or a QEMU 2181 * unimplemented feature. 2182 */ 2183 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2184 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2185 isread ? "read" : "write", op0, op1, crn, crm, op2); 2186 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2187 return; 2188 } 2189 2190 if (s->nv2 && ri->nv2_redirect_offset) { 2191 /* 2192 * Some registers always redirect to memory; some only do so if 2193 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2194 * pairs which share an offset; see the table in R_CSRPQ). 2195 */ 2196 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2197 nv2_mem_redirect = s->nv1; 2198 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2199 nv2_mem_redirect = !s->nv1; 2200 } else { 2201 nv2_mem_redirect = true; 2202 } 2203 } 2204 2205 /* Check access permissions */ 2206 if (!cp_access_ok(s->current_el, ri, isread)) { 2207 /* 2208 * FEAT_NV/NV2 handling does not do the usual FP access checks 2209 * for registers only accessible at EL2 (though it *does* do them 2210 * for registers accessible at EL1). 2211 */ 2212 skip_fp_access_checks = true; 2213 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2214 /* 2215 * This is one of the few EL2 registers which should redirect 2216 * to the equivalent EL1 register. We do that after running 2217 * the EL2 register's accessfn. 2218 */ 2219 nv_redirect_reg = true; 2220 assert(!nv2_mem_redirect); 2221 } else if (nv2_mem_redirect) { 2222 /* 2223 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2224 * UNDEF to EL1. 2225 */ 2226 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2227 /* 2228 * This register / instruction exists and is an EL2 register, so 2229 * we must trap to EL2 if accessed in nested virtualization EL1 2230 * instead of UNDEFing. We'll do that after the usual access checks. 2231 * (This makes a difference only for a couple of registers like 2232 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2233 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2234 * an accessfn which does nothing when called from EL1, because 2235 * the trap-to-EL3 controls which would apply to that register 2236 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2237 */ 2238 nv_trap_to_el2 = true; 2239 } else { 2240 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2241 return; 2242 } 2243 } 2244 2245 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2246 /* Emit code to perform further access permissions checks at 2247 * runtime; this may result in an exception. 2248 */ 2249 gen_a64_update_pc(s, 0); 2250 tcg_ri = tcg_temp_new_ptr(); 2251 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2252 tcg_constant_i32(key), 2253 tcg_constant_i32(syndrome), 2254 tcg_constant_i32(isread)); 2255 } else if (ri->type & ARM_CP_RAISES_EXC) { 2256 /* 2257 * The readfn or writefn might raise an exception; 2258 * synchronize the CPU state in case it does. 2259 */ 2260 gen_a64_update_pc(s, 0); 2261 } 2262 2263 if (!skip_fp_access_checks) { 2264 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2265 return; 2266 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2267 return; 2268 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2269 return; 2270 } 2271 } 2272 2273 if (nv_trap_to_el2) { 2274 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2275 return; 2276 } 2277 2278 if (nv_redirect_reg) { 2279 /* 2280 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2281 * Conveniently in all cases the encoding of the EL1 register is 2282 * identical to the EL2 register except that opc1 is 0. 2283 * Get the reginfo for the EL1 register to use for the actual access. 2284 * We don't use the EL1 register's access function, and 2285 * fine-grained-traps on EL1 also do not apply here. 2286 */ 2287 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2288 crn, crm, op0, 0, op2); 2289 ri = get_arm_cp_reginfo(s->cp_regs, key); 2290 assert(ri); 2291 assert(cp_access_ok(s->current_el, ri, isread)); 2292 /* 2293 * We might not have done an update_pc earlier, so check we don't 2294 * need it. We could support this in future if necessary. 2295 */ 2296 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2297 } 2298 2299 if (nv2_mem_redirect) { 2300 /* 2301 * This system register is being redirected into an EL2 memory access. 2302 * This means it is not an IO operation, doesn't change hflags, 2303 * and need not end the TB, because it has no side effects. 2304 * 2305 * The access is 64-bit single copy atomic, guaranteed aligned because 2306 * of the definition of VCNR_EL2. Its endianness depends on 2307 * SCTLR_EL2.EE, not on the data endianness of EL1. 2308 * It is done under either the EL2 translation regime or the EL2&0 2309 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2310 * PSTATE.PAN is 0. 2311 */ 2312 TCGv_i64 ptr = tcg_temp_new_i64(); 2313 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2314 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2315 int memidx = arm_to_core_mmu_idx(armmemidx); 2316 uint32_t syn; 2317 2318 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2319 2320 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2321 tcg_gen_addi_i64(ptr, ptr, 2322 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2323 tcg_rt = cpu_reg(s, rt); 2324 2325 syn = syn_data_abort_vncr(0, !isread, 0); 2326 disas_set_insn_syndrome(s, syn); 2327 if (isread) { 2328 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2329 } else { 2330 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2331 } 2332 return; 2333 } 2334 2335 /* Handle special cases first */ 2336 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2337 case 0: 2338 break; 2339 case ARM_CP_NOP: 2340 return; 2341 case ARM_CP_NZCV: 2342 tcg_rt = cpu_reg(s, rt); 2343 if (isread) { 2344 gen_get_nzcv(tcg_rt); 2345 } else { 2346 gen_set_nzcv(tcg_rt); 2347 } 2348 return; 2349 case ARM_CP_CURRENTEL: 2350 { 2351 /* 2352 * Reads as current EL value from pstate, which is 2353 * guaranteed to be constant by the tb flags. 2354 * For nested virt we should report EL2. 2355 */ 2356 int el = s->nv ? 2 : s->current_el; 2357 tcg_rt = cpu_reg(s, rt); 2358 tcg_gen_movi_i64(tcg_rt, el << 2); 2359 return; 2360 } 2361 case ARM_CP_DC_ZVA: 2362 /* Writes clear the aligned block of memory which rt points into. */ 2363 if (s->mte_active[0]) { 2364 int desc = 0; 2365 2366 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2367 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2368 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2369 2370 tcg_rt = tcg_temp_new_i64(); 2371 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2372 tcg_constant_i32(desc), cpu_reg(s, rt)); 2373 } else { 2374 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2375 } 2376 gen_helper_dc_zva(tcg_env, tcg_rt); 2377 return; 2378 case ARM_CP_DC_GVA: 2379 { 2380 TCGv_i64 clean_addr, tag; 2381 2382 /* 2383 * DC_GVA, like DC_ZVA, requires that we supply the original 2384 * pointer for an invalid page. Probe that address first. 2385 */ 2386 tcg_rt = cpu_reg(s, rt); 2387 clean_addr = clean_data_tbi(s, tcg_rt); 2388 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2389 2390 if (s->ata[0]) { 2391 /* Extract the tag from the register to match STZGM. */ 2392 tag = tcg_temp_new_i64(); 2393 tcg_gen_shri_i64(tag, tcg_rt, 56); 2394 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2395 } 2396 } 2397 return; 2398 case ARM_CP_DC_GZVA: 2399 { 2400 TCGv_i64 clean_addr, tag; 2401 2402 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2403 tcg_rt = cpu_reg(s, rt); 2404 clean_addr = clean_data_tbi(s, tcg_rt); 2405 gen_helper_dc_zva(tcg_env, clean_addr); 2406 2407 if (s->ata[0]) { 2408 /* Extract the tag from the register to match STZGM. */ 2409 tag = tcg_temp_new_i64(); 2410 tcg_gen_shri_i64(tag, tcg_rt, 56); 2411 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2412 } 2413 } 2414 return; 2415 default: 2416 g_assert_not_reached(); 2417 } 2418 2419 if (ri->type & ARM_CP_IO) { 2420 /* I/O operations must end the TB here (whether read or write) */ 2421 need_exit_tb = translator_io_start(&s->base); 2422 } 2423 2424 tcg_rt = cpu_reg(s, rt); 2425 2426 if (isread) { 2427 if (ri->type & ARM_CP_CONST) { 2428 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2429 } else if (ri->readfn) { 2430 if (!tcg_ri) { 2431 tcg_ri = gen_lookup_cp_reg(key); 2432 } 2433 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2434 } else { 2435 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2436 } 2437 } else { 2438 if (ri->type & ARM_CP_CONST) { 2439 /* If not forbidden by access permissions, treat as WI */ 2440 return; 2441 } else if (ri->writefn) { 2442 if (!tcg_ri) { 2443 tcg_ri = gen_lookup_cp_reg(key); 2444 } 2445 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2446 } else { 2447 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2448 } 2449 } 2450 2451 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2452 /* 2453 * A write to any coprocessor register that ends a TB 2454 * must rebuild the hflags for the next TB. 2455 */ 2456 gen_rebuild_hflags(s); 2457 /* 2458 * We default to ending the TB on a coprocessor register write, 2459 * but allow this to be suppressed by the register definition 2460 * (usually only necessary to work around guest bugs). 2461 */ 2462 need_exit_tb = true; 2463 } 2464 if (need_exit_tb) { 2465 s->base.is_jmp = DISAS_UPDATE_EXIT; 2466 } 2467 } 2468 2469 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2470 { 2471 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2472 return true; 2473 } 2474 2475 static bool trans_SVC(DisasContext *s, arg_i *a) 2476 { 2477 /* 2478 * For SVC, HVC and SMC we advance the single-step state 2479 * machine before taking the exception. This is architecturally 2480 * mandated, to ensure that single-stepping a system call 2481 * instruction works properly. 2482 */ 2483 uint32_t syndrome = syn_aa64_svc(a->imm); 2484 if (s->fgt_svc) { 2485 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2486 return true; 2487 } 2488 gen_ss_advance(s); 2489 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2490 return true; 2491 } 2492 2493 static bool trans_HVC(DisasContext *s, arg_i *a) 2494 { 2495 int target_el = s->current_el == 3 ? 3 : 2; 2496 2497 if (s->current_el == 0) { 2498 unallocated_encoding(s); 2499 return true; 2500 } 2501 /* 2502 * The pre HVC helper handles cases when HVC gets trapped 2503 * as an undefined insn by runtime configuration. 2504 */ 2505 gen_a64_update_pc(s, 0); 2506 gen_helper_pre_hvc(tcg_env); 2507 /* Architecture requires ss advance before we do the actual work */ 2508 gen_ss_advance(s); 2509 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2510 return true; 2511 } 2512 2513 static bool trans_SMC(DisasContext *s, arg_i *a) 2514 { 2515 if (s->current_el == 0) { 2516 unallocated_encoding(s); 2517 return true; 2518 } 2519 gen_a64_update_pc(s, 0); 2520 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2521 /* Architecture requires ss advance before we do the actual work */ 2522 gen_ss_advance(s); 2523 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2524 return true; 2525 } 2526 2527 static bool trans_BRK(DisasContext *s, arg_i *a) 2528 { 2529 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2530 return true; 2531 } 2532 2533 static bool trans_HLT(DisasContext *s, arg_i *a) 2534 { 2535 /* 2536 * HLT. This has two purposes. 2537 * Architecturally, it is an external halting debug instruction. 2538 * Since QEMU doesn't implement external debug, we treat this as 2539 * it is required for halting debug disabled: it will UNDEF. 2540 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2541 */ 2542 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2543 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2544 } else { 2545 unallocated_encoding(s); 2546 } 2547 return true; 2548 } 2549 2550 /* 2551 * Load/Store exclusive instructions are implemented by remembering 2552 * the value/address loaded, and seeing if these are the same 2553 * when the store is performed. This is not actually the architecturally 2554 * mandated semantics, but it works for typical guest code sequences 2555 * and avoids having to monitor regular stores. 2556 * 2557 * The store exclusive uses the atomic cmpxchg primitives to avoid 2558 * races in multi-threaded linux-user and when MTTCG softmmu is 2559 * enabled. 2560 */ 2561 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2562 int size, bool is_pair) 2563 { 2564 int idx = get_mem_index(s); 2565 TCGv_i64 dirty_addr, clean_addr; 2566 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2567 2568 s->is_ldex = true; 2569 dirty_addr = cpu_reg_sp(s, rn); 2570 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2571 2572 g_assert(size <= 3); 2573 if (is_pair) { 2574 g_assert(size >= 2); 2575 if (size == 2) { 2576 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2577 if (s->be_data == MO_LE) { 2578 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2579 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2580 } else { 2581 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2582 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2583 } 2584 } else { 2585 TCGv_i128 t16 = tcg_temp_new_i128(); 2586 2587 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2588 2589 if (s->be_data == MO_LE) { 2590 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2591 cpu_exclusive_high, t16); 2592 } else { 2593 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2594 cpu_exclusive_val, t16); 2595 } 2596 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2597 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2598 } 2599 } else { 2600 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2601 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2602 } 2603 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2604 } 2605 2606 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2607 int rn, int size, int is_pair) 2608 { 2609 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2610 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2611 * [addr] = {Rt}; 2612 * if (is_pair) { 2613 * [addr + datasize] = {Rt2}; 2614 * } 2615 * {Rd} = 0; 2616 * } else { 2617 * {Rd} = 1; 2618 * } 2619 * env->exclusive_addr = -1; 2620 */ 2621 TCGLabel *fail_label = gen_new_label(); 2622 TCGLabel *done_label = gen_new_label(); 2623 TCGv_i64 tmp, clean_addr; 2624 MemOp memop; 2625 2626 /* 2627 * FIXME: We are out of spec here. We have recorded only the address 2628 * from load_exclusive, not the entire range, and we assume that the 2629 * size of the access on both sides match. The architecture allows the 2630 * store to be smaller than the load, so long as the stored bytes are 2631 * within the range recorded by the load. 2632 */ 2633 2634 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2635 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2636 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2637 2638 /* 2639 * The write, and any associated faults, only happen if the virtual 2640 * and physical addresses pass the exclusive monitor check. These 2641 * faults are exceedingly unlikely, because normally the guest uses 2642 * the exact same address register for the load_exclusive, and we 2643 * would have recognized these faults there. 2644 * 2645 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2646 * unaligned 4-byte write within the range of an aligned 8-byte load. 2647 * With LSE2, the store would need to cross a 16-byte boundary when the 2648 * load did not, which would mean the store is outside the range 2649 * recorded for the monitor, which would have failed a corrected monitor 2650 * check above. For now, we assume no size change and retain the 2651 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2652 * 2653 * It is possible to trigger an MTE fault, by performing the load with 2654 * a virtual address with a valid tag and performing the store with the 2655 * same virtual address and a different invalid tag. 2656 */ 2657 memop = size + is_pair; 2658 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2659 memop |= MO_ALIGN; 2660 } 2661 memop = finalize_memop(s, memop); 2662 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2663 2664 tmp = tcg_temp_new_i64(); 2665 if (is_pair) { 2666 if (size == 2) { 2667 if (s->be_data == MO_LE) { 2668 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2669 } else { 2670 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2671 } 2672 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2673 cpu_exclusive_val, tmp, 2674 get_mem_index(s), memop); 2675 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2676 } else { 2677 TCGv_i128 t16 = tcg_temp_new_i128(); 2678 TCGv_i128 c16 = tcg_temp_new_i128(); 2679 TCGv_i64 a, b; 2680 2681 if (s->be_data == MO_LE) { 2682 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2683 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2684 cpu_exclusive_high); 2685 } else { 2686 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2687 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2688 cpu_exclusive_val); 2689 } 2690 2691 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2692 get_mem_index(s), memop); 2693 2694 a = tcg_temp_new_i64(); 2695 b = tcg_temp_new_i64(); 2696 if (s->be_data == MO_LE) { 2697 tcg_gen_extr_i128_i64(a, b, t16); 2698 } else { 2699 tcg_gen_extr_i128_i64(b, a, t16); 2700 } 2701 2702 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2703 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2704 tcg_gen_or_i64(tmp, a, b); 2705 2706 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2707 } 2708 } else { 2709 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2710 cpu_reg(s, rt), get_mem_index(s), memop); 2711 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2712 } 2713 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2714 tcg_gen_br(done_label); 2715 2716 gen_set_label(fail_label); 2717 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2718 gen_set_label(done_label); 2719 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2720 } 2721 2722 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2723 int rn, int size) 2724 { 2725 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2726 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2727 int memidx = get_mem_index(s); 2728 TCGv_i64 clean_addr; 2729 MemOp memop; 2730 2731 if (rn == 31) { 2732 gen_check_sp_alignment(s); 2733 } 2734 memop = check_atomic_align(s, rn, size); 2735 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2736 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2737 memidx, memop); 2738 } 2739 2740 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2741 int rn, int size) 2742 { 2743 TCGv_i64 s1 = cpu_reg(s, rs); 2744 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2745 TCGv_i64 t1 = cpu_reg(s, rt); 2746 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2747 TCGv_i64 clean_addr; 2748 int memidx = get_mem_index(s); 2749 MemOp memop; 2750 2751 if (rn == 31) { 2752 gen_check_sp_alignment(s); 2753 } 2754 2755 /* This is a single atomic access, despite the "pair". */ 2756 memop = check_atomic_align(s, rn, size + 1); 2757 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2758 2759 if (size == 2) { 2760 TCGv_i64 cmp = tcg_temp_new_i64(); 2761 TCGv_i64 val = tcg_temp_new_i64(); 2762 2763 if (s->be_data == MO_LE) { 2764 tcg_gen_concat32_i64(val, t1, t2); 2765 tcg_gen_concat32_i64(cmp, s1, s2); 2766 } else { 2767 tcg_gen_concat32_i64(val, t2, t1); 2768 tcg_gen_concat32_i64(cmp, s2, s1); 2769 } 2770 2771 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2772 2773 if (s->be_data == MO_LE) { 2774 tcg_gen_extr32_i64(s1, s2, cmp); 2775 } else { 2776 tcg_gen_extr32_i64(s2, s1, cmp); 2777 } 2778 } else { 2779 TCGv_i128 cmp = tcg_temp_new_i128(); 2780 TCGv_i128 val = tcg_temp_new_i128(); 2781 2782 if (s->be_data == MO_LE) { 2783 tcg_gen_concat_i64_i128(val, t1, t2); 2784 tcg_gen_concat_i64_i128(cmp, s1, s2); 2785 } else { 2786 tcg_gen_concat_i64_i128(val, t2, t1); 2787 tcg_gen_concat_i64_i128(cmp, s2, s1); 2788 } 2789 2790 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2791 2792 if (s->be_data == MO_LE) { 2793 tcg_gen_extr_i128_i64(s1, s2, cmp); 2794 } else { 2795 tcg_gen_extr_i128_i64(s2, s1, cmp); 2796 } 2797 } 2798 } 2799 2800 /* 2801 * Compute the ISS.SF bit for syndrome information if an exception 2802 * is taken on a load or store. This indicates whether the instruction 2803 * is accessing a 32-bit or 64-bit register. This logic is derived 2804 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2805 */ 2806 static bool ldst_iss_sf(int size, bool sign, bool ext) 2807 { 2808 2809 if (sign) { 2810 /* 2811 * Signed loads are 64 bit results if we are not going to 2812 * do a zero-extend from 32 to 64 after the load. 2813 * (For a store, sign and ext are always false.) 2814 */ 2815 return !ext; 2816 } else { 2817 /* Unsigned loads/stores work at the specified size */ 2818 return size == MO_64; 2819 } 2820 } 2821 2822 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2823 { 2824 if (a->rn == 31) { 2825 gen_check_sp_alignment(s); 2826 } 2827 if (a->lasr) { 2828 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2829 } 2830 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2831 return true; 2832 } 2833 2834 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2835 { 2836 if (a->rn == 31) { 2837 gen_check_sp_alignment(s); 2838 } 2839 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2840 if (a->lasr) { 2841 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2842 } 2843 return true; 2844 } 2845 2846 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2847 { 2848 TCGv_i64 clean_addr; 2849 MemOp memop; 2850 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2851 2852 /* 2853 * StoreLORelease is the same as Store-Release for QEMU, but 2854 * needs the feature-test. 2855 */ 2856 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2857 return false; 2858 } 2859 /* Generate ISS for non-exclusive accesses including LASR. */ 2860 if (a->rn == 31) { 2861 gen_check_sp_alignment(s); 2862 } 2863 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2864 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2865 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2866 true, a->rn != 31, memop); 2867 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2868 iss_sf, a->lasr); 2869 return true; 2870 } 2871 2872 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2873 { 2874 TCGv_i64 clean_addr; 2875 MemOp memop; 2876 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2877 2878 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2879 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2880 return false; 2881 } 2882 /* Generate ISS for non-exclusive accesses including LASR. */ 2883 if (a->rn == 31) { 2884 gen_check_sp_alignment(s); 2885 } 2886 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2887 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2888 false, a->rn != 31, memop); 2889 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2890 a->rt, iss_sf, a->lasr); 2891 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2892 return true; 2893 } 2894 2895 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2896 { 2897 if (a->rn == 31) { 2898 gen_check_sp_alignment(s); 2899 } 2900 if (a->lasr) { 2901 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2902 } 2903 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2904 return true; 2905 } 2906 2907 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2908 { 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2913 if (a->lasr) { 2914 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2915 } 2916 return true; 2917 } 2918 2919 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2920 { 2921 if (!dc_isar_feature(aa64_atomics, s)) { 2922 return false; 2923 } 2924 if (((a->rt | a->rs) & 1) != 0) { 2925 return false; 2926 } 2927 2928 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2929 return true; 2930 } 2931 2932 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2933 { 2934 if (!dc_isar_feature(aa64_atomics, s)) { 2935 return false; 2936 } 2937 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2938 return true; 2939 } 2940 2941 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2942 { 2943 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2944 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2945 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2946 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2947 2948 gen_pc_plus_diff(s, clean_addr, a->imm); 2949 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2950 false, true, a->rt, iss_sf, false); 2951 return true; 2952 } 2953 2954 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2955 { 2956 /* Load register (literal), vector version */ 2957 TCGv_i64 clean_addr; 2958 MemOp memop; 2959 2960 if (!fp_access_check(s)) { 2961 return true; 2962 } 2963 memop = finalize_memop_asimd(s, a->sz); 2964 clean_addr = tcg_temp_new_i64(); 2965 gen_pc_plus_diff(s, clean_addr, a->imm); 2966 do_fp_ld(s, a->rt, clean_addr, memop); 2967 return true; 2968 } 2969 2970 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2971 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2972 uint64_t offset, bool is_store, MemOp mop) 2973 { 2974 if (a->rn == 31) { 2975 gen_check_sp_alignment(s); 2976 } 2977 2978 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2979 if (!a->p) { 2980 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2981 } 2982 2983 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2984 (a->w || a->rn != 31), 2 << a->sz, mop); 2985 } 2986 2987 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2988 TCGv_i64 dirty_addr, uint64_t offset) 2989 { 2990 if (a->w) { 2991 if (a->p) { 2992 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2993 } 2994 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2995 } 2996 } 2997 2998 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2999 { 3000 uint64_t offset = a->imm << a->sz; 3001 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3002 MemOp mop = finalize_memop(s, a->sz); 3003 3004 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3005 tcg_rt = cpu_reg(s, a->rt); 3006 tcg_rt2 = cpu_reg(s, a->rt2); 3007 /* 3008 * We built mop above for the single logical access -- rebuild it 3009 * now for the paired operation. 3010 * 3011 * With LSE2, non-sign-extending pairs are treated atomically if 3012 * aligned, and if unaligned one of the pair will be completely 3013 * within a 16-byte block and that element will be atomic. 3014 * Otherwise each element is separately atomic. 3015 * In all cases, issue one operation with the correct atomicity. 3016 */ 3017 mop = a->sz + 1; 3018 if (s->align_mem) { 3019 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3020 } 3021 mop = finalize_memop_pair(s, mop); 3022 if (a->sz == 2) { 3023 TCGv_i64 tmp = tcg_temp_new_i64(); 3024 3025 if (s->be_data == MO_LE) { 3026 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3027 } else { 3028 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3029 } 3030 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3031 } else { 3032 TCGv_i128 tmp = tcg_temp_new_i128(); 3033 3034 if (s->be_data == MO_LE) { 3035 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3036 } else { 3037 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3038 } 3039 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3040 } 3041 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3042 return true; 3043 } 3044 3045 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3046 { 3047 uint64_t offset = a->imm << a->sz; 3048 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3049 MemOp mop = finalize_memop(s, a->sz); 3050 3051 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3052 tcg_rt = cpu_reg(s, a->rt); 3053 tcg_rt2 = cpu_reg(s, a->rt2); 3054 3055 /* 3056 * We built mop above for the single logical access -- rebuild it 3057 * now for the paired operation. 3058 * 3059 * With LSE2, non-sign-extending pairs are treated atomically if 3060 * aligned, and if unaligned one of the pair will be completely 3061 * within a 16-byte block and that element will be atomic. 3062 * Otherwise each element is separately atomic. 3063 * In all cases, issue one operation with the correct atomicity. 3064 * 3065 * This treats sign-extending loads like zero-extending loads, 3066 * since that reuses the most code below. 3067 */ 3068 mop = a->sz + 1; 3069 if (s->align_mem) { 3070 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3071 } 3072 mop = finalize_memop_pair(s, mop); 3073 if (a->sz == 2) { 3074 int o2 = s->be_data == MO_LE ? 32 : 0; 3075 int o1 = o2 ^ 32; 3076 3077 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3078 if (a->sign) { 3079 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3080 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3081 } else { 3082 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3083 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3084 } 3085 } else { 3086 TCGv_i128 tmp = tcg_temp_new_i128(); 3087 3088 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 if (s->be_data == MO_LE) { 3090 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3091 } else { 3092 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3093 } 3094 } 3095 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3096 return true; 3097 } 3098 3099 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3100 { 3101 uint64_t offset = a->imm << a->sz; 3102 TCGv_i64 clean_addr, dirty_addr; 3103 MemOp mop; 3104 3105 if (!fp_access_check(s)) { 3106 return true; 3107 } 3108 3109 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3110 mop = finalize_memop_asimd(s, a->sz); 3111 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3112 do_fp_st(s, a->rt, clean_addr, mop); 3113 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3114 do_fp_st(s, a->rt2, clean_addr, mop); 3115 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3116 return true; 3117 } 3118 3119 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3120 { 3121 uint64_t offset = a->imm << a->sz; 3122 TCGv_i64 clean_addr, dirty_addr; 3123 MemOp mop; 3124 3125 if (!fp_access_check(s)) { 3126 return true; 3127 } 3128 3129 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3130 mop = finalize_memop_asimd(s, a->sz); 3131 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3132 do_fp_ld(s, a->rt, clean_addr, mop); 3133 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3134 do_fp_ld(s, a->rt2, clean_addr, mop); 3135 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3136 return true; 3137 } 3138 3139 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3140 { 3141 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3142 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3143 MemOp mop; 3144 TCGv_i128 tmp; 3145 3146 /* STGP only comes in one size. */ 3147 tcg_debug_assert(a->sz == MO_64); 3148 3149 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3150 return false; 3151 } 3152 3153 if (a->rn == 31) { 3154 gen_check_sp_alignment(s); 3155 } 3156 3157 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3158 if (!a->p) { 3159 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3160 } 3161 3162 clean_addr = clean_data_tbi(s, dirty_addr); 3163 tcg_rt = cpu_reg(s, a->rt); 3164 tcg_rt2 = cpu_reg(s, a->rt2); 3165 3166 /* 3167 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3168 * and one tag operation. We implement it as one single aligned 16-byte 3169 * memory operation for convenience. Note that the alignment ensures 3170 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3171 */ 3172 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3173 3174 tmp = tcg_temp_new_i128(); 3175 if (s->be_data == MO_LE) { 3176 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3177 } else { 3178 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3179 } 3180 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3181 3182 /* Perform the tag store, if tag access enabled. */ 3183 if (s->ata[0]) { 3184 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3185 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3186 } else { 3187 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3188 } 3189 } 3190 3191 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3192 return true; 3193 } 3194 3195 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3196 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3197 uint64_t offset, bool is_store, MemOp mop) 3198 { 3199 int memidx; 3200 3201 if (a->rn == 31) { 3202 gen_check_sp_alignment(s); 3203 } 3204 3205 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3206 if (!a->p) { 3207 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3208 } 3209 memidx = get_a64_user_mem_index(s, a->unpriv); 3210 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3211 a->w || a->rn != 31, 3212 mop, a->unpriv, memidx); 3213 } 3214 3215 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3216 TCGv_i64 dirty_addr, uint64_t offset) 3217 { 3218 if (a->w) { 3219 if (a->p) { 3220 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3221 } 3222 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3223 } 3224 } 3225 3226 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3227 { 3228 bool iss_sf, iss_valid = !a->w; 3229 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3230 int memidx = get_a64_user_mem_index(s, a->unpriv); 3231 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3232 3233 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3234 3235 tcg_rt = cpu_reg(s, a->rt); 3236 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3237 3238 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3239 iss_valid, a->rt, iss_sf, false); 3240 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3241 return true; 3242 } 3243 3244 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3245 { 3246 bool iss_sf, iss_valid = !a->w; 3247 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3248 int memidx = get_a64_user_mem_index(s, a->unpriv); 3249 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3250 3251 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3252 3253 tcg_rt = cpu_reg(s, a->rt); 3254 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3255 3256 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3257 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3258 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3259 return true; 3260 } 3261 3262 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3263 { 3264 TCGv_i64 clean_addr, dirty_addr; 3265 MemOp mop; 3266 3267 if (!fp_access_check(s)) { 3268 return true; 3269 } 3270 mop = finalize_memop_asimd(s, a->sz); 3271 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3272 do_fp_st(s, a->rt, clean_addr, mop); 3273 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3274 return true; 3275 } 3276 3277 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3278 { 3279 TCGv_i64 clean_addr, dirty_addr; 3280 MemOp mop; 3281 3282 if (!fp_access_check(s)) { 3283 return true; 3284 } 3285 mop = finalize_memop_asimd(s, a->sz); 3286 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3287 do_fp_ld(s, a->rt, clean_addr, mop); 3288 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3289 return true; 3290 } 3291 3292 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3293 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3294 bool is_store, MemOp memop) 3295 { 3296 TCGv_i64 tcg_rm; 3297 3298 if (a->rn == 31) { 3299 gen_check_sp_alignment(s); 3300 } 3301 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3302 3303 tcg_rm = read_cpu_reg(s, a->rm, 1); 3304 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3305 3306 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3307 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3308 } 3309 3310 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3311 { 3312 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3313 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3314 MemOp memop; 3315 3316 if (extract32(a->opt, 1, 1) == 0) { 3317 return false; 3318 } 3319 3320 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3321 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3322 tcg_rt = cpu_reg(s, a->rt); 3323 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3324 a->ext, true, a->rt, iss_sf, false); 3325 return true; 3326 } 3327 3328 static bool trans_STR(DisasContext *s, arg_ldst *a) 3329 { 3330 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3331 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3332 MemOp memop; 3333 3334 if (extract32(a->opt, 1, 1) == 0) { 3335 return false; 3336 } 3337 3338 memop = finalize_memop(s, a->sz); 3339 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3340 tcg_rt = cpu_reg(s, a->rt); 3341 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3342 return true; 3343 } 3344 3345 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3346 { 3347 TCGv_i64 clean_addr, dirty_addr; 3348 MemOp memop; 3349 3350 if (extract32(a->opt, 1, 1) == 0) { 3351 return false; 3352 } 3353 3354 if (!fp_access_check(s)) { 3355 return true; 3356 } 3357 3358 memop = finalize_memop_asimd(s, a->sz); 3359 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3360 do_fp_ld(s, a->rt, clean_addr, memop); 3361 return true; 3362 } 3363 3364 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3365 { 3366 TCGv_i64 clean_addr, dirty_addr; 3367 MemOp memop; 3368 3369 if (extract32(a->opt, 1, 1) == 0) { 3370 return false; 3371 } 3372 3373 if (!fp_access_check(s)) { 3374 return true; 3375 } 3376 3377 memop = finalize_memop_asimd(s, a->sz); 3378 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3379 do_fp_st(s, a->rt, clean_addr, memop); 3380 return true; 3381 } 3382 3383 3384 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3385 int sign, bool invert) 3386 { 3387 MemOp mop = a->sz | sign; 3388 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3389 3390 if (a->rn == 31) { 3391 gen_check_sp_alignment(s); 3392 } 3393 mop = check_atomic_align(s, a->rn, mop); 3394 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3395 a->rn != 31, mop); 3396 tcg_rs = read_cpu_reg(s, a->rs, true); 3397 tcg_rt = cpu_reg(s, a->rt); 3398 if (invert) { 3399 tcg_gen_not_i64(tcg_rs, tcg_rs); 3400 } 3401 /* 3402 * The tcg atomic primitives are all full barriers. Therefore we 3403 * can ignore the Acquire and Release bits of this instruction. 3404 */ 3405 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3406 3407 if (mop & MO_SIGN) { 3408 switch (a->sz) { 3409 case MO_8: 3410 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3411 break; 3412 case MO_16: 3413 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3414 break; 3415 case MO_32: 3416 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3417 break; 3418 case MO_64: 3419 break; 3420 default: 3421 g_assert_not_reached(); 3422 } 3423 } 3424 return true; 3425 } 3426 3427 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3428 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3429 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3430 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3431 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3432 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3433 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3434 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3435 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3436 3437 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3438 { 3439 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3440 TCGv_i64 clean_addr; 3441 MemOp mop; 3442 3443 if (!dc_isar_feature(aa64_atomics, s) || 3444 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3445 return false; 3446 } 3447 if (a->rn == 31) { 3448 gen_check_sp_alignment(s); 3449 } 3450 mop = check_atomic_align(s, a->rn, a->sz); 3451 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3452 a->rn != 31, mop); 3453 /* 3454 * LDAPR* are a special case because they are a simple load, not a 3455 * fetch-and-do-something op. 3456 * The architectural consistency requirements here are weaker than 3457 * full load-acquire (we only need "load-acquire processor consistent"), 3458 * but we choose to implement them as full LDAQ. 3459 */ 3460 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3461 true, a->rt, iss_sf, true); 3462 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3463 return true; 3464 } 3465 3466 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3467 { 3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3469 MemOp memop; 3470 3471 /* Load with pointer authentication */ 3472 if (!dc_isar_feature(aa64_pauth, s)) { 3473 return false; 3474 } 3475 3476 if (a->rn == 31) { 3477 gen_check_sp_alignment(s); 3478 } 3479 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3480 3481 if (s->pauth_active) { 3482 if (!a->m) { 3483 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3484 tcg_constant_i64(0)); 3485 } else { 3486 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3487 tcg_constant_i64(0)); 3488 } 3489 } 3490 3491 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3492 3493 memop = finalize_memop(s, MO_64); 3494 3495 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3496 clean_addr = gen_mte_check1(s, dirty_addr, false, 3497 a->w || a->rn != 31, memop); 3498 3499 tcg_rt = cpu_reg(s, a->rt); 3500 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3501 /* extend */ false, /* iss_valid */ !a->w, 3502 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3503 3504 if (a->w) { 3505 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3506 } 3507 return true; 3508 } 3509 3510 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3511 { 3512 TCGv_i64 clean_addr, dirty_addr; 3513 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3514 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3515 3516 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3517 return false; 3518 } 3519 3520 if (a->rn == 31) { 3521 gen_check_sp_alignment(s); 3522 } 3523 3524 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3525 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3526 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3527 clean_addr = clean_data_tbi(s, dirty_addr); 3528 3529 /* 3530 * Load-AcquirePC semantics; we implement as the slightly more 3531 * restrictive Load-Acquire. 3532 */ 3533 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3534 a->rt, iss_sf, true); 3535 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3536 return true; 3537 } 3538 3539 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3540 { 3541 TCGv_i64 clean_addr, dirty_addr; 3542 MemOp mop = a->sz; 3543 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3544 3545 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3546 return false; 3547 } 3548 3549 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3550 3551 if (a->rn == 31) { 3552 gen_check_sp_alignment(s); 3553 } 3554 3555 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3556 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3557 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3558 clean_addr = clean_data_tbi(s, dirty_addr); 3559 3560 /* Store-Release semantics */ 3561 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3562 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3563 return true; 3564 } 3565 3566 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3567 { 3568 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3569 MemOp endian, align, mop; 3570 3571 int total; /* total bytes */ 3572 int elements; /* elements per vector */ 3573 int r; 3574 int size = a->sz; 3575 3576 if (!a->p && a->rm != 0) { 3577 /* For non-postindexed accesses the Rm field must be 0 */ 3578 return false; 3579 } 3580 if (size == 3 && !a->q && a->selem != 1) { 3581 return false; 3582 } 3583 if (!fp_access_check(s)) { 3584 return true; 3585 } 3586 3587 if (a->rn == 31) { 3588 gen_check_sp_alignment(s); 3589 } 3590 3591 /* For our purposes, bytes are always little-endian. */ 3592 endian = s->be_data; 3593 if (size == 0) { 3594 endian = MO_LE; 3595 } 3596 3597 total = a->rpt * a->selem * (a->q ? 16 : 8); 3598 tcg_rn = cpu_reg_sp(s, a->rn); 3599 3600 /* 3601 * Issue the MTE check vs the logical repeat count, before we 3602 * promote consecutive little-endian elements below. 3603 */ 3604 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3605 finalize_memop_asimd(s, size)); 3606 3607 /* 3608 * Consecutive little-endian elements from a single register 3609 * can be promoted to a larger little-endian operation. 3610 */ 3611 align = MO_ALIGN; 3612 if (a->selem == 1 && endian == MO_LE) { 3613 align = pow2_align(size); 3614 size = 3; 3615 } 3616 if (!s->align_mem) { 3617 align = 0; 3618 } 3619 mop = endian | size | align; 3620 3621 elements = (a->q ? 16 : 8) >> size; 3622 tcg_ebytes = tcg_constant_i64(1 << size); 3623 for (r = 0; r < a->rpt; r++) { 3624 int e; 3625 for (e = 0; e < elements; e++) { 3626 int xs; 3627 for (xs = 0; xs < a->selem; xs++) { 3628 int tt = (a->rt + r + xs) % 32; 3629 do_vec_ld(s, tt, e, clean_addr, mop); 3630 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3631 } 3632 } 3633 } 3634 3635 /* 3636 * For non-quad operations, setting a slice of the low 64 bits of 3637 * the register clears the high 64 bits (in the ARM ARM pseudocode 3638 * this is implicit in the fact that 'rval' is a 64 bit wide 3639 * variable). For quad operations, we might still need to zero 3640 * the high bits of SVE. 3641 */ 3642 for (r = 0; r < a->rpt * a->selem; r++) { 3643 int tt = (a->rt + r) % 32; 3644 clear_vec_high(s, a->q, tt); 3645 } 3646 3647 if (a->p) { 3648 if (a->rm == 31) { 3649 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3650 } else { 3651 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3652 } 3653 } 3654 return true; 3655 } 3656 3657 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3658 { 3659 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3660 MemOp endian, align, mop; 3661 3662 int total; /* total bytes */ 3663 int elements; /* elements per vector */ 3664 int r; 3665 int size = a->sz; 3666 3667 if (!a->p && a->rm != 0) { 3668 /* For non-postindexed accesses the Rm field must be 0 */ 3669 return false; 3670 } 3671 if (size == 3 && !a->q && a->selem != 1) { 3672 return false; 3673 } 3674 if (!fp_access_check(s)) { 3675 return true; 3676 } 3677 3678 if (a->rn == 31) { 3679 gen_check_sp_alignment(s); 3680 } 3681 3682 /* For our purposes, bytes are always little-endian. */ 3683 endian = s->be_data; 3684 if (size == 0) { 3685 endian = MO_LE; 3686 } 3687 3688 total = a->rpt * a->selem * (a->q ? 16 : 8); 3689 tcg_rn = cpu_reg_sp(s, a->rn); 3690 3691 /* 3692 * Issue the MTE check vs the logical repeat count, before we 3693 * promote consecutive little-endian elements below. 3694 */ 3695 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3696 finalize_memop_asimd(s, size)); 3697 3698 /* 3699 * Consecutive little-endian elements from a single register 3700 * can be promoted to a larger little-endian operation. 3701 */ 3702 align = MO_ALIGN; 3703 if (a->selem == 1 && endian == MO_LE) { 3704 align = pow2_align(size); 3705 size = 3; 3706 } 3707 if (!s->align_mem) { 3708 align = 0; 3709 } 3710 mop = endian | size | align; 3711 3712 elements = (a->q ? 16 : 8) >> size; 3713 tcg_ebytes = tcg_constant_i64(1 << size); 3714 for (r = 0; r < a->rpt; r++) { 3715 int e; 3716 for (e = 0; e < elements; e++) { 3717 int xs; 3718 for (xs = 0; xs < a->selem; xs++) { 3719 int tt = (a->rt + r + xs) % 32; 3720 do_vec_st(s, tt, e, clean_addr, mop); 3721 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3722 } 3723 } 3724 } 3725 3726 if (a->p) { 3727 if (a->rm == 31) { 3728 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3729 } else { 3730 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3731 } 3732 } 3733 return true; 3734 } 3735 3736 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3737 { 3738 int xs, total, rt; 3739 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3740 MemOp mop; 3741 3742 if (!a->p && a->rm != 0) { 3743 return false; 3744 } 3745 if (!fp_access_check(s)) { 3746 return true; 3747 } 3748 3749 if (a->rn == 31) { 3750 gen_check_sp_alignment(s); 3751 } 3752 3753 total = a->selem << a->scale; 3754 tcg_rn = cpu_reg_sp(s, a->rn); 3755 3756 mop = finalize_memop_asimd(s, a->scale); 3757 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3758 total, mop); 3759 3760 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3761 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3762 do_vec_st(s, rt, a->index, clean_addr, mop); 3763 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3764 } 3765 3766 if (a->p) { 3767 if (a->rm == 31) { 3768 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3769 } else { 3770 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3771 } 3772 } 3773 return true; 3774 } 3775 3776 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3777 { 3778 int xs, total, rt; 3779 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3780 MemOp mop; 3781 3782 if (!a->p && a->rm != 0) { 3783 return false; 3784 } 3785 if (!fp_access_check(s)) { 3786 return true; 3787 } 3788 3789 if (a->rn == 31) { 3790 gen_check_sp_alignment(s); 3791 } 3792 3793 total = a->selem << a->scale; 3794 tcg_rn = cpu_reg_sp(s, a->rn); 3795 3796 mop = finalize_memop_asimd(s, a->scale); 3797 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3798 total, mop); 3799 3800 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3801 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3802 do_vec_ld(s, rt, a->index, clean_addr, mop); 3803 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3804 } 3805 3806 if (a->p) { 3807 if (a->rm == 31) { 3808 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3809 } else { 3810 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3811 } 3812 } 3813 return true; 3814 } 3815 3816 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3817 { 3818 int xs, total, rt; 3819 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3820 MemOp mop; 3821 3822 if (!a->p && a->rm != 0) { 3823 return false; 3824 } 3825 if (!fp_access_check(s)) { 3826 return true; 3827 } 3828 3829 if (a->rn == 31) { 3830 gen_check_sp_alignment(s); 3831 } 3832 3833 total = a->selem << a->scale; 3834 tcg_rn = cpu_reg_sp(s, a->rn); 3835 3836 mop = finalize_memop_asimd(s, a->scale); 3837 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3838 total, mop); 3839 3840 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3841 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3842 /* Load and replicate to all elements */ 3843 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3844 3845 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3846 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3847 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3848 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3849 } 3850 3851 if (a->p) { 3852 if (a->rm == 31) { 3853 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3854 } else { 3855 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3856 } 3857 } 3858 return true; 3859 } 3860 3861 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3862 { 3863 TCGv_i64 addr, clean_addr, tcg_rt; 3864 int size = 4 << s->dcz_blocksize; 3865 3866 if (!dc_isar_feature(aa64_mte, s)) { 3867 return false; 3868 } 3869 if (s->current_el == 0) { 3870 return false; 3871 } 3872 3873 if (a->rn == 31) { 3874 gen_check_sp_alignment(s); 3875 } 3876 3877 addr = read_cpu_reg_sp(s, a->rn, true); 3878 tcg_gen_addi_i64(addr, addr, a->imm); 3879 tcg_rt = cpu_reg(s, a->rt); 3880 3881 if (s->ata[0]) { 3882 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3883 } 3884 /* 3885 * The non-tags portion of STZGM is mostly like DC_ZVA, 3886 * except the alignment happens before the access. 3887 */ 3888 clean_addr = clean_data_tbi(s, addr); 3889 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3890 gen_helper_dc_zva(tcg_env, clean_addr); 3891 return true; 3892 } 3893 3894 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3895 { 3896 TCGv_i64 addr, clean_addr, tcg_rt; 3897 3898 if (!dc_isar_feature(aa64_mte, s)) { 3899 return false; 3900 } 3901 if (s->current_el == 0) { 3902 return false; 3903 } 3904 3905 if (a->rn == 31) { 3906 gen_check_sp_alignment(s); 3907 } 3908 3909 addr = read_cpu_reg_sp(s, a->rn, true); 3910 tcg_gen_addi_i64(addr, addr, a->imm); 3911 tcg_rt = cpu_reg(s, a->rt); 3912 3913 if (s->ata[0]) { 3914 gen_helper_stgm(tcg_env, addr, tcg_rt); 3915 } else { 3916 MMUAccessType acc = MMU_DATA_STORE; 3917 int size = 4 << s->gm_blocksize; 3918 3919 clean_addr = clean_data_tbi(s, addr); 3920 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3921 gen_probe_access(s, clean_addr, acc, size); 3922 } 3923 return true; 3924 } 3925 3926 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3927 { 3928 TCGv_i64 addr, clean_addr, tcg_rt; 3929 3930 if (!dc_isar_feature(aa64_mte, s)) { 3931 return false; 3932 } 3933 if (s->current_el == 0) { 3934 return false; 3935 } 3936 3937 if (a->rn == 31) { 3938 gen_check_sp_alignment(s); 3939 } 3940 3941 addr = read_cpu_reg_sp(s, a->rn, true); 3942 tcg_gen_addi_i64(addr, addr, a->imm); 3943 tcg_rt = cpu_reg(s, a->rt); 3944 3945 if (s->ata[0]) { 3946 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3947 } else { 3948 MMUAccessType acc = MMU_DATA_LOAD; 3949 int size = 4 << s->gm_blocksize; 3950 3951 clean_addr = clean_data_tbi(s, addr); 3952 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3953 gen_probe_access(s, clean_addr, acc, size); 3954 /* The result tags are zeros. */ 3955 tcg_gen_movi_i64(tcg_rt, 0); 3956 } 3957 return true; 3958 } 3959 3960 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3961 { 3962 TCGv_i64 addr, clean_addr, tcg_rt; 3963 3964 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3965 return false; 3966 } 3967 3968 if (a->rn == 31) { 3969 gen_check_sp_alignment(s); 3970 } 3971 3972 addr = read_cpu_reg_sp(s, a->rn, true); 3973 if (!a->p) { 3974 /* pre-index or signed offset */ 3975 tcg_gen_addi_i64(addr, addr, a->imm); 3976 } 3977 3978 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3979 tcg_rt = cpu_reg(s, a->rt); 3980 if (s->ata[0]) { 3981 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3982 } else { 3983 /* 3984 * Tag access disabled: we must check for aborts on the load 3985 * load from [rn+offset], and then insert a 0 tag into rt. 3986 */ 3987 clean_addr = clean_data_tbi(s, addr); 3988 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3989 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3990 } 3991 3992 if (a->w) { 3993 /* pre-index or post-index */ 3994 if (a->p) { 3995 /* post-index */ 3996 tcg_gen_addi_i64(addr, addr, a->imm); 3997 } 3998 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3999 } 4000 return true; 4001 } 4002 4003 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4004 { 4005 TCGv_i64 addr, tcg_rt; 4006 4007 if (a->rn == 31) { 4008 gen_check_sp_alignment(s); 4009 } 4010 4011 addr = read_cpu_reg_sp(s, a->rn, true); 4012 if (!a->p) { 4013 /* pre-index or signed offset */ 4014 tcg_gen_addi_i64(addr, addr, a->imm); 4015 } 4016 tcg_rt = cpu_reg_sp(s, a->rt); 4017 if (!s->ata[0]) { 4018 /* 4019 * For STG and ST2G, we need to check alignment and probe memory. 4020 * TODO: For STZG and STZ2G, we could rely on the stores below, 4021 * at least for system mode; user-only won't enforce alignment. 4022 */ 4023 if (is_pair) { 4024 gen_helper_st2g_stub(tcg_env, addr); 4025 } else { 4026 gen_helper_stg_stub(tcg_env, addr); 4027 } 4028 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4029 if (is_pair) { 4030 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4031 } else { 4032 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4033 } 4034 } else { 4035 if (is_pair) { 4036 gen_helper_st2g(tcg_env, addr, tcg_rt); 4037 } else { 4038 gen_helper_stg(tcg_env, addr, tcg_rt); 4039 } 4040 } 4041 4042 if (is_zero) { 4043 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4044 TCGv_i64 zero64 = tcg_constant_i64(0); 4045 TCGv_i128 zero128 = tcg_temp_new_i128(); 4046 int mem_index = get_mem_index(s); 4047 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4048 4049 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4050 4051 /* This is 1 or 2 atomic 16-byte operations. */ 4052 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4053 if (is_pair) { 4054 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4055 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4056 } 4057 } 4058 4059 if (a->w) { 4060 /* pre-index or post-index */ 4061 if (a->p) { 4062 /* post-index */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4066 } 4067 return true; 4068 } 4069 4070 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4071 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4072 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4073 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4074 4075 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4076 4077 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4078 bool is_setg, SetFn fn) 4079 { 4080 int memidx; 4081 uint32_t syndrome, desc = 0; 4082 4083 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4084 return false; 4085 } 4086 4087 /* 4088 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4089 * us to pull this check before the CheckMOPSEnabled() test 4090 * (which we do in the helper function) 4091 */ 4092 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4093 a->rd == 31 || a->rn == 31) { 4094 return false; 4095 } 4096 4097 memidx = get_a64_user_mem_index(s, a->unpriv); 4098 4099 /* 4100 * We pass option_a == true, matching our implementation; 4101 * we pass wrong_option == false: helper function may set that bit. 4102 */ 4103 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4104 is_epilogue, false, true, a->rd, a->rs, a->rn); 4105 4106 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4107 /* We may need to do MTE tag checking, so assemble the descriptor */ 4108 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4109 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4110 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4111 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4112 } 4113 /* The helper function always needs the memidx even with MTE disabled */ 4114 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4115 4116 /* 4117 * The helper needs the register numbers, but since they're in 4118 * the syndrome anyway, we let it extract them from there rather 4119 * than passing in an extra three integer arguments. 4120 */ 4121 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4122 return true; 4123 } 4124 4125 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4126 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4127 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4128 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4129 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4130 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4131 4132 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4133 4134 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4135 { 4136 int rmemidx, wmemidx; 4137 uint32_t syndrome, rdesc = 0, wdesc = 0; 4138 bool wunpriv = extract32(a->options, 0, 1); 4139 bool runpriv = extract32(a->options, 1, 1); 4140 4141 /* 4142 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4143 * us to pull this check before the CheckMOPSEnabled() test 4144 * (which we do in the helper function) 4145 */ 4146 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4147 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4148 return false; 4149 } 4150 4151 rmemidx = get_a64_user_mem_index(s, runpriv); 4152 wmemidx = get_a64_user_mem_index(s, wunpriv); 4153 4154 /* 4155 * We pass option_a == true, matching our implementation; 4156 * we pass wrong_option == false: helper function may set that bit. 4157 */ 4158 syndrome = syn_mop(false, false, a->options, is_epilogue, 4159 false, true, a->rd, a->rs, a->rn); 4160 4161 /* If we need to do MTE tag checking, assemble the descriptors */ 4162 if (s->mte_active[runpriv]) { 4163 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4164 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4165 } 4166 if (s->mte_active[wunpriv]) { 4167 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4168 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4169 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4170 } 4171 /* The helper function needs these parts of the descriptor regardless */ 4172 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4173 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4174 4175 /* 4176 * The helper needs the register numbers, but since they're in 4177 * the syndrome anyway, we let it extract them from there rather 4178 * than passing in an extra three integer arguments. 4179 */ 4180 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4181 tcg_constant_i32(rdesc)); 4182 return true; 4183 } 4184 4185 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4186 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4187 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4188 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4189 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4190 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4191 4192 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4193 4194 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4195 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4196 { 4197 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4198 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4199 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4200 4201 fn(tcg_rd, tcg_rn, tcg_imm); 4202 if (!a->sf) { 4203 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4204 } 4205 return true; 4206 } 4207 4208 /* 4209 * PC-rel. addressing 4210 */ 4211 4212 static bool trans_ADR(DisasContext *s, arg_ri *a) 4213 { 4214 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4215 return true; 4216 } 4217 4218 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4219 { 4220 int64_t offset = (int64_t)a->imm << 12; 4221 4222 /* The page offset is ok for CF_PCREL. */ 4223 offset -= s->pc_curr & 0xfff; 4224 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4225 return true; 4226 } 4227 4228 /* 4229 * Add/subtract (immediate) 4230 */ 4231 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4232 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4233 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4234 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4235 4236 /* 4237 * Add/subtract (immediate, with tags) 4238 */ 4239 4240 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4241 bool sub_op) 4242 { 4243 TCGv_i64 tcg_rn, tcg_rd; 4244 int imm; 4245 4246 imm = a->uimm6 << LOG2_TAG_GRANULE; 4247 if (sub_op) { 4248 imm = -imm; 4249 } 4250 4251 tcg_rn = cpu_reg_sp(s, a->rn); 4252 tcg_rd = cpu_reg_sp(s, a->rd); 4253 4254 if (s->ata[0]) { 4255 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4256 tcg_constant_i32(imm), 4257 tcg_constant_i32(a->uimm4)); 4258 } else { 4259 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4260 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4261 } 4262 return true; 4263 } 4264 4265 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4266 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4267 4268 /* The input should be a value in the bottom e bits (with higher 4269 * bits zero); returns that value replicated into every element 4270 * of size e in a 64 bit integer. 4271 */ 4272 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4273 { 4274 assert(e != 0); 4275 while (e < 64) { 4276 mask |= mask << e; 4277 e *= 2; 4278 } 4279 return mask; 4280 } 4281 4282 /* 4283 * Logical (immediate) 4284 */ 4285 4286 /* 4287 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4288 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4289 * value (ie should cause a guest UNDEF exception), and true if they are 4290 * valid, in which case the decoded bit pattern is written to result. 4291 */ 4292 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4293 unsigned int imms, unsigned int immr) 4294 { 4295 uint64_t mask; 4296 unsigned e, levels, s, r; 4297 int len; 4298 4299 assert(immn < 2 && imms < 64 && immr < 64); 4300 4301 /* The bit patterns we create here are 64 bit patterns which 4302 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4303 * 64 bits each. Each element contains the same value: a run 4304 * of between 1 and e-1 non-zero bits, rotated within the 4305 * element by between 0 and e-1 bits. 4306 * 4307 * The element size and run length are encoded into immn (1 bit) 4308 * and imms (6 bits) as follows: 4309 * 64 bit elements: immn = 1, imms = <length of run - 1> 4310 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4311 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4312 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4313 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4314 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4315 * Notice that immn = 0, imms = 11111x is the only combination 4316 * not covered by one of the above options; this is reserved. 4317 * Further, <length of run - 1> all-ones is a reserved pattern. 4318 * 4319 * In all cases the rotation is by immr % e (and immr is 6 bits). 4320 */ 4321 4322 /* First determine the element size */ 4323 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4324 if (len < 1) { 4325 /* This is the immn == 0, imms == 0x11111x case */ 4326 return false; 4327 } 4328 e = 1 << len; 4329 4330 levels = e - 1; 4331 s = imms & levels; 4332 r = immr & levels; 4333 4334 if (s == levels) { 4335 /* <length of run - 1> mustn't be all-ones. */ 4336 return false; 4337 } 4338 4339 /* Create the value of one element: s+1 set bits rotated 4340 * by r within the element (which is e bits wide)... 4341 */ 4342 mask = MAKE_64BIT_MASK(0, s + 1); 4343 if (r) { 4344 mask = (mask >> r) | (mask << (e - r)); 4345 mask &= MAKE_64BIT_MASK(0, e); 4346 } 4347 /* ...then replicate the element over the whole 64 bit value */ 4348 mask = bitfield_replicate(mask, e); 4349 *result = mask; 4350 return true; 4351 } 4352 4353 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4354 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4355 { 4356 TCGv_i64 tcg_rd, tcg_rn; 4357 uint64_t imm; 4358 4359 /* Some immediate field values are reserved. */ 4360 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4361 extract32(a->dbm, 0, 6), 4362 extract32(a->dbm, 6, 6))) { 4363 return false; 4364 } 4365 if (!a->sf) { 4366 imm &= 0xffffffffull; 4367 } 4368 4369 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4370 tcg_rn = cpu_reg(s, a->rn); 4371 4372 fn(tcg_rd, tcg_rn, imm); 4373 if (set_cc) { 4374 gen_logic_CC(a->sf, tcg_rd); 4375 } 4376 if (!a->sf) { 4377 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4378 } 4379 return true; 4380 } 4381 4382 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4383 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4384 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4385 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4386 4387 /* 4388 * Move wide (immediate) 4389 */ 4390 4391 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4392 { 4393 int pos = a->hw << 4; 4394 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4395 return true; 4396 } 4397 4398 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4399 { 4400 int pos = a->hw << 4; 4401 uint64_t imm = a->imm; 4402 4403 imm = ~(imm << pos); 4404 if (!a->sf) { 4405 imm = (uint32_t)imm; 4406 } 4407 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4408 return true; 4409 } 4410 4411 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4412 { 4413 int pos = a->hw << 4; 4414 TCGv_i64 tcg_rd, tcg_im; 4415 4416 tcg_rd = cpu_reg(s, a->rd); 4417 tcg_im = tcg_constant_i64(a->imm); 4418 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4419 if (!a->sf) { 4420 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4421 } 4422 return true; 4423 } 4424 4425 /* 4426 * Bitfield 4427 */ 4428 4429 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4430 { 4431 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4432 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4433 unsigned int bitsize = a->sf ? 64 : 32; 4434 unsigned int ri = a->immr; 4435 unsigned int si = a->imms; 4436 unsigned int pos, len; 4437 4438 if (si >= ri) { 4439 /* Wd<s-r:0> = Wn<s:r> */ 4440 len = (si - ri) + 1; 4441 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4442 if (!a->sf) { 4443 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4444 } 4445 } else { 4446 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4447 len = si + 1; 4448 pos = (bitsize - ri) & (bitsize - 1); 4449 4450 if (len < ri) { 4451 /* 4452 * Sign extend the destination field from len to fill the 4453 * balance of the word. Let the deposit below insert all 4454 * of those sign bits. 4455 */ 4456 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4457 len = ri; 4458 } 4459 4460 /* 4461 * We start with zero, and we haven't modified any bits outside 4462 * bitsize, therefore no final zero-extension is unneeded for !sf. 4463 */ 4464 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4465 } 4466 return true; 4467 } 4468 4469 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4470 { 4471 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4472 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4473 unsigned int bitsize = a->sf ? 64 : 32; 4474 unsigned int ri = a->immr; 4475 unsigned int si = a->imms; 4476 unsigned int pos, len; 4477 4478 tcg_rd = cpu_reg(s, a->rd); 4479 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4480 4481 if (si >= ri) { 4482 /* Wd<s-r:0> = Wn<s:r> */ 4483 len = (si - ri) + 1; 4484 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4485 } else { 4486 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4487 len = si + 1; 4488 pos = (bitsize - ri) & (bitsize - 1); 4489 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4490 } 4491 return true; 4492 } 4493 4494 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4495 { 4496 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4497 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4498 unsigned int bitsize = a->sf ? 64 : 32; 4499 unsigned int ri = a->immr; 4500 unsigned int si = a->imms; 4501 unsigned int pos, len; 4502 4503 tcg_rd = cpu_reg(s, a->rd); 4504 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4505 4506 if (si >= ri) { 4507 /* Wd<s-r:0> = Wn<s:r> */ 4508 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4509 len = (si - ri) + 1; 4510 pos = 0; 4511 } else { 4512 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4513 len = si + 1; 4514 pos = (bitsize - ri) & (bitsize - 1); 4515 } 4516 4517 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4518 if (!a->sf) { 4519 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4520 } 4521 return true; 4522 } 4523 4524 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4525 { 4526 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4527 4528 tcg_rd = cpu_reg(s, a->rd); 4529 4530 if (unlikely(a->imm == 0)) { 4531 /* 4532 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4533 * so an extract from bit 0 is a special case. 4534 */ 4535 if (a->sf) { 4536 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4537 } else { 4538 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4539 } 4540 } else { 4541 tcg_rm = cpu_reg(s, a->rm); 4542 tcg_rn = cpu_reg(s, a->rn); 4543 4544 if (a->sf) { 4545 /* Specialization to ROR happens in EXTRACT2. */ 4546 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4547 } else { 4548 TCGv_i32 t0 = tcg_temp_new_i32(); 4549 4550 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4551 if (a->rm == a->rn) { 4552 tcg_gen_rotri_i32(t0, t0, a->imm); 4553 } else { 4554 TCGv_i32 t1 = tcg_temp_new_i32(); 4555 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4556 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4557 } 4558 tcg_gen_extu_i32_i64(tcg_rd, t0); 4559 } 4560 } 4561 return true; 4562 } 4563 4564 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4565 * Note that it is the caller's responsibility to ensure that the 4566 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4567 * mandated semantics for out of range shifts. 4568 */ 4569 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4570 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4571 { 4572 switch (shift_type) { 4573 case A64_SHIFT_TYPE_LSL: 4574 tcg_gen_shl_i64(dst, src, shift_amount); 4575 break; 4576 case A64_SHIFT_TYPE_LSR: 4577 tcg_gen_shr_i64(dst, src, shift_amount); 4578 break; 4579 case A64_SHIFT_TYPE_ASR: 4580 if (!sf) { 4581 tcg_gen_ext32s_i64(dst, src); 4582 } 4583 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4584 break; 4585 case A64_SHIFT_TYPE_ROR: 4586 if (sf) { 4587 tcg_gen_rotr_i64(dst, src, shift_amount); 4588 } else { 4589 TCGv_i32 t0, t1; 4590 t0 = tcg_temp_new_i32(); 4591 t1 = tcg_temp_new_i32(); 4592 tcg_gen_extrl_i64_i32(t0, src); 4593 tcg_gen_extrl_i64_i32(t1, shift_amount); 4594 tcg_gen_rotr_i32(t0, t0, t1); 4595 tcg_gen_extu_i32_i64(dst, t0); 4596 } 4597 break; 4598 default: 4599 assert(FALSE); /* all shift types should be handled */ 4600 break; 4601 } 4602 4603 if (!sf) { /* zero extend final result */ 4604 tcg_gen_ext32u_i64(dst, dst); 4605 } 4606 } 4607 4608 /* Shift a TCGv src by immediate, put result in dst. 4609 * The shift amount must be in range (this should always be true as the 4610 * relevant instructions will UNDEF on bad shift immediates). 4611 */ 4612 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4613 enum a64_shift_type shift_type, unsigned int shift_i) 4614 { 4615 assert(shift_i < (sf ? 64 : 32)); 4616 4617 if (shift_i == 0) { 4618 tcg_gen_mov_i64(dst, src); 4619 } else { 4620 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4621 } 4622 } 4623 4624 /* Logical (shifted register) 4625 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4626 * +----+-----+-----------+-------+---+------+--------+------+------+ 4627 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4628 * +----+-----+-----------+-------+---+------+--------+------+------+ 4629 */ 4630 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4631 { 4632 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4633 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4634 4635 sf = extract32(insn, 31, 1); 4636 opc = extract32(insn, 29, 2); 4637 shift_type = extract32(insn, 22, 2); 4638 invert = extract32(insn, 21, 1); 4639 rm = extract32(insn, 16, 5); 4640 shift_amount = extract32(insn, 10, 6); 4641 rn = extract32(insn, 5, 5); 4642 rd = extract32(insn, 0, 5); 4643 4644 if (!sf && (shift_amount & (1 << 5))) { 4645 unallocated_encoding(s); 4646 return; 4647 } 4648 4649 tcg_rd = cpu_reg(s, rd); 4650 4651 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4652 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4653 * register-register MOV and MVN, so it is worth special casing. 4654 */ 4655 tcg_rm = cpu_reg(s, rm); 4656 if (invert) { 4657 tcg_gen_not_i64(tcg_rd, tcg_rm); 4658 if (!sf) { 4659 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4660 } 4661 } else { 4662 if (sf) { 4663 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4664 } else { 4665 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4666 } 4667 } 4668 return; 4669 } 4670 4671 tcg_rm = read_cpu_reg(s, rm, sf); 4672 4673 if (shift_amount) { 4674 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4675 } 4676 4677 tcg_rn = cpu_reg(s, rn); 4678 4679 switch (opc | (invert << 2)) { 4680 case 0: /* AND */ 4681 case 3: /* ANDS */ 4682 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4683 break; 4684 case 1: /* ORR */ 4685 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4686 break; 4687 case 2: /* EOR */ 4688 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4689 break; 4690 case 4: /* BIC */ 4691 case 7: /* BICS */ 4692 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4693 break; 4694 case 5: /* ORN */ 4695 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4696 break; 4697 case 6: /* EON */ 4698 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4699 break; 4700 default: 4701 assert(FALSE); 4702 break; 4703 } 4704 4705 if (!sf) { 4706 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4707 } 4708 4709 if (opc == 3) { 4710 gen_logic_CC(sf, tcg_rd); 4711 } 4712 } 4713 4714 /* 4715 * Add/subtract (extended register) 4716 * 4717 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4718 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4719 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4720 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4721 * 4722 * sf: 0 -> 32bit, 1 -> 64bit 4723 * op: 0 -> add , 1 -> sub 4724 * S: 1 -> set flags 4725 * opt: 00 4726 * option: extension type (see DecodeRegExtend) 4727 * imm3: optional shift to Rm 4728 * 4729 * Rd = Rn + LSL(extend(Rm), amount) 4730 */ 4731 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4732 { 4733 int rd = extract32(insn, 0, 5); 4734 int rn = extract32(insn, 5, 5); 4735 int imm3 = extract32(insn, 10, 3); 4736 int option = extract32(insn, 13, 3); 4737 int rm = extract32(insn, 16, 5); 4738 int opt = extract32(insn, 22, 2); 4739 bool setflags = extract32(insn, 29, 1); 4740 bool sub_op = extract32(insn, 30, 1); 4741 bool sf = extract32(insn, 31, 1); 4742 4743 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4744 TCGv_i64 tcg_rd; 4745 TCGv_i64 tcg_result; 4746 4747 if (imm3 > 4 || opt != 0) { 4748 unallocated_encoding(s); 4749 return; 4750 } 4751 4752 /* non-flag setting ops may use SP */ 4753 if (!setflags) { 4754 tcg_rd = cpu_reg_sp(s, rd); 4755 } else { 4756 tcg_rd = cpu_reg(s, rd); 4757 } 4758 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4759 4760 tcg_rm = read_cpu_reg(s, rm, sf); 4761 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4762 4763 tcg_result = tcg_temp_new_i64(); 4764 4765 if (!setflags) { 4766 if (sub_op) { 4767 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4768 } else { 4769 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4770 } 4771 } else { 4772 if (sub_op) { 4773 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4774 } else { 4775 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4776 } 4777 } 4778 4779 if (sf) { 4780 tcg_gen_mov_i64(tcg_rd, tcg_result); 4781 } else { 4782 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4783 } 4784 } 4785 4786 /* 4787 * Add/subtract (shifted register) 4788 * 4789 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4790 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4791 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4792 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4793 * 4794 * sf: 0 -> 32bit, 1 -> 64bit 4795 * op: 0 -> add , 1 -> sub 4796 * S: 1 -> set flags 4797 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4798 * imm6: Shift amount to apply to Rm before the add/sub 4799 */ 4800 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4801 { 4802 int rd = extract32(insn, 0, 5); 4803 int rn = extract32(insn, 5, 5); 4804 int imm6 = extract32(insn, 10, 6); 4805 int rm = extract32(insn, 16, 5); 4806 int shift_type = extract32(insn, 22, 2); 4807 bool setflags = extract32(insn, 29, 1); 4808 bool sub_op = extract32(insn, 30, 1); 4809 bool sf = extract32(insn, 31, 1); 4810 4811 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4812 TCGv_i64 tcg_rn, tcg_rm; 4813 TCGv_i64 tcg_result; 4814 4815 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4816 unallocated_encoding(s); 4817 return; 4818 } 4819 4820 tcg_rn = read_cpu_reg(s, rn, sf); 4821 tcg_rm = read_cpu_reg(s, rm, sf); 4822 4823 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4824 4825 tcg_result = tcg_temp_new_i64(); 4826 4827 if (!setflags) { 4828 if (sub_op) { 4829 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4830 } else { 4831 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4832 } 4833 } else { 4834 if (sub_op) { 4835 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4836 } else { 4837 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4838 } 4839 } 4840 4841 if (sf) { 4842 tcg_gen_mov_i64(tcg_rd, tcg_result); 4843 } else { 4844 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4845 } 4846 } 4847 4848 /* Data-processing (3 source) 4849 * 4850 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4851 * +--+------+-----------+------+------+----+------+------+------+ 4852 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4853 * +--+------+-----------+------+------+----+------+------+------+ 4854 */ 4855 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4856 { 4857 int rd = extract32(insn, 0, 5); 4858 int rn = extract32(insn, 5, 5); 4859 int ra = extract32(insn, 10, 5); 4860 int rm = extract32(insn, 16, 5); 4861 int op_id = (extract32(insn, 29, 3) << 4) | 4862 (extract32(insn, 21, 3) << 1) | 4863 extract32(insn, 15, 1); 4864 bool sf = extract32(insn, 31, 1); 4865 bool is_sub = extract32(op_id, 0, 1); 4866 bool is_high = extract32(op_id, 2, 1); 4867 bool is_signed = false; 4868 TCGv_i64 tcg_op1; 4869 TCGv_i64 tcg_op2; 4870 TCGv_i64 tcg_tmp; 4871 4872 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4873 switch (op_id) { 4874 case 0x42: /* SMADDL */ 4875 case 0x43: /* SMSUBL */ 4876 case 0x44: /* SMULH */ 4877 is_signed = true; 4878 break; 4879 case 0x0: /* MADD (32bit) */ 4880 case 0x1: /* MSUB (32bit) */ 4881 case 0x40: /* MADD (64bit) */ 4882 case 0x41: /* MSUB (64bit) */ 4883 case 0x4a: /* UMADDL */ 4884 case 0x4b: /* UMSUBL */ 4885 case 0x4c: /* UMULH */ 4886 break; 4887 default: 4888 unallocated_encoding(s); 4889 return; 4890 } 4891 4892 if (is_high) { 4893 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4894 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4895 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4896 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4897 4898 if (is_signed) { 4899 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4900 } else { 4901 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4902 } 4903 return; 4904 } 4905 4906 tcg_op1 = tcg_temp_new_i64(); 4907 tcg_op2 = tcg_temp_new_i64(); 4908 tcg_tmp = tcg_temp_new_i64(); 4909 4910 if (op_id < 0x42) { 4911 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4912 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4913 } else { 4914 if (is_signed) { 4915 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4916 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4917 } else { 4918 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4919 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4920 } 4921 } 4922 4923 if (ra == 31 && !is_sub) { 4924 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4925 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4926 } else { 4927 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4928 if (is_sub) { 4929 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4930 } else { 4931 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4932 } 4933 } 4934 4935 if (!sf) { 4936 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4937 } 4938 } 4939 4940 /* Add/subtract (with carry) 4941 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4942 * +--+--+--+------------------------+------+-------------+------+-----+ 4943 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4944 * +--+--+--+------------------------+------+-------------+------+-----+ 4945 */ 4946 4947 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4948 { 4949 unsigned int sf, op, setflags, rm, rn, rd; 4950 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4951 4952 sf = extract32(insn, 31, 1); 4953 op = extract32(insn, 30, 1); 4954 setflags = extract32(insn, 29, 1); 4955 rm = extract32(insn, 16, 5); 4956 rn = extract32(insn, 5, 5); 4957 rd = extract32(insn, 0, 5); 4958 4959 tcg_rd = cpu_reg(s, rd); 4960 tcg_rn = cpu_reg(s, rn); 4961 4962 if (op) { 4963 tcg_y = tcg_temp_new_i64(); 4964 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4965 } else { 4966 tcg_y = cpu_reg(s, rm); 4967 } 4968 4969 if (setflags) { 4970 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4971 } else { 4972 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4973 } 4974 } 4975 4976 /* 4977 * Rotate right into flags 4978 * 31 30 29 21 15 10 5 4 0 4979 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4980 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4981 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4982 */ 4983 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4984 { 4985 int mask = extract32(insn, 0, 4); 4986 int o2 = extract32(insn, 4, 1); 4987 int rn = extract32(insn, 5, 5); 4988 int imm6 = extract32(insn, 15, 6); 4989 int sf_op_s = extract32(insn, 29, 3); 4990 TCGv_i64 tcg_rn; 4991 TCGv_i32 nzcv; 4992 4993 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4994 unallocated_encoding(s); 4995 return; 4996 } 4997 4998 tcg_rn = read_cpu_reg(s, rn, 1); 4999 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5000 5001 nzcv = tcg_temp_new_i32(); 5002 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5003 5004 if (mask & 8) { /* N */ 5005 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5006 } 5007 if (mask & 4) { /* Z */ 5008 tcg_gen_not_i32(cpu_ZF, nzcv); 5009 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5010 } 5011 if (mask & 2) { /* C */ 5012 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5013 } 5014 if (mask & 1) { /* V */ 5015 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5016 } 5017 } 5018 5019 /* 5020 * Evaluate into flags 5021 * 31 30 29 21 15 14 10 5 4 0 5022 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5023 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5024 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5025 */ 5026 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5027 { 5028 int o3_mask = extract32(insn, 0, 5); 5029 int rn = extract32(insn, 5, 5); 5030 int o2 = extract32(insn, 15, 6); 5031 int sz = extract32(insn, 14, 1); 5032 int sf_op_s = extract32(insn, 29, 3); 5033 TCGv_i32 tmp; 5034 int shift; 5035 5036 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5037 !dc_isar_feature(aa64_condm_4, s)) { 5038 unallocated_encoding(s); 5039 return; 5040 } 5041 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5042 5043 tmp = tcg_temp_new_i32(); 5044 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5045 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5046 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5047 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5048 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5049 } 5050 5051 /* Conditional compare (immediate / register) 5052 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5053 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5054 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5055 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5056 * [1] y [0] [0] 5057 */ 5058 static void disas_cc(DisasContext *s, uint32_t insn) 5059 { 5060 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5061 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5062 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5063 DisasCompare c; 5064 5065 if (!extract32(insn, 29, 1)) { 5066 unallocated_encoding(s); 5067 return; 5068 } 5069 if (insn & (1 << 10 | 1 << 4)) { 5070 unallocated_encoding(s); 5071 return; 5072 } 5073 sf = extract32(insn, 31, 1); 5074 op = extract32(insn, 30, 1); 5075 is_imm = extract32(insn, 11, 1); 5076 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5077 cond = extract32(insn, 12, 4); 5078 rn = extract32(insn, 5, 5); 5079 nzcv = extract32(insn, 0, 4); 5080 5081 /* Set T0 = !COND. */ 5082 tcg_t0 = tcg_temp_new_i32(); 5083 arm_test_cc(&c, cond); 5084 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5085 5086 /* Load the arguments for the new comparison. */ 5087 if (is_imm) { 5088 tcg_y = tcg_temp_new_i64(); 5089 tcg_gen_movi_i64(tcg_y, y); 5090 } else { 5091 tcg_y = cpu_reg(s, y); 5092 } 5093 tcg_rn = cpu_reg(s, rn); 5094 5095 /* Set the flags for the new comparison. */ 5096 tcg_tmp = tcg_temp_new_i64(); 5097 if (op) { 5098 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5099 } else { 5100 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5101 } 5102 5103 /* If COND was false, force the flags to #nzcv. Compute two masks 5104 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5105 * For tcg hosts that support ANDC, we can make do with just T1. 5106 * In either case, allow the tcg optimizer to delete any unused mask. 5107 */ 5108 tcg_t1 = tcg_temp_new_i32(); 5109 tcg_t2 = tcg_temp_new_i32(); 5110 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5111 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5112 5113 if (nzcv & 8) { /* N */ 5114 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5115 } else { 5116 if (TCG_TARGET_HAS_andc_i32) { 5117 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5118 } else { 5119 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5120 } 5121 } 5122 if (nzcv & 4) { /* Z */ 5123 if (TCG_TARGET_HAS_andc_i32) { 5124 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5125 } else { 5126 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5127 } 5128 } else { 5129 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5130 } 5131 if (nzcv & 2) { /* C */ 5132 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5133 } else { 5134 if (TCG_TARGET_HAS_andc_i32) { 5135 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5136 } else { 5137 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5138 } 5139 } 5140 if (nzcv & 1) { /* V */ 5141 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5142 } else { 5143 if (TCG_TARGET_HAS_andc_i32) { 5144 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5145 } else { 5146 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5147 } 5148 } 5149 } 5150 5151 /* Conditional select 5152 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5153 * +----+----+---+-----------------+------+------+-----+------+------+ 5154 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5155 * +----+----+---+-----------------+------+------+-----+------+------+ 5156 */ 5157 static void disas_cond_select(DisasContext *s, uint32_t insn) 5158 { 5159 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5160 TCGv_i64 tcg_rd, zero; 5161 DisasCompare64 c; 5162 5163 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5164 /* S == 1 or op2<1> == 1 */ 5165 unallocated_encoding(s); 5166 return; 5167 } 5168 sf = extract32(insn, 31, 1); 5169 else_inv = extract32(insn, 30, 1); 5170 rm = extract32(insn, 16, 5); 5171 cond = extract32(insn, 12, 4); 5172 else_inc = extract32(insn, 10, 1); 5173 rn = extract32(insn, 5, 5); 5174 rd = extract32(insn, 0, 5); 5175 5176 tcg_rd = cpu_reg(s, rd); 5177 5178 a64_test_cc(&c, cond); 5179 zero = tcg_constant_i64(0); 5180 5181 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5182 /* CSET & CSETM. */ 5183 if (else_inv) { 5184 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5185 tcg_rd, c.value, zero); 5186 } else { 5187 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5188 tcg_rd, c.value, zero); 5189 } 5190 } else { 5191 TCGv_i64 t_true = cpu_reg(s, rn); 5192 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5193 if (else_inv && else_inc) { 5194 tcg_gen_neg_i64(t_false, t_false); 5195 } else if (else_inv) { 5196 tcg_gen_not_i64(t_false, t_false); 5197 } else if (else_inc) { 5198 tcg_gen_addi_i64(t_false, t_false, 1); 5199 } 5200 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5201 } 5202 5203 if (!sf) { 5204 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5205 } 5206 } 5207 5208 static void handle_clz(DisasContext *s, unsigned int sf, 5209 unsigned int rn, unsigned int rd) 5210 { 5211 TCGv_i64 tcg_rd, tcg_rn; 5212 tcg_rd = cpu_reg(s, rd); 5213 tcg_rn = cpu_reg(s, rn); 5214 5215 if (sf) { 5216 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5217 } else { 5218 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5219 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5220 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5221 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5222 } 5223 } 5224 5225 static void handle_cls(DisasContext *s, unsigned int sf, 5226 unsigned int rn, unsigned int rd) 5227 { 5228 TCGv_i64 tcg_rd, tcg_rn; 5229 tcg_rd = cpu_reg(s, rd); 5230 tcg_rn = cpu_reg(s, rn); 5231 5232 if (sf) { 5233 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5234 } else { 5235 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5236 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5237 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5238 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5239 } 5240 } 5241 5242 static void handle_rbit(DisasContext *s, unsigned int sf, 5243 unsigned int rn, unsigned int rd) 5244 { 5245 TCGv_i64 tcg_rd, tcg_rn; 5246 tcg_rd = cpu_reg(s, rd); 5247 tcg_rn = cpu_reg(s, rn); 5248 5249 if (sf) { 5250 gen_helper_rbit64(tcg_rd, tcg_rn); 5251 } else { 5252 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5253 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5254 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5255 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5256 } 5257 } 5258 5259 /* REV with sf==1, opcode==3 ("REV64") */ 5260 static void handle_rev64(DisasContext *s, unsigned int sf, 5261 unsigned int rn, unsigned int rd) 5262 { 5263 if (!sf) { 5264 unallocated_encoding(s); 5265 return; 5266 } 5267 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5268 } 5269 5270 /* REV with sf==0, opcode==2 5271 * REV32 (sf==1, opcode==2) 5272 */ 5273 static void handle_rev32(DisasContext *s, unsigned int sf, 5274 unsigned int rn, unsigned int rd) 5275 { 5276 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5277 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5278 5279 if (sf) { 5280 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5281 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5282 } else { 5283 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5284 } 5285 } 5286 5287 /* REV16 (opcode==1) */ 5288 static void handle_rev16(DisasContext *s, unsigned int sf, 5289 unsigned int rn, unsigned int rd) 5290 { 5291 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5292 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5293 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5294 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5295 5296 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5297 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5298 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5299 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5300 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5301 } 5302 5303 /* Data-processing (1 source) 5304 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5305 * +----+---+---+-----------------+---------+--------+------+------+ 5306 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5307 * +----+---+---+-----------------+---------+--------+------+------+ 5308 */ 5309 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5310 { 5311 unsigned int sf, opcode, opcode2, rn, rd; 5312 TCGv_i64 tcg_rd; 5313 5314 if (extract32(insn, 29, 1)) { 5315 unallocated_encoding(s); 5316 return; 5317 } 5318 5319 sf = extract32(insn, 31, 1); 5320 opcode = extract32(insn, 10, 6); 5321 opcode2 = extract32(insn, 16, 5); 5322 rn = extract32(insn, 5, 5); 5323 rd = extract32(insn, 0, 5); 5324 5325 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5326 5327 switch (MAP(sf, opcode2, opcode)) { 5328 case MAP(0, 0x00, 0x00): /* RBIT */ 5329 case MAP(1, 0x00, 0x00): 5330 handle_rbit(s, sf, rn, rd); 5331 break; 5332 case MAP(0, 0x00, 0x01): /* REV16 */ 5333 case MAP(1, 0x00, 0x01): 5334 handle_rev16(s, sf, rn, rd); 5335 break; 5336 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5337 case MAP(1, 0x00, 0x02): 5338 handle_rev32(s, sf, rn, rd); 5339 break; 5340 case MAP(1, 0x00, 0x03): /* REV64 */ 5341 handle_rev64(s, sf, rn, rd); 5342 break; 5343 case MAP(0, 0x00, 0x04): /* CLZ */ 5344 case MAP(1, 0x00, 0x04): 5345 handle_clz(s, sf, rn, rd); 5346 break; 5347 case MAP(0, 0x00, 0x05): /* CLS */ 5348 case MAP(1, 0x00, 0x05): 5349 handle_cls(s, sf, rn, rd); 5350 break; 5351 case MAP(1, 0x01, 0x00): /* PACIA */ 5352 if (s->pauth_active) { 5353 tcg_rd = cpu_reg(s, rd); 5354 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5355 } else if (!dc_isar_feature(aa64_pauth, s)) { 5356 goto do_unallocated; 5357 } 5358 break; 5359 case MAP(1, 0x01, 0x01): /* PACIB */ 5360 if (s->pauth_active) { 5361 tcg_rd = cpu_reg(s, rd); 5362 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5363 } else if (!dc_isar_feature(aa64_pauth, s)) { 5364 goto do_unallocated; 5365 } 5366 break; 5367 case MAP(1, 0x01, 0x02): /* PACDA */ 5368 if (s->pauth_active) { 5369 tcg_rd = cpu_reg(s, rd); 5370 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5371 } else if (!dc_isar_feature(aa64_pauth, s)) { 5372 goto do_unallocated; 5373 } 5374 break; 5375 case MAP(1, 0x01, 0x03): /* PACDB */ 5376 if (s->pauth_active) { 5377 tcg_rd = cpu_reg(s, rd); 5378 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5379 } else if (!dc_isar_feature(aa64_pauth, s)) { 5380 goto do_unallocated; 5381 } 5382 break; 5383 case MAP(1, 0x01, 0x04): /* AUTIA */ 5384 if (s->pauth_active) { 5385 tcg_rd = cpu_reg(s, rd); 5386 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5387 } else if (!dc_isar_feature(aa64_pauth, s)) { 5388 goto do_unallocated; 5389 } 5390 break; 5391 case MAP(1, 0x01, 0x05): /* AUTIB */ 5392 if (s->pauth_active) { 5393 tcg_rd = cpu_reg(s, rd); 5394 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5395 } else if (!dc_isar_feature(aa64_pauth, s)) { 5396 goto do_unallocated; 5397 } 5398 break; 5399 case MAP(1, 0x01, 0x06): /* AUTDA */ 5400 if (s->pauth_active) { 5401 tcg_rd = cpu_reg(s, rd); 5402 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5403 } else if (!dc_isar_feature(aa64_pauth, s)) { 5404 goto do_unallocated; 5405 } 5406 break; 5407 case MAP(1, 0x01, 0x07): /* AUTDB */ 5408 if (s->pauth_active) { 5409 tcg_rd = cpu_reg(s, rd); 5410 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5411 } else if (!dc_isar_feature(aa64_pauth, s)) { 5412 goto do_unallocated; 5413 } 5414 break; 5415 case MAP(1, 0x01, 0x08): /* PACIZA */ 5416 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5417 goto do_unallocated; 5418 } else if (s->pauth_active) { 5419 tcg_rd = cpu_reg(s, rd); 5420 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5421 } 5422 break; 5423 case MAP(1, 0x01, 0x09): /* PACIZB */ 5424 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5425 goto do_unallocated; 5426 } else if (s->pauth_active) { 5427 tcg_rd = cpu_reg(s, rd); 5428 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5429 } 5430 break; 5431 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5432 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5433 goto do_unallocated; 5434 } else if (s->pauth_active) { 5435 tcg_rd = cpu_reg(s, rd); 5436 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5437 } 5438 break; 5439 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5440 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5441 goto do_unallocated; 5442 } else if (s->pauth_active) { 5443 tcg_rd = cpu_reg(s, rd); 5444 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5445 } 5446 break; 5447 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5448 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5449 goto do_unallocated; 5450 } else if (s->pauth_active) { 5451 tcg_rd = cpu_reg(s, rd); 5452 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5453 } 5454 break; 5455 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5456 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5457 goto do_unallocated; 5458 } else if (s->pauth_active) { 5459 tcg_rd = cpu_reg(s, rd); 5460 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5461 } 5462 break; 5463 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5464 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5465 goto do_unallocated; 5466 } else if (s->pauth_active) { 5467 tcg_rd = cpu_reg(s, rd); 5468 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5469 } 5470 break; 5471 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5472 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5473 goto do_unallocated; 5474 } else if (s->pauth_active) { 5475 tcg_rd = cpu_reg(s, rd); 5476 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5477 } 5478 break; 5479 case MAP(1, 0x01, 0x10): /* XPACI */ 5480 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5481 goto do_unallocated; 5482 } else if (s->pauth_active) { 5483 tcg_rd = cpu_reg(s, rd); 5484 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5485 } 5486 break; 5487 case MAP(1, 0x01, 0x11): /* XPACD */ 5488 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5489 goto do_unallocated; 5490 } else if (s->pauth_active) { 5491 tcg_rd = cpu_reg(s, rd); 5492 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5493 } 5494 break; 5495 default: 5496 do_unallocated: 5497 unallocated_encoding(s); 5498 break; 5499 } 5500 5501 #undef MAP 5502 } 5503 5504 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5505 unsigned int rm, unsigned int rn, unsigned int rd) 5506 { 5507 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5508 tcg_rd = cpu_reg(s, rd); 5509 5510 if (!sf && is_signed) { 5511 tcg_n = tcg_temp_new_i64(); 5512 tcg_m = tcg_temp_new_i64(); 5513 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5514 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5515 } else { 5516 tcg_n = read_cpu_reg(s, rn, sf); 5517 tcg_m = read_cpu_reg(s, rm, sf); 5518 } 5519 5520 if (is_signed) { 5521 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5522 } else { 5523 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5524 } 5525 5526 if (!sf) { /* zero extend final result */ 5527 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5528 } 5529 } 5530 5531 /* LSLV, LSRV, ASRV, RORV */ 5532 static void handle_shift_reg(DisasContext *s, 5533 enum a64_shift_type shift_type, unsigned int sf, 5534 unsigned int rm, unsigned int rn, unsigned int rd) 5535 { 5536 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5537 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5538 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5539 5540 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5541 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5542 } 5543 5544 /* CRC32[BHWX], CRC32C[BHWX] */ 5545 static void handle_crc32(DisasContext *s, 5546 unsigned int sf, unsigned int sz, bool crc32c, 5547 unsigned int rm, unsigned int rn, unsigned int rd) 5548 { 5549 TCGv_i64 tcg_acc, tcg_val; 5550 TCGv_i32 tcg_bytes; 5551 5552 if (!dc_isar_feature(aa64_crc32, s) 5553 || (sf == 1 && sz != 3) 5554 || (sf == 0 && sz == 3)) { 5555 unallocated_encoding(s); 5556 return; 5557 } 5558 5559 if (sz == 3) { 5560 tcg_val = cpu_reg(s, rm); 5561 } else { 5562 uint64_t mask; 5563 switch (sz) { 5564 case 0: 5565 mask = 0xFF; 5566 break; 5567 case 1: 5568 mask = 0xFFFF; 5569 break; 5570 case 2: 5571 mask = 0xFFFFFFFF; 5572 break; 5573 default: 5574 g_assert_not_reached(); 5575 } 5576 tcg_val = tcg_temp_new_i64(); 5577 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5578 } 5579 5580 tcg_acc = cpu_reg(s, rn); 5581 tcg_bytes = tcg_constant_i32(1 << sz); 5582 5583 if (crc32c) { 5584 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5585 } else { 5586 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5587 } 5588 } 5589 5590 /* Data-processing (2 source) 5591 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5592 * +----+---+---+-----------------+------+--------+------+------+ 5593 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5594 * +----+---+---+-----------------+------+--------+------+------+ 5595 */ 5596 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5597 { 5598 unsigned int sf, rm, opcode, rn, rd, setflag; 5599 sf = extract32(insn, 31, 1); 5600 setflag = extract32(insn, 29, 1); 5601 rm = extract32(insn, 16, 5); 5602 opcode = extract32(insn, 10, 6); 5603 rn = extract32(insn, 5, 5); 5604 rd = extract32(insn, 0, 5); 5605 5606 if (setflag && opcode != 0) { 5607 unallocated_encoding(s); 5608 return; 5609 } 5610 5611 switch (opcode) { 5612 case 0: /* SUBP(S) */ 5613 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5614 goto do_unallocated; 5615 } else { 5616 TCGv_i64 tcg_n, tcg_m, tcg_d; 5617 5618 tcg_n = read_cpu_reg_sp(s, rn, true); 5619 tcg_m = read_cpu_reg_sp(s, rm, true); 5620 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5621 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5622 tcg_d = cpu_reg(s, rd); 5623 5624 if (setflag) { 5625 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5626 } else { 5627 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5628 } 5629 } 5630 break; 5631 case 2: /* UDIV */ 5632 handle_div(s, false, sf, rm, rn, rd); 5633 break; 5634 case 3: /* SDIV */ 5635 handle_div(s, true, sf, rm, rn, rd); 5636 break; 5637 case 4: /* IRG */ 5638 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5639 goto do_unallocated; 5640 } 5641 if (s->ata[0]) { 5642 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5643 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5644 } else { 5645 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5646 cpu_reg_sp(s, rn)); 5647 } 5648 break; 5649 case 5: /* GMI */ 5650 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5651 goto do_unallocated; 5652 } else { 5653 TCGv_i64 t = tcg_temp_new_i64(); 5654 5655 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5656 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5657 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5658 } 5659 break; 5660 case 8: /* LSLV */ 5661 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5662 break; 5663 case 9: /* LSRV */ 5664 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5665 break; 5666 case 10: /* ASRV */ 5667 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5668 break; 5669 case 11: /* RORV */ 5670 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5671 break; 5672 case 12: /* PACGA */ 5673 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5674 goto do_unallocated; 5675 } 5676 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5677 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5678 break; 5679 case 16: 5680 case 17: 5681 case 18: 5682 case 19: 5683 case 20: 5684 case 21: 5685 case 22: 5686 case 23: /* CRC32 */ 5687 { 5688 int sz = extract32(opcode, 0, 2); 5689 bool crc32c = extract32(opcode, 2, 1); 5690 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5691 break; 5692 } 5693 default: 5694 do_unallocated: 5695 unallocated_encoding(s); 5696 break; 5697 } 5698 } 5699 5700 /* 5701 * Data processing - register 5702 * 31 30 29 28 25 21 20 16 10 0 5703 * +--+---+--+---+-------+-----+-------+-------+---------+ 5704 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5705 * +--+---+--+---+-------+-----+-------+-------+---------+ 5706 */ 5707 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5708 { 5709 int op0 = extract32(insn, 30, 1); 5710 int op1 = extract32(insn, 28, 1); 5711 int op2 = extract32(insn, 21, 4); 5712 int op3 = extract32(insn, 10, 6); 5713 5714 if (!op1) { 5715 if (op2 & 8) { 5716 if (op2 & 1) { 5717 /* Add/sub (extended register) */ 5718 disas_add_sub_ext_reg(s, insn); 5719 } else { 5720 /* Add/sub (shifted register) */ 5721 disas_add_sub_reg(s, insn); 5722 } 5723 } else { 5724 /* Logical (shifted register) */ 5725 disas_logic_reg(s, insn); 5726 } 5727 return; 5728 } 5729 5730 switch (op2) { 5731 case 0x0: 5732 switch (op3) { 5733 case 0x00: /* Add/subtract (with carry) */ 5734 disas_adc_sbc(s, insn); 5735 break; 5736 5737 case 0x01: /* Rotate right into flags */ 5738 case 0x21: 5739 disas_rotate_right_into_flags(s, insn); 5740 break; 5741 5742 case 0x02: /* Evaluate into flags */ 5743 case 0x12: 5744 case 0x22: 5745 case 0x32: 5746 disas_evaluate_into_flags(s, insn); 5747 break; 5748 5749 default: 5750 goto do_unallocated; 5751 } 5752 break; 5753 5754 case 0x2: /* Conditional compare */ 5755 disas_cc(s, insn); /* both imm and reg forms */ 5756 break; 5757 5758 case 0x4: /* Conditional select */ 5759 disas_cond_select(s, insn); 5760 break; 5761 5762 case 0x6: /* Data-processing */ 5763 if (op0) { /* (1 source) */ 5764 disas_data_proc_1src(s, insn); 5765 } else { /* (2 source) */ 5766 disas_data_proc_2src(s, insn); 5767 } 5768 break; 5769 case 0x8 ... 0xf: /* (3 source) */ 5770 disas_data_proc_3src(s, insn); 5771 break; 5772 5773 default: 5774 do_unallocated: 5775 unallocated_encoding(s); 5776 break; 5777 } 5778 } 5779 5780 static void handle_fp_compare(DisasContext *s, int size, 5781 unsigned int rn, unsigned int rm, 5782 bool cmp_with_zero, bool signal_all_nans) 5783 { 5784 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5785 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5786 5787 if (size == MO_64) { 5788 TCGv_i64 tcg_vn, tcg_vm; 5789 5790 tcg_vn = read_fp_dreg(s, rn); 5791 if (cmp_with_zero) { 5792 tcg_vm = tcg_constant_i64(0); 5793 } else { 5794 tcg_vm = read_fp_dreg(s, rm); 5795 } 5796 if (signal_all_nans) { 5797 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5798 } else { 5799 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5800 } 5801 } else { 5802 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5803 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5804 5805 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5806 if (cmp_with_zero) { 5807 tcg_gen_movi_i32(tcg_vm, 0); 5808 } else { 5809 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5810 } 5811 5812 switch (size) { 5813 case MO_32: 5814 if (signal_all_nans) { 5815 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5816 } else { 5817 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5818 } 5819 break; 5820 case MO_16: 5821 if (signal_all_nans) { 5822 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5823 } else { 5824 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5825 } 5826 break; 5827 default: 5828 g_assert_not_reached(); 5829 } 5830 } 5831 5832 gen_set_nzcv(tcg_flags); 5833 } 5834 5835 /* Floating point compare 5836 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5837 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5838 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5839 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5840 */ 5841 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5842 { 5843 unsigned int mos, type, rm, op, rn, opc, op2r; 5844 int size; 5845 5846 mos = extract32(insn, 29, 3); 5847 type = extract32(insn, 22, 2); 5848 rm = extract32(insn, 16, 5); 5849 op = extract32(insn, 14, 2); 5850 rn = extract32(insn, 5, 5); 5851 opc = extract32(insn, 3, 2); 5852 op2r = extract32(insn, 0, 3); 5853 5854 if (mos || op || op2r) { 5855 unallocated_encoding(s); 5856 return; 5857 } 5858 5859 switch (type) { 5860 case 0: 5861 size = MO_32; 5862 break; 5863 case 1: 5864 size = MO_64; 5865 break; 5866 case 3: 5867 size = MO_16; 5868 if (dc_isar_feature(aa64_fp16, s)) { 5869 break; 5870 } 5871 /* fallthru */ 5872 default: 5873 unallocated_encoding(s); 5874 return; 5875 } 5876 5877 if (!fp_access_check(s)) { 5878 return; 5879 } 5880 5881 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5882 } 5883 5884 /* Floating point conditional compare 5885 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5886 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5887 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5888 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5889 */ 5890 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5891 { 5892 unsigned int mos, type, rm, cond, rn, op, nzcv; 5893 TCGLabel *label_continue = NULL; 5894 int size; 5895 5896 mos = extract32(insn, 29, 3); 5897 type = extract32(insn, 22, 2); 5898 rm = extract32(insn, 16, 5); 5899 cond = extract32(insn, 12, 4); 5900 rn = extract32(insn, 5, 5); 5901 op = extract32(insn, 4, 1); 5902 nzcv = extract32(insn, 0, 4); 5903 5904 if (mos) { 5905 unallocated_encoding(s); 5906 return; 5907 } 5908 5909 switch (type) { 5910 case 0: 5911 size = MO_32; 5912 break; 5913 case 1: 5914 size = MO_64; 5915 break; 5916 case 3: 5917 size = MO_16; 5918 if (dc_isar_feature(aa64_fp16, s)) { 5919 break; 5920 } 5921 /* fallthru */ 5922 default: 5923 unallocated_encoding(s); 5924 return; 5925 } 5926 5927 if (!fp_access_check(s)) { 5928 return; 5929 } 5930 5931 if (cond < 0x0e) { /* not always */ 5932 TCGLabel *label_match = gen_new_label(); 5933 label_continue = gen_new_label(); 5934 arm_gen_test_cc(cond, label_match); 5935 /* nomatch: */ 5936 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5937 tcg_gen_br(label_continue); 5938 gen_set_label(label_match); 5939 } 5940 5941 handle_fp_compare(s, size, rn, rm, false, op); 5942 5943 if (cond < 0x0e) { 5944 gen_set_label(label_continue); 5945 } 5946 } 5947 5948 /* Floating point conditional select 5949 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5950 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5951 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5952 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5953 */ 5954 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5955 { 5956 unsigned int mos, type, rm, cond, rn, rd; 5957 TCGv_i64 t_true, t_false; 5958 DisasCompare64 c; 5959 MemOp sz; 5960 5961 mos = extract32(insn, 29, 3); 5962 type = extract32(insn, 22, 2); 5963 rm = extract32(insn, 16, 5); 5964 cond = extract32(insn, 12, 4); 5965 rn = extract32(insn, 5, 5); 5966 rd = extract32(insn, 0, 5); 5967 5968 if (mos) { 5969 unallocated_encoding(s); 5970 return; 5971 } 5972 5973 switch (type) { 5974 case 0: 5975 sz = MO_32; 5976 break; 5977 case 1: 5978 sz = MO_64; 5979 break; 5980 case 3: 5981 sz = MO_16; 5982 if (dc_isar_feature(aa64_fp16, s)) { 5983 break; 5984 } 5985 /* fallthru */ 5986 default: 5987 unallocated_encoding(s); 5988 return; 5989 } 5990 5991 if (!fp_access_check(s)) { 5992 return; 5993 } 5994 5995 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5996 t_true = tcg_temp_new_i64(); 5997 t_false = tcg_temp_new_i64(); 5998 read_vec_element(s, t_true, rn, 0, sz); 5999 read_vec_element(s, t_false, rm, 0, sz); 6000 6001 a64_test_cc(&c, cond); 6002 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6003 t_true, t_false); 6004 6005 /* Note that sregs & hregs write back zeros to the high bits, 6006 and we've already done the zero-extension. */ 6007 write_fp_dreg(s, rd, t_true); 6008 } 6009 6010 /* Floating-point data-processing (1 source) - half precision */ 6011 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6012 { 6013 TCGv_ptr fpst = NULL; 6014 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6015 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6016 6017 switch (opcode) { 6018 case 0x0: /* FMOV */ 6019 tcg_gen_mov_i32(tcg_res, tcg_op); 6020 break; 6021 case 0x1: /* FABS */ 6022 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6023 break; 6024 case 0x2: /* FNEG */ 6025 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6026 break; 6027 case 0x3: /* FSQRT */ 6028 fpst = fpstatus_ptr(FPST_FPCR_F16); 6029 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6030 break; 6031 case 0x8: /* FRINTN */ 6032 case 0x9: /* FRINTP */ 6033 case 0xa: /* FRINTM */ 6034 case 0xb: /* FRINTZ */ 6035 case 0xc: /* FRINTA */ 6036 { 6037 TCGv_i32 tcg_rmode; 6038 6039 fpst = fpstatus_ptr(FPST_FPCR_F16); 6040 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6041 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6042 gen_restore_rmode(tcg_rmode, fpst); 6043 break; 6044 } 6045 case 0xe: /* FRINTX */ 6046 fpst = fpstatus_ptr(FPST_FPCR_F16); 6047 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6048 break; 6049 case 0xf: /* FRINTI */ 6050 fpst = fpstatus_ptr(FPST_FPCR_F16); 6051 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6052 break; 6053 default: 6054 g_assert_not_reached(); 6055 } 6056 6057 write_fp_sreg(s, rd, tcg_res); 6058 } 6059 6060 /* Floating-point data-processing (1 source) - single precision */ 6061 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6062 { 6063 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6064 TCGv_i32 tcg_op, tcg_res; 6065 TCGv_ptr fpst; 6066 int rmode = -1; 6067 6068 tcg_op = read_fp_sreg(s, rn); 6069 tcg_res = tcg_temp_new_i32(); 6070 6071 switch (opcode) { 6072 case 0x0: /* FMOV */ 6073 tcg_gen_mov_i32(tcg_res, tcg_op); 6074 goto done; 6075 case 0x1: /* FABS */ 6076 gen_helper_vfp_abss(tcg_res, tcg_op); 6077 goto done; 6078 case 0x2: /* FNEG */ 6079 gen_helper_vfp_negs(tcg_res, tcg_op); 6080 goto done; 6081 case 0x3: /* FSQRT */ 6082 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6083 goto done; 6084 case 0x6: /* BFCVT */ 6085 gen_fpst = gen_helper_bfcvt; 6086 break; 6087 case 0x8: /* FRINTN */ 6088 case 0x9: /* FRINTP */ 6089 case 0xa: /* FRINTM */ 6090 case 0xb: /* FRINTZ */ 6091 case 0xc: /* FRINTA */ 6092 rmode = opcode & 7; 6093 gen_fpst = gen_helper_rints; 6094 break; 6095 case 0xe: /* FRINTX */ 6096 gen_fpst = gen_helper_rints_exact; 6097 break; 6098 case 0xf: /* FRINTI */ 6099 gen_fpst = gen_helper_rints; 6100 break; 6101 case 0x10: /* FRINT32Z */ 6102 rmode = FPROUNDING_ZERO; 6103 gen_fpst = gen_helper_frint32_s; 6104 break; 6105 case 0x11: /* FRINT32X */ 6106 gen_fpst = gen_helper_frint32_s; 6107 break; 6108 case 0x12: /* FRINT64Z */ 6109 rmode = FPROUNDING_ZERO; 6110 gen_fpst = gen_helper_frint64_s; 6111 break; 6112 case 0x13: /* FRINT64X */ 6113 gen_fpst = gen_helper_frint64_s; 6114 break; 6115 default: 6116 g_assert_not_reached(); 6117 } 6118 6119 fpst = fpstatus_ptr(FPST_FPCR); 6120 if (rmode >= 0) { 6121 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6122 gen_fpst(tcg_res, tcg_op, fpst); 6123 gen_restore_rmode(tcg_rmode, fpst); 6124 } else { 6125 gen_fpst(tcg_res, tcg_op, fpst); 6126 } 6127 6128 done: 6129 write_fp_sreg(s, rd, tcg_res); 6130 } 6131 6132 /* Floating-point data-processing (1 source) - double precision */ 6133 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6134 { 6135 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6136 TCGv_i64 tcg_op, tcg_res; 6137 TCGv_ptr fpst; 6138 int rmode = -1; 6139 6140 switch (opcode) { 6141 case 0x0: /* FMOV */ 6142 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6143 return; 6144 } 6145 6146 tcg_op = read_fp_dreg(s, rn); 6147 tcg_res = tcg_temp_new_i64(); 6148 6149 switch (opcode) { 6150 case 0x1: /* FABS */ 6151 gen_helper_vfp_absd(tcg_res, tcg_op); 6152 goto done; 6153 case 0x2: /* FNEG */ 6154 gen_helper_vfp_negd(tcg_res, tcg_op); 6155 goto done; 6156 case 0x3: /* FSQRT */ 6157 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6158 goto done; 6159 case 0x8: /* FRINTN */ 6160 case 0x9: /* FRINTP */ 6161 case 0xa: /* FRINTM */ 6162 case 0xb: /* FRINTZ */ 6163 case 0xc: /* FRINTA */ 6164 rmode = opcode & 7; 6165 gen_fpst = gen_helper_rintd; 6166 break; 6167 case 0xe: /* FRINTX */ 6168 gen_fpst = gen_helper_rintd_exact; 6169 break; 6170 case 0xf: /* FRINTI */ 6171 gen_fpst = gen_helper_rintd; 6172 break; 6173 case 0x10: /* FRINT32Z */ 6174 rmode = FPROUNDING_ZERO; 6175 gen_fpst = gen_helper_frint32_d; 6176 break; 6177 case 0x11: /* FRINT32X */ 6178 gen_fpst = gen_helper_frint32_d; 6179 break; 6180 case 0x12: /* FRINT64Z */ 6181 rmode = FPROUNDING_ZERO; 6182 gen_fpst = gen_helper_frint64_d; 6183 break; 6184 case 0x13: /* FRINT64X */ 6185 gen_fpst = gen_helper_frint64_d; 6186 break; 6187 default: 6188 g_assert_not_reached(); 6189 } 6190 6191 fpst = fpstatus_ptr(FPST_FPCR); 6192 if (rmode >= 0) { 6193 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6194 gen_fpst(tcg_res, tcg_op, fpst); 6195 gen_restore_rmode(tcg_rmode, fpst); 6196 } else { 6197 gen_fpst(tcg_res, tcg_op, fpst); 6198 } 6199 6200 done: 6201 write_fp_dreg(s, rd, tcg_res); 6202 } 6203 6204 static void handle_fp_fcvt(DisasContext *s, int opcode, 6205 int rd, int rn, int dtype, int ntype) 6206 { 6207 switch (ntype) { 6208 case 0x0: 6209 { 6210 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6211 if (dtype == 1) { 6212 /* Single to double */ 6213 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6214 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6215 write_fp_dreg(s, rd, tcg_rd); 6216 } else { 6217 /* Single to half */ 6218 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6219 TCGv_i32 ahp = get_ahp_flag(); 6220 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6221 6222 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6223 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6224 write_fp_sreg(s, rd, tcg_rd); 6225 } 6226 break; 6227 } 6228 case 0x1: 6229 { 6230 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6231 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6232 if (dtype == 0) { 6233 /* Double to single */ 6234 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6235 } else { 6236 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6237 TCGv_i32 ahp = get_ahp_flag(); 6238 /* Double to half */ 6239 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6240 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6241 } 6242 write_fp_sreg(s, rd, tcg_rd); 6243 break; 6244 } 6245 case 0x3: 6246 { 6247 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6248 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6249 TCGv_i32 tcg_ahp = get_ahp_flag(); 6250 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6251 if (dtype == 0) { 6252 /* Half to single */ 6253 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6254 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6255 write_fp_sreg(s, rd, tcg_rd); 6256 } else { 6257 /* Half to double */ 6258 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6259 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6260 write_fp_dreg(s, rd, tcg_rd); 6261 } 6262 break; 6263 } 6264 default: 6265 g_assert_not_reached(); 6266 } 6267 } 6268 6269 /* Floating point data-processing (1 source) 6270 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6271 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6272 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6273 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6274 */ 6275 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6276 { 6277 int mos = extract32(insn, 29, 3); 6278 int type = extract32(insn, 22, 2); 6279 int opcode = extract32(insn, 15, 6); 6280 int rn = extract32(insn, 5, 5); 6281 int rd = extract32(insn, 0, 5); 6282 6283 if (mos) { 6284 goto do_unallocated; 6285 } 6286 6287 switch (opcode) { 6288 case 0x4: case 0x5: case 0x7: 6289 { 6290 /* FCVT between half, single and double precision */ 6291 int dtype = extract32(opcode, 0, 2); 6292 if (type == 2 || dtype == type) { 6293 goto do_unallocated; 6294 } 6295 if (!fp_access_check(s)) { 6296 return; 6297 } 6298 6299 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6300 break; 6301 } 6302 6303 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6304 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6305 goto do_unallocated; 6306 } 6307 /* fall through */ 6308 case 0x0 ... 0x3: 6309 case 0x8 ... 0xc: 6310 case 0xe ... 0xf: 6311 /* 32-to-32 and 64-to-64 ops */ 6312 switch (type) { 6313 case 0: 6314 if (!fp_access_check(s)) { 6315 return; 6316 } 6317 handle_fp_1src_single(s, opcode, rd, rn); 6318 break; 6319 case 1: 6320 if (!fp_access_check(s)) { 6321 return; 6322 } 6323 handle_fp_1src_double(s, opcode, rd, rn); 6324 break; 6325 case 3: 6326 if (!dc_isar_feature(aa64_fp16, s)) { 6327 goto do_unallocated; 6328 } 6329 6330 if (!fp_access_check(s)) { 6331 return; 6332 } 6333 handle_fp_1src_half(s, opcode, rd, rn); 6334 break; 6335 default: 6336 goto do_unallocated; 6337 } 6338 break; 6339 6340 case 0x6: 6341 switch (type) { 6342 case 1: /* BFCVT */ 6343 if (!dc_isar_feature(aa64_bf16, s)) { 6344 goto do_unallocated; 6345 } 6346 if (!fp_access_check(s)) { 6347 return; 6348 } 6349 handle_fp_1src_single(s, opcode, rd, rn); 6350 break; 6351 default: 6352 goto do_unallocated; 6353 } 6354 break; 6355 6356 default: 6357 do_unallocated: 6358 unallocated_encoding(s); 6359 break; 6360 } 6361 } 6362 6363 /* Floating-point data-processing (2 source) - single precision */ 6364 static void handle_fp_2src_single(DisasContext *s, int opcode, 6365 int rd, int rn, int rm) 6366 { 6367 TCGv_i32 tcg_op1; 6368 TCGv_i32 tcg_op2; 6369 TCGv_i32 tcg_res; 6370 TCGv_ptr fpst; 6371 6372 tcg_res = tcg_temp_new_i32(); 6373 fpst = fpstatus_ptr(FPST_FPCR); 6374 tcg_op1 = read_fp_sreg(s, rn); 6375 tcg_op2 = read_fp_sreg(s, rm); 6376 6377 switch (opcode) { 6378 case 0x0: /* FMUL */ 6379 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6380 break; 6381 case 0x1: /* FDIV */ 6382 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6383 break; 6384 case 0x2: /* FADD */ 6385 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6386 break; 6387 case 0x3: /* FSUB */ 6388 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6389 break; 6390 case 0x4: /* FMAX */ 6391 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6392 break; 6393 case 0x5: /* FMIN */ 6394 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6395 break; 6396 case 0x6: /* FMAXNM */ 6397 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6398 break; 6399 case 0x7: /* FMINNM */ 6400 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6401 break; 6402 case 0x8: /* FNMUL */ 6403 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6404 gen_helper_vfp_negs(tcg_res, tcg_res); 6405 break; 6406 } 6407 6408 write_fp_sreg(s, rd, tcg_res); 6409 } 6410 6411 /* Floating-point data-processing (2 source) - double precision */ 6412 static void handle_fp_2src_double(DisasContext *s, int opcode, 6413 int rd, int rn, int rm) 6414 { 6415 TCGv_i64 tcg_op1; 6416 TCGv_i64 tcg_op2; 6417 TCGv_i64 tcg_res; 6418 TCGv_ptr fpst; 6419 6420 tcg_res = tcg_temp_new_i64(); 6421 fpst = fpstatus_ptr(FPST_FPCR); 6422 tcg_op1 = read_fp_dreg(s, rn); 6423 tcg_op2 = read_fp_dreg(s, rm); 6424 6425 switch (opcode) { 6426 case 0x0: /* FMUL */ 6427 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6428 break; 6429 case 0x1: /* FDIV */ 6430 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6431 break; 6432 case 0x2: /* FADD */ 6433 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6434 break; 6435 case 0x3: /* FSUB */ 6436 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6437 break; 6438 case 0x4: /* FMAX */ 6439 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6440 break; 6441 case 0x5: /* FMIN */ 6442 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6443 break; 6444 case 0x6: /* FMAXNM */ 6445 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6446 break; 6447 case 0x7: /* FMINNM */ 6448 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6449 break; 6450 case 0x8: /* FNMUL */ 6451 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6452 gen_helper_vfp_negd(tcg_res, tcg_res); 6453 break; 6454 } 6455 6456 write_fp_dreg(s, rd, tcg_res); 6457 } 6458 6459 /* Floating-point data-processing (2 source) - half precision */ 6460 static void handle_fp_2src_half(DisasContext *s, int opcode, 6461 int rd, int rn, int rm) 6462 { 6463 TCGv_i32 tcg_op1; 6464 TCGv_i32 tcg_op2; 6465 TCGv_i32 tcg_res; 6466 TCGv_ptr fpst; 6467 6468 tcg_res = tcg_temp_new_i32(); 6469 fpst = fpstatus_ptr(FPST_FPCR_F16); 6470 tcg_op1 = read_fp_hreg(s, rn); 6471 tcg_op2 = read_fp_hreg(s, rm); 6472 6473 switch (opcode) { 6474 case 0x0: /* FMUL */ 6475 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6476 break; 6477 case 0x1: /* FDIV */ 6478 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6479 break; 6480 case 0x2: /* FADD */ 6481 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6482 break; 6483 case 0x3: /* FSUB */ 6484 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6485 break; 6486 case 0x4: /* FMAX */ 6487 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6488 break; 6489 case 0x5: /* FMIN */ 6490 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x6: /* FMAXNM */ 6493 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x7: /* FMINNM */ 6496 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6497 break; 6498 case 0x8: /* FNMUL */ 6499 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6500 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6501 break; 6502 default: 6503 g_assert_not_reached(); 6504 } 6505 6506 write_fp_sreg(s, rd, tcg_res); 6507 } 6508 6509 /* Floating point data-processing (2 source) 6510 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6511 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6512 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6513 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6514 */ 6515 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6516 { 6517 int mos = extract32(insn, 29, 3); 6518 int type = extract32(insn, 22, 2); 6519 int rd = extract32(insn, 0, 5); 6520 int rn = extract32(insn, 5, 5); 6521 int rm = extract32(insn, 16, 5); 6522 int opcode = extract32(insn, 12, 4); 6523 6524 if (opcode > 8 || mos) { 6525 unallocated_encoding(s); 6526 return; 6527 } 6528 6529 switch (type) { 6530 case 0: 6531 if (!fp_access_check(s)) { 6532 return; 6533 } 6534 handle_fp_2src_single(s, opcode, rd, rn, rm); 6535 break; 6536 case 1: 6537 if (!fp_access_check(s)) { 6538 return; 6539 } 6540 handle_fp_2src_double(s, opcode, rd, rn, rm); 6541 break; 6542 case 3: 6543 if (!dc_isar_feature(aa64_fp16, s)) { 6544 unallocated_encoding(s); 6545 return; 6546 } 6547 if (!fp_access_check(s)) { 6548 return; 6549 } 6550 handle_fp_2src_half(s, opcode, rd, rn, rm); 6551 break; 6552 default: 6553 unallocated_encoding(s); 6554 } 6555 } 6556 6557 /* Floating-point data-processing (3 source) - single precision */ 6558 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6559 int rd, int rn, int rm, int ra) 6560 { 6561 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6562 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6563 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6564 6565 tcg_op1 = read_fp_sreg(s, rn); 6566 tcg_op2 = read_fp_sreg(s, rm); 6567 tcg_op3 = read_fp_sreg(s, ra); 6568 6569 /* These are fused multiply-add, and must be done as one 6570 * floating point operation with no rounding between the 6571 * multiplication and addition steps. 6572 * NB that doing the negations here as separate steps is 6573 * correct : an input NaN should come out with its sign bit 6574 * flipped if it is a negated-input. 6575 */ 6576 if (o1 == true) { 6577 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6578 } 6579 6580 if (o0 != o1) { 6581 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6582 } 6583 6584 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6585 6586 write_fp_sreg(s, rd, tcg_res); 6587 } 6588 6589 /* Floating-point data-processing (3 source) - double precision */ 6590 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6591 int rd, int rn, int rm, int ra) 6592 { 6593 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6594 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6595 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6596 6597 tcg_op1 = read_fp_dreg(s, rn); 6598 tcg_op2 = read_fp_dreg(s, rm); 6599 tcg_op3 = read_fp_dreg(s, ra); 6600 6601 /* These are fused multiply-add, and must be done as one 6602 * floating point operation with no rounding between the 6603 * multiplication and addition steps. 6604 * NB that doing the negations here as separate steps is 6605 * correct : an input NaN should come out with its sign bit 6606 * flipped if it is a negated-input. 6607 */ 6608 if (o1 == true) { 6609 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6610 } 6611 6612 if (o0 != o1) { 6613 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6614 } 6615 6616 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6617 6618 write_fp_dreg(s, rd, tcg_res); 6619 } 6620 6621 /* Floating-point data-processing (3 source) - half precision */ 6622 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6623 int rd, int rn, int rm, int ra) 6624 { 6625 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6626 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6627 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6628 6629 tcg_op1 = read_fp_hreg(s, rn); 6630 tcg_op2 = read_fp_hreg(s, rm); 6631 tcg_op3 = read_fp_hreg(s, ra); 6632 6633 /* These are fused multiply-add, and must be done as one 6634 * floating point operation with no rounding between the 6635 * multiplication and addition steps. 6636 * NB that doing the negations here as separate steps is 6637 * correct : an input NaN should come out with its sign bit 6638 * flipped if it is a negated-input. 6639 */ 6640 if (o1 == true) { 6641 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6642 } 6643 6644 if (o0 != o1) { 6645 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6646 } 6647 6648 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6649 6650 write_fp_sreg(s, rd, tcg_res); 6651 } 6652 6653 /* Floating point data-processing (3 source) 6654 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6655 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6656 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6657 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6658 */ 6659 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6660 { 6661 int mos = extract32(insn, 29, 3); 6662 int type = extract32(insn, 22, 2); 6663 int rd = extract32(insn, 0, 5); 6664 int rn = extract32(insn, 5, 5); 6665 int ra = extract32(insn, 10, 5); 6666 int rm = extract32(insn, 16, 5); 6667 bool o0 = extract32(insn, 15, 1); 6668 bool o1 = extract32(insn, 21, 1); 6669 6670 if (mos) { 6671 unallocated_encoding(s); 6672 return; 6673 } 6674 6675 switch (type) { 6676 case 0: 6677 if (!fp_access_check(s)) { 6678 return; 6679 } 6680 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6681 break; 6682 case 1: 6683 if (!fp_access_check(s)) { 6684 return; 6685 } 6686 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6687 break; 6688 case 3: 6689 if (!dc_isar_feature(aa64_fp16, s)) { 6690 unallocated_encoding(s); 6691 return; 6692 } 6693 if (!fp_access_check(s)) { 6694 return; 6695 } 6696 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6697 break; 6698 default: 6699 unallocated_encoding(s); 6700 } 6701 } 6702 6703 /* Floating point immediate 6704 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6705 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6706 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6707 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6708 */ 6709 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6710 { 6711 int rd = extract32(insn, 0, 5); 6712 int imm5 = extract32(insn, 5, 5); 6713 int imm8 = extract32(insn, 13, 8); 6714 int type = extract32(insn, 22, 2); 6715 int mos = extract32(insn, 29, 3); 6716 uint64_t imm; 6717 MemOp sz; 6718 6719 if (mos || imm5) { 6720 unallocated_encoding(s); 6721 return; 6722 } 6723 6724 switch (type) { 6725 case 0: 6726 sz = MO_32; 6727 break; 6728 case 1: 6729 sz = MO_64; 6730 break; 6731 case 3: 6732 sz = MO_16; 6733 if (dc_isar_feature(aa64_fp16, s)) { 6734 break; 6735 } 6736 /* fallthru */ 6737 default: 6738 unallocated_encoding(s); 6739 return; 6740 } 6741 6742 if (!fp_access_check(s)) { 6743 return; 6744 } 6745 6746 imm = vfp_expand_imm(sz, imm8); 6747 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6748 } 6749 6750 /* Handle floating point <=> fixed point conversions. Note that we can 6751 * also deal with fp <=> integer conversions as a special case (scale == 64) 6752 * OPTME: consider handling that special case specially or at least skipping 6753 * the call to scalbn in the helpers for zero shifts. 6754 */ 6755 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6756 bool itof, int rmode, int scale, int sf, int type) 6757 { 6758 bool is_signed = !(opcode & 1); 6759 TCGv_ptr tcg_fpstatus; 6760 TCGv_i32 tcg_shift, tcg_single; 6761 TCGv_i64 tcg_double; 6762 6763 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6764 6765 tcg_shift = tcg_constant_i32(64 - scale); 6766 6767 if (itof) { 6768 TCGv_i64 tcg_int = cpu_reg(s, rn); 6769 if (!sf) { 6770 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6771 6772 if (is_signed) { 6773 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6774 } else { 6775 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6776 } 6777 6778 tcg_int = tcg_extend; 6779 } 6780 6781 switch (type) { 6782 case 1: /* float64 */ 6783 tcg_double = tcg_temp_new_i64(); 6784 if (is_signed) { 6785 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6786 tcg_shift, tcg_fpstatus); 6787 } else { 6788 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6789 tcg_shift, tcg_fpstatus); 6790 } 6791 write_fp_dreg(s, rd, tcg_double); 6792 break; 6793 6794 case 0: /* float32 */ 6795 tcg_single = tcg_temp_new_i32(); 6796 if (is_signed) { 6797 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6798 tcg_shift, tcg_fpstatus); 6799 } else { 6800 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6801 tcg_shift, tcg_fpstatus); 6802 } 6803 write_fp_sreg(s, rd, tcg_single); 6804 break; 6805 6806 case 3: /* float16 */ 6807 tcg_single = tcg_temp_new_i32(); 6808 if (is_signed) { 6809 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6810 tcg_shift, tcg_fpstatus); 6811 } else { 6812 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6813 tcg_shift, tcg_fpstatus); 6814 } 6815 write_fp_sreg(s, rd, tcg_single); 6816 break; 6817 6818 default: 6819 g_assert_not_reached(); 6820 } 6821 } else { 6822 TCGv_i64 tcg_int = cpu_reg(s, rd); 6823 TCGv_i32 tcg_rmode; 6824 6825 if (extract32(opcode, 2, 1)) { 6826 /* There are too many rounding modes to all fit into rmode, 6827 * so FCVTA[US] is a special case. 6828 */ 6829 rmode = FPROUNDING_TIEAWAY; 6830 } 6831 6832 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6833 6834 switch (type) { 6835 case 1: /* float64 */ 6836 tcg_double = read_fp_dreg(s, rn); 6837 if (is_signed) { 6838 if (!sf) { 6839 gen_helper_vfp_tosld(tcg_int, tcg_double, 6840 tcg_shift, tcg_fpstatus); 6841 } else { 6842 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6843 tcg_shift, tcg_fpstatus); 6844 } 6845 } else { 6846 if (!sf) { 6847 gen_helper_vfp_tould(tcg_int, tcg_double, 6848 tcg_shift, tcg_fpstatus); 6849 } else { 6850 gen_helper_vfp_touqd(tcg_int, tcg_double, 6851 tcg_shift, tcg_fpstatus); 6852 } 6853 } 6854 if (!sf) { 6855 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6856 } 6857 break; 6858 6859 case 0: /* float32 */ 6860 tcg_single = read_fp_sreg(s, rn); 6861 if (sf) { 6862 if (is_signed) { 6863 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6864 tcg_shift, tcg_fpstatus); 6865 } else { 6866 gen_helper_vfp_touqs(tcg_int, tcg_single, 6867 tcg_shift, tcg_fpstatus); 6868 } 6869 } else { 6870 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6871 if (is_signed) { 6872 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6873 tcg_shift, tcg_fpstatus); 6874 } else { 6875 gen_helper_vfp_touls(tcg_dest, tcg_single, 6876 tcg_shift, tcg_fpstatus); 6877 } 6878 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6879 } 6880 break; 6881 6882 case 3: /* float16 */ 6883 tcg_single = read_fp_sreg(s, rn); 6884 if (sf) { 6885 if (is_signed) { 6886 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6887 tcg_shift, tcg_fpstatus); 6888 } else { 6889 gen_helper_vfp_touqh(tcg_int, tcg_single, 6890 tcg_shift, tcg_fpstatus); 6891 } 6892 } else { 6893 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6894 if (is_signed) { 6895 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6896 tcg_shift, tcg_fpstatus); 6897 } else { 6898 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6899 tcg_shift, tcg_fpstatus); 6900 } 6901 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6902 } 6903 break; 6904 6905 default: 6906 g_assert_not_reached(); 6907 } 6908 6909 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6910 } 6911 } 6912 6913 /* Floating point <-> fixed point conversions 6914 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6915 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6916 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6917 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6918 */ 6919 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6920 { 6921 int rd = extract32(insn, 0, 5); 6922 int rn = extract32(insn, 5, 5); 6923 int scale = extract32(insn, 10, 6); 6924 int opcode = extract32(insn, 16, 3); 6925 int rmode = extract32(insn, 19, 2); 6926 int type = extract32(insn, 22, 2); 6927 bool sbit = extract32(insn, 29, 1); 6928 bool sf = extract32(insn, 31, 1); 6929 bool itof; 6930 6931 if (sbit || (!sf && scale < 32)) { 6932 unallocated_encoding(s); 6933 return; 6934 } 6935 6936 switch (type) { 6937 case 0: /* float32 */ 6938 case 1: /* float64 */ 6939 break; 6940 case 3: /* float16 */ 6941 if (dc_isar_feature(aa64_fp16, s)) { 6942 break; 6943 } 6944 /* fallthru */ 6945 default: 6946 unallocated_encoding(s); 6947 return; 6948 } 6949 6950 switch ((rmode << 3) | opcode) { 6951 case 0x2: /* SCVTF */ 6952 case 0x3: /* UCVTF */ 6953 itof = true; 6954 break; 6955 case 0x18: /* FCVTZS */ 6956 case 0x19: /* FCVTZU */ 6957 itof = false; 6958 break; 6959 default: 6960 unallocated_encoding(s); 6961 return; 6962 } 6963 6964 if (!fp_access_check(s)) { 6965 return; 6966 } 6967 6968 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6969 } 6970 6971 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6972 { 6973 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6974 * without conversion. 6975 */ 6976 6977 if (itof) { 6978 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6979 TCGv_i64 tmp; 6980 6981 switch (type) { 6982 case 0: 6983 /* 32 bit */ 6984 tmp = tcg_temp_new_i64(); 6985 tcg_gen_ext32u_i64(tmp, tcg_rn); 6986 write_fp_dreg(s, rd, tmp); 6987 break; 6988 case 1: 6989 /* 64 bit */ 6990 write_fp_dreg(s, rd, tcg_rn); 6991 break; 6992 case 2: 6993 /* 64 bit to top half. */ 6994 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6995 clear_vec_high(s, true, rd); 6996 break; 6997 case 3: 6998 /* 16 bit */ 6999 tmp = tcg_temp_new_i64(); 7000 tcg_gen_ext16u_i64(tmp, tcg_rn); 7001 write_fp_dreg(s, rd, tmp); 7002 break; 7003 default: 7004 g_assert_not_reached(); 7005 } 7006 } else { 7007 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7008 7009 switch (type) { 7010 case 0: 7011 /* 32 bit */ 7012 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7013 break; 7014 case 1: 7015 /* 64 bit */ 7016 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7017 break; 7018 case 2: 7019 /* 64 bits from top half */ 7020 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7021 break; 7022 case 3: 7023 /* 16 bit */ 7024 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7025 break; 7026 default: 7027 g_assert_not_reached(); 7028 } 7029 } 7030 } 7031 7032 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7033 { 7034 TCGv_i64 t = read_fp_dreg(s, rn); 7035 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7036 7037 gen_helper_fjcvtzs(t, t, fpstatus); 7038 7039 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7040 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7041 tcg_gen_movi_i32(cpu_CF, 0); 7042 tcg_gen_movi_i32(cpu_NF, 0); 7043 tcg_gen_movi_i32(cpu_VF, 0); 7044 } 7045 7046 /* Floating point <-> integer conversions 7047 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7048 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7049 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7050 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7051 */ 7052 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7053 { 7054 int rd = extract32(insn, 0, 5); 7055 int rn = extract32(insn, 5, 5); 7056 int opcode = extract32(insn, 16, 3); 7057 int rmode = extract32(insn, 19, 2); 7058 int type = extract32(insn, 22, 2); 7059 bool sbit = extract32(insn, 29, 1); 7060 bool sf = extract32(insn, 31, 1); 7061 bool itof = false; 7062 7063 if (sbit) { 7064 goto do_unallocated; 7065 } 7066 7067 switch (opcode) { 7068 case 2: /* SCVTF */ 7069 case 3: /* UCVTF */ 7070 itof = true; 7071 /* fallthru */ 7072 case 4: /* FCVTAS */ 7073 case 5: /* FCVTAU */ 7074 if (rmode != 0) { 7075 goto do_unallocated; 7076 } 7077 /* fallthru */ 7078 case 0: /* FCVT[NPMZ]S */ 7079 case 1: /* FCVT[NPMZ]U */ 7080 switch (type) { 7081 case 0: /* float32 */ 7082 case 1: /* float64 */ 7083 break; 7084 case 3: /* float16 */ 7085 if (!dc_isar_feature(aa64_fp16, s)) { 7086 goto do_unallocated; 7087 } 7088 break; 7089 default: 7090 goto do_unallocated; 7091 } 7092 if (!fp_access_check(s)) { 7093 return; 7094 } 7095 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7096 break; 7097 7098 default: 7099 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7100 case 0b01100110: /* FMOV half <-> 32-bit int */ 7101 case 0b01100111: 7102 case 0b11100110: /* FMOV half <-> 64-bit int */ 7103 case 0b11100111: 7104 if (!dc_isar_feature(aa64_fp16, s)) { 7105 goto do_unallocated; 7106 } 7107 /* fallthru */ 7108 case 0b00000110: /* FMOV 32-bit */ 7109 case 0b00000111: 7110 case 0b10100110: /* FMOV 64-bit */ 7111 case 0b10100111: 7112 case 0b11001110: /* FMOV top half of 128-bit */ 7113 case 0b11001111: 7114 if (!fp_access_check(s)) { 7115 return; 7116 } 7117 itof = opcode & 1; 7118 handle_fmov(s, rd, rn, type, itof); 7119 break; 7120 7121 case 0b00111110: /* FJCVTZS */ 7122 if (!dc_isar_feature(aa64_jscvt, s)) { 7123 goto do_unallocated; 7124 } else if (fp_access_check(s)) { 7125 handle_fjcvtzs(s, rd, rn); 7126 } 7127 break; 7128 7129 default: 7130 do_unallocated: 7131 unallocated_encoding(s); 7132 return; 7133 } 7134 break; 7135 } 7136 } 7137 7138 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7139 * 31 30 29 28 25 24 0 7140 * +---+---+---+---------+-----------------------------+ 7141 * | | 0 | | 1 1 1 1 | | 7142 * +---+---+---+---------+-----------------------------+ 7143 */ 7144 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7145 { 7146 if (extract32(insn, 24, 1)) { 7147 /* Floating point data-processing (3 source) */ 7148 disas_fp_3src(s, insn); 7149 } else if (extract32(insn, 21, 1) == 0) { 7150 /* Floating point to fixed point conversions */ 7151 disas_fp_fixed_conv(s, insn); 7152 } else { 7153 switch (extract32(insn, 10, 2)) { 7154 case 1: 7155 /* Floating point conditional compare */ 7156 disas_fp_ccomp(s, insn); 7157 break; 7158 case 2: 7159 /* Floating point data-processing (2 source) */ 7160 disas_fp_2src(s, insn); 7161 break; 7162 case 3: 7163 /* Floating point conditional select */ 7164 disas_fp_csel(s, insn); 7165 break; 7166 case 0: 7167 switch (ctz32(extract32(insn, 12, 4))) { 7168 case 0: /* [15:12] == xxx1 */ 7169 /* Floating point immediate */ 7170 disas_fp_imm(s, insn); 7171 break; 7172 case 1: /* [15:12] == xx10 */ 7173 /* Floating point compare */ 7174 disas_fp_compare(s, insn); 7175 break; 7176 case 2: /* [15:12] == x100 */ 7177 /* Floating point data-processing (1 source) */ 7178 disas_fp_1src(s, insn); 7179 break; 7180 case 3: /* [15:12] == 1000 */ 7181 unallocated_encoding(s); 7182 break; 7183 default: /* [15:12] == 0000 */ 7184 /* Floating point <-> integer conversions */ 7185 disas_fp_int_conv(s, insn); 7186 break; 7187 } 7188 break; 7189 } 7190 } 7191 } 7192 7193 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7194 int pos) 7195 { 7196 /* Extract 64 bits from the middle of two concatenated 64 bit 7197 * vector register slices left:right. The extracted bits start 7198 * at 'pos' bits into the right (least significant) side. 7199 * We return the result in tcg_right, and guarantee not to 7200 * trash tcg_left. 7201 */ 7202 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7203 assert(pos > 0 && pos < 64); 7204 7205 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7206 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7207 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7208 } 7209 7210 /* EXT 7211 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7212 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7213 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7214 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7215 */ 7216 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7217 { 7218 int is_q = extract32(insn, 30, 1); 7219 int op2 = extract32(insn, 22, 2); 7220 int imm4 = extract32(insn, 11, 4); 7221 int rm = extract32(insn, 16, 5); 7222 int rn = extract32(insn, 5, 5); 7223 int rd = extract32(insn, 0, 5); 7224 int pos = imm4 << 3; 7225 TCGv_i64 tcg_resl, tcg_resh; 7226 7227 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7228 unallocated_encoding(s); 7229 return; 7230 } 7231 7232 if (!fp_access_check(s)) { 7233 return; 7234 } 7235 7236 tcg_resh = tcg_temp_new_i64(); 7237 tcg_resl = tcg_temp_new_i64(); 7238 7239 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7240 * either extracting 128 bits from a 128:128 concatenation, or 7241 * extracting 64 bits from a 64:64 concatenation. 7242 */ 7243 if (!is_q) { 7244 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7245 if (pos != 0) { 7246 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7247 do_ext64(s, tcg_resh, tcg_resl, pos); 7248 } 7249 } else { 7250 TCGv_i64 tcg_hh; 7251 typedef struct { 7252 int reg; 7253 int elt; 7254 } EltPosns; 7255 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7256 EltPosns *elt = eltposns; 7257 7258 if (pos >= 64) { 7259 elt++; 7260 pos -= 64; 7261 } 7262 7263 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7264 elt++; 7265 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7266 elt++; 7267 if (pos != 0) { 7268 do_ext64(s, tcg_resh, tcg_resl, pos); 7269 tcg_hh = tcg_temp_new_i64(); 7270 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7271 do_ext64(s, tcg_hh, tcg_resh, pos); 7272 } 7273 } 7274 7275 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7276 if (is_q) { 7277 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7278 } 7279 clear_vec_high(s, is_q, rd); 7280 } 7281 7282 /* TBL/TBX 7283 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7284 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7285 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7286 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7287 */ 7288 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7289 { 7290 int op2 = extract32(insn, 22, 2); 7291 int is_q = extract32(insn, 30, 1); 7292 int rm = extract32(insn, 16, 5); 7293 int rn = extract32(insn, 5, 5); 7294 int rd = extract32(insn, 0, 5); 7295 int is_tbx = extract32(insn, 12, 1); 7296 int len = (extract32(insn, 13, 2) + 1) * 16; 7297 7298 if (op2 != 0) { 7299 unallocated_encoding(s); 7300 return; 7301 } 7302 7303 if (!fp_access_check(s)) { 7304 return; 7305 } 7306 7307 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7308 vec_full_reg_offset(s, rm), tcg_env, 7309 is_q ? 16 : 8, vec_full_reg_size(s), 7310 (len << 6) | (is_tbx << 5) | rn, 7311 gen_helper_simd_tblx); 7312 } 7313 7314 /* ZIP/UZP/TRN 7315 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7316 * +---+---+-------------+------+---+------+---+------------------+------+ 7317 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7318 * +---+---+-------------+------+---+------+---+------------------+------+ 7319 */ 7320 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7321 { 7322 int rd = extract32(insn, 0, 5); 7323 int rn = extract32(insn, 5, 5); 7324 int rm = extract32(insn, 16, 5); 7325 int size = extract32(insn, 22, 2); 7326 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7327 * bit 2 indicates 1 vs 2 variant of the insn. 7328 */ 7329 int opcode = extract32(insn, 12, 2); 7330 bool part = extract32(insn, 14, 1); 7331 bool is_q = extract32(insn, 30, 1); 7332 int esize = 8 << size; 7333 int i; 7334 int datasize = is_q ? 128 : 64; 7335 int elements = datasize / esize; 7336 TCGv_i64 tcg_res[2], tcg_ele; 7337 7338 if (opcode == 0 || (size == 3 && !is_q)) { 7339 unallocated_encoding(s); 7340 return; 7341 } 7342 7343 if (!fp_access_check(s)) { 7344 return; 7345 } 7346 7347 tcg_res[0] = tcg_temp_new_i64(); 7348 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7349 tcg_ele = tcg_temp_new_i64(); 7350 7351 for (i = 0; i < elements; i++) { 7352 int o, w; 7353 7354 switch (opcode) { 7355 case 1: /* UZP1/2 */ 7356 { 7357 int midpoint = elements / 2; 7358 if (i < midpoint) { 7359 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7360 } else { 7361 read_vec_element(s, tcg_ele, rm, 7362 2 * (i - midpoint) + part, size); 7363 } 7364 break; 7365 } 7366 case 2: /* TRN1/2 */ 7367 if (i & 1) { 7368 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7369 } else { 7370 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7371 } 7372 break; 7373 case 3: /* ZIP1/2 */ 7374 { 7375 int base = part * elements / 2; 7376 if (i & 1) { 7377 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7378 } else { 7379 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7380 } 7381 break; 7382 } 7383 default: 7384 g_assert_not_reached(); 7385 } 7386 7387 w = (i * esize) / 64; 7388 o = (i * esize) % 64; 7389 if (o == 0) { 7390 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7391 } else { 7392 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7393 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7394 } 7395 } 7396 7397 for (i = 0; i <= is_q; ++i) { 7398 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7399 } 7400 clear_vec_high(s, is_q, rd); 7401 } 7402 7403 /* 7404 * do_reduction_op helper 7405 * 7406 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7407 * important for correct NaN propagation that we do these 7408 * operations in exactly the order specified by the pseudocode. 7409 * 7410 * This is a recursive function, TCG temps should be freed by the 7411 * calling function once it is done with the values. 7412 */ 7413 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7414 int esize, int size, int vmap, TCGv_ptr fpst) 7415 { 7416 if (esize == size) { 7417 int element; 7418 MemOp msize = esize == 16 ? MO_16 : MO_32; 7419 TCGv_i32 tcg_elem; 7420 7421 /* We should have one register left here */ 7422 assert(ctpop8(vmap) == 1); 7423 element = ctz32(vmap); 7424 assert(element < 8); 7425 7426 tcg_elem = tcg_temp_new_i32(); 7427 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7428 return tcg_elem; 7429 } else { 7430 int bits = size / 2; 7431 int shift = ctpop8(vmap) / 2; 7432 int vmap_lo = (vmap >> shift) & vmap; 7433 int vmap_hi = (vmap & ~vmap_lo); 7434 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7435 7436 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7437 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7438 tcg_res = tcg_temp_new_i32(); 7439 7440 switch (fpopcode) { 7441 case 0x0c: /* fmaxnmv half-precision */ 7442 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7443 break; 7444 case 0x0f: /* fmaxv half-precision */ 7445 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7446 break; 7447 case 0x1c: /* fminnmv half-precision */ 7448 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7449 break; 7450 case 0x1f: /* fminv half-precision */ 7451 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7452 break; 7453 case 0x2c: /* fmaxnmv */ 7454 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7455 break; 7456 case 0x2f: /* fmaxv */ 7457 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7458 break; 7459 case 0x3c: /* fminnmv */ 7460 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7461 break; 7462 case 0x3f: /* fminv */ 7463 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7464 break; 7465 default: 7466 g_assert_not_reached(); 7467 } 7468 return tcg_res; 7469 } 7470 } 7471 7472 /* AdvSIMD across lanes 7473 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7474 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7475 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7476 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7477 */ 7478 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7479 { 7480 int rd = extract32(insn, 0, 5); 7481 int rn = extract32(insn, 5, 5); 7482 int size = extract32(insn, 22, 2); 7483 int opcode = extract32(insn, 12, 5); 7484 bool is_q = extract32(insn, 30, 1); 7485 bool is_u = extract32(insn, 29, 1); 7486 bool is_fp = false; 7487 bool is_min = false; 7488 int esize; 7489 int elements; 7490 int i; 7491 TCGv_i64 tcg_res, tcg_elt; 7492 7493 switch (opcode) { 7494 case 0x1b: /* ADDV */ 7495 if (is_u) { 7496 unallocated_encoding(s); 7497 return; 7498 } 7499 /* fall through */ 7500 case 0x3: /* SADDLV, UADDLV */ 7501 case 0xa: /* SMAXV, UMAXV */ 7502 case 0x1a: /* SMINV, UMINV */ 7503 if (size == 3 || (size == 2 && !is_q)) { 7504 unallocated_encoding(s); 7505 return; 7506 } 7507 break; 7508 case 0xc: /* FMAXNMV, FMINNMV */ 7509 case 0xf: /* FMAXV, FMINV */ 7510 /* Bit 1 of size field encodes min vs max and the actual size 7511 * depends on the encoding of the U bit. If not set (and FP16 7512 * enabled) then we do half-precision float instead of single 7513 * precision. 7514 */ 7515 is_min = extract32(size, 1, 1); 7516 is_fp = true; 7517 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7518 size = 1; 7519 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7520 unallocated_encoding(s); 7521 return; 7522 } else { 7523 size = 2; 7524 } 7525 break; 7526 default: 7527 unallocated_encoding(s); 7528 return; 7529 } 7530 7531 if (!fp_access_check(s)) { 7532 return; 7533 } 7534 7535 esize = 8 << size; 7536 elements = (is_q ? 128 : 64) / esize; 7537 7538 tcg_res = tcg_temp_new_i64(); 7539 tcg_elt = tcg_temp_new_i64(); 7540 7541 /* These instructions operate across all lanes of a vector 7542 * to produce a single result. We can guarantee that a 64 7543 * bit intermediate is sufficient: 7544 * + for [US]ADDLV the maximum element size is 32 bits, and 7545 * the result type is 64 bits 7546 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7547 * same as the element size, which is 32 bits at most 7548 * For the integer operations we can choose to work at 64 7549 * or 32 bits and truncate at the end; for simplicity 7550 * we use 64 bits always. The floating point 7551 * ops do require 32 bit intermediates, though. 7552 */ 7553 if (!is_fp) { 7554 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7555 7556 for (i = 1; i < elements; i++) { 7557 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7558 7559 switch (opcode) { 7560 case 0x03: /* SADDLV / UADDLV */ 7561 case 0x1b: /* ADDV */ 7562 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7563 break; 7564 case 0x0a: /* SMAXV / UMAXV */ 7565 if (is_u) { 7566 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7567 } else { 7568 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7569 } 7570 break; 7571 case 0x1a: /* SMINV / UMINV */ 7572 if (is_u) { 7573 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7574 } else { 7575 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7576 } 7577 break; 7578 default: 7579 g_assert_not_reached(); 7580 } 7581 7582 } 7583 } else { 7584 /* Floating point vector reduction ops which work across 32 7585 * bit (single) or 16 bit (half-precision) intermediates. 7586 * Note that correct NaN propagation requires that we do these 7587 * operations in exactly the order specified by the pseudocode. 7588 */ 7589 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7590 int fpopcode = opcode | is_min << 4 | is_u << 5; 7591 int vmap = (1 << elements) - 1; 7592 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7593 (is_q ? 128 : 64), vmap, fpst); 7594 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7595 } 7596 7597 /* Now truncate the result to the width required for the final output */ 7598 if (opcode == 0x03) { 7599 /* SADDLV, UADDLV: result is 2*esize */ 7600 size++; 7601 } 7602 7603 switch (size) { 7604 case 0: 7605 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7606 break; 7607 case 1: 7608 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7609 break; 7610 case 2: 7611 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7612 break; 7613 case 3: 7614 break; 7615 default: 7616 g_assert_not_reached(); 7617 } 7618 7619 write_fp_dreg(s, rd, tcg_res); 7620 } 7621 7622 /* DUP (Element, Vector) 7623 * 7624 * 31 30 29 21 20 16 15 10 9 5 4 0 7625 * +---+---+-------------------+--------+-------------+------+------+ 7626 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7627 * +---+---+-------------------+--------+-------------+------+------+ 7628 * 7629 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7630 */ 7631 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7632 int imm5) 7633 { 7634 int size = ctz32(imm5); 7635 int index; 7636 7637 if (size > 3 || (size == 3 && !is_q)) { 7638 unallocated_encoding(s); 7639 return; 7640 } 7641 7642 if (!fp_access_check(s)) { 7643 return; 7644 } 7645 7646 index = imm5 >> (size + 1); 7647 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7648 vec_reg_offset(s, rn, index, size), 7649 is_q ? 16 : 8, vec_full_reg_size(s)); 7650 } 7651 7652 /* DUP (element, scalar) 7653 * 31 21 20 16 15 10 9 5 4 0 7654 * +-----------------------+--------+-------------+------+------+ 7655 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7656 * +-----------------------+--------+-------------+------+------+ 7657 */ 7658 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7659 int imm5) 7660 { 7661 int size = ctz32(imm5); 7662 int index; 7663 TCGv_i64 tmp; 7664 7665 if (size > 3) { 7666 unallocated_encoding(s); 7667 return; 7668 } 7669 7670 if (!fp_access_check(s)) { 7671 return; 7672 } 7673 7674 index = imm5 >> (size + 1); 7675 7676 /* This instruction just extracts the specified element and 7677 * zero-extends it into the bottom of the destination register. 7678 */ 7679 tmp = tcg_temp_new_i64(); 7680 read_vec_element(s, tmp, rn, index, size); 7681 write_fp_dreg(s, rd, tmp); 7682 } 7683 7684 /* DUP (General) 7685 * 7686 * 31 30 29 21 20 16 15 10 9 5 4 0 7687 * +---+---+-------------------+--------+-------------+------+------+ 7688 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7689 * +---+---+-------------------+--------+-------------+------+------+ 7690 * 7691 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7692 */ 7693 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7694 int imm5) 7695 { 7696 int size = ctz32(imm5); 7697 uint32_t dofs, oprsz, maxsz; 7698 7699 if (size > 3 || ((size == 3) && !is_q)) { 7700 unallocated_encoding(s); 7701 return; 7702 } 7703 7704 if (!fp_access_check(s)) { 7705 return; 7706 } 7707 7708 dofs = vec_full_reg_offset(s, rd); 7709 oprsz = is_q ? 16 : 8; 7710 maxsz = vec_full_reg_size(s); 7711 7712 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7713 } 7714 7715 /* INS (Element) 7716 * 7717 * 31 21 20 16 15 14 11 10 9 5 4 0 7718 * +-----------------------+--------+------------+---+------+------+ 7719 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7720 * +-----------------------+--------+------------+---+------+------+ 7721 * 7722 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7723 * index: encoded in imm5<4:size+1> 7724 */ 7725 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7726 int imm4, int imm5) 7727 { 7728 int size = ctz32(imm5); 7729 int src_index, dst_index; 7730 TCGv_i64 tmp; 7731 7732 if (size > 3) { 7733 unallocated_encoding(s); 7734 return; 7735 } 7736 7737 if (!fp_access_check(s)) { 7738 return; 7739 } 7740 7741 dst_index = extract32(imm5, 1+size, 5); 7742 src_index = extract32(imm4, size, 4); 7743 7744 tmp = tcg_temp_new_i64(); 7745 7746 read_vec_element(s, tmp, rn, src_index, size); 7747 write_vec_element(s, tmp, rd, dst_index, size); 7748 7749 /* INS is considered a 128-bit write for SVE. */ 7750 clear_vec_high(s, true, rd); 7751 } 7752 7753 7754 /* INS (General) 7755 * 7756 * 31 21 20 16 15 10 9 5 4 0 7757 * +-----------------------+--------+-------------+------+------+ 7758 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7759 * +-----------------------+--------+-------------+------+------+ 7760 * 7761 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7762 * index: encoded in imm5<4:size+1> 7763 */ 7764 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7765 { 7766 int size = ctz32(imm5); 7767 int idx; 7768 7769 if (size > 3) { 7770 unallocated_encoding(s); 7771 return; 7772 } 7773 7774 if (!fp_access_check(s)) { 7775 return; 7776 } 7777 7778 idx = extract32(imm5, 1 + size, 4 - size); 7779 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7780 7781 /* INS is considered a 128-bit write for SVE. */ 7782 clear_vec_high(s, true, rd); 7783 } 7784 7785 /* 7786 * UMOV (General) 7787 * SMOV (General) 7788 * 7789 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7790 * +---+---+-------------------+--------+-------------+------+------+ 7791 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7792 * +---+---+-------------------+--------+-------------+------+------+ 7793 * 7794 * U: unsigned when set 7795 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7796 */ 7797 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7798 int rn, int rd, int imm5) 7799 { 7800 int size = ctz32(imm5); 7801 int element; 7802 TCGv_i64 tcg_rd; 7803 7804 /* Check for UnallocatedEncodings */ 7805 if (is_signed) { 7806 if (size > 2 || (size == 2 && !is_q)) { 7807 unallocated_encoding(s); 7808 return; 7809 } 7810 } else { 7811 if (size > 3 7812 || (size < 3 && is_q) 7813 || (size == 3 && !is_q)) { 7814 unallocated_encoding(s); 7815 return; 7816 } 7817 } 7818 7819 if (!fp_access_check(s)) { 7820 return; 7821 } 7822 7823 element = extract32(imm5, 1+size, 4); 7824 7825 tcg_rd = cpu_reg(s, rd); 7826 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7827 if (is_signed && !is_q) { 7828 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7829 } 7830 } 7831 7832 /* AdvSIMD copy 7833 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7834 * +---+---+----+-----------------+------+---+------+---+------+------+ 7835 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7836 * +---+---+----+-----------------+------+---+------+---+------+------+ 7837 */ 7838 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7839 { 7840 int rd = extract32(insn, 0, 5); 7841 int rn = extract32(insn, 5, 5); 7842 int imm4 = extract32(insn, 11, 4); 7843 int op = extract32(insn, 29, 1); 7844 int is_q = extract32(insn, 30, 1); 7845 int imm5 = extract32(insn, 16, 5); 7846 7847 if (op) { 7848 if (is_q) { 7849 /* INS (element) */ 7850 handle_simd_inse(s, rd, rn, imm4, imm5); 7851 } else { 7852 unallocated_encoding(s); 7853 } 7854 } else { 7855 switch (imm4) { 7856 case 0: 7857 /* DUP (element - vector) */ 7858 handle_simd_dupe(s, is_q, rd, rn, imm5); 7859 break; 7860 case 1: 7861 /* DUP (general) */ 7862 handle_simd_dupg(s, is_q, rd, rn, imm5); 7863 break; 7864 case 3: 7865 if (is_q) { 7866 /* INS (general) */ 7867 handle_simd_insg(s, rd, rn, imm5); 7868 } else { 7869 unallocated_encoding(s); 7870 } 7871 break; 7872 case 5: 7873 case 7: 7874 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7875 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7876 break; 7877 default: 7878 unallocated_encoding(s); 7879 break; 7880 } 7881 } 7882 } 7883 7884 /* AdvSIMD modified immediate 7885 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7886 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7887 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7888 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7889 * 7890 * There are a number of operations that can be carried out here: 7891 * MOVI - move (shifted) imm into register 7892 * MVNI - move inverted (shifted) imm into register 7893 * ORR - bitwise OR of (shifted) imm with register 7894 * BIC - bitwise clear of (shifted) imm with register 7895 * With ARMv8.2 we also have: 7896 * FMOV half-precision 7897 */ 7898 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7899 { 7900 int rd = extract32(insn, 0, 5); 7901 int cmode = extract32(insn, 12, 4); 7902 int o2 = extract32(insn, 11, 1); 7903 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7904 bool is_neg = extract32(insn, 29, 1); 7905 bool is_q = extract32(insn, 30, 1); 7906 uint64_t imm = 0; 7907 7908 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7909 /* Check for FMOV (vector, immediate) - half-precision */ 7910 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7911 unallocated_encoding(s); 7912 return; 7913 } 7914 } 7915 7916 if (!fp_access_check(s)) { 7917 return; 7918 } 7919 7920 if (cmode == 15 && o2 && !is_neg) { 7921 /* FMOV (vector, immediate) - half-precision */ 7922 imm = vfp_expand_imm(MO_16, abcdefgh); 7923 /* now duplicate across the lanes */ 7924 imm = dup_const(MO_16, imm); 7925 } else { 7926 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7927 } 7928 7929 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7930 /* MOVI or MVNI, with MVNI negation handled above. */ 7931 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7932 vec_full_reg_size(s), imm); 7933 } else { 7934 /* ORR or BIC, with BIC negation to AND handled above. */ 7935 if (is_neg) { 7936 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7937 } else { 7938 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7939 } 7940 } 7941 } 7942 7943 /* AdvSIMD scalar copy 7944 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7945 * +-----+----+-----------------+------+---+------+---+------+------+ 7946 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7947 * +-----+----+-----------------+------+---+------+---+------+------+ 7948 */ 7949 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7950 { 7951 int rd = extract32(insn, 0, 5); 7952 int rn = extract32(insn, 5, 5); 7953 int imm4 = extract32(insn, 11, 4); 7954 int imm5 = extract32(insn, 16, 5); 7955 int op = extract32(insn, 29, 1); 7956 7957 if (op != 0 || imm4 != 0) { 7958 unallocated_encoding(s); 7959 return; 7960 } 7961 7962 /* DUP (element, scalar) */ 7963 handle_simd_dupes(s, rd, rn, imm5); 7964 } 7965 7966 /* AdvSIMD scalar pairwise 7967 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7968 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7969 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7970 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7971 */ 7972 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7973 { 7974 int u = extract32(insn, 29, 1); 7975 int size = extract32(insn, 22, 2); 7976 int opcode = extract32(insn, 12, 5); 7977 int rn = extract32(insn, 5, 5); 7978 int rd = extract32(insn, 0, 5); 7979 TCGv_ptr fpst; 7980 7981 /* For some ops (the FP ones), size[1] is part of the encoding. 7982 * For ADDP strictly it is not but size[1] is always 1 for valid 7983 * encodings. 7984 */ 7985 opcode |= (extract32(size, 1, 1) << 5); 7986 7987 switch (opcode) { 7988 case 0x3b: /* ADDP */ 7989 if (u || size != 3) { 7990 unallocated_encoding(s); 7991 return; 7992 } 7993 if (!fp_access_check(s)) { 7994 return; 7995 } 7996 7997 fpst = NULL; 7998 break; 7999 case 0xc: /* FMAXNMP */ 8000 case 0xd: /* FADDP */ 8001 case 0xf: /* FMAXP */ 8002 case 0x2c: /* FMINNMP */ 8003 case 0x2f: /* FMINP */ 8004 /* FP op, size[0] is 32 or 64 bit*/ 8005 if (!u) { 8006 if (!dc_isar_feature(aa64_fp16, s)) { 8007 unallocated_encoding(s); 8008 return; 8009 } else { 8010 size = MO_16; 8011 } 8012 } else { 8013 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8014 } 8015 8016 if (!fp_access_check(s)) { 8017 return; 8018 } 8019 8020 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8021 break; 8022 default: 8023 unallocated_encoding(s); 8024 return; 8025 } 8026 8027 if (size == MO_64) { 8028 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8029 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8030 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8031 8032 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8033 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8034 8035 switch (opcode) { 8036 case 0x3b: /* ADDP */ 8037 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8038 break; 8039 case 0xc: /* FMAXNMP */ 8040 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8041 break; 8042 case 0xd: /* FADDP */ 8043 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8044 break; 8045 case 0xf: /* FMAXP */ 8046 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8047 break; 8048 case 0x2c: /* FMINNMP */ 8049 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8050 break; 8051 case 0x2f: /* FMINP */ 8052 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8053 break; 8054 default: 8055 g_assert_not_reached(); 8056 } 8057 8058 write_fp_dreg(s, rd, tcg_res); 8059 } else { 8060 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8061 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8062 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8063 8064 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8065 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8066 8067 if (size == MO_16) { 8068 switch (opcode) { 8069 case 0xc: /* FMAXNMP */ 8070 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8071 break; 8072 case 0xd: /* FADDP */ 8073 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8074 break; 8075 case 0xf: /* FMAXP */ 8076 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8077 break; 8078 case 0x2c: /* FMINNMP */ 8079 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8080 break; 8081 case 0x2f: /* FMINP */ 8082 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8083 break; 8084 default: 8085 g_assert_not_reached(); 8086 } 8087 } else { 8088 switch (opcode) { 8089 case 0xc: /* FMAXNMP */ 8090 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8091 break; 8092 case 0xd: /* FADDP */ 8093 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8094 break; 8095 case 0xf: /* FMAXP */ 8096 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8097 break; 8098 case 0x2c: /* FMINNMP */ 8099 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8100 break; 8101 case 0x2f: /* FMINP */ 8102 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8103 break; 8104 default: 8105 g_assert_not_reached(); 8106 } 8107 } 8108 8109 write_fp_sreg(s, rd, tcg_res); 8110 } 8111 } 8112 8113 /* 8114 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8115 * 8116 * This code is handles the common shifting code and is used by both 8117 * the vector and scalar code. 8118 */ 8119 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8120 TCGv_i64 tcg_rnd, bool accumulate, 8121 bool is_u, int size, int shift) 8122 { 8123 bool extended_result = false; 8124 bool round = tcg_rnd != NULL; 8125 int ext_lshift = 0; 8126 TCGv_i64 tcg_src_hi; 8127 8128 if (round && size == 3) { 8129 extended_result = true; 8130 ext_lshift = 64 - shift; 8131 tcg_src_hi = tcg_temp_new_i64(); 8132 } else if (shift == 64) { 8133 if (!accumulate && is_u) { 8134 /* result is zero */ 8135 tcg_gen_movi_i64(tcg_res, 0); 8136 return; 8137 } 8138 } 8139 8140 /* Deal with the rounding step */ 8141 if (round) { 8142 if (extended_result) { 8143 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8144 if (!is_u) { 8145 /* take care of sign extending tcg_res */ 8146 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8147 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8148 tcg_src, tcg_src_hi, 8149 tcg_rnd, tcg_zero); 8150 } else { 8151 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8152 tcg_src, tcg_zero, 8153 tcg_rnd, tcg_zero); 8154 } 8155 } else { 8156 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8157 } 8158 } 8159 8160 /* Now do the shift right */ 8161 if (round && extended_result) { 8162 /* extended case, >64 bit precision required */ 8163 if (ext_lshift == 0) { 8164 /* special case, only high bits matter */ 8165 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8166 } else { 8167 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8168 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8169 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8170 } 8171 } else { 8172 if (is_u) { 8173 if (shift == 64) { 8174 /* essentially shifting in 64 zeros */ 8175 tcg_gen_movi_i64(tcg_src, 0); 8176 } else { 8177 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8178 } 8179 } else { 8180 if (shift == 64) { 8181 /* effectively extending the sign-bit */ 8182 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8183 } else { 8184 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8185 } 8186 } 8187 } 8188 8189 if (accumulate) { 8190 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8191 } else { 8192 tcg_gen_mov_i64(tcg_res, tcg_src); 8193 } 8194 } 8195 8196 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8197 static void handle_scalar_simd_shri(DisasContext *s, 8198 bool is_u, int immh, int immb, 8199 int opcode, int rn, int rd) 8200 { 8201 const int size = 3; 8202 int immhb = immh << 3 | immb; 8203 int shift = 2 * (8 << size) - immhb; 8204 bool accumulate = false; 8205 bool round = false; 8206 bool insert = false; 8207 TCGv_i64 tcg_rn; 8208 TCGv_i64 tcg_rd; 8209 TCGv_i64 tcg_round; 8210 8211 if (!extract32(immh, 3, 1)) { 8212 unallocated_encoding(s); 8213 return; 8214 } 8215 8216 if (!fp_access_check(s)) { 8217 return; 8218 } 8219 8220 switch (opcode) { 8221 case 0x02: /* SSRA / USRA (accumulate) */ 8222 accumulate = true; 8223 break; 8224 case 0x04: /* SRSHR / URSHR (rounding) */ 8225 round = true; 8226 break; 8227 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8228 accumulate = round = true; 8229 break; 8230 case 0x08: /* SRI */ 8231 insert = true; 8232 break; 8233 } 8234 8235 if (round) { 8236 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8237 } else { 8238 tcg_round = NULL; 8239 } 8240 8241 tcg_rn = read_fp_dreg(s, rn); 8242 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8243 8244 if (insert) { 8245 /* shift count same as element size is valid but does nothing; 8246 * special case to avoid potential shift by 64. 8247 */ 8248 int esize = 8 << size; 8249 if (shift != esize) { 8250 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8251 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8252 } 8253 } else { 8254 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8255 accumulate, is_u, size, shift); 8256 } 8257 8258 write_fp_dreg(s, rd, tcg_rd); 8259 } 8260 8261 /* SHL/SLI - Scalar shift left */ 8262 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8263 int immh, int immb, int opcode, 8264 int rn, int rd) 8265 { 8266 int size = 32 - clz32(immh) - 1; 8267 int immhb = immh << 3 | immb; 8268 int shift = immhb - (8 << size); 8269 TCGv_i64 tcg_rn; 8270 TCGv_i64 tcg_rd; 8271 8272 if (!extract32(immh, 3, 1)) { 8273 unallocated_encoding(s); 8274 return; 8275 } 8276 8277 if (!fp_access_check(s)) { 8278 return; 8279 } 8280 8281 tcg_rn = read_fp_dreg(s, rn); 8282 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8283 8284 if (insert) { 8285 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8286 } else { 8287 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8288 } 8289 8290 write_fp_dreg(s, rd, tcg_rd); 8291 } 8292 8293 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8294 * (signed/unsigned) narrowing */ 8295 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8296 bool is_u_shift, bool is_u_narrow, 8297 int immh, int immb, int opcode, 8298 int rn, int rd) 8299 { 8300 int immhb = immh << 3 | immb; 8301 int size = 32 - clz32(immh) - 1; 8302 int esize = 8 << size; 8303 int shift = (2 * esize) - immhb; 8304 int elements = is_scalar ? 1 : (64 / esize); 8305 bool round = extract32(opcode, 0, 1); 8306 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8307 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8308 TCGv_i32 tcg_rd_narrowed; 8309 TCGv_i64 tcg_final; 8310 8311 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8312 { gen_helper_neon_narrow_sat_s8, 8313 gen_helper_neon_unarrow_sat8 }, 8314 { gen_helper_neon_narrow_sat_s16, 8315 gen_helper_neon_unarrow_sat16 }, 8316 { gen_helper_neon_narrow_sat_s32, 8317 gen_helper_neon_unarrow_sat32 }, 8318 { NULL, NULL }, 8319 }; 8320 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8321 gen_helper_neon_narrow_sat_u8, 8322 gen_helper_neon_narrow_sat_u16, 8323 gen_helper_neon_narrow_sat_u32, 8324 NULL 8325 }; 8326 NeonGenNarrowEnvFn *narrowfn; 8327 8328 int i; 8329 8330 assert(size < 4); 8331 8332 if (extract32(immh, 3, 1)) { 8333 unallocated_encoding(s); 8334 return; 8335 } 8336 8337 if (!fp_access_check(s)) { 8338 return; 8339 } 8340 8341 if (is_u_shift) { 8342 narrowfn = unsigned_narrow_fns[size]; 8343 } else { 8344 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8345 } 8346 8347 tcg_rn = tcg_temp_new_i64(); 8348 tcg_rd = tcg_temp_new_i64(); 8349 tcg_rd_narrowed = tcg_temp_new_i32(); 8350 tcg_final = tcg_temp_new_i64(); 8351 8352 if (round) { 8353 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8354 } else { 8355 tcg_round = NULL; 8356 } 8357 8358 for (i = 0; i < elements; i++) { 8359 read_vec_element(s, tcg_rn, rn, i, ldop); 8360 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8361 false, is_u_shift, size+1, shift); 8362 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8363 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8364 if (i == 0) { 8365 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8366 } else { 8367 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8368 } 8369 } 8370 8371 if (!is_q) { 8372 write_vec_element(s, tcg_final, rd, 0, MO_64); 8373 } else { 8374 write_vec_element(s, tcg_final, rd, 1, MO_64); 8375 } 8376 clear_vec_high(s, is_q, rd); 8377 } 8378 8379 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8380 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8381 bool src_unsigned, bool dst_unsigned, 8382 int immh, int immb, int rn, int rd) 8383 { 8384 int immhb = immh << 3 | immb; 8385 int size = 32 - clz32(immh) - 1; 8386 int shift = immhb - (8 << size); 8387 int pass; 8388 8389 assert(immh != 0); 8390 assert(!(scalar && is_q)); 8391 8392 if (!scalar) { 8393 if (!is_q && extract32(immh, 3, 1)) { 8394 unallocated_encoding(s); 8395 return; 8396 } 8397 8398 /* Since we use the variable-shift helpers we must 8399 * replicate the shift count into each element of 8400 * the tcg_shift value. 8401 */ 8402 switch (size) { 8403 case 0: 8404 shift |= shift << 8; 8405 /* fall through */ 8406 case 1: 8407 shift |= shift << 16; 8408 break; 8409 case 2: 8410 case 3: 8411 break; 8412 default: 8413 g_assert_not_reached(); 8414 } 8415 } 8416 8417 if (!fp_access_check(s)) { 8418 return; 8419 } 8420 8421 if (size == 3) { 8422 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8423 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8424 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8425 { NULL, gen_helper_neon_qshl_u64 }, 8426 }; 8427 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8428 int maxpass = is_q ? 2 : 1; 8429 8430 for (pass = 0; pass < maxpass; pass++) { 8431 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8432 8433 read_vec_element(s, tcg_op, rn, pass, MO_64); 8434 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8435 write_vec_element(s, tcg_op, rd, pass, MO_64); 8436 } 8437 clear_vec_high(s, is_q, rd); 8438 } else { 8439 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8440 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8441 { 8442 { gen_helper_neon_qshl_s8, 8443 gen_helper_neon_qshl_s16, 8444 gen_helper_neon_qshl_s32 }, 8445 { gen_helper_neon_qshlu_s8, 8446 gen_helper_neon_qshlu_s16, 8447 gen_helper_neon_qshlu_s32 } 8448 }, { 8449 { NULL, NULL, NULL }, 8450 { gen_helper_neon_qshl_u8, 8451 gen_helper_neon_qshl_u16, 8452 gen_helper_neon_qshl_u32 } 8453 } 8454 }; 8455 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8456 MemOp memop = scalar ? size : MO_32; 8457 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8458 8459 for (pass = 0; pass < maxpass; pass++) { 8460 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8461 8462 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8463 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8464 if (scalar) { 8465 switch (size) { 8466 case 0: 8467 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8468 break; 8469 case 1: 8470 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8471 break; 8472 case 2: 8473 break; 8474 default: 8475 g_assert_not_reached(); 8476 } 8477 write_fp_sreg(s, rd, tcg_op); 8478 } else { 8479 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8480 } 8481 } 8482 8483 if (!scalar) { 8484 clear_vec_high(s, is_q, rd); 8485 } 8486 } 8487 } 8488 8489 /* Common vector code for handling integer to FP conversion */ 8490 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8491 int elements, int is_signed, 8492 int fracbits, int size) 8493 { 8494 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8495 TCGv_i32 tcg_shift = NULL; 8496 8497 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8498 int pass; 8499 8500 if (fracbits || size == MO_64) { 8501 tcg_shift = tcg_constant_i32(fracbits); 8502 } 8503 8504 if (size == MO_64) { 8505 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8506 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8507 8508 for (pass = 0; pass < elements; pass++) { 8509 read_vec_element(s, tcg_int64, rn, pass, mop); 8510 8511 if (is_signed) { 8512 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8513 tcg_shift, tcg_fpst); 8514 } else { 8515 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8516 tcg_shift, tcg_fpst); 8517 } 8518 if (elements == 1) { 8519 write_fp_dreg(s, rd, tcg_double); 8520 } else { 8521 write_vec_element(s, tcg_double, rd, pass, MO_64); 8522 } 8523 } 8524 } else { 8525 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8526 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8527 8528 for (pass = 0; pass < elements; pass++) { 8529 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8530 8531 switch (size) { 8532 case MO_32: 8533 if (fracbits) { 8534 if (is_signed) { 8535 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8536 tcg_shift, tcg_fpst); 8537 } else { 8538 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8539 tcg_shift, tcg_fpst); 8540 } 8541 } else { 8542 if (is_signed) { 8543 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8544 } else { 8545 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8546 } 8547 } 8548 break; 8549 case MO_16: 8550 if (fracbits) { 8551 if (is_signed) { 8552 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8553 tcg_shift, tcg_fpst); 8554 } else { 8555 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8556 tcg_shift, tcg_fpst); 8557 } 8558 } else { 8559 if (is_signed) { 8560 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8561 } else { 8562 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8563 } 8564 } 8565 break; 8566 default: 8567 g_assert_not_reached(); 8568 } 8569 8570 if (elements == 1) { 8571 write_fp_sreg(s, rd, tcg_float); 8572 } else { 8573 write_vec_element_i32(s, tcg_float, rd, pass, size); 8574 } 8575 } 8576 } 8577 8578 clear_vec_high(s, elements << size == 16, rd); 8579 } 8580 8581 /* UCVTF/SCVTF - Integer to FP conversion */ 8582 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8583 bool is_q, bool is_u, 8584 int immh, int immb, int opcode, 8585 int rn, int rd) 8586 { 8587 int size, elements, fracbits; 8588 int immhb = immh << 3 | immb; 8589 8590 if (immh & 8) { 8591 size = MO_64; 8592 if (!is_scalar && !is_q) { 8593 unallocated_encoding(s); 8594 return; 8595 } 8596 } else if (immh & 4) { 8597 size = MO_32; 8598 } else if (immh & 2) { 8599 size = MO_16; 8600 if (!dc_isar_feature(aa64_fp16, s)) { 8601 unallocated_encoding(s); 8602 return; 8603 } 8604 } else { 8605 /* immh == 0 would be a failure of the decode logic */ 8606 g_assert(immh == 1); 8607 unallocated_encoding(s); 8608 return; 8609 } 8610 8611 if (is_scalar) { 8612 elements = 1; 8613 } else { 8614 elements = (8 << is_q) >> size; 8615 } 8616 fracbits = (16 << size) - immhb; 8617 8618 if (!fp_access_check(s)) { 8619 return; 8620 } 8621 8622 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8623 } 8624 8625 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8626 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8627 bool is_q, bool is_u, 8628 int immh, int immb, int rn, int rd) 8629 { 8630 int immhb = immh << 3 | immb; 8631 int pass, size, fracbits; 8632 TCGv_ptr tcg_fpstatus; 8633 TCGv_i32 tcg_rmode, tcg_shift; 8634 8635 if (immh & 0x8) { 8636 size = MO_64; 8637 if (!is_scalar && !is_q) { 8638 unallocated_encoding(s); 8639 return; 8640 } 8641 } else if (immh & 0x4) { 8642 size = MO_32; 8643 } else if (immh & 0x2) { 8644 size = MO_16; 8645 if (!dc_isar_feature(aa64_fp16, s)) { 8646 unallocated_encoding(s); 8647 return; 8648 } 8649 } else { 8650 /* Should have split out AdvSIMD modified immediate earlier. */ 8651 assert(immh == 1); 8652 unallocated_encoding(s); 8653 return; 8654 } 8655 8656 if (!fp_access_check(s)) { 8657 return; 8658 } 8659 8660 assert(!(is_scalar && is_q)); 8661 8662 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8663 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8664 fracbits = (16 << size) - immhb; 8665 tcg_shift = tcg_constant_i32(fracbits); 8666 8667 if (size == MO_64) { 8668 int maxpass = is_scalar ? 1 : 2; 8669 8670 for (pass = 0; pass < maxpass; pass++) { 8671 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8672 8673 read_vec_element(s, tcg_op, rn, pass, MO_64); 8674 if (is_u) { 8675 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8676 } else { 8677 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8678 } 8679 write_vec_element(s, tcg_op, rd, pass, MO_64); 8680 } 8681 clear_vec_high(s, is_q, rd); 8682 } else { 8683 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8684 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8685 8686 switch (size) { 8687 case MO_16: 8688 if (is_u) { 8689 fn = gen_helper_vfp_touhh; 8690 } else { 8691 fn = gen_helper_vfp_toshh; 8692 } 8693 break; 8694 case MO_32: 8695 if (is_u) { 8696 fn = gen_helper_vfp_touls; 8697 } else { 8698 fn = gen_helper_vfp_tosls; 8699 } 8700 break; 8701 default: 8702 g_assert_not_reached(); 8703 } 8704 8705 for (pass = 0; pass < maxpass; pass++) { 8706 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8707 8708 read_vec_element_i32(s, tcg_op, rn, pass, size); 8709 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8710 if (is_scalar) { 8711 write_fp_sreg(s, rd, tcg_op); 8712 } else { 8713 write_vec_element_i32(s, tcg_op, rd, pass, size); 8714 } 8715 } 8716 if (!is_scalar) { 8717 clear_vec_high(s, is_q, rd); 8718 } 8719 } 8720 8721 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8722 } 8723 8724 /* AdvSIMD scalar shift by immediate 8725 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8726 * +-----+---+-------------+------+------+--------+---+------+------+ 8727 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8728 * +-----+---+-------------+------+------+--------+---+------+------+ 8729 * 8730 * This is the scalar version so it works on a fixed sized registers 8731 */ 8732 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8733 { 8734 int rd = extract32(insn, 0, 5); 8735 int rn = extract32(insn, 5, 5); 8736 int opcode = extract32(insn, 11, 5); 8737 int immb = extract32(insn, 16, 3); 8738 int immh = extract32(insn, 19, 4); 8739 bool is_u = extract32(insn, 29, 1); 8740 8741 if (immh == 0) { 8742 unallocated_encoding(s); 8743 return; 8744 } 8745 8746 switch (opcode) { 8747 case 0x08: /* SRI */ 8748 if (!is_u) { 8749 unallocated_encoding(s); 8750 return; 8751 } 8752 /* fall through */ 8753 case 0x00: /* SSHR / USHR */ 8754 case 0x02: /* SSRA / USRA */ 8755 case 0x04: /* SRSHR / URSHR */ 8756 case 0x06: /* SRSRA / URSRA */ 8757 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8758 break; 8759 case 0x0a: /* SHL / SLI */ 8760 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8761 break; 8762 case 0x1c: /* SCVTF, UCVTF */ 8763 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8764 opcode, rn, rd); 8765 break; 8766 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8767 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8768 if (!is_u) { 8769 unallocated_encoding(s); 8770 return; 8771 } 8772 handle_vec_simd_sqshrn(s, true, false, false, true, 8773 immh, immb, opcode, rn, rd); 8774 break; 8775 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8776 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8777 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8778 immh, immb, opcode, rn, rd); 8779 break; 8780 case 0xc: /* SQSHLU */ 8781 if (!is_u) { 8782 unallocated_encoding(s); 8783 return; 8784 } 8785 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8786 break; 8787 case 0xe: /* SQSHL, UQSHL */ 8788 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8789 break; 8790 case 0x1f: /* FCVTZS, FCVTZU */ 8791 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8792 break; 8793 default: 8794 unallocated_encoding(s); 8795 break; 8796 } 8797 } 8798 8799 /* AdvSIMD scalar three different 8800 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8801 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8802 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8803 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8804 */ 8805 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8806 { 8807 bool is_u = extract32(insn, 29, 1); 8808 int size = extract32(insn, 22, 2); 8809 int opcode = extract32(insn, 12, 4); 8810 int rm = extract32(insn, 16, 5); 8811 int rn = extract32(insn, 5, 5); 8812 int rd = extract32(insn, 0, 5); 8813 8814 if (is_u) { 8815 unallocated_encoding(s); 8816 return; 8817 } 8818 8819 switch (opcode) { 8820 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8821 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8822 case 0xd: /* SQDMULL, SQDMULL2 */ 8823 if (size == 0 || size == 3) { 8824 unallocated_encoding(s); 8825 return; 8826 } 8827 break; 8828 default: 8829 unallocated_encoding(s); 8830 return; 8831 } 8832 8833 if (!fp_access_check(s)) { 8834 return; 8835 } 8836 8837 if (size == 2) { 8838 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8839 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8840 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8841 8842 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8843 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8844 8845 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8846 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8847 8848 switch (opcode) { 8849 case 0xd: /* SQDMULL, SQDMULL2 */ 8850 break; 8851 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8852 tcg_gen_neg_i64(tcg_res, tcg_res); 8853 /* fall through */ 8854 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8855 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8856 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8857 tcg_res, tcg_op1); 8858 break; 8859 default: 8860 g_assert_not_reached(); 8861 } 8862 8863 write_fp_dreg(s, rd, tcg_res); 8864 } else { 8865 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8866 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8867 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8868 8869 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8870 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8871 8872 switch (opcode) { 8873 case 0xd: /* SQDMULL, SQDMULL2 */ 8874 break; 8875 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8876 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8877 /* fall through */ 8878 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8879 { 8880 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8881 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8882 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8883 tcg_res, tcg_op3); 8884 break; 8885 } 8886 default: 8887 g_assert_not_reached(); 8888 } 8889 8890 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8891 write_fp_dreg(s, rd, tcg_res); 8892 } 8893 } 8894 8895 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8896 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8897 { 8898 /* Handle 64x64->64 opcodes which are shared between the scalar 8899 * and vector 3-same groups. We cover every opcode where size == 3 8900 * is valid in either the three-reg-same (integer, not pairwise) 8901 * or scalar-three-reg-same groups. 8902 */ 8903 TCGCond cond; 8904 8905 switch (opcode) { 8906 case 0x1: /* SQADD */ 8907 if (u) { 8908 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8909 } else { 8910 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8911 } 8912 break; 8913 case 0x5: /* SQSUB */ 8914 if (u) { 8915 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8916 } else { 8917 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8918 } 8919 break; 8920 case 0x6: /* CMGT, CMHI */ 8921 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8922 do_cmop: 8923 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8924 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8925 break; 8926 case 0x7: /* CMGE, CMHS */ 8927 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8928 goto do_cmop; 8929 case 0x11: /* CMTST, CMEQ */ 8930 if (u) { 8931 cond = TCG_COND_EQ; 8932 goto do_cmop; 8933 } 8934 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8935 break; 8936 case 0x8: /* SSHL, USHL */ 8937 if (u) { 8938 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8939 } else { 8940 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8941 } 8942 break; 8943 case 0x9: /* SQSHL, UQSHL */ 8944 if (u) { 8945 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8946 } else { 8947 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8948 } 8949 break; 8950 case 0xa: /* SRSHL, URSHL */ 8951 if (u) { 8952 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8953 } else { 8954 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8955 } 8956 break; 8957 case 0xb: /* SQRSHL, UQRSHL */ 8958 if (u) { 8959 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8960 } else { 8961 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8962 } 8963 break; 8964 case 0x10: /* ADD, SUB */ 8965 if (u) { 8966 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8967 } else { 8968 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8969 } 8970 break; 8971 default: 8972 g_assert_not_reached(); 8973 } 8974 } 8975 8976 /* Handle the 3-same-operands float operations; shared by the scalar 8977 * and vector encodings. The caller must filter out any encodings 8978 * not allocated for the encoding it is dealing with. 8979 */ 8980 static void handle_3same_float(DisasContext *s, int size, int elements, 8981 int fpopcode, int rd, int rn, int rm) 8982 { 8983 int pass; 8984 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8985 8986 for (pass = 0; pass < elements; pass++) { 8987 if (size) { 8988 /* Double */ 8989 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8990 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8991 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8992 8993 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8994 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8995 8996 switch (fpopcode) { 8997 case 0x39: /* FMLS */ 8998 /* As usual for ARM, separate negation for fused multiply-add */ 8999 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9000 /* fall through */ 9001 case 0x19: /* FMLA */ 9002 read_vec_element(s, tcg_res, rd, pass, MO_64); 9003 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9004 tcg_res, fpst); 9005 break; 9006 case 0x18: /* FMAXNM */ 9007 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9008 break; 9009 case 0x1a: /* FADD */ 9010 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9011 break; 9012 case 0x1b: /* FMULX */ 9013 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9014 break; 9015 case 0x1c: /* FCMEQ */ 9016 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9017 break; 9018 case 0x1e: /* FMAX */ 9019 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9020 break; 9021 case 0x1f: /* FRECPS */ 9022 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9023 break; 9024 case 0x38: /* FMINNM */ 9025 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9026 break; 9027 case 0x3a: /* FSUB */ 9028 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9029 break; 9030 case 0x3e: /* FMIN */ 9031 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9032 break; 9033 case 0x3f: /* FRSQRTS */ 9034 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9035 break; 9036 case 0x5b: /* FMUL */ 9037 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9038 break; 9039 case 0x5c: /* FCMGE */ 9040 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9041 break; 9042 case 0x5d: /* FACGE */ 9043 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9044 break; 9045 case 0x5f: /* FDIV */ 9046 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9047 break; 9048 case 0x7a: /* FABD */ 9049 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9050 gen_helper_vfp_absd(tcg_res, tcg_res); 9051 break; 9052 case 0x7c: /* FCMGT */ 9053 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9054 break; 9055 case 0x7d: /* FACGT */ 9056 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9057 break; 9058 default: 9059 g_assert_not_reached(); 9060 } 9061 9062 write_vec_element(s, tcg_res, rd, pass, MO_64); 9063 } else { 9064 /* Single */ 9065 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9066 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9067 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9068 9069 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9070 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9071 9072 switch (fpopcode) { 9073 case 0x39: /* FMLS */ 9074 /* As usual for ARM, separate negation for fused multiply-add */ 9075 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9076 /* fall through */ 9077 case 0x19: /* FMLA */ 9078 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9079 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9080 tcg_res, fpst); 9081 break; 9082 case 0x1a: /* FADD */ 9083 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9084 break; 9085 case 0x1b: /* FMULX */ 9086 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9087 break; 9088 case 0x1c: /* FCMEQ */ 9089 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9090 break; 9091 case 0x1e: /* FMAX */ 9092 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9093 break; 9094 case 0x1f: /* FRECPS */ 9095 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9096 break; 9097 case 0x18: /* FMAXNM */ 9098 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9099 break; 9100 case 0x38: /* FMINNM */ 9101 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9102 break; 9103 case 0x3a: /* FSUB */ 9104 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9105 break; 9106 case 0x3e: /* FMIN */ 9107 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9108 break; 9109 case 0x3f: /* FRSQRTS */ 9110 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9111 break; 9112 case 0x5b: /* FMUL */ 9113 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9114 break; 9115 case 0x5c: /* FCMGE */ 9116 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9117 break; 9118 case 0x5d: /* FACGE */ 9119 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9120 break; 9121 case 0x5f: /* FDIV */ 9122 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x7a: /* FABD */ 9125 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9126 gen_helper_vfp_abss(tcg_res, tcg_res); 9127 break; 9128 case 0x7c: /* FCMGT */ 9129 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9130 break; 9131 case 0x7d: /* FACGT */ 9132 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 default: 9135 g_assert_not_reached(); 9136 } 9137 9138 if (elements == 1) { 9139 /* scalar single so clear high part */ 9140 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9141 9142 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9143 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9144 } else { 9145 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9146 } 9147 } 9148 } 9149 9150 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9151 } 9152 9153 /* AdvSIMD scalar three same 9154 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9155 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9156 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9157 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9158 */ 9159 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9160 { 9161 int rd = extract32(insn, 0, 5); 9162 int rn = extract32(insn, 5, 5); 9163 int opcode = extract32(insn, 11, 5); 9164 int rm = extract32(insn, 16, 5); 9165 int size = extract32(insn, 22, 2); 9166 bool u = extract32(insn, 29, 1); 9167 TCGv_i64 tcg_rd; 9168 9169 if (opcode >= 0x18) { 9170 /* Floating point: U, size[1] and opcode indicate operation */ 9171 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9172 switch (fpopcode) { 9173 case 0x1b: /* FMULX */ 9174 case 0x1f: /* FRECPS */ 9175 case 0x3f: /* FRSQRTS */ 9176 case 0x5d: /* FACGE */ 9177 case 0x7d: /* FACGT */ 9178 case 0x1c: /* FCMEQ */ 9179 case 0x5c: /* FCMGE */ 9180 case 0x7c: /* FCMGT */ 9181 case 0x7a: /* FABD */ 9182 break; 9183 default: 9184 unallocated_encoding(s); 9185 return; 9186 } 9187 9188 if (!fp_access_check(s)) { 9189 return; 9190 } 9191 9192 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9193 return; 9194 } 9195 9196 switch (opcode) { 9197 case 0x1: /* SQADD, UQADD */ 9198 case 0x5: /* SQSUB, UQSUB */ 9199 case 0x9: /* SQSHL, UQSHL */ 9200 case 0xb: /* SQRSHL, UQRSHL */ 9201 break; 9202 case 0x8: /* SSHL, USHL */ 9203 case 0xa: /* SRSHL, URSHL */ 9204 case 0x6: /* CMGT, CMHI */ 9205 case 0x7: /* CMGE, CMHS */ 9206 case 0x11: /* CMTST, CMEQ */ 9207 case 0x10: /* ADD, SUB (vector) */ 9208 if (size != 3) { 9209 unallocated_encoding(s); 9210 return; 9211 } 9212 break; 9213 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9214 if (size != 1 && size != 2) { 9215 unallocated_encoding(s); 9216 return; 9217 } 9218 break; 9219 default: 9220 unallocated_encoding(s); 9221 return; 9222 } 9223 9224 if (!fp_access_check(s)) { 9225 return; 9226 } 9227 9228 tcg_rd = tcg_temp_new_i64(); 9229 9230 if (size == 3) { 9231 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9232 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9233 9234 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9235 } else { 9236 /* Do a single operation on the lowest element in the vector. 9237 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9238 * no side effects for all these operations. 9239 * OPTME: special-purpose helpers would avoid doing some 9240 * unnecessary work in the helper for the 8 and 16 bit cases. 9241 */ 9242 NeonGenTwoOpEnvFn *genenvfn; 9243 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9244 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9245 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9246 9247 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9248 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9249 9250 switch (opcode) { 9251 case 0x1: /* SQADD, UQADD */ 9252 { 9253 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9254 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9255 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9256 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9257 }; 9258 genenvfn = fns[size][u]; 9259 break; 9260 } 9261 case 0x5: /* SQSUB, UQSUB */ 9262 { 9263 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9264 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9265 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9266 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9267 }; 9268 genenvfn = fns[size][u]; 9269 break; 9270 } 9271 case 0x9: /* SQSHL, UQSHL */ 9272 { 9273 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9274 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9275 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9276 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9277 }; 9278 genenvfn = fns[size][u]; 9279 break; 9280 } 9281 case 0xb: /* SQRSHL, UQRSHL */ 9282 { 9283 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9284 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9285 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9286 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9287 }; 9288 genenvfn = fns[size][u]; 9289 break; 9290 } 9291 case 0x16: /* SQDMULH, SQRDMULH */ 9292 { 9293 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9294 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9295 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9296 }; 9297 assert(size == 1 || size == 2); 9298 genenvfn = fns[size - 1][u]; 9299 break; 9300 } 9301 default: 9302 g_assert_not_reached(); 9303 } 9304 9305 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9306 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9307 } 9308 9309 write_fp_dreg(s, rd, tcg_rd); 9310 } 9311 9312 /* AdvSIMD scalar three same FP16 9313 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9314 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9315 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9316 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9317 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9318 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9319 */ 9320 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9321 uint32_t insn) 9322 { 9323 int rd = extract32(insn, 0, 5); 9324 int rn = extract32(insn, 5, 5); 9325 int opcode = extract32(insn, 11, 3); 9326 int rm = extract32(insn, 16, 5); 9327 bool u = extract32(insn, 29, 1); 9328 bool a = extract32(insn, 23, 1); 9329 int fpopcode = opcode | (a << 3) | (u << 4); 9330 TCGv_ptr fpst; 9331 TCGv_i32 tcg_op1; 9332 TCGv_i32 tcg_op2; 9333 TCGv_i32 tcg_res; 9334 9335 switch (fpopcode) { 9336 case 0x03: /* FMULX */ 9337 case 0x04: /* FCMEQ (reg) */ 9338 case 0x07: /* FRECPS */ 9339 case 0x0f: /* FRSQRTS */ 9340 case 0x14: /* FCMGE (reg) */ 9341 case 0x15: /* FACGE */ 9342 case 0x1a: /* FABD */ 9343 case 0x1c: /* FCMGT (reg) */ 9344 case 0x1d: /* FACGT */ 9345 break; 9346 default: 9347 unallocated_encoding(s); 9348 return; 9349 } 9350 9351 if (!dc_isar_feature(aa64_fp16, s)) { 9352 unallocated_encoding(s); 9353 } 9354 9355 if (!fp_access_check(s)) { 9356 return; 9357 } 9358 9359 fpst = fpstatus_ptr(FPST_FPCR_F16); 9360 9361 tcg_op1 = read_fp_hreg(s, rn); 9362 tcg_op2 = read_fp_hreg(s, rm); 9363 tcg_res = tcg_temp_new_i32(); 9364 9365 switch (fpopcode) { 9366 case 0x03: /* FMULX */ 9367 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9368 break; 9369 case 0x04: /* FCMEQ (reg) */ 9370 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9371 break; 9372 case 0x07: /* FRECPS */ 9373 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9374 break; 9375 case 0x0f: /* FRSQRTS */ 9376 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9377 break; 9378 case 0x14: /* FCMGE (reg) */ 9379 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9380 break; 9381 case 0x15: /* FACGE */ 9382 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9383 break; 9384 case 0x1a: /* FABD */ 9385 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9386 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9387 break; 9388 case 0x1c: /* FCMGT (reg) */ 9389 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9390 break; 9391 case 0x1d: /* FACGT */ 9392 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9393 break; 9394 default: 9395 g_assert_not_reached(); 9396 } 9397 9398 write_fp_sreg(s, rd, tcg_res); 9399 } 9400 9401 /* AdvSIMD scalar three same extra 9402 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9403 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9404 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9405 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9406 */ 9407 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9408 uint32_t insn) 9409 { 9410 int rd = extract32(insn, 0, 5); 9411 int rn = extract32(insn, 5, 5); 9412 int opcode = extract32(insn, 11, 4); 9413 int rm = extract32(insn, 16, 5); 9414 int size = extract32(insn, 22, 2); 9415 bool u = extract32(insn, 29, 1); 9416 TCGv_i32 ele1, ele2, ele3; 9417 TCGv_i64 res; 9418 bool feature; 9419 9420 switch (u * 16 + opcode) { 9421 case 0x10: /* SQRDMLAH (vector) */ 9422 case 0x11: /* SQRDMLSH (vector) */ 9423 if (size != 1 && size != 2) { 9424 unallocated_encoding(s); 9425 return; 9426 } 9427 feature = dc_isar_feature(aa64_rdm, s); 9428 break; 9429 default: 9430 unallocated_encoding(s); 9431 return; 9432 } 9433 if (!feature) { 9434 unallocated_encoding(s); 9435 return; 9436 } 9437 if (!fp_access_check(s)) { 9438 return; 9439 } 9440 9441 /* Do a single operation on the lowest element in the vector. 9442 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9443 * with no side effects for all these operations. 9444 * OPTME: special-purpose helpers would avoid doing some 9445 * unnecessary work in the helper for the 16 bit cases. 9446 */ 9447 ele1 = tcg_temp_new_i32(); 9448 ele2 = tcg_temp_new_i32(); 9449 ele3 = tcg_temp_new_i32(); 9450 9451 read_vec_element_i32(s, ele1, rn, 0, size); 9452 read_vec_element_i32(s, ele2, rm, 0, size); 9453 read_vec_element_i32(s, ele3, rd, 0, size); 9454 9455 switch (opcode) { 9456 case 0x0: /* SQRDMLAH */ 9457 if (size == 1) { 9458 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9459 } else { 9460 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9461 } 9462 break; 9463 case 0x1: /* SQRDMLSH */ 9464 if (size == 1) { 9465 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9466 } else { 9467 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9468 } 9469 break; 9470 default: 9471 g_assert_not_reached(); 9472 } 9473 9474 res = tcg_temp_new_i64(); 9475 tcg_gen_extu_i32_i64(res, ele3); 9476 write_fp_dreg(s, rd, res); 9477 } 9478 9479 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9480 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9481 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9482 { 9483 /* Handle 64->64 opcodes which are shared between the scalar and 9484 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9485 * is valid in either group and also the double-precision fp ops. 9486 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9487 * requires them. 9488 */ 9489 TCGCond cond; 9490 9491 switch (opcode) { 9492 case 0x4: /* CLS, CLZ */ 9493 if (u) { 9494 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9495 } else { 9496 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9497 } 9498 break; 9499 case 0x5: /* NOT */ 9500 /* This opcode is shared with CNT and RBIT but we have earlier 9501 * enforced that size == 3 if and only if this is the NOT insn. 9502 */ 9503 tcg_gen_not_i64(tcg_rd, tcg_rn); 9504 break; 9505 case 0x7: /* SQABS, SQNEG */ 9506 if (u) { 9507 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9508 } else { 9509 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9510 } 9511 break; 9512 case 0xa: /* CMLT */ 9513 cond = TCG_COND_LT; 9514 do_cmop: 9515 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9516 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9517 break; 9518 case 0x8: /* CMGT, CMGE */ 9519 cond = u ? TCG_COND_GE : TCG_COND_GT; 9520 goto do_cmop; 9521 case 0x9: /* CMEQ, CMLE */ 9522 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9523 goto do_cmop; 9524 case 0xb: /* ABS, NEG */ 9525 if (u) { 9526 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9527 } else { 9528 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9529 } 9530 break; 9531 case 0x2f: /* FABS */ 9532 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9533 break; 9534 case 0x6f: /* FNEG */ 9535 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9536 break; 9537 case 0x7f: /* FSQRT */ 9538 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9539 break; 9540 case 0x1a: /* FCVTNS */ 9541 case 0x1b: /* FCVTMS */ 9542 case 0x1c: /* FCVTAS */ 9543 case 0x3a: /* FCVTPS */ 9544 case 0x3b: /* FCVTZS */ 9545 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9546 break; 9547 case 0x5a: /* FCVTNU */ 9548 case 0x5b: /* FCVTMU */ 9549 case 0x5c: /* FCVTAU */ 9550 case 0x7a: /* FCVTPU */ 9551 case 0x7b: /* FCVTZU */ 9552 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9553 break; 9554 case 0x18: /* FRINTN */ 9555 case 0x19: /* FRINTM */ 9556 case 0x38: /* FRINTP */ 9557 case 0x39: /* FRINTZ */ 9558 case 0x58: /* FRINTA */ 9559 case 0x79: /* FRINTI */ 9560 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9561 break; 9562 case 0x59: /* FRINTX */ 9563 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9564 break; 9565 case 0x1e: /* FRINT32Z */ 9566 case 0x5e: /* FRINT32X */ 9567 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9568 break; 9569 case 0x1f: /* FRINT64Z */ 9570 case 0x5f: /* FRINT64X */ 9571 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9572 break; 9573 default: 9574 g_assert_not_reached(); 9575 } 9576 } 9577 9578 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9579 bool is_scalar, bool is_u, bool is_q, 9580 int size, int rn, int rd) 9581 { 9582 bool is_double = (size == MO_64); 9583 TCGv_ptr fpst; 9584 9585 if (!fp_access_check(s)) { 9586 return; 9587 } 9588 9589 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9590 9591 if (is_double) { 9592 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9593 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9594 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9595 NeonGenTwoDoubleOpFn *genfn; 9596 bool swap = false; 9597 int pass; 9598 9599 switch (opcode) { 9600 case 0x2e: /* FCMLT (zero) */ 9601 swap = true; 9602 /* fallthrough */ 9603 case 0x2c: /* FCMGT (zero) */ 9604 genfn = gen_helper_neon_cgt_f64; 9605 break; 9606 case 0x2d: /* FCMEQ (zero) */ 9607 genfn = gen_helper_neon_ceq_f64; 9608 break; 9609 case 0x6d: /* FCMLE (zero) */ 9610 swap = true; 9611 /* fall through */ 9612 case 0x6c: /* FCMGE (zero) */ 9613 genfn = gen_helper_neon_cge_f64; 9614 break; 9615 default: 9616 g_assert_not_reached(); 9617 } 9618 9619 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9620 read_vec_element(s, tcg_op, rn, pass, MO_64); 9621 if (swap) { 9622 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9623 } else { 9624 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9625 } 9626 write_vec_element(s, tcg_res, rd, pass, MO_64); 9627 } 9628 9629 clear_vec_high(s, !is_scalar, rd); 9630 } else { 9631 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9632 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9633 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9634 NeonGenTwoSingleOpFn *genfn; 9635 bool swap = false; 9636 int pass, maxpasses; 9637 9638 if (size == MO_16) { 9639 switch (opcode) { 9640 case 0x2e: /* FCMLT (zero) */ 9641 swap = true; 9642 /* fall through */ 9643 case 0x2c: /* FCMGT (zero) */ 9644 genfn = gen_helper_advsimd_cgt_f16; 9645 break; 9646 case 0x2d: /* FCMEQ (zero) */ 9647 genfn = gen_helper_advsimd_ceq_f16; 9648 break; 9649 case 0x6d: /* FCMLE (zero) */ 9650 swap = true; 9651 /* fall through */ 9652 case 0x6c: /* FCMGE (zero) */ 9653 genfn = gen_helper_advsimd_cge_f16; 9654 break; 9655 default: 9656 g_assert_not_reached(); 9657 } 9658 } else { 9659 switch (opcode) { 9660 case 0x2e: /* FCMLT (zero) */ 9661 swap = true; 9662 /* fall through */ 9663 case 0x2c: /* FCMGT (zero) */ 9664 genfn = gen_helper_neon_cgt_f32; 9665 break; 9666 case 0x2d: /* FCMEQ (zero) */ 9667 genfn = gen_helper_neon_ceq_f32; 9668 break; 9669 case 0x6d: /* FCMLE (zero) */ 9670 swap = true; 9671 /* fall through */ 9672 case 0x6c: /* FCMGE (zero) */ 9673 genfn = gen_helper_neon_cge_f32; 9674 break; 9675 default: 9676 g_assert_not_reached(); 9677 } 9678 } 9679 9680 if (is_scalar) { 9681 maxpasses = 1; 9682 } else { 9683 int vector_size = 8 << is_q; 9684 maxpasses = vector_size >> size; 9685 } 9686 9687 for (pass = 0; pass < maxpasses; pass++) { 9688 read_vec_element_i32(s, tcg_op, rn, pass, size); 9689 if (swap) { 9690 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9691 } else { 9692 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9693 } 9694 if (is_scalar) { 9695 write_fp_sreg(s, rd, tcg_res); 9696 } else { 9697 write_vec_element_i32(s, tcg_res, rd, pass, size); 9698 } 9699 } 9700 9701 if (!is_scalar) { 9702 clear_vec_high(s, is_q, rd); 9703 } 9704 } 9705 } 9706 9707 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9708 bool is_scalar, bool is_u, bool is_q, 9709 int size, int rn, int rd) 9710 { 9711 bool is_double = (size == 3); 9712 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9713 9714 if (is_double) { 9715 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9716 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9717 int pass; 9718 9719 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9720 read_vec_element(s, tcg_op, rn, pass, MO_64); 9721 switch (opcode) { 9722 case 0x3d: /* FRECPE */ 9723 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9724 break; 9725 case 0x3f: /* FRECPX */ 9726 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9727 break; 9728 case 0x7d: /* FRSQRTE */ 9729 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9730 break; 9731 default: 9732 g_assert_not_reached(); 9733 } 9734 write_vec_element(s, tcg_res, rd, pass, MO_64); 9735 } 9736 clear_vec_high(s, !is_scalar, rd); 9737 } else { 9738 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9739 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9740 int pass, maxpasses; 9741 9742 if (is_scalar) { 9743 maxpasses = 1; 9744 } else { 9745 maxpasses = is_q ? 4 : 2; 9746 } 9747 9748 for (pass = 0; pass < maxpasses; pass++) { 9749 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9750 9751 switch (opcode) { 9752 case 0x3c: /* URECPE */ 9753 gen_helper_recpe_u32(tcg_res, tcg_op); 9754 break; 9755 case 0x3d: /* FRECPE */ 9756 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9757 break; 9758 case 0x3f: /* FRECPX */ 9759 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9760 break; 9761 case 0x7d: /* FRSQRTE */ 9762 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9763 break; 9764 default: 9765 g_assert_not_reached(); 9766 } 9767 9768 if (is_scalar) { 9769 write_fp_sreg(s, rd, tcg_res); 9770 } else { 9771 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9772 } 9773 } 9774 if (!is_scalar) { 9775 clear_vec_high(s, is_q, rd); 9776 } 9777 } 9778 } 9779 9780 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9781 int opcode, bool u, bool is_q, 9782 int size, int rn, int rd) 9783 { 9784 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9785 * in the source becomes a size element in the destination). 9786 */ 9787 int pass; 9788 TCGv_i32 tcg_res[2]; 9789 int destelt = is_q ? 2 : 0; 9790 int passes = scalar ? 1 : 2; 9791 9792 if (scalar) { 9793 tcg_res[1] = tcg_constant_i32(0); 9794 } 9795 9796 for (pass = 0; pass < passes; pass++) { 9797 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9798 NeonGenNarrowFn *genfn = NULL; 9799 NeonGenNarrowEnvFn *genenvfn = NULL; 9800 9801 if (scalar) { 9802 read_vec_element(s, tcg_op, rn, pass, size + 1); 9803 } else { 9804 read_vec_element(s, tcg_op, rn, pass, MO_64); 9805 } 9806 tcg_res[pass] = tcg_temp_new_i32(); 9807 9808 switch (opcode) { 9809 case 0x12: /* XTN, SQXTUN */ 9810 { 9811 static NeonGenNarrowFn * const xtnfns[3] = { 9812 gen_helper_neon_narrow_u8, 9813 gen_helper_neon_narrow_u16, 9814 tcg_gen_extrl_i64_i32, 9815 }; 9816 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9817 gen_helper_neon_unarrow_sat8, 9818 gen_helper_neon_unarrow_sat16, 9819 gen_helper_neon_unarrow_sat32, 9820 }; 9821 if (u) { 9822 genenvfn = sqxtunfns[size]; 9823 } else { 9824 genfn = xtnfns[size]; 9825 } 9826 break; 9827 } 9828 case 0x14: /* SQXTN, UQXTN */ 9829 { 9830 static NeonGenNarrowEnvFn * const fns[3][2] = { 9831 { gen_helper_neon_narrow_sat_s8, 9832 gen_helper_neon_narrow_sat_u8 }, 9833 { gen_helper_neon_narrow_sat_s16, 9834 gen_helper_neon_narrow_sat_u16 }, 9835 { gen_helper_neon_narrow_sat_s32, 9836 gen_helper_neon_narrow_sat_u32 }, 9837 }; 9838 genenvfn = fns[size][u]; 9839 break; 9840 } 9841 case 0x16: /* FCVTN, FCVTN2 */ 9842 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9843 if (size == 2) { 9844 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9845 } else { 9846 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9847 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9848 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9849 TCGv_i32 ahp = get_ahp_flag(); 9850 9851 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9852 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9853 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9854 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9855 } 9856 break; 9857 case 0x36: /* BFCVTN, BFCVTN2 */ 9858 { 9859 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9860 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9861 } 9862 break; 9863 case 0x56: /* FCVTXN, FCVTXN2 */ 9864 /* 64 bit to 32 bit float conversion 9865 * with von Neumann rounding (round to odd) 9866 */ 9867 assert(size == 2); 9868 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9869 break; 9870 default: 9871 g_assert_not_reached(); 9872 } 9873 9874 if (genfn) { 9875 genfn(tcg_res[pass], tcg_op); 9876 } else if (genenvfn) { 9877 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9878 } 9879 } 9880 9881 for (pass = 0; pass < 2; pass++) { 9882 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9883 } 9884 clear_vec_high(s, is_q, rd); 9885 } 9886 9887 /* Remaining saturating accumulating ops */ 9888 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9889 bool is_q, int size, int rn, int rd) 9890 { 9891 bool is_double = (size == 3); 9892 9893 if (is_double) { 9894 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9895 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9896 int pass; 9897 9898 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9899 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9900 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9901 9902 if (is_u) { /* USQADD */ 9903 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9904 } else { /* SUQADD */ 9905 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9906 } 9907 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9908 } 9909 clear_vec_high(s, !is_scalar, rd); 9910 } else { 9911 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9912 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9913 int pass, maxpasses; 9914 9915 if (is_scalar) { 9916 maxpasses = 1; 9917 } else { 9918 maxpasses = is_q ? 4 : 2; 9919 } 9920 9921 for (pass = 0; pass < maxpasses; pass++) { 9922 if (is_scalar) { 9923 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9924 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9925 } else { 9926 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9927 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9928 } 9929 9930 if (is_u) { /* USQADD */ 9931 switch (size) { 9932 case 0: 9933 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9934 break; 9935 case 1: 9936 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9937 break; 9938 case 2: 9939 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9940 break; 9941 default: 9942 g_assert_not_reached(); 9943 } 9944 } else { /* SUQADD */ 9945 switch (size) { 9946 case 0: 9947 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9948 break; 9949 case 1: 9950 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9951 break; 9952 case 2: 9953 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9954 break; 9955 default: 9956 g_assert_not_reached(); 9957 } 9958 } 9959 9960 if (is_scalar) { 9961 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9962 } 9963 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9964 } 9965 clear_vec_high(s, is_q, rd); 9966 } 9967 } 9968 9969 /* AdvSIMD scalar two reg misc 9970 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9971 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9972 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9973 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9974 */ 9975 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9976 { 9977 int rd = extract32(insn, 0, 5); 9978 int rn = extract32(insn, 5, 5); 9979 int opcode = extract32(insn, 12, 5); 9980 int size = extract32(insn, 22, 2); 9981 bool u = extract32(insn, 29, 1); 9982 bool is_fcvt = false; 9983 int rmode; 9984 TCGv_i32 tcg_rmode; 9985 TCGv_ptr tcg_fpstatus; 9986 9987 switch (opcode) { 9988 case 0x3: /* USQADD / SUQADD*/ 9989 if (!fp_access_check(s)) { 9990 return; 9991 } 9992 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9993 return; 9994 case 0x7: /* SQABS / SQNEG */ 9995 break; 9996 case 0xa: /* CMLT */ 9997 if (u) { 9998 unallocated_encoding(s); 9999 return; 10000 } 10001 /* fall through */ 10002 case 0x8: /* CMGT, CMGE */ 10003 case 0x9: /* CMEQ, CMLE */ 10004 case 0xb: /* ABS, NEG */ 10005 if (size != 3) { 10006 unallocated_encoding(s); 10007 return; 10008 } 10009 break; 10010 case 0x12: /* SQXTUN */ 10011 if (!u) { 10012 unallocated_encoding(s); 10013 return; 10014 } 10015 /* fall through */ 10016 case 0x14: /* SQXTN, UQXTN */ 10017 if (size == 3) { 10018 unallocated_encoding(s); 10019 return; 10020 } 10021 if (!fp_access_check(s)) { 10022 return; 10023 } 10024 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10025 return; 10026 case 0xc ... 0xf: 10027 case 0x16 ... 0x1d: 10028 case 0x1f: 10029 /* Floating point: U, size[1] and opcode indicate operation; 10030 * size[0] indicates single or double precision. 10031 */ 10032 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10033 size = extract32(size, 0, 1) ? 3 : 2; 10034 switch (opcode) { 10035 case 0x2c: /* FCMGT (zero) */ 10036 case 0x2d: /* FCMEQ (zero) */ 10037 case 0x2e: /* FCMLT (zero) */ 10038 case 0x6c: /* FCMGE (zero) */ 10039 case 0x6d: /* FCMLE (zero) */ 10040 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10041 return; 10042 case 0x1d: /* SCVTF */ 10043 case 0x5d: /* UCVTF */ 10044 { 10045 bool is_signed = (opcode == 0x1d); 10046 if (!fp_access_check(s)) { 10047 return; 10048 } 10049 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10050 return; 10051 } 10052 case 0x3d: /* FRECPE */ 10053 case 0x3f: /* FRECPX */ 10054 case 0x7d: /* FRSQRTE */ 10055 if (!fp_access_check(s)) { 10056 return; 10057 } 10058 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10059 return; 10060 case 0x1a: /* FCVTNS */ 10061 case 0x1b: /* FCVTMS */ 10062 case 0x3a: /* FCVTPS */ 10063 case 0x3b: /* FCVTZS */ 10064 case 0x5a: /* FCVTNU */ 10065 case 0x5b: /* FCVTMU */ 10066 case 0x7a: /* FCVTPU */ 10067 case 0x7b: /* FCVTZU */ 10068 is_fcvt = true; 10069 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10070 break; 10071 case 0x1c: /* FCVTAS */ 10072 case 0x5c: /* FCVTAU */ 10073 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10074 is_fcvt = true; 10075 rmode = FPROUNDING_TIEAWAY; 10076 break; 10077 case 0x56: /* FCVTXN, FCVTXN2 */ 10078 if (size == 2) { 10079 unallocated_encoding(s); 10080 return; 10081 } 10082 if (!fp_access_check(s)) { 10083 return; 10084 } 10085 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10086 return; 10087 default: 10088 unallocated_encoding(s); 10089 return; 10090 } 10091 break; 10092 default: 10093 unallocated_encoding(s); 10094 return; 10095 } 10096 10097 if (!fp_access_check(s)) { 10098 return; 10099 } 10100 10101 if (is_fcvt) { 10102 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10103 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10104 } else { 10105 tcg_fpstatus = NULL; 10106 tcg_rmode = NULL; 10107 } 10108 10109 if (size == 3) { 10110 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10111 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10112 10113 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10114 write_fp_dreg(s, rd, tcg_rd); 10115 } else { 10116 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10117 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10118 10119 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10120 10121 switch (opcode) { 10122 case 0x7: /* SQABS, SQNEG */ 10123 { 10124 NeonGenOneOpEnvFn *genfn; 10125 static NeonGenOneOpEnvFn * const fns[3][2] = { 10126 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10127 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10128 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10129 }; 10130 genfn = fns[size][u]; 10131 genfn(tcg_rd, tcg_env, tcg_rn); 10132 break; 10133 } 10134 case 0x1a: /* FCVTNS */ 10135 case 0x1b: /* FCVTMS */ 10136 case 0x1c: /* FCVTAS */ 10137 case 0x3a: /* FCVTPS */ 10138 case 0x3b: /* FCVTZS */ 10139 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10140 tcg_fpstatus); 10141 break; 10142 case 0x5a: /* FCVTNU */ 10143 case 0x5b: /* FCVTMU */ 10144 case 0x5c: /* FCVTAU */ 10145 case 0x7a: /* FCVTPU */ 10146 case 0x7b: /* FCVTZU */ 10147 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10148 tcg_fpstatus); 10149 break; 10150 default: 10151 g_assert_not_reached(); 10152 } 10153 10154 write_fp_sreg(s, rd, tcg_rd); 10155 } 10156 10157 if (is_fcvt) { 10158 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10159 } 10160 } 10161 10162 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10163 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10164 int immh, int immb, int opcode, int rn, int rd) 10165 { 10166 int size = 32 - clz32(immh) - 1; 10167 int immhb = immh << 3 | immb; 10168 int shift = 2 * (8 << size) - immhb; 10169 GVecGen2iFn *gvec_fn; 10170 10171 if (extract32(immh, 3, 1) && !is_q) { 10172 unallocated_encoding(s); 10173 return; 10174 } 10175 tcg_debug_assert(size <= 3); 10176 10177 if (!fp_access_check(s)) { 10178 return; 10179 } 10180 10181 switch (opcode) { 10182 case 0x02: /* SSRA / USRA (accumulate) */ 10183 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10184 break; 10185 10186 case 0x08: /* SRI */ 10187 gvec_fn = gen_gvec_sri; 10188 break; 10189 10190 case 0x00: /* SSHR / USHR */ 10191 if (is_u) { 10192 if (shift == 8 << size) { 10193 /* Shift count the same size as element size produces zero. */ 10194 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10195 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10196 return; 10197 } 10198 gvec_fn = tcg_gen_gvec_shri; 10199 } else { 10200 /* Shift count the same size as element size produces all sign. */ 10201 if (shift == 8 << size) { 10202 shift -= 1; 10203 } 10204 gvec_fn = tcg_gen_gvec_sari; 10205 } 10206 break; 10207 10208 case 0x04: /* SRSHR / URSHR (rounding) */ 10209 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10210 break; 10211 10212 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10213 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10214 break; 10215 10216 default: 10217 g_assert_not_reached(); 10218 } 10219 10220 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10221 } 10222 10223 /* SHL/SLI - Vector shift left */ 10224 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10225 int immh, int immb, int opcode, int rn, int rd) 10226 { 10227 int size = 32 - clz32(immh) - 1; 10228 int immhb = immh << 3 | immb; 10229 int shift = immhb - (8 << size); 10230 10231 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10232 assert(size >= 0 && size <= 3); 10233 10234 if (extract32(immh, 3, 1) && !is_q) { 10235 unallocated_encoding(s); 10236 return; 10237 } 10238 10239 if (!fp_access_check(s)) { 10240 return; 10241 } 10242 10243 if (insert) { 10244 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10245 } else { 10246 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10247 } 10248 } 10249 10250 /* USHLL/SHLL - Vector shift left with widening */ 10251 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10252 int immh, int immb, int opcode, int rn, int rd) 10253 { 10254 int size = 32 - clz32(immh) - 1; 10255 int immhb = immh << 3 | immb; 10256 int shift = immhb - (8 << size); 10257 int dsize = 64; 10258 int esize = 8 << size; 10259 int elements = dsize/esize; 10260 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10261 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10262 int i; 10263 10264 if (size >= 3) { 10265 unallocated_encoding(s); 10266 return; 10267 } 10268 10269 if (!fp_access_check(s)) { 10270 return; 10271 } 10272 10273 /* For the LL variants the store is larger than the load, 10274 * so if rd == rn we would overwrite parts of our input. 10275 * So load everything right now and use shifts in the main loop. 10276 */ 10277 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10278 10279 for (i = 0; i < elements; i++) { 10280 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10281 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10282 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10283 write_vec_element(s, tcg_rd, rd, i, size + 1); 10284 } 10285 } 10286 10287 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10288 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10289 int immh, int immb, int opcode, int rn, int rd) 10290 { 10291 int immhb = immh << 3 | immb; 10292 int size = 32 - clz32(immh) - 1; 10293 int dsize = 64; 10294 int esize = 8 << size; 10295 int elements = dsize/esize; 10296 int shift = (2 * esize) - immhb; 10297 bool round = extract32(opcode, 0, 1); 10298 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10299 TCGv_i64 tcg_round; 10300 int i; 10301 10302 if (extract32(immh, 3, 1)) { 10303 unallocated_encoding(s); 10304 return; 10305 } 10306 10307 if (!fp_access_check(s)) { 10308 return; 10309 } 10310 10311 tcg_rn = tcg_temp_new_i64(); 10312 tcg_rd = tcg_temp_new_i64(); 10313 tcg_final = tcg_temp_new_i64(); 10314 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10315 10316 if (round) { 10317 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10318 } else { 10319 tcg_round = NULL; 10320 } 10321 10322 for (i = 0; i < elements; i++) { 10323 read_vec_element(s, tcg_rn, rn, i, size+1); 10324 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10325 false, true, size+1, shift); 10326 10327 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10328 } 10329 10330 if (!is_q) { 10331 write_vec_element(s, tcg_final, rd, 0, MO_64); 10332 } else { 10333 write_vec_element(s, tcg_final, rd, 1, MO_64); 10334 } 10335 10336 clear_vec_high(s, is_q, rd); 10337 } 10338 10339 10340 /* AdvSIMD shift by immediate 10341 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10342 * +---+---+---+-------------+------+------+--------+---+------+------+ 10343 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10344 * +---+---+---+-------------+------+------+--------+---+------+------+ 10345 */ 10346 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10347 { 10348 int rd = extract32(insn, 0, 5); 10349 int rn = extract32(insn, 5, 5); 10350 int opcode = extract32(insn, 11, 5); 10351 int immb = extract32(insn, 16, 3); 10352 int immh = extract32(insn, 19, 4); 10353 bool is_u = extract32(insn, 29, 1); 10354 bool is_q = extract32(insn, 30, 1); 10355 10356 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10357 assert(immh != 0); 10358 10359 switch (opcode) { 10360 case 0x08: /* SRI */ 10361 if (!is_u) { 10362 unallocated_encoding(s); 10363 return; 10364 } 10365 /* fall through */ 10366 case 0x00: /* SSHR / USHR */ 10367 case 0x02: /* SSRA / USRA (accumulate) */ 10368 case 0x04: /* SRSHR / URSHR (rounding) */ 10369 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10370 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10371 break; 10372 case 0x0a: /* SHL / SLI */ 10373 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10374 break; 10375 case 0x10: /* SHRN */ 10376 case 0x11: /* RSHRN / SQRSHRUN */ 10377 if (is_u) { 10378 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10379 opcode, rn, rd); 10380 } else { 10381 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10382 } 10383 break; 10384 case 0x12: /* SQSHRN / UQSHRN */ 10385 case 0x13: /* SQRSHRN / UQRSHRN */ 10386 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10387 opcode, rn, rd); 10388 break; 10389 case 0x14: /* SSHLL / USHLL */ 10390 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10391 break; 10392 case 0x1c: /* SCVTF / UCVTF */ 10393 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10394 opcode, rn, rd); 10395 break; 10396 case 0xc: /* SQSHLU */ 10397 if (!is_u) { 10398 unallocated_encoding(s); 10399 return; 10400 } 10401 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10402 break; 10403 case 0xe: /* SQSHL, UQSHL */ 10404 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10405 break; 10406 case 0x1f: /* FCVTZS/ FCVTZU */ 10407 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10408 return; 10409 default: 10410 unallocated_encoding(s); 10411 return; 10412 } 10413 } 10414 10415 /* Generate code to do a "long" addition or subtraction, ie one done in 10416 * TCGv_i64 on vector lanes twice the width specified by size. 10417 */ 10418 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10419 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10420 { 10421 static NeonGenTwo64OpFn * const fns[3][2] = { 10422 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10423 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10424 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10425 }; 10426 NeonGenTwo64OpFn *genfn; 10427 assert(size < 3); 10428 10429 genfn = fns[size][is_sub]; 10430 genfn(tcg_res, tcg_op1, tcg_op2); 10431 } 10432 10433 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10434 int opcode, int rd, int rn, int rm) 10435 { 10436 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10437 TCGv_i64 tcg_res[2]; 10438 int pass, accop; 10439 10440 tcg_res[0] = tcg_temp_new_i64(); 10441 tcg_res[1] = tcg_temp_new_i64(); 10442 10443 /* Does this op do an adding accumulate, a subtracting accumulate, 10444 * or no accumulate at all? 10445 */ 10446 switch (opcode) { 10447 case 5: 10448 case 8: 10449 case 9: 10450 accop = 1; 10451 break; 10452 case 10: 10453 case 11: 10454 accop = -1; 10455 break; 10456 default: 10457 accop = 0; 10458 break; 10459 } 10460 10461 if (accop != 0) { 10462 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10463 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10464 } 10465 10466 /* size == 2 means two 32x32->64 operations; this is worth special 10467 * casing because we can generally handle it inline. 10468 */ 10469 if (size == 2) { 10470 for (pass = 0; pass < 2; pass++) { 10471 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10472 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10473 TCGv_i64 tcg_passres; 10474 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10475 10476 int elt = pass + is_q * 2; 10477 10478 read_vec_element(s, tcg_op1, rn, elt, memop); 10479 read_vec_element(s, tcg_op2, rm, elt, memop); 10480 10481 if (accop == 0) { 10482 tcg_passres = tcg_res[pass]; 10483 } else { 10484 tcg_passres = tcg_temp_new_i64(); 10485 } 10486 10487 switch (opcode) { 10488 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10489 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10490 break; 10491 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10492 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10493 break; 10494 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10495 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10496 { 10497 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10498 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10499 10500 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10501 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10502 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10503 tcg_passres, 10504 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10505 break; 10506 } 10507 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10508 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10509 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10510 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10511 break; 10512 case 9: /* SQDMLAL, SQDMLAL2 */ 10513 case 11: /* SQDMLSL, SQDMLSL2 */ 10514 case 13: /* SQDMULL, SQDMULL2 */ 10515 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10516 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10517 tcg_passres, tcg_passres); 10518 break; 10519 default: 10520 g_assert_not_reached(); 10521 } 10522 10523 if (opcode == 9 || opcode == 11) { 10524 /* saturating accumulate ops */ 10525 if (accop < 0) { 10526 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10527 } 10528 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10529 tcg_res[pass], tcg_passres); 10530 } else if (accop > 0) { 10531 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10532 } else if (accop < 0) { 10533 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10534 } 10535 } 10536 } else { 10537 /* size 0 or 1, generally helper functions */ 10538 for (pass = 0; pass < 2; pass++) { 10539 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10540 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10541 TCGv_i64 tcg_passres; 10542 int elt = pass + is_q * 2; 10543 10544 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10545 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10546 10547 if (accop == 0) { 10548 tcg_passres = tcg_res[pass]; 10549 } else { 10550 tcg_passres = tcg_temp_new_i64(); 10551 } 10552 10553 switch (opcode) { 10554 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10555 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10556 { 10557 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10558 static NeonGenWidenFn * const widenfns[2][2] = { 10559 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10560 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10561 }; 10562 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10563 10564 widenfn(tcg_op2_64, tcg_op2); 10565 widenfn(tcg_passres, tcg_op1); 10566 gen_neon_addl(size, (opcode == 2), tcg_passres, 10567 tcg_passres, tcg_op2_64); 10568 break; 10569 } 10570 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10571 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10572 if (size == 0) { 10573 if (is_u) { 10574 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10575 } else { 10576 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10577 } 10578 } else { 10579 if (is_u) { 10580 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10581 } else { 10582 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10583 } 10584 } 10585 break; 10586 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10587 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10588 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10589 if (size == 0) { 10590 if (is_u) { 10591 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10592 } else { 10593 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10594 } 10595 } else { 10596 if (is_u) { 10597 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10598 } else { 10599 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10600 } 10601 } 10602 break; 10603 case 9: /* SQDMLAL, SQDMLAL2 */ 10604 case 11: /* SQDMLSL, SQDMLSL2 */ 10605 case 13: /* SQDMULL, SQDMULL2 */ 10606 assert(size == 1); 10607 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10608 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10609 tcg_passres, tcg_passres); 10610 break; 10611 default: 10612 g_assert_not_reached(); 10613 } 10614 10615 if (accop != 0) { 10616 if (opcode == 9 || opcode == 11) { 10617 /* saturating accumulate ops */ 10618 if (accop < 0) { 10619 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10620 } 10621 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10622 tcg_res[pass], 10623 tcg_passres); 10624 } else { 10625 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10626 tcg_res[pass], tcg_passres); 10627 } 10628 } 10629 } 10630 } 10631 10632 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10633 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10634 } 10635 10636 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10637 int opcode, int rd, int rn, int rm) 10638 { 10639 TCGv_i64 tcg_res[2]; 10640 int part = is_q ? 2 : 0; 10641 int pass; 10642 10643 for (pass = 0; pass < 2; pass++) { 10644 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10645 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10646 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10647 static NeonGenWidenFn * const widenfns[3][2] = { 10648 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10649 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10650 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10651 }; 10652 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10653 10654 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10655 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10656 widenfn(tcg_op2_wide, tcg_op2); 10657 tcg_res[pass] = tcg_temp_new_i64(); 10658 gen_neon_addl(size, (opcode == 3), 10659 tcg_res[pass], tcg_op1, tcg_op2_wide); 10660 } 10661 10662 for (pass = 0; pass < 2; pass++) { 10663 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10664 } 10665 } 10666 10667 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10668 { 10669 tcg_gen_addi_i64(in, in, 1U << 31); 10670 tcg_gen_extrh_i64_i32(res, in); 10671 } 10672 10673 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10674 int opcode, int rd, int rn, int rm) 10675 { 10676 TCGv_i32 tcg_res[2]; 10677 int part = is_q ? 2 : 0; 10678 int pass; 10679 10680 for (pass = 0; pass < 2; pass++) { 10681 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10682 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10683 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10684 static NeonGenNarrowFn * const narrowfns[3][2] = { 10685 { gen_helper_neon_narrow_high_u8, 10686 gen_helper_neon_narrow_round_high_u8 }, 10687 { gen_helper_neon_narrow_high_u16, 10688 gen_helper_neon_narrow_round_high_u16 }, 10689 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10690 }; 10691 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10692 10693 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10694 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10695 10696 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10697 10698 tcg_res[pass] = tcg_temp_new_i32(); 10699 gennarrow(tcg_res[pass], tcg_wideres); 10700 } 10701 10702 for (pass = 0; pass < 2; pass++) { 10703 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10704 } 10705 clear_vec_high(s, is_q, rd); 10706 } 10707 10708 /* AdvSIMD three different 10709 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10710 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10711 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10712 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10713 */ 10714 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10715 { 10716 /* Instructions in this group fall into three basic classes 10717 * (in each case with the operation working on each element in 10718 * the input vectors): 10719 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10720 * 128 bit input) 10721 * (2) wide 64 x 128 -> 128 10722 * (3) narrowing 128 x 128 -> 64 10723 * Here we do initial decode, catch unallocated cases and 10724 * dispatch to separate functions for each class. 10725 */ 10726 int is_q = extract32(insn, 30, 1); 10727 int is_u = extract32(insn, 29, 1); 10728 int size = extract32(insn, 22, 2); 10729 int opcode = extract32(insn, 12, 4); 10730 int rm = extract32(insn, 16, 5); 10731 int rn = extract32(insn, 5, 5); 10732 int rd = extract32(insn, 0, 5); 10733 10734 switch (opcode) { 10735 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10736 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10737 /* 64 x 128 -> 128 */ 10738 if (size == 3) { 10739 unallocated_encoding(s); 10740 return; 10741 } 10742 if (!fp_access_check(s)) { 10743 return; 10744 } 10745 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10746 break; 10747 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10748 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10749 /* 128 x 128 -> 64 */ 10750 if (size == 3) { 10751 unallocated_encoding(s); 10752 return; 10753 } 10754 if (!fp_access_check(s)) { 10755 return; 10756 } 10757 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10758 break; 10759 case 14: /* PMULL, PMULL2 */ 10760 if (is_u) { 10761 unallocated_encoding(s); 10762 return; 10763 } 10764 switch (size) { 10765 case 0: /* PMULL.P8 */ 10766 if (!fp_access_check(s)) { 10767 return; 10768 } 10769 /* The Q field specifies lo/hi half input for this insn. */ 10770 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10771 gen_helper_neon_pmull_h); 10772 break; 10773 10774 case 3: /* PMULL.P64 */ 10775 if (!dc_isar_feature(aa64_pmull, s)) { 10776 unallocated_encoding(s); 10777 return; 10778 } 10779 if (!fp_access_check(s)) { 10780 return; 10781 } 10782 /* The Q field specifies lo/hi half input for this insn. */ 10783 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10784 gen_helper_gvec_pmull_q); 10785 break; 10786 10787 default: 10788 unallocated_encoding(s); 10789 break; 10790 } 10791 return; 10792 case 9: /* SQDMLAL, SQDMLAL2 */ 10793 case 11: /* SQDMLSL, SQDMLSL2 */ 10794 case 13: /* SQDMULL, SQDMULL2 */ 10795 if (is_u || size == 0) { 10796 unallocated_encoding(s); 10797 return; 10798 } 10799 /* fall through */ 10800 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10801 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10802 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10803 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10804 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10805 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10806 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10807 /* 64 x 64 -> 128 */ 10808 if (size == 3) { 10809 unallocated_encoding(s); 10810 return; 10811 } 10812 if (!fp_access_check(s)) { 10813 return; 10814 } 10815 10816 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10817 break; 10818 default: 10819 /* opcode 15 not allocated */ 10820 unallocated_encoding(s); 10821 break; 10822 } 10823 } 10824 10825 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10826 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10827 { 10828 int rd = extract32(insn, 0, 5); 10829 int rn = extract32(insn, 5, 5); 10830 int rm = extract32(insn, 16, 5); 10831 int size = extract32(insn, 22, 2); 10832 bool is_u = extract32(insn, 29, 1); 10833 bool is_q = extract32(insn, 30, 1); 10834 10835 if (!fp_access_check(s)) { 10836 return; 10837 } 10838 10839 switch (size + 4 * is_u) { 10840 case 0: /* AND */ 10841 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10842 return; 10843 case 1: /* BIC */ 10844 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10845 return; 10846 case 2: /* ORR */ 10847 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10848 return; 10849 case 3: /* ORN */ 10850 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10851 return; 10852 case 4: /* EOR */ 10853 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10854 return; 10855 10856 case 5: /* BSL bitwise select */ 10857 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10858 return; 10859 case 6: /* BIT, bitwise insert if true */ 10860 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10861 return; 10862 case 7: /* BIF, bitwise insert if false */ 10863 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10864 return; 10865 10866 default: 10867 g_assert_not_reached(); 10868 } 10869 } 10870 10871 /* Pairwise op subgroup of C3.6.16. 10872 * 10873 * This is called directly or via the handle_3same_float for float pairwise 10874 * operations where the opcode and size are calculated differently. 10875 */ 10876 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10877 int size, int rn, int rm, int rd) 10878 { 10879 TCGv_ptr fpst; 10880 int pass; 10881 10882 /* Floating point operations need fpst */ 10883 if (opcode >= 0x58) { 10884 fpst = fpstatus_ptr(FPST_FPCR); 10885 } else { 10886 fpst = NULL; 10887 } 10888 10889 if (!fp_access_check(s)) { 10890 return; 10891 } 10892 10893 /* These operations work on the concatenated rm:rn, with each pair of 10894 * adjacent elements being operated on to produce an element in the result. 10895 */ 10896 if (size == 3) { 10897 TCGv_i64 tcg_res[2]; 10898 10899 for (pass = 0; pass < 2; pass++) { 10900 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10901 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10902 int passreg = (pass == 0) ? rn : rm; 10903 10904 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10905 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10906 tcg_res[pass] = tcg_temp_new_i64(); 10907 10908 switch (opcode) { 10909 case 0x17: /* ADDP */ 10910 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10911 break; 10912 case 0x58: /* FMAXNMP */ 10913 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10914 break; 10915 case 0x5a: /* FADDP */ 10916 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10917 break; 10918 case 0x5e: /* FMAXP */ 10919 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10920 break; 10921 case 0x78: /* FMINNMP */ 10922 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10923 break; 10924 case 0x7e: /* FMINP */ 10925 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10926 break; 10927 default: 10928 g_assert_not_reached(); 10929 } 10930 } 10931 10932 for (pass = 0; pass < 2; pass++) { 10933 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10934 } 10935 } else { 10936 int maxpass = is_q ? 4 : 2; 10937 TCGv_i32 tcg_res[4]; 10938 10939 for (pass = 0; pass < maxpass; pass++) { 10940 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10941 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10942 NeonGenTwoOpFn *genfn = NULL; 10943 int passreg = pass < (maxpass / 2) ? rn : rm; 10944 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10945 10946 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10947 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10948 tcg_res[pass] = tcg_temp_new_i32(); 10949 10950 switch (opcode) { 10951 case 0x17: /* ADDP */ 10952 { 10953 static NeonGenTwoOpFn * const fns[3] = { 10954 gen_helper_neon_padd_u8, 10955 gen_helper_neon_padd_u16, 10956 tcg_gen_add_i32, 10957 }; 10958 genfn = fns[size]; 10959 break; 10960 } 10961 case 0x14: /* SMAXP, UMAXP */ 10962 { 10963 static NeonGenTwoOpFn * const fns[3][2] = { 10964 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10965 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10966 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10967 }; 10968 genfn = fns[size][u]; 10969 break; 10970 } 10971 case 0x15: /* SMINP, UMINP */ 10972 { 10973 static NeonGenTwoOpFn * const fns[3][2] = { 10974 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10975 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10976 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10977 }; 10978 genfn = fns[size][u]; 10979 break; 10980 } 10981 /* The FP operations are all on single floats (32 bit) */ 10982 case 0x58: /* FMAXNMP */ 10983 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10984 break; 10985 case 0x5a: /* FADDP */ 10986 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10987 break; 10988 case 0x5e: /* FMAXP */ 10989 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10990 break; 10991 case 0x78: /* FMINNMP */ 10992 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10993 break; 10994 case 0x7e: /* FMINP */ 10995 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10996 break; 10997 default: 10998 g_assert_not_reached(); 10999 } 11000 11001 /* FP ops called directly, otherwise call now */ 11002 if (genfn) { 11003 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11004 } 11005 } 11006 11007 for (pass = 0; pass < maxpass; pass++) { 11008 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11009 } 11010 clear_vec_high(s, is_q, rd); 11011 } 11012 } 11013 11014 /* Floating point op subgroup of C3.6.16. */ 11015 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11016 { 11017 /* For floating point ops, the U, size[1] and opcode bits 11018 * together indicate the operation. size[0] indicates single 11019 * or double. 11020 */ 11021 int fpopcode = extract32(insn, 11, 5) 11022 | (extract32(insn, 23, 1) << 5) 11023 | (extract32(insn, 29, 1) << 6); 11024 int is_q = extract32(insn, 30, 1); 11025 int size = extract32(insn, 22, 1); 11026 int rm = extract32(insn, 16, 5); 11027 int rn = extract32(insn, 5, 5); 11028 int rd = extract32(insn, 0, 5); 11029 11030 int datasize = is_q ? 128 : 64; 11031 int esize = 32 << size; 11032 int elements = datasize / esize; 11033 11034 if (size == 1 && !is_q) { 11035 unallocated_encoding(s); 11036 return; 11037 } 11038 11039 switch (fpopcode) { 11040 case 0x58: /* FMAXNMP */ 11041 case 0x5a: /* FADDP */ 11042 case 0x5e: /* FMAXP */ 11043 case 0x78: /* FMINNMP */ 11044 case 0x7e: /* FMINP */ 11045 if (size && !is_q) { 11046 unallocated_encoding(s); 11047 return; 11048 } 11049 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11050 rn, rm, rd); 11051 return; 11052 case 0x1b: /* FMULX */ 11053 case 0x1f: /* FRECPS */ 11054 case 0x3f: /* FRSQRTS */ 11055 case 0x5d: /* FACGE */ 11056 case 0x7d: /* FACGT */ 11057 case 0x19: /* FMLA */ 11058 case 0x39: /* FMLS */ 11059 case 0x18: /* FMAXNM */ 11060 case 0x1a: /* FADD */ 11061 case 0x1c: /* FCMEQ */ 11062 case 0x1e: /* FMAX */ 11063 case 0x38: /* FMINNM */ 11064 case 0x3a: /* FSUB */ 11065 case 0x3e: /* FMIN */ 11066 case 0x5b: /* FMUL */ 11067 case 0x5c: /* FCMGE */ 11068 case 0x5f: /* FDIV */ 11069 case 0x7a: /* FABD */ 11070 case 0x7c: /* FCMGT */ 11071 if (!fp_access_check(s)) { 11072 return; 11073 } 11074 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11075 return; 11076 11077 case 0x1d: /* FMLAL */ 11078 case 0x3d: /* FMLSL */ 11079 case 0x59: /* FMLAL2 */ 11080 case 0x79: /* FMLSL2 */ 11081 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11082 unallocated_encoding(s); 11083 return; 11084 } 11085 if (fp_access_check(s)) { 11086 int is_s = extract32(insn, 23, 1); 11087 int is_2 = extract32(insn, 29, 1); 11088 int data = (is_2 << 1) | is_s; 11089 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11090 vec_full_reg_offset(s, rn), 11091 vec_full_reg_offset(s, rm), tcg_env, 11092 is_q ? 16 : 8, vec_full_reg_size(s), 11093 data, gen_helper_gvec_fmlal_a64); 11094 } 11095 return; 11096 11097 default: 11098 unallocated_encoding(s); 11099 return; 11100 } 11101 } 11102 11103 /* Integer op subgroup of C3.6.16. */ 11104 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11105 { 11106 int is_q = extract32(insn, 30, 1); 11107 int u = extract32(insn, 29, 1); 11108 int size = extract32(insn, 22, 2); 11109 int opcode = extract32(insn, 11, 5); 11110 int rm = extract32(insn, 16, 5); 11111 int rn = extract32(insn, 5, 5); 11112 int rd = extract32(insn, 0, 5); 11113 int pass; 11114 TCGCond cond; 11115 11116 switch (opcode) { 11117 case 0x13: /* MUL, PMUL */ 11118 if (u && size != 0) { 11119 unallocated_encoding(s); 11120 return; 11121 } 11122 /* fall through */ 11123 case 0x0: /* SHADD, UHADD */ 11124 case 0x2: /* SRHADD, URHADD */ 11125 case 0x4: /* SHSUB, UHSUB */ 11126 case 0xc: /* SMAX, UMAX */ 11127 case 0xd: /* SMIN, UMIN */ 11128 case 0xe: /* SABD, UABD */ 11129 case 0xf: /* SABA, UABA */ 11130 case 0x12: /* MLA, MLS */ 11131 if (size == 3) { 11132 unallocated_encoding(s); 11133 return; 11134 } 11135 break; 11136 case 0x16: /* SQDMULH, SQRDMULH */ 11137 if (size == 0 || size == 3) { 11138 unallocated_encoding(s); 11139 return; 11140 } 11141 break; 11142 default: 11143 if (size == 3 && !is_q) { 11144 unallocated_encoding(s); 11145 return; 11146 } 11147 break; 11148 } 11149 11150 if (!fp_access_check(s)) { 11151 return; 11152 } 11153 11154 switch (opcode) { 11155 case 0x01: /* SQADD, UQADD */ 11156 if (u) { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11158 } else { 11159 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11160 } 11161 return; 11162 case 0x05: /* SQSUB, UQSUB */ 11163 if (u) { 11164 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11165 } else { 11166 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11167 } 11168 return; 11169 case 0x08: /* SSHL, USHL */ 11170 if (u) { 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11172 } else { 11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11174 } 11175 return; 11176 case 0x0c: /* SMAX, UMAX */ 11177 if (u) { 11178 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11179 } else { 11180 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11181 } 11182 return; 11183 case 0x0d: /* SMIN, UMIN */ 11184 if (u) { 11185 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11186 } else { 11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11188 } 11189 return; 11190 case 0xe: /* SABD, UABD */ 11191 if (u) { 11192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11193 } else { 11194 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11195 } 11196 return; 11197 case 0xf: /* SABA, UABA */ 11198 if (u) { 11199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11200 } else { 11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11202 } 11203 return; 11204 case 0x10: /* ADD, SUB */ 11205 if (u) { 11206 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11207 } else { 11208 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11209 } 11210 return; 11211 case 0x13: /* MUL, PMUL */ 11212 if (!u) { /* MUL */ 11213 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11214 } else { /* PMUL */ 11215 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11216 } 11217 return; 11218 case 0x12: /* MLA, MLS */ 11219 if (u) { 11220 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11221 } else { 11222 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11223 } 11224 return; 11225 case 0x16: /* SQDMULH, SQRDMULH */ 11226 { 11227 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11228 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11229 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11230 }; 11231 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11232 } 11233 return; 11234 case 0x11: 11235 if (!u) { /* CMTST */ 11236 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11237 return; 11238 } 11239 /* else CMEQ */ 11240 cond = TCG_COND_EQ; 11241 goto do_gvec_cmp; 11242 case 0x06: /* CMGT, CMHI */ 11243 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11244 goto do_gvec_cmp; 11245 case 0x07: /* CMGE, CMHS */ 11246 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11247 do_gvec_cmp: 11248 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11249 vec_full_reg_offset(s, rn), 11250 vec_full_reg_offset(s, rm), 11251 is_q ? 16 : 8, vec_full_reg_size(s)); 11252 return; 11253 } 11254 11255 if (size == 3) { 11256 assert(is_q); 11257 for (pass = 0; pass < 2; pass++) { 11258 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11259 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11260 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11261 11262 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11263 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11264 11265 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11266 11267 write_vec_element(s, tcg_res, rd, pass, MO_64); 11268 } 11269 } else { 11270 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11271 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11272 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11273 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11274 NeonGenTwoOpFn *genfn = NULL; 11275 NeonGenTwoOpEnvFn *genenvfn = NULL; 11276 11277 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11278 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11279 11280 switch (opcode) { 11281 case 0x0: /* SHADD, UHADD */ 11282 { 11283 static NeonGenTwoOpFn * const fns[3][2] = { 11284 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11285 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11286 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11287 }; 11288 genfn = fns[size][u]; 11289 break; 11290 } 11291 case 0x2: /* SRHADD, URHADD */ 11292 { 11293 static NeonGenTwoOpFn * const fns[3][2] = { 11294 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11295 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11296 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11297 }; 11298 genfn = fns[size][u]; 11299 break; 11300 } 11301 case 0x4: /* SHSUB, UHSUB */ 11302 { 11303 static NeonGenTwoOpFn * const fns[3][2] = { 11304 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11305 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11306 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11307 }; 11308 genfn = fns[size][u]; 11309 break; 11310 } 11311 case 0x9: /* SQSHL, UQSHL */ 11312 { 11313 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11314 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11315 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11316 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11317 }; 11318 genenvfn = fns[size][u]; 11319 break; 11320 } 11321 case 0xa: /* SRSHL, URSHL */ 11322 { 11323 static NeonGenTwoOpFn * const fns[3][2] = { 11324 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11325 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11326 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11327 }; 11328 genfn = fns[size][u]; 11329 break; 11330 } 11331 case 0xb: /* SQRSHL, UQRSHL */ 11332 { 11333 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11334 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11335 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11336 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11337 }; 11338 genenvfn = fns[size][u]; 11339 break; 11340 } 11341 default: 11342 g_assert_not_reached(); 11343 } 11344 11345 if (genenvfn) { 11346 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11347 } else { 11348 genfn(tcg_res, tcg_op1, tcg_op2); 11349 } 11350 11351 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11352 } 11353 } 11354 clear_vec_high(s, is_q, rd); 11355 } 11356 11357 /* AdvSIMD three same 11358 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11359 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11360 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11361 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11362 */ 11363 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11364 { 11365 int opcode = extract32(insn, 11, 5); 11366 11367 switch (opcode) { 11368 case 0x3: /* logic ops */ 11369 disas_simd_3same_logic(s, insn); 11370 break; 11371 case 0x17: /* ADDP */ 11372 case 0x14: /* SMAXP, UMAXP */ 11373 case 0x15: /* SMINP, UMINP */ 11374 { 11375 /* Pairwise operations */ 11376 int is_q = extract32(insn, 30, 1); 11377 int u = extract32(insn, 29, 1); 11378 int size = extract32(insn, 22, 2); 11379 int rm = extract32(insn, 16, 5); 11380 int rn = extract32(insn, 5, 5); 11381 int rd = extract32(insn, 0, 5); 11382 if (opcode == 0x17) { 11383 if (u || (size == 3 && !is_q)) { 11384 unallocated_encoding(s); 11385 return; 11386 } 11387 } else { 11388 if (size == 3) { 11389 unallocated_encoding(s); 11390 return; 11391 } 11392 } 11393 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11394 break; 11395 } 11396 case 0x18 ... 0x31: 11397 /* floating point ops, sz[1] and U are part of opcode */ 11398 disas_simd_3same_float(s, insn); 11399 break; 11400 default: 11401 disas_simd_3same_int(s, insn); 11402 break; 11403 } 11404 } 11405 11406 /* 11407 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11408 * 11409 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11410 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11411 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11412 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11413 * 11414 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11415 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11416 * 11417 */ 11418 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11419 { 11420 int opcode = extract32(insn, 11, 3); 11421 int u = extract32(insn, 29, 1); 11422 int a = extract32(insn, 23, 1); 11423 int is_q = extract32(insn, 30, 1); 11424 int rm = extract32(insn, 16, 5); 11425 int rn = extract32(insn, 5, 5); 11426 int rd = extract32(insn, 0, 5); 11427 /* 11428 * For these floating point ops, the U, a and opcode bits 11429 * together indicate the operation. 11430 */ 11431 int fpopcode = opcode | (a << 3) | (u << 4); 11432 int datasize = is_q ? 128 : 64; 11433 int elements = datasize / 16; 11434 bool pairwise; 11435 TCGv_ptr fpst; 11436 int pass; 11437 11438 switch (fpopcode) { 11439 case 0x0: /* FMAXNM */ 11440 case 0x1: /* FMLA */ 11441 case 0x2: /* FADD */ 11442 case 0x3: /* FMULX */ 11443 case 0x4: /* FCMEQ */ 11444 case 0x6: /* FMAX */ 11445 case 0x7: /* FRECPS */ 11446 case 0x8: /* FMINNM */ 11447 case 0x9: /* FMLS */ 11448 case 0xa: /* FSUB */ 11449 case 0xe: /* FMIN */ 11450 case 0xf: /* FRSQRTS */ 11451 case 0x13: /* FMUL */ 11452 case 0x14: /* FCMGE */ 11453 case 0x15: /* FACGE */ 11454 case 0x17: /* FDIV */ 11455 case 0x1a: /* FABD */ 11456 case 0x1c: /* FCMGT */ 11457 case 0x1d: /* FACGT */ 11458 pairwise = false; 11459 break; 11460 case 0x10: /* FMAXNMP */ 11461 case 0x12: /* FADDP */ 11462 case 0x16: /* FMAXP */ 11463 case 0x18: /* FMINNMP */ 11464 case 0x1e: /* FMINP */ 11465 pairwise = true; 11466 break; 11467 default: 11468 unallocated_encoding(s); 11469 return; 11470 } 11471 11472 if (!dc_isar_feature(aa64_fp16, s)) { 11473 unallocated_encoding(s); 11474 return; 11475 } 11476 11477 if (!fp_access_check(s)) { 11478 return; 11479 } 11480 11481 fpst = fpstatus_ptr(FPST_FPCR_F16); 11482 11483 if (pairwise) { 11484 int maxpass = is_q ? 8 : 4; 11485 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11486 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11487 TCGv_i32 tcg_res[8]; 11488 11489 for (pass = 0; pass < maxpass; pass++) { 11490 int passreg = pass < (maxpass / 2) ? rn : rm; 11491 int passelt = (pass << 1) & (maxpass - 1); 11492 11493 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11494 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11495 tcg_res[pass] = tcg_temp_new_i32(); 11496 11497 switch (fpopcode) { 11498 case 0x10: /* FMAXNMP */ 11499 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11500 fpst); 11501 break; 11502 case 0x12: /* FADDP */ 11503 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11504 break; 11505 case 0x16: /* FMAXP */ 11506 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11507 break; 11508 case 0x18: /* FMINNMP */ 11509 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11510 fpst); 11511 break; 11512 case 0x1e: /* FMINP */ 11513 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11514 break; 11515 default: 11516 g_assert_not_reached(); 11517 } 11518 } 11519 11520 for (pass = 0; pass < maxpass; pass++) { 11521 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11522 } 11523 } else { 11524 for (pass = 0; pass < elements; pass++) { 11525 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11526 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11527 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11528 11529 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11530 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11531 11532 switch (fpopcode) { 11533 case 0x0: /* FMAXNM */ 11534 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11535 break; 11536 case 0x1: /* FMLA */ 11537 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11538 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11539 fpst); 11540 break; 11541 case 0x2: /* FADD */ 11542 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11543 break; 11544 case 0x3: /* FMULX */ 11545 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11546 break; 11547 case 0x4: /* FCMEQ */ 11548 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11549 break; 11550 case 0x6: /* FMAX */ 11551 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11552 break; 11553 case 0x7: /* FRECPS */ 11554 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0x8: /* FMINNM */ 11557 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0x9: /* FMLS */ 11560 /* As usual for ARM, separate negation for fused multiply-add */ 11561 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11562 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11563 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11564 fpst); 11565 break; 11566 case 0xa: /* FSUB */ 11567 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11568 break; 11569 case 0xe: /* FMIN */ 11570 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11571 break; 11572 case 0xf: /* FRSQRTS */ 11573 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11574 break; 11575 case 0x13: /* FMUL */ 11576 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11577 break; 11578 case 0x14: /* FCMGE */ 11579 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11580 break; 11581 case 0x15: /* FACGE */ 11582 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11583 break; 11584 case 0x17: /* FDIV */ 11585 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11586 break; 11587 case 0x1a: /* FABD */ 11588 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11589 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11590 break; 11591 case 0x1c: /* FCMGT */ 11592 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11593 break; 11594 case 0x1d: /* FACGT */ 11595 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11596 break; 11597 default: 11598 g_assert_not_reached(); 11599 } 11600 11601 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11602 } 11603 } 11604 11605 clear_vec_high(s, is_q, rd); 11606 } 11607 11608 /* AdvSIMD three same extra 11609 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11610 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11611 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11612 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11613 */ 11614 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11615 { 11616 int rd = extract32(insn, 0, 5); 11617 int rn = extract32(insn, 5, 5); 11618 int opcode = extract32(insn, 11, 4); 11619 int rm = extract32(insn, 16, 5); 11620 int size = extract32(insn, 22, 2); 11621 bool u = extract32(insn, 29, 1); 11622 bool is_q = extract32(insn, 30, 1); 11623 bool feature; 11624 int rot; 11625 11626 switch (u * 16 + opcode) { 11627 case 0x10: /* SQRDMLAH (vector) */ 11628 case 0x11: /* SQRDMLSH (vector) */ 11629 if (size != 1 && size != 2) { 11630 unallocated_encoding(s); 11631 return; 11632 } 11633 feature = dc_isar_feature(aa64_rdm, s); 11634 break; 11635 case 0x02: /* SDOT (vector) */ 11636 case 0x12: /* UDOT (vector) */ 11637 if (size != MO_32) { 11638 unallocated_encoding(s); 11639 return; 11640 } 11641 feature = dc_isar_feature(aa64_dp, s); 11642 break; 11643 case 0x03: /* USDOT */ 11644 if (size != MO_32) { 11645 unallocated_encoding(s); 11646 return; 11647 } 11648 feature = dc_isar_feature(aa64_i8mm, s); 11649 break; 11650 case 0x04: /* SMMLA */ 11651 case 0x14: /* UMMLA */ 11652 case 0x05: /* USMMLA */ 11653 if (!is_q || size != MO_32) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 feature = dc_isar_feature(aa64_i8mm, s); 11658 break; 11659 case 0x18: /* FCMLA, #0 */ 11660 case 0x19: /* FCMLA, #90 */ 11661 case 0x1a: /* FCMLA, #180 */ 11662 case 0x1b: /* FCMLA, #270 */ 11663 case 0x1c: /* FCADD, #90 */ 11664 case 0x1e: /* FCADD, #270 */ 11665 if (size == 0 11666 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11667 || (size == 3 && !is_q)) { 11668 unallocated_encoding(s); 11669 return; 11670 } 11671 feature = dc_isar_feature(aa64_fcma, s); 11672 break; 11673 case 0x1d: /* BFMMLA */ 11674 if (size != MO_16 || !is_q) { 11675 unallocated_encoding(s); 11676 return; 11677 } 11678 feature = dc_isar_feature(aa64_bf16, s); 11679 break; 11680 case 0x1f: 11681 switch (size) { 11682 case 1: /* BFDOT */ 11683 case 3: /* BFMLAL{B,T} */ 11684 feature = dc_isar_feature(aa64_bf16, s); 11685 break; 11686 default: 11687 unallocated_encoding(s); 11688 return; 11689 } 11690 break; 11691 default: 11692 unallocated_encoding(s); 11693 return; 11694 } 11695 if (!feature) { 11696 unallocated_encoding(s); 11697 return; 11698 } 11699 if (!fp_access_check(s)) { 11700 return; 11701 } 11702 11703 switch (opcode) { 11704 case 0x0: /* SQRDMLAH (vector) */ 11705 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11706 return; 11707 11708 case 0x1: /* SQRDMLSH (vector) */ 11709 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11710 return; 11711 11712 case 0x2: /* SDOT / UDOT */ 11713 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11714 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11715 return; 11716 11717 case 0x3: /* USDOT */ 11718 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11719 return; 11720 11721 case 0x04: /* SMMLA, UMMLA */ 11722 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11723 u ? gen_helper_gvec_ummla_b 11724 : gen_helper_gvec_smmla_b); 11725 return; 11726 case 0x05: /* USMMLA */ 11727 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11728 return; 11729 11730 case 0x8: /* FCMLA, #0 */ 11731 case 0x9: /* FCMLA, #90 */ 11732 case 0xa: /* FCMLA, #180 */ 11733 case 0xb: /* FCMLA, #270 */ 11734 rot = extract32(opcode, 0, 2); 11735 switch (size) { 11736 case 1: 11737 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11738 gen_helper_gvec_fcmlah); 11739 break; 11740 case 2: 11741 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11742 gen_helper_gvec_fcmlas); 11743 break; 11744 case 3: 11745 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11746 gen_helper_gvec_fcmlad); 11747 break; 11748 default: 11749 g_assert_not_reached(); 11750 } 11751 return; 11752 11753 case 0xc: /* FCADD, #90 */ 11754 case 0xe: /* FCADD, #270 */ 11755 rot = extract32(opcode, 1, 1); 11756 switch (size) { 11757 case 1: 11758 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11759 gen_helper_gvec_fcaddh); 11760 break; 11761 case 2: 11762 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11763 gen_helper_gvec_fcadds); 11764 break; 11765 case 3: 11766 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11767 gen_helper_gvec_fcaddd); 11768 break; 11769 default: 11770 g_assert_not_reached(); 11771 } 11772 return; 11773 11774 case 0xd: /* BFMMLA */ 11775 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11776 return; 11777 case 0xf: 11778 switch (size) { 11779 case 1: /* BFDOT */ 11780 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11781 break; 11782 case 3: /* BFMLAL{B,T} */ 11783 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11784 gen_helper_gvec_bfmlal); 11785 break; 11786 default: 11787 g_assert_not_reached(); 11788 } 11789 return; 11790 11791 default: 11792 g_assert_not_reached(); 11793 } 11794 } 11795 11796 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11797 int size, int rn, int rd) 11798 { 11799 /* Handle 2-reg-misc ops which are widening (so each size element 11800 * in the source becomes a 2*size element in the destination. 11801 * The only instruction like this is FCVTL. 11802 */ 11803 int pass; 11804 11805 if (size == 3) { 11806 /* 32 -> 64 bit fp conversion */ 11807 TCGv_i64 tcg_res[2]; 11808 int srcelt = is_q ? 2 : 0; 11809 11810 for (pass = 0; pass < 2; pass++) { 11811 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11812 tcg_res[pass] = tcg_temp_new_i64(); 11813 11814 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11815 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11816 } 11817 for (pass = 0; pass < 2; pass++) { 11818 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11819 } 11820 } else { 11821 /* 16 -> 32 bit fp conversion */ 11822 int srcelt = is_q ? 4 : 0; 11823 TCGv_i32 tcg_res[4]; 11824 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11825 TCGv_i32 ahp = get_ahp_flag(); 11826 11827 for (pass = 0; pass < 4; pass++) { 11828 tcg_res[pass] = tcg_temp_new_i32(); 11829 11830 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11831 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11832 fpst, ahp); 11833 } 11834 for (pass = 0; pass < 4; pass++) { 11835 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11836 } 11837 } 11838 } 11839 11840 static void handle_rev(DisasContext *s, int opcode, bool u, 11841 bool is_q, int size, int rn, int rd) 11842 { 11843 int op = (opcode << 1) | u; 11844 int opsz = op + size; 11845 int grp_size = 3 - opsz; 11846 int dsize = is_q ? 128 : 64; 11847 int i; 11848 11849 if (opsz >= 3) { 11850 unallocated_encoding(s); 11851 return; 11852 } 11853 11854 if (!fp_access_check(s)) { 11855 return; 11856 } 11857 11858 if (size == 0) { 11859 /* Special case bytes, use bswap op on each group of elements */ 11860 int groups = dsize / (8 << grp_size); 11861 11862 for (i = 0; i < groups; i++) { 11863 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11864 11865 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11866 switch (grp_size) { 11867 case MO_16: 11868 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11869 break; 11870 case MO_32: 11871 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11872 break; 11873 case MO_64: 11874 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11875 break; 11876 default: 11877 g_assert_not_reached(); 11878 } 11879 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11880 } 11881 clear_vec_high(s, is_q, rd); 11882 } else { 11883 int revmask = (1 << grp_size) - 1; 11884 int esize = 8 << size; 11885 int elements = dsize / esize; 11886 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11887 TCGv_i64 tcg_rd[2]; 11888 11889 for (i = 0; i < 2; i++) { 11890 tcg_rd[i] = tcg_temp_new_i64(); 11891 tcg_gen_movi_i64(tcg_rd[i], 0); 11892 } 11893 11894 for (i = 0; i < elements; i++) { 11895 int e_rev = (i & 0xf) ^ revmask; 11896 int w = (e_rev * esize) / 64; 11897 int o = (e_rev * esize) % 64; 11898 11899 read_vec_element(s, tcg_rn, rn, i, size); 11900 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11901 } 11902 11903 for (i = 0; i < 2; i++) { 11904 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11905 } 11906 clear_vec_high(s, true, rd); 11907 } 11908 } 11909 11910 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11911 bool is_q, int size, int rn, int rd) 11912 { 11913 /* Implement the pairwise operations from 2-misc: 11914 * SADDLP, UADDLP, SADALP, UADALP. 11915 * These all add pairs of elements in the input to produce a 11916 * double-width result element in the output (possibly accumulating). 11917 */ 11918 bool accum = (opcode == 0x6); 11919 int maxpass = is_q ? 2 : 1; 11920 int pass; 11921 TCGv_i64 tcg_res[2]; 11922 11923 if (size == 2) { 11924 /* 32 + 32 -> 64 op */ 11925 MemOp memop = size + (u ? 0 : MO_SIGN); 11926 11927 for (pass = 0; pass < maxpass; pass++) { 11928 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11929 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11930 11931 tcg_res[pass] = tcg_temp_new_i64(); 11932 11933 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11934 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11935 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11936 if (accum) { 11937 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11938 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11939 } 11940 } 11941 } else { 11942 for (pass = 0; pass < maxpass; pass++) { 11943 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11944 NeonGenOne64OpFn *genfn; 11945 static NeonGenOne64OpFn * const fns[2][2] = { 11946 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11947 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11948 }; 11949 11950 genfn = fns[size][u]; 11951 11952 tcg_res[pass] = tcg_temp_new_i64(); 11953 11954 read_vec_element(s, tcg_op, rn, pass, MO_64); 11955 genfn(tcg_res[pass], tcg_op); 11956 11957 if (accum) { 11958 read_vec_element(s, tcg_op, rd, pass, MO_64); 11959 if (size == 0) { 11960 gen_helper_neon_addl_u16(tcg_res[pass], 11961 tcg_res[pass], tcg_op); 11962 } else { 11963 gen_helper_neon_addl_u32(tcg_res[pass], 11964 tcg_res[pass], tcg_op); 11965 } 11966 } 11967 } 11968 } 11969 if (!is_q) { 11970 tcg_res[1] = tcg_constant_i64(0); 11971 } 11972 for (pass = 0; pass < 2; pass++) { 11973 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11974 } 11975 } 11976 11977 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11978 { 11979 /* Implement SHLL and SHLL2 */ 11980 int pass; 11981 int part = is_q ? 2 : 0; 11982 TCGv_i64 tcg_res[2]; 11983 11984 for (pass = 0; pass < 2; pass++) { 11985 static NeonGenWidenFn * const widenfns[3] = { 11986 gen_helper_neon_widen_u8, 11987 gen_helper_neon_widen_u16, 11988 tcg_gen_extu_i32_i64, 11989 }; 11990 NeonGenWidenFn *widenfn = widenfns[size]; 11991 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11992 11993 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11994 tcg_res[pass] = tcg_temp_new_i64(); 11995 widenfn(tcg_res[pass], tcg_op); 11996 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11997 } 11998 11999 for (pass = 0; pass < 2; pass++) { 12000 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12001 } 12002 } 12003 12004 /* AdvSIMD two reg misc 12005 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12006 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12007 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12008 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12009 */ 12010 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12011 { 12012 int size = extract32(insn, 22, 2); 12013 int opcode = extract32(insn, 12, 5); 12014 bool u = extract32(insn, 29, 1); 12015 bool is_q = extract32(insn, 30, 1); 12016 int rn = extract32(insn, 5, 5); 12017 int rd = extract32(insn, 0, 5); 12018 bool need_fpstatus = false; 12019 int rmode = -1; 12020 TCGv_i32 tcg_rmode; 12021 TCGv_ptr tcg_fpstatus; 12022 12023 switch (opcode) { 12024 case 0x0: /* REV64, REV32 */ 12025 case 0x1: /* REV16 */ 12026 handle_rev(s, opcode, u, is_q, size, rn, rd); 12027 return; 12028 case 0x5: /* CNT, NOT, RBIT */ 12029 if (u && size == 0) { 12030 /* NOT */ 12031 break; 12032 } else if (u && size == 1) { 12033 /* RBIT */ 12034 break; 12035 } else if (!u && size == 0) { 12036 /* CNT */ 12037 break; 12038 } 12039 unallocated_encoding(s); 12040 return; 12041 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12042 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12043 if (size == 3) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 if (!fp_access_check(s)) { 12048 return; 12049 } 12050 12051 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12052 return; 12053 case 0x4: /* CLS, CLZ */ 12054 if (size == 3) { 12055 unallocated_encoding(s); 12056 return; 12057 } 12058 break; 12059 case 0x2: /* SADDLP, UADDLP */ 12060 case 0x6: /* SADALP, UADALP */ 12061 if (size == 3) { 12062 unallocated_encoding(s); 12063 return; 12064 } 12065 if (!fp_access_check(s)) { 12066 return; 12067 } 12068 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12069 return; 12070 case 0x13: /* SHLL, SHLL2 */ 12071 if (u == 0 || size == 3) { 12072 unallocated_encoding(s); 12073 return; 12074 } 12075 if (!fp_access_check(s)) { 12076 return; 12077 } 12078 handle_shll(s, is_q, size, rn, rd); 12079 return; 12080 case 0xa: /* CMLT */ 12081 if (u == 1) { 12082 unallocated_encoding(s); 12083 return; 12084 } 12085 /* fall through */ 12086 case 0x8: /* CMGT, CMGE */ 12087 case 0x9: /* CMEQ, CMLE */ 12088 case 0xb: /* ABS, NEG */ 12089 if (size == 3 && !is_q) { 12090 unallocated_encoding(s); 12091 return; 12092 } 12093 break; 12094 case 0x3: /* SUQADD, USQADD */ 12095 if (size == 3 && !is_q) { 12096 unallocated_encoding(s); 12097 return; 12098 } 12099 if (!fp_access_check(s)) { 12100 return; 12101 } 12102 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12103 return; 12104 case 0x7: /* SQABS, SQNEG */ 12105 if (size == 3 && !is_q) { 12106 unallocated_encoding(s); 12107 return; 12108 } 12109 break; 12110 case 0xc ... 0xf: 12111 case 0x16 ... 0x1f: 12112 { 12113 /* Floating point: U, size[1] and opcode indicate operation; 12114 * size[0] indicates single or double precision. 12115 */ 12116 int is_double = extract32(size, 0, 1); 12117 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12118 size = is_double ? 3 : 2; 12119 switch (opcode) { 12120 case 0x2f: /* FABS */ 12121 case 0x6f: /* FNEG */ 12122 if (size == 3 && !is_q) { 12123 unallocated_encoding(s); 12124 return; 12125 } 12126 break; 12127 case 0x1d: /* SCVTF */ 12128 case 0x5d: /* UCVTF */ 12129 { 12130 bool is_signed = (opcode == 0x1d) ? true : false; 12131 int elements = is_double ? 2 : is_q ? 4 : 2; 12132 if (is_double && !is_q) { 12133 unallocated_encoding(s); 12134 return; 12135 } 12136 if (!fp_access_check(s)) { 12137 return; 12138 } 12139 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12140 return; 12141 } 12142 case 0x2c: /* FCMGT (zero) */ 12143 case 0x2d: /* FCMEQ (zero) */ 12144 case 0x2e: /* FCMLT (zero) */ 12145 case 0x6c: /* FCMGE (zero) */ 12146 case 0x6d: /* FCMLE (zero) */ 12147 if (size == 3 && !is_q) { 12148 unallocated_encoding(s); 12149 return; 12150 } 12151 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12152 return; 12153 case 0x7f: /* FSQRT */ 12154 if (size == 3 && !is_q) { 12155 unallocated_encoding(s); 12156 return; 12157 } 12158 break; 12159 case 0x1a: /* FCVTNS */ 12160 case 0x1b: /* FCVTMS */ 12161 case 0x3a: /* FCVTPS */ 12162 case 0x3b: /* FCVTZS */ 12163 case 0x5a: /* FCVTNU */ 12164 case 0x5b: /* FCVTMU */ 12165 case 0x7a: /* FCVTPU */ 12166 case 0x7b: /* FCVTZU */ 12167 need_fpstatus = true; 12168 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12169 if (size == 3 && !is_q) { 12170 unallocated_encoding(s); 12171 return; 12172 } 12173 break; 12174 case 0x5c: /* FCVTAU */ 12175 case 0x1c: /* FCVTAS */ 12176 need_fpstatus = true; 12177 rmode = FPROUNDING_TIEAWAY; 12178 if (size == 3 && !is_q) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 break; 12183 case 0x3c: /* URECPE */ 12184 if (size == 3) { 12185 unallocated_encoding(s); 12186 return; 12187 } 12188 /* fall through */ 12189 case 0x3d: /* FRECPE */ 12190 case 0x7d: /* FRSQRTE */ 12191 if (size == 3 && !is_q) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 if (!fp_access_check(s)) { 12196 return; 12197 } 12198 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12199 return; 12200 case 0x56: /* FCVTXN, FCVTXN2 */ 12201 if (size == 2) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 /* fall through */ 12206 case 0x16: /* FCVTN, FCVTN2 */ 12207 /* handle_2misc_narrow does a 2*size -> size operation, but these 12208 * instructions encode the source size rather than dest size. 12209 */ 12210 if (!fp_access_check(s)) { 12211 return; 12212 } 12213 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12214 return; 12215 case 0x36: /* BFCVTN, BFCVTN2 */ 12216 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 if (!fp_access_check(s)) { 12221 return; 12222 } 12223 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12224 return; 12225 case 0x17: /* FCVTL, FCVTL2 */ 12226 if (!fp_access_check(s)) { 12227 return; 12228 } 12229 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12230 return; 12231 case 0x18: /* FRINTN */ 12232 case 0x19: /* FRINTM */ 12233 case 0x38: /* FRINTP */ 12234 case 0x39: /* FRINTZ */ 12235 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12236 /* fall through */ 12237 case 0x59: /* FRINTX */ 12238 case 0x79: /* FRINTI */ 12239 need_fpstatus = true; 12240 if (size == 3 && !is_q) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0x58: /* FRINTA */ 12246 rmode = FPROUNDING_TIEAWAY; 12247 need_fpstatus = true; 12248 if (size == 3 && !is_q) { 12249 unallocated_encoding(s); 12250 return; 12251 } 12252 break; 12253 case 0x7c: /* URSQRTE */ 12254 if (size == 3) { 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 break; 12259 case 0x1e: /* FRINT32Z */ 12260 case 0x1f: /* FRINT64Z */ 12261 rmode = FPROUNDING_ZERO; 12262 /* fall through */ 12263 case 0x5e: /* FRINT32X */ 12264 case 0x5f: /* FRINT64X */ 12265 need_fpstatus = true; 12266 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12267 unallocated_encoding(s); 12268 return; 12269 } 12270 break; 12271 default: 12272 unallocated_encoding(s); 12273 return; 12274 } 12275 break; 12276 } 12277 default: 12278 unallocated_encoding(s); 12279 return; 12280 } 12281 12282 if (!fp_access_check(s)) { 12283 return; 12284 } 12285 12286 if (need_fpstatus || rmode >= 0) { 12287 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12288 } else { 12289 tcg_fpstatus = NULL; 12290 } 12291 if (rmode >= 0) { 12292 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12293 } else { 12294 tcg_rmode = NULL; 12295 } 12296 12297 switch (opcode) { 12298 case 0x5: 12299 if (u && size == 0) { /* NOT */ 12300 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12301 return; 12302 } 12303 break; 12304 case 0x8: /* CMGT, CMGE */ 12305 if (u) { 12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12307 } else { 12308 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12309 } 12310 return; 12311 case 0x9: /* CMEQ, CMLE */ 12312 if (u) { 12313 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12314 } else { 12315 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12316 } 12317 return; 12318 case 0xa: /* CMLT */ 12319 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12320 return; 12321 case 0xb: 12322 if (u) { /* ABS, NEG */ 12323 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12324 } else { 12325 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12326 } 12327 return; 12328 } 12329 12330 if (size == 3) { 12331 /* All 64-bit element operations can be shared with scalar 2misc */ 12332 int pass; 12333 12334 /* Coverity claims (size == 3 && !is_q) has been eliminated 12335 * from all paths leading to here. 12336 */ 12337 tcg_debug_assert(is_q); 12338 for (pass = 0; pass < 2; pass++) { 12339 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12340 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12341 12342 read_vec_element(s, tcg_op, rn, pass, MO_64); 12343 12344 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12345 tcg_rmode, tcg_fpstatus); 12346 12347 write_vec_element(s, tcg_res, rd, pass, MO_64); 12348 } 12349 } else { 12350 int pass; 12351 12352 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12353 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12354 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12355 12356 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12357 12358 if (size == 2) { 12359 /* Special cases for 32 bit elements */ 12360 switch (opcode) { 12361 case 0x4: /* CLS */ 12362 if (u) { 12363 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12364 } else { 12365 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12366 } 12367 break; 12368 case 0x7: /* SQABS, SQNEG */ 12369 if (u) { 12370 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12371 } else { 12372 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12373 } 12374 break; 12375 case 0x2f: /* FABS */ 12376 gen_helper_vfp_abss(tcg_res, tcg_op); 12377 break; 12378 case 0x6f: /* FNEG */ 12379 gen_helper_vfp_negs(tcg_res, tcg_op); 12380 break; 12381 case 0x7f: /* FSQRT */ 12382 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12383 break; 12384 case 0x1a: /* FCVTNS */ 12385 case 0x1b: /* FCVTMS */ 12386 case 0x1c: /* FCVTAS */ 12387 case 0x3a: /* FCVTPS */ 12388 case 0x3b: /* FCVTZS */ 12389 gen_helper_vfp_tosls(tcg_res, tcg_op, 12390 tcg_constant_i32(0), tcg_fpstatus); 12391 break; 12392 case 0x5a: /* FCVTNU */ 12393 case 0x5b: /* FCVTMU */ 12394 case 0x5c: /* FCVTAU */ 12395 case 0x7a: /* FCVTPU */ 12396 case 0x7b: /* FCVTZU */ 12397 gen_helper_vfp_touls(tcg_res, tcg_op, 12398 tcg_constant_i32(0), tcg_fpstatus); 12399 break; 12400 case 0x18: /* FRINTN */ 12401 case 0x19: /* FRINTM */ 12402 case 0x38: /* FRINTP */ 12403 case 0x39: /* FRINTZ */ 12404 case 0x58: /* FRINTA */ 12405 case 0x79: /* FRINTI */ 12406 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12407 break; 12408 case 0x59: /* FRINTX */ 12409 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12410 break; 12411 case 0x7c: /* URSQRTE */ 12412 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12413 break; 12414 case 0x1e: /* FRINT32Z */ 12415 case 0x5e: /* FRINT32X */ 12416 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12417 break; 12418 case 0x1f: /* FRINT64Z */ 12419 case 0x5f: /* FRINT64X */ 12420 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12421 break; 12422 default: 12423 g_assert_not_reached(); 12424 } 12425 } else { 12426 /* Use helpers for 8 and 16 bit elements */ 12427 switch (opcode) { 12428 case 0x5: /* CNT, RBIT */ 12429 /* For these two insns size is part of the opcode specifier 12430 * (handled earlier); they always operate on byte elements. 12431 */ 12432 if (u) { 12433 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12434 } else { 12435 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12436 } 12437 break; 12438 case 0x7: /* SQABS, SQNEG */ 12439 { 12440 NeonGenOneOpEnvFn *genfn; 12441 static NeonGenOneOpEnvFn * const fns[2][2] = { 12442 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12443 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12444 }; 12445 genfn = fns[size][u]; 12446 genfn(tcg_res, tcg_env, tcg_op); 12447 break; 12448 } 12449 case 0x4: /* CLS, CLZ */ 12450 if (u) { 12451 if (size == 0) { 12452 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12453 } else { 12454 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12455 } 12456 } else { 12457 if (size == 0) { 12458 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12459 } else { 12460 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12461 } 12462 } 12463 break; 12464 default: 12465 g_assert_not_reached(); 12466 } 12467 } 12468 12469 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12470 } 12471 } 12472 clear_vec_high(s, is_q, rd); 12473 12474 if (tcg_rmode) { 12475 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12476 } 12477 } 12478 12479 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12480 * 12481 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12482 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12483 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12484 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12485 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12486 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12487 * 12488 * This actually covers two groups where scalar access is governed by 12489 * bit 28. A bunch of the instructions (float to integral) only exist 12490 * in the vector form and are un-allocated for the scalar decode. Also 12491 * in the scalar decode Q is always 1. 12492 */ 12493 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12494 { 12495 int fpop, opcode, a, u; 12496 int rn, rd; 12497 bool is_q; 12498 bool is_scalar; 12499 bool only_in_vector = false; 12500 12501 int pass; 12502 TCGv_i32 tcg_rmode = NULL; 12503 TCGv_ptr tcg_fpstatus = NULL; 12504 bool need_fpst = true; 12505 int rmode = -1; 12506 12507 if (!dc_isar_feature(aa64_fp16, s)) { 12508 unallocated_encoding(s); 12509 return; 12510 } 12511 12512 rd = extract32(insn, 0, 5); 12513 rn = extract32(insn, 5, 5); 12514 12515 a = extract32(insn, 23, 1); 12516 u = extract32(insn, 29, 1); 12517 is_scalar = extract32(insn, 28, 1); 12518 is_q = extract32(insn, 30, 1); 12519 12520 opcode = extract32(insn, 12, 5); 12521 fpop = deposit32(opcode, 5, 1, a); 12522 fpop = deposit32(fpop, 6, 1, u); 12523 12524 switch (fpop) { 12525 case 0x1d: /* SCVTF */ 12526 case 0x5d: /* UCVTF */ 12527 { 12528 int elements; 12529 12530 if (is_scalar) { 12531 elements = 1; 12532 } else { 12533 elements = (is_q ? 8 : 4); 12534 } 12535 12536 if (!fp_access_check(s)) { 12537 return; 12538 } 12539 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12540 return; 12541 } 12542 break; 12543 case 0x2c: /* FCMGT (zero) */ 12544 case 0x2d: /* FCMEQ (zero) */ 12545 case 0x2e: /* FCMLT (zero) */ 12546 case 0x6c: /* FCMGE (zero) */ 12547 case 0x6d: /* FCMLE (zero) */ 12548 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12549 return; 12550 case 0x3d: /* FRECPE */ 12551 case 0x3f: /* FRECPX */ 12552 break; 12553 case 0x18: /* FRINTN */ 12554 only_in_vector = true; 12555 rmode = FPROUNDING_TIEEVEN; 12556 break; 12557 case 0x19: /* FRINTM */ 12558 only_in_vector = true; 12559 rmode = FPROUNDING_NEGINF; 12560 break; 12561 case 0x38: /* FRINTP */ 12562 only_in_vector = true; 12563 rmode = FPROUNDING_POSINF; 12564 break; 12565 case 0x39: /* FRINTZ */ 12566 only_in_vector = true; 12567 rmode = FPROUNDING_ZERO; 12568 break; 12569 case 0x58: /* FRINTA */ 12570 only_in_vector = true; 12571 rmode = FPROUNDING_TIEAWAY; 12572 break; 12573 case 0x59: /* FRINTX */ 12574 case 0x79: /* FRINTI */ 12575 only_in_vector = true; 12576 /* current rounding mode */ 12577 break; 12578 case 0x1a: /* FCVTNS */ 12579 rmode = FPROUNDING_TIEEVEN; 12580 break; 12581 case 0x1b: /* FCVTMS */ 12582 rmode = FPROUNDING_NEGINF; 12583 break; 12584 case 0x1c: /* FCVTAS */ 12585 rmode = FPROUNDING_TIEAWAY; 12586 break; 12587 case 0x3a: /* FCVTPS */ 12588 rmode = FPROUNDING_POSINF; 12589 break; 12590 case 0x3b: /* FCVTZS */ 12591 rmode = FPROUNDING_ZERO; 12592 break; 12593 case 0x5a: /* FCVTNU */ 12594 rmode = FPROUNDING_TIEEVEN; 12595 break; 12596 case 0x5b: /* FCVTMU */ 12597 rmode = FPROUNDING_NEGINF; 12598 break; 12599 case 0x5c: /* FCVTAU */ 12600 rmode = FPROUNDING_TIEAWAY; 12601 break; 12602 case 0x7a: /* FCVTPU */ 12603 rmode = FPROUNDING_POSINF; 12604 break; 12605 case 0x7b: /* FCVTZU */ 12606 rmode = FPROUNDING_ZERO; 12607 break; 12608 case 0x2f: /* FABS */ 12609 case 0x6f: /* FNEG */ 12610 need_fpst = false; 12611 break; 12612 case 0x7d: /* FRSQRTE */ 12613 case 0x7f: /* FSQRT (vector) */ 12614 break; 12615 default: 12616 unallocated_encoding(s); 12617 return; 12618 } 12619 12620 12621 /* Check additional constraints for the scalar encoding */ 12622 if (is_scalar) { 12623 if (!is_q) { 12624 unallocated_encoding(s); 12625 return; 12626 } 12627 /* FRINTxx is only in the vector form */ 12628 if (only_in_vector) { 12629 unallocated_encoding(s); 12630 return; 12631 } 12632 } 12633 12634 if (!fp_access_check(s)) { 12635 return; 12636 } 12637 12638 if (rmode >= 0 || need_fpst) { 12639 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12640 } 12641 12642 if (rmode >= 0) { 12643 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12644 } 12645 12646 if (is_scalar) { 12647 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12648 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12649 12650 switch (fpop) { 12651 case 0x1a: /* FCVTNS */ 12652 case 0x1b: /* FCVTMS */ 12653 case 0x1c: /* FCVTAS */ 12654 case 0x3a: /* FCVTPS */ 12655 case 0x3b: /* FCVTZS */ 12656 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12657 break; 12658 case 0x3d: /* FRECPE */ 12659 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12660 break; 12661 case 0x3f: /* FRECPX */ 12662 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12663 break; 12664 case 0x5a: /* FCVTNU */ 12665 case 0x5b: /* FCVTMU */ 12666 case 0x5c: /* FCVTAU */ 12667 case 0x7a: /* FCVTPU */ 12668 case 0x7b: /* FCVTZU */ 12669 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12670 break; 12671 case 0x6f: /* FNEG */ 12672 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12673 break; 12674 case 0x7d: /* FRSQRTE */ 12675 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12676 break; 12677 default: 12678 g_assert_not_reached(); 12679 } 12680 12681 /* limit any sign extension going on */ 12682 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12683 write_fp_sreg(s, rd, tcg_res); 12684 } else { 12685 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12686 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12687 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12688 12689 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12690 12691 switch (fpop) { 12692 case 0x1a: /* FCVTNS */ 12693 case 0x1b: /* FCVTMS */ 12694 case 0x1c: /* FCVTAS */ 12695 case 0x3a: /* FCVTPS */ 12696 case 0x3b: /* FCVTZS */ 12697 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12698 break; 12699 case 0x3d: /* FRECPE */ 12700 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12701 break; 12702 case 0x5a: /* FCVTNU */ 12703 case 0x5b: /* FCVTMU */ 12704 case 0x5c: /* FCVTAU */ 12705 case 0x7a: /* FCVTPU */ 12706 case 0x7b: /* FCVTZU */ 12707 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12708 break; 12709 case 0x18: /* FRINTN */ 12710 case 0x19: /* FRINTM */ 12711 case 0x38: /* FRINTP */ 12712 case 0x39: /* FRINTZ */ 12713 case 0x58: /* FRINTA */ 12714 case 0x79: /* FRINTI */ 12715 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12716 break; 12717 case 0x59: /* FRINTX */ 12718 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12719 break; 12720 case 0x2f: /* FABS */ 12721 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12722 break; 12723 case 0x6f: /* FNEG */ 12724 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12725 break; 12726 case 0x7d: /* FRSQRTE */ 12727 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12728 break; 12729 case 0x7f: /* FSQRT */ 12730 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12731 break; 12732 default: 12733 g_assert_not_reached(); 12734 } 12735 12736 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12737 } 12738 12739 clear_vec_high(s, is_q, rd); 12740 } 12741 12742 if (tcg_rmode) { 12743 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12744 } 12745 } 12746 12747 /* AdvSIMD scalar x indexed element 12748 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12749 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12750 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12751 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12752 * AdvSIMD vector x indexed element 12753 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12754 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12755 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12756 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12757 */ 12758 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12759 { 12760 /* This encoding has two kinds of instruction: 12761 * normal, where we perform elt x idxelt => elt for each 12762 * element in the vector 12763 * long, where we perform elt x idxelt and generate a result of 12764 * double the width of the input element 12765 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12766 */ 12767 bool is_scalar = extract32(insn, 28, 1); 12768 bool is_q = extract32(insn, 30, 1); 12769 bool u = extract32(insn, 29, 1); 12770 int size = extract32(insn, 22, 2); 12771 int l = extract32(insn, 21, 1); 12772 int m = extract32(insn, 20, 1); 12773 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12774 int rm = extract32(insn, 16, 4); 12775 int opcode = extract32(insn, 12, 4); 12776 int h = extract32(insn, 11, 1); 12777 int rn = extract32(insn, 5, 5); 12778 int rd = extract32(insn, 0, 5); 12779 bool is_long = false; 12780 int is_fp = 0; 12781 bool is_fp16 = false; 12782 int index; 12783 TCGv_ptr fpst; 12784 12785 switch (16 * u + opcode) { 12786 case 0x08: /* MUL */ 12787 case 0x10: /* MLA */ 12788 case 0x14: /* MLS */ 12789 if (is_scalar) { 12790 unallocated_encoding(s); 12791 return; 12792 } 12793 break; 12794 case 0x02: /* SMLAL, SMLAL2 */ 12795 case 0x12: /* UMLAL, UMLAL2 */ 12796 case 0x06: /* SMLSL, SMLSL2 */ 12797 case 0x16: /* UMLSL, UMLSL2 */ 12798 case 0x0a: /* SMULL, SMULL2 */ 12799 case 0x1a: /* UMULL, UMULL2 */ 12800 if (is_scalar) { 12801 unallocated_encoding(s); 12802 return; 12803 } 12804 is_long = true; 12805 break; 12806 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12807 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12808 case 0x0b: /* SQDMULL, SQDMULL2 */ 12809 is_long = true; 12810 break; 12811 case 0x0c: /* SQDMULH */ 12812 case 0x0d: /* SQRDMULH */ 12813 break; 12814 case 0x01: /* FMLA */ 12815 case 0x05: /* FMLS */ 12816 case 0x09: /* FMUL */ 12817 case 0x19: /* FMULX */ 12818 is_fp = 1; 12819 break; 12820 case 0x1d: /* SQRDMLAH */ 12821 case 0x1f: /* SQRDMLSH */ 12822 if (!dc_isar_feature(aa64_rdm, s)) { 12823 unallocated_encoding(s); 12824 return; 12825 } 12826 break; 12827 case 0x0e: /* SDOT */ 12828 case 0x1e: /* UDOT */ 12829 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12830 unallocated_encoding(s); 12831 return; 12832 } 12833 break; 12834 case 0x0f: 12835 switch (size) { 12836 case 0: /* SUDOT */ 12837 case 2: /* USDOT */ 12838 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12839 unallocated_encoding(s); 12840 return; 12841 } 12842 size = MO_32; 12843 break; 12844 case 1: /* BFDOT */ 12845 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12846 unallocated_encoding(s); 12847 return; 12848 } 12849 size = MO_32; 12850 break; 12851 case 3: /* BFMLAL{B,T} */ 12852 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12853 unallocated_encoding(s); 12854 return; 12855 } 12856 /* can't set is_fp without other incorrect size checks */ 12857 size = MO_16; 12858 break; 12859 default: 12860 unallocated_encoding(s); 12861 return; 12862 } 12863 break; 12864 case 0x11: /* FCMLA #0 */ 12865 case 0x13: /* FCMLA #90 */ 12866 case 0x15: /* FCMLA #180 */ 12867 case 0x17: /* FCMLA #270 */ 12868 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12869 unallocated_encoding(s); 12870 return; 12871 } 12872 is_fp = 2; 12873 break; 12874 case 0x00: /* FMLAL */ 12875 case 0x04: /* FMLSL */ 12876 case 0x18: /* FMLAL2 */ 12877 case 0x1c: /* FMLSL2 */ 12878 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12879 unallocated_encoding(s); 12880 return; 12881 } 12882 size = MO_16; 12883 /* is_fp, but we pass tcg_env not fp_status. */ 12884 break; 12885 default: 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 12890 switch (is_fp) { 12891 case 1: /* normal fp */ 12892 /* convert insn encoded size to MemOp size */ 12893 switch (size) { 12894 case 0: /* half-precision */ 12895 size = MO_16; 12896 is_fp16 = true; 12897 break; 12898 case MO_32: /* single precision */ 12899 case MO_64: /* double precision */ 12900 break; 12901 default: 12902 unallocated_encoding(s); 12903 return; 12904 } 12905 break; 12906 12907 case 2: /* complex fp */ 12908 /* Each indexable element is a complex pair. */ 12909 size += 1; 12910 switch (size) { 12911 case MO_32: 12912 if (h && !is_q) { 12913 unallocated_encoding(s); 12914 return; 12915 } 12916 is_fp16 = true; 12917 break; 12918 case MO_64: 12919 break; 12920 default: 12921 unallocated_encoding(s); 12922 return; 12923 } 12924 break; 12925 12926 default: /* integer */ 12927 switch (size) { 12928 case MO_8: 12929 case MO_64: 12930 unallocated_encoding(s); 12931 return; 12932 } 12933 break; 12934 } 12935 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12936 unallocated_encoding(s); 12937 return; 12938 } 12939 12940 /* Given MemOp size, adjust register and indexing. */ 12941 switch (size) { 12942 case MO_16: 12943 index = h << 2 | l << 1 | m; 12944 break; 12945 case MO_32: 12946 index = h << 1 | l; 12947 rm |= m << 4; 12948 break; 12949 case MO_64: 12950 if (l || !is_q) { 12951 unallocated_encoding(s); 12952 return; 12953 } 12954 index = h; 12955 rm |= m << 4; 12956 break; 12957 default: 12958 g_assert_not_reached(); 12959 } 12960 12961 if (!fp_access_check(s)) { 12962 return; 12963 } 12964 12965 if (is_fp) { 12966 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12967 } else { 12968 fpst = NULL; 12969 } 12970 12971 switch (16 * u + opcode) { 12972 case 0x0e: /* SDOT */ 12973 case 0x1e: /* UDOT */ 12974 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12975 u ? gen_helper_gvec_udot_idx_b 12976 : gen_helper_gvec_sdot_idx_b); 12977 return; 12978 case 0x0f: 12979 switch (extract32(insn, 22, 2)) { 12980 case 0: /* SUDOT */ 12981 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12982 gen_helper_gvec_sudot_idx_b); 12983 return; 12984 case 1: /* BFDOT */ 12985 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12986 gen_helper_gvec_bfdot_idx); 12987 return; 12988 case 2: /* USDOT */ 12989 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12990 gen_helper_gvec_usdot_idx_b); 12991 return; 12992 case 3: /* BFMLAL{B,T} */ 12993 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12994 gen_helper_gvec_bfmlal_idx); 12995 return; 12996 } 12997 g_assert_not_reached(); 12998 case 0x11: /* FCMLA #0 */ 12999 case 0x13: /* FCMLA #90 */ 13000 case 0x15: /* FCMLA #180 */ 13001 case 0x17: /* FCMLA #270 */ 13002 { 13003 int rot = extract32(insn, 13, 2); 13004 int data = (index << 2) | rot; 13005 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13006 vec_full_reg_offset(s, rn), 13007 vec_full_reg_offset(s, rm), 13008 vec_full_reg_offset(s, rd), fpst, 13009 is_q ? 16 : 8, vec_full_reg_size(s), data, 13010 size == MO_64 13011 ? gen_helper_gvec_fcmlas_idx 13012 : gen_helper_gvec_fcmlah_idx); 13013 } 13014 return; 13015 13016 case 0x00: /* FMLAL */ 13017 case 0x04: /* FMLSL */ 13018 case 0x18: /* FMLAL2 */ 13019 case 0x1c: /* FMLSL2 */ 13020 { 13021 int is_s = extract32(opcode, 2, 1); 13022 int is_2 = u; 13023 int data = (index << 2) | (is_2 << 1) | is_s; 13024 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13025 vec_full_reg_offset(s, rn), 13026 vec_full_reg_offset(s, rm), tcg_env, 13027 is_q ? 16 : 8, vec_full_reg_size(s), 13028 data, gen_helper_gvec_fmlal_idx_a64); 13029 } 13030 return; 13031 13032 case 0x08: /* MUL */ 13033 if (!is_long && !is_scalar) { 13034 static gen_helper_gvec_3 * const fns[3] = { 13035 gen_helper_gvec_mul_idx_h, 13036 gen_helper_gvec_mul_idx_s, 13037 gen_helper_gvec_mul_idx_d, 13038 }; 13039 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13040 vec_full_reg_offset(s, rn), 13041 vec_full_reg_offset(s, rm), 13042 is_q ? 16 : 8, vec_full_reg_size(s), 13043 index, fns[size - 1]); 13044 return; 13045 } 13046 break; 13047 13048 case 0x10: /* MLA */ 13049 if (!is_long && !is_scalar) { 13050 static gen_helper_gvec_4 * const fns[3] = { 13051 gen_helper_gvec_mla_idx_h, 13052 gen_helper_gvec_mla_idx_s, 13053 gen_helper_gvec_mla_idx_d, 13054 }; 13055 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13056 vec_full_reg_offset(s, rn), 13057 vec_full_reg_offset(s, rm), 13058 vec_full_reg_offset(s, rd), 13059 is_q ? 16 : 8, vec_full_reg_size(s), 13060 index, fns[size - 1]); 13061 return; 13062 } 13063 break; 13064 13065 case 0x14: /* MLS */ 13066 if (!is_long && !is_scalar) { 13067 static gen_helper_gvec_4 * const fns[3] = { 13068 gen_helper_gvec_mls_idx_h, 13069 gen_helper_gvec_mls_idx_s, 13070 gen_helper_gvec_mls_idx_d, 13071 }; 13072 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13073 vec_full_reg_offset(s, rn), 13074 vec_full_reg_offset(s, rm), 13075 vec_full_reg_offset(s, rd), 13076 is_q ? 16 : 8, vec_full_reg_size(s), 13077 index, fns[size - 1]); 13078 return; 13079 } 13080 break; 13081 } 13082 13083 if (size == 3) { 13084 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13085 int pass; 13086 13087 assert(is_fp && is_q && !is_long); 13088 13089 read_vec_element(s, tcg_idx, rm, index, MO_64); 13090 13091 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13092 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13093 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13094 13095 read_vec_element(s, tcg_op, rn, pass, MO_64); 13096 13097 switch (16 * u + opcode) { 13098 case 0x05: /* FMLS */ 13099 /* As usual for ARM, separate negation for fused multiply-add */ 13100 gen_helper_vfp_negd(tcg_op, tcg_op); 13101 /* fall through */ 13102 case 0x01: /* FMLA */ 13103 read_vec_element(s, tcg_res, rd, pass, MO_64); 13104 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13105 break; 13106 case 0x09: /* FMUL */ 13107 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13108 break; 13109 case 0x19: /* FMULX */ 13110 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13111 break; 13112 default: 13113 g_assert_not_reached(); 13114 } 13115 13116 write_vec_element(s, tcg_res, rd, pass, MO_64); 13117 } 13118 13119 clear_vec_high(s, !is_scalar, rd); 13120 } else if (!is_long) { 13121 /* 32 bit floating point, or 16 or 32 bit integer. 13122 * For the 16 bit scalar case we use the usual Neon helpers and 13123 * rely on the fact that 0 op 0 == 0 with no side effects. 13124 */ 13125 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13126 int pass, maxpasses; 13127 13128 if (is_scalar) { 13129 maxpasses = 1; 13130 } else { 13131 maxpasses = is_q ? 4 : 2; 13132 } 13133 13134 read_vec_element_i32(s, tcg_idx, rm, index, size); 13135 13136 if (size == 1 && !is_scalar) { 13137 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13138 * the index into both halves of the 32 bit tcg_idx and then use 13139 * the usual Neon helpers. 13140 */ 13141 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13142 } 13143 13144 for (pass = 0; pass < maxpasses; pass++) { 13145 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13146 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13147 13148 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13149 13150 switch (16 * u + opcode) { 13151 case 0x08: /* MUL */ 13152 case 0x10: /* MLA */ 13153 case 0x14: /* MLS */ 13154 { 13155 static NeonGenTwoOpFn * const fns[2][2] = { 13156 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13157 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13158 }; 13159 NeonGenTwoOpFn *genfn; 13160 bool is_sub = opcode == 0x4; 13161 13162 if (size == 1) { 13163 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13164 } else { 13165 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13166 } 13167 if (opcode == 0x8) { 13168 break; 13169 } 13170 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13171 genfn = fns[size - 1][is_sub]; 13172 genfn(tcg_res, tcg_op, tcg_res); 13173 break; 13174 } 13175 case 0x05: /* FMLS */ 13176 case 0x01: /* FMLA */ 13177 read_vec_element_i32(s, tcg_res, rd, pass, 13178 is_scalar ? size : MO_32); 13179 switch (size) { 13180 case 1: 13181 if (opcode == 0x5) { 13182 /* As usual for ARM, separate negation for fused 13183 * multiply-add */ 13184 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13185 } 13186 if (is_scalar) { 13187 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13188 tcg_res, fpst); 13189 } else { 13190 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13191 tcg_res, fpst); 13192 } 13193 break; 13194 case 2: 13195 if (opcode == 0x5) { 13196 /* As usual for ARM, separate negation for 13197 * fused multiply-add */ 13198 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13199 } 13200 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13201 tcg_res, fpst); 13202 break; 13203 default: 13204 g_assert_not_reached(); 13205 } 13206 break; 13207 case 0x09: /* FMUL */ 13208 switch (size) { 13209 case 1: 13210 if (is_scalar) { 13211 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13212 tcg_idx, fpst); 13213 } else { 13214 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13215 tcg_idx, fpst); 13216 } 13217 break; 13218 case 2: 13219 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13220 break; 13221 default: 13222 g_assert_not_reached(); 13223 } 13224 break; 13225 case 0x19: /* FMULX */ 13226 switch (size) { 13227 case 1: 13228 if (is_scalar) { 13229 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13230 tcg_idx, fpst); 13231 } else { 13232 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13233 tcg_idx, fpst); 13234 } 13235 break; 13236 case 2: 13237 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13238 break; 13239 default: 13240 g_assert_not_reached(); 13241 } 13242 break; 13243 case 0x0c: /* SQDMULH */ 13244 if (size == 1) { 13245 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13246 tcg_op, tcg_idx); 13247 } else { 13248 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13249 tcg_op, tcg_idx); 13250 } 13251 break; 13252 case 0x0d: /* SQRDMULH */ 13253 if (size == 1) { 13254 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13255 tcg_op, tcg_idx); 13256 } else { 13257 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13258 tcg_op, tcg_idx); 13259 } 13260 break; 13261 case 0x1d: /* SQRDMLAH */ 13262 read_vec_element_i32(s, tcg_res, rd, pass, 13263 is_scalar ? size : MO_32); 13264 if (size == 1) { 13265 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13266 tcg_op, tcg_idx, tcg_res); 13267 } else { 13268 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13269 tcg_op, tcg_idx, tcg_res); 13270 } 13271 break; 13272 case 0x1f: /* SQRDMLSH */ 13273 read_vec_element_i32(s, tcg_res, rd, pass, 13274 is_scalar ? size : MO_32); 13275 if (size == 1) { 13276 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13277 tcg_op, tcg_idx, tcg_res); 13278 } else { 13279 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13280 tcg_op, tcg_idx, tcg_res); 13281 } 13282 break; 13283 default: 13284 g_assert_not_reached(); 13285 } 13286 13287 if (is_scalar) { 13288 write_fp_sreg(s, rd, tcg_res); 13289 } else { 13290 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13291 } 13292 } 13293 13294 clear_vec_high(s, is_q, rd); 13295 } else { 13296 /* long ops: 16x16->32 or 32x32->64 */ 13297 TCGv_i64 tcg_res[2]; 13298 int pass; 13299 bool satop = extract32(opcode, 0, 1); 13300 MemOp memop = MO_32; 13301 13302 if (satop || !u) { 13303 memop |= MO_SIGN; 13304 } 13305 13306 if (size == 2) { 13307 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13308 13309 read_vec_element(s, tcg_idx, rm, index, memop); 13310 13311 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13312 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13313 TCGv_i64 tcg_passres; 13314 int passelt; 13315 13316 if (is_scalar) { 13317 passelt = 0; 13318 } else { 13319 passelt = pass + (is_q * 2); 13320 } 13321 13322 read_vec_element(s, tcg_op, rn, passelt, memop); 13323 13324 tcg_res[pass] = tcg_temp_new_i64(); 13325 13326 if (opcode == 0xa || opcode == 0xb) { 13327 /* Non-accumulating ops */ 13328 tcg_passres = tcg_res[pass]; 13329 } else { 13330 tcg_passres = tcg_temp_new_i64(); 13331 } 13332 13333 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13334 13335 if (satop) { 13336 /* saturating, doubling */ 13337 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13338 tcg_passres, tcg_passres); 13339 } 13340 13341 if (opcode == 0xa || opcode == 0xb) { 13342 continue; 13343 } 13344 13345 /* Accumulating op: handle accumulate step */ 13346 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13347 13348 switch (opcode) { 13349 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13350 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13351 break; 13352 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13353 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13354 break; 13355 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13356 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13357 /* fall through */ 13358 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13359 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13360 tcg_res[pass], 13361 tcg_passres); 13362 break; 13363 default: 13364 g_assert_not_reached(); 13365 } 13366 } 13367 13368 clear_vec_high(s, !is_scalar, rd); 13369 } else { 13370 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13371 13372 assert(size == 1); 13373 read_vec_element_i32(s, tcg_idx, rm, index, size); 13374 13375 if (!is_scalar) { 13376 /* The simplest way to handle the 16x16 indexed ops is to 13377 * duplicate the index into both halves of the 32 bit tcg_idx 13378 * and then use the usual Neon helpers. 13379 */ 13380 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13381 } 13382 13383 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13384 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13385 TCGv_i64 tcg_passres; 13386 13387 if (is_scalar) { 13388 read_vec_element_i32(s, tcg_op, rn, pass, size); 13389 } else { 13390 read_vec_element_i32(s, tcg_op, rn, 13391 pass + (is_q * 2), MO_32); 13392 } 13393 13394 tcg_res[pass] = tcg_temp_new_i64(); 13395 13396 if (opcode == 0xa || opcode == 0xb) { 13397 /* Non-accumulating ops */ 13398 tcg_passres = tcg_res[pass]; 13399 } else { 13400 tcg_passres = tcg_temp_new_i64(); 13401 } 13402 13403 if (memop & MO_SIGN) { 13404 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13405 } else { 13406 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13407 } 13408 if (satop) { 13409 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13410 tcg_passres, tcg_passres); 13411 } 13412 13413 if (opcode == 0xa || opcode == 0xb) { 13414 continue; 13415 } 13416 13417 /* Accumulating op: handle accumulate step */ 13418 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13419 13420 switch (opcode) { 13421 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13422 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13423 tcg_passres); 13424 break; 13425 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13426 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13427 tcg_passres); 13428 break; 13429 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13430 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13431 /* fall through */ 13432 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13433 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13434 tcg_res[pass], 13435 tcg_passres); 13436 break; 13437 default: 13438 g_assert_not_reached(); 13439 } 13440 } 13441 13442 if (is_scalar) { 13443 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13444 } 13445 } 13446 13447 if (is_scalar) { 13448 tcg_res[1] = tcg_constant_i64(0); 13449 } 13450 13451 for (pass = 0; pass < 2; pass++) { 13452 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13453 } 13454 } 13455 } 13456 13457 /* Crypto AES 13458 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13459 * +-----------------+------+-----------+--------+-----+------+------+ 13460 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13461 * +-----------------+------+-----------+--------+-----+------+------+ 13462 */ 13463 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13464 { 13465 int size = extract32(insn, 22, 2); 13466 int opcode = extract32(insn, 12, 5); 13467 int rn = extract32(insn, 5, 5); 13468 int rd = extract32(insn, 0, 5); 13469 gen_helper_gvec_2 *genfn2 = NULL; 13470 gen_helper_gvec_3 *genfn3 = NULL; 13471 13472 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13473 unallocated_encoding(s); 13474 return; 13475 } 13476 13477 switch (opcode) { 13478 case 0x4: /* AESE */ 13479 genfn3 = gen_helper_crypto_aese; 13480 break; 13481 case 0x6: /* AESMC */ 13482 genfn2 = gen_helper_crypto_aesmc; 13483 break; 13484 case 0x5: /* AESD */ 13485 genfn3 = gen_helper_crypto_aesd; 13486 break; 13487 case 0x7: /* AESIMC */ 13488 genfn2 = gen_helper_crypto_aesimc; 13489 break; 13490 default: 13491 unallocated_encoding(s); 13492 return; 13493 } 13494 13495 if (!fp_access_check(s)) { 13496 return; 13497 } 13498 if (genfn2) { 13499 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13500 } else { 13501 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13502 } 13503 } 13504 13505 /* Crypto three-reg SHA 13506 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13507 * +-----------------+------+---+------+---+--------+-----+------+------+ 13508 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13509 * +-----------------+------+---+------+---+--------+-----+------+------+ 13510 */ 13511 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13512 { 13513 int size = extract32(insn, 22, 2); 13514 int opcode = extract32(insn, 12, 3); 13515 int rm = extract32(insn, 16, 5); 13516 int rn = extract32(insn, 5, 5); 13517 int rd = extract32(insn, 0, 5); 13518 gen_helper_gvec_3 *genfn; 13519 bool feature; 13520 13521 if (size != 0) { 13522 unallocated_encoding(s); 13523 return; 13524 } 13525 13526 switch (opcode) { 13527 case 0: /* SHA1C */ 13528 genfn = gen_helper_crypto_sha1c; 13529 feature = dc_isar_feature(aa64_sha1, s); 13530 break; 13531 case 1: /* SHA1P */ 13532 genfn = gen_helper_crypto_sha1p; 13533 feature = dc_isar_feature(aa64_sha1, s); 13534 break; 13535 case 2: /* SHA1M */ 13536 genfn = gen_helper_crypto_sha1m; 13537 feature = dc_isar_feature(aa64_sha1, s); 13538 break; 13539 case 3: /* SHA1SU0 */ 13540 genfn = gen_helper_crypto_sha1su0; 13541 feature = dc_isar_feature(aa64_sha1, s); 13542 break; 13543 case 4: /* SHA256H */ 13544 genfn = gen_helper_crypto_sha256h; 13545 feature = dc_isar_feature(aa64_sha256, s); 13546 break; 13547 case 5: /* SHA256H2 */ 13548 genfn = gen_helper_crypto_sha256h2; 13549 feature = dc_isar_feature(aa64_sha256, s); 13550 break; 13551 case 6: /* SHA256SU1 */ 13552 genfn = gen_helper_crypto_sha256su1; 13553 feature = dc_isar_feature(aa64_sha256, s); 13554 break; 13555 default: 13556 unallocated_encoding(s); 13557 return; 13558 } 13559 13560 if (!feature) { 13561 unallocated_encoding(s); 13562 return; 13563 } 13564 13565 if (!fp_access_check(s)) { 13566 return; 13567 } 13568 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13569 } 13570 13571 /* Crypto two-reg SHA 13572 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13573 * +-----------------+------+-----------+--------+-----+------+------+ 13574 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13575 * +-----------------+------+-----------+--------+-----+------+------+ 13576 */ 13577 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13578 { 13579 int size = extract32(insn, 22, 2); 13580 int opcode = extract32(insn, 12, 5); 13581 int rn = extract32(insn, 5, 5); 13582 int rd = extract32(insn, 0, 5); 13583 gen_helper_gvec_2 *genfn; 13584 bool feature; 13585 13586 if (size != 0) { 13587 unallocated_encoding(s); 13588 return; 13589 } 13590 13591 switch (opcode) { 13592 case 0: /* SHA1H */ 13593 feature = dc_isar_feature(aa64_sha1, s); 13594 genfn = gen_helper_crypto_sha1h; 13595 break; 13596 case 1: /* SHA1SU1 */ 13597 feature = dc_isar_feature(aa64_sha1, s); 13598 genfn = gen_helper_crypto_sha1su1; 13599 break; 13600 case 2: /* SHA256SU0 */ 13601 feature = dc_isar_feature(aa64_sha256, s); 13602 genfn = gen_helper_crypto_sha256su0; 13603 break; 13604 default: 13605 unallocated_encoding(s); 13606 return; 13607 } 13608 13609 if (!feature) { 13610 unallocated_encoding(s); 13611 return; 13612 } 13613 13614 if (!fp_access_check(s)) { 13615 return; 13616 } 13617 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13618 } 13619 13620 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13621 { 13622 tcg_gen_rotli_i64(d, m, 1); 13623 tcg_gen_xor_i64(d, d, n); 13624 } 13625 13626 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13627 { 13628 tcg_gen_rotli_vec(vece, d, m, 1); 13629 tcg_gen_xor_vec(vece, d, d, n); 13630 } 13631 13632 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13633 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13634 { 13635 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13636 static const GVecGen3 op = { 13637 .fni8 = gen_rax1_i64, 13638 .fniv = gen_rax1_vec, 13639 .opt_opc = vecop_list, 13640 .fno = gen_helper_crypto_rax1, 13641 .vece = MO_64, 13642 }; 13643 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13644 } 13645 13646 /* Crypto three-reg SHA512 13647 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13648 * +-----------------------+------+---+---+-----+--------+------+------+ 13649 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13650 * +-----------------------+------+---+---+-----+--------+------+------+ 13651 */ 13652 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13653 { 13654 int opcode = extract32(insn, 10, 2); 13655 int o = extract32(insn, 14, 1); 13656 int rm = extract32(insn, 16, 5); 13657 int rn = extract32(insn, 5, 5); 13658 int rd = extract32(insn, 0, 5); 13659 bool feature; 13660 gen_helper_gvec_3 *oolfn = NULL; 13661 GVecGen3Fn *gvecfn = NULL; 13662 13663 if (o == 0) { 13664 switch (opcode) { 13665 case 0: /* SHA512H */ 13666 feature = dc_isar_feature(aa64_sha512, s); 13667 oolfn = gen_helper_crypto_sha512h; 13668 break; 13669 case 1: /* SHA512H2 */ 13670 feature = dc_isar_feature(aa64_sha512, s); 13671 oolfn = gen_helper_crypto_sha512h2; 13672 break; 13673 case 2: /* SHA512SU1 */ 13674 feature = dc_isar_feature(aa64_sha512, s); 13675 oolfn = gen_helper_crypto_sha512su1; 13676 break; 13677 case 3: /* RAX1 */ 13678 feature = dc_isar_feature(aa64_sha3, s); 13679 gvecfn = gen_gvec_rax1; 13680 break; 13681 default: 13682 g_assert_not_reached(); 13683 } 13684 } else { 13685 switch (opcode) { 13686 case 0: /* SM3PARTW1 */ 13687 feature = dc_isar_feature(aa64_sm3, s); 13688 oolfn = gen_helper_crypto_sm3partw1; 13689 break; 13690 case 1: /* SM3PARTW2 */ 13691 feature = dc_isar_feature(aa64_sm3, s); 13692 oolfn = gen_helper_crypto_sm3partw2; 13693 break; 13694 case 2: /* SM4EKEY */ 13695 feature = dc_isar_feature(aa64_sm4, s); 13696 oolfn = gen_helper_crypto_sm4ekey; 13697 break; 13698 default: 13699 unallocated_encoding(s); 13700 return; 13701 } 13702 } 13703 13704 if (!feature) { 13705 unallocated_encoding(s); 13706 return; 13707 } 13708 13709 if (!fp_access_check(s)) { 13710 return; 13711 } 13712 13713 if (oolfn) { 13714 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13715 } else { 13716 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13717 } 13718 } 13719 13720 /* Crypto two-reg SHA512 13721 * 31 12 11 10 9 5 4 0 13722 * +-----------------------------------------+--------+------+------+ 13723 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13724 * +-----------------------------------------+--------+------+------+ 13725 */ 13726 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13727 { 13728 int opcode = extract32(insn, 10, 2); 13729 int rn = extract32(insn, 5, 5); 13730 int rd = extract32(insn, 0, 5); 13731 bool feature; 13732 13733 switch (opcode) { 13734 case 0: /* SHA512SU0 */ 13735 feature = dc_isar_feature(aa64_sha512, s); 13736 break; 13737 case 1: /* SM4E */ 13738 feature = dc_isar_feature(aa64_sm4, s); 13739 break; 13740 default: 13741 unallocated_encoding(s); 13742 return; 13743 } 13744 13745 if (!feature) { 13746 unallocated_encoding(s); 13747 return; 13748 } 13749 13750 if (!fp_access_check(s)) { 13751 return; 13752 } 13753 13754 switch (opcode) { 13755 case 0: /* SHA512SU0 */ 13756 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13757 break; 13758 case 1: /* SM4E */ 13759 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13760 break; 13761 default: 13762 g_assert_not_reached(); 13763 } 13764 } 13765 13766 /* Crypto four-register 13767 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13768 * +-------------------+-----+------+---+------+------+------+ 13769 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13770 * +-------------------+-----+------+---+------+------+------+ 13771 */ 13772 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13773 { 13774 int op0 = extract32(insn, 21, 2); 13775 int rm = extract32(insn, 16, 5); 13776 int ra = extract32(insn, 10, 5); 13777 int rn = extract32(insn, 5, 5); 13778 int rd = extract32(insn, 0, 5); 13779 bool feature; 13780 13781 switch (op0) { 13782 case 0: /* EOR3 */ 13783 case 1: /* BCAX */ 13784 feature = dc_isar_feature(aa64_sha3, s); 13785 break; 13786 case 2: /* SM3SS1 */ 13787 feature = dc_isar_feature(aa64_sm3, s); 13788 break; 13789 default: 13790 unallocated_encoding(s); 13791 return; 13792 } 13793 13794 if (!feature) { 13795 unallocated_encoding(s); 13796 return; 13797 } 13798 13799 if (!fp_access_check(s)) { 13800 return; 13801 } 13802 13803 if (op0 < 2) { 13804 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13805 int pass; 13806 13807 tcg_op1 = tcg_temp_new_i64(); 13808 tcg_op2 = tcg_temp_new_i64(); 13809 tcg_op3 = tcg_temp_new_i64(); 13810 tcg_res[0] = tcg_temp_new_i64(); 13811 tcg_res[1] = tcg_temp_new_i64(); 13812 13813 for (pass = 0; pass < 2; pass++) { 13814 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13815 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13816 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13817 13818 if (op0 == 0) { 13819 /* EOR3 */ 13820 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13821 } else { 13822 /* BCAX */ 13823 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13824 } 13825 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13826 } 13827 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13828 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13829 } else { 13830 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13831 13832 tcg_op1 = tcg_temp_new_i32(); 13833 tcg_op2 = tcg_temp_new_i32(); 13834 tcg_op3 = tcg_temp_new_i32(); 13835 tcg_res = tcg_temp_new_i32(); 13836 tcg_zero = tcg_constant_i32(0); 13837 13838 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13839 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13840 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13841 13842 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13843 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13844 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13845 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13846 13847 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13848 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13849 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13850 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13851 } 13852 } 13853 13854 /* Crypto XAR 13855 * 31 21 20 16 15 10 9 5 4 0 13856 * +-----------------------+------+--------+------+------+ 13857 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13858 * +-----------------------+------+--------+------+------+ 13859 */ 13860 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13861 { 13862 int rm = extract32(insn, 16, 5); 13863 int imm6 = extract32(insn, 10, 6); 13864 int rn = extract32(insn, 5, 5); 13865 int rd = extract32(insn, 0, 5); 13866 13867 if (!dc_isar_feature(aa64_sha3, s)) { 13868 unallocated_encoding(s); 13869 return; 13870 } 13871 13872 if (!fp_access_check(s)) { 13873 return; 13874 } 13875 13876 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13877 vec_full_reg_offset(s, rn), 13878 vec_full_reg_offset(s, rm), imm6, 16, 13879 vec_full_reg_size(s)); 13880 } 13881 13882 /* Crypto three-reg imm2 13883 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13884 * +-----------------------+------+-----+------+--------+------+------+ 13885 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13886 * +-----------------------+------+-----+------+--------+------+------+ 13887 */ 13888 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13889 { 13890 static gen_helper_gvec_3 * const fns[4] = { 13891 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13892 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13893 }; 13894 int opcode = extract32(insn, 10, 2); 13895 int imm2 = extract32(insn, 12, 2); 13896 int rm = extract32(insn, 16, 5); 13897 int rn = extract32(insn, 5, 5); 13898 int rd = extract32(insn, 0, 5); 13899 13900 if (!dc_isar_feature(aa64_sm3, s)) { 13901 unallocated_encoding(s); 13902 return; 13903 } 13904 13905 if (!fp_access_check(s)) { 13906 return; 13907 } 13908 13909 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13910 } 13911 13912 /* C3.6 Data processing - SIMD, inc Crypto 13913 * 13914 * As the decode gets a little complex we are using a table based 13915 * approach for this part of the decode. 13916 */ 13917 static const AArch64DecodeTable data_proc_simd[] = { 13918 /* pattern , mask , fn */ 13919 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13920 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13921 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13922 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13923 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13924 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13925 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13926 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13927 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13928 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13929 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13930 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13931 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13932 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13933 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13934 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13935 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13936 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13937 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13938 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13939 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13940 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13941 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13942 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13943 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13944 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13945 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13946 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13947 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13948 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13949 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13950 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13951 { 0x00000000, 0x00000000, NULL } 13952 }; 13953 13954 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13955 { 13956 /* Note that this is called with all non-FP cases from 13957 * table C3-6 so it must UNDEF for entries not specifically 13958 * allocated to instructions in that table. 13959 */ 13960 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13961 if (fn) { 13962 fn(s, insn); 13963 } else { 13964 unallocated_encoding(s); 13965 } 13966 } 13967 13968 /* C3.6 Data processing - SIMD and floating point */ 13969 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13970 { 13971 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13972 disas_data_proc_fp(s, insn); 13973 } else { 13974 /* SIMD, including crypto */ 13975 disas_data_proc_simd(s, insn); 13976 } 13977 } 13978 13979 static bool trans_OK(DisasContext *s, arg_OK *a) 13980 { 13981 return true; 13982 } 13983 13984 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13985 { 13986 s->is_nonstreaming = true; 13987 return true; 13988 } 13989 13990 /** 13991 * is_guarded_page: 13992 * @env: The cpu environment 13993 * @s: The DisasContext 13994 * 13995 * Return true if the page is guarded. 13996 */ 13997 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13998 { 13999 uint64_t addr = s->base.pc_first; 14000 #ifdef CONFIG_USER_ONLY 14001 return page_get_flags(addr) & PAGE_BTI; 14002 #else 14003 CPUTLBEntryFull *full; 14004 void *host; 14005 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14006 int flags; 14007 14008 /* 14009 * We test this immediately after reading an insn, which means 14010 * that the TLB entry must be present and valid, and thus this 14011 * access will never raise an exception. 14012 */ 14013 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14014 false, &host, &full, 0); 14015 assert(!(flags & TLB_INVALID_MASK)); 14016 14017 return full->extra.arm.guarded; 14018 #endif 14019 } 14020 14021 /** 14022 * btype_destination_ok: 14023 * @insn: The instruction at the branch destination 14024 * @bt: SCTLR_ELx.BT 14025 * @btype: PSTATE.BTYPE, and is non-zero 14026 * 14027 * On a guarded page, there are a limited number of insns 14028 * that may be present at the branch target: 14029 * - branch target identifiers, 14030 * - paciasp, pacibsp, 14031 * - BRK insn 14032 * - HLT insn 14033 * Anything else causes a Branch Target Exception. 14034 * 14035 * Return true if the branch is compatible, false to raise BTITRAP. 14036 */ 14037 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14038 { 14039 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14040 /* HINT space */ 14041 switch (extract32(insn, 5, 7)) { 14042 case 0b011001: /* PACIASP */ 14043 case 0b011011: /* PACIBSP */ 14044 /* 14045 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14046 * with btype == 3. Otherwise all btype are ok. 14047 */ 14048 return !bt || btype != 3; 14049 case 0b100000: /* BTI */ 14050 /* Not compatible with any btype. */ 14051 return false; 14052 case 0b100010: /* BTI c */ 14053 /* Not compatible with btype == 3 */ 14054 return btype != 3; 14055 case 0b100100: /* BTI j */ 14056 /* Not compatible with btype == 2 */ 14057 return btype != 2; 14058 case 0b100110: /* BTI jc */ 14059 /* Compatible with any btype. */ 14060 return true; 14061 } 14062 } else { 14063 switch (insn & 0xffe0001fu) { 14064 case 0xd4200000u: /* BRK */ 14065 case 0xd4400000u: /* HLT */ 14066 /* Give priority to the breakpoint exception. */ 14067 return true; 14068 } 14069 } 14070 return false; 14071 } 14072 14073 /* C3.1 A64 instruction index by encoding */ 14074 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14075 { 14076 switch (extract32(insn, 25, 4)) { 14077 case 0x5: 14078 case 0xd: /* Data processing - register */ 14079 disas_data_proc_reg(s, insn); 14080 break; 14081 case 0x7: 14082 case 0xf: /* Data processing - SIMD and floating point */ 14083 disas_data_proc_simd_fp(s, insn); 14084 break; 14085 default: 14086 unallocated_encoding(s); 14087 break; 14088 } 14089 } 14090 14091 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14092 CPUState *cpu) 14093 { 14094 DisasContext *dc = container_of(dcbase, DisasContext, base); 14095 CPUARMState *env = cpu_env(cpu); 14096 ARMCPU *arm_cpu = env_archcpu(env); 14097 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14098 int bound, core_mmu_idx; 14099 14100 dc->isar = &arm_cpu->isar; 14101 dc->condjmp = 0; 14102 dc->pc_save = dc->base.pc_first; 14103 dc->aarch64 = true; 14104 dc->thumb = false; 14105 dc->sctlr_b = 0; 14106 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14107 dc->condexec_mask = 0; 14108 dc->condexec_cond = 0; 14109 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14110 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14111 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14112 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14113 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14114 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14115 #if !defined(CONFIG_USER_ONLY) 14116 dc->user = (dc->current_el == 0); 14117 #endif 14118 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14119 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14120 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14121 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14122 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14123 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14124 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14125 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14126 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14127 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14128 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14129 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14130 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14131 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14132 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14133 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14134 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14135 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14136 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14137 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14138 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14139 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14140 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14141 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 14142 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 14143 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 14144 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 14145 dc->vec_len = 0; 14146 dc->vec_stride = 0; 14147 dc->cp_regs = arm_cpu->cp_regs; 14148 dc->features = env->features; 14149 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14150 dc->gm_blocksize = arm_cpu->gm_blocksize; 14151 14152 #ifdef CONFIG_USER_ONLY 14153 /* In sve_probe_page, we assume TBI is enabled. */ 14154 tcg_debug_assert(dc->tbid & 1); 14155 #endif 14156 14157 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14158 14159 /* Single step state. The code-generation logic here is: 14160 * SS_ACTIVE == 0: 14161 * generate code with no special handling for single-stepping (except 14162 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14163 * this happens anyway because those changes are all system register or 14164 * PSTATE writes). 14165 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14166 * emit code for one insn 14167 * emit code to clear PSTATE.SS 14168 * emit code to generate software step exception for completed step 14169 * end TB (as usual for having generated an exception) 14170 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14171 * emit code to generate a software step exception 14172 * end the TB 14173 */ 14174 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14175 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14176 dc->is_ldex = false; 14177 14178 /* Bound the number of insns to execute to those left on the page. */ 14179 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14180 14181 /* If architectural single step active, limit to 1. */ 14182 if (dc->ss_active) { 14183 bound = 1; 14184 } 14185 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14186 } 14187 14188 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14189 { 14190 } 14191 14192 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14193 { 14194 DisasContext *dc = container_of(dcbase, DisasContext, base); 14195 target_ulong pc_arg = dc->base.pc_next; 14196 14197 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14198 pc_arg &= ~TARGET_PAGE_MASK; 14199 } 14200 tcg_gen_insn_start(pc_arg, 0, 0); 14201 dc->insn_start_updated = false; 14202 } 14203 14204 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14205 { 14206 DisasContext *s = container_of(dcbase, DisasContext, base); 14207 CPUARMState *env = cpu_env(cpu); 14208 uint64_t pc = s->base.pc_next; 14209 uint32_t insn; 14210 14211 /* Singlestep exceptions have the highest priority. */ 14212 if (s->ss_active && !s->pstate_ss) { 14213 /* Singlestep state is Active-pending. 14214 * If we're in this state at the start of a TB then either 14215 * a) we just took an exception to an EL which is being debugged 14216 * and this is the first insn in the exception handler 14217 * b) debug exceptions were masked and we just unmasked them 14218 * without changing EL (eg by clearing PSTATE.D) 14219 * In either case we're going to take a swstep exception in the 14220 * "did not step an insn" case, and so the syndrome ISV and EX 14221 * bits should be zero. 14222 */ 14223 assert(s->base.num_insns == 1); 14224 gen_swstep_exception(s, 0, 0); 14225 s->base.is_jmp = DISAS_NORETURN; 14226 s->base.pc_next = pc + 4; 14227 return; 14228 } 14229 14230 if (pc & 3) { 14231 /* 14232 * PC alignment fault. This has priority over the instruction abort 14233 * that we would receive from a translation fault via arm_ldl_code. 14234 * This should only be possible after an indirect branch, at the 14235 * start of the TB. 14236 */ 14237 assert(s->base.num_insns == 1); 14238 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14239 s->base.is_jmp = DISAS_NORETURN; 14240 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14241 return; 14242 } 14243 14244 s->pc_curr = pc; 14245 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14246 s->insn = insn; 14247 s->base.pc_next = pc + 4; 14248 14249 s->fp_access_checked = false; 14250 s->sve_access_checked = false; 14251 14252 if (s->pstate_il) { 14253 /* 14254 * Illegal execution state. This has priority over BTI 14255 * exceptions, but comes after instruction abort exceptions. 14256 */ 14257 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14258 return; 14259 } 14260 14261 if (dc_isar_feature(aa64_bti, s)) { 14262 if (s->base.num_insns == 1) { 14263 /* 14264 * At the first insn of the TB, compute s->guarded_page. 14265 * We delayed computing this until successfully reading 14266 * the first insn of the TB, above. This (mostly) ensures 14267 * that the softmmu tlb entry has been populated, and the 14268 * page table GP bit is available. 14269 * 14270 * Note that we need to compute this even if btype == 0, 14271 * because this value is used for BR instructions later 14272 * where ENV is not available. 14273 */ 14274 s->guarded_page = is_guarded_page(env, s); 14275 14276 /* First insn can have btype set to non-zero. */ 14277 tcg_debug_assert(s->btype >= 0); 14278 14279 /* 14280 * Note that the Branch Target Exception has fairly high 14281 * priority -- below debugging exceptions but above most 14282 * everything else. This allows us to handle this now 14283 * instead of waiting until the insn is otherwise decoded. 14284 */ 14285 if (s->btype != 0 14286 && s->guarded_page 14287 && !btype_destination_ok(insn, s->bt, s->btype)) { 14288 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14289 return; 14290 } 14291 } else { 14292 /* Not the first insn: btype must be 0. */ 14293 tcg_debug_assert(s->btype == 0); 14294 } 14295 } 14296 14297 s->is_nonstreaming = false; 14298 if (s->sme_trap_nonstreaming) { 14299 disas_sme_fa64(s, insn); 14300 } 14301 14302 if (!disas_a64(s, insn) && 14303 !disas_sme(s, insn) && 14304 !disas_sve(s, insn)) { 14305 disas_a64_legacy(s, insn); 14306 } 14307 14308 /* 14309 * After execution of most insns, btype is reset to 0. 14310 * Note that we set btype == -1 when the insn sets btype. 14311 */ 14312 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14313 reset_btype(s); 14314 } 14315 } 14316 14317 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14318 { 14319 DisasContext *dc = container_of(dcbase, DisasContext, base); 14320 14321 if (unlikely(dc->ss_active)) { 14322 /* Note that this means single stepping WFI doesn't halt the CPU. 14323 * For conditional branch insns this is harmless unreachable code as 14324 * gen_goto_tb() has already handled emitting the debug exception 14325 * (and thus a tb-jump is not possible when singlestepping). 14326 */ 14327 switch (dc->base.is_jmp) { 14328 default: 14329 gen_a64_update_pc(dc, 4); 14330 /* fall through */ 14331 case DISAS_EXIT: 14332 case DISAS_JUMP: 14333 gen_step_complete_exception(dc); 14334 break; 14335 case DISAS_NORETURN: 14336 break; 14337 } 14338 } else { 14339 switch (dc->base.is_jmp) { 14340 case DISAS_NEXT: 14341 case DISAS_TOO_MANY: 14342 gen_goto_tb(dc, 1, 4); 14343 break; 14344 default: 14345 case DISAS_UPDATE_EXIT: 14346 gen_a64_update_pc(dc, 4); 14347 /* fall through */ 14348 case DISAS_EXIT: 14349 tcg_gen_exit_tb(NULL, 0); 14350 break; 14351 case DISAS_UPDATE_NOCHAIN: 14352 gen_a64_update_pc(dc, 4); 14353 /* fall through */ 14354 case DISAS_JUMP: 14355 tcg_gen_lookup_and_goto_ptr(); 14356 break; 14357 case DISAS_NORETURN: 14358 case DISAS_SWI: 14359 break; 14360 case DISAS_WFE: 14361 gen_a64_update_pc(dc, 4); 14362 gen_helper_wfe(tcg_env); 14363 break; 14364 case DISAS_YIELD: 14365 gen_a64_update_pc(dc, 4); 14366 gen_helper_yield(tcg_env); 14367 break; 14368 case DISAS_WFI: 14369 /* 14370 * This is a special case because we don't want to just halt 14371 * the CPU if trying to debug across a WFI. 14372 */ 14373 gen_a64_update_pc(dc, 4); 14374 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14375 /* 14376 * The helper doesn't necessarily throw an exception, but we 14377 * must go back to the main loop to check for interrupts anyway. 14378 */ 14379 tcg_gen_exit_tb(NULL, 0); 14380 break; 14381 } 14382 } 14383 } 14384 14385 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14386 CPUState *cpu, FILE *logfile) 14387 { 14388 DisasContext *dc = container_of(dcbase, DisasContext, base); 14389 14390 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14391 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14392 } 14393 14394 const TranslatorOps aarch64_translator_ops = { 14395 .init_disas_context = aarch64_tr_init_disas_context, 14396 .tb_start = aarch64_tr_tb_start, 14397 .insn_start = aarch64_tr_insn_start, 14398 .translate_insn = aarch64_tr_translate_insn, 14399 .tb_stop = aarch64_tr_tb_stop, 14400 .disas_log = aarch64_tr_disas_log, 14401 }; 14402