1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->trap_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->trap_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2040 { 2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2042 return false; 2043 } 2044 if (sme_access_check(s)) { 2045 int old = s->pstate_sm | (s->pstate_za << 1); 2046 int new = a->imm * 3; 2047 2048 if ((old ^ new) & a->mask) { 2049 /* At least one bit changes. */ 2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2051 tcg_constant_i32(a->mask)); 2052 s->base.is_jmp = DISAS_TOO_MANY; 2053 } 2054 } 2055 return true; 2056 } 2057 2058 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2059 { 2060 TCGv_i32 tmp = tcg_temp_new_i32(); 2061 TCGv_i32 nzcv = tcg_temp_new_i32(); 2062 2063 /* build bit 31, N */ 2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2065 /* build bit 30, Z */ 2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2068 /* build bit 29, C */ 2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2070 /* build bit 28, V */ 2071 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2073 /* generate result */ 2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2075 } 2076 2077 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* take NZCV from R[t] */ 2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2083 2084 /* bit 31, N */ 2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2086 /* bit 30, Z */ 2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2089 /* bit 29, C */ 2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2092 /* bit 28, V */ 2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2095 } 2096 2097 static void gen_sysreg_undef(DisasContext *s, bool isread, 2098 uint8_t op0, uint8_t op1, uint8_t op2, 2099 uint8_t crn, uint8_t crm, uint8_t rt) 2100 { 2101 /* 2102 * Generate code to emit an UNDEF with correct syndrome 2103 * information for a failed system register access. 2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2105 * but if FEAT_IDST is implemented then read accesses to registers 2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2107 * syndrome. 2108 */ 2109 uint32_t syndrome; 2110 2111 if (isread && dc_isar_feature(aa64_ids, s) && 2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2114 } else { 2115 syndrome = syn_uncategorized(); 2116 } 2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2118 } 2119 2120 /* MRS - move from system register 2121 * MSR (register) - move to system register 2122 * SYS 2123 * SYSL 2124 * These are all essentially the same insn in 'read' and 'write' 2125 * versions, with varying op0 fields. 2126 */ 2127 static void handle_sys(DisasContext *s, bool isread, 2128 unsigned int op0, unsigned int op1, unsigned int op2, 2129 unsigned int crn, unsigned int crm, unsigned int rt) 2130 { 2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2132 crn, crm, op0, op1, op2); 2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2134 bool need_exit_tb = false; 2135 bool nv_trap_to_el2 = false; 2136 bool skip_fp_access_checks = false; 2137 TCGv_ptr tcg_ri = NULL; 2138 TCGv_i64 tcg_rt; 2139 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2140 2141 if (crn == 11 || crn == 15) { 2142 /* 2143 * Check for TIDCP trap, which must take precedence over 2144 * the UNDEF for "no such register" etc. 2145 */ 2146 switch (s->current_el) { 2147 case 0: 2148 if (dc_isar_feature(aa64_tidcp1, s)) { 2149 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2150 } 2151 break; 2152 case 1: 2153 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2154 break; 2155 } 2156 } 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 /* 2172 * FEAT_NV/NV2 handling does not do the usual FP access checks 2173 * for registers only accessible at EL2 (though it *does* do them 2174 * for registers accessible at EL1). 2175 */ 2176 skip_fp_access_checks = true; 2177 if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2178 /* 2179 * This register / instruction exists and is an EL2 register, so 2180 * we must trap to EL2 if accessed in nested virtualization EL1 2181 * instead of UNDEFing. We'll do that after the usual access checks. 2182 * (This makes a difference only for a couple of registers like 2183 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2184 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2185 * an accessfn which does nothing when called from EL1, because 2186 * the trap-to-EL3 controls which would apply to that register 2187 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2188 */ 2189 nv_trap_to_el2 = true; 2190 } else { 2191 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2192 return; 2193 } 2194 } 2195 2196 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2197 /* Emit code to perform further access permissions checks at 2198 * runtime; this may result in an exception. 2199 */ 2200 gen_a64_update_pc(s, 0); 2201 tcg_ri = tcg_temp_new_ptr(); 2202 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2203 tcg_constant_i32(key), 2204 tcg_constant_i32(syndrome), 2205 tcg_constant_i32(isread)); 2206 } else if (ri->type & ARM_CP_RAISES_EXC) { 2207 /* 2208 * The readfn or writefn might raise an exception; 2209 * synchronize the CPU state in case it does. 2210 */ 2211 gen_a64_update_pc(s, 0); 2212 } 2213 2214 if (!skip_fp_access_checks) { 2215 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2216 return; 2217 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2218 return; 2219 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2220 return; 2221 } 2222 } 2223 2224 if (nv_trap_to_el2) { 2225 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2226 return; 2227 } 2228 2229 /* Handle special cases first */ 2230 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2231 case 0: 2232 break; 2233 case ARM_CP_NOP: 2234 return; 2235 case ARM_CP_NZCV: 2236 tcg_rt = cpu_reg(s, rt); 2237 if (isread) { 2238 gen_get_nzcv(tcg_rt); 2239 } else { 2240 gen_set_nzcv(tcg_rt); 2241 } 2242 return; 2243 case ARM_CP_CURRENTEL: 2244 { 2245 /* 2246 * Reads as current EL value from pstate, which is 2247 * guaranteed to be constant by the tb flags. 2248 * For nested virt we should report EL2. 2249 */ 2250 int el = s->nv ? 2 : s->current_el; 2251 tcg_rt = cpu_reg(s, rt); 2252 tcg_gen_movi_i64(tcg_rt, el << 2); 2253 return; 2254 } 2255 case ARM_CP_DC_ZVA: 2256 /* Writes clear the aligned block of memory which rt points into. */ 2257 if (s->mte_active[0]) { 2258 int desc = 0; 2259 2260 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2261 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2262 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2263 2264 tcg_rt = tcg_temp_new_i64(); 2265 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2266 tcg_constant_i32(desc), cpu_reg(s, rt)); 2267 } else { 2268 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2269 } 2270 gen_helper_dc_zva(tcg_env, tcg_rt); 2271 return; 2272 case ARM_CP_DC_GVA: 2273 { 2274 TCGv_i64 clean_addr, tag; 2275 2276 /* 2277 * DC_GVA, like DC_ZVA, requires that we supply the original 2278 * pointer for an invalid page. Probe that address first. 2279 */ 2280 tcg_rt = cpu_reg(s, rt); 2281 clean_addr = clean_data_tbi(s, tcg_rt); 2282 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2283 2284 if (s->ata[0]) { 2285 /* Extract the tag from the register to match STZGM. */ 2286 tag = tcg_temp_new_i64(); 2287 tcg_gen_shri_i64(tag, tcg_rt, 56); 2288 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2289 } 2290 } 2291 return; 2292 case ARM_CP_DC_GZVA: 2293 { 2294 TCGv_i64 clean_addr, tag; 2295 2296 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2297 tcg_rt = cpu_reg(s, rt); 2298 clean_addr = clean_data_tbi(s, tcg_rt); 2299 gen_helper_dc_zva(tcg_env, clean_addr); 2300 2301 if (s->ata[0]) { 2302 /* Extract the tag from the register to match STZGM. */ 2303 tag = tcg_temp_new_i64(); 2304 tcg_gen_shri_i64(tag, tcg_rt, 56); 2305 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2306 } 2307 } 2308 return; 2309 default: 2310 g_assert_not_reached(); 2311 } 2312 2313 if (ri->type & ARM_CP_IO) { 2314 /* I/O operations must end the TB here (whether read or write) */ 2315 need_exit_tb = translator_io_start(&s->base); 2316 } 2317 2318 tcg_rt = cpu_reg(s, rt); 2319 2320 if (isread) { 2321 if (ri->type & ARM_CP_CONST) { 2322 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2323 } else if (ri->readfn) { 2324 if (!tcg_ri) { 2325 tcg_ri = gen_lookup_cp_reg(key); 2326 } 2327 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2328 } else { 2329 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2330 } 2331 } else { 2332 if (ri->type & ARM_CP_CONST) { 2333 /* If not forbidden by access permissions, treat as WI */ 2334 return; 2335 } else if (ri->writefn) { 2336 if (!tcg_ri) { 2337 tcg_ri = gen_lookup_cp_reg(key); 2338 } 2339 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2340 } else { 2341 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2342 } 2343 } 2344 2345 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2346 /* 2347 * A write to any coprocessor register that ends a TB 2348 * must rebuild the hflags for the next TB. 2349 */ 2350 gen_rebuild_hflags(s); 2351 /* 2352 * We default to ending the TB on a coprocessor register write, 2353 * but allow this to be suppressed by the register definition 2354 * (usually only necessary to work around guest bugs). 2355 */ 2356 need_exit_tb = true; 2357 } 2358 if (need_exit_tb) { 2359 s->base.is_jmp = DISAS_UPDATE_EXIT; 2360 } 2361 } 2362 2363 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2364 { 2365 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2366 return true; 2367 } 2368 2369 static bool trans_SVC(DisasContext *s, arg_i *a) 2370 { 2371 /* 2372 * For SVC, HVC and SMC we advance the single-step state 2373 * machine before taking the exception. This is architecturally 2374 * mandated, to ensure that single-stepping a system call 2375 * instruction works properly. 2376 */ 2377 uint32_t syndrome = syn_aa64_svc(a->imm); 2378 if (s->fgt_svc) { 2379 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2380 return true; 2381 } 2382 gen_ss_advance(s); 2383 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2384 return true; 2385 } 2386 2387 static bool trans_HVC(DisasContext *s, arg_i *a) 2388 { 2389 int target_el = s->current_el == 3 ? 3 : 2; 2390 2391 if (s->current_el == 0) { 2392 unallocated_encoding(s); 2393 return true; 2394 } 2395 /* 2396 * The pre HVC helper handles cases when HVC gets trapped 2397 * as an undefined insn by runtime configuration. 2398 */ 2399 gen_a64_update_pc(s, 0); 2400 gen_helper_pre_hvc(tcg_env); 2401 /* Architecture requires ss advance before we do the actual work */ 2402 gen_ss_advance(s); 2403 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2404 return true; 2405 } 2406 2407 static bool trans_SMC(DisasContext *s, arg_i *a) 2408 { 2409 if (s->current_el == 0) { 2410 unallocated_encoding(s); 2411 return true; 2412 } 2413 gen_a64_update_pc(s, 0); 2414 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2415 /* Architecture requires ss advance before we do the actual work */ 2416 gen_ss_advance(s); 2417 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2418 return true; 2419 } 2420 2421 static bool trans_BRK(DisasContext *s, arg_i *a) 2422 { 2423 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2424 return true; 2425 } 2426 2427 static bool trans_HLT(DisasContext *s, arg_i *a) 2428 { 2429 /* 2430 * HLT. This has two purposes. 2431 * Architecturally, it is an external halting debug instruction. 2432 * Since QEMU doesn't implement external debug, we treat this as 2433 * it is required for halting debug disabled: it will UNDEF. 2434 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2435 */ 2436 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2437 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2438 } else { 2439 unallocated_encoding(s); 2440 } 2441 return true; 2442 } 2443 2444 /* 2445 * Load/Store exclusive instructions are implemented by remembering 2446 * the value/address loaded, and seeing if these are the same 2447 * when the store is performed. This is not actually the architecturally 2448 * mandated semantics, but it works for typical guest code sequences 2449 * and avoids having to monitor regular stores. 2450 * 2451 * The store exclusive uses the atomic cmpxchg primitives to avoid 2452 * races in multi-threaded linux-user and when MTTCG softmmu is 2453 * enabled. 2454 */ 2455 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2456 int size, bool is_pair) 2457 { 2458 int idx = get_mem_index(s); 2459 TCGv_i64 dirty_addr, clean_addr; 2460 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2461 2462 s->is_ldex = true; 2463 dirty_addr = cpu_reg_sp(s, rn); 2464 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2465 2466 g_assert(size <= 3); 2467 if (is_pair) { 2468 g_assert(size >= 2); 2469 if (size == 2) { 2470 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2471 if (s->be_data == MO_LE) { 2472 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2473 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2474 } else { 2475 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2476 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2477 } 2478 } else { 2479 TCGv_i128 t16 = tcg_temp_new_i128(); 2480 2481 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2482 2483 if (s->be_data == MO_LE) { 2484 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2485 cpu_exclusive_high, t16); 2486 } else { 2487 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2488 cpu_exclusive_val, t16); 2489 } 2490 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2491 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2492 } 2493 } else { 2494 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2495 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2496 } 2497 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2498 } 2499 2500 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2501 int rn, int size, int is_pair) 2502 { 2503 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2504 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2505 * [addr] = {Rt}; 2506 * if (is_pair) { 2507 * [addr + datasize] = {Rt2}; 2508 * } 2509 * {Rd} = 0; 2510 * } else { 2511 * {Rd} = 1; 2512 * } 2513 * env->exclusive_addr = -1; 2514 */ 2515 TCGLabel *fail_label = gen_new_label(); 2516 TCGLabel *done_label = gen_new_label(); 2517 TCGv_i64 tmp, clean_addr; 2518 MemOp memop; 2519 2520 /* 2521 * FIXME: We are out of spec here. We have recorded only the address 2522 * from load_exclusive, not the entire range, and we assume that the 2523 * size of the access on both sides match. The architecture allows the 2524 * store to be smaller than the load, so long as the stored bytes are 2525 * within the range recorded by the load. 2526 */ 2527 2528 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2529 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2530 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2531 2532 /* 2533 * The write, and any associated faults, only happen if the virtual 2534 * and physical addresses pass the exclusive monitor check. These 2535 * faults are exceedingly unlikely, because normally the guest uses 2536 * the exact same address register for the load_exclusive, and we 2537 * would have recognized these faults there. 2538 * 2539 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2540 * unaligned 4-byte write within the range of an aligned 8-byte load. 2541 * With LSE2, the store would need to cross a 16-byte boundary when the 2542 * load did not, which would mean the store is outside the range 2543 * recorded for the monitor, which would have failed a corrected monitor 2544 * check above. For now, we assume no size change and retain the 2545 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2546 * 2547 * It is possible to trigger an MTE fault, by performing the load with 2548 * a virtual address with a valid tag and performing the store with the 2549 * same virtual address and a different invalid tag. 2550 */ 2551 memop = size + is_pair; 2552 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2553 memop |= MO_ALIGN; 2554 } 2555 memop = finalize_memop(s, memop); 2556 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2557 2558 tmp = tcg_temp_new_i64(); 2559 if (is_pair) { 2560 if (size == 2) { 2561 if (s->be_data == MO_LE) { 2562 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2563 } else { 2564 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2565 } 2566 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2567 cpu_exclusive_val, tmp, 2568 get_mem_index(s), memop); 2569 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2570 } else { 2571 TCGv_i128 t16 = tcg_temp_new_i128(); 2572 TCGv_i128 c16 = tcg_temp_new_i128(); 2573 TCGv_i64 a, b; 2574 2575 if (s->be_data == MO_LE) { 2576 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2577 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2578 cpu_exclusive_high); 2579 } else { 2580 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2581 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2582 cpu_exclusive_val); 2583 } 2584 2585 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2586 get_mem_index(s), memop); 2587 2588 a = tcg_temp_new_i64(); 2589 b = tcg_temp_new_i64(); 2590 if (s->be_data == MO_LE) { 2591 tcg_gen_extr_i128_i64(a, b, t16); 2592 } else { 2593 tcg_gen_extr_i128_i64(b, a, t16); 2594 } 2595 2596 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2597 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2598 tcg_gen_or_i64(tmp, a, b); 2599 2600 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2601 } 2602 } else { 2603 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2604 cpu_reg(s, rt), get_mem_index(s), memop); 2605 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2606 } 2607 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2608 tcg_gen_br(done_label); 2609 2610 gen_set_label(fail_label); 2611 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2612 gen_set_label(done_label); 2613 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2614 } 2615 2616 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2617 int rn, int size) 2618 { 2619 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2620 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2621 int memidx = get_mem_index(s); 2622 TCGv_i64 clean_addr; 2623 MemOp memop; 2624 2625 if (rn == 31) { 2626 gen_check_sp_alignment(s); 2627 } 2628 memop = check_atomic_align(s, rn, size); 2629 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2630 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2631 memidx, memop); 2632 } 2633 2634 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2635 int rn, int size) 2636 { 2637 TCGv_i64 s1 = cpu_reg(s, rs); 2638 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2639 TCGv_i64 t1 = cpu_reg(s, rt); 2640 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2641 TCGv_i64 clean_addr; 2642 int memidx = get_mem_index(s); 2643 MemOp memop; 2644 2645 if (rn == 31) { 2646 gen_check_sp_alignment(s); 2647 } 2648 2649 /* This is a single atomic access, despite the "pair". */ 2650 memop = check_atomic_align(s, rn, size + 1); 2651 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2652 2653 if (size == 2) { 2654 TCGv_i64 cmp = tcg_temp_new_i64(); 2655 TCGv_i64 val = tcg_temp_new_i64(); 2656 2657 if (s->be_data == MO_LE) { 2658 tcg_gen_concat32_i64(val, t1, t2); 2659 tcg_gen_concat32_i64(cmp, s1, s2); 2660 } else { 2661 tcg_gen_concat32_i64(val, t2, t1); 2662 tcg_gen_concat32_i64(cmp, s2, s1); 2663 } 2664 2665 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2666 2667 if (s->be_data == MO_LE) { 2668 tcg_gen_extr32_i64(s1, s2, cmp); 2669 } else { 2670 tcg_gen_extr32_i64(s2, s1, cmp); 2671 } 2672 } else { 2673 TCGv_i128 cmp = tcg_temp_new_i128(); 2674 TCGv_i128 val = tcg_temp_new_i128(); 2675 2676 if (s->be_data == MO_LE) { 2677 tcg_gen_concat_i64_i128(val, t1, t2); 2678 tcg_gen_concat_i64_i128(cmp, s1, s2); 2679 } else { 2680 tcg_gen_concat_i64_i128(val, t2, t1); 2681 tcg_gen_concat_i64_i128(cmp, s2, s1); 2682 } 2683 2684 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2685 2686 if (s->be_data == MO_LE) { 2687 tcg_gen_extr_i128_i64(s1, s2, cmp); 2688 } else { 2689 tcg_gen_extr_i128_i64(s2, s1, cmp); 2690 } 2691 } 2692 } 2693 2694 /* 2695 * Compute the ISS.SF bit for syndrome information if an exception 2696 * is taken on a load or store. This indicates whether the instruction 2697 * is accessing a 32-bit or 64-bit register. This logic is derived 2698 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2699 */ 2700 static bool ldst_iss_sf(int size, bool sign, bool ext) 2701 { 2702 2703 if (sign) { 2704 /* 2705 * Signed loads are 64 bit results if we are not going to 2706 * do a zero-extend from 32 to 64 after the load. 2707 * (For a store, sign and ext are always false.) 2708 */ 2709 return !ext; 2710 } else { 2711 /* Unsigned loads/stores work at the specified size */ 2712 return size == MO_64; 2713 } 2714 } 2715 2716 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2717 { 2718 if (a->rn == 31) { 2719 gen_check_sp_alignment(s); 2720 } 2721 if (a->lasr) { 2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2723 } 2724 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2725 return true; 2726 } 2727 2728 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2729 { 2730 if (a->rn == 31) { 2731 gen_check_sp_alignment(s); 2732 } 2733 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2734 if (a->lasr) { 2735 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2736 } 2737 return true; 2738 } 2739 2740 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2741 { 2742 TCGv_i64 clean_addr; 2743 MemOp memop; 2744 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2745 2746 /* 2747 * StoreLORelease is the same as Store-Release for QEMU, but 2748 * needs the feature-test. 2749 */ 2750 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2751 return false; 2752 } 2753 /* Generate ISS for non-exclusive accesses including LASR. */ 2754 if (a->rn == 31) { 2755 gen_check_sp_alignment(s); 2756 } 2757 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2758 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2759 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2760 true, a->rn != 31, memop); 2761 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2762 iss_sf, a->lasr); 2763 return true; 2764 } 2765 2766 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2767 { 2768 TCGv_i64 clean_addr; 2769 MemOp memop; 2770 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2771 2772 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2773 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2774 return false; 2775 } 2776 /* Generate ISS for non-exclusive accesses including LASR. */ 2777 if (a->rn == 31) { 2778 gen_check_sp_alignment(s); 2779 } 2780 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2781 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2782 false, a->rn != 31, memop); 2783 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2784 a->rt, iss_sf, a->lasr); 2785 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2786 return true; 2787 } 2788 2789 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2790 { 2791 if (a->rn == 31) { 2792 gen_check_sp_alignment(s); 2793 } 2794 if (a->lasr) { 2795 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2796 } 2797 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2798 return true; 2799 } 2800 2801 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2802 { 2803 if (a->rn == 31) { 2804 gen_check_sp_alignment(s); 2805 } 2806 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2807 if (a->lasr) { 2808 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2809 } 2810 return true; 2811 } 2812 2813 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2814 { 2815 if (!dc_isar_feature(aa64_atomics, s)) { 2816 return false; 2817 } 2818 if (((a->rt | a->rs) & 1) != 0) { 2819 return false; 2820 } 2821 2822 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2823 return true; 2824 } 2825 2826 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2827 { 2828 if (!dc_isar_feature(aa64_atomics, s)) { 2829 return false; 2830 } 2831 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2832 return true; 2833 } 2834 2835 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2836 { 2837 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2838 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2839 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2840 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2841 2842 gen_pc_plus_diff(s, clean_addr, a->imm); 2843 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2844 false, true, a->rt, iss_sf, false); 2845 return true; 2846 } 2847 2848 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2849 { 2850 /* Load register (literal), vector version */ 2851 TCGv_i64 clean_addr; 2852 MemOp memop; 2853 2854 if (!fp_access_check(s)) { 2855 return true; 2856 } 2857 memop = finalize_memop_asimd(s, a->sz); 2858 clean_addr = tcg_temp_new_i64(); 2859 gen_pc_plus_diff(s, clean_addr, a->imm); 2860 do_fp_ld(s, a->rt, clean_addr, memop); 2861 return true; 2862 } 2863 2864 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2865 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2866 uint64_t offset, bool is_store, MemOp mop) 2867 { 2868 if (a->rn == 31) { 2869 gen_check_sp_alignment(s); 2870 } 2871 2872 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2873 if (!a->p) { 2874 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2875 } 2876 2877 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2878 (a->w || a->rn != 31), 2 << a->sz, mop); 2879 } 2880 2881 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2882 TCGv_i64 dirty_addr, uint64_t offset) 2883 { 2884 if (a->w) { 2885 if (a->p) { 2886 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2887 } 2888 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2889 } 2890 } 2891 2892 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2893 { 2894 uint64_t offset = a->imm << a->sz; 2895 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2896 MemOp mop = finalize_memop(s, a->sz); 2897 2898 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2899 tcg_rt = cpu_reg(s, a->rt); 2900 tcg_rt2 = cpu_reg(s, a->rt2); 2901 /* 2902 * We built mop above for the single logical access -- rebuild it 2903 * now for the paired operation. 2904 * 2905 * With LSE2, non-sign-extending pairs are treated atomically if 2906 * aligned, and if unaligned one of the pair will be completely 2907 * within a 16-byte block and that element will be atomic. 2908 * Otherwise each element is separately atomic. 2909 * In all cases, issue one operation with the correct atomicity. 2910 */ 2911 mop = a->sz + 1; 2912 if (s->align_mem) { 2913 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2914 } 2915 mop = finalize_memop_pair(s, mop); 2916 if (a->sz == 2) { 2917 TCGv_i64 tmp = tcg_temp_new_i64(); 2918 2919 if (s->be_data == MO_LE) { 2920 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2921 } else { 2922 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2923 } 2924 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2925 } else { 2926 TCGv_i128 tmp = tcg_temp_new_i128(); 2927 2928 if (s->be_data == MO_LE) { 2929 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2930 } else { 2931 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2932 } 2933 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2934 } 2935 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2936 return true; 2937 } 2938 2939 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2940 { 2941 uint64_t offset = a->imm << a->sz; 2942 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2943 MemOp mop = finalize_memop(s, a->sz); 2944 2945 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2946 tcg_rt = cpu_reg(s, a->rt); 2947 tcg_rt2 = cpu_reg(s, a->rt2); 2948 2949 /* 2950 * We built mop above for the single logical access -- rebuild it 2951 * now for the paired operation. 2952 * 2953 * With LSE2, non-sign-extending pairs are treated atomically if 2954 * aligned, and if unaligned one of the pair will be completely 2955 * within a 16-byte block and that element will be atomic. 2956 * Otherwise each element is separately atomic. 2957 * In all cases, issue one operation with the correct atomicity. 2958 * 2959 * This treats sign-extending loads like zero-extending loads, 2960 * since that reuses the most code below. 2961 */ 2962 mop = a->sz + 1; 2963 if (s->align_mem) { 2964 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2965 } 2966 mop = finalize_memop_pair(s, mop); 2967 if (a->sz == 2) { 2968 int o2 = s->be_data == MO_LE ? 32 : 0; 2969 int o1 = o2 ^ 32; 2970 2971 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2972 if (a->sign) { 2973 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2974 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2975 } else { 2976 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2977 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2978 } 2979 } else { 2980 TCGv_i128 tmp = tcg_temp_new_i128(); 2981 2982 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2983 if (s->be_data == MO_LE) { 2984 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2985 } else { 2986 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2987 } 2988 } 2989 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2990 return true; 2991 } 2992 2993 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2994 { 2995 uint64_t offset = a->imm << a->sz; 2996 TCGv_i64 clean_addr, dirty_addr; 2997 MemOp mop; 2998 2999 if (!fp_access_check(s)) { 3000 return true; 3001 } 3002 3003 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3004 mop = finalize_memop_asimd(s, a->sz); 3005 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3006 do_fp_st(s, a->rt, clean_addr, mop); 3007 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3008 do_fp_st(s, a->rt2, clean_addr, mop); 3009 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3010 return true; 3011 } 3012 3013 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3014 { 3015 uint64_t offset = a->imm << a->sz; 3016 TCGv_i64 clean_addr, dirty_addr; 3017 MemOp mop; 3018 3019 if (!fp_access_check(s)) { 3020 return true; 3021 } 3022 3023 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3024 mop = finalize_memop_asimd(s, a->sz); 3025 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3026 do_fp_ld(s, a->rt, clean_addr, mop); 3027 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3028 do_fp_ld(s, a->rt2, clean_addr, mop); 3029 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3030 return true; 3031 } 3032 3033 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3034 { 3035 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3036 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3037 MemOp mop; 3038 TCGv_i128 tmp; 3039 3040 /* STGP only comes in one size. */ 3041 tcg_debug_assert(a->sz == MO_64); 3042 3043 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3044 return false; 3045 } 3046 3047 if (a->rn == 31) { 3048 gen_check_sp_alignment(s); 3049 } 3050 3051 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3052 if (!a->p) { 3053 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3054 } 3055 3056 clean_addr = clean_data_tbi(s, dirty_addr); 3057 tcg_rt = cpu_reg(s, a->rt); 3058 tcg_rt2 = cpu_reg(s, a->rt2); 3059 3060 /* 3061 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3062 * and one tag operation. We implement it as one single aligned 16-byte 3063 * memory operation for convenience. Note that the alignment ensures 3064 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3065 */ 3066 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3067 3068 tmp = tcg_temp_new_i128(); 3069 if (s->be_data == MO_LE) { 3070 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3071 } else { 3072 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3073 } 3074 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3075 3076 /* Perform the tag store, if tag access enabled. */ 3077 if (s->ata[0]) { 3078 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3079 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3080 } else { 3081 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3082 } 3083 } 3084 3085 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3086 return true; 3087 } 3088 3089 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3090 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3091 uint64_t offset, bool is_store, MemOp mop) 3092 { 3093 int memidx; 3094 3095 if (a->rn == 31) { 3096 gen_check_sp_alignment(s); 3097 } 3098 3099 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3100 if (!a->p) { 3101 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3102 } 3103 memidx = get_a64_user_mem_index(s, a->unpriv); 3104 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3105 a->w || a->rn != 31, 3106 mop, a->unpriv, memidx); 3107 } 3108 3109 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3110 TCGv_i64 dirty_addr, uint64_t offset) 3111 { 3112 if (a->w) { 3113 if (a->p) { 3114 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3115 } 3116 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3117 } 3118 } 3119 3120 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3121 { 3122 bool iss_sf, iss_valid = !a->w; 3123 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3124 int memidx = get_a64_user_mem_index(s, a->unpriv); 3125 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3126 3127 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3128 3129 tcg_rt = cpu_reg(s, a->rt); 3130 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3131 3132 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3133 iss_valid, a->rt, iss_sf, false); 3134 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3135 return true; 3136 } 3137 3138 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3139 { 3140 bool iss_sf, iss_valid = !a->w; 3141 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3142 int memidx = get_a64_user_mem_index(s, a->unpriv); 3143 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3144 3145 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3146 3147 tcg_rt = cpu_reg(s, a->rt); 3148 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3149 3150 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3151 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3152 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3153 return true; 3154 } 3155 3156 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3157 { 3158 TCGv_i64 clean_addr, dirty_addr; 3159 MemOp mop; 3160 3161 if (!fp_access_check(s)) { 3162 return true; 3163 } 3164 mop = finalize_memop_asimd(s, a->sz); 3165 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3166 do_fp_st(s, a->rt, clean_addr, mop); 3167 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3168 return true; 3169 } 3170 3171 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3172 { 3173 TCGv_i64 clean_addr, dirty_addr; 3174 MemOp mop; 3175 3176 if (!fp_access_check(s)) { 3177 return true; 3178 } 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3183 return true; 3184 } 3185 3186 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3187 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3188 bool is_store, MemOp memop) 3189 { 3190 TCGv_i64 tcg_rm; 3191 3192 if (a->rn == 31) { 3193 gen_check_sp_alignment(s); 3194 } 3195 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3196 3197 tcg_rm = read_cpu_reg(s, a->rm, 1); 3198 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3199 3200 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3201 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3202 } 3203 3204 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3205 { 3206 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3207 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3208 MemOp memop; 3209 3210 if (extract32(a->opt, 1, 1) == 0) { 3211 return false; 3212 } 3213 3214 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3215 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3216 tcg_rt = cpu_reg(s, a->rt); 3217 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3218 a->ext, true, a->rt, iss_sf, false); 3219 return true; 3220 } 3221 3222 static bool trans_STR(DisasContext *s, arg_ldst *a) 3223 { 3224 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3225 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3226 MemOp memop; 3227 3228 if (extract32(a->opt, 1, 1) == 0) { 3229 return false; 3230 } 3231 3232 memop = finalize_memop(s, a->sz); 3233 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3234 tcg_rt = cpu_reg(s, a->rt); 3235 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3236 return true; 3237 } 3238 3239 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3240 { 3241 TCGv_i64 clean_addr, dirty_addr; 3242 MemOp memop; 3243 3244 if (extract32(a->opt, 1, 1) == 0) { 3245 return false; 3246 } 3247 3248 if (!fp_access_check(s)) { 3249 return true; 3250 } 3251 3252 memop = finalize_memop_asimd(s, a->sz); 3253 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3254 do_fp_ld(s, a->rt, clean_addr, memop); 3255 return true; 3256 } 3257 3258 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3259 { 3260 TCGv_i64 clean_addr, dirty_addr; 3261 MemOp memop; 3262 3263 if (extract32(a->opt, 1, 1) == 0) { 3264 return false; 3265 } 3266 3267 if (!fp_access_check(s)) { 3268 return true; 3269 } 3270 3271 memop = finalize_memop_asimd(s, a->sz); 3272 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3273 do_fp_st(s, a->rt, clean_addr, memop); 3274 return true; 3275 } 3276 3277 3278 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3279 int sign, bool invert) 3280 { 3281 MemOp mop = a->sz | sign; 3282 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3283 3284 if (a->rn == 31) { 3285 gen_check_sp_alignment(s); 3286 } 3287 mop = check_atomic_align(s, a->rn, mop); 3288 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3289 a->rn != 31, mop); 3290 tcg_rs = read_cpu_reg(s, a->rs, true); 3291 tcg_rt = cpu_reg(s, a->rt); 3292 if (invert) { 3293 tcg_gen_not_i64(tcg_rs, tcg_rs); 3294 } 3295 /* 3296 * The tcg atomic primitives are all full barriers. Therefore we 3297 * can ignore the Acquire and Release bits of this instruction. 3298 */ 3299 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3300 3301 if (mop & MO_SIGN) { 3302 switch (a->sz) { 3303 case MO_8: 3304 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3305 break; 3306 case MO_16: 3307 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3308 break; 3309 case MO_32: 3310 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3311 break; 3312 case MO_64: 3313 break; 3314 default: 3315 g_assert_not_reached(); 3316 } 3317 } 3318 return true; 3319 } 3320 3321 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3322 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3323 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3324 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3325 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3326 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3327 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3328 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3329 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3330 3331 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3332 { 3333 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3334 TCGv_i64 clean_addr; 3335 MemOp mop; 3336 3337 if (!dc_isar_feature(aa64_atomics, s) || 3338 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3339 return false; 3340 } 3341 if (a->rn == 31) { 3342 gen_check_sp_alignment(s); 3343 } 3344 mop = check_atomic_align(s, a->rn, a->sz); 3345 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3346 a->rn != 31, mop); 3347 /* 3348 * LDAPR* are a special case because they are a simple load, not a 3349 * fetch-and-do-something op. 3350 * The architectural consistency requirements here are weaker than 3351 * full load-acquire (we only need "load-acquire processor consistent"), 3352 * but we choose to implement them as full LDAQ. 3353 */ 3354 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3355 true, a->rt, iss_sf, true); 3356 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3357 return true; 3358 } 3359 3360 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3361 { 3362 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3363 MemOp memop; 3364 3365 /* Load with pointer authentication */ 3366 if (!dc_isar_feature(aa64_pauth, s)) { 3367 return false; 3368 } 3369 3370 if (a->rn == 31) { 3371 gen_check_sp_alignment(s); 3372 } 3373 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3374 3375 if (s->pauth_active) { 3376 if (!a->m) { 3377 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3378 tcg_constant_i64(0)); 3379 } else { 3380 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3381 tcg_constant_i64(0)); 3382 } 3383 } 3384 3385 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3386 3387 memop = finalize_memop(s, MO_64); 3388 3389 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3390 clean_addr = gen_mte_check1(s, dirty_addr, false, 3391 a->w || a->rn != 31, memop); 3392 3393 tcg_rt = cpu_reg(s, a->rt); 3394 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3395 /* extend */ false, /* iss_valid */ !a->w, 3396 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3397 3398 if (a->w) { 3399 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3400 } 3401 return true; 3402 } 3403 3404 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3405 { 3406 TCGv_i64 clean_addr, dirty_addr; 3407 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3408 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3409 3410 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3411 return false; 3412 } 3413 3414 if (a->rn == 31) { 3415 gen_check_sp_alignment(s); 3416 } 3417 3418 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3419 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3420 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3421 clean_addr = clean_data_tbi(s, dirty_addr); 3422 3423 /* 3424 * Load-AcquirePC semantics; we implement as the slightly more 3425 * restrictive Load-Acquire. 3426 */ 3427 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3428 a->rt, iss_sf, true); 3429 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3430 return true; 3431 } 3432 3433 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3434 { 3435 TCGv_i64 clean_addr, dirty_addr; 3436 MemOp mop = a->sz; 3437 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3438 3439 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3440 return false; 3441 } 3442 3443 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3444 3445 if (a->rn == 31) { 3446 gen_check_sp_alignment(s); 3447 } 3448 3449 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3450 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3451 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3452 clean_addr = clean_data_tbi(s, dirty_addr); 3453 3454 /* Store-Release semantics */ 3455 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3456 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3457 return true; 3458 } 3459 3460 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3461 { 3462 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3463 MemOp endian, align, mop; 3464 3465 int total; /* total bytes */ 3466 int elements; /* elements per vector */ 3467 int r; 3468 int size = a->sz; 3469 3470 if (!a->p && a->rm != 0) { 3471 /* For non-postindexed accesses the Rm field must be 0 */ 3472 return false; 3473 } 3474 if (size == 3 && !a->q && a->selem != 1) { 3475 return false; 3476 } 3477 if (!fp_access_check(s)) { 3478 return true; 3479 } 3480 3481 if (a->rn == 31) { 3482 gen_check_sp_alignment(s); 3483 } 3484 3485 /* For our purposes, bytes are always little-endian. */ 3486 endian = s->be_data; 3487 if (size == 0) { 3488 endian = MO_LE; 3489 } 3490 3491 total = a->rpt * a->selem * (a->q ? 16 : 8); 3492 tcg_rn = cpu_reg_sp(s, a->rn); 3493 3494 /* 3495 * Issue the MTE check vs the logical repeat count, before we 3496 * promote consecutive little-endian elements below. 3497 */ 3498 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3499 finalize_memop_asimd(s, size)); 3500 3501 /* 3502 * Consecutive little-endian elements from a single register 3503 * can be promoted to a larger little-endian operation. 3504 */ 3505 align = MO_ALIGN; 3506 if (a->selem == 1 && endian == MO_LE) { 3507 align = pow2_align(size); 3508 size = 3; 3509 } 3510 if (!s->align_mem) { 3511 align = 0; 3512 } 3513 mop = endian | size | align; 3514 3515 elements = (a->q ? 16 : 8) >> size; 3516 tcg_ebytes = tcg_constant_i64(1 << size); 3517 for (r = 0; r < a->rpt; r++) { 3518 int e; 3519 for (e = 0; e < elements; e++) { 3520 int xs; 3521 for (xs = 0; xs < a->selem; xs++) { 3522 int tt = (a->rt + r + xs) % 32; 3523 do_vec_ld(s, tt, e, clean_addr, mop); 3524 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3525 } 3526 } 3527 } 3528 3529 /* 3530 * For non-quad operations, setting a slice of the low 64 bits of 3531 * the register clears the high 64 bits (in the ARM ARM pseudocode 3532 * this is implicit in the fact that 'rval' is a 64 bit wide 3533 * variable). For quad operations, we might still need to zero 3534 * the high bits of SVE. 3535 */ 3536 for (r = 0; r < a->rpt * a->selem; r++) { 3537 int tt = (a->rt + r) % 32; 3538 clear_vec_high(s, a->q, tt); 3539 } 3540 3541 if (a->p) { 3542 if (a->rm == 31) { 3543 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3544 } else { 3545 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3546 } 3547 } 3548 return true; 3549 } 3550 3551 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3552 { 3553 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3554 MemOp endian, align, mop; 3555 3556 int total; /* total bytes */ 3557 int elements; /* elements per vector */ 3558 int r; 3559 int size = a->sz; 3560 3561 if (!a->p && a->rm != 0) { 3562 /* For non-postindexed accesses the Rm field must be 0 */ 3563 return false; 3564 } 3565 if (size == 3 && !a->q && a->selem != 1) { 3566 return false; 3567 } 3568 if (!fp_access_check(s)) { 3569 return true; 3570 } 3571 3572 if (a->rn == 31) { 3573 gen_check_sp_alignment(s); 3574 } 3575 3576 /* For our purposes, bytes are always little-endian. */ 3577 endian = s->be_data; 3578 if (size == 0) { 3579 endian = MO_LE; 3580 } 3581 3582 total = a->rpt * a->selem * (a->q ? 16 : 8); 3583 tcg_rn = cpu_reg_sp(s, a->rn); 3584 3585 /* 3586 * Issue the MTE check vs the logical repeat count, before we 3587 * promote consecutive little-endian elements below. 3588 */ 3589 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3590 finalize_memop_asimd(s, size)); 3591 3592 /* 3593 * Consecutive little-endian elements from a single register 3594 * can be promoted to a larger little-endian operation. 3595 */ 3596 align = MO_ALIGN; 3597 if (a->selem == 1 && endian == MO_LE) { 3598 align = pow2_align(size); 3599 size = 3; 3600 } 3601 if (!s->align_mem) { 3602 align = 0; 3603 } 3604 mop = endian | size | align; 3605 3606 elements = (a->q ? 16 : 8) >> size; 3607 tcg_ebytes = tcg_constant_i64(1 << size); 3608 for (r = 0; r < a->rpt; r++) { 3609 int e; 3610 for (e = 0; e < elements; e++) { 3611 int xs; 3612 for (xs = 0; xs < a->selem; xs++) { 3613 int tt = (a->rt + r + xs) % 32; 3614 do_vec_st(s, tt, e, clean_addr, mop); 3615 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3616 } 3617 } 3618 } 3619 3620 if (a->p) { 3621 if (a->rm == 31) { 3622 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3623 } else { 3624 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3625 } 3626 } 3627 return true; 3628 } 3629 3630 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3631 { 3632 int xs, total, rt; 3633 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3634 MemOp mop; 3635 3636 if (!a->p && a->rm != 0) { 3637 return false; 3638 } 3639 if (!fp_access_check(s)) { 3640 return true; 3641 } 3642 3643 if (a->rn == 31) { 3644 gen_check_sp_alignment(s); 3645 } 3646 3647 total = a->selem << a->scale; 3648 tcg_rn = cpu_reg_sp(s, a->rn); 3649 3650 mop = finalize_memop_asimd(s, a->scale); 3651 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3652 total, mop); 3653 3654 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3655 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3656 do_vec_st(s, rt, a->index, clean_addr, mop); 3657 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3658 } 3659 3660 if (a->p) { 3661 if (a->rm == 31) { 3662 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3663 } else { 3664 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3665 } 3666 } 3667 return true; 3668 } 3669 3670 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3671 { 3672 int xs, total, rt; 3673 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3674 MemOp mop; 3675 3676 if (!a->p && a->rm != 0) { 3677 return false; 3678 } 3679 if (!fp_access_check(s)) { 3680 return true; 3681 } 3682 3683 if (a->rn == 31) { 3684 gen_check_sp_alignment(s); 3685 } 3686 3687 total = a->selem << a->scale; 3688 tcg_rn = cpu_reg_sp(s, a->rn); 3689 3690 mop = finalize_memop_asimd(s, a->scale); 3691 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3692 total, mop); 3693 3694 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3695 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3696 do_vec_ld(s, rt, a->index, clean_addr, mop); 3697 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3698 } 3699 3700 if (a->p) { 3701 if (a->rm == 31) { 3702 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3703 } else { 3704 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3705 } 3706 } 3707 return true; 3708 } 3709 3710 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3711 { 3712 int xs, total, rt; 3713 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3714 MemOp mop; 3715 3716 if (!a->p && a->rm != 0) { 3717 return false; 3718 } 3719 if (!fp_access_check(s)) { 3720 return true; 3721 } 3722 3723 if (a->rn == 31) { 3724 gen_check_sp_alignment(s); 3725 } 3726 3727 total = a->selem << a->scale; 3728 tcg_rn = cpu_reg_sp(s, a->rn); 3729 3730 mop = finalize_memop_asimd(s, a->scale); 3731 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3732 total, mop); 3733 3734 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3735 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3736 /* Load and replicate to all elements */ 3737 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3738 3739 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3740 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3741 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3742 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3743 } 3744 3745 if (a->p) { 3746 if (a->rm == 31) { 3747 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3748 } else { 3749 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3750 } 3751 } 3752 return true; 3753 } 3754 3755 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3756 { 3757 TCGv_i64 addr, clean_addr, tcg_rt; 3758 int size = 4 << s->dcz_blocksize; 3759 3760 if (!dc_isar_feature(aa64_mte, s)) { 3761 return false; 3762 } 3763 if (s->current_el == 0) { 3764 return false; 3765 } 3766 3767 if (a->rn == 31) { 3768 gen_check_sp_alignment(s); 3769 } 3770 3771 addr = read_cpu_reg_sp(s, a->rn, true); 3772 tcg_gen_addi_i64(addr, addr, a->imm); 3773 tcg_rt = cpu_reg(s, a->rt); 3774 3775 if (s->ata[0]) { 3776 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3777 } 3778 /* 3779 * The non-tags portion of STZGM is mostly like DC_ZVA, 3780 * except the alignment happens before the access. 3781 */ 3782 clean_addr = clean_data_tbi(s, addr); 3783 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3784 gen_helper_dc_zva(tcg_env, clean_addr); 3785 return true; 3786 } 3787 3788 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3789 { 3790 TCGv_i64 addr, clean_addr, tcg_rt; 3791 3792 if (!dc_isar_feature(aa64_mte, s)) { 3793 return false; 3794 } 3795 if (s->current_el == 0) { 3796 return false; 3797 } 3798 3799 if (a->rn == 31) { 3800 gen_check_sp_alignment(s); 3801 } 3802 3803 addr = read_cpu_reg_sp(s, a->rn, true); 3804 tcg_gen_addi_i64(addr, addr, a->imm); 3805 tcg_rt = cpu_reg(s, a->rt); 3806 3807 if (s->ata[0]) { 3808 gen_helper_stgm(tcg_env, addr, tcg_rt); 3809 } else { 3810 MMUAccessType acc = MMU_DATA_STORE; 3811 int size = 4 << s->gm_blocksize; 3812 3813 clean_addr = clean_data_tbi(s, addr); 3814 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3815 gen_probe_access(s, clean_addr, acc, size); 3816 } 3817 return true; 3818 } 3819 3820 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3821 { 3822 TCGv_i64 addr, clean_addr, tcg_rt; 3823 3824 if (!dc_isar_feature(aa64_mte, s)) { 3825 return false; 3826 } 3827 if (s->current_el == 0) { 3828 return false; 3829 } 3830 3831 if (a->rn == 31) { 3832 gen_check_sp_alignment(s); 3833 } 3834 3835 addr = read_cpu_reg_sp(s, a->rn, true); 3836 tcg_gen_addi_i64(addr, addr, a->imm); 3837 tcg_rt = cpu_reg(s, a->rt); 3838 3839 if (s->ata[0]) { 3840 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3841 } else { 3842 MMUAccessType acc = MMU_DATA_LOAD; 3843 int size = 4 << s->gm_blocksize; 3844 3845 clean_addr = clean_data_tbi(s, addr); 3846 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3847 gen_probe_access(s, clean_addr, acc, size); 3848 /* The result tags are zeros. */ 3849 tcg_gen_movi_i64(tcg_rt, 0); 3850 } 3851 return true; 3852 } 3853 3854 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3855 { 3856 TCGv_i64 addr, clean_addr, tcg_rt; 3857 3858 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3859 return false; 3860 } 3861 3862 if (a->rn == 31) { 3863 gen_check_sp_alignment(s); 3864 } 3865 3866 addr = read_cpu_reg_sp(s, a->rn, true); 3867 if (!a->p) { 3868 /* pre-index or signed offset */ 3869 tcg_gen_addi_i64(addr, addr, a->imm); 3870 } 3871 3872 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3873 tcg_rt = cpu_reg(s, a->rt); 3874 if (s->ata[0]) { 3875 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3876 } else { 3877 /* 3878 * Tag access disabled: we must check for aborts on the load 3879 * load from [rn+offset], and then insert a 0 tag into rt. 3880 */ 3881 clean_addr = clean_data_tbi(s, addr); 3882 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3883 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3884 } 3885 3886 if (a->w) { 3887 /* pre-index or post-index */ 3888 if (a->p) { 3889 /* post-index */ 3890 tcg_gen_addi_i64(addr, addr, a->imm); 3891 } 3892 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3893 } 3894 return true; 3895 } 3896 3897 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3898 { 3899 TCGv_i64 addr, tcg_rt; 3900 3901 if (a->rn == 31) { 3902 gen_check_sp_alignment(s); 3903 } 3904 3905 addr = read_cpu_reg_sp(s, a->rn, true); 3906 if (!a->p) { 3907 /* pre-index or signed offset */ 3908 tcg_gen_addi_i64(addr, addr, a->imm); 3909 } 3910 tcg_rt = cpu_reg_sp(s, a->rt); 3911 if (!s->ata[0]) { 3912 /* 3913 * For STG and ST2G, we need to check alignment and probe memory. 3914 * TODO: For STZG and STZ2G, we could rely on the stores below, 3915 * at least for system mode; user-only won't enforce alignment. 3916 */ 3917 if (is_pair) { 3918 gen_helper_st2g_stub(tcg_env, addr); 3919 } else { 3920 gen_helper_stg_stub(tcg_env, addr); 3921 } 3922 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3923 if (is_pair) { 3924 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 3925 } else { 3926 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 3927 } 3928 } else { 3929 if (is_pair) { 3930 gen_helper_st2g(tcg_env, addr, tcg_rt); 3931 } else { 3932 gen_helper_stg(tcg_env, addr, tcg_rt); 3933 } 3934 } 3935 3936 if (is_zero) { 3937 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3938 TCGv_i64 zero64 = tcg_constant_i64(0); 3939 TCGv_i128 zero128 = tcg_temp_new_i128(); 3940 int mem_index = get_mem_index(s); 3941 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3942 3943 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3944 3945 /* This is 1 or 2 atomic 16-byte operations. */ 3946 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3947 if (is_pair) { 3948 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3949 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3950 } 3951 } 3952 3953 if (a->w) { 3954 /* pre-index or post-index */ 3955 if (a->p) { 3956 /* post-index */ 3957 tcg_gen_addi_i64(addr, addr, a->imm); 3958 } 3959 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3960 } 3961 return true; 3962 } 3963 3964 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3965 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3966 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3967 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3968 3969 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 3970 3971 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 3972 bool is_setg, SetFn fn) 3973 { 3974 int memidx; 3975 uint32_t syndrome, desc = 0; 3976 3977 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 3978 return false; 3979 } 3980 3981 /* 3982 * UNPREDICTABLE cases: we choose to UNDEF, which allows 3983 * us to pull this check before the CheckMOPSEnabled() test 3984 * (which we do in the helper function) 3985 */ 3986 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 3987 a->rd == 31 || a->rn == 31) { 3988 return false; 3989 } 3990 3991 memidx = get_a64_user_mem_index(s, a->unpriv); 3992 3993 /* 3994 * We pass option_a == true, matching our implementation; 3995 * we pass wrong_option == false: helper function may set that bit. 3996 */ 3997 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 3998 is_epilogue, false, true, a->rd, a->rs, a->rn); 3999 4000 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4001 /* We may need to do MTE tag checking, so assemble the descriptor */ 4002 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4003 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4004 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4005 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4006 } 4007 /* The helper function always needs the memidx even with MTE disabled */ 4008 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4009 4010 /* 4011 * The helper needs the register numbers, but since they're in 4012 * the syndrome anyway, we let it extract them from there rather 4013 * than passing in an extra three integer arguments. 4014 */ 4015 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4016 return true; 4017 } 4018 4019 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4020 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4021 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4022 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4023 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4024 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4025 4026 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4027 4028 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4029 { 4030 int rmemidx, wmemidx; 4031 uint32_t syndrome, rdesc = 0, wdesc = 0; 4032 bool wunpriv = extract32(a->options, 0, 1); 4033 bool runpriv = extract32(a->options, 1, 1); 4034 4035 /* 4036 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4037 * us to pull this check before the CheckMOPSEnabled() test 4038 * (which we do in the helper function) 4039 */ 4040 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4041 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4042 return false; 4043 } 4044 4045 rmemidx = get_a64_user_mem_index(s, runpriv); 4046 wmemidx = get_a64_user_mem_index(s, wunpriv); 4047 4048 /* 4049 * We pass option_a == true, matching our implementation; 4050 * we pass wrong_option == false: helper function may set that bit. 4051 */ 4052 syndrome = syn_mop(false, false, a->options, is_epilogue, 4053 false, true, a->rd, a->rs, a->rn); 4054 4055 /* If we need to do MTE tag checking, assemble the descriptors */ 4056 if (s->mte_active[runpriv]) { 4057 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4058 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4059 } 4060 if (s->mte_active[wunpriv]) { 4061 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4062 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4063 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4064 } 4065 /* The helper function needs these parts of the descriptor regardless */ 4066 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4067 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4068 4069 /* 4070 * The helper needs the register numbers, but since they're in 4071 * the syndrome anyway, we let it extract them from there rather 4072 * than passing in an extra three integer arguments. 4073 */ 4074 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4075 tcg_constant_i32(rdesc)); 4076 return true; 4077 } 4078 4079 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4080 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4081 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4082 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4083 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4084 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4085 4086 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4087 4088 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4089 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4090 { 4091 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4092 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4093 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4094 4095 fn(tcg_rd, tcg_rn, tcg_imm); 4096 if (!a->sf) { 4097 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4098 } 4099 return true; 4100 } 4101 4102 /* 4103 * PC-rel. addressing 4104 */ 4105 4106 static bool trans_ADR(DisasContext *s, arg_ri *a) 4107 { 4108 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4109 return true; 4110 } 4111 4112 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4113 { 4114 int64_t offset = (int64_t)a->imm << 12; 4115 4116 /* The page offset is ok for CF_PCREL. */ 4117 offset -= s->pc_curr & 0xfff; 4118 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4119 return true; 4120 } 4121 4122 /* 4123 * Add/subtract (immediate) 4124 */ 4125 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4126 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4127 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4128 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4129 4130 /* 4131 * Add/subtract (immediate, with tags) 4132 */ 4133 4134 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4135 bool sub_op) 4136 { 4137 TCGv_i64 tcg_rn, tcg_rd; 4138 int imm; 4139 4140 imm = a->uimm6 << LOG2_TAG_GRANULE; 4141 if (sub_op) { 4142 imm = -imm; 4143 } 4144 4145 tcg_rn = cpu_reg_sp(s, a->rn); 4146 tcg_rd = cpu_reg_sp(s, a->rd); 4147 4148 if (s->ata[0]) { 4149 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4150 tcg_constant_i32(imm), 4151 tcg_constant_i32(a->uimm4)); 4152 } else { 4153 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4154 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4155 } 4156 return true; 4157 } 4158 4159 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4160 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4161 4162 /* The input should be a value in the bottom e bits (with higher 4163 * bits zero); returns that value replicated into every element 4164 * of size e in a 64 bit integer. 4165 */ 4166 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4167 { 4168 assert(e != 0); 4169 while (e < 64) { 4170 mask |= mask << e; 4171 e *= 2; 4172 } 4173 return mask; 4174 } 4175 4176 /* 4177 * Logical (immediate) 4178 */ 4179 4180 /* 4181 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4182 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4183 * value (ie should cause a guest UNDEF exception), and true if they are 4184 * valid, in which case the decoded bit pattern is written to result. 4185 */ 4186 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4187 unsigned int imms, unsigned int immr) 4188 { 4189 uint64_t mask; 4190 unsigned e, levels, s, r; 4191 int len; 4192 4193 assert(immn < 2 && imms < 64 && immr < 64); 4194 4195 /* The bit patterns we create here are 64 bit patterns which 4196 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4197 * 64 bits each. Each element contains the same value: a run 4198 * of between 1 and e-1 non-zero bits, rotated within the 4199 * element by between 0 and e-1 bits. 4200 * 4201 * The element size and run length are encoded into immn (1 bit) 4202 * and imms (6 bits) as follows: 4203 * 64 bit elements: immn = 1, imms = <length of run - 1> 4204 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4205 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4206 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4207 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4208 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4209 * Notice that immn = 0, imms = 11111x is the only combination 4210 * not covered by one of the above options; this is reserved. 4211 * Further, <length of run - 1> all-ones is a reserved pattern. 4212 * 4213 * In all cases the rotation is by immr % e (and immr is 6 bits). 4214 */ 4215 4216 /* First determine the element size */ 4217 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4218 if (len < 1) { 4219 /* This is the immn == 0, imms == 0x11111x case */ 4220 return false; 4221 } 4222 e = 1 << len; 4223 4224 levels = e - 1; 4225 s = imms & levels; 4226 r = immr & levels; 4227 4228 if (s == levels) { 4229 /* <length of run - 1> mustn't be all-ones. */ 4230 return false; 4231 } 4232 4233 /* Create the value of one element: s+1 set bits rotated 4234 * by r within the element (which is e bits wide)... 4235 */ 4236 mask = MAKE_64BIT_MASK(0, s + 1); 4237 if (r) { 4238 mask = (mask >> r) | (mask << (e - r)); 4239 mask &= MAKE_64BIT_MASK(0, e); 4240 } 4241 /* ...then replicate the element over the whole 64 bit value */ 4242 mask = bitfield_replicate(mask, e); 4243 *result = mask; 4244 return true; 4245 } 4246 4247 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4248 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4249 { 4250 TCGv_i64 tcg_rd, tcg_rn; 4251 uint64_t imm; 4252 4253 /* Some immediate field values are reserved. */ 4254 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4255 extract32(a->dbm, 0, 6), 4256 extract32(a->dbm, 6, 6))) { 4257 return false; 4258 } 4259 if (!a->sf) { 4260 imm &= 0xffffffffull; 4261 } 4262 4263 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4264 tcg_rn = cpu_reg(s, a->rn); 4265 4266 fn(tcg_rd, tcg_rn, imm); 4267 if (set_cc) { 4268 gen_logic_CC(a->sf, tcg_rd); 4269 } 4270 if (!a->sf) { 4271 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4272 } 4273 return true; 4274 } 4275 4276 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4277 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4278 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4279 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4280 4281 /* 4282 * Move wide (immediate) 4283 */ 4284 4285 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4286 { 4287 int pos = a->hw << 4; 4288 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4289 return true; 4290 } 4291 4292 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4293 { 4294 int pos = a->hw << 4; 4295 uint64_t imm = a->imm; 4296 4297 imm = ~(imm << pos); 4298 if (!a->sf) { 4299 imm = (uint32_t)imm; 4300 } 4301 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4302 return true; 4303 } 4304 4305 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4306 { 4307 int pos = a->hw << 4; 4308 TCGv_i64 tcg_rd, tcg_im; 4309 4310 tcg_rd = cpu_reg(s, a->rd); 4311 tcg_im = tcg_constant_i64(a->imm); 4312 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4313 if (!a->sf) { 4314 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4315 } 4316 return true; 4317 } 4318 4319 /* 4320 * Bitfield 4321 */ 4322 4323 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4324 { 4325 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4326 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4327 unsigned int bitsize = a->sf ? 64 : 32; 4328 unsigned int ri = a->immr; 4329 unsigned int si = a->imms; 4330 unsigned int pos, len; 4331 4332 if (si >= ri) { 4333 /* Wd<s-r:0> = Wn<s:r> */ 4334 len = (si - ri) + 1; 4335 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4336 if (!a->sf) { 4337 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4338 } 4339 } else { 4340 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4341 len = si + 1; 4342 pos = (bitsize - ri) & (bitsize - 1); 4343 4344 if (len < ri) { 4345 /* 4346 * Sign extend the destination field from len to fill the 4347 * balance of the word. Let the deposit below insert all 4348 * of those sign bits. 4349 */ 4350 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4351 len = ri; 4352 } 4353 4354 /* 4355 * We start with zero, and we haven't modified any bits outside 4356 * bitsize, therefore no final zero-extension is unneeded for !sf. 4357 */ 4358 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4359 } 4360 return true; 4361 } 4362 4363 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4364 { 4365 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4366 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4367 unsigned int bitsize = a->sf ? 64 : 32; 4368 unsigned int ri = a->immr; 4369 unsigned int si = a->imms; 4370 unsigned int pos, len; 4371 4372 tcg_rd = cpu_reg(s, a->rd); 4373 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4374 4375 if (si >= ri) { 4376 /* Wd<s-r:0> = Wn<s:r> */ 4377 len = (si - ri) + 1; 4378 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4379 } else { 4380 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4381 len = si + 1; 4382 pos = (bitsize - ri) & (bitsize - 1); 4383 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4384 } 4385 return true; 4386 } 4387 4388 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4389 { 4390 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4391 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4392 unsigned int bitsize = a->sf ? 64 : 32; 4393 unsigned int ri = a->immr; 4394 unsigned int si = a->imms; 4395 unsigned int pos, len; 4396 4397 tcg_rd = cpu_reg(s, a->rd); 4398 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4399 4400 if (si >= ri) { 4401 /* Wd<s-r:0> = Wn<s:r> */ 4402 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4403 len = (si - ri) + 1; 4404 pos = 0; 4405 } else { 4406 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4407 len = si + 1; 4408 pos = (bitsize - ri) & (bitsize - 1); 4409 } 4410 4411 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4412 if (!a->sf) { 4413 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4414 } 4415 return true; 4416 } 4417 4418 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4419 { 4420 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4421 4422 tcg_rd = cpu_reg(s, a->rd); 4423 4424 if (unlikely(a->imm == 0)) { 4425 /* 4426 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4427 * so an extract from bit 0 is a special case. 4428 */ 4429 if (a->sf) { 4430 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4431 } else { 4432 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4433 } 4434 } else { 4435 tcg_rm = cpu_reg(s, a->rm); 4436 tcg_rn = cpu_reg(s, a->rn); 4437 4438 if (a->sf) { 4439 /* Specialization to ROR happens in EXTRACT2. */ 4440 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4441 } else { 4442 TCGv_i32 t0 = tcg_temp_new_i32(); 4443 4444 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4445 if (a->rm == a->rn) { 4446 tcg_gen_rotri_i32(t0, t0, a->imm); 4447 } else { 4448 TCGv_i32 t1 = tcg_temp_new_i32(); 4449 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4450 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4451 } 4452 tcg_gen_extu_i32_i64(tcg_rd, t0); 4453 } 4454 } 4455 return true; 4456 } 4457 4458 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4459 * Note that it is the caller's responsibility to ensure that the 4460 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4461 * mandated semantics for out of range shifts. 4462 */ 4463 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4464 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4465 { 4466 switch (shift_type) { 4467 case A64_SHIFT_TYPE_LSL: 4468 tcg_gen_shl_i64(dst, src, shift_amount); 4469 break; 4470 case A64_SHIFT_TYPE_LSR: 4471 tcg_gen_shr_i64(dst, src, shift_amount); 4472 break; 4473 case A64_SHIFT_TYPE_ASR: 4474 if (!sf) { 4475 tcg_gen_ext32s_i64(dst, src); 4476 } 4477 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4478 break; 4479 case A64_SHIFT_TYPE_ROR: 4480 if (sf) { 4481 tcg_gen_rotr_i64(dst, src, shift_amount); 4482 } else { 4483 TCGv_i32 t0, t1; 4484 t0 = tcg_temp_new_i32(); 4485 t1 = tcg_temp_new_i32(); 4486 tcg_gen_extrl_i64_i32(t0, src); 4487 tcg_gen_extrl_i64_i32(t1, shift_amount); 4488 tcg_gen_rotr_i32(t0, t0, t1); 4489 tcg_gen_extu_i32_i64(dst, t0); 4490 } 4491 break; 4492 default: 4493 assert(FALSE); /* all shift types should be handled */ 4494 break; 4495 } 4496 4497 if (!sf) { /* zero extend final result */ 4498 tcg_gen_ext32u_i64(dst, dst); 4499 } 4500 } 4501 4502 /* Shift a TCGv src by immediate, put result in dst. 4503 * The shift amount must be in range (this should always be true as the 4504 * relevant instructions will UNDEF on bad shift immediates). 4505 */ 4506 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4507 enum a64_shift_type shift_type, unsigned int shift_i) 4508 { 4509 assert(shift_i < (sf ? 64 : 32)); 4510 4511 if (shift_i == 0) { 4512 tcg_gen_mov_i64(dst, src); 4513 } else { 4514 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4515 } 4516 } 4517 4518 /* Logical (shifted register) 4519 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4520 * +----+-----+-----------+-------+---+------+--------+------+------+ 4521 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4522 * +----+-----+-----------+-------+---+------+--------+------+------+ 4523 */ 4524 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4525 { 4526 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4527 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4528 4529 sf = extract32(insn, 31, 1); 4530 opc = extract32(insn, 29, 2); 4531 shift_type = extract32(insn, 22, 2); 4532 invert = extract32(insn, 21, 1); 4533 rm = extract32(insn, 16, 5); 4534 shift_amount = extract32(insn, 10, 6); 4535 rn = extract32(insn, 5, 5); 4536 rd = extract32(insn, 0, 5); 4537 4538 if (!sf && (shift_amount & (1 << 5))) { 4539 unallocated_encoding(s); 4540 return; 4541 } 4542 4543 tcg_rd = cpu_reg(s, rd); 4544 4545 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4546 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4547 * register-register MOV and MVN, so it is worth special casing. 4548 */ 4549 tcg_rm = cpu_reg(s, rm); 4550 if (invert) { 4551 tcg_gen_not_i64(tcg_rd, tcg_rm); 4552 if (!sf) { 4553 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4554 } 4555 } else { 4556 if (sf) { 4557 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4558 } else { 4559 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4560 } 4561 } 4562 return; 4563 } 4564 4565 tcg_rm = read_cpu_reg(s, rm, sf); 4566 4567 if (shift_amount) { 4568 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4569 } 4570 4571 tcg_rn = cpu_reg(s, rn); 4572 4573 switch (opc | (invert << 2)) { 4574 case 0: /* AND */ 4575 case 3: /* ANDS */ 4576 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4577 break; 4578 case 1: /* ORR */ 4579 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4580 break; 4581 case 2: /* EOR */ 4582 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4583 break; 4584 case 4: /* BIC */ 4585 case 7: /* BICS */ 4586 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4587 break; 4588 case 5: /* ORN */ 4589 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4590 break; 4591 case 6: /* EON */ 4592 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4593 break; 4594 default: 4595 assert(FALSE); 4596 break; 4597 } 4598 4599 if (!sf) { 4600 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4601 } 4602 4603 if (opc == 3) { 4604 gen_logic_CC(sf, tcg_rd); 4605 } 4606 } 4607 4608 /* 4609 * Add/subtract (extended register) 4610 * 4611 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4612 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4613 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4614 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4615 * 4616 * sf: 0 -> 32bit, 1 -> 64bit 4617 * op: 0 -> add , 1 -> sub 4618 * S: 1 -> set flags 4619 * opt: 00 4620 * option: extension type (see DecodeRegExtend) 4621 * imm3: optional shift to Rm 4622 * 4623 * Rd = Rn + LSL(extend(Rm), amount) 4624 */ 4625 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4626 { 4627 int rd = extract32(insn, 0, 5); 4628 int rn = extract32(insn, 5, 5); 4629 int imm3 = extract32(insn, 10, 3); 4630 int option = extract32(insn, 13, 3); 4631 int rm = extract32(insn, 16, 5); 4632 int opt = extract32(insn, 22, 2); 4633 bool setflags = extract32(insn, 29, 1); 4634 bool sub_op = extract32(insn, 30, 1); 4635 bool sf = extract32(insn, 31, 1); 4636 4637 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4638 TCGv_i64 tcg_rd; 4639 TCGv_i64 tcg_result; 4640 4641 if (imm3 > 4 || opt != 0) { 4642 unallocated_encoding(s); 4643 return; 4644 } 4645 4646 /* non-flag setting ops may use SP */ 4647 if (!setflags) { 4648 tcg_rd = cpu_reg_sp(s, rd); 4649 } else { 4650 tcg_rd = cpu_reg(s, rd); 4651 } 4652 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4653 4654 tcg_rm = read_cpu_reg(s, rm, sf); 4655 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4656 4657 tcg_result = tcg_temp_new_i64(); 4658 4659 if (!setflags) { 4660 if (sub_op) { 4661 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4662 } else { 4663 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4664 } 4665 } else { 4666 if (sub_op) { 4667 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4668 } else { 4669 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4670 } 4671 } 4672 4673 if (sf) { 4674 tcg_gen_mov_i64(tcg_rd, tcg_result); 4675 } else { 4676 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4677 } 4678 } 4679 4680 /* 4681 * Add/subtract (shifted register) 4682 * 4683 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4684 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4685 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4686 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4687 * 4688 * sf: 0 -> 32bit, 1 -> 64bit 4689 * op: 0 -> add , 1 -> sub 4690 * S: 1 -> set flags 4691 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4692 * imm6: Shift amount to apply to Rm before the add/sub 4693 */ 4694 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4695 { 4696 int rd = extract32(insn, 0, 5); 4697 int rn = extract32(insn, 5, 5); 4698 int imm6 = extract32(insn, 10, 6); 4699 int rm = extract32(insn, 16, 5); 4700 int shift_type = extract32(insn, 22, 2); 4701 bool setflags = extract32(insn, 29, 1); 4702 bool sub_op = extract32(insn, 30, 1); 4703 bool sf = extract32(insn, 31, 1); 4704 4705 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4706 TCGv_i64 tcg_rn, tcg_rm; 4707 TCGv_i64 tcg_result; 4708 4709 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4710 unallocated_encoding(s); 4711 return; 4712 } 4713 4714 tcg_rn = read_cpu_reg(s, rn, sf); 4715 tcg_rm = read_cpu_reg(s, rm, sf); 4716 4717 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4718 4719 tcg_result = tcg_temp_new_i64(); 4720 4721 if (!setflags) { 4722 if (sub_op) { 4723 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4724 } else { 4725 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4726 } 4727 } else { 4728 if (sub_op) { 4729 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4730 } else { 4731 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4732 } 4733 } 4734 4735 if (sf) { 4736 tcg_gen_mov_i64(tcg_rd, tcg_result); 4737 } else { 4738 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4739 } 4740 } 4741 4742 /* Data-processing (3 source) 4743 * 4744 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4745 * +--+------+-----------+------+------+----+------+------+------+ 4746 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4747 * +--+------+-----------+------+------+----+------+------+------+ 4748 */ 4749 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4750 { 4751 int rd = extract32(insn, 0, 5); 4752 int rn = extract32(insn, 5, 5); 4753 int ra = extract32(insn, 10, 5); 4754 int rm = extract32(insn, 16, 5); 4755 int op_id = (extract32(insn, 29, 3) << 4) | 4756 (extract32(insn, 21, 3) << 1) | 4757 extract32(insn, 15, 1); 4758 bool sf = extract32(insn, 31, 1); 4759 bool is_sub = extract32(op_id, 0, 1); 4760 bool is_high = extract32(op_id, 2, 1); 4761 bool is_signed = false; 4762 TCGv_i64 tcg_op1; 4763 TCGv_i64 tcg_op2; 4764 TCGv_i64 tcg_tmp; 4765 4766 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4767 switch (op_id) { 4768 case 0x42: /* SMADDL */ 4769 case 0x43: /* SMSUBL */ 4770 case 0x44: /* SMULH */ 4771 is_signed = true; 4772 break; 4773 case 0x0: /* MADD (32bit) */ 4774 case 0x1: /* MSUB (32bit) */ 4775 case 0x40: /* MADD (64bit) */ 4776 case 0x41: /* MSUB (64bit) */ 4777 case 0x4a: /* UMADDL */ 4778 case 0x4b: /* UMSUBL */ 4779 case 0x4c: /* UMULH */ 4780 break; 4781 default: 4782 unallocated_encoding(s); 4783 return; 4784 } 4785 4786 if (is_high) { 4787 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4788 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4789 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4790 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4791 4792 if (is_signed) { 4793 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4794 } else { 4795 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4796 } 4797 return; 4798 } 4799 4800 tcg_op1 = tcg_temp_new_i64(); 4801 tcg_op2 = tcg_temp_new_i64(); 4802 tcg_tmp = tcg_temp_new_i64(); 4803 4804 if (op_id < 0x42) { 4805 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4806 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4807 } else { 4808 if (is_signed) { 4809 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4810 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4811 } else { 4812 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4813 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4814 } 4815 } 4816 4817 if (ra == 31 && !is_sub) { 4818 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4819 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4820 } else { 4821 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4822 if (is_sub) { 4823 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4824 } else { 4825 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4826 } 4827 } 4828 4829 if (!sf) { 4830 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4831 } 4832 } 4833 4834 /* Add/subtract (with carry) 4835 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4836 * +--+--+--+------------------------+------+-------------+------+-----+ 4837 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4838 * +--+--+--+------------------------+------+-------------+------+-----+ 4839 */ 4840 4841 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4842 { 4843 unsigned int sf, op, setflags, rm, rn, rd; 4844 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4845 4846 sf = extract32(insn, 31, 1); 4847 op = extract32(insn, 30, 1); 4848 setflags = extract32(insn, 29, 1); 4849 rm = extract32(insn, 16, 5); 4850 rn = extract32(insn, 5, 5); 4851 rd = extract32(insn, 0, 5); 4852 4853 tcg_rd = cpu_reg(s, rd); 4854 tcg_rn = cpu_reg(s, rn); 4855 4856 if (op) { 4857 tcg_y = tcg_temp_new_i64(); 4858 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4859 } else { 4860 tcg_y = cpu_reg(s, rm); 4861 } 4862 4863 if (setflags) { 4864 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4865 } else { 4866 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4867 } 4868 } 4869 4870 /* 4871 * Rotate right into flags 4872 * 31 30 29 21 15 10 5 4 0 4873 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4874 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4875 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4876 */ 4877 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4878 { 4879 int mask = extract32(insn, 0, 4); 4880 int o2 = extract32(insn, 4, 1); 4881 int rn = extract32(insn, 5, 5); 4882 int imm6 = extract32(insn, 15, 6); 4883 int sf_op_s = extract32(insn, 29, 3); 4884 TCGv_i64 tcg_rn; 4885 TCGv_i32 nzcv; 4886 4887 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4888 unallocated_encoding(s); 4889 return; 4890 } 4891 4892 tcg_rn = read_cpu_reg(s, rn, 1); 4893 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4894 4895 nzcv = tcg_temp_new_i32(); 4896 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4897 4898 if (mask & 8) { /* N */ 4899 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4900 } 4901 if (mask & 4) { /* Z */ 4902 tcg_gen_not_i32(cpu_ZF, nzcv); 4903 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4904 } 4905 if (mask & 2) { /* C */ 4906 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4907 } 4908 if (mask & 1) { /* V */ 4909 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4910 } 4911 } 4912 4913 /* 4914 * Evaluate into flags 4915 * 31 30 29 21 15 14 10 5 4 0 4916 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4917 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4918 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4919 */ 4920 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4921 { 4922 int o3_mask = extract32(insn, 0, 5); 4923 int rn = extract32(insn, 5, 5); 4924 int o2 = extract32(insn, 15, 6); 4925 int sz = extract32(insn, 14, 1); 4926 int sf_op_s = extract32(insn, 29, 3); 4927 TCGv_i32 tmp; 4928 int shift; 4929 4930 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4931 !dc_isar_feature(aa64_condm_4, s)) { 4932 unallocated_encoding(s); 4933 return; 4934 } 4935 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4936 4937 tmp = tcg_temp_new_i32(); 4938 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4939 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4940 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4941 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4942 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4943 } 4944 4945 /* Conditional compare (immediate / register) 4946 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4947 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4948 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4949 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4950 * [1] y [0] [0] 4951 */ 4952 static void disas_cc(DisasContext *s, uint32_t insn) 4953 { 4954 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4955 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4956 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4957 DisasCompare c; 4958 4959 if (!extract32(insn, 29, 1)) { 4960 unallocated_encoding(s); 4961 return; 4962 } 4963 if (insn & (1 << 10 | 1 << 4)) { 4964 unallocated_encoding(s); 4965 return; 4966 } 4967 sf = extract32(insn, 31, 1); 4968 op = extract32(insn, 30, 1); 4969 is_imm = extract32(insn, 11, 1); 4970 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4971 cond = extract32(insn, 12, 4); 4972 rn = extract32(insn, 5, 5); 4973 nzcv = extract32(insn, 0, 4); 4974 4975 /* Set T0 = !COND. */ 4976 tcg_t0 = tcg_temp_new_i32(); 4977 arm_test_cc(&c, cond); 4978 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4979 4980 /* Load the arguments for the new comparison. */ 4981 if (is_imm) { 4982 tcg_y = tcg_temp_new_i64(); 4983 tcg_gen_movi_i64(tcg_y, y); 4984 } else { 4985 tcg_y = cpu_reg(s, y); 4986 } 4987 tcg_rn = cpu_reg(s, rn); 4988 4989 /* Set the flags for the new comparison. */ 4990 tcg_tmp = tcg_temp_new_i64(); 4991 if (op) { 4992 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4993 } else { 4994 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4995 } 4996 4997 /* If COND was false, force the flags to #nzcv. Compute two masks 4998 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4999 * For tcg hosts that support ANDC, we can make do with just T1. 5000 * In either case, allow the tcg optimizer to delete any unused mask. 5001 */ 5002 tcg_t1 = tcg_temp_new_i32(); 5003 tcg_t2 = tcg_temp_new_i32(); 5004 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5005 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5006 5007 if (nzcv & 8) { /* N */ 5008 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5009 } else { 5010 if (TCG_TARGET_HAS_andc_i32) { 5011 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5012 } else { 5013 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5014 } 5015 } 5016 if (nzcv & 4) { /* Z */ 5017 if (TCG_TARGET_HAS_andc_i32) { 5018 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5019 } else { 5020 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5021 } 5022 } else { 5023 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5024 } 5025 if (nzcv & 2) { /* C */ 5026 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5027 } else { 5028 if (TCG_TARGET_HAS_andc_i32) { 5029 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5030 } else { 5031 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5032 } 5033 } 5034 if (nzcv & 1) { /* V */ 5035 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5036 } else { 5037 if (TCG_TARGET_HAS_andc_i32) { 5038 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5039 } else { 5040 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5041 } 5042 } 5043 } 5044 5045 /* Conditional select 5046 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5047 * +----+----+---+-----------------+------+------+-----+------+------+ 5048 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5049 * +----+----+---+-----------------+------+------+-----+------+------+ 5050 */ 5051 static void disas_cond_select(DisasContext *s, uint32_t insn) 5052 { 5053 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5054 TCGv_i64 tcg_rd, zero; 5055 DisasCompare64 c; 5056 5057 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5058 /* S == 1 or op2<1> == 1 */ 5059 unallocated_encoding(s); 5060 return; 5061 } 5062 sf = extract32(insn, 31, 1); 5063 else_inv = extract32(insn, 30, 1); 5064 rm = extract32(insn, 16, 5); 5065 cond = extract32(insn, 12, 4); 5066 else_inc = extract32(insn, 10, 1); 5067 rn = extract32(insn, 5, 5); 5068 rd = extract32(insn, 0, 5); 5069 5070 tcg_rd = cpu_reg(s, rd); 5071 5072 a64_test_cc(&c, cond); 5073 zero = tcg_constant_i64(0); 5074 5075 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5076 /* CSET & CSETM. */ 5077 if (else_inv) { 5078 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5079 tcg_rd, c.value, zero); 5080 } else { 5081 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5082 tcg_rd, c.value, zero); 5083 } 5084 } else { 5085 TCGv_i64 t_true = cpu_reg(s, rn); 5086 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5087 if (else_inv && else_inc) { 5088 tcg_gen_neg_i64(t_false, t_false); 5089 } else if (else_inv) { 5090 tcg_gen_not_i64(t_false, t_false); 5091 } else if (else_inc) { 5092 tcg_gen_addi_i64(t_false, t_false, 1); 5093 } 5094 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5095 } 5096 5097 if (!sf) { 5098 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5099 } 5100 } 5101 5102 static void handle_clz(DisasContext *s, unsigned int sf, 5103 unsigned int rn, unsigned int rd) 5104 { 5105 TCGv_i64 tcg_rd, tcg_rn; 5106 tcg_rd = cpu_reg(s, rd); 5107 tcg_rn = cpu_reg(s, rn); 5108 5109 if (sf) { 5110 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5111 } else { 5112 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5113 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5114 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5115 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5116 } 5117 } 5118 5119 static void handle_cls(DisasContext *s, unsigned int sf, 5120 unsigned int rn, unsigned int rd) 5121 { 5122 TCGv_i64 tcg_rd, tcg_rn; 5123 tcg_rd = cpu_reg(s, rd); 5124 tcg_rn = cpu_reg(s, rn); 5125 5126 if (sf) { 5127 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5128 } else { 5129 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5130 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5131 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5132 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5133 } 5134 } 5135 5136 static void handle_rbit(DisasContext *s, unsigned int sf, 5137 unsigned int rn, unsigned int rd) 5138 { 5139 TCGv_i64 tcg_rd, tcg_rn; 5140 tcg_rd = cpu_reg(s, rd); 5141 tcg_rn = cpu_reg(s, rn); 5142 5143 if (sf) { 5144 gen_helper_rbit64(tcg_rd, tcg_rn); 5145 } else { 5146 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5147 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5148 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5149 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5150 } 5151 } 5152 5153 /* REV with sf==1, opcode==3 ("REV64") */ 5154 static void handle_rev64(DisasContext *s, unsigned int sf, 5155 unsigned int rn, unsigned int rd) 5156 { 5157 if (!sf) { 5158 unallocated_encoding(s); 5159 return; 5160 } 5161 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5162 } 5163 5164 /* REV with sf==0, opcode==2 5165 * REV32 (sf==1, opcode==2) 5166 */ 5167 static void handle_rev32(DisasContext *s, unsigned int sf, 5168 unsigned int rn, unsigned int rd) 5169 { 5170 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5171 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5172 5173 if (sf) { 5174 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5175 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5176 } else { 5177 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5178 } 5179 } 5180 5181 /* REV16 (opcode==1) */ 5182 static void handle_rev16(DisasContext *s, unsigned int sf, 5183 unsigned int rn, unsigned int rd) 5184 { 5185 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5186 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5187 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5188 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5189 5190 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5191 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5192 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5193 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5194 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5195 } 5196 5197 /* Data-processing (1 source) 5198 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5199 * +----+---+---+-----------------+---------+--------+------+------+ 5200 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5201 * +----+---+---+-----------------+---------+--------+------+------+ 5202 */ 5203 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5204 { 5205 unsigned int sf, opcode, opcode2, rn, rd; 5206 TCGv_i64 tcg_rd; 5207 5208 if (extract32(insn, 29, 1)) { 5209 unallocated_encoding(s); 5210 return; 5211 } 5212 5213 sf = extract32(insn, 31, 1); 5214 opcode = extract32(insn, 10, 6); 5215 opcode2 = extract32(insn, 16, 5); 5216 rn = extract32(insn, 5, 5); 5217 rd = extract32(insn, 0, 5); 5218 5219 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5220 5221 switch (MAP(sf, opcode2, opcode)) { 5222 case MAP(0, 0x00, 0x00): /* RBIT */ 5223 case MAP(1, 0x00, 0x00): 5224 handle_rbit(s, sf, rn, rd); 5225 break; 5226 case MAP(0, 0x00, 0x01): /* REV16 */ 5227 case MAP(1, 0x00, 0x01): 5228 handle_rev16(s, sf, rn, rd); 5229 break; 5230 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5231 case MAP(1, 0x00, 0x02): 5232 handle_rev32(s, sf, rn, rd); 5233 break; 5234 case MAP(1, 0x00, 0x03): /* REV64 */ 5235 handle_rev64(s, sf, rn, rd); 5236 break; 5237 case MAP(0, 0x00, 0x04): /* CLZ */ 5238 case MAP(1, 0x00, 0x04): 5239 handle_clz(s, sf, rn, rd); 5240 break; 5241 case MAP(0, 0x00, 0x05): /* CLS */ 5242 case MAP(1, 0x00, 0x05): 5243 handle_cls(s, sf, rn, rd); 5244 break; 5245 case MAP(1, 0x01, 0x00): /* PACIA */ 5246 if (s->pauth_active) { 5247 tcg_rd = cpu_reg(s, rd); 5248 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5249 } else if (!dc_isar_feature(aa64_pauth, s)) { 5250 goto do_unallocated; 5251 } 5252 break; 5253 case MAP(1, 0x01, 0x01): /* PACIB */ 5254 if (s->pauth_active) { 5255 tcg_rd = cpu_reg(s, rd); 5256 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5257 } else if (!dc_isar_feature(aa64_pauth, s)) { 5258 goto do_unallocated; 5259 } 5260 break; 5261 case MAP(1, 0x01, 0x02): /* PACDA */ 5262 if (s->pauth_active) { 5263 tcg_rd = cpu_reg(s, rd); 5264 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5265 } else if (!dc_isar_feature(aa64_pauth, s)) { 5266 goto do_unallocated; 5267 } 5268 break; 5269 case MAP(1, 0x01, 0x03): /* PACDB */ 5270 if (s->pauth_active) { 5271 tcg_rd = cpu_reg(s, rd); 5272 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5273 } else if (!dc_isar_feature(aa64_pauth, s)) { 5274 goto do_unallocated; 5275 } 5276 break; 5277 case MAP(1, 0x01, 0x04): /* AUTIA */ 5278 if (s->pauth_active) { 5279 tcg_rd = cpu_reg(s, rd); 5280 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5281 } else if (!dc_isar_feature(aa64_pauth, s)) { 5282 goto do_unallocated; 5283 } 5284 break; 5285 case MAP(1, 0x01, 0x05): /* AUTIB */ 5286 if (s->pauth_active) { 5287 tcg_rd = cpu_reg(s, rd); 5288 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5289 } else if (!dc_isar_feature(aa64_pauth, s)) { 5290 goto do_unallocated; 5291 } 5292 break; 5293 case MAP(1, 0x01, 0x06): /* AUTDA */ 5294 if (s->pauth_active) { 5295 tcg_rd = cpu_reg(s, rd); 5296 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5297 } else if (!dc_isar_feature(aa64_pauth, s)) { 5298 goto do_unallocated; 5299 } 5300 break; 5301 case MAP(1, 0x01, 0x07): /* AUTDB */ 5302 if (s->pauth_active) { 5303 tcg_rd = cpu_reg(s, rd); 5304 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5305 } else if (!dc_isar_feature(aa64_pauth, s)) { 5306 goto do_unallocated; 5307 } 5308 break; 5309 case MAP(1, 0x01, 0x08): /* PACIZA */ 5310 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5311 goto do_unallocated; 5312 } else if (s->pauth_active) { 5313 tcg_rd = cpu_reg(s, rd); 5314 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5315 } 5316 break; 5317 case MAP(1, 0x01, 0x09): /* PACIZB */ 5318 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5319 goto do_unallocated; 5320 } else if (s->pauth_active) { 5321 tcg_rd = cpu_reg(s, rd); 5322 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5323 } 5324 break; 5325 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5326 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5327 goto do_unallocated; 5328 } else if (s->pauth_active) { 5329 tcg_rd = cpu_reg(s, rd); 5330 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5331 } 5332 break; 5333 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5334 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5335 goto do_unallocated; 5336 } else if (s->pauth_active) { 5337 tcg_rd = cpu_reg(s, rd); 5338 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5339 } 5340 break; 5341 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5342 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5343 goto do_unallocated; 5344 } else if (s->pauth_active) { 5345 tcg_rd = cpu_reg(s, rd); 5346 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5347 } 5348 break; 5349 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5350 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5351 goto do_unallocated; 5352 } else if (s->pauth_active) { 5353 tcg_rd = cpu_reg(s, rd); 5354 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5355 } 5356 break; 5357 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5358 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5359 goto do_unallocated; 5360 } else if (s->pauth_active) { 5361 tcg_rd = cpu_reg(s, rd); 5362 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5363 } 5364 break; 5365 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5366 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5367 goto do_unallocated; 5368 } else if (s->pauth_active) { 5369 tcg_rd = cpu_reg(s, rd); 5370 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5371 } 5372 break; 5373 case MAP(1, 0x01, 0x10): /* XPACI */ 5374 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5375 goto do_unallocated; 5376 } else if (s->pauth_active) { 5377 tcg_rd = cpu_reg(s, rd); 5378 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5379 } 5380 break; 5381 case MAP(1, 0x01, 0x11): /* XPACD */ 5382 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5383 goto do_unallocated; 5384 } else if (s->pauth_active) { 5385 tcg_rd = cpu_reg(s, rd); 5386 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5387 } 5388 break; 5389 default: 5390 do_unallocated: 5391 unallocated_encoding(s); 5392 break; 5393 } 5394 5395 #undef MAP 5396 } 5397 5398 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5399 unsigned int rm, unsigned int rn, unsigned int rd) 5400 { 5401 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5402 tcg_rd = cpu_reg(s, rd); 5403 5404 if (!sf && is_signed) { 5405 tcg_n = tcg_temp_new_i64(); 5406 tcg_m = tcg_temp_new_i64(); 5407 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5408 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5409 } else { 5410 tcg_n = read_cpu_reg(s, rn, sf); 5411 tcg_m = read_cpu_reg(s, rm, sf); 5412 } 5413 5414 if (is_signed) { 5415 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5416 } else { 5417 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5418 } 5419 5420 if (!sf) { /* zero extend final result */ 5421 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5422 } 5423 } 5424 5425 /* LSLV, LSRV, ASRV, RORV */ 5426 static void handle_shift_reg(DisasContext *s, 5427 enum a64_shift_type shift_type, unsigned int sf, 5428 unsigned int rm, unsigned int rn, unsigned int rd) 5429 { 5430 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5431 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5432 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5433 5434 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5435 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5436 } 5437 5438 /* CRC32[BHWX], CRC32C[BHWX] */ 5439 static void handle_crc32(DisasContext *s, 5440 unsigned int sf, unsigned int sz, bool crc32c, 5441 unsigned int rm, unsigned int rn, unsigned int rd) 5442 { 5443 TCGv_i64 tcg_acc, tcg_val; 5444 TCGv_i32 tcg_bytes; 5445 5446 if (!dc_isar_feature(aa64_crc32, s) 5447 || (sf == 1 && sz != 3) 5448 || (sf == 0 && sz == 3)) { 5449 unallocated_encoding(s); 5450 return; 5451 } 5452 5453 if (sz == 3) { 5454 tcg_val = cpu_reg(s, rm); 5455 } else { 5456 uint64_t mask; 5457 switch (sz) { 5458 case 0: 5459 mask = 0xFF; 5460 break; 5461 case 1: 5462 mask = 0xFFFF; 5463 break; 5464 case 2: 5465 mask = 0xFFFFFFFF; 5466 break; 5467 default: 5468 g_assert_not_reached(); 5469 } 5470 tcg_val = tcg_temp_new_i64(); 5471 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5472 } 5473 5474 tcg_acc = cpu_reg(s, rn); 5475 tcg_bytes = tcg_constant_i32(1 << sz); 5476 5477 if (crc32c) { 5478 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5479 } else { 5480 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5481 } 5482 } 5483 5484 /* Data-processing (2 source) 5485 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5486 * +----+---+---+-----------------+------+--------+------+------+ 5487 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5488 * +----+---+---+-----------------+------+--------+------+------+ 5489 */ 5490 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5491 { 5492 unsigned int sf, rm, opcode, rn, rd, setflag; 5493 sf = extract32(insn, 31, 1); 5494 setflag = extract32(insn, 29, 1); 5495 rm = extract32(insn, 16, 5); 5496 opcode = extract32(insn, 10, 6); 5497 rn = extract32(insn, 5, 5); 5498 rd = extract32(insn, 0, 5); 5499 5500 if (setflag && opcode != 0) { 5501 unallocated_encoding(s); 5502 return; 5503 } 5504 5505 switch (opcode) { 5506 case 0: /* SUBP(S) */ 5507 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5508 goto do_unallocated; 5509 } else { 5510 TCGv_i64 tcg_n, tcg_m, tcg_d; 5511 5512 tcg_n = read_cpu_reg_sp(s, rn, true); 5513 tcg_m = read_cpu_reg_sp(s, rm, true); 5514 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5515 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5516 tcg_d = cpu_reg(s, rd); 5517 5518 if (setflag) { 5519 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5520 } else { 5521 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5522 } 5523 } 5524 break; 5525 case 2: /* UDIV */ 5526 handle_div(s, false, sf, rm, rn, rd); 5527 break; 5528 case 3: /* SDIV */ 5529 handle_div(s, true, sf, rm, rn, rd); 5530 break; 5531 case 4: /* IRG */ 5532 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5533 goto do_unallocated; 5534 } 5535 if (s->ata[0]) { 5536 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5537 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5538 } else { 5539 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5540 cpu_reg_sp(s, rn)); 5541 } 5542 break; 5543 case 5: /* GMI */ 5544 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5545 goto do_unallocated; 5546 } else { 5547 TCGv_i64 t = tcg_temp_new_i64(); 5548 5549 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5550 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5551 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5552 } 5553 break; 5554 case 8: /* LSLV */ 5555 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5556 break; 5557 case 9: /* LSRV */ 5558 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5559 break; 5560 case 10: /* ASRV */ 5561 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5562 break; 5563 case 11: /* RORV */ 5564 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5565 break; 5566 case 12: /* PACGA */ 5567 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5568 goto do_unallocated; 5569 } 5570 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5571 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5572 break; 5573 case 16: 5574 case 17: 5575 case 18: 5576 case 19: 5577 case 20: 5578 case 21: 5579 case 22: 5580 case 23: /* CRC32 */ 5581 { 5582 int sz = extract32(opcode, 0, 2); 5583 bool crc32c = extract32(opcode, 2, 1); 5584 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5585 break; 5586 } 5587 default: 5588 do_unallocated: 5589 unallocated_encoding(s); 5590 break; 5591 } 5592 } 5593 5594 /* 5595 * Data processing - register 5596 * 31 30 29 28 25 21 20 16 10 0 5597 * +--+---+--+---+-------+-----+-------+-------+---------+ 5598 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5599 * +--+---+--+---+-------+-----+-------+-------+---------+ 5600 */ 5601 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5602 { 5603 int op0 = extract32(insn, 30, 1); 5604 int op1 = extract32(insn, 28, 1); 5605 int op2 = extract32(insn, 21, 4); 5606 int op3 = extract32(insn, 10, 6); 5607 5608 if (!op1) { 5609 if (op2 & 8) { 5610 if (op2 & 1) { 5611 /* Add/sub (extended register) */ 5612 disas_add_sub_ext_reg(s, insn); 5613 } else { 5614 /* Add/sub (shifted register) */ 5615 disas_add_sub_reg(s, insn); 5616 } 5617 } else { 5618 /* Logical (shifted register) */ 5619 disas_logic_reg(s, insn); 5620 } 5621 return; 5622 } 5623 5624 switch (op2) { 5625 case 0x0: 5626 switch (op3) { 5627 case 0x00: /* Add/subtract (with carry) */ 5628 disas_adc_sbc(s, insn); 5629 break; 5630 5631 case 0x01: /* Rotate right into flags */ 5632 case 0x21: 5633 disas_rotate_right_into_flags(s, insn); 5634 break; 5635 5636 case 0x02: /* Evaluate into flags */ 5637 case 0x12: 5638 case 0x22: 5639 case 0x32: 5640 disas_evaluate_into_flags(s, insn); 5641 break; 5642 5643 default: 5644 goto do_unallocated; 5645 } 5646 break; 5647 5648 case 0x2: /* Conditional compare */ 5649 disas_cc(s, insn); /* both imm and reg forms */ 5650 break; 5651 5652 case 0x4: /* Conditional select */ 5653 disas_cond_select(s, insn); 5654 break; 5655 5656 case 0x6: /* Data-processing */ 5657 if (op0) { /* (1 source) */ 5658 disas_data_proc_1src(s, insn); 5659 } else { /* (2 source) */ 5660 disas_data_proc_2src(s, insn); 5661 } 5662 break; 5663 case 0x8 ... 0xf: /* (3 source) */ 5664 disas_data_proc_3src(s, insn); 5665 break; 5666 5667 default: 5668 do_unallocated: 5669 unallocated_encoding(s); 5670 break; 5671 } 5672 } 5673 5674 static void handle_fp_compare(DisasContext *s, int size, 5675 unsigned int rn, unsigned int rm, 5676 bool cmp_with_zero, bool signal_all_nans) 5677 { 5678 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5679 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5680 5681 if (size == MO_64) { 5682 TCGv_i64 tcg_vn, tcg_vm; 5683 5684 tcg_vn = read_fp_dreg(s, rn); 5685 if (cmp_with_zero) { 5686 tcg_vm = tcg_constant_i64(0); 5687 } else { 5688 tcg_vm = read_fp_dreg(s, rm); 5689 } 5690 if (signal_all_nans) { 5691 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5692 } else { 5693 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5694 } 5695 } else { 5696 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5697 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5698 5699 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5700 if (cmp_with_zero) { 5701 tcg_gen_movi_i32(tcg_vm, 0); 5702 } else { 5703 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5704 } 5705 5706 switch (size) { 5707 case MO_32: 5708 if (signal_all_nans) { 5709 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5710 } else { 5711 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5712 } 5713 break; 5714 case MO_16: 5715 if (signal_all_nans) { 5716 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5717 } else { 5718 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5719 } 5720 break; 5721 default: 5722 g_assert_not_reached(); 5723 } 5724 } 5725 5726 gen_set_nzcv(tcg_flags); 5727 } 5728 5729 /* Floating point compare 5730 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5731 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5732 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5733 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5734 */ 5735 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5736 { 5737 unsigned int mos, type, rm, op, rn, opc, op2r; 5738 int size; 5739 5740 mos = extract32(insn, 29, 3); 5741 type = extract32(insn, 22, 2); 5742 rm = extract32(insn, 16, 5); 5743 op = extract32(insn, 14, 2); 5744 rn = extract32(insn, 5, 5); 5745 opc = extract32(insn, 3, 2); 5746 op2r = extract32(insn, 0, 3); 5747 5748 if (mos || op || op2r) { 5749 unallocated_encoding(s); 5750 return; 5751 } 5752 5753 switch (type) { 5754 case 0: 5755 size = MO_32; 5756 break; 5757 case 1: 5758 size = MO_64; 5759 break; 5760 case 3: 5761 size = MO_16; 5762 if (dc_isar_feature(aa64_fp16, s)) { 5763 break; 5764 } 5765 /* fallthru */ 5766 default: 5767 unallocated_encoding(s); 5768 return; 5769 } 5770 5771 if (!fp_access_check(s)) { 5772 return; 5773 } 5774 5775 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5776 } 5777 5778 /* Floating point conditional compare 5779 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5780 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5781 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5782 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5783 */ 5784 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5785 { 5786 unsigned int mos, type, rm, cond, rn, op, nzcv; 5787 TCGLabel *label_continue = NULL; 5788 int size; 5789 5790 mos = extract32(insn, 29, 3); 5791 type = extract32(insn, 22, 2); 5792 rm = extract32(insn, 16, 5); 5793 cond = extract32(insn, 12, 4); 5794 rn = extract32(insn, 5, 5); 5795 op = extract32(insn, 4, 1); 5796 nzcv = extract32(insn, 0, 4); 5797 5798 if (mos) { 5799 unallocated_encoding(s); 5800 return; 5801 } 5802 5803 switch (type) { 5804 case 0: 5805 size = MO_32; 5806 break; 5807 case 1: 5808 size = MO_64; 5809 break; 5810 case 3: 5811 size = MO_16; 5812 if (dc_isar_feature(aa64_fp16, s)) { 5813 break; 5814 } 5815 /* fallthru */ 5816 default: 5817 unallocated_encoding(s); 5818 return; 5819 } 5820 5821 if (!fp_access_check(s)) { 5822 return; 5823 } 5824 5825 if (cond < 0x0e) { /* not always */ 5826 TCGLabel *label_match = gen_new_label(); 5827 label_continue = gen_new_label(); 5828 arm_gen_test_cc(cond, label_match); 5829 /* nomatch: */ 5830 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5831 tcg_gen_br(label_continue); 5832 gen_set_label(label_match); 5833 } 5834 5835 handle_fp_compare(s, size, rn, rm, false, op); 5836 5837 if (cond < 0x0e) { 5838 gen_set_label(label_continue); 5839 } 5840 } 5841 5842 /* Floating point conditional select 5843 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5844 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5845 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5846 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5847 */ 5848 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5849 { 5850 unsigned int mos, type, rm, cond, rn, rd; 5851 TCGv_i64 t_true, t_false; 5852 DisasCompare64 c; 5853 MemOp sz; 5854 5855 mos = extract32(insn, 29, 3); 5856 type = extract32(insn, 22, 2); 5857 rm = extract32(insn, 16, 5); 5858 cond = extract32(insn, 12, 4); 5859 rn = extract32(insn, 5, 5); 5860 rd = extract32(insn, 0, 5); 5861 5862 if (mos) { 5863 unallocated_encoding(s); 5864 return; 5865 } 5866 5867 switch (type) { 5868 case 0: 5869 sz = MO_32; 5870 break; 5871 case 1: 5872 sz = MO_64; 5873 break; 5874 case 3: 5875 sz = MO_16; 5876 if (dc_isar_feature(aa64_fp16, s)) { 5877 break; 5878 } 5879 /* fallthru */ 5880 default: 5881 unallocated_encoding(s); 5882 return; 5883 } 5884 5885 if (!fp_access_check(s)) { 5886 return; 5887 } 5888 5889 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5890 t_true = tcg_temp_new_i64(); 5891 t_false = tcg_temp_new_i64(); 5892 read_vec_element(s, t_true, rn, 0, sz); 5893 read_vec_element(s, t_false, rm, 0, sz); 5894 5895 a64_test_cc(&c, cond); 5896 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5897 t_true, t_false); 5898 5899 /* Note that sregs & hregs write back zeros to the high bits, 5900 and we've already done the zero-extension. */ 5901 write_fp_dreg(s, rd, t_true); 5902 } 5903 5904 /* Floating-point data-processing (1 source) - half precision */ 5905 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5906 { 5907 TCGv_ptr fpst = NULL; 5908 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5909 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5910 5911 switch (opcode) { 5912 case 0x0: /* FMOV */ 5913 tcg_gen_mov_i32(tcg_res, tcg_op); 5914 break; 5915 case 0x1: /* FABS */ 5916 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5917 break; 5918 case 0x2: /* FNEG */ 5919 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5920 break; 5921 case 0x3: /* FSQRT */ 5922 fpst = fpstatus_ptr(FPST_FPCR_F16); 5923 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5924 break; 5925 case 0x8: /* FRINTN */ 5926 case 0x9: /* FRINTP */ 5927 case 0xa: /* FRINTM */ 5928 case 0xb: /* FRINTZ */ 5929 case 0xc: /* FRINTA */ 5930 { 5931 TCGv_i32 tcg_rmode; 5932 5933 fpst = fpstatus_ptr(FPST_FPCR_F16); 5934 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5935 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5936 gen_restore_rmode(tcg_rmode, fpst); 5937 break; 5938 } 5939 case 0xe: /* FRINTX */ 5940 fpst = fpstatus_ptr(FPST_FPCR_F16); 5941 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5942 break; 5943 case 0xf: /* FRINTI */ 5944 fpst = fpstatus_ptr(FPST_FPCR_F16); 5945 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5946 break; 5947 default: 5948 g_assert_not_reached(); 5949 } 5950 5951 write_fp_sreg(s, rd, tcg_res); 5952 } 5953 5954 /* Floating-point data-processing (1 source) - single precision */ 5955 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5956 { 5957 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5958 TCGv_i32 tcg_op, tcg_res; 5959 TCGv_ptr fpst; 5960 int rmode = -1; 5961 5962 tcg_op = read_fp_sreg(s, rn); 5963 tcg_res = tcg_temp_new_i32(); 5964 5965 switch (opcode) { 5966 case 0x0: /* FMOV */ 5967 tcg_gen_mov_i32(tcg_res, tcg_op); 5968 goto done; 5969 case 0x1: /* FABS */ 5970 gen_helper_vfp_abss(tcg_res, tcg_op); 5971 goto done; 5972 case 0x2: /* FNEG */ 5973 gen_helper_vfp_negs(tcg_res, tcg_op); 5974 goto done; 5975 case 0x3: /* FSQRT */ 5976 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 5977 goto done; 5978 case 0x6: /* BFCVT */ 5979 gen_fpst = gen_helper_bfcvt; 5980 break; 5981 case 0x8: /* FRINTN */ 5982 case 0x9: /* FRINTP */ 5983 case 0xa: /* FRINTM */ 5984 case 0xb: /* FRINTZ */ 5985 case 0xc: /* FRINTA */ 5986 rmode = opcode & 7; 5987 gen_fpst = gen_helper_rints; 5988 break; 5989 case 0xe: /* FRINTX */ 5990 gen_fpst = gen_helper_rints_exact; 5991 break; 5992 case 0xf: /* FRINTI */ 5993 gen_fpst = gen_helper_rints; 5994 break; 5995 case 0x10: /* FRINT32Z */ 5996 rmode = FPROUNDING_ZERO; 5997 gen_fpst = gen_helper_frint32_s; 5998 break; 5999 case 0x11: /* FRINT32X */ 6000 gen_fpst = gen_helper_frint32_s; 6001 break; 6002 case 0x12: /* FRINT64Z */ 6003 rmode = FPROUNDING_ZERO; 6004 gen_fpst = gen_helper_frint64_s; 6005 break; 6006 case 0x13: /* FRINT64X */ 6007 gen_fpst = gen_helper_frint64_s; 6008 break; 6009 default: 6010 g_assert_not_reached(); 6011 } 6012 6013 fpst = fpstatus_ptr(FPST_FPCR); 6014 if (rmode >= 0) { 6015 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6016 gen_fpst(tcg_res, tcg_op, fpst); 6017 gen_restore_rmode(tcg_rmode, fpst); 6018 } else { 6019 gen_fpst(tcg_res, tcg_op, fpst); 6020 } 6021 6022 done: 6023 write_fp_sreg(s, rd, tcg_res); 6024 } 6025 6026 /* Floating-point data-processing (1 source) - double precision */ 6027 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6028 { 6029 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6030 TCGv_i64 tcg_op, tcg_res; 6031 TCGv_ptr fpst; 6032 int rmode = -1; 6033 6034 switch (opcode) { 6035 case 0x0: /* FMOV */ 6036 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6037 return; 6038 } 6039 6040 tcg_op = read_fp_dreg(s, rn); 6041 tcg_res = tcg_temp_new_i64(); 6042 6043 switch (opcode) { 6044 case 0x1: /* FABS */ 6045 gen_helper_vfp_absd(tcg_res, tcg_op); 6046 goto done; 6047 case 0x2: /* FNEG */ 6048 gen_helper_vfp_negd(tcg_res, tcg_op); 6049 goto done; 6050 case 0x3: /* FSQRT */ 6051 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6052 goto done; 6053 case 0x8: /* FRINTN */ 6054 case 0x9: /* FRINTP */ 6055 case 0xa: /* FRINTM */ 6056 case 0xb: /* FRINTZ */ 6057 case 0xc: /* FRINTA */ 6058 rmode = opcode & 7; 6059 gen_fpst = gen_helper_rintd; 6060 break; 6061 case 0xe: /* FRINTX */ 6062 gen_fpst = gen_helper_rintd_exact; 6063 break; 6064 case 0xf: /* FRINTI */ 6065 gen_fpst = gen_helper_rintd; 6066 break; 6067 case 0x10: /* FRINT32Z */ 6068 rmode = FPROUNDING_ZERO; 6069 gen_fpst = gen_helper_frint32_d; 6070 break; 6071 case 0x11: /* FRINT32X */ 6072 gen_fpst = gen_helper_frint32_d; 6073 break; 6074 case 0x12: /* FRINT64Z */ 6075 rmode = FPROUNDING_ZERO; 6076 gen_fpst = gen_helper_frint64_d; 6077 break; 6078 case 0x13: /* FRINT64X */ 6079 gen_fpst = gen_helper_frint64_d; 6080 break; 6081 default: 6082 g_assert_not_reached(); 6083 } 6084 6085 fpst = fpstatus_ptr(FPST_FPCR); 6086 if (rmode >= 0) { 6087 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6088 gen_fpst(tcg_res, tcg_op, fpst); 6089 gen_restore_rmode(tcg_rmode, fpst); 6090 } else { 6091 gen_fpst(tcg_res, tcg_op, fpst); 6092 } 6093 6094 done: 6095 write_fp_dreg(s, rd, tcg_res); 6096 } 6097 6098 static void handle_fp_fcvt(DisasContext *s, int opcode, 6099 int rd, int rn, int dtype, int ntype) 6100 { 6101 switch (ntype) { 6102 case 0x0: 6103 { 6104 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6105 if (dtype == 1) { 6106 /* Single to double */ 6107 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6108 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6109 write_fp_dreg(s, rd, tcg_rd); 6110 } else { 6111 /* Single to half */ 6112 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6113 TCGv_i32 ahp = get_ahp_flag(); 6114 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6115 6116 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6117 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6118 write_fp_sreg(s, rd, tcg_rd); 6119 } 6120 break; 6121 } 6122 case 0x1: 6123 { 6124 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6125 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6126 if (dtype == 0) { 6127 /* Double to single */ 6128 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6129 } else { 6130 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6131 TCGv_i32 ahp = get_ahp_flag(); 6132 /* Double to half */ 6133 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6134 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6135 } 6136 write_fp_sreg(s, rd, tcg_rd); 6137 break; 6138 } 6139 case 0x3: 6140 { 6141 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6142 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6143 TCGv_i32 tcg_ahp = get_ahp_flag(); 6144 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6145 if (dtype == 0) { 6146 /* Half to single */ 6147 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6148 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6149 write_fp_sreg(s, rd, tcg_rd); 6150 } else { 6151 /* Half to double */ 6152 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6153 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6154 write_fp_dreg(s, rd, tcg_rd); 6155 } 6156 break; 6157 } 6158 default: 6159 g_assert_not_reached(); 6160 } 6161 } 6162 6163 /* Floating point data-processing (1 source) 6164 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6165 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6166 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6167 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6168 */ 6169 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6170 { 6171 int mos = extract32(insn, 29, 3); 6172 int type = extract32(insn, 22, 2); 6173 int opcode = extract32(insn, 15, 6); 6174 int rn = extract32(insn, 5, 5); 6175 int rd = extract32(insn, 0, 5); 6176 6177 if (mos) { 6178 goto do_unallocated; 6179 } 6180 6181 switch (opcode) { 6182 case 0x4: case 0x5: case 0x7: 6183 { 6184 /* FCVT between half, single and double precision */ 6185 int dtype = extract32(opcode, 0, 2); 6186 if (type == 2 || dtype == type) { 6187 goto do_unallocated; 6188 } 6189 if (!fp_access_check(s)) { 6190 return; 6191 } 6192 6193 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6194 break; 6195 } 6196 6197 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6198 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6199 goto do_unallocated; 6200 } 6201 /* fall through */ 6202 case 0x0 ... 0x3: 6203 case 0x8 ... 0xc: 6204 case 0xe ... 0xf: 6205 /* 32-to-32 and 64-to-64 ops */ 6206 switch (type) { 6207 case 0: 6208 if (!fp_access_check(s)) { 6209 return; 6210 } 6211 handle_fp_1src_single(s, opcode, rd, rn); 6212 break; 6213 case 1: 6214 if (!fp_access_check(s)) { 6215 return; 6216 } 6217 handle_fp_1src_double(s, opcode, rd, rn); 6218 break; 6219 case 3: 6220 if (!dc_isar_feature(aa64_fp16, s)) { 6221 goto do_unallocated; 6222 } 6223 6224 if (!fp_access_check(s)) { 6225 return; 6226 } 6227 handle_fp_1src_half(s, opcode, rd, rn); 6228 break; 6229 default: 6230 goto do_unallocated; 6231 } 6232 break; 6233 6234 case 0x6: 6235 switch (type) { 6236 case 1: /* BFCVT */ 6237 if (!dc_isar_feature(aa64_bf16, s)) { 6238 goto do_unallocated; 6239 } 6240 if (!fp_access_check(s)) { 6241 return; 6242 } 6243 handle_fp_1src_single(s, opcode, rd, rn); 6244 break; 6245 default: 6246 goto do_unallocated; 6247 } 6248 break; 6249 6250 default: 6251 do_unallocated: 6252 unallocated_encoding(s); 6253 break; 6254 } 6255 } 6256 6257 /* Floating-point data-processing (2 source) - single precision */ 6258 static void handle_fp_2src_single(DisasContext *s, int opcode, 6259 int rd, int rn, int rm) 6260 { 6261 TCGv_i32 tcg_op1; 6262 TCGv_i32 tcg_op2; 6263 TCGv_i32 tcg_res; 6264 TCGv_ptr fpst; 6265 6266 tcg_res = tcg_temp_new_i32(); 6267 fpst = fpstatus_ptr(FPST_FPCR); 6268 tcg_op1 = read_fp_sreg(s, rn); 6269 tcg_op2 = read_fp_sreg(s, rm); 6270 6271 switch (opcode) { 6272 case 0x0: /* FMUL */ 6273 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6274 break; 6275 case 0x1: /* FDIV */ 6276 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6277 break; 6278 case 0x2: /* FADD */ 6279 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6280 break; 6281 case 0x3: /* FSUB */ 6282 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6283 break; 6284 case 0x4: /* FMAX */ 6285 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6286 break; 6287 case 0x5: /* FMIN */ 6288 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6289 break; 6290 case 0x6: /* FMAXNM */ 6291 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6292 break; 6293 case 0x7: /* FMINNM */ 6294 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6295 break; 6296 case 0x8: /* FNMUL */ 6297 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6298 gen_helper_vfp_negs(tcg_res, tcg_res); 6299 break; 6300 } 6301 6302 write_fp_sreg(s, rd, tcg_res); 6303 } 6304 6305 /* Floating-point data-processing (2 source) - double precision */ 6306 static void handle_fp_2src_double(DisasContext *s, int opcode, 6307 int rd, int rn, int rm) 6308 { 6309 TCGv_i64 tcg_op1; 6310 TCGv_i64 tcg_op2; 6311 TCGv_i64 tcg_res; 6312 TCGv_ptr fpst; 6313 6314 tcg_res = tcg_temp_new_i64(); 6315 fpst = fpstatus_ptr(FPST_FPCR); 6316 tcg_op1 = read_fp_dreg(s, rn); 6317 tcg_op2 = read_fp_dreg(s, rm); 6318 6319 switch (opcode) { 6320 case 0x0: /* FMUL */ 6321 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6322 break; 6323 case 0x1: /* FDIV */ 6324 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6325 break; 6326 case 0x2: /* FADD */ 6327 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6328 break; 6329 case 0x3: /* FSUB */ 6330 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6331 break; 6332 case 0x4: /* FMAX */ 6333 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6334 break; 6335 case 0x5: /* FMIN */ 6336 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6337 break; 6338 case 0x6: /* FMAXNM */ 6339 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6340 break; 6341 case 0x7: /* FMINNM */ 6342 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6343 break; 6344 case 0x8: /* FNMUL */ 6345 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6346 gen_helper_vfp_negd(tcg_res, tcg_res); 6347 break; 6348 } 6349 6350 write_fp_dreg(s, rd, tcg_res); 6351 } 6352 6353 /* Floating-point data-processing (2 source) - half precision */ 6354 static void handle_fp_2src_half(DisasContext *s, int opcode, 6355 int rd, int rn, int rm) 6356 { 6357 TCGv_i32 tcg_op1; 6358 TCGv_i32 tcg_op2; 6359 TCGv_i32 tcg_res; 6360 TCGv_ptr fpst; 6361 6362 tcg_res = tcg_temp_new_i32(); 6363 fpst = fpstatus_ptr(FPST_FPCR_F16); 6364 tcg_op1 = read_fp_hreg(s, rn); 6365 tcg_op2 = read_fp_hreg(s, rm); 6366 6367 switch (opcode) { 6368 case 0x0: /* FMUL */ 6369 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6370 break; 6371 case 0x1: /* FDIV */ 6372 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6373 break; 6374 case 0x2: /* FADD */ 6375 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6376 break; 6377 case 0x3: /* FSUB */ 6378 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6379 break; 6380 case 0x4: /* FMAX */ 6381 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6382 break; 6383 case 0x5: /* FMIN */ 6384 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6385 break; 6386 case 0x6: /* FMAXNM */ 6387 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6388 break; 6389 case 0x7: /* FMINNM */ 6390 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6391 break; 6392 case 0x8: /* FNMUL */ 6393 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6394 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6395 break; 6396 default: 6397 g_assert_not_reached(); 6398 } 6399 6400 write_fp_sreg(s, rd, tcg_res); 6401 } 6402 6403 /* Floating point data-processing (2 source) 6404 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6405 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6406 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6407 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6408 */ 6409 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6410 { 6411 int mos = extract32(insn, 29, 3); 6412 int type = extract32(insn, 22, 2); 6413 int rd = extract32(insn, 0, 5); 6414 int rn = extract32(insn, 5, 5); 6415 int rm = extract32(insn, 16, 5); 6416 int opcode = extract32(insn, 12, 4); 6417 6418 if (opcode > 8 || mos) { 6419 unallocated_encoding(s); 6420 return; 6421 } 6422 6423 switch (type) { 6424 case 0: 6425 if (!fp_access_check(s)) { 6426 return; 6427 } 6428 handle_fp_2src_single(s, opcode, rd, rn, rm); 6429 break; 6430 case 1: 6431 if (!fp_access_check(s)) { 6432 return; 6433 } 6434 handle_fp_2src_double(s, opcode, rd, rn, rm); 6435 break; 6436 case 3: 6437 if (!dc_isar_feature(aa64_fp16, s)) { 6438 unallocated_encoding(s); 6439 return; 6440 } 6441 if (!fp_access_check(s)) { 6442 return; 6443 } 6444 handle_fp_2src_half(s, opcode, rd, rn, rm); 6445 break; 6446 default: 6447 unallocated_encoding(s); 6448 } 6449 } 6450 6451 /* Floating-point data-processing (3 source) - single precision */ 6452 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6453 int rd, int rn, int rm, int ra) 6454 { 6455 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6456 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6457 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6458 6459 tcg_op1 = read_fp_sreg(s, rn); 6460 tcg_op2 = read_fp_sreg(s, rm); 6461 tcg_op3 = read_fp_sreg(s, ra); 6462 6463 /* These are fused multiply-add, and must be done as one 6464 * floating point operation with no rounding between the 6465 * multiplication and addition steps. 6466 * NB that doing the negations here as separate steps is 6467 * correct : an input NaN should come out with its sign bit 6468 * flipped if it is a negated-input. 6469 */ 6470 if (o1 == true) { 6471 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6472 } 6473 6474 if (o0 != o1) { 6475 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6476 } 6477 6478 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6479 6480 write_fp_sreg(s, rd, tcg_res); 6481 } 6482 6483 /* Floating-point data-processing (3 source) - double precision */ 6484 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6485 int rd, int rn, int rm, int ra) 6486 { 6487 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6488 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6489 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6490 6491 tcg_op1 = read_fp_dreg(s, rn); 6492 tcg_op2 = read_fp_dreg(s, rm); 6493 tcg_op3 = read_fp_dreg(s, ra); 6494 6495 /* These are fused multiply-add, and must be done as one 6496 * floating point operation with no rounding between the 6497 * multiplication and addition steps. 6498 * NB that doing the negations here as separate steps is 6499 * correct : an input NaN should come out with its sign bit 6500 * flipped if it is a negated-input. 6501 */ 6502 if (o1 == true) { 6503 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6504 } 6505 6506 if (o0 != o1) { 6507 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6508 } 6509 6510 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6511 6512 write_fp_dreg(s, rd, tcg_res); 6513 } 6514 6515 /* Floating-point data-processing (3 source) - half precision */ 6516 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6517 int rd, int rn, int rm, int ra) 6518 { 6519 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6520 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6521 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6522 6523 tcg_op1 = read_fp_hreg(s, rn); 6524 tcg_op2 = read_fp_hreg(s, rm); 6525 tcg_op3 = read_fp_hreg(s, ra); 6526 6527 /* These are fused multiply-add, and must be done as one 6528 * floating point operation with no rounding between the 6529 * multiplication and addition steps. 6530 * NB that doing the negations here as separate steps is 6531 * correct : an input NaN should come out with its sign bit 6532 * flipped if it is a negated-input. 6533 */ 6534 if (o1 == true) { 6535 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6536 } 6537 6538 if (o0 != o1) { 6539 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6540 } 6541 6542 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6543 6544 write_fp_sreg(s, rd, tcg_res); 6545 } 6546 6547 /* Floating point data-processing (3 source) 6548 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6549 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6550 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6551 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6552 */ 6553 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6554 { 6555 int mos = extract32(insn, 29, 3); 6556 int type = extract32(insn, 22, 2); 6557 int rd = extract32(insn, 0, 5); 6558 int rn = extract32(insn, 5, 5); 6559 int ra = extract32(insn, 10, 5); 6560 int rm = extract32(insn, 16, 5); 6561 bool o0 = extract32(insn, 15, 1); 6562 bool o1 = extract32(insn, 21, 1); 6563 6564 if (mos) { 6565 unallocated_encoding(s); 6566 return; 6567 } 6568 6569 switch (type) { 6570 case 0: 6571 if (!fp_access_check(s)) { 6572 return; 6573 } 6574 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6575 break; 6576 case 1: 6577 if (!fp_access_check(s)) { 6578 return; 6579 } 6580 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6581 break; 6582 case 3: 6583 if (!dc_isar_feature(aa64_fp16, s)) { 6584 unallocated_encoding(s); 6585 return; 6586 } 6587 if (!fp_access_check(s)) { 6588 return; 6589 } 6590 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6591 break; 6592 default: 6593 unallocated_encoding(s); 6594 } 6595 } 6596 6597 /* Floating point immediate 6598 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6599 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6600 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6601 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6602 */ 6603 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6604 { 6605 int rd = extract32(insn, 0, 5); 6606 int imm5 = extract32(insn, 5, 5); 6607 int imm8 = extract32(insn, 13, 8); 6608 int type = extract32(insn, 22, 2); 6609 int mos = extract32(insn, 29, 3); 6610 uint64_t imm; 6611 MemOp sz; 6612 6613 if (mos || imm5) { 6614 unallocated_encoding(s); 6615 return; 6616 } 6617 6618 switch (type) { 6619 case 0: 6620 sz = MO_32; 6621 break; 6622 case 1: 6623 sz = MO_64; 6624 break; 6625 case 3: 6626 sz = MO_16; 6627 if (dc_isar_feature(aa64_fp16, s)) { 6628 break; 6629 } 6630 /* fallthru */ 6631 default: 6632 unallocated_encoding(s); 6633 return; 6634 } 6635 6636 if (!fp_access_check(s)) { 6637 return; 6638 } 6639 6640 imm = vfp_expand_imm(sz, imm8); 6641 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6642 } 6643 6644 /* Handle floating point <=> fixed point conversions. Note that we can 6645 * also deal with fp <=> integer conversions as a special case (scale == 64) 6646 * OPTME: consider handling that special case specially or at least skipping 6647 * the call to scalbn in the helpers for zero shifts. 6648 */ 6649 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6650 bool itof, int rmode, int scale, int sf, int type) 6651 { 6652 bool is_signed = !(opcode & 1); 6653 TCGv_ptr tcg_fpstatus; 6654 TCGv_i32 tcg_shift, tcg_single; 6655 TCGv_i64 tcg_double; 6656 6657 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6658 6659 tcg_shift = tcg_constant_i32(64 - scale); 6660 6661 if (itof) { 6662 TCGv_i64 tcg_int = cpu_reg(s, rn); 6663 if (!sf) { 6664 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6665 6666 if (is_signed) { 6667 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6668 } else { 6669 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6670 } 6671 6672 tcg_int = tcg_extend; 6673 } 6674 6675 switch (type) { 6676 case 1: /* float64 */ 6677 tcg_double = tcg_temp_new_i64(); 6678 if (is_signed) { 6679 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6680 tcg_shift, tcg_fpstatus); 6681 } else { 6682 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6683 tcg_shift, tcg_fpstatus); 6684 } 6685 write_fp_dreg(s, rd, tcg_double); 6686 break; 6687 6688 case 0: /* float32 */ 6689 tcg_single = tcg_temp_new_i32(); 6690 if (is_signed) { 6691 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6692 tcg_shift, tcg_fpstatus); 6693 } else { 6694 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6695 tcg_shift, tcg_fpstatus); 6696 } 6697 write_fp_sreg(s, rd, tcg_single); 6698 break; 6699 6700 case 3: /* float16 */ 6701 tcg_single = tcg_temp_new_i32(); 6702 if (is_signed) { 6703 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6704 tcg_shift, tcg_fpstatus); 6705 } else { 6706 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6707 tcg_shift, tcg_fpstatus); 6708 } 6709 write_fp_sreg(s, rd, tcg_single); 6710 break; 6711 6712 default: 6713 g_assert_not_reached(); 6714 } 6715 } else { 6716 TCGv_i64 tcg_int = cpu_reg(s, rd); 6717 TCGv_i32 tcg_rmode; 6718 6719 if (extract32(opcode, 2, 1)) { 6720 /* There are too many rounding modes to all fit into rmode, 6721 * so FCVTA[US] is a special case. 6722 */ 6723 rmode = FPROUNDING_TIEAWAY; 6724 } 6725 6726 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6727 6728 switch (type) { 6729 case 1: /* float64 */ 6730 tcg_double = read_fp_dreg(s, rn); 6731 if (is_signed) { 6732 if (!sf) { 6733 gen_helper_vfp_tosld(tcg_int, tcg_double, 6734 tcg_shift, tcg_fpstatus); 6735 } else { 6736 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6737 tcg_shift, tcg_fpstatus); 6738 } 6739 } else { 6740 if (!sf) { 6741 gen_helper_vfp_tould(tcg_int, tcg_double, 6742 tcg_shift, tcg_fpstatus); 6743 } else { 6744 gen_helper_vfp_touqd(tcg_int, tcg_double, 6745 tcg_shift, tcg_fpstatus); 6746 } 6747 } 6748 if (!sf) { 6749 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6750 } 6751 break; 6752 6753 case 0: /* float32 */ 6754 tcg_single = read_fp_sreg(s, rn); 6755 if (sf) { 6756 if (is_signed) { 6757 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6758 tcg_shift, tcg_fpstatus); 6759 } else { 6760 gen_helper_vfp_touqs(tcg_int, tcg_single, 6761 tcg_shift, tcg_fpstatus); 6762 } 6763 } else { 6764 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6765 if (is_signed) { 6766 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6767 tcg_shift, tcg_fpstatus); 6768 } else { 6769 gen_helper_vfp_touls(tcg_dest, tcg_single, 6770 tcg_shift, tcg_fpstatus); 6771 } 6772 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6773 } 6774 break; 6775 6776 case 3: /* float16 */ 6777 tcg_single = read_fp_sreg(s, rn); 6778 if (sf) { 6779 if (is_signed) { 6780 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6781 tcg_shift, tcg_fpstatus); 6782 } else { 6783 gen_helper_vfp_touqh(tcg_int, tcg_single, 6784 tcg_shift, tcg_fpstatus); 6785 } 6786 } else { 6787 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6788 if (is_signed) { 6789 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6790 tcg_shift, tcg_fpstatus); 6791 } else { 6792 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6793 tcg_shift, tcg_fpstatus); 6794 } 6795 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6796 } 6797 break; 6798 6799 default: 6800 g_assert_not_reached(); 6801 } 6802 6803 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6804 } 6805 } 6806 6807 /* Floating point <-> fixed point conversions 6808 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6809 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6810 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6811 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6812 */ 6813 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6814 { 6815 int rd = extract32(insn, 0, 5); 6816 int rn = extract32(insn, 5, 5); 6817 int scale = extract32(insn, 10, 6); 6818 int opcode = extract32(insn, 16, 3); 6819 int rmode = extract32(insn, 19, 2); 6820 int type = extract32(insn, 22, 2); 6821 bool sbit = extract32(insn, 29, 1); 6822 bool sf = extract32(insn, 31, 1); 6823 bool itof; 6824 6825 if (sbit || (!sf && scale < 32)) { 6826 unallocated_encoding(s); 6827 return; 6828 } 6829 6830 switch (type) { 6831 case 0: /* float32 */ 6832 case 1: /* float64 */ 6833 break; 6834 case 3: /* float16 */ 6835 if (dc_isar_feature(aa64_fp16, s)) { 6836 break; 6837 } 6838 /* fallthru */ 6839 default: 6840 unallocated_encoding(s); 6841 return; 6842 } 6843 6844 switch ((rmode << 3) | opcode) { 6845 case 0x2: /* SCVTF */ 6846 case 0x3: /* UCVTF */ 6847 itof = true; 6848 break; 6849 case 0x18: /* FCVTZS */ 6850 case 0x19: /* FCVTZU */ 6851 itof = false; 6852 break; 6853 default: 6854 unallocated_encoding(s); 6855 return; 6856 } 6857 6858 if (!fp_access_check(s)) { 6859 return; 6860 } 6861 6862 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6863 } 6864 6865 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6866 { 6867 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6868 * without conversion. 6869 */ 6870 6871 if (itof) { 6872 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6873 TCGv_i64 tmp; 6874 6875 switch (type) { 6876 case 0: 6877 /* 32 bit */ 6878 tmp = tcg_temp_new_i64(); 6879 tcg_gen_ext32u_i64(tmp, tcg_rn); 6880 write_fp_dreg(s, rd, tmp); 6881 break; 6882 case 1: 6883 /* 64 bit */ 6884 write_fp_dreg(s, rd, tcg_rn); 6885 break; 6886 case 2: 6887 /* 64 bit to top half. */ 6888 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6889 clear_vec_high(s, true, rd); 6890 break; 6891 case 3: 6892 /* 16 bit */ 6893 tmp = tcg_temp_new_i64(); 6894 tcg_gen_ext16u_i64(tmp, tcg_rn); 6895 write_fp_dreg(s, rd, tmp); 6896 break; 6897 default: 6898 g_assert_not_reached(); 6899 } 6900 } else { 6901 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6902 6903 switch (type) { 6904 case 0: 6905 /* 32 bit */ 6906 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6907 break; 6908 case 1: 6909 /* 64 bit */ 6910 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6911 break; 6912 case 2: 6913 /* 64 bits from top half */ 6914 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 6915 break; 6916 case 3: 6917 /* 16 bit */ 6918 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 6919 break; 6920 default: 6921 g_assert_not_reached(); 6922 } 6923 } 6924 } 6925 6926 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6927 { 6928 TCGv_i64 t = read_fp_dreg(s, rn); 6929 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6930 6931 gen_helper_fjcvtzs(t, t, fpstatus); 6932 6933 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6934 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6935 tcg_gen_movi_i32(cpu_CF, 0); 6936 tcg_gen_movi_i32(cpu_NF, 0); 6937 tcg_gen_movi_i32(cpu_VF, 0); 6938 } 6939 6940 /* Floating point <-> integer conversions 6941 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6942 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6943 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6944 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6945 */ 6946 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6947 { 6948 int rd = extract32(insn, 0, 5); 6949 int rn = extract32(insn, 5, 5); 6950 int opcode = extract32(insn, 16, 3); 6951 int rmode = extract32(insn, 19, 2); 6952 int type = extract32(insn, 22, 2); 6953 bool sbit = extract32(insn, 29, 1); 6954 bool sf = extract32(insn, 31, 1); 6955 bool itof = false; 6956 6957 if (sbit) { 6958 goto do_unallocated; 6959 } 6960 6961 switch (opcode) { 6962 case 2: /* SCVTF */ 6963 case 3: /* UCVTF */ 6964 itof = true; 6965 /* fallthru */ 6966 case 4: /* FCVTAS */ 6967 case 5: /* FCVTAU */ 6968 if (rmode != 0) { 6969 goto do_unallocated; 6970 } 6971 /* fallthru */ 6972 case 0: /* FCVT[NPMZ]S */ 6973 case 1: /* FCVT[NPMZ]U */ 6974 switch (type) { 6975 case 0: /* float32 */ 6976 case 1: /* float64 */ 6977 break; 6978 case 3: /* float16 */ 6979 if (!dc_isar_feature(aa64_fp16, s)) { 6980 goto do_unallocated; 6981 } 6982 break; 6983 default: 6984 goto do_unallocated; 6985 } 6986 if (!fp_access_check(s)) { 6987 return; 6988 } 6989 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6990 break; 6991 6992 default: 6993 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6994 case 0b01100110: /* FMOV half <-> 32-bit int */ 6995 case 0b01100111: 6996 case 0b11100110: /* FMOV half <-> 64-bit int */ 6997 case 0b11100111: 6998 if (!dc_isar_feature(aa64_fp16, s)) { 6999 goto do_unallocated; 7000 } 7001 /* fallthru */ 7002 case 0b00000110: /* FMOV 32-bit */ 7003 case 0b00000111: 7004 case 0b10100110: /* FMOV 64-bit */ 7005 case 0b10100111: 7006 case 0b11001110: /* FMOV top half of 128-bit */ 7007 case 0b11001111: 7008 if (!fp_access_check(s)) { 7009 return; 7010 } 7011 itof = opcode & 1; 7012 handle_fmov(s, rd, rn, type, itof); 7013 break; 7014 7015 case 0b00111110: /* FJCVTZS */ 7016 if (!dc_isar_feature(aa64_jscvt, s)) { 7017 goto do_unallocated; 7018 } else if (fp_access_check(s)) { 7019 handle_fjcvtzs(s, rd, rn); 7020 } 7021 break; 7022 7023 default: 7024 do_unallocated: 7025 unallocated_encoding(s); 7026 return; 7027 } 7028 break; 7029 } 7030 } 7031 7032 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7033 * 31 30 29 28 25 24 0 7034 * +---+---+---+---------+-----------------------------+ 7035 * | | 0 | | 1 1 1 1 | | 7036 * +---+---+---+---------+-----------------------------+ 7037 */ 7038 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7039 { 7040 if (extract32(insn, 24, 1)) { 7041 /* Floating point data-processing (3 source) */ 7042 disas_fp_3src(s, insn); 7043 } else if (extract32(insn, 21, 1) == 0) { 7044 /* Floating point to fixed point conversions */ 7045 disas_fp_fixed_conv(s, insn); 7046 } else { 7047 switch (extract32(insn, 10, 2)) { 7048 case 1: 7049 /* Floating point conditional compare */ 7050 disas_fp_ccomp(s, insn); 7051 break; 7052 case 2: 7053 /* Floating point data-processing (2 source) */ 7054 disas_fp_2src(s, insn); 7055 break; 7056 case 3: 7057 /* Floating point conditional select */ 7058 disas_fp_csel(s, insn); 7059 break; 7060 case 0: 7061 switch (ctz32(extract32(insn, 12, 4))) { 7062 case 0: /* [15:12] == xxx1 */ 7063 /* Floating point immediate */ 7064 disas_fp_imm(s, insn); 7065 break; 7066 case 1: /* [15:12] == xx10 */ 7067 /* Floating point compare */ 7068 disas_fp_compare(s, insn); 7069 break; 7070 case 2: /* [15:12] == x100 */ 7071 /* Floating point data-processing (1 source) */ 7072 disas_fp_1src(s, insn); 7073 break; 7074 case 3: /* [15:12] == 1000 */ 7075 unallocated_encoding(s); 7076 break; 7077 default: /* [15:12] == 0000 */ 7078 /* Floating point <-> integer conversions */ 7079 disas_fp_int_conv(s, insn); 7080 break; 7081 } 7082 break; 7083 } 7084 } 7085 } 7086 7087 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7088 int pos) 7089 { 7090 /* Extract 64 bits from the middle of two concatenated 64 bit 7091 * vector register slices left:right. The extracted bits start 7092 * at 'pos' bits into the right (least significant) side. 7093 * We return the result in tcg_right, and guarantee not to 7094 * trash tcg_left. 7095 */ 7096 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7097 assert(pos > 0 && pos < 64); 7098 7099 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7100 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7101 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7102 } 7103 7104 /* EXT 7105 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7106 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7107 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7108 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7109 */ 7110 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7111 { 7112 int is_q = extract32(insn, 30, 1); 7113 int op2 = extract32(insn, 22, 2); 7114 int imm4 = extract32(insn, 11, 4); 7115 int rm = extract32(insn, 16, 5); 7116 int rn = extract32(insn, 5, 5); 7117 int rd = extract32(insn, 0, 5); 7118 int pos = imm4 << 3; 7119 TCGv_i64 tcg_resl, tcg_resh; 7120 7121 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7122 unallocated_encoding(s); 7123 return; 7124 } 7125 7126 if (!fp_access_check(s)) { 7127 return; 7128 } 7129 7130 tcg_resh = tcg_temp_new_i64(); 7131 tcg_resl = tcg_temp_new_i64(); 7132 7133 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7134 * either extracting 128 bits from a 128:128 concatenation, or 7135 * extracting 64 bits from a 64:64 concatenation. 7136 */ 7137 if (!is_q) { 7138 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7139 if (pos != 0) { 7140 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7141 do_ext64(s, tcg_resh, tcg_resl, pos); 7142 } 7143 } else { 7144 TCGv_i64 tcg_hh; 7145 typedef struct { 7146 int reg; 7147 int elt; 7148 } EltPosns; 7149 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7150 EltPosns *elt = eltposns; 7151 7152 if (pos >= 64) { 7153 elt++; 7154 pos -= 64; 7155 } 7156 7157 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7158 elt++; 7159 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7160 elt++; 7161 if (pos != 0) { 7162 do_ext64(s, tcg_resh, tcg_resl, pos); 7163 tcg_hh = tcg_temp_new_i64(); 7164 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7165 do_ext64(s, tcg_hh, tcg_resh, pos); 7166 } 7167 } 7168 7169 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7170 if (is_q) { 7171 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7172 } 7173 clear_vec_high(s, is_q, rd); 7174 } 7175 7176 /* TBL/TBX 7177 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7178 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7179 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7180 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7181 */ 7182 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7183 { 7184 int op2 = extract32(insn, 22, 2); 7185 int is_q = extract32(insn, 30, 1); 7186 int rm = extract32(insn, 16, 5); 7187 int rn = extract32(insn, 5, 5); 7188 int rd = extract32(insn, 0, 5); 7189 int is_tbx = extract32(insn, 12, 1); 7190 int len = (extract32(insn, 13, 2) + 1) * 16; 7191 7192 if (op2 != 0) { 7193 unallocated_encoding(s); 7194 return; 7195 } 7196 7197 if (!fp_access_check(s)) { 7198 return; 7199 } 7200 7201 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7202 vec_full_reg_offset(s, rm), tcg_env, 7203 is_q ? 16 : 8, vec_full_reg_size(s), 7204 (len << 6) | (is_tbx << 5) | rn, 7205 gen_helper_simd_tblx); 7206 } 7207 7208 /* ZIP/UZP/TRN 7209 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7210 * +---+---+-------------+------+---+------+---+------------------+------+ 7211 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7212 * +---+---+-------------+------+---+------+---+------------------+------+ 7213 */ 7214 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7215 { 7216 int rd = extract32(insn, 0, 5); 7217 int rn = extract32(insn, 5, 5); 7218 int rm = extract32(insn, 16, 5); 7219 int size = extract32(insn, 22, 2); 7220 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7221 * bit 2 indicates 1 vs 2 variant of the insn. 7222 */ 7223 int opcode = extract32(insn, 12, 2); 7224 bool part = extract32(insn, 14, 1); 7225 bool is_q = extract32(insn, 30, 1); 7226 int esize = 8 << size; 7227 int i; 7228 int datasize = is_q ? 128 : 64; 7229 int elements = datasize / esize; 7230 TCGv_i64 tcg_res[2], tcg_ele; 7231 7232 if (opcode == 0 || (size == 3 && !is_q)) { 7233 unallocated_encoding(s); 7234 return; 7235 } 7236 7237 if (!fp_access_check(s)) { 7238 return; 7239 } 7240 7241 tcg_res[0] = tcg_temp_new_i64(); 7242 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7243 tcg_ele = tcg_temp_new_i64(); 7244 7245 for (i = 0; i < elements; i++) { 7246 int o, w; 7247 7248 switch (opcode) { 7249 case 1: /* UZP1/2 */ 7250 { 7251 int midpoint = elements / 2; 7252 if (i < midpoint) { 7253 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7254 } else { 7255 read_vec_element(s, tcg_ele, rm, 7256 2 * (i - midpoint) + part, size); 7257 } 7258 break; 7259 } 7260 case 2: /* TRN1/2 */ 7261 if (i & 1) { 7262 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7263 } else { 7264 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7265 } 7266 break; 7267 case 3: /* ZIP1/2 */ 7268 { 7269 int base = part * elements / 2; 7270 if (i & 1) { 7271 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7272 } else { 7273 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7274 } 7275 break; 7276 } 7277 default: 7278 g_assert_not_reached(); 7279 } 7280 7281 w = (i * esize) / 64; 7282 o = (i * esize) % 64; 7283 if (o == 0) { 7284 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7285 } else { 7286 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7287 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7288 } 7289 } 7290 7291 for (i = 0; i <= is_q; ++i) { 7292 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7293 } 7294 clear_vec_high(s, is_q, rd); 7295 } 7296 7297 /* 7298 * do_reduction_op helper 7299 * 7300 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7301 * important for correct NaN propagation that we do these 7302 * operations in exactly the order specified by the pseudocode. 7303 * 7304 * This is a recursive function, TCG temps should be freed by the 7305 * calling function once it is done with the values. 7306 */ 7307 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7308 int esize, int size, int vmap, TCGv_ptr fpst) 7309 { 7310 if (esize == size) { 7311 int element; 7312 MemOp msize = esize == 16 ? MO_16 : MO_32; 7313 TCGv_i32 tcg_elem; 7314 7315 /* We should have one register left here */ 7316 assert(ctpop8(vmap) == 1); 7317 element = ctz32(vmap); 7318 assert(element < 8); 7319 7320 tcg_elem = tcg_temp_new_i32(); 7321 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7322 return tcg_elem; 7323 } else { 7324 int bits = size / 2; 7325 int shift = ctpop8(vmap) / 2; 7326 int vmap_lo = (vmap >> shift) & vmap; 7327 int vmap_hi = (vmap & ~vmap_lo); 7328 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7329 7330 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7331 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7332 tcg_res = tcg_temp_new_i32(); 7333 7334 switch (fpopcode) { 7335 case 0x0c: /* fmaxnmv half-precision */ 7336 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7337 break; 7338 case 0x0f: /* fmaxv half-precision */ 7339 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7340 break; 7341 case 0x1c: /* fminnmv half-precision */ 7342 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7343 break; 7344 case 0x1f: /* fminv half-precision */ 7345 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7346 break; 7347 case 0x2c: /* fmaxnmv */ 7348 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7349 break; 7350 case 0x2f: /* fmaxv */ 7351 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7352 break; 7353 case 0x3c: /* fminnmv */ 7354 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7355 break; 7356 case 0x3f: /* fminv */ 7357 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7358 break; 7359 default: 7360 g_assert_not_reached(); 7361 } 7362 return tcg_res; 7363 } 7364 } 7365 7366 /* AdvSIMD across lanes 7367 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7368 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7369 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7370 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7371 */ 7372 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7373 { 7374 int rd = extract32(insn, 0, 5); 7375 int rn = extract32(insn, 5, 5); 7376 int size = extract32(insn, 22, 2); 7377 int opcode = extract32(insn, 12, 5); 7378 bool is_q = extract32(insn, 30, 1); 7379 bool is_u = extract32(insn, 29, 1); 7380 bool is_fp = false; 7381 bool is_min = false; 7382 int esize; 7383 int elements; 7384 int i; 7385 TCGv_i64 tcg_res, tcg_elt; 7386 7387 switch (opcode) { 7388 case 0x1b: /* ADDV */ 7389 if (is_u) { 7390 unallocated_encoding(s); 7391 return; 7392 } 7393 /* fall through */ 7394 case 0x3: /* SADDLV, UADDLV */ 7395 case 0xa: /* SMAXV, UMAXV */ 7396 case 0x1a: /* SMINV, UMINV */ 7397 if (size == 3 || (size == 2 && !is_q)) { 7398 unallocated_encoding(s); 7399 return; 7400 } 7401 break; 7402 case 0xc: /* FMAXNMV, FMINNMV */ 7403 case 0xf: /* FMAXV, FMINV */ 7404 /* Bit 1 of size field encodes min vs max and the actual size 7405 * depends on the encoding of the U bit. If not set (and FP16 7406 * enabled) then we do half-precision float instead of single 7407 * precision. 7408 */ 7409 is_min = extract32(size, 1, 1); 7410 is_fp = true; 7411 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7412 size = 1; 7413 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7414 unallocated_encoding(s); 7415 return; 7416 } else { 7417 size = 2; 7418 } 7419 break; 7420 default: 7421 unallocated_encoding(s); 7422 return; 7423 } 7424 7425 if (!fp_access_check(s)) { 7426 return; 7427 } 7428 7429 esize = 8 << size; 7430 elements = (is_q ? 128 : 64) / esize; 7431 7432 tcg_res = tcg_temp_new_i64(); 7433 tcg_elt = tcg_temp_new_i64(); 7434 7435 /* These instructions operate across all lanes of a vector 7436 * to produce a single result. We can guarantee that a 64 7437 * bit intermediate is sufficient: 7438 * + for [US]ADDLV the maximum element size is 32 bits, and 7439 * the result type is 64 bits 7440 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7441 * same as the element size, which is 32 bits at most 7442 * For the integer operations we can choose to work at 64 7443 * or 32 bits and truncate at the end; for simplicity 7444 * we use 64 bits always. The floating point 7445 * ops do require 32 bit intermediates, though. 7446 */ 7447 if (!is_fp) { 7448 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7449 7450 for (i = 1; i < elements; i++) { 7451 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7452 7453 switch (opcode) { 7454 case 0x03: /* SADDLV / UADDLV */ 7455 case 0x1b: /* ADDV */ 7456 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7457 break; 7458 case 0x0a: /* SMAXV / UMAXV */ 7459 if (is_u) { 7460 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7461 } else { 7462 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7463 } 7464 break; 7465 case 0x1a: /* SMINV / UMINV */ 7466 if (is_u) { 7467 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7468 } else { 7469 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7470 } 7471 break; 7472 default: 7473 g_assert_not_reached(); 7474 } 7475 7476 } 7477 } else { 7478 /* Floating point vector reduction ops which work across 32 7479 * bit (single) or 16 bit (half-precision) intermediates. 7480 * Note that correct NaN propagation requires that we do these 7481 * operations in exactly the order specified by the pseudocode. 7482 */ 7483 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7484 int fpopcode = opcode | is_min << 4 | is_u << 5; 7485 int vmap = (1 << elements) - 1; 7486 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7487 (is_q ? 128 : 64), vmap, fpst); 7488 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7489 } 7490 7491 /* Now truncate the result to the width required for the final output */ 7492 if (opcode == 0x03) { 7493 /* SADDLV, UADDLV: result is 2*esize */ 7494 size++; 7495 } 7496 7497 switch (size) { 7498 case 0: 7499 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7500 break; 7501 case 1: 7502 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7503 break; 7504 case 2: 7505 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7506 break; 7507 case 3: 7508 break; 7509 default: 7510 g_assert_not_reached(); 7511 } 7512 7513 write_fp_dreg(s, rd, tcg_res); 7514 } 7515 7516 /* DUP (Element, Vector) 7517 * 7518 * 31 30 29 21 20 16 15 10 9 5 4 0 7519 * +---+---+-------------------+--------+-------------+------+------+ 7520 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7521 * +---+---+-------------------+--------+-------------+------+------+ 7522 * 7523 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7524 */ 7525 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7526 int imm5) 7527 { 7528 int size = ctz32(imm5); 7529 int index; 7530 7531 if (size > 3 || (size == 3 && !is_q)) { 7532 unallocated_encoding(s); 7533 return; 7534 } 7535 7536 if (!fp_access_check(s)) { 7537 return; 7538 } 7539 7540 index = imm5 >> (size + 1); 7541 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7542 vec_reg_offset(s, rn, index, size), 7543 is_q ? 16 : 8, vec_full_reg_size(s)); 7544 } 7545 7546 /* DUP (element, scalar) 7547 * 31 21 20 16 15 10 9 5 4 0 7548 * +-----------------------+--------+-------------+------+------+ 7549 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7550 * +-----------------------+--------+-------------+------+------+ 7551 */ 7552 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7553 int imm5) 7554 { 7555 int size = ctz32(imm5); 7556 int index; 7557 TCGv_i64 tmp; 7558 7559 if (size > 3) { 7560 unallocated_encoding(s); 7561 return; 7562 } 7563 7564 if (!fp_access_check(s)) { 7565 return; 7566 } 7567 7568 index = imm5 >> (size + 1); 7569 7570 /* This instruction just extracts the specified element and 7571 * zero-extends it into the bottom of the destination register. 7572 */ 7573 tmp = tcg_temp_new_i64(); 7574 read_vec_element(s, tmp, rn, index, size); 7575 write_fp_dreg(s, rd, tmp); 7576 } 7577 7578 /* DUP (General) 7579 * 7580 * 31 30 29 21 20 16 15 10 9 5 4 0 7581 * +---+---+-------------------+--------+-------------+------+------+ 7582 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7583 * +---+---+-------------------+--------+-------------+------+------+ 7584 * 7585 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7586 */ 7587 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7588 int imm5) 7589 { 7590 int size = ctz32(imm5); 7591 uint32_t dofs, oprsz, maxsz; 7592 7593 if (size > 3 || ((size == 3) && !is_q)) { 7594 unallocated_encoding(s); 7595 return; 7596 } 7597 7598 if (!fp_access_check(s)) { 7599 return; 7600 } 7601 7602 dofs = vec_full_reg_offset(s, rd); 7603 oprsz = is_q ? 16 : 8; 7604 maxsz = vec_full_reg_size(s); 7605 7606 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7607 } 7608 7609 /* INS (Element) 7610 * 7611 * 31 21 20 16 15 14 11 10 9 5 4 0 7612 * +-----------------------+--------+------------+---+------+------+ 7613 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7614 * +-----------------------+--------+------------+---+------+------+ 7615 * 7616 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7617 * index: encoded in imm5<4:size+1> 7618 */ 7619 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7620 int imm4, int imm5) 7621 { 7622 int size = ctz32(imm5); 7623 int src_index, dst_index; 7624 TCGv_i64 tmp; 7625 7626 if (size > 3) { 7627 unallocated_encoding(s); 7628 return; 7629 } 7630 7631 if (!fp_access_check(s)) { 7632 return; 7633 } 7634 7635 dst_index = extract32(imm5, 1+size, 5); 7636 src_index = extract32(imm4, size, 4); 7637 7638 tmp = tcg_temp_new_i64(); 7639 7640 read_vec_element(s, tmp, rn, src_index, size); 7641 write_vec_element(s, tmp, rd, dst_index, size); 7642 7643 /* INS is considered a 128-bit write for SVE. */ 7644 clear_vec_high(s, true, rd); 7645 } 7646 7647 7648 /* INS (General) 7649 * 7650 * 31 21 20 16 15 10 9 5 4 0 7651 * +-----------------------+--------+-------------+------+------+ 7652 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7653 * +-----------------------+--------+-------------+------+------+ 7654 * 7655 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7656 * index: encoded in imm5<4:size+1> 7657 */ 7658 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7659 { 7660 int size = ctz32(imm5); 7661 int idx; 7662 7663 if (size > 3) { 7664 unallocated_encoding(s); 7665 return; 7666 } 7667 7668 if (!fp_access_check(s)) { 7669 return; 7670 } 7671 7672 idx = extract32(imm5, 1 + size, 4 - size); 7673 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7674 7675 /* INS is considered a 128-bit write for SVE. */ 7676 clear_vec_high(s, true, rd); 7677 } 7678 7679 /* 7680 * UMOV (General) 7681 * SMOV (General) 7682 * 7683 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7684 * +---+---+-------------------+--------+-------------+------+------+ 7685 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7686 * +---+---+-------------------+--------+-------------+------+------+ 7687 * 7688 * U: unsigned when set 7689 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7690 */ 7691 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7692 int rn, int rd, int imm5) 7693 { 7694 int size = ctz32(imm5); 7695 int element; 7696 TCGv_i64 tcg_rd; 7697 7698 /* Check for UnallocatedEncodings */ 7699 if (is_signed) { 7700 if (size > 2 || (size == 2 && !is_q)) { 7701 unallocated_encoding(s); 7702 return; 7703 } 7704 } else { 7705 if (size > 3 7706 || (size < 3 && is_q) 7707 || (size == 3 && !is_q)) { 7708 unallocated_encoding(s); 7709 return; 7710 } 7711 } 7712 7713 if (!fp_access_check(s)) { 7714 return; 7715 } 7716 7717 element = extract32(imm5, 1+size, 4); 7718 7719 tcg_rd = cpu_reg(s, rd); 7720 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7721 if (is_signed && !is_q) { 7722 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7723 } 7724 } 7725 7726 /* AdvSIMD copy 7727 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7728 * +---+---+----+-----------------+------+---+------+---+------+------+ 7729 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7730 * +---+---+----+-----------------+------+---+------+---+------+------+ 7731 */ 7732 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7733 { 7734 int rd = extract32(insn, 0, 5); 7735 int rn = extract32(insn, 5, 5); 7736 int imm4 = extract32(insn, 11, 4); 7737 int op = extract32(insn, 29, 1); 7738 int is_q = extract32(insn, 30, 1); 7739 int imm5 = extract32(insn, 16, 5); 7740 7741 if (op) { 7742 if (is_q) { 7743 /* INS (element) */ 7744 handle_simd_inse(s, rd, rn, imm4, imm5); 7745 } else { 7746 unallocated_encoding(s); 7747 } 7748 } else { 7749 switch (imm4) { 7750 case 0: 7751 /* DUP (element - vector) */ 7752 handle_simd_dupe(s, is_q, rd, rn, imm5); 7753 break; 7754 case 1: 7755 /* DUP (general) */ 7756 handle_simd_dupg(s, is_q, rd, rn, imm5); 7757 break; 7758 case 3: 7759 if (is_q) { 7760 /* INS (general) */ 7761 handle_simd_insg(s, rd, rn, imm5); 7762 } else { 7763 unallocated_encoding(s); 7764 } 7765 break; 7766 case 5: 7767 case 7: 7768 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7769 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7770 break; 7771 default: 7772 unallocated_encoding(s); 7773 break; 7774 } 7775 } 7776 } 7777 7778 /* AdvSIMD modified immediate 7779 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7780 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7781 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7782 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7783 * 7784 * There are a number of operations that can be carried out here: 7785 * MOVI - move (shifted) imm into register 7786 * MVNI - move inverted (shifted) imm into register 7787 * ORR - bitwise OR of (shifted) imm with register 7788 * BIC - bitwise clear of (shifted) imm with register 7789 * With ARMv8.2 we also have: 7790 * FMOV half-precision 7791 */ 7792 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7793 { 7794 int rd = extract32(insn, 0, 5); 7795 int cmode = extract32(insn, 12, 4); 7796 int o2 = extract32(insn, 11, 1); 7797 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7798 bool is_neg = extract32(insn, 29, 1); 7799 bool is_q = extract32(insn, 30, 1); 7800 uint64_t imm = 0; 7801 7802 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7803 /* Check for FMOV (vector, immediate) - half-precision */ 7804 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7805 unallocated_encoding(s); 7806 return; 7807 } 7808 } 7809 7810 if (!fp_access_check(s)) { 7811 return; 7812 } 7813 7814 if (cmode == 15 && o2 && !is_neg) { 7815 /* FMOV (vector, immediate) - half-precision */ 7816 imm = vfp_expand_imm(MO_16, abcdefgh); 7817 /* now duplicate across the lanes */ 7818 imm = dup_const(MO_16, imm); 7819 } else { 7820 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7821 } 7822 7823 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7824 /* MOVI or MVNI, with MVNI negation handled above. */ 7825 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7826 vec_full_reg_size(s), imm); 7827 } else { 7828 /* ORR or BIC, with BIC negation to AND handled above. */ 7829 if (is_neg) { 7830 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7831 } else { 7832 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7833 } 7834 } 7835 } 7836 7837 /* AdvSIMD scalar copy 7838 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7839 * +-----+----+-----------------+------+---+------+---+------+------+ 7840 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7841 * +-----+----+-----------------+------+---+------+---+------+------+ 7842 */ 7843 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7844 { 7845 int rd = extract32(insn, 0, 5); 7846 int rn = extract32(insn, 5, 5); 7847 int imm4 = extract32(insn, 11, 4); 7848 int imm5 = extract32(insn, 16, 5); 7849 int op = extract32(insn, 29, 1); 7850 7851 if (op != 0 || imm4 != 0) { 7852 unallocated_encoding(s); 7853 return; 7854 } 7855 7856 /* DUP (element, scalar) */ 7857 handle_simd_dupes(s, rd, rn, imm5); 7858 } 7859 7860 /* AdvSIMD scalar pairwise 7861 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7862 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7863 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7864 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7865 */ 7866 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7867 { 7868 int u = extract32(insn, 29, 1); 7869 int size = extract32(insn, 22, 2); 7870 int opcode = extract32(insn, 12, 5); 7871 int rn = extract32(insn, 5, 5); 7872 int rd = extract32(insn, 0, 5); 7873 TCGv_ptr fpst; 7874 7875 /* For some ops (the FP ones), size[1] is part of the encoding. 7876 * For ADDP strictly it is not but size[1] is always 1 for valid 7877 * encodings. 7878 */ 7879 opcode |= (extract32(size, 1, 1) << 5); 7880 7881 switch (opcode) { 7882 case 0x3b: /* ADDP */ 7883 if (u || size != 3) { 7884 unallocated_encoding(s); 7885 return; 7886 } 7887 if (!fp_access_check(s)) { 7888 return; 7889 } 7890 7891 fpst = NULL; 7892 break; 7893 case 0xc: /* FMAXNMP */ 7894 case 0xd: /* FADDP */ 7895 case 0xf: /* FMAXP */ 7896 case 0x2c: /* FMINNMP */ 7897 case 0x2f: /* FMINP */ 7898 /* FP op, size[0] is 32 or 64 bit*/ 7899 if (!u) { 7900 if (!dc_isar_feature(aa64_fp16, s)) { 7901 unallocated_encoding(s); 7902 return; 7903 } else { 7904 size = MO_16; 7905 } 7906 } else { 7907 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7908 } 7909 7910 if (!fp_access_check(s)) { 7911 return; 7912 } 7913 7914 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7915 break; 7916 default: 7917 unallocated_encoding(s); 7918 return; 7919 } 7920 7921 if (size == MO_64) { 7922 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7923 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7924 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7925 7926 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7927 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7928 7929 switch (opcode) { 7930 case 0x3b: /* ADDP */ 7931 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7932 break; 7933 case 0xc: /* FMAXNMP */ 7934 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7935 break; 7936 case 0xd: /* FADDP */ 7937 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7938 break; 7939 case 0xf: /* FMAXP */ 7940 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7941 break; 7942 case 0x2c: /* FMINNMP */ 7943 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7944 break; 7945 case 0x2f: /* FMINP */ 7946 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7947 break; 7948 default: 7949 g_assert_not_reached(); 7950 } 7951 7952 write_fp_dreg(s, rd, tcg_res); 7953 } else { 7954 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7955 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7956 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7957 7958 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7959 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7960 7961 if (size == MO_16) { 7962 switch (opcode) { 7963 case 0xc: /* FMAXNMP */ 7964 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7965 break; 7966 case 0xd: /* FADDP */ 7967 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7968 break; 7969 case 0xf: /* FMAXP */ 7970 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7971 break; 7972 case 0x2c: /* FMINNMP */ 7973 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7974 break; 7975 case 0x2f: /* FMINP */ 7976 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7977 break; 7978 default: 7979 g_assert_not_reached(); 7980 } 7981 } else { 7982 switch (opcode) { 7983 case 0xc: /* FMAXNMP */ 7984 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7985 break; 7986 case 0xd: /* FADDP */ 7987 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7988 break; 7989 case 0xf: /* FMAXP */ 7990 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7991 break; 7992 case 0x2c: /* FMINNMP */ 7993 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7994 break; 7995 case 0x2f: /* FMINP */ 7996 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7997 break; 7998 default: 7999 g_assert_not_reached(); 8000 } 8001 } 8002 8003 write_fp_sreg(s, rd, tcg_res); 8004 } 8005 } 8006 8007 /* 8008 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8009 * 8010 * This code is handles the common shifting code and is used by both 8011 * the vector and scalar code. 8012 */ 8013 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8014 TCGv_i64 tcg_rnd, bool accumulate, 8015 bool is_u, int size, int shift) 8016 { 8017 bool extended_result = false; 8018 bool round = tcg_rnd != NULL; 8019 int ext_lshift = 0; 8020 TCGv_i64 tcg_src_hi; 8021 8022 if (round && size == 3) { 8023 extended_result = true; 8024 ext_lshift = 64 - shift; 8025 tcg_src_hi = tcg_temp_new_i64(); 8026 } else if (shift == 64) { 8027 if (!accumulate && is_u) { 8028 /* result is zero */ 8029 tcg_gen_movi_i64(tcg_res, 0); 8030 return; 8031 } 8032 } 8033 8034 /* Deal with the rounding step */ 8035 if (round) { 8036 if (extended_result) { 8037 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8038 if (!is_u) { 8039 /* take care of sign extending tcg_res */ 8040 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8041 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8042 tcg_src, tcg_src_hi, 8043 tcg_rnd, tcg_zero); 8044 } else { 8045 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8046 tcg_src, tcg_zero, 8047 tcg_rnd, tcg_zero); 8048 } 8049 } else { 8050 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8051 } 8052 } 8053 8054 /* Now do the shift right */ 8055 if (round && extended_result) { 8056 /* extended case, >64 bit precision required */ 8057 if (ext_lshift == 0) { 8058 /* special case, only high bits matter */ 8059 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8060 } else { 8061 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8062 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8063 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8064 } 8065 } else { 8066 if (is_u) { 8067 if (shift == 64) { 8068 /* essentially shifting in 64 zeros */ 8069 tcg_gen_movi_i64(tcg_src, 0); 8070 } else { 8071 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8072 } 8073 } else { 8074 if (shift == 64) { 8075 /* effectively extending the sign-bit */ 8076 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8077 } else { 8078 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8079 } 8080 } 8081 } 8082 8083 if (accumulate) { 8084 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8085 } else { 8086 tcg_gen_mov_i64(tcg_res, tcg_src); 8087 } 8088 } 8089 8090 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8091 static void handle_scalar_simd_shri(DisasContext *s, 8092 bool is_u, int immh, int immb, 8093 int opcode, int rn, int rd) 8094 { 8095 const int size = 3; 8096 int immhb = immh << 3 | immb; 8097 int shift = 2 * (8 << size) - immhb; 8098 bool accumulate = false; 8099 bool round = false; 8100 bool insert = false; 8101 TCGv_i64 tcg_rn; 8102 TCGv_i64 tcg_rd; 8103 TCGv_i64 tcg_round; 8104 8105 if (!extract32(immh, 3, 1)) { 8106 unallocated_encoding(s); 8107 return; 8108 } 8109 8110 if (!fp_access_check(s)) { 8111 return; 8112 } 8113 8114 switch (opcode) { 8115 case 0x02: /* SSRA / USRA (accumulate) */ 8116 accumulate = true; 8117 break; 8118 case 0x04: /* SRSHR / URSHR (rounding) */ 8119 round = true; 8120 break; 8121 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8122 accumulate = round = true; 8123 break; 8124 case 0x08: /* SRI */ 8125 insert = true; 8126 break; 8127 } 8128 8129 if (round) { 8130 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8131 } else { 8132 tcg_round = NULL; 8133 } 8134 8135 tcg_rn = read_fp_dreg(s, rn); 8136 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8137 8138 if (insert) { 8139 /* shift count same as element size is valid but does nothing; 8140 * special case to avoid potential shift by 64. 8141 */ 8142 int esize = 8 << size; 8143 if (shift != esize) { 8144 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8145 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8146 } 8147 } else { 8148 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8149 accumulate, is_u, size, shift); 8150 } 8151 8152 write_fp_dreg(s, rd, tcg_rd); 8153 } 8154 8155 /* SHL/SLI - Scalar shift left */ 8156 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8157 int immh, int immb, int opcode, 8158 int rn, int rd) 8159 { 8160 int size = 32 - clz32(immh) - 1; 8161 int immhb = immh << 3 | immb; 8162 int shift = immhb - (8 << size); 8163 TCGv_i64 tcg_rn; 8164 TCGv_i64 tcg_rd; 8165 8166 if (!extract32(immh, 3, 1)) { 8167 unallocated_encoding(s); 8168 return; 8169 } 8170 8171 if (!fp_access_check(s)) { 8172 return; 8173 } 8174 8175 tcg_rn = read_fp_dreg(s, rn); 8176 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8177 8178 if (insert) { 8179 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8180 } else { 8181 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8182 } 8183 8184 write_fp_dreg(s, rd, tcg_rd); 8185 } 8186 8187 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8188 * (signed/unsigned) narrowing */ 8189 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8190 bool is_u_shift, bool is_u_narrow, 8191 int immh, int immb, int opcode, 8192 int rn, int rd) 8193 { 8194 int immhb = immh << 3 | immb; 8195 int size = 32 - clz32(immh) - 1; 8196 int esize = 8 << size; 8197 int shift = (2 * esize) - immhb; 8198 int elements = is_scalar ? 1 : (64 / esize); 8199 bool round = extract32(opcode, 0, 1); 8200 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8201 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8202 TCGv_i32 tcg_rd_narrowed; 8203 TCGv_i64 tcg_final; 8204 8205 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8206 { gen_helper_neon_narrow_sat_s8, 8207 gen_helper_neon_unarrow_sat8 }, 8208 { gen_helper_neon_narrow_sat_s16, 8209 gen_helper_neon_unarrow_sat16 }, 8210 { gen_helper_neon_narrow_sat_s32, 8211 gen_helper_neon_unarrow_sat32 }, 8212 { NULL, NULL }, 8213 }; 8214 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8215 gen_helper_neon_narrow_sat_u8, 8216 gen_helper_neon_narrow_sat_u16, 8217 gen_helper_neon_narrow_sat_u32, 8218 NULL 8219 }; 8220 NeonGenNarrowEnvFn *narrowfn; 8221 8222 int i; 8223 8224 assert(size < 4); 8225 8226 if (extract32(immh, 3, 1)) { 8227 unallocated_encoding(s); 8228 return; 8229 } 8230 8231 if (!fp_access_check(s)) { 8232 return; 8233 } 8234 8235 if (is_u_shift) { 8236 narrowfn = unsigned_narrow_fns[size]; 8237 } else { 8238 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8239 } 8240 8241 tcg_rn = tcg_temp_new_i64(); 8242 tcg_rd = tcg_temp_new_i64(); 8243 tcg_rd_narrowed = tcg_temp_new_i32(); 8244 tcg_final = tcg_temp_new_i64(); 8245 8246 if (round) { 8247 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8248 } else { 8249 tcg_round = NULL; 8250 } 8251 8252 for (i = 0; i < elements; i++) { 8253 read_vec_element(s, tcg_rn, rn, i, ldop); 8254 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8255 false, is_u_shift, size+1, shift); 8256 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8257 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8258 if (i == 0) { 8259 tcg_gen_mov_i64(tcg_final, tcg_rd); 8260 } else { 8261 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8262 } 8263 } 8264 8265 if (!is_q) { 8266 write_vec_element(s, tcg_final, rd, 0, MO_64); 8267 } else { 8268 write_vec_element(s, tcg_final, rd, 1, MO_64); 8269 } 8270 clear_vec_high(s, is_q, rd); 8271 } 8272 8273 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8274 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8275 bool src_unsigned, bool dst_unsigned, 8276 int immh, int immb, int rn, int rd) 8277 { 8278 int immhb = immh << 3 | immb; 8279 int size = 32 - clz32(immh) - 1; 8280 int shift = immhb - (8 << size); 8281 int pass; 8282 8283 assert(immh != 0); 8284 assert(!(scalar && is_q)); 8285 8286 if (!scalar) { 8287 if (!is_q && extract32(immh, 3, 1)) { 8288 unallocated_encoding(s); 8289 return; 8290 } 8291 8292 /* Since we use the variable-shift helpers we must 8293 * replicate the shift count into each element of 8294 * the tcg_shift value. 8295 */ 8296 switch (size) { 8297 case 0: 8298 shift |= shift << 8; 8299 /* fall through */ 8300 case 1: 8301 shift |= shift << 16; 8302 break; 8303 case 2: 8304 case 3: 8305 break; 8306 default: 8307 g_assert_not_reached(); 8308 } 8309 } 8310 8311 if (!fp_access_check(s)) { 8312 return; 8313 } 8314 8315 if (size == 3) { 8316 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8317 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8318 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8319 { NULL, gen_helper_neon_qshl_u64 }, 8320 }; 8321 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8322 int maxpass = is_q ? 2 : 1; 8323 8324 for (pass = 0; pass < maxpass; pass++) { 8325 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8326 8327 read_vec_element(s, tcg_op, rn, pass, MO_64); 8328 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8329 write_vec_element(s, tcg_op, rd, pass, MO_64); 8330 } 8331 clear_vec_high(s, is_q, rd); 8332 } else { 8333 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8334 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8335 { 8336 { gen_helper_neon_qshl_s8, 8337 gen_helper_neon_qshl_s16, 8338 gen_helper_neon_qshl_s32 }, 8339 { gen_helper_neon_qshlu_s8, 8340 gen_helper_neon_qshlu_s16, 8341 gen_helper_neon_qshlu_s32 } 8342 }, { 8343 { NULL, NULL, NULL }, 8344 { gen_helper_neon_qshl_u8, 8345 gen_helper_neon_qshl_u16, 8346 gen_helper_neon_qshl_u32 } 8347 } 8348 }; 8349 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8350 MemOp memop = scalar ? size : MO_32; 8351 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8352 8353 for (pass = 0; pass < maxpass; pass++) { 8354 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8355 8356 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8357 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8358 if (scalar) { 8359 switch (size) { 8360 case 0: 8361 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8362 break; 8363 case 1: 8364 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8365 break; 8366 case 2: 8367 break; 8368 default: 8369 g_assert_not_reached(); 8370 } 8371 write_fp_sreg(s, rd, tcg_op); 8372 } else { 8373 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8374 } 8375 } 8376 8377 if (!scalar) { 8378 clear_vec_high(s, is_q, rd); 8379 } 8380 } 8381 } 8382 8383 /* Common vector code for handling integer to FP conversion */ 8384 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8385 int elements, int is_signed, 8386 int fracbits, int size) 8387 { 8388 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8389 TCGv_i32 tcg_shift = NULL; 8390 8391 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8392 int pass; 8393 8394 if (fracbits || size == MO_64) { 8395 tcg_shift = tcg_constant_i32(fracbits); 8396 } 8397 8398 if (size == MO_64) { 8399 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8400 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8401 8402 for (pass = 0; pass < elements; pass++) { 8403 read_vec_element(s, tcg_int64, rn, pass, mop); 8404 8405 if (is_signed) { 8406 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8407 tcg_shift, tcg_fpst); 8408 } else { 8409 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8410 tcg_shift, tcg_fpst); 8411 } 8412 if (elements == 1) { 8413 write_fp_dreg(s, rd, tcg_double); 8414 } else { 8415 write_vec_element(s, tcg_double, rd, pass, MO_64); 8416 } 8417 } 8418 } else { 8419 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8420 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8421 8422 for (pass = 0; pass < elements; pass++) { 8423 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8424 8425 switch (size) { 8426 case MO_32: 8427 if (fracbits) { 8428 if (is_signed) { 8429 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8430 tcg_shift, tcg_fpst); 8431 } else { 8432 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8433 tcg_shift, tcg_fpst); 8434 } 8435 } else { 8436 if (is_signed) { 8437 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8438 } else { 8439 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8440 } 8441 } 8442 break; 8443 case MO_16: 8444 if (fracbits) { 8445 if (is_signed) { 8446 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8447 tcg_shift, tcg_fpst); 8448 } else { 8449 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8450 tcg_shift, tcg_fpst); 8451 } 8452 } else { 8453 if (is_signed) { 8454 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8455 } else { 8456 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8457 } 8458 } 8459 break; 8460 default: 8461 g_assert_not_reached(); 8462 } 8463 8464 if (elements == 1) { 8465 write_fp_sreg(s, rd, tcg_float); 8466 } else { 8467 write_vec_element_i32(s, tcg_float, rd, pass, size); 8468 } 8469 } 8470 } 8471 8472 clear_vec_high(s, elements << size == 16, rd); 8473 } 8474 8475 /* UCVTF/SCVTF - Integer to FP conversion */ 8476 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8477 bool is_q, bool is_u, 8478 int immh, int immb, int opcode, 8479 int rn, int rd) 8480 { 8481 int size, elements, fracbits; 8482 int immhb = immh << 3 | immb; 8483 8484 if (immh & 8) { 8485 size = MO_64; 8486 if (!is_scalar && !is_q) { 8487 unallocated_encoding(s); 8488 return; 8489 } 8490 } else if (immh & 4) { 8491 size = MO_32; 8492 } else if (immh & 2) { 8493 size = MO_16; 8494 if (!dc_isar_feature(aa64_fp16, s)) { 8495 unallocated_encoding(s); 8496 return; 8497 } 8498 } else { 8499 /* immh == 0 would be a failure of the decode logic */ 8500 g_assert(immh == 1); 8501 unallocated_encoding(s); 8502 return; 8503 } 8504 8505 if (is_scalar) { 8506 elements = 1; 8507 } else { 8508 elements = (8 << is_q) >> size; 8509 } 8510 fracbits = (16 << size) - immhb; 8511 8512 if (!fp_access_check(s)) { 8513 return; 8514 } 8515 8516 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8517 } 8518 8519 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8520 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8521 bool is_q, bool is_u, 8522 int immh, int immb, int rn, int rd) 8523 { 8524 int immhb = immh << 3 | immb; 8525 int pass, size, fracbits; 8526 TCGv_ptr tcg_fpstatus; 8527 TCGv_i32 tcg_rmode, tcg_shift; 8528 8529 if (immh & 0x8) { 8530 size = MO_64; 8531 if (!is_scalar && !is_q) { 8532 unallocated_encoding(s); 8533 return; 8534 } 8535 } else if (immh & 0x4) { 8536 size = MO_32; 8537 } else if (immh & 0x2) { 8538 size = MO_16; 8539 if (!dc_isar_feature(aa64_fp16, s)) { 8540 unallocated_encoding(s); 8541 return; 8542 } 8543 } else { 8544 /* Should have split out AdvSIMD modified immediate earlier. */ 8545 assert(immh == 1); 8546 unallocated_encoding(s); 8547 return; 8548 } 8549 8550 if (!fp_access_check(s)) { 8551 return; 8552 } 8553 8554 assert(!(is_scalar && is_q)); 8555 8556 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8557 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8558 fracbits = (16 << size) - immhb; 8559 tcg_shift = tcg_constant_i32(fracbits); 8560 8561 if (size == MO_64) { 8562 int maxpass = is_scalar ? 1 : 2; 8563 8564 for (pass = 0; pass < maxpass; pass++) { 8565 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8566 8567 read_vec_element(s, tcg_op, rn, pass, MO_64); 8568 if (is_u) { 8569 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8570 } else { 8571 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8572 } 8573 write_vec_element(s, tcg_op, rd, pass, MO_64); 8574 } 8575 clear_vec_high(s, is_q, rd); 8576 } else { 8577 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8578 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8579 8580 switch (size) { 8581 case MO_16: 8582 if (is_u) { 8583 fn = gen_helper_vfp_touhh; 8584 } else { 8585 fn = gen_helper_vfp_toshh; 8586 } 8587 break; 8588 case MO_32: 8589 if (is_u) { 8590 fn = gen_helper_vfp_touls; 8591 } else { 8592 fn = gen_helper_vfp_tosls; 8593 } 8594 break; 8595 default: 8596 g_assert_not_reached(); 8597 } 8598 8599 for (pass = 0; pass < maxpass; pass++) { 8600 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8601 8602 read_vec_element_i32(s, tcg_op, rn, pass, size); 8603 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8604 if (is_scalar) { 8605 write_fp_sreg(s, rd, tcg_op); 8606 } else { 8607 write_vec_element_i32(s, tcg_op, rd, pass, size); 8608 } 8609 } 8610 if (!is_scalar) { 8611 clear_vec_high(s, is_q, rd); 8612 } 8613 } 8614 8615 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8616 } 8617 8618 /* AdvSIMD scalar shift by immediate 8619 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8620 * +-----+---+-------------+------+------+--------+---+------+------+ 8621 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8622 * +-----+---+-------------+------+------+--------+---+------+------+ 8623 * 8624 * This is the scalar version so it works on a fixed sized registers 8625 */ 8626 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8627 { 8628 int rd = extract32(insn, 0, 5); 8629 int rn = extract32(insn, 5, 5); 8630 int opcode = extract32(insn, 11, 5); 8631 int immb = extract32(insn, 16, 3); 8632 int immh = extract32(insn, 19, 4); 8633 bool is_u = extract32(insn, 29, 1); 8634 8635 if (immh == 0) { 8636 unallocated_encoding(s); 8637 return; 8638 } 8639 8640 switch (opcode) { 8641 case 0x08: /* SRI */ 8642 if (!is_u) { 8643 unallocated_encoding(s); 8644 return; 8645 } 8646 /* fall through */ 8647 case 0x00: /* SSHR / USHR */ 8648 case 0x02: /* SSRA / USRA */ 8649 case 0x04: /* SRSHR / URSHR */ 8650 case 0x06: /* SRSRA / URSRA */ 8651 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8652 break; 8653 case 0x0a: /* SHL / SLI */ 8654 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8655 break; 8656 case 0x1c: /* SCVTF, UCVTF */ 8657 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8658 opcode, rn, rd); 8659 break; 8660 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8661 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8662 if (!is_u) { 8663 unallocated_encoding(s); 8664 return; 8665 } 8666 handle_vec_simd_sqshrn(s, true, false, false, true, 8667 immh, immb, opcode, rn, rd); 8668 break; 8669 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8670 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8671 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8672 immh, immb, opcode, rn, rd); 8673 break; 8674 case 0xc: /* SQSHLU */ 8675 if (!is_u) { 8676 unallocated_encoding(s); 8677 return; 8678 } 8679 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8680 break; 8681 case 0xe: /* SQSHL, UQSHL */ 8682 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8683 break; 8684 case 0x1f: /* FCVTZS, FCVTZU */ 8685 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8686 break; 8687 default: 8688 unallocated_encoding(s); 8689 break; 8690 } 8691 } 8692 8693 /* AdvSIMD scalar three different 8694 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8695 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8696 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8697 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8698 */ 8699 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8700 { 8701 bool is_u = extract32(insn, 29, 1); 8702 int size = extract32(insn, 22, 2); 8703 int opcode = extract32(insn, 12, 4); 8704 int rm = extract32(insn, 16, 5); 8705 int rn = extract32(insn, 5, 5); 8706 int rd = extract32(insn, 0, 5); 8707 8708 if (is_u) { 8709 unallocated_encoding(s); 8710 return; 8711 } 8712 8713 switch (opcode) { 8714 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8715 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8716 case 0xd: /* SQDMULL, SQDMULL2 */ 8717 if (size == 0 || size == 3) { 8718 unallocated_encoding(s); 8719 return; 8720 } 8721 break; 8722 default: 8723 unallocated_encoding(s); 8724 return; 8725 } 8726 8727 if (!fp_access_check(s)) { 8728 return; 8729 } 8730 8731 if (size == 2) { 8732 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8733 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8734 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8735 8736 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8737 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8738 8739 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8740 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8741 8742 switch (opcode) { 8743 case 0xd: /* SQDMULL, SQDMULL2 */ 8744 break; 8745 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8746 tcg_gen_neg_i64(tcg_res, tcg_res); 8747 /* fall through */ 8748 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8749 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8750 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8751 tcg_res, tcg_op1); 8752 break; 8753 default: 8754 g_assert_not_reached(); 8755 } 8756 8757 write_fp_dreg(s, rd, tcg_res); 8758 } else { 8759 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8760 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8761 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8762 8763 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8764 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8765 8766 switch (opcode) { 8767 case 0xd: /* SQDMULL, SQDMULL2 */ 8768 break; 8769 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8770 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8771 /* fall through */ 8772 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8773 { 8774 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8775 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8776 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8777 tcg_res, tcg_op3); 8778 break; 8779 } 8780 default: 8781 g_assert_not_reached(); 8782 } 8783 8784 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8785 write_fp_dreg(s, rd, tcg_res); 8786 } 8787 } 8788 8789 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8790 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8791 { 8792 /* Handle 64x64->64 opcodes which are shared between the scalar 8793 * and vector 3-same groups. We cover every opcode where size == 3 8794 * is valid in either the three-reg-same (integer, not pairwise) 8795 * or scalar-three-reg-same groups. 8796 */ 8797 TCGCond cond; 8798 8799 switch (opcode) { 8800 case 0x1: /* SQADD */ 8801 if (u) { 8802 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8803 } else { 8804 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8805 } 8806 break; 8807 case 0x5: /* SQSUB */ 8808 if (u) { 8809 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8810 } else { 8811 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8812 } 8813 break; 8814 case 0x6: /* CMGT, CMHI */ 8815 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8816 do_cmop: 8817 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8818 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8819 break; 8820 case 0x7: /* CMGE, CMHS */ 8821 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8822 goto do_cmop; 8823 case 0x11: /* CMTST, CMEQ */ 8824 if (u) { 8825 cond = TCG_COND_EQ; 8826 goto do_cmop; 8827 } 8828 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8829 break; 8830 case 0x8: /* SSHL, USHL */ 8831 if (u) { 8832 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8833 } else { 8834 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8835 } 8836 break; 8837 case 0x9: /* SQSHL, UQSHL */ 8838 if (u) { 8839 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8840 } else { 8841 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8842 } 8843 break; 8844 case 0xa: /* SRSHL, URSHL */ 8845 if (u) { 8846 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8847 } else { 8848 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8849 } 8850 break; 8851 case 0xb: /* SQRSHL, UQRSHL */ 8852 if (u) { 8853 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8854 } else { 8855 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8856 } 8857 break; 8858 case 0x10: /* ADD, SUB */ 8859 if (u) { 8860 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8861 } else { 8862 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8863 } 8864 break; 8865 default: 8866 g_assert_not_reached(); 8867 } 8868 } 8869 8870 /* Handle the 3-same-operands float operations; shared by the scalar 8871 * and vector encodings. The caller must filter out any encodings 8872 * not allocated for the encoding it is dealing with. 8873 */ 8874 static void handle_3same_float(DisasContext *s, int size, int elements, 8875 int fpopcode, int rd, int rn, int rm) 8876 { 8877 int pass; 8878 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8879 8880 for (pass = 0; pass < elements; pass++) { 8881 if (size) { 8882 /* Double */ 8883 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8884 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8885 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8886 8887 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8888 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8889 8890 switch (fpopcode) { 8891 case 0x39: /* FMLS */ 8892 /* As usual for ARM, separate negation for fused multiply-add */ 8893 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8894 /* fall through */ 8895 case 0x19: /* FMLA */ 8896 read_vec_element(s, tcg_res, rd, pass, MO_64); 8897 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8898 tcg_res, fpst); 8899 break; 8900 case 0x18: /* FMAXNM */ 8901 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8902 break; 8903 case 0x1a: /* FADD */ 8904 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8905 break; 8906 case 0x1b: /* FMULX */ 8907 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8908 break; 8909 case 0x1c: /* FCMEQ */ 8910 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8911 break; 8912 case 0x1e: /* FMAX */ 8913 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8914 break; 8915 case 0x1f: /* FRECPS */ 8916 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8917 break; 8918 case 0x38: /* FMINNM */ 8919 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8920 break; 8921 case 0x3a: /* FSUB */ 8922 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8923 break; 8924 case 0x3e: /* FMIN */ 8925 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8926 break; 8927 case 0x3f: /* FRSQRTS */ 8928 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8929 break; 8930 case 0x5b: /* FMUL */ 8931 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8932 break; 8933 case 0x5c: /* FCMGE */ 8934 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8935 break; 8936 case 0x5d: /* FACGE */ 8937 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8938 break; 8939 case 0x5f: /* FDIV */ 8940 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8941 break; 8942 case 0x7a: /* FABD */ 8943 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8944 gen_helper_vfp_absd(tcg_res, tcg_res); 8945 break; 8946 case 0x7c: /* FCMGT */ 8947 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8948 break; 8949 case 0x7d: /* FACGT */ 8950 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8951 break; 8952 default: 8953 g_assert_not_reached(); 8954 } 8955 8956 write_vec_element(s, tcg_res, rd, pass, MO_64); 8957 } else { 8958 /* Single */ 8959 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8960 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8961 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8962 8963 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8964 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8965 8966 switch (fpopcode) { 8967 case 0x39: /* FMLS */ 8968 /* As usual for ARM, separate negation for fused multiply-add */ 8969 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8970 /* fall through */ 8971 case 0x19: /* FMLA */ 8972 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8973 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8974 tcg_res, fpst); 8975 break; 8976 case 0x1a: /* FADD */ 8977 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8978 break; 8979 case 0x1b: /* FMULX */ 8980 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8981 break; 8982 case 0x1c: /* FCMEQ */ 8983 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8984 break; 8985 case 0x1e: /* FMAX */ 8986 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8987 break; 8988 case 0x1f: /* FRECPS */ 8989 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8990 break; 8991 case 0x18: /* FMAXNM */ 8992 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8993 break; 8994 case 0x38: /* FMINNM */ 8995 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8996 break; 8997 case 0x3a: /* FSUB */ 8998 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8999 break; 9000 case 0x3e: /* FMIN */ 9001 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9002 break; 9003 case 0x3f: /* FRSQRTS */ 9004 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9005 break; 9006 case 0x5b: /* FMUL */ 9007 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9008 break; 9009 case 0x5c: /* FCMGE */ 9010 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9011 break; 9012 case 0x5d: /* FACGE */ 9013 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9014 break; 9015 case 0x5f: /* FDIV */ 9016 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9017 break; 9018 case 0x7a: /* FABD */ 9019 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9020 gen_helper_vfp_abss(tcg_res, tcg_res); 9021 break; 9022 case 0x7c: /* FCMGT */ 9023 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x7d: /* FACGT */ 9026 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 default: 9029 g_assert_not_reached(); 9030 } 9031 9032 if (elements == 1) { 9033 /* scalar single so clear high part */ 9034 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9035 9036 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9037 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9038 } else { 9039 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9040 } 9041 } 9042 } 9043 9044 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9045 } 9046 9047 /* AdvSIMD scalar three same 9048 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9049 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9050 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9051 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9052 */ 9053 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9054 { 9055 int rd = extract32(insn, 0, 5); 9056 int rn = extract32(insn, 5, 5); 9057 int opcode = extract32(insn, 11, 5); 9058 int rm = extract32(insn, 16, 5); 9059 int size = extract32(insn, 22, 2); 9060 bool u = extract32(insn, 29, 1); 9061 TCGv_i64 tcg_rd; 9062 9063 if (opcode >= 0x18) { 9064 /* Floating point: U, size[1] and opcode indicate operation */ 9065 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9066 switch (fpopcode) { 9067 case 0x1b: /* FMULX */ 9068 case 0x1f: /* FRECPS */ 9069 case 0x3f: /* FRSQRTS */ 9070 case 0x5d: /* FACGE */ 9071 case 0x7d: /* FACGT */ 9072 case 0x1c: /* FCMEQ */ 9073 case 0x5c: /* FCMGE */ 9074 case 0x7c: /* FCMGT */ 9075 case 0x7a: /* FABD */ 9076 break; 9077 default: 9078 unallocated_encoding(s); 9079 return; 9080 } 9081 9082 if (!fp_access_check(s)) { 9083 return; 9084 } 9085 9086 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9087 return; 9088 } 9089 9090 switch (opcode) { 9091 case 0x1: /* SQADD, UQADD */ 9092 case 0x5: /* SQSUB, UQSUB */ 9093 case 0x9: /* SQSHL, UQSHL */ 9094 case 0xb: /* SQRSHL, UQRSHL */ 9095 break; 9096 case 0x8: /* SSHL, USHL */ 9097 case 0xa: /* SRSHL, URSHL */ 9098 case 0x6: /* CMGT, CMHI */ 9099 case 0x7: /* CMGE, CMHS */ 9100 case 0x11: /* CMTST, CMEQ */ 9101 case 0x10: /* ADD, SUB (vector) */ 9102 if (size != 3) { 9103 unallocated_encoding(s); 9104 return; 9105 } 9106 break; 9107 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9108 if (size != 1 && size != 2) { 9109 unallocated_encoding(s); 9110 return; 9111 } 9112 break; 9113 default: 9114 unallocated_encoding(s); 9115 return; 9116 } 9117 9118 if (!fp_access_check(s)) { 9119 return; 9120 } 9121 9122 tcg_rd = tcg_temp_new_i64(); 9123 9124 if (size == 3) { 9125 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9126 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9127 9128 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9129 } else { 9130 /* Do a single operation on the lowest element in the vector. 9131 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9132 * no side effects for all these operations. 9133 * OPTME: special-purpose helpers would avoid doing some 9134 * unnecessary work in the helper for the 8 and 16 bit cases. 9135 */ 9136 NeonGenTwoOpEnvFn *genenvfn; 9137 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9138 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9139 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9140 9141 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9142 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9143 9144 switch (opcode) { 9145 case 0x1: /* SQADD, UQADD */ 9146 { 9147 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9148 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9149 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9150 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9151 }; 9152 genenvfn = fns[size][u]; 9153 break; 9154 } 9155 case 0x5: /* SQSUB, UQSUB */ 9156 { 9157 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9158 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9159 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9160 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9161 }; 9162 genenvfn = fns[size][u]; 9163 break; 9164 } 9165 case 0x9: /* SQSHL, UQSHL */ 9166 { 9167 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9168 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9169 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9170 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9171 }; 9172 genenvfn = fns[size][u]; 9173 break; 9174 } 9175 case 0xb: /* SQRSHL, UQRSHL */ 9176 { 9177 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9178 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9179 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9180 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9181 }; 9182 genenvfn = fns[size][u]; 9183 break; 9184 } 9185 case 0x16: /* SQDMULH, SQRDMULH */ 9186 { 9187 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9188 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9189 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9190 }; 9191 assert(size == 1 || size == 2); 9192 genenvfn = fns[size - 1][u]; 9193 break; 9194 } 9195 default: 9196 g_assert_not_reached(); 9197 } 9198 9199 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9200 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9201 } 9202 9203 write_fp_dreg(s, rd, tcg_rd); 9204 } 9205 9206 /* AdvSIMD scalar three same FP16 9207 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9208 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9209 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9210 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9211 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9212 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9213 */ 9214 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9215 uint32_t insn) 9216 { 9217 int rd = extract32(insn, 0, 5); 9218 int rn = extract32(insn, 5, 5); 9219 int opcode = extract32(insn, 11, 3); 9220 int rm = extract32(insn, 16, 5); 9221 bool u = extract32(insn, 29, 1); 9222 bool a = extract32(insn, 23, 1); 9223 int fpopcode = opcode | (a << 3) | (u << 4); 9224 TCGv_ptr fpst; 9225 TCGv_i32 tcg_op1; 9226 TCGv_i32 tcg_op2; 9227 TCGv_i32 tcg_res; 9228 9229 switch (fpopcode) { 9230 case 0x03: /* FMULX */ 9231 case 0x04: /* FCMEQ (reg) */ 9232 case 0x07: /* FRECPS */ 9233 case 0x0f: /* FRSQRTS */ 9234 case 0x14: /* FCMGE (reg) */ 9235 case 0x15: /* FACGE */ 9236 case 0x1a: /* FABD */ 9237 case 0x1c: /* FCMGT (reg) */ 9238 case 0x1d: /* FACGT */ 9239 break; 9240 default: 9241 unallocated_encoding(s); 9242 return; 9243 } 9244 9245 if (!dc_isar_feature(aa64_fp16, s)) { 9246 unallocated_encoding(s); 9247 } 9248 9249 if (!fp_access_check(s)) { 9250 return; 9251 } 9252 9253 fpst = fpstatus_ptr(FPST_FPCR_F16); 9254 9255 tcg_op1 = read_fp_hreg(s, rn); 9256 tcg_op2 = read_fp_hreg(s, rm); 9257 tcg_res = tcg_temp_new_i32(); 9258 9259 switch (fpopcode) { 9260 case 0x03: /* FMULX */ 9261 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9262 break; 9263 case 0x04: /* FCMEQ (reg) */ 9264 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9265 break; 9266 case 0x07: /* FRECPS */ 9267 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9268 break; 9269 case 0x0f: /* FRSQRTS */ 9270 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9271 break; 9272 case 0x14: /* FCMGE (reg) */ 9273 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9274 break; 9275 case 0x15: /* FACGE */ 9276 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9277 break; 9278 case 0x1a: /* FABD */ 9279 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9280 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9281 break; 9282 case 0x1c: /* FCMGT (reg) */ 9283 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9284 break; 9285 case 0x1d: /* FACGT */ 9286 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9287 break; 9288 default: 9289 g_assert_not_reached(); 9290 } 9291 9292 write_fp_sreg(s, rd, tcg_res); 9293 } 9294 9295 /* AdvSIMD scalar three same extra 9296 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9297 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9298 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9299 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9300 */ 9301 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9302 uint32_t insn) 9303 { 9304 int rd = extract32(insn, 0, 5); 9305 int rn = extract32(insn, 5, 5); 9306 int opcode = extract32(insn, 11, 4); 9307 int rm = extract32(insn, 16, 5); 9308 int size = extract32(insn, 22, 2); 9309 bool u = extract32(insn, 29, 1); 9310 TCGv_i32 ele1, ele2, ele3; 9311 TCGv_i64 res; 9312 bool feature; 9313 9314 switch (u * 16 + opcode) { 9315 case 0x10: /* SQRDMLAH (vector) */ 9316 case 0x11: /* SQRDMLSH (vector) */ 9317 if (size != 1 && size != 2) { 9318 unallocated_encoding(s); 9319 return; 9320 } 9321 feature = dc_isar_feature(aa64_rdm, s); 9322 break; 9323 default: 9324 unallocated_encoding(s); 9325 return; 9326 } 9327 if (!feature) { 9328 unallocated_encoding(s); 9329 return; 9330 } 9331 if (!fp_access_check(s)) { 9332 return; 9333 } 9334 9335 /* Do a single operation on the lowest element in the vector. 9336 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9337 * with no side effects for all these operations. 9338 * OPTME: special-purpose helpers would avoid doing some 9339 * unnecessary work in the helper for the 16 bit cases. 9340 */ 9341 ele1 = tcg_temp_new_i32(); 9342 ele2 = tcg_temp_new_i32(); 9343 ele3 = tcg_temp_new_i32(); 9344 9345 read_vec_element_i32(s, ele1, rn, 0, size); 9346 read_vec_element_i32(s, ele2, rm, 0, size); 9347 read_vec_element_i32(s, ele3, rd, 0, size); 9348 9349 switch (opcode) { 9350 case 0x0: /* SQRDMLAH */ 9351 if (size == 1) { 9352 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9353 } else { 9354 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9355 } 9356 break; 9357 case 0x1: /* SQRDMLSH */ 9358 if (size == 1) { 9359 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9360 } else { 9361 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9362 } 9363 break; 9364 default: 9365 g_assert_not_reached(); 9366 } 9367 9368 res = tcg_temp_new_i64(); 9369 tcg_gen_extu_i32_i64(res, ele3); 9370 write_fp_dreg(s, rd, res); 9371 } 9372 9373 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9374 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9375 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9376 { 9377 /* Handle 64->64 opcodes which are shared between the scalar and 9378 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9379 * is valid in either group and also the double-precision fp ops. 9380 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9381 * requires them. 9382 */ 9383 TCGCond cond; 9384 9385 switch (opcode) { 9386 case 0x4: /* CLS, CLZ */ 9387 if (u) { 9388 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9389 } else { 9390 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9391 } 9392 break; 9393 case 0x5: /* NOT */ 9394 /* This opcode is shared with CNT and RBIT but we have earlier 9395 * enforced that size == 3 if and only if this is the NOT insn. 9396 */ 9397 tcg_gen_not_i64(tcg_rd, tcg_rn); 9398 break; 9399 case 0x7: /* SQABS, SQNEG */ 9400 if (u) { 9401 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9402 } else { 9403 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9404 } 9405 break; 9406 case 0xa: /* CMLT */ 9407 cond = TCG_COND_LT; 9408 do_cmop: 9409 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9410 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9411 break; 9412 case 0x8: /* CMGT, CMGE */ 9413 cond = u ? TCG_COND_GE : TCG_COND_GT; 9414 goto do_cmop; 9415 case 0x9: /* CMEQ, CMLE */ 9416 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9417 goto do_cmop; 9418 case 0xb: /* ABS, NEG */ 9419 if (u) { 9420 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9421 } else { 9422 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9423 } 9424 break; 9425 case 0x2f: /* FABS */ 9426 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9427 break; 9428 case 0x6f: /* FNEG */ 9429 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9430 break; 9431 case 0x7f: /* FSQRT */ 9432 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9433 break; 9434 case 0x1a: /* FCVTNS */ 9435 case 0x1b: /* FCVTMS */ 9436 case 0x1c: /* FCVTAS */ 9437 case 0x3a: /* FCVTPS */ 9438 case 0x3b: /* FCVTZS */ 9439 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9440 break; 9441 case 0x5a: /* FCVTNU */ 9442 case 0x5b: /* FCVTMU */ 9443 case 0x5c: /* FCVTAU */ 9444 case 0x7a: /* FCVTPU */ 9445 case 0x7b: /* FCVTZU */ 9446 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9447 break; 9448 case 0x18: /* FRINTN */ 9449 case 0x19: /* FRINTM */ 9450 case 0x38: /* FRINTP */ 9451 case 0x39: /* FRINTZ */ 9452 case 0x58: /* FRINTA */ 9453 case 0x79: /* FRINTI */ 9454 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9455 break; 9456 case 0x59: /* FRINTX */ 9457 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9458 break; 9459 case 0x1e: /* FRINT32Z */ 9460 case 0x5e: /* FRINT32X */ 9461 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9462 break; 9463 case 0x1f: /* FRINT64Z */ 9464 case 0x5f: /* FRINT64X */ 9465 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9466 break; 9467 default: 9468 g_assert_not_reached(); 9469 } 9470 } 9471 9472 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9473 bool is_scalar, bool is_u, bool is_q, 9474 int size, int rn, int rd) 9475 { 9476 bool is_double = (size == MO_64); 9477 TCGv_ptr fpst; 9478 9479 if (!fp_access_check(s)) { 9480 return; 9481 } 9482 9483 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9484 9485 if (is_double) { 9486 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9487 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9488 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9489 NeonGenTwoDoubleOpFn *genfn; 9490 bool swap = false; 9491 int pass; 9492 9493 switch (opcode) { 9494 case 0x2e: /* FCMLT (zero) */ 9495 swap = true; 9496 /* fallthrough */ 9497 case 0x2c: /* FCMGT (zero) */ 9498 genfn = gen_helper_neon_cgt_f64; 9499 break; 9500 case 0x2d: /* FCMEQ (zero) */ 9501 genfn = gen_helper_neon_ceq_f64; 9502 break; 9503 case 0x6d: /* FCMLE (zero) */ 9504 swap = true; 9505 /* fall through */ 9506 case 0x6c: /* FCMGE (zero) */ 9507 genfn = gen_helper_neon_cge_f64; 9508 break; 9509 default: 9510 g_assert_not_reached(); 9511 } 9512 9513 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9514 read_vec_element(s, tcg_op, rn, pass, MO_64); 9515 if (swap) { 9516 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9517 } else { 9518 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9519 } 9520 write_vec_element(s, tcg_res, rd, pass, MO_64); 9521 } 9522 9523 clear_vec_high(s, !is_scalar, rd); 9524 } else { 9525 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9526 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9527 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9528 NeonGenTwoSingleOpFn *genfn; 9529 bool swap = false; 9530 int pass, maxpasses; 9531 9532 if (size == MO_16) { 9533 switch (opcode) { 9534 case 0x2e: /* FCMLT (zero) */ 9535 swap = true; 9536 /* fall through */ 9537 case 0x2c: /* FCMGT (zero) */ 9538 genfn = gen_helper_advsimd_cgt_f16; 9539 break; 9540 case 0x2d: /* FCMEQ (zero) */ 9541 genfn = gen_helper_advsimd_ceq_f16; 9542 break; 9543 case 0x6d: /* FCMLE (zero) */ 9544 swap = true; 9545 /* fall through */ 9546 case 0x6c: /* FCMGE (zero) */ 9547 genfn = gen_helper_advsimd_cge_f16; 9548 break; 9549 default: 9550 g_assert_not_reached(); 9551 } 9552 } else { 9553 switch (opcode) { 9554 case 0x2e: /* FCMLT (zero) */ 9555 swap = true; 9556 /* fall through */ 9557 case 0x2c: /* FCMGT (zero) */ 9558 genfn = gen_helper_neon_cgt_f32; 9559 break; 9560 case 0x2d: /* FCMEQ (zero) */ 9561 genfn = gen_helper_neon_ceq_f32; 9562 break; 9563 case 0x6d: /* FCMLE (zero) */ 9564 swap = true; 9565 /* fall through */ 9566 case 0x6c: /* FCMGE (zero) */ 9567 genfn = gen_helper_neon_cge_f32; 9568 break; 9569 default: 9570 g_assert_not_reached(); 9571 } 9572 } 9573 9574 if (is_scalar) { 9575 maxpasses = 1; 9576 } else { 9577 int vector_size = 8 << is_q; 9578 maxpasses = vector_size >> size; 9579 } 9580 9581 for (pass = 0; pass < maxpasses; pass++) { 9582 read_vec_element_i32(s, tcg_op, rn, pass, size); 9583 if (swap) { 9584 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9585 } else { 9586 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9587 } 9588 if (is_scalar) { 9589 write_fp_sreg(s, rd, tcg_res); 9590 } else { 9591 write_vec_element_i32(s, tcg_res, rd, pass, size); 9592 } 9593 } 9594 9595 if (!is_scalar) { 9596 clear_vec_high(s, is_q, rd); 9597 } 9598 } 9599 } 9600 9601 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9602 bool is_scalar, bool is_u, bool is_q, 9603 int size, int rn, int rd) 9604 { 9605 bool is_double = (size == 3); 9606 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9607 9608 if (is_double) { 9609 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9610 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9611 int pass; 9612 9613 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9614 read_vec_element(s, tcg_op, rn, pass, MO_64); 9615 switch (opcode) { 9616 case 0x3d: /* FRECPE */ 9617 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9618 break; 9619 case 0x3f: /* FRECPX */ 9620 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9621 break; 9622 case 0x7d: /* FRSQRTE */ 9623 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9624 break; 9625 default: 9626 g_assert_not_reached(); 9627 } 9628 write_vec_element(s, tcg_res, rd, pass, MO_64); 9629 } 9630 clear_vec_high(s, !is_scalar, rd); 9631 } else { 9632 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9633 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9634 int pass, maxpasses; 9635 9636 if (is_scalar) { 9637 maxpasses = 1; 9638 } else { 9639 maxpasses = is_q ? 4 : 2; 9640 } 9641 9642 for (pass = 0; pass < maxpasses; pass++) { 9643 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9644 9645 switch (opcode) { 9646 case 0x3c: /* URECPE */ 9647 gen_helper_recpe_u32(tcg_res, tcg_op); 9648 break; 9649 case 0x3d: /* FRECPE */ 9650 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9651 break; 9652 case 0x3f: /* FRECPX */ 9653 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9654 break; 9655 case 0x7d: /* FRSQRTE */ 9656 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9657 break; 9658 default: 9659 g_assert_not_reached(); 9660 } 9661 9662 if (is_scalar) { 9663 write_fp_sreg(s, rd, tcg_res); 9664 } else { 9665 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9666 } 9667 } 9668 if (!is_scalar) { 9669 clear_vec_high(s, is_q, rd); 9670 } 9671 } 9672 } 9673 9674 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9675 int opcode, bool u, bool is_q, 9676 int size, int rn, int rd) 9677 { 9678 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9679 * in the source becomes a size element in the destination). 9680 */ 9681 int pass; 9682 TCGv_i32 tcg_res[2]; 9683 int destelt = is_q ? 2 : 0; 9684 int passes = scalar ? 1 : 2; 9685 9686 if (scalar) { 9687 tcg_res[1] = tcg_constant_i32(0); 9688 } 9689 9690 for (pass = 0; pass < passes; pass++) { 9691 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9692 NeonGenNarrowFn *genfn = NULL; 9693 NeonGenNarrowEnvFn *genenvfn = NULL; 9694 9695 if (scalar) { 9696 read_vec_element(s, tcg_op, rn, pass, size + 1); 9697 } else { 9698 read_vec_element(s, tcg_op, rn, pass, MO_64); 9699 } 9700 tcg_res[pass] = tcg_temp_new_i32(); 9701 9702 switch (opcode) { 9703 case 0x12: /* XTN, SQXTUN */ 9704 { 9705 static NeonGenNarrowFn * const xtnfns[3] = { 9706 gen_helper_neon_narrow_u8, 9707 gen_helper_neon_narrow_u16, 9708 tcg_gen_extrl_i64_i32, 9709 }; 9710 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9711 gen_helper_neon_unarrow_sat8, 9712 gen_helper_neon_unarrow_sat16, 9713 gen_helper_neon_unarrow_sat32, 9714 }; 9715 if (u) { 9716 genenvfn = sqxtunfns[size]; 9717 } else { 9718 genfn = xtnfns[size]; 9719 } 9720 break; 9721 } 9722 case 0x14: /* SQXTN, UQXTN */ 9723 { 9724 static NeonGenNarrowEnvFn * const fns[3][2] = { 9725 { gen_helper_neon_narrow_sat_s8, 9726 gen_helper_neon_narrow_sat_u8 }, 9727 { gen_helper_neon_narrow_sat_s16, 9728 gen_helper_neon_narrow_sat_u16 }, 9729 { gen_helper_neon_narrow_sat_s32, 9730 gen_helper_neon_narrow_sat_u32 }, 9731 }; 9732 genenvfn = fns[size][u]; 9733 break; 9734 } 9735 case 0x16: /* FCVTN, FCVTN2 */ 9736 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9737 if (size == 2) { 9738 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9739 } else { 9740 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9741 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9742 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9743 TCGv_i32 ahp = get_ahp_flag(); 9744 9745 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9746 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9747 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9748 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9749 } 9750 break; 9751 case 0x36: /* BFCVTN, BFCVTN2 */ 9752 { 9753 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9754 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9755 } 9756 break; 9757 case 0x56: /* FCVTXN, FCVTXN2 */ 9758 /* 64 bit to 32 bit float conversion 9759 * with von Neumann rounding (round to odd) 9760 */ 9761 assert(size == 2); 9762 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9763 break; 9764 default: 9765 g_assert_not_reached(); 9766 } 9767 9768 if (genfn) { 9769 genfn(tcg_res[pass], tcg_op); 9770 } else if (genenvfn) { 9771 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9772 } 9773 } 9774 9775 for (pass = 0; pass < 2; pass++) { 9776 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9777 } 9778 clear_vec_high(s, is_q, rd); 9779 } 9780 9781 /* Remaining saturating accumulating ops */ 9782 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9783 bool is_q, int size, int rn, int rd) 9784 { 9785 bool is_double = (size == 3); 9786 9787 if (is_double) { 9788 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9789 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9790 int pass; 9791 9792 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9793 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9794 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9795 9796 if (is_u) { /* USQADD */ 9797 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9798 } else { /* SUQADD */ 9799 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9800 } 9801 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9802 } 9803 clear_vec_high(s, !is_scalar, rd); 9804 } else { 9805 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9806 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9807 int pass, maxpasses; 9808 9809 if (is_scalar) { 9810 maxpasses = 1; 9811 } else { 9812 maxpasses = is_q ? 4 : 2; 9813 } 9814 9815 for (pass = 0; pass < maxpasses; pass++) { 9816 if (is_scalar) { 9817 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9818 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9819 } else { 9820 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9821 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9822 } 9823 9824 if (is_u) { /* USQADD */ 9825 switch (size) { 9826 case 0: 9827 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9828 break; 9829 case 1: 9830 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9831 break; 9832 case 2: 9833 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9834 break; 9835 default: 9836 g_assert_not_reached(); 9837 } 9838 } else { /* SUQADD */ 9839 switch (size) { 9840 case 0: 9841 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9842 break; 9843 case 1: 9844 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9845 break; 9846 case 2: 9847 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9848 break; 9849 default: 9850 g_assert_not_reached(); 9851 } 9852 } 9853 9854 if (is_scalar) { 9855 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9856 } 9857 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9858 } 9859 clear_vec_high(s, is_q, rd); 9860 } 9861 } 9862 9863 /* AdvSIMD scalar two reg misc 9864 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9865 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9866 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9867 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9868 */ 9869 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9870 { 9871 int rd = extract32(insn, 0, 5); 9872 int rn = extract32(insn, 5, 5); 9873 int opcode = extract32(insn, 12, 5); 9874 int size = extract32(insn, 22, 2); 9875 bool u = extract32(insn, 29, 1); 9876 bool is_fcvt = false; 9877 int rmode; 9878 TCGv_i32 tcg_rmode; 9879 TCGv_ptr tcg_fpstatus; 9880 9881 switch (opcode) { 9882 case 0x3: /* USQADD / SUQADD*/ 9883 if (!fp_access_check(s)) { 9884 return; 9885 } 9886 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9887 return; 9888 case 0x7: /* SQABS / SQNEG */ 9889 break; 9890 case 0xa: /* CMLT */ 9891 if (u) { 9892 unallocated_encoding(s); 9893 return; 9894 } 9895 /* fall through */ 9896 case 0x8: /* CMGT, CMGE */ 9897 case 0x9: /* CMEQ, CMLE */ 9898 case 0xb: /* ABS, NEG */ 9899 if (size != 3) { 9900 unallocated_encoding(s); 9901 return; 9902 } 9903 break; 9904 case 0x12: /* SQXTUN */ 9905 if (!u) { 9906 unallocated_encoding(s); 9907 return; 9908 } 9909 /* fall through */ 9910 case 0x14: /* SQXTN, UQXTN */ 9911 if (size == 3) { 9912 unallocated_encoding(s); 9913 return; 9914 } 9915 if (!fp_access_check(s)) { 9916 return; 9917 } 9918 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9919 return; 9920 case 0xc ... 0xf: 9921 case 0x16 ... 0x1d: 9922 case 0x1f: 9923 /* Floating point: U, size[1] and opcode indicate operation; 9924 * size[0] indicates single or double precision. 9925 */ 9926 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9927 size = extract32(size, 0, 1) ? 3 : 2; 9928 switch (opcode) { 9929 case 0x2c: /* FCMGT (zero) */ 9930 case 0x2d: /* FCMEQ (zero) */ 9931 case 0x2e: /* FCMLT (zero) */ 9932 case 0x6c: /* FCMGE (zero) */ 9933 case 0x6d: /* FCMLE (zero) */ 9934 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9935 return; 9936 case 0x1d: /* SCVTF */ 9937 case 0x5d: /* UCVTF */ 9938 { 9939 bool is_signed = (opcode == 0x1d); 9940 if (!fp_access_check(s)) { 9941 return; 9942 } 9943 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9944 return; 9945 } 9946 case 0x3d: /* FRECPE */ 9947 case 0x3f: /* FRECPX */ 9948 case 0x7d: /* FRSQRTE */ 9949 if (!fp_access_check(s)) { 9950 return; 9951 } 9952 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9953 return; 9954 case 0x1a: /* FCVTNS */ 9955 case 0x1b: /* FCVTMS */ 9956 case 0x3a: /* FCVTPS */ 9957 case 0x3b: /* FCVTZS */ 9958 case 0x5a: /* FCVTNU */ 9959 case 0x5b: /* FCVTMU */ 9960 case 0x7a: /* FCVTPU */ 9961 case 0x7b: /* FCVTZU */ 9962 is_fcvt = true; 9963 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9964 break; 9965 case 0x1c: /* FCVTAS */ 9966 case 0x5c: /* FCVTAU */ 9967 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9968 is_fcvt = true; 9969 rmode = FPROUNDING_TIEAWAY; 9970 break; 9971 case 0x56: /* FCVTXN, FCVTXN2 */ 9972 if (size == 2) { 9973 unallocated_encoding(s); 9974 return; 9975 } 9976 if (!fp_access_check(s)) { 9977 return; 9978 } 9979 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9980 return; 9981 default: 9982 unallocated_encoding(s); 9983 return; 9984 } 9985 break; 9986 default: 9987 unallocated_encoding(s); 9988 return; 9989 } 9990 9991 if (!fp_access_check(s)) { 9992 return; 9993 } 9994 9995 if (is_fcvt) { 9996 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9997 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9998 } else { 9999 tcg_fpstatus = NULL; 10000 tcg_rmode = NULL; 10001 } 10002 10003 if (size == 3) { 10004 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10005 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10006 10007 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10008 write_fp_dreg(s, rd, tcg_rd); 10009 } else { 10010 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10011 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10012 10013 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10014 10015 switch (opcode) { 10016 case 0x7: /* SQABS, SQNEG */ 10017 { 10018 NeonGenOneOpEnvFn *genfn; 10019 static NeonGenOneOpEnvFn * const fns[3][2] = { 10020 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10021 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10022 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10023 }; 10024 genfn = fns[size][u]; 10025 genfn(tcg_rd, tcg_env, tcg_rn); 10026 break; 10027 } 10028 case 0x1a: /* FCVTNS */ 10029 case 0x1b: /* FCVTMS */ 10030 case 0x1c: /* FCVTAS */ 10031 case 0x3a: /* FCVTPS */ 10032 case 0x3b: /* FCVTZS */ 10033 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10034 tcg_fpstatus); 10035 break; 10036 case 0x5a: /* FCVTNU */ 10037 case 0x5b: /* FCVTMU */ 10038 case 0x5c: /* FCVTAU */ 10039 case 0x7a: /* FCVTPU */ 10040 case 0x7b: /* FCVTZU */ 10041 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10042 tcg_fpstatus); 10043 break; 10044 default: 10045 g_assert_not_reached(); 10046 } 10047 10048 write_fp_sreg(s, rd, tcg_rd); 10049 } 10050 10051 if (is_fcvt) { 10052 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10053 } 10054 } 10055 10056 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10057 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10058 int immh, int immb, int opcode, int rn, int rd) 10059 { 10060 int size = 32 - clz32(immh) - 1; 10061 int immhb = immh << 3 | immb; 10062 int shift = 2 * (8 << size) - immhb; 10063 GVecGen2iFn *gvec_fn; 10064 10065 if (extract32(immh, 3, 1) && !is_q) { 10066 unallocated_encoding(s); 10067 return; 10068 } 10069 tcg_debug_assert(size <= 3); 10070 10071 if (!fp_access_check(s)) { 10072 return; 10073 } 10074 10075 switch (opcode) { 10076 case 0x02: /* SSRA / USRA (accumulate) */ 10077 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10078 break; 10079 10080 case 0x08: /* SRI */ 10081 gvec_fn = gen_gvec_sri; 10082 break; 10083 10084 case 0x00: /* SSHR / USHR */ 10085 if (is_u) { 10086 if (shift == 8 << size) { 10087 /* Shift count the same size as element size produces zero. */ 10088 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10089 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10090 return; 10091 } 10092 gvec_fn = tcg_gen_gvec_shri; 10093 } else { 10094 /* Shift count the same size as element size produces all sign. */ 10095 if (shift == 8 << size) { 10096 shift -= 1; 10097 } 10098 gvec_fn = tcg_gen_gvec_sari; 10099 } 10100 break; 10101 10102 case 0x04: /* SRSHR / URSHR (rounding) */ 10103 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10104 break; 10105 10106 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10107 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10108 break; 10109 10110 default: 10111 g_assert_not_reached(); 10112 } 10113 10114 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10115 } 10116 10117 /* SHL/SLI - Vector shift left */ 10118 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10119 int immh, int immb, int opcode, int rn, int rd) 10120 { 10121 int size = 32 - clz32(immh) - 1; 10122 int immhb = immh << 3 | immb; 10123 int shift = immhb - (8 << size); 10124 10125 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10126 assert(size >= 0 && size <= 3); 10127 10128 if (extract32(immh, 3, 1) && !is_q) { 10129 unallocated_encoding(s); 10130 return; 10131 } 10132 10133 if (!fp_access_check(s)) { 10134 return; 10135 } 10136 10137 if (insert) { 10138 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10139 } else { 10140 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10141 } 10142 } 10143 10144 /* USHLL/SHLL - Vector shift left with widening */ 10145 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10146 int immh, int immb, int opcode, int rn, int rd) 10147 { 10148 int size = 32 - clz32(immh) - 1; 10149 int immhb = immh << 3 | immb; 10150 int shift = immhb - (8 << size); 10151 int dsize = 64; 10152 int esize = 8 << size; 10153 int elements = dsize/esize; 10154 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10155 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10156 int i; 10157 10158 if (size >= 3) { 10159 unallocated_encoding(s); 10160 return; 10161 } 10162 10163 if (!fp_access_check(s)) { 10164 return; 10165 } 10166 10167 /* For the LL variants the store is larger than the load, 10168 * so if rd == rn we would overwrite parts of our input. 10169 * So load everything right now and use shifts in the main loop. 10170 */ 10171 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10172 10173 for (i = 0; i < elements; i++) { 10174 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10175 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10176 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10177 write_vec_element(s, tcg_rd, rd, i, size + 1); 10178 } 10179 } 10180 10181 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10182 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10183 int immh, int immb, int opcode, int rn, int rd) 10184 { 10185 int immhb = immh << 3 | immb; 10186 int size = 32 - clz32(immh) - 1; 10187 int dsize = 64; 10188 int esize = 8 << size; 10189 int elements = dsize/esize; 10190 int shift = (2 * esize) - immhb; 10191 bool round = extract32(opcode, 0, 1); 10192 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10193 TCGv_i64 tcg_round; 10194 int i; 10195 10196 if (extract32(immh, 3, 1)) { 10197 unallocated_encoding(s); 10198 return; 10199 } 10200 10201 if (!fp_access_check(s)) { 10202 return; 10203 } 10204 10205 tcg_rn = tcg_temp_new_i64(); 10206 tcg_rd = tcg_temp_new_i64(); 10207 tcg_final = tcg_temp_new_i64(); 10208 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10209 10210 if (round) { 10211 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10212 } else { 10213 tcg_round = NULL; 10214 } 10215 10216 for (i = 0; i < elements; i++) { 10217 read_vec_element(s, tcg_rn, rn, i, size+1); 10218 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10219 false, true, size+1, shift); 10220 10221 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10222 } 10223 10224 if (!is_q) { 10225 write_vec_element(s, tcg_final, rd, 0, MO_64); 10226 } else { 10227 write_vec_element(s, tcg_final, rd, 1, MO_64); 10228 } 10229 10230 clear_vec_high(s, is_q, rd); 10231 } 10232 10233 10234 /* AdvSIMD shift by immediate 10235 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10236 * +---+---+---+-------------+------+------+--------+---+------+------+ 10237 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10238 * +---+---+---+-------------+------+------+--------+---+------+------+ 10239 */ 10240 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10241 { 10242 int rd = extract32(insn, 0, 5); 10243 int rn = extract32(insn, 5, 5); 10244 int opcode = extract32(insn, 11, 5); 10245 int immb = extract32(insn, 16, 3); 10246 int immh = extract32(insn, 19, 4); 10247 bool is_u = extract32(insn, 29, 1); 10248 bool is_q = extract32(insn, 30, 1); 10249 10250 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10251 assert(immh != 0); 10252 10253 switch (opcode) { 10254 case 0x08: /* SRI */ 10255 if (!is_u) { 10256 unallocated_encoding(s); 10257 return; 10258 } 10259 /* fall through */ 10260 case 0x00: /* SSHR / USHR */ 10261 case 0x02: /* SSRA / USRA (accumulate) */ 10262 case 0x04: /* SRSHR / URSHR (rounding) */ 10263 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10264 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10265 break; 10266 case 0x0a: /* SHL / SLI */ 10267 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10268 break; 10269 case 0x10: /* SHRN */ 10270 case 0x11: /* RSHRN / SQRSHRUN */ 10271 if (is_u) { 10272 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10273 opcode, rn, rd); 10274 } else { 10275 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10276 } 10277 break; 10278 case 0x12: /* SQSHRN / UQSHRN */ 10279 case 0x13: /* SQRSHRN / UQRSHRN */ 10280 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10281 opcode, rn, rd); 10282 break; 10283 case 0x14: /* SSHLL / USHLL */ 10284 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10285 break; 10286 case 0x1c: /* SCVTF / UCVTF */ 10287 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10288 opcode, rn, rd); 10289 break; 10290 case 0xc: /* SQSHLU */ 10291 if (!is_u) { 10292 unallocated_encoding(s); 10293 return; 10294 } 10295 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10296 break; 10297 case 0xe: /* SQSHL, UQSHL */ 10298 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10299 break; 10300 case 0x1f: /* FCVTZS/ FCVTZU */ 10301 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10302 return; 10303 default: 10304 unallocated_encoding(s); 10305 return; 10306 } 10307 } 10308 10309 /* Generate code to do a "long" addition or subtraction, ie one done in 10310 * TCGv_i64 on vector lanes twice the width specified by size. 10311 */ 10312 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10313 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10314 { 10315 static NeonGenTwo64OpFn * const fns[3][2] = { 10316 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10317 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10318 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10319 }; 10320 NeonGenTwo64OpFn *genfn; 10321 assert(size < 3); 10322 10323 genfn = fns[size][is_sub]; 10324 genfn(tcg_res, tcg_op1, tcg_op2); 10325 } 10326 10327 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10328 int opcode, int rd, int rn, int rm) 10329 { 10330 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10331 TCGv_i64 tcg_res[2]; 10332 int pass, accop; 10333 10334 tcg_res[0] = tcg_temp_new_i64(); 10335 tcg_res[1] = tcg_temp_new_i64(); 10336 10337 /* Does this op do an adding accumulate, a subtracting accumulate, 10338 * or no accumulate at all? 10339 */ 10340 switch (opcode) { 10341 case 5: 10342 case 8: 10343 case 9: 10344 accop = 1; 10345 break; 10346 case 10: 10347 case 11: 10348 accop = -1; 10349 break; 10350 default: 10351 accop = 0; 10352 break; 10353 } 10354 10355 if (accop != 0) { 10356 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10357 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10358 } 10359 10360 /* size == 2 means two 32x32->64 operations; this is worth special 10361 * casing because we can generally handle it inline. 10362 */ 10363 if (size == 2) { 10364 for (pass = 0; pass < 2; pass++) { 10365 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10366 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10367 TCGv_i64 tcg_passres; 10368 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10369 10370 int elt = pass + is_q * 2; 10371 10372 read_vec_element(s, tcg_op1, rn, elt, memop); 10373 read_vec_element(s, tcg_op2, rm, elt, memop); 10374 10375 if (accop == 0) { 10376 tcg_passres = tcg_res[pass]; 10377 } else { 10378 tcg_passres = tcg_temp_new_i64(); 10379 } 10380 10381 switch (opcode) { 10382 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10383 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10384 break; 10385 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10386 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10387 break; 10388 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10389 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10390 { 10391 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10392 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10393 10394 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10395 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10396 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10397 tcg_passres, 10398 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10399 break; 10400 } 10401 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10402 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10403 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10404 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10405 break; 10406 case 9: /* SQDMLAL, SQDMLAL2 */ 10407 case 11: /* SQDMLSL, SQDMLSL2 */ 10408 case 13: /* SQDMULL, SQDMULL2 */ 10409 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10410 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10411 tcg_passres, tcg_passres); 10412 break; 10413 default: 10414 g_assert_not_reached(); 10415 } 10416 10417 if (opcode == 9 || opcode == 11) { 10418 /* saturating accumulate ops */ 10419 if (accop < 0) { 10420 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10421 } 10422 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10423 tcg_res[pass], tcg_passres); 10424 } else if (accop > 0) { 10425 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10426 } else if (accop < 0) { 10427 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10428 } 10429 } 10430 } else { 10431 /* size 0 or 1, generally helper functions */ 10432 for (pass = 0; pass < 2; pass++) { 10433 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10434 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10435 TCGv_i64 tcg_passres; 10436 int elt = pass + is_q * 2; 10437 10438 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10439 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10440 10441 if (accop == 0) { 10442 tcg_passres = tcg_res[pass]; 10443 } else { 10444 tcg_passres = tcg_temp_new_i64(); 10445 } 10446 10447 switch (opcode) { 10448 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10449 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10450 { 10451 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10452 static NeonGenWidenFn * const widenfns[2][2] = { 10453 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10454 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10455 }; 10456 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10457 10458 widenfn(tcg_op2_64, tcg_op2); 10459 widenfn(tcg_passres, tcg_op1); 10460 gen_neon_addl(size, (opcode == 2), tcg_passres, 10461 tcg_passres, tcg_op2_64); 10462 break; 10463 } 10464 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10465 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10466 if (size == 0) { 10467 if (is_u) { 10468 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10469 } else { 10470 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10471 } 10472 } else { 10473 if (is_u) { 10474 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10475 } else { 10476 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10477 } 10478 } 10479 break; 10480 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10481 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10482 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10483 if (size == 0) { 10484 if (is_u) { 10485 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10486 } else { 10487 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10488 } 10489 } else { 10490 if (is_u) { 10491 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10492 } else { 10493 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10494 } 10495 } 10496 break; 10497 case 9: /* SQDMLAL, SQDMLAL2 */ 10498 case 11: /* SQDMLSL, SQDMLSL2 */ 10499 case 13: /* SQDMULL, SQDMULL2 */ 10500 assert(size == 1); 10501 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10502 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10503 tcg_passres, tcg_passres); 10504 break; 10505 default: 10506 g_assert_not_reached(); 10507 } 10508 10509 if (accop != 0) { 10510 if (opcode == 9 || opcode == 11) { 10511 /* saturating accumulate ops */ 10512 if (accop < 0) { 10513 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10514 } 10515 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10516 tcg_res[pass], 10517 tcg_passres); 10518 } else { 10519 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10520 tcg_res[pass], tcg_passres); 10521 } 10522 } 10523 } 10524 } 10525 10526 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10527 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10528 } 10529 10530 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10531 int opcode, int rd, int rn, int rm) 10532 { 10533 TCGv_i64 tcg_res[2]; 10534 int part = is_q ? 2 : 0; 10535 int pass; 10536 10537 for (pass = 0; pass < 2; pass++) { 10538 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10539 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10540 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10541 static NeonGenWidenFn * const widenfns[3][2] = { 10542 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10543 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10544 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10545 }; 10546 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10547 10548 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10549 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10550 widenfn(tcg_op2_wide, tcg_op2); 10551 tcg_res[pass] = tcg_temp_new_i64(); 10552 gen_neon_addl(size, (opcode == 3), 10553 tcg_res[pass], tcg_op1, tcg_op2_wide); 10554 } 10555 10556 for (pass = 0; pass < 2; pass++) { 10557 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10558 } 10559 } 10560 10561 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10562 { 10563 tcg_gen_addi_i64(in, in, 1U << 31); 10564 tcg_gen_extrh_i64_i32(res, in); 10565 } 10566 10567 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10568 int opcode, int rd, int rn, int rm) 10569 { 10570 TCGv_i32 tcg_res[2]; 10571 int part = is_q ? 2 : 0; 10572 int pass; 10573 10574 for (pass = 0; pass < 2; pass++) { 10575 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10576 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10577 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10578 static NeonGenNarrowFn * const narrowfns[3][2] = { 10579 { gen_helper_neon_narrow_high_u8, 10580 gen_helper_neon_narrow_round_high_u8 }, 10581 { gen_helper_neon_narrow_high_u16, 10582 gen_helper_neon_narrow_round_high_u16 }, 10583 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10584 }; 10585 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10586 10587 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10588 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10589 10590 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10591 10592 tcg_res[pass] = tcg_temp_new_i32(); 10593 gennarrow(tcg_res[pass], tcg_wideres); 10594 } 10595 10596 for (pass = 0; pass < 2; pass++) { 10597 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10598 } 10599 clear_vec_high(s, is_q, rd); 10600 } 10601 10602 /* AdvSIMD three different 10603 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10604 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10605 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10606 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10607 */ 10608 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10609 { 10610 /* Instructions in this group fall into three basic classes 10611 * (in each case with the operation working on each element in 10612 * the input vectors): 10613 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10614 * 128 bit input) 10615 * (2) wide 64 x 128 -> 128 10616 * (3) narrowing 128 x 128 -> 64 10617 * Here we do initial decode, catch unallocated cases and 10618 * dispatch to separate functions for each class. 10619 */ 10620 int is_q = extract32(insn, 30, 1); 10621 int is_u = extract32(insn, 29, 1); 10622 int size = extract32(insn, 22, 2); 10623 int opcode = extract32(insn, 12, 4); 10624 int rm = extract32(insn, 16, 5); 10625 int rn = extract32(insn, 5, 5); 10626 int rd = extract32(insn, 0, 5); 10627 10628 switch (opcode) { 10629 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10630 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10631 /* 64 x 128 -> 128 */ 10632 if (size == 3) { 10633 unallocated_encoding(s); 10634 return; 10635 } 10636 if (!fp_access_check(s)) { 10637 return; 10638 } 10639 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10640 break; 10641 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10642 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10643 /* 128 x 128 -> 64 */ 10644 if (size == 3) { 10645 unallocated_encoding(s); 10646 return; 10647 } 10648 if (!fp_access_check(s)) { 10649 return; 10650 } 10651 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10652 break; 10653 case 14: /* PMULL, PMULL2 */ 10654 if (is_u) { 10655 unallocated_encoding(s); 10656 return; 10657 } 10658 switch (size) { 10659 case 0: /* PMULL.P8 */ 10660 if (!fp_access_check(s)) { 10661 return; 10662 } 10663 /* The Q field specifies lo/hi half input for this insn. */ 10664 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10665 gen_helper_neon_pmull_h); 10666 break; 10667 10668 case 3: /* PMULL.P64 */ 10669 if (!dc_isar_feature(aa64_pmull, s)) { 10670 unallocated_encoding(s); 10671 return; 10672 } 10673 if (!fp_access_check(s)) { 10674 return; 10675 } 10676 /* The Q field specifies lo/hi half input for this insn. */ 10677 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10678 gen_helper_gvec_pmull_q); 10679 break; 10680 10681 default: 10682 unallocated_encoding(s); 10683 break; 10684 } 10685 return; 10686 case 9: /* SQDMLAL, SQDMLAL2 */ 10687 case 11: /* SQDMLSL, SQDMLSL2 */ 10688 case 13: /* SQDMULL, SQDMULL2 */ 10689 if (is_u || size == 0) { 10690 unallocated_encoding(s); 10691 return; 10692 } 10693 /* fall through */ 10694 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10695 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10696 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10697 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10698 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10699 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10700 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10701 /* 64 x 64 -> 128 */ 10702 if (size == 3) { 10703 unallocated_encoding(s); 10704 return; 10705 } 10706 if (!fp_access_check(s)) { 10707 return; 10708 } 10709 10710 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10711 break; 10712 default: 10713 /* opcode 15 not allocated */ 10714 unallocated_encoding(s); 10715 break; 10716 } 10717 } 10718 10719 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10720 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10721 { 10722 int rd = extract32(insn, 0, 5); 10723 int rn = extract32(insn, 5, 5); 10724 int rm = extract32(insn, 16, 5); 10725 int size = extract32(insn, 22, 2); 10726 bool is_u = extract32(insn, 29, 1); 10727 bool is_q = extract32(insn, 30, 1); 10728 10729 if (!fp_access_check(s)) { 10730 return; 10731 } 10732 10733 switch (size + 4 * is_u) { 10734 case 0: /* AND */ 10735 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10736 return; 10737 case 1: /* BIC */ 10738 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10739 return; 10740 case 2: /* ORR */ 10741 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10742 return; 10743 case 3: /* ORN */ 10744 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10745 return; 10746 case 4: /* EOR */ 10747 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10748 return; 10749 10750 case 5: /* BSL bitwise select */ 10751 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10752 return; 10753 case 6: /* BIT, bitwise insert if true */ 10754 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10755 return; 10756 case 7: /* BIF, bitwise insert if false */ 10757 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10758 return; 10759 10760 default: 10761 g_assert_not_reached(); 10762 } 10763 } 10764 10765 /* Pairwise op subgroup of C3.6.16. 10766 * 10767 * This is called directly or via the handle_3same_float for float pairwise 10768 * operations where the opcode and size are calculated differently. 10769 */ 10770 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10771 int size, int rn, int rm, int rd) 10772 { 10773 TCGv_ptr fpst; 10774 int pass; 10775 10776 /* Floating point operations need fpst */ 10777 if (opcode >= 0x58) { 10778 fpst = fpstatus_ptr(FPST_FPCR); 10779 } else { 10780 fpst = NULL; 10781 } 10782 10783 if (!fp_access_check(s)) { 10784 return; 10785 } 10786 10787 /* These operations work on the concatenated rm:rn, with each pair of 10788 * adjacent elements being operated on to produce an element in the result. 10789 */ 10790 if (size == 3) { 10791 TCGv_i64 tcg_res[2]; 10792 10793 for (pass = 0; pass < 2; pass++) { 10794 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10795 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10796 int passreg = (pass == 0) ? rn : rm; 10797 10798 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10799 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10800 tcg_res[pass] = tcg_temp_new_i64(); 10801 10802 switch (opcode) { 10803 case 0x17: /* ADDP */ 10804 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10805 break; 10806 case 0x58: /* FMAXNMP */ 10807 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10808 break; 10809 case 0x5a: /* FADDP */ 10810 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10811 break; 10812 case 0x5e: /* FMAXP */ 10813 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10814 break; 10815 case 0x78: /* FMINNMP */ 10816 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10817 break; 10818 case 0x7e: /* FMINP */ 10819 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10820 break; 10821 default: 10822 g_assert_not_reached(); 10823 } 10824 } 10825 10826 for (pass = 0; pass < 2; pass++) { 10827 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10828 } 10829 } else { 10830 int maxpass = is_q ? 4 : 2; 10831 TCGv_i32 tcg_res[4]; 10832 10833 for (pass = 0; pass < maxpass; pass++) { 10834 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10835 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10836 NeonGenTwoOpFn *genfn = NULL; 10837 int passreg = pass < (maxpass / 2) ? rn : rm; 10838 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10839 10840 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10841 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10842 tcg_res[pass] = tcg_temp_new_i32(); 10843 10844 switch (opcode) { 10845 case 0x17: /* ADDP */ 10846 { 10847 static NeonGenTwoOpFn * const fns[3] = { 10848 gen_helper_neon_padd_u8, 10849 gen_helper_neon_padd_u16, 10850 tcg_gen_add_i32, 10851 }; 10852 genfn = fns[size]; 10853 break; 10854 } 10855 case 0x14: /* SMAXP, UMAXP */ 10856 { 10857 static NeonGenTwoOpFn * const fns[3][2] = { 10858 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10859 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10860 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10861 }; 10862 genfn = fns[size][u]; 10863 break; 10864 } 10865 case 0x15: /* SMINP, UMINP */ 10866 { 10867 static NeonGenTwoOpFn * const fns[3][2] = { 10868 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10869 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10870 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10871 }; 10872 genfn = fns[size][u]; 10873 break; 10874 } 10875 /* The FP operations are all on single floats (32 bit) */ 10876 case 0x58: /* FMAXNMP */ 10877 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10878 break; 10879 case 0x5a: /* FADDP */ 10880 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10881 break; 10882 case 0x5e: /* FMAXP */ 10883 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10884 break; 10885 case 0x78: /* FMINNMP */ 10886 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10887 break; 10888 case 0x7e: /* FMINP */ 10889 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10890 break; 10891 default: 10892 g_assert_not_reached(); 10893 } 10894 10895 /* FP ops called directly, otherwise call now */ 10896 if (genfn) { 10897 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10898 } 10899 } 10900 10901 for (pass = 0; pass < maxpass; pass++) { 10902 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10903 } 10904 clear_vec_high(s, is_q, rd); 10905 } 10906 } 10907 10908 /* Floating point op subgroup of C3.6.16. */ 10909 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10910 { 10911 /* For floating point ops, the U, size[1] and opcode bits 10912 * together indicate the operation. size[0] indicates single 10913 * or double. 10914 */ 10915 int fpopcode = extract32(insn, 11, 5) 10916 | (extract32(insn, 23, 1) << 5) 10917 | (extract32(insn, 29, 1) << 6); 10918 int is_q = extract32(insn, 30, 1); 10919 int size = extract32(insn, 22, 1); 10920 int rm = extract32(insn, 16, 5); 10921 int rn = extract32(insn, 5, 5); 10922 int rd = extract32(insn, 0, 5); 10923 10924 int datasize = is_q ? 128 : 64; 10925 int esize = 32 << size; 10926 int elements = datasize / esize; 10927 10928 if (size == 1 && !is_q) { 10929 unallocated_encoding(s); 10930 return; 10931 } 10932 10933 switch (fpopcode) { 10934 case 0x58: /* FMAXNMP */ 10935 case 0x5a: /* FADDP */ 10936 case 0x5e: /* FMAXP */ 10937 case 0x78: /* FMINNMP */ 10938 case 0x7e: /* FMINP */ 10939 if (size && !is_q) { 10940 unallocated_encoding(s); 10941 return; 10942 } 10943 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10944 rn, rm, rd); 10945 return; 10946 case 0x1b: /* FMULX */ 10947 case 0x1f: /* FRECPS */ 10948 case 0x3f: /* FRSQRTS */ 10949 case 0x5d: /* FACGE */ 10950 case 0x7d: /* FACGT */ 10951 case 0x19: /* FMLA */ 10952 case 0x39: /* FMLS */ 10953 case 0x18: /* FMAXNM */ 10954 case 0x1a: /* FADD */ 10955 case 0x1c: /* FCMEQ */ 10956 case 0x1e: /* FMAX */ 10957 case 0x38: /* FMINNM */ 10958 case 0x3a: /* FSUB */ 10959 case 0x3e: /* FMIN */ 10960 case 0x5b: /* FMUL */ 10961 case 0x5c: /* FCMGE */ 10962 case 0x5f: /* FDIV */ 10963 case 0x7a: /* FABD */ 10964 case 0x7c: /* FCMGT */ 10965 if (!fp_access_check(s)) { 10966 return; 10967 } 10968 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10969 return; 10970 10971 case 0x1d: /* FMLAL */ 10972 case 0x3d: /* FMLSL */ 10973 case 0x59: /* FMLAL2 */ 10974 case 0x79: /* FMLSL2 */ 10975 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10976 unallocated_encoding(s); 10977 return; 10978 } 10979 if (fp_access_check(s)) { 10980 int is_s = extract32(insn, 23, 1); 10981 int is_2 = extract32(insn, 29, 1); 10982 int data = (is_2 << 1) | is_s; 10983 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10984 vec_full_reg_offset(s, rn), 10985 vec_full_reg_offset(s, rm), tcg_env, 10986 is_q ? 16 : 8, vec_full_reg_size(s), 10987 data, gen_helper_gvec_fmlal_a64); 10988 } 10989 return; 10990 10991 default: 10992 unallocated_encoding(s); 10993 return; 10994 } 10995 } 10996 10997 /* Integer op subgroup of C3.6.16. */ 10998 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10999 { 11000 int is_q = extract32(insn, 30, 1); 11001 int u = extract32(insn, 29, 1); 11002 int size = extract32(insn, 22, 2); 11003 int opcode = extract32(insn, 11, 5); 11004 int rm = extract32(insn, 16, 5); 11005 int rn = extract32(insn, 5, 5); 11006 int rd = extract32(insn, 0, 5); 11007 int pass; 11008 TCGCond cond; 11009 11010 switch (opcode) { 11011 case 0x13: /* MUL, PMUL */ 11012 if (u && size != 0) { 11013 unallocated_encoding(s); 11014 return; 11015 } 11016 /* fall through */ 11017 case 0x0: /* SHADD, UHADD */ 11018 case 0x2: /* SRHADD, URHADD */ 11019 case 0x4: /* SHSUB, UHSUB */ 11020 case 0xc: /* SMAX, UMAX */ 11021 case 0xd: /* SMIN, UMIN */ 11022 case 0xe: /* SABD, UABD */ 11023 case 0xf: /* SABA, UABA */ 11024 case 0x12: /* MLA, MLS */ 11025 if (size == 3) { 11026 unallocated_encoding(s); 11027 return; 11028 } 11029 break; 11030 case 0x16: /* SQDMULH, SQRDMULH */ 11031 if (size == 0 || size == 3) { 11032 unallocated_encoding(s); 11033 return; 11034 } 11035 break; 11036 default: 11037 if (size == 3 && !is_q) { 11038 unallocated_encoding(s); 11039 return; 11040 } 11041 break; 11042 } 11043 11044 if (!fp_access_check(s)) { 11045 return; 11046 } 11047 11048 switch (opcode) { 11049 case 0x01: /* SQADD, UQADD */ 11050 if (u) { 11051 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11052 } else { 11053 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11054 } 11055 return; 11056 case 0x05: /* SQSUB, UQSUB */ 11057 if (u) { 11058 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11059 } else { 11060 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11061 } 11062 return; 11063 case 0x08: /* SSHL, USHL */ 11064 if (u) { 11065 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11066 } else { 11067 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11068 } 11069 return; 11070 case 0x0c: /* SMAX, UMAX */ 11071 if (u) { 11072 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11073 } else { 11074 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11075 } 11076 return; 11077 case 0x0d: /* SMIN, UMIN */ 11078 if (u) { 11079 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11080 } else { 11081 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11082 } 11083 return; 11084 case 0xe: /* SABD, UABD */ 11085 if (u) { 11086 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11087 } else { 11088 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11089 } 11090 return; 11091 case 0xf: /* SABA, UABA */ 11092 if (u) { 11093 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11094 } else { 11095 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11096 } 11097 return; 11098 case 0x10: /* ADD, SUB */ 11099 if (u) { 11100 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11101 } else { 11102 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11103 } 11104 return; 11105 case 0x13: /* MUL, PMUL */ 11106 if (!u) { /* MUL */ 11107 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11108 } else { /* PMUL */ 11109 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11110 } 11111 return; 11112 case 0x12: /* MLA, MLS */ 11113 if (u) { 11114 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11115 } else { 11116 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11117 } 11118 return; 11119 case 0x16: /* SQDMULH, SQRDMULH */ 11120 { 11121 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11122 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11123 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11124 }; 11125 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11126 } 11127 return; 11128 case 0x11: 11129 if (!u) { /* CMTST */ 11130 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11131 return; 11132 } 11133 /* else CMEQ */ 11134 cond = TCG_COND_EQ; 11135 goto do_gvec_cmp; 11136 case 0x06: /* CMGT, CMHI */ 11137 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11138 goto do_gvec_cmp; 11139 case 0x07: /* CMGE, CMHS */ 11140 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11141 do_gvec_cmp: 11142 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11143 vec_full_reg_offset(s, rn), 11144 vec_full_reg_offset(s, rm), 11145 is_q ? 16 : 8, vec_full_reg_size(s)); 11146 return; 11147 } 11148 11149 if (size == 3) { 11150 assert(is_q); 11151 for (pass = 0; pass < 2; pass++) { 11152 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11153 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11154 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11155 11156 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11157 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11158 11159 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11160 11161 write_vec_element(s, tcg_res, rd, pass, MO_64); 11162 } 11163 } else { 11164 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11165 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11166 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11167 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11168 NeonGenTwoOpFn *genfn = NULL; 11169 NeonGenTwoOpEnvFn *genenvfn = NULL; 11170 11171 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11172 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11173 11174 switch (opcode) { 11175 case 0x0: /* SHADD, UHADD */ 11176 { 11177 static NeonGenTwoOpFn * const fns[3][2] = { 11178 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11179 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11180 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11181 }; 11182 genfn = fns[size][u]; 11183 break; 11184 } 11185 case 0x2: /* SRHADD, URHADD */ 11186 { 11187 static NeonGenTwoOpFn * const fns[3][2] = { 11188 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11189 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11190 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11191 }; 11192 genfn = fns[size][u]; 11193 break; 11194 } 11195 case 0x4: /* SHSUB, UHSUB */ 11196 { 11197 static NeonGenTwoOpFn * const fns[3][2] = { 11198 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11199 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11200 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11201 }; 11202 genfn = fns[size][u]; 11203 break; 11204 } 11205 case 0x9: /* SQSHL, UQSHL */ 11206 { 11207 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11208 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11209 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11210 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11211 }; 11212 genenvfn = fns[size][u]; 11213 break; 11214 } 11215 case 0xa: /* SRSHL, URSHL */ 11216 { 11217 static NeonGenTwoOpFn * const fns[3][2] = { 11218 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11219 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11220 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11221 }; 11222 genfn = fns[size][u]; 11223 break; 11224 } 11225 case 0xb: /* SQRSHL, UQRSHL */ 11226 { 11227 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11228 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11229 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11230 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11231 }; 11232 genenvfn = fns[size][u]; 11233 break; 11234 } 11235 default: 11236 g_assert_not_reached(); 11237 } 11238 11239 if (genenvfn) { 11240 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11241 } else { 11242 genfn(tcg_res, tcg_op1, tcg_op2); 11243 } 11244 11245 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11246 } 11247 } 11248 clear_vec_high(s, is_q, rd); 11249 } 11250 11251 /* AdvSIMD three same 11252 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11253 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11254 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11255 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11256 */ 11257 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11258 { 11259 int opcode = extract32(insn, 11, 5); 11260 11261 switch (opcode) { 11262 case 0x3: /* logic ops */ 11263 disas_simd_3same_logic(s, insn); 11264 break; 11265 case 0x17: /* ADDP */ 11266 case 0x14: /* SMAXP, UMAXP */ 11267 case 0x15: /* SMINP, UMINP */ 11268 { 11269 /* Pairwise operations */ 11270 int is_q = extract32(insn, 30, 1); 11271 int u = extract32(insn, 29, 1); 11272 int size = extract32(insn, 22, 2); 11273 int rm = extract32(insn, 16, 5); 11274 int rn = extract32(insn, 5, 5); 11275 int rd = extract32(insn, 0, 5); 11276 if (opcode == 0x17) { 11277 if (u || (size == 3 && !is_q)) { 11278 unallocated_encoding(s); 11279 return; 11280 } 11281 } else { 11282 if (size == 3) { 11283 unallocated_encoding(s); 11284 return; 11285 } 11286 } 11287 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11288 break; 11289 } 11290 case 0x18 ... 0x31: 11291 /* floating point ops, sz[1] and U are part of opcode */ 11292 disas_simd_3same_float(s, insn); 11293 break; 11294 default: 11295 disas_simd_3same_int(s, insn); 11296 break; 11297 } 11298 } 11299 11300 /* 11301 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11302 * 11303 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11304 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11305 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11306 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11307 * 11308 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11309 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11310 * 11311 */ 11312 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11313 { 11314 int opcode = extract32(insn, 11, 3); 11315 int u = extract32(insn, 29, 1); 11316 int a = extract32(insn, 23, 1); 11317 int is_q = extract32(insn, 30, 1); 11318 int rm = extract32(insn, 16, 5); 11319 int rn = extract32(insn, 5, 5); 11320 int rd = extract32(insn, 0, 5); 11321 /* 11322 * For these floating point ops, the U, a and opcode bits 11323 * together indicate the operation. 11324 */ 11325 int fpopcode = opcode | (a << 3) | (u << 4); 11326 int datasize = is_q ? 128 : 64; 11327 int elements = datasize / 16; 11328 bool pairwise; 11329 TCGv_ptr fpst; 11330 int pass; 11331 11332 switch (fpopcode) { 11333 case 0x0: /* FMAXNM */ 11334 case 0x1: /* FMLA */ 11335 case 0x2: /* FADD */ 11336 case 0x3: /* FMULX */ 11337 case 0x4: /* FCMEQ */ 11338 case 0x6: /* FMAX */ 11339 case 0x7: /* FRECPS */ 11340 case 0x8: /* FMINNM */ 11341 case 0x9: /* FMLS */ 11342 case 0xa: /* FSUB */ 11343 case 0xe: /* FMIN */ 11344 case 0xf: /* FRSQRTS */ 11345 case 0x13: /* FMUL */ 11346 case 0x14: /* FCMGE */ 11347 case 0x15: /* FACGE */ 11348 case 0x17: /* FDIV */ 11349 case 0x1a: /* FABD */ 11350 case 0x1c: /* FCMGT */ 11351 case 0x1d: /* FACGT */ 11352 pairwise = false; 11353 break; 11354 case 0x10: /* FMAXNMP */ 11355 case 0x12: /* FADDP */ 11356 case 0x16: /* FMAXP */ 11357 case 0x18: /* FMINNMP */ 11358 case 0x1e: /* FMINP */ 11359 pairwise = true; 11360 break; 11361 default: 11362 unallocated_encoding(s); 11363 return; 11364 } 11365 11366 if (!dc_isar_feature(aa64_fp16, s)) { 11367 unallocated_encoding(s); 11368 return; 11369 } 11370 11371 if (!fp_access_check(s)) { 11372 return; 11373 } 11374 11375 fpst = fpstatus_ptr(FPST_FPCR_F16); 11376 11377 if (pairwise) { 11378 int maxpass = is_q ? 8 : 4; 11379 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11380 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11381 TCGv_i32 tcg_res[8]; 11382 11383 for (pass = 0; pass < maxpass; pass++) { 11384 int passreg = pass < (maxpass / 2) ? rn : rm; 11385 int passelt = (pass << 1) & (maxpass - 1); 11386 11387 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11388 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11389 tcg_res[pass] = tcg_temp_new_i32(); 11390 11391 switch (fpopcode) { 11392 case 0x10: /* FMAXNMP */ 11393 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11394 fpst); 11395 break; 11396 case 0x12: /* FADDP */ 11397 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11398 break; 11399 case 0x16: /* FMAXP */ 11400 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11401 break; 11402 case 0x18: /* FMINNMP */ 11403 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11404 fpst); 11405 break; 11406 case 0x1e: /* FMINP */ 11407 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11408 break; 11409 default: 11410 g_assert_not_reached(); 11411 } 11412 } 11413 11414 for (pass = 0; pass < maxpass; pass++) { 11415 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11416 } 11417 } else { 11418 for (pass = 0; pass < elements; pass++) { 11419 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11420 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11421 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11422 11423 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11424 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11425 11426 switch (fpopcode) { 11427 case 0x0: /* FMAXNM */ 11428 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11429 break; 11430 case 0x1: /* FMLA */ 11431 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11432 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11433 fpst); 11434 break; 11435 case 0x2: /* FADD */ 11436 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11437 break; 11438 case 0x3: /* FMULX */ 11439 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11440 break; 11441 case 0x4: /* FCMEQ */ 11442 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11443 break; 11444 case 0x6: /* FMAX */ 11445 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11446 break; 11447 case 0x7: /* FRECPS */ 11448 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11449 break; 11450 case 0x8: /* FMINNM */ 11451 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11452 break; 11453 case 0x9: /* FMLS */ 11454 /* As usual for ARM, separate negation for fused multiply-add */ 11455 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11456 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11457 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11458 fpst); 11459 break; 11460 case 0xa: /* FSUB */ 11461 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11462 break; 11463 case 0xe: /* FMIN */ 11464 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11465 break; 11466 case 0xf: /* FRSQRTS */ 11467 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11468 break; 11469 case 0x13: /* FMUL */ 11470 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11471 break; 11472 case 0x14: /* FCMGE */ 11473 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11474 break; 11475 case 0x15: /* FACGE */ 11476 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11477 break; 11478 case 0x17: /* FDIV */ 11479 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11480 break; 11481 case 0x1a: /* FABD */ 11482 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11483 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11484 break; 11485 case 0x1c: /* FCMGT */ 11486 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11487 break; 11488 case 0x1d: /* FACGT */ 11489 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11490 break; 11491 default: 11492 g_assert_not_reached(); 11493 } 11494 11495 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11496 } 11497 } 11498 11499 clear_vec_high(s, is_q, rd); 11500 } 11501 11502 /* AdvSIMD three same extra 11503 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11504 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11505 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11506 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11507 */ 11508 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11509 { 11510 int rd = extract32(insn, 0, 5); 11511 int rn = extract32(insn, 5, 5); 11512 int opcode = extract32(insn, 11, 4); 11513 int rm = extract32(insn, 16, 5); 11514 int size = extract32(insn, 22, 2); 11515 bool u = extract32(insn, 29, 1); 11516 bool is_q = extract32(insn, 30, 1); 11517 bool feature; 11518 int rot; 11519 11520 switch (u * 16 + opcode) { 11521 case 0x10: /* SQRDMLAH (vector) */ 11522 case 0x11: /* SQRDMLSH (vector) */ 11523 if (size != 1 && size != 2) { 11524 unallocated_encoding(s); 11525 return; 11526 } 11527 feature = dc_isar_feature(aa64_rdm, s); 11528 break; 11529 case 0x02: /* SDOT (vector) */ 11530 case 0x12: /* UDOT (vector) */ 11531 if (size != MO_32) { 11532 unallocated_encoding(s); 11533 return; 11534 } 11535 feature = dc_isar_feature(aa64_dp, s); 11536 break; 11537 case 0x03: /* USDOT */ 11538 if (size != MO_32) { 11539 unallocated_encoding(s); 11540 return; 11541 } 11542 feature = dc_isar_feature(aa64_i8mm, s); 11543 break; 11544 case 0x04: /* SMMLA */ 11545 case 0x14: /* UMMLA */ 11546 case 0x05: /* USMMLA */ 11547 if (!is_q || size != MO_32) { 11548 unallocated_encoding(s); 11549 return; 11550 } 11551 feature = dc_isar_feature(aa64_i8mm, s); 11552 break; 11553 case 0x18: /* FCMLA, #0 */ 11554 case 0x19: /* FCMLA, #90 */ 11555 case 0x1a: /* FCMLA, #180 */ 11556 case 0x1b: /* FCMLA, #270 */ 11557 case 0x1c: /* FCADD, #90 */ 11558 case 0x1e: /* FCADD, #270 */ 11559 if (size == 0 11560 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11561 || (size == 3 && !is_q)) { 11562 unallocated_encoding(s); 11563 return; 11564 } 11565 feature = dc_isar_feature(aa64_fcma, s); 11566 break; 11567 case 0x1d: /* BFMMLA */ 11568 if (size != MO_16 || !is_q) { 11569 unallocated_encoding(s); 11570 return; 11571 } 11572 feature = dc_isar_feature(aa64_bf16, s); 11573 break; 11574 case 0x1f: 11575 switch (size) { 11576 case 1: /* BFDOT */ 11577 case 3: /* BFMLAL{B,T} */ 11578 feature = dc_isar_feature(aa64_bf16, s); 11579 break; 11580 default: 11581 unallocated_encoding(s); 11582 return; 11583 } 11584 break; 11585 default: 11586 unallocated_encoding(s); 11587 return; 11588 } 11589 if (!feature) { 11590 unallocated_encoding(s); 11591 return; 11592 } 11593 if (!fp_access_check(s)) { 11594 return; 11595 } 11596 11597 switch (opcode) { 11598 case 0x0: /* SQRDMLAH (vector) */ 11599 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11600 return; 11601 11602 case 0x1: /* SQRDMLSH (vector) */ 11603 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11604 return; 11605 11606 case 0x2: /* SDOT / UDOT */ 11607 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11608 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11609 return; 11610 11611 case 0x3: /* USDOT */ 11612 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11613 return; 11614 11615 case 0x04: /* SMMLA, UMMLA */ 11616 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11617 u ? gen_helper_gvec_ummla_b 11618 : gen_helper_gvec_smmla_b); 11619 return; 11620 case 0x05: /* USMMLA */ 11621 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11622 return; 11623 11624 case 0x8: /* FCMLA, #0 */ 11625 case 0x9: /* FCMLA, #90 */ 11626 case 0xa: /* FCMLA, #180 */ 11627 case 0xb: /* FCMLA, #270 */ 11628 rot = extract32(opcode, 0, 2); 11629 switch (size) { 11630 case 1: 11631 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11632 gen_helper_gvec_fcmlah); 11633 break; 11634 case 2: 11635 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11636 gen_helper_gvec_fcmlas); 11637 break; 11638 case 3: 11639 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11640 gen_helper_gvec_fcmlad); 11641 break; 11642 default: 11643 g_assert_not_reached(); 11644 } 11645 return; 11646 11647 case 0xc: /* FCADD, #90 */ 11648 case 0xe: /* FCADD, #270 */ 11649 rot = extract32(opcode, 1, 1); 11650 switch (size) { 11651 case 1: 11652 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11653 gen_helper_gvec_fcaddh); 11654 break; 11655 case 2: 11656 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11657 gen_helper_gvec_fcadds); 11658 break; 11659 case 3: 11660 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11661 gen_helper_gvec_fcaddd); 11662 break; 11663 default: 11664 g_assert_not_reached(); 11665 } 11666 return; 11667 11668 case 0xd: /* BFMMLA */ 11669 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11670 return; 11671 case 0xf: 11672 switch (size) { 11673 case 1: /* BFDOT */ 11674 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11675 break; 11676 case 3: /* BFMLAL{B,T} */ 11677 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11678 gen_helper_gvec_bfmlal); 11679 break; 11680 default: 11681 g_assert_not_reached(); 11682 } 11683 return; 11684 11685 default: 11686 g_assert_not_reached(); 11687 } 11688 } 11689 11690 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11691 int size, int rn, int rd) 11692 { 11693 /* Handle 2-reg-misc ops which are widening (so each size element 11694 * in the source becomes a 2*size element in the destination. 11695 * The only instruction like this is FCVTL. 11696 */ 11697 int pass; 11698 11699 if (size == 3) { 11700 /* 32 -> 64 bit fp conversion */ 11701 TCGv_i64 tcg_res[2]; 11702 int srcelt = is_q ? 2 : 0; 11703 11704 for (pass = 0; pass < 2; pass++) { 11705 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11706 tcg_res[pass] = tcg_temp_new_i64(); 11707 11708 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11709 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11710 } 11711 for (pass = 0; pass < 2; pass++) { 11712 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11713 } 11714 } else { 11715 /* 16 -> 32 bit fp conversion */ 11716 int srcelt = is_q ? 4 : 0; 11717 TCGv_i32 tcg_res[4]; 11718 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11719 TCGv_i32 ahp = get_ahp_flag(); 11720 11721 for (pass = 0; pass < 4; pass++) { 11722 tcg_res[pass] = tcg_temp_new_i32(); 11723 11724 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11725 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11726 fpst, ahp); 11727 } 11728 for (pass = 0; pass < 4; pass++) { 11729 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11730 } 11731 } 11732 } 11733 11734 static void handle_rev(DisasContext *s, int opcode, bool u, 11735 bool is_q, int size, int rn, int rd) 11736 { 11737 int op = (opcode << 1) | u; 11738 int opsz = op + size; 11739 int grp_size = 3 - opsz; 11740 int dsize = is_q ? 128 : 64; 11741 int i; 11742 11743 if (opsz >= 3) { 11744 unallocated_encoding(s); 11745 return; 11746 } 11747 11748 if (!fp_access_check(s)) { 11749 return; 11750 } 11751 11752 if (size == 0) { 11753 /* Special case bytes, use bswap op on each group of elements */ 11754 int groups = dsize / (8 << grp_size); 11755 11756 for (i = 0; i < groups; i++) { 11757 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11758 11759 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11760 switch (grp_size) { 11761 case MO_16: 11762 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11763 break; 11764 case MO_32: 11765 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11766 break; 11767 case MO_64: 11768 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11769 break; 11770 default: 11771 g_assert_not_reached(); 11772 } 11773 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11774 } 11775 clear_vec_high(s, is_q, rd); 11776 } else { 11777 int revmask = (1 << grp_size) - 1; 11778 int esize = 8 << size; 11779 int elements = dsize / esize; 11780 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11781 TCGv_i64 tcg_rd[2]; 11782 11783 for (i = 0; i < 2; i++) { 11784 tcg_rd[i] = tcg_temp_new_i64(); 11785 tcg_gen_movi_i64(tcg_rd[i], 0); 11786 } 11787 11788 for (i = 0; i < elements; i++) { 11789 int e_rev = (i & 0xf) ^ revmask; 11790 int w = (e_rev * esize) / 64; 11791 int o = (e_rev * esize) % 64; 11792 11793 read_vec_element(s, tcg_rn, rn, i, size); 11794 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11795 } 11796 11797 for (i = 0; i < 2; i++) { 11798 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11799 } 11800 clear_vec_high(s, true, rd); 11801 } 11802 } 11803 11804 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11805 bool is_q, int size, int rn, int rd) 11806 { 11807 /* Implement the pairwise operations from 2-misc: 11808 * SADDLP, UADDLP, SADALP, UADALP. 11809 * These all add pairs of elements in the input to produce a 11810 * double-width result element in the output (possibly accumulating). 11811 */ 11812 bool accum = (opcode == 0x6); 11813 int maxpass = is_q ? 2 : 1; 11814 int pass; 11815 TCGv_i64 tcg_res[2]; 11816 11817 if (size == 2) { 11818 /* 32 + 32 -> 64 op */ 11819 MemOp memop = size + (u ? 0 : MO_SIGN); 11820 11821 for (pass = 0; pass < maxpass; pass++) { 11822 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11823 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11824 11825 tcg_res[pass] = tcg_temp_new_i64(); 11826 11827 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11828 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11829 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11830 if (accum) { 11831 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11832 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11833 } 11834 } 11835 } else { 11836 for (pass = 0; pass < maxpass; pass++) { 11837 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11838 NeonGenOne64OpFn *genfn; 11839 static NeonGenOne64OpFn * const fns[2][2] = { 11840 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11841 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11842 }; 11843 11844 genfn = fns[size][u]; 11845 11846 tcg_res[pass] = tcg_temp_new_i64(); 11847 11848 read_vec_element(s, tcg_op, rn, pass, MO_64); 11849 genfn(tcg_res[pass], tcg_op); 11850 11851 if (accum) { 11852 read_vec_element(s, tcg_op, rd, pass, MO_64); 11853 if (size == 0) { 11854 gen_helper_neon_addl_u16(tcg_res[pass], 11855 tcg_res[pass], tcg_op); 11856 } else { 11857 gen_helper_neon_addl_u32(tcg_res[pass], 11858 tcg_res[pass], tcg_op); 11859 } 11860 } 11861 } 11862 } 11863 if (!is_q) { 11864 tcg_res[1] = tcg_constant_i64(0); 11865 } 11866 for (pass = 0; pass < 2; pass++) { 11867 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11868 } 11869 } 11870 11871 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11872 { 11873 /* Implement SHLL and SHLL2 */ 11874 int pass; 11875 int part = is_q ? 2 : 0; 11876 TCGv_i64 tcg_res[2]; 11877 11878 for (pass = 0; pass < 2; pass++) { 11879 static NeonGenWidenFn * const widenfns[3] = { 11880 gen_helper_neon_widen_u8, 11881 gen_helper_neon_widen_u16, 11882 tcg_gen_extu_i32_i64, 11883 }; 11884 NeonGenWidenFn *widenfn = widenfns[size]; 11885 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11886 11887 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11888 tcg_res[pass] = tcg_temp_new_i64(); 11889 widenfn(tcg_res[pass], tcg_op); 11890 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11891 } 11892 11893 for (pass = 0; pass < 2; pass++) { 11894 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11895 } 11896 } 11897 11898 /* AdvSIMD two reg misc 11899 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11900 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11901 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11902 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11903 */ 11904 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11905 { 11906 int size = extract32(insn, 22, 2); 11907 int opcode = extract32(insn, 12, 5); 11908 bool u = extract32(insn, 29, 1); 11909 bool is_q = extract32(insn, 30, 1); 11910 int rn = extract32(insn, 5, 5); 11911 int rd = extract32(insn, 0, 5); 11912 bool need_fpstatus = false; 11913 int rmode = -1; 11914 TCGv_i32 tcg_rmode; 11915 TCGv_ptr tcg_fpstatus; 11916 11917 switch (opcode) { 11918 case 0x0: /* REV64, REV32 */ 11919 case 0x1: /* REV16 */ 11920 handle_rev(s, opcode, u, is_q, size, rn, rd); 11921 return; 11922 case 0x5: /* CNT, NOT, RBIT */ 11923 if (u && size == 0) { 11924 /* NOT */ 11925 break; 11926 } else if (u && size == 1) { 11927 /* RBIT */ 11928 break; 11929 } else if (!u && size == 0) { 11930 /* CNT */ 11931 break; 11932 } 11933 unallocated_encoding(s); 11934 return; 11935 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11936 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11937 if (size == 3) { 11938 unallocated_encoding(s); 11939 return; 11940 } 11941 if (!fp_access_check(s)) { 11942 return; 11943 } 11944 11945 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11946 return; 11947 case 0x4: /* CLS, CLZ */ 11948 if (size == 3) { 11949 unallocated_encoding(s); 11950 return; 11951 } 11952 break; 11953 case 0x2: /* SADDLP, UADDLP */ 11954 case 0x6: /* SADALP, UADALP */ 11955 if (size == 3) { 11956 unallocated_encoding(s); 11957 return; 11958 } 11959 if (!fp_access_check(s)) { 11960 return; 11961 } 11962 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11963 return; 11964 case 0x13: /* SHLL, SHLL2 */ 11965 if (u == 0 || size == 3) { 11966 unallocated_encoding(s); 11967 return; 11968 } 11969 if (!fp_access_check(s)) { 11970 return; 11971 } 11972 handle_shll(s, is_q, size, rn, rd); 11973 return; 11974 case 0xa: /* CMLT */ 11975 if (u == 1) { 11976 unallocated_encoding(s); 11977 return; 11978 } 11979 /* fall through */ 11980 case 0x8: /* CMGT, CMGE */ 11981 case 0x9: /* CMEQ, CMLE */ 11982 case 0xb: /* ABS, NEG */ 11983 if (size == 3 && !is_q) { 11984 unallocated_encoding(s); 11985 return; 11986 } 11987 break; 11988 case 0x3: /* SUQADD, USQADD */ 11989 if (size == 3 && !is_q) { 11990 unallocated_encoding(s); 11991 return; 11992 } 11993 if (!fp_access_check(s)) { 11994 return; 11995 } 11996 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11997 return; 11998 case 0x7: /* SQABS, SQNEG */ 11999 if (size == 3 && !is_q) { 12000 unallocated_encoding(s); 12001 return; 12002 } 12003 break; 12004 case 0xc ... 0xf: 12005 case 0x16 ... 0x1f: 12006 { 12007 /* Floating point: U, size[1] and opcode indicate operation; 12008 * size[0] indicates single or double precision. 12009 */ 12010 int is_double = extract32(size, 0, 1); 12011 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12012 size = is_double ? 3 : 2; 12013 switch (opcode) { 12014 case 0x2f: /* FABS */ 12015 case 0x6f: /* FNEG */ 12016 if (size == 3 && !is_q) { 12017 unallocated_encoding(s); 12018 return; 12019 } 12020 break; 12021 case 0x1d: /* SCVTF */ 12022 case 0x5d: /* UCVTF */ 12023 { 12024 bool is_signed = (opcode == 0x1d) ? true : false; 12025 int elements = is_double ? 2 : is_q ? 4 : 2; 12026 if (is_double && !is_q) { 12027 unallocated_encoding(s); 12028 return; 12029 } 12030 if (!fp_access_check(s)) { 12031 return; 12032 } 12033 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12034 return; 12035 } 12036 case 0x2c: /* FCMGT (zero) */ 12037 case 0x2d: /* FCMEQ (zero) */ 12038 case 0x2e: /* FCMLT (zero) */ 12039 case 0x6c: /* FCMGE (zero) */ 12040 case 0x6d: /* FCMLE (zero) */ 12041 if (size == 3 && !is_q) { 12042 unallocated_encoding(s); 12043 return; 12044 } 12045 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12046 return; 12047 case 0x7f: /* FSQRT */ 12048 if (size == 3 && !is_q) { 12049 unallocated_encoding(s); 12050 return; 12051 } 12052 break; 12053 case 0x1a: /* FCVTNS */ 12054 case 0x1b: /* FCVTMS */ 12055 case 0x3a: /* FCVTPS */ 12056 case 0x3b: /* FCVTZS */ 12057 case 0x5a: /* FCVTNU */ 12058 case 0x5b: /* FCVTMU */ 12059 case 0x7a: /* FCVTPU */ 12060 case 0x7b: /* FCVTZU */ 12061 need_fpstatus = true; 12062 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12063 if (size == 3 && !is_q) { 12064 unallocated_encoding(s); 12065 return; 12066 } 12067 break; 12068 case 0x5c: /* FCVTAU */ 12069 case 0x1c: /* FCVTAS */ 12070 need_fpstatus = true; 12071 rmode = FPROUNDING_TIEAWAY; 12072 if (size == 3 && !is_q) { 12073 unallocated_encoding(s); 12074 return; 12075 } 12076 break; 12077 case 0x3c: /* URECPE */ 12078 if (size == 3) { 12079 unallocated_encoding(s); 12080 return; 12081 } 12082 /* fall through */ 12083 case 0x3d: /* FRECPE */ 12084 case 0x7d: /* FRSQRTE */ 12085 if (size == 3 && !is_q) { 12086 unallocated_encoding(s); 12087 return; 12088 } 12089 if (!fp_access_check(s)) { 12090 return; 12091 } 12092 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12093 return; 12094 case 0x56: /* FCVTXN, FCVTXN2 */ 12095 if (size == 2) { 12096 unallocated_encoding(s); 12097 return; 12098 } 12099 /* fall through */ 12100 case 0x16: /* FCVTN, FCVTN2 */ 12101 /* handle_2misc_narrow does a 2*size -> size operation, but these 12102 * instructions encode the source size rather than dest size. 12103 */ 12104 if (!fp_access_check(s)) { 12105 return; 12106 } 12107 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12108 return; 12109 case 0x36: /* BFCVTN, BFCVTN2 */ 12110 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12111 unallocated_encoding(s); 12112 return; 12113 } 12114 if (!fp_access_check(s)) { 12115 return; 12116 } 12117 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12118 return; 12119 case 0x17: /* FCVTL, FCVTL2 */ 12120 if (!fp_access_check(s)) { 12121 return; 12122 } 12123 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12124 return; 12125 case 0x18: /* FRINTN */ 12126 case 0x19: /* FRINTM */ 12127 case 0x38: /* FRINTP */ 12128 case 0x39: /* FRINTZ */ 12129 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12130 /* fall through */ 12131 case 0x59: /* FRINTX */ 12132 case 0x79: /* FRINTI */ 12133 need_fpstatus = true; 12134 if (size == 3 && !is_q) { 12135 unallocated_encoding(s); 12136 return; 12137 } 12138 break; 12139 case 0x58: /* FRINTA */ 12140 rmode = FPROUNDING_TIEAWAY; 12141 need_fpstatus = true; 12142 if (size == 3 && !is_q) { 12143 unallocated_encoding(s); 12144 return; 12145 } 12146 break; 12147 case 0x7c: /* URSQRTE */ 12148 if (size == 3) { 12149 unallocated_encoding(s); 12150 return; 12151 } 12152 break; 12153 case 0x1e: /* FRINT32Z */ 12154 case 0x1f: /* FRINT64Z */ 12155 rmode = FPROUNDING_ZERO; 12156 /* fall through */ 12157 case 0x5e: /* FRINT32X */ 12158 case 0x5f: /* FRINT64X */ 12159 need_fpstatus = true; 12160 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12161 unallocated_encoding(s); 12162 return; 12163 } 12164 break; 12165 default: 12166 unallocated_encoding(s); 12167 return; 12168 } 12169 break; 12170 } 12171 default: 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 12176 if (!fp_access_check(s)) { 12177 return; 12178 } 12179 12180 if (need_fpstatus || rmode >= 0) { 12181 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12182 } else { 12183 tcg_fpstatus = NULL; 12184 } 12185 if (rmode >= 0) { 12186 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12187 } else { 12188 tcg_rmode = NULL; 12189 } 12190 12191 switch (opcode) { 12192 case 0x5: 12193 if (u && size == 0) { /* NOT */ 12194 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12195 return; 12196 } 12197 break; 12198 case 0x8: /* CMGT, CMGE */ 12199 if (u) { 12200 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12201 } else { 12202 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12203 } 12204 return; 12205 case 0x9: /* CMEQ, CMLE */ 12206 if (u) { 12207 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12208 } else { 12209 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12210 } 12211 return; 12212 case 0xa: /* CMLT */ 12213 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12214 return; 12215 case 0xb: 12216 if (u) { /* ABS, NEG */ 12217 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12218 } else { 12219 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12220 } 12221 return; 12222 } 12223 12224 if (size == 3) { 12225 /* All 64-bit element operations can be shared with scalar 2misc */ 12226 int pass; 12227 12228 /* Coverity claims (size == 3 && !is_q) has been eliminated 12229 * from all paths leading to here. 12230 */ 12231 tcg_debug_assert(is_q); 12232 for (pass = 0; pass < 2; pass++) { 12233 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12234 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12235 12236 read_vec_element(s, tcg_op, rn, pass, MO_64); 12237 12238 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12239 tcg_rmode, tcg_fpstatus); 12240 12241 write_vec_element(s, tcg_res, rd, pass, MO_64); 12242 } 12243 } else { 12244 int pass; 12245 12246 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12247 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12248 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12249 12250 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12251 12252 if (size == 2) { 12253 /* Special cases for 32 bit elements */ 12254 switch (opcode) { 12255 case 0x4: /* CLS */ 12256 if (u) { 12257 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12258 } else { 12259 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12260 } 12261 break; 12262 case 0x7: /* SQABS, SQNEG */ 12263 if (u) { 12264 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12265 } else { 12266 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12267 } 12268 break; 12269 case 0x2f: /* FABS */ 12270 gen_helper_vfp_abss(tcg_res, tcg_op); 12271 break; 12272 case 0x6f: /* FNEG */ 12273 gen_helper_vfp_negs(tcg_res, tcg_op); 12274 break; 12275 case 0x7f: /* FSQRT */ 12276 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12277 break; 12278 case 0x1a: /* FCVTNS */ 12279 case 0x1b: /* FCVTMS */ 12280 case 0x1c: /* FCVTAS */ 12281 case 0x3a: /* FCVTPS */ 12282 case 0x3b: /* FCVTZS */ 12283 gen_helper_vfp_tosls(tcg_res, tcg_op, 12284 tcg_constant_i32(0), tcg_fpstatus); 12285 break; 12286 case 0x5a: /* FCVTNU */ 12287 case 0x5b: /* FCVTMU */ 12288 case 0x5c: /* FCVTAU */ 12289 case 0x7a: /* FCVTPU */ 12290 case 0x7b: /* FCVTZU */ 12291 gen_helper_vfp_touls(tcg_res, tcg_op, 12292 tcg_constant_i32(0), tcg_fpstatus); 12293 break; 12294 case 0x18: /* FRINTN */ 12295 case 0x19: /* FRINTM */ 12296 case 0x38: /* FRINTP */ 12297 case 0x39: /* FRINTZ */ 12298 case 0x58: /* FRINTA */ 12299 case 0x79: /* FRINTI */ 12300 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12301 break; 12302 case 0x59: /* FRINTX */ 12303 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12304 break; 12305 case 0x7c: /* URSQRTE */ 12306 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12307 break; 12308 case 0x1e: /* FRINT32Z */ 12309 case 0x5e: /* FRINT32X */ 12310 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12311 break; 12312 case 0x1f: /* FRINT64Z */ 12313 case 0x5f: /* FRINT64X */ 12314 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12315 break; 12316 default: 12317 g_assert_not_reached(); 12318 } 12319 } else { 12320 /* Use helpers for 8 and 16 bit elements */ 12321 switch (opcode) { 12322 case 0x5: /* CNT, RBIT */ 12323 /* For these two insns size is part of the opcode specifier 12324 * (handled earlier); they always operate on byte elements. 12325 */ 12326 if (u) { 12327 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12328 } else { 12329 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12330 } 12331 break; 12332 case 0x7: /* SQABS, SQNEG */ 12333 { 12334 NeonGenOneOpEnvFn *genfn; 12335 static NeonGenOneOpEnvFn * const fns[2][2] = { 12336 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12337 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12338 }; 12339 genfn = fns[size][u]; 12340 genfn(tcg_res, tcg_env, tcg_op); 12341 break; 12342 } 12343 case 0x4: /* CLS, CLZ */ 12344 if (u) { 12345 if (size == 0) { 12346 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12347 } else { 12348 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12349 } 12350 } else { 12351 if (size == 0) { 12352 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12353 } else { 12354 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12355 } 12356 } 12357 break; 12358 default: 12359 g_assert_not_reached(); 12360 } 12361 } 12362 12363 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12364 } 12365 } 12366 clear_vec_high(s, is_q, rd); 12367 12368 if (tcg_rmode) { 12369 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12370 } 12371 } 12372 12373 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12374 * 12375 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12376 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12377 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12378 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12379 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12380 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12381 * 12382 * This actually covers two groups where scalar access is governed by 12383 * bit 28. A bunch of the instructions (float to integral) only exist 12384 * in the vector form and are un-allocated for the scalar decode. Also 12385 * in the scalar decode Q is always 1. 12386 */ 12387 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12388 { 12389 int fpop, opcode, a, u; 12390 int rn, rd; 12391 bool is_q; 12392 bool is_scalar; 12393 bool only_in_vector = false; 12394 12395 int pass; 12396 TCGv_i32 tcg_rmode = NULL; 12397 TCGv_ptr tcg_fpstatus = NULL; 12398 bool need_fpst = true; 12399 int rmode = -1; 12400 12401 if (!dc_isar_feature(aa64_fp16, s)) { 12402 unallocated_encoding(s); 12403 return; 12404 } 12405 12406 rd = extract32(insn, 0, 5); 12407 rn = extract32(insn, 5, 5); 12408 12409 a = extract32(insn, 23, 1); 12410 u = extract32(insn, 29, 1); 12411 is_scalar = extract32(insn, 28, 1); 12412 is_q = extract32(insn, 30, 1); 12413 12414 opcode = extract32(insn, 12, 5); 12415 fpop = deposit32(opcode, 5, 1, a); 12416 fpop = deposit32(fpop, 6, 1, u); 12417 12418 switch (fpop) { 12419 case 0x1d: /* SCVTF */ 12420 case 0x5d: /* UCVTF */ 12421 { 12422 int elements; 12423 12424 if (is_scalar) { 12425 elements = 1; 12426 } else { 12427 elements = (is_q ? 8 : 4); 12428 } 12429 12430 if (!fp_access_check(s)) { 12431 return; 12432 } 12433 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12434 return; 12435 } 12436 break; 12437 case 0x2c: /* FCMGT (zero) */ 12438 case 0x2d: /* FCMEQ (zero) */ 12439 case 0x2e: /* FCMLT (zero) */ 12440 case 0x6c: /* FCMGE (zero) */ 12441 case 0x6d: /* FCMLE (zero) */ 12442 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12443 return; 12444 case 0x3d: /* FRECPE */ 12445 case 0x3f: /* FRECPX */ 12446 break; 12447 case 0x18: /* FRINTN */ 12448 only_in_vector = true; 12449 rmode = FPROUNDING_TIEEVEN; 12450 break; 12451 case 0x19: /* FRINTM */ 12452 only_in_vector = true; 12453 rmode = FPROUNDING_NEGINF; 12454 break; 12455 case 0x38: /* FRINTP */ 12456 only_in_vector = true; 12457 rmode = FPROUNDING_POSINF; 12458 break; 12459 case 0x39: /* FRINTZ */ 12460 only_in_vector = true; 12461 rmode = FPROUNDING_ZERO; 12462 break; 12463 case 0x58: /* FRINTA */ 12464 only_in_vector = true; 12465 rmode = FPROUNDING_TIEAWAY; 12466 break; 12467 case 0x59: /* FRINTX */ 12468 case 0x79: /* FRINTI */ 12469 only_in_vector = true; 12470 /* current rounding mode */ 12471 break; 12472 case 0x1a: /* FCVTNS */ 12473 rmode = FPROUNDING_TIEEVEN; 12474 break; 12475 case 0x1b: /* FCVTMS */ 12476 rmode = FPROUNDING_NEGINF; 12477 break; 12478 case 0x1c: /* FCVTAS */ 12479 rmode = FPROUNDING_TIEAWAY; 12480 break; 12481 case 0x3a: /* FCVTPS */ 12482 rmode = FPROUNDING_POSINF; 12483 break; 12484 case 0x3b: /* FCVTZS */ 12485 rmode = FPROUNDING_ZERO; 12486 break; 12487 case 0x5a: /* FCVTNU */ 12488 rmode = FPROUNDING_TIEEVEN; 12489 break; 12490 case 0x5b: /* FCVTMU */ 12491 rmode = FPROUNDING_NEGINF; 12492 break; 12493 case 0x5c: /* FCVTAU */ 12494 rmode = FPROUNDING_TIEAWAY; 12495 break; 12496 case 0x7a: /* FCVTPU */ 12497 rmode = FPROUNDING_POSINF; 12498 break; 12499 case 0x7b: /* FCVTZU */ 12500 rmode = FPROUNDING_ZERO; 12501 break; 12502 case 0x2f: /* FABS */ 12503 case 0x6f: /* FNEG */ 12504 need_fpst = false; 12505 break; 12506 case 0x7d: /* FRSQRTE */ 12507 case 0x7f: /* FSQRT (vector) */ 12508 break; 12509 default: 12510 unallocated_encoding(s); 12511 return; 12512 } 12513 12514 12515 /* Check additional constraints for the scalar encoding */ 12516 if (is_scalar) { 12517 if (!is_q) { 12518 unallocated_encoding(s); 12519 return; 12520 } 12521 /* FRINTxx is only in the vector form */ 12522 if (only_in_vector) { 12523 unallocated_encoding(s); 12524 return; 12525 } 12526 } 12527 12528 if (!fp_access_check(s)) { 12529 return; 12530 } 12531 12532 if (rmode >= 0 || need_fpst) { 12533 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12534 } 12535 12536 if (rmode >= 0) { 12537 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12538 } 12539 12540 if (is_scalar) { 12541 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12542 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12543 12544 switch (fpop) { 12545 case 0x1a: /* FCVTNS */ 12546 case 0x1b: /* FCVTMS */ 12547 case 0x1c: /* FCVTAS */ 12548 case 0x3a: /* FCVTPS */ 12549 case 0x3b: /* FCVTZS */ 12550 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12551 break; 12552 case 0x3d: /* FRECPE */ 12553 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12554 break; 12555 case 0x3f: /* FRECPX */ 12556 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12557 break; 12558 case 0x5a: /* FCVTNU */ 12559 case 0x5b: /* FCVTMU */ 12560 case 0x5c: /* FCVTAU */ 12561 case 0x7a: /* FCVTPU */ 12562 case 0x7b: /* FCVTZU */ 12563 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12564 break; 12565 case 0x6f: /* FNEG */ 12566 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12567 break; 12568 case 0x7d: /* FRSQRTE */ 12569 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12570 break; 12571 default: 12572 g_assert_not_reached(); 12573 } 12574 12575 /* limit any sign extension going on */ 12576 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12577 write_fp_sreg(s, rd, tcg_res); 12578 } else { 12579 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12580 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12581 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12582 12583 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12584 12585 switch (fpop) { 12586 case 0x1a: /* FCVTNS */ 12587 case 0x1b: /* FCVTMS */ 12588 case 0x1c: /* FCVTAS */ 12589 case 0x3a: /* FCVTPS */ 12590 case 0x3b: /* FCVTZS */ 12591 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12592 break; 12593 case 0x3d: /* FRECPE */ 12594 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12595 break; 12596 case 0x5a: /* FCVTNU */ 12597 case 0x5b: /* FCVTMU */ 12598 case 0x5c: /* FCVTAU */ 12599 case 0x7a: /* FCVTPU */ 12600 case 0x7b: /* FCVTZU */ 12601 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12602 break; 12603 case 0x18: /* FRINTN */ 12604 case 0x19: /* FRINTM */ 12605 case 0x38: /* FRINTP */ 12606 case 0x39: /* FRINTZ */ 12607 case 0x58: /* FRINTA */ 12608 case 0x79: /* FRINTI */ 12609 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12610 break; 12611 case 0x59: /* FRINTX */ 12612 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12613 break; 12614 case 0x2f: /* FABS */ 12615 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12616 break; 12617 case 0x6f: /* FNEG */ 12618 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12619 break; 12620 case 0x7d: /* FRSQRTE */ 12621 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12622 break; 12623 case 0x7f: /* FSQRT */ 12624 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12625 break; 12626 default: 12627 g_assert_not_reached(); 12628 } 12629 12630 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12631 } 12632 12633 clear_vec_high(s, is_q, rd); 12634 } 12635 12636 if (tcg_rmode) { 12637 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12638 } 12639 } 12640 12641 /* AdvSIMD scalar x indexed element 12642 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12643 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12644 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12645 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12646 * AdvSIMD vector x indexed element 12647 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12648 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12649 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12650 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12651 */ 12652 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12653 { 12654 /* This encoding has two kinds of instruction: 12655 * normal, where we perform elt x idxelt => elt for each 12656 * element in the vector 12657 * long, where we perform elt x idxelt and generate a result of 12658 * double the width of the input element 12659 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12660 */ 12661 bool is_scalar = extract32(insn, 28, 1); 12662 bool is_q = extract32(insn, 30, 1); 12663 bool u = extract32(insn, 29, 1); 12664 int size = extract32(insn, 22, 2); 12665 int l = extract32(insn, 21, 1); 12666 int m = extract32(insn, 20, 1); 12667 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12668 int rm = extract32(insn, 16, 4); 12669 int opcode = extract32(insn, 12, 4); 12670 int h = extract32(insn, 11, 1); 12671 int rn = extract32(insn, 5, 5); 12672 int rd = extract32(insn, 0, 5); 12673 bool is_long = false; 12674 int is_fp = 0; 12675 bool is_fp16 = false; 12676 int index; 12677 TCGv_ptr fpst; 12678 12679 switch (16 * u + opcode) { 12680 case 0x08: /* MUL */ 12681 case 0x10: /* MLA */ 12682 case 0x14: /* MLS */ 12683 if (is_scalar) { 12684 unallocated_encoding(s); 12685 return; 12686 } 12687 break; 12688 case 0x02: /* SMLAL, SMLAL2 */ 12689 case 0x12: /* UMLAL, UMLAL2 */ 12690 case 0x06: /* SMLSL, SMLSL2 */ 12691 case 0x16: /* UMLSL, UMLSL2 */ 12692 case 0x0a: /* SMULL, SMULL2 */ 12693 case 0x1a: /* UMULL, UMULL2 */ 12694 if (is_scalar) { 12695 unallocated_encoding(s); 12696 return; 12697 } 12698 is_long = true; 12699 break; 12700 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12701 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12702 case 0x0b: /* SQDMULL, SQDMULL2 */ 12703 is_long = true; 12704 break; 12705 case 0x0c: /* SQDMULH */ 12706 case 0x0d: /* SQRDMULH */ 12707 break; 12708 case 0x01: /* FMLA */ 12709 case 0x05: /* FMLS */ 12710 case 0x09: /* FMUL */ 12711 case 0x19: /* FMULX */ 12712 is_fp = 1; 12713 break; 12714 case 0x1d: /* SQRDMLAH */ 12715 case 0x1f: /* SQRDMLSH */ 12716 if (!dc_isar_feature(aa64_rdm, s)) { 12717 unallocated_encoding(s); 12718 return; 12719 } 12720 break; 12721 case 0x0e: /* SDOT */ 12722 case 0x1e: /* UDOT */ 12723 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12724 unallocated_encoding(s); 12725 return; 12726 } 12727 break; 12728 case 0x0f: 12729 switch (size) { 12730 case 0: /* SUDOT */ 12731 case 2: /* USDOT */ 12732 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12733 unallocated_encoding(s); 12734 return; 12735 } 12736 size = MO_32; 12737 break; 12738 case 1: /* BFDOT */ 12739 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12740 unallocated_encoding(s); 12741 return; 12742 } 12743 size = MO_32; 12744 break; 12745 case 3: /* BFMLAL{B,T} */ 12746 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12747 unallocated_encoding(s); 12748 return; 12749 } 12750 /* can't set is_fp without other incorrect size checks */ 12751 size = MO_16; 12752 break; 12753 default: 12754 unallocated_encoding(s); 12755 return; 12756 } 12757 break; 12758 case 0x11: /* FCMLA #0 */ 12759 case 0x13: /* FCMLA #90 */ 12760 case 0x15: /* FCMLA #180 */ 12761 case 0x17: /* FCMLA #270 */ 12762 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12763 unallocated_encoding(s); 12764 return; 12765 } 12766 is_fp = 2; 12767 break; 12768 case 0x00: /* FMLAL */ 12769 case 0x04: /* FMLSL */ 12770 case 0x18: /* FMLAL2 */ 12771 case 0x1c: /* FMLSL2 */ 12772 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12773 unallocated_encoding(s); 12774 return; 12775 } 12776 size = MO_16; 12777 /* is_fp, but we pass tcg_env not fp_status. */ 12778 break; 12779 default: 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 12784 switch (is_fp) { 12785 case 1: /* normal fp */ 12786 /* convert insn encoded size to MemOp size */ 12787 switch (size) { 12788 case 0: /* half-precision */ 12789 size = MO_16; 12790 is_fp16 = true; 12791 break; 12792 case MO_32: /* single precision */ 12793 case MO_64: /* double precision */ 12794 break; 12795 default: 12796 unallocated_encoding(s); 12797 return; 12798 } 12799 break; 12800 12801 case 2: /* complex fp */ 12802 /* Each indexable element is a complex pair. */ 12803 size += 1; 12804 switch (size) { 12805 case MO_32: 12806 if (h && !is_q) { 12807 unallocated_encoding(s); 12808 return; 12809 } 12810 is_fp16 = true; 12811 break; 12812 case MO_64: 12813 break; 12814 default: 12815 unallocated_encoding(s); 12816 return; 12817 } 12818 break; 12819 12820 default: /* integer */ 12821 switch (size) { 12822 case MO_8: 12823 case MO_64: 12824 unallocated_encoding(s); 12825 return; 12826 } 12827 break; 12828 } 12829 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12830 unallocated_encoding(s); 12831 return; 12832 } 12833 12834 /* Given MemOp size, adjust register and indexing. */ 12835 switch (size) { 12836 case MO_16: 12837 index = h << 2 | l << 1 | m; 12838 break; 12839 case MO_32: 12840 index = h << 1 | l; 12841 rm |= m << 4; 12842 break; 12843 case MO_64: 12844 if (l || !is_q) { 12845 unallocated_encoding(s); 12846 return; 12847 } 12848 index = h; 12849 rm |= m << 4; 12850 break; 12851 default: 12852 g_assert_not_reached(); 12853 } 12854 12855 if (!fp_access_check(s)) { 12856 return; 12857 } 12858 12859 if (is_fp) { 12860 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12861 } else { 12862 fpst = NULL; 12863 } 12864 12865 switch (16 * u + opcode) { 12866 case 0x0e: /* SDOT */ 12867 case 0x1e: /* UDOT */ 12868 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12869 u ? gen_helper_gvec_udot_idx_b 12870 : gen_helper_gvec_sdot_idx_b); 12871 return; 12872 case 0x0f: 12873 switch (extract32(insn, 22, 2)) { 12874 case 0: /* SUDOT */ 12875 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12876 gen_helper_gvec_sudot_idx_b); 12877 return; 12878 case 1: /* BFDOT */ 12879 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12880 gen_helper_gvec_bfdot_idx); 12881 return; 12882 case 2: /* USDOT */ 12883 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12884 gen_helper_gvec_usdot_idx_b); 12885 return; 12886 case 3: /* BFMLAL{B,T} */ 12887 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12888 gen_helper_gvec_bfmlal_idx); 12889 return; 12890 } 12891 g_assert_not_reached(); 12892 case 0x11: /* FCMLA #0 */ 12893 case 0x13: /* FCMLA #90 */ 12894 case 0x15: /* FCMLA #180 */ 12895 case 0x17: /* FCMLA #270 */ 12896 { 12897 int rot = extract32(insn, 13, 2); 12898 int data = (index << 2) | rot; 12899 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12900 vec_full_reg_offset(s, rn), 12901 vec_full_reg_offset(s, rm), 12902 vec_full_reg_offset(s, rd), fpst, 12903 is_q ? 16 : 8, vec_full_reg_size(s), data, 12904 size == MO_64 12905 ? gen_helper_gvec_fcmlas_idx 12906 : gen_helper_gvec_fcmlah_idx); 12907 } 12908 return; 12909 12910 case 0x00: /* FMLAL */ 12911 case 0x04: /* FMLSL */ 12912 case 0x18: /* FMLAL2 */ 12913 case 0x1c: /* FMLSL2 */ 12914 { 12915 int is_s = extract32(opcode, 2, 1); 12916 int is_2 = u; 12917 int data = (index << 2) | (is_2 << 1) | is_s; 12918 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12919 vec_full_reg_offset(s, rn), 12920 vec_full_reg_offset(s, rm), tcg_env, 12921 is_q ? 16 : 8, vec_full_reg_size(s), 12922 data, gen_helper_gvec_fmlal_idx_a64); 12923 } 12924 return; 12925 12926 case 0x08: /* MUL */ 12927 if (!is_long && !is_scalar) { 12928 static gen_helper_gvec_3 * const fns[3] = { 12929 gen_helper_gvec_mul_idx_h, 12930 gen_helper_gvec_mul_idx_s, 12931 gen_helper_gvec_mul_idx_d, 12932 }; 12933 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12934 vec_full_reg_offset(s, rn), 12935 vec_full_reg_offset(s, rm), 12936 is_q ? 16 : 8, vec_full_reg_size(s), 12937 index, fns[size - 1]); 12938 return; 12939 } 12940 break; 12941 12942 case 0x10: /* MLA */ 12943 if (!is_long && !is_scalar) { 12944 static gen_helper_gvec_4 * const fns[3] = { 12945 gen_helper_gvec_mla_idx_h, 12946 gen_helper_gvec_mla_idx_s, 12947 gen_helper_gvec_mla_idx_d, 12948 }; 12949 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12950 vec_full_reg_offset(s, rn), 12951 vec_full_reg_offset(s, rm), 12952 vec_full_reg_offset(s, rd), 12953 is_q ? 16 : 8, vec_full_reg_size(s), 12954 index, fns[size - 1]); 12955 return; 12956 } 12957 break; 12958 12959 case 0x14: /* MLS */ 12960 if (!is_long && !is_scalar) { 12961 static gen_helper_gvec_4 * const fns[3] = { 12962 gen_helper_gvec_mls_idx_h, 12963 gen_helper_gvec_mls_idx_s, 12964 gen_helper_gvec_mls_idx_d, 12965 }; 12966 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12967 vec_full_reg_offset(s, rn), 12968 vec_full_reg_offset(s, rm), 12969 vec_full_reg_offset(s, rd), 12970 is_q ? 16 : 8, vec_full_reg_size(s), 12971 index, fns[size - 1]); 12972 return; 12973 } 12974 break; 12975 } 12976 12977 if (size == 3) { 12978 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12979 int pass; 12980 12981 assert(is_fp && is_q && !is_long); 12982 12983 read_vec_element(s, tcg_idx, rm, index, MO_64); 12984 12985 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12986 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12987 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12988 12989 read_vec_element(s, tcg_op, rn, pass, MO_64); 12990 12991 switch (16 * u + opcode) { 12992 case 0x05: /* FMLS */ 12993 /* As usual for ARM, separate negation for fused multiply-add */ 12994 gen_helper_vfp_negd(tcg_op, tcg_op); 12995 /* fall through */ 12996 case 0x01: /* FMLA */ 12997 read_vec_element(s, tcg_res, rd, pass, MO_64); 12998 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12999 break; 13000 case 0x09: /* FMUL */ 13001 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13002 break; 13003 case 0x19: /* FMULX */ 13004 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13005 break; 13006 default: 13007 g_assert_not_reached(); 13008 } 13009 13010 write_vec_element(s, tcg_res, rd, pass, MO_64); 13011 } 13012 13013 clear_vec_high(s, !is_scalar, rd); 13014 } else if (!is_long) { 13015 /* 32 bit floating point, or 16 or 32 bit integer. 13016 * For the 16 bit scalar case we use the usual Neon helpers and 13017 * rely on the fact that 0 op 0 == 0 with no side effects. 13018 */ 13019 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13020 int pass, maxpasses; 13021 13022 if (is_scalar) { 13023 maxpasses = 1; 13024 } else { 13025 maxpasses = is_q ? 4 : 2; 13026 } 13027 13028 read_vec_element_i32(s, tcg_idx, rm, index, size); 13029 13030 if (size == 1 && !is_scalar) { 13031 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13032 * the index into both halves of the 32 bit tcg_idx and then use 13033 * the usual Neon helpers. 13034 */ 13035 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13036 } 13037 13038 for (pass = 0; pass < maxpasses; pass++) { 13039 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13040 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13041 13042 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13043 13044 switch (16 * u + opcode) { 13045 case 0x08: /* MUL */ 13046 case 0x10: /* MLA */ 13047 case 0x14: /* MLS */ 13048 { 13049 static NeonGenTwoOpFn * const fns[2][2] = { 13050 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13051 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13052 }; 13053 NeonGenTwoOpFn *genfn; 13054 bool is_sub = opcode == 0x4; 13055 13056 if (size == 1) { 13057 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13058 } else { 13059 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13060 } 13061 if (opcode == 0x8) { 13062 break; 13063 } 13064 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13065 genfn = fns[size - 1][is_sub]; 13066 genfn(tcg_res, tcg_op, tcg_res); 13067 break; 13068 } 13069 case 0x05: /* FMLS */ 13070 case 0x01: /* FMLA */ 13071 read_vec_element_i32(s, tcg_res, rd, pass, 13072 is_scalar ? size : MO_32); 13073 switch (size) { 13074 case 1: 13075 if (opcode == 0x5) { 13076 /* As usual for ARM, separate negation for fused 13077 * multiply-add */ 13078 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13079 } 13080 if (is_scalar) { 13081 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13082 tcg_res, fpst); 13083 } else { 13084 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13085 tcg_res, fpst); 13086 } 13087 break; 13088 case 2: 13089 if (opcode == 0x5) { 13090 /* As usual for ARM, separate negation for 13091 * fused multiply-add */ 13092 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13093 } 13094 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13095 tcg_res, fpst); 13096 break; 13097 default: 13098 g_assert_not_reached(); 13099 } 13100 break; 13101 case 0x09: /* FMUL */ 13102 switch (size) { 13103 case 1: 13104 if (is_scalar) { 13105 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13106 tcg_idx, fpst); 13107 } else { 13108 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13109 tcg_idx, fpst); 13110 } 13111 break; 13112 case 2: 13113 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13114 break; 13115 default: 13116 g_assert_not_reached(); 13117 } 13118 break; 13119 case 0x19: /* FMULX */ 13120 switch (size) { 13121 case 1: 13122 if (is_scalar) { 13123 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13124 tcg_idx, fpst); 13125 } else { 13126 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13127 tcg_idx, fpst); 13128 } 13129 break; 13130 case 2: 13131 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13132 break; 13133 default: 13134 g_assert_not_reached(); 13135 } 13136 break; 13137 case 0x0c: /* SQDMULH */ 13138 if (size == 1) { 13139 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13140 tcg_op, tcg_idx); 13141 } else { 13142 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13143 tcg_op, tcg_idx); 13144 } 13145 break; 13146 case 0x0d: /* SQRDMULH */ 13147 if (size == 1) { 13148 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13149 tcg_op, tcg_idx); 13150 } else { 13151 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13152 tcg_op, tcg_idx); 13153 } 13154 break; 13155 case 0x1d: /* SQRDMLAH */ 13156 read_vec_element_i32(s, tcg_res, rd, pass, 13157 is_scalar ? size : MO_32); 13158 if (size == 1) { 13159 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13160 tcg_op, tcg_idx, tcg_res); 13161 } else { 13162 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13163 tcg_op, tcg_idx, tcg_res); 13164 } 13165 break; 13166 case 0x1f: /* SQRDMLSH */ 13167 read_vec_element_i32(s, tcg_res, rd, pass, 13168 is_scalar ? size : MO_32); 13169 if (size == 1) { 13170 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13171 tcg_op, tcg_idx, tcg_res); 13172 } else { 13173 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13174 tcg_op, tcg_idx, tcg_res); 13175 } 13176 break; 13177 default: 13178 g_assert_not_reached(); 13179 } 13180 13181 if (is_scalar) { 13182 write_fp_sreg(s, rd, tcg_res); 13183 } else { 13184 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13185 } 13186 } 13187 13188 clear_vec_high(s, is_q, rd); 13189 } else { 13190 /* long ops: 16x16->32 or 32x32->64 */ 13191 TCGv_i64 tcg_res[2]; 13192 int pass; 13193 bool satop = extract32(opcode, 0, 1); 13194 MemOp memop = MO_32; 13195 13196 if (satop || !u) { 13197 memop |= MO_SIGN; 13198 } 13199 13200 if (size == 2) { 13201 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13202 13203 read_vec_element(s, tcg_idx, rm, index, memop); 13204 13205 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13206 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13207 TCGv_i64 tcg_passres; 13208 int passelt; 13209 13210 if (is_scalar) { 13211 passelt = 0; 13212 } else { 13213 passelt = pass + (is_q * 2); 13214 } 13215 13216 read_vec_element(s, tcg_op, rn, passelt, memop); 13217 13218 tcg_res[pass] = tcg_temp_new_i64(); 13219 13220 if (opcode == 0xa || opcode == 0xb) { 13221 /* Non-accumulating ops */ 13222 tcg_passres = tcg_res[pass]; 13223 } else { 13224 tcg_passres = tcg_temp_new_i64(); 13225 } 13226 13227 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13228 13229 if (satop) { 13230 /* saturating, doubling */ 13231 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13232 tcg_passres, tcg_passres); 13233 } 13234 13235 if (opcode == 0xa || opcode == 0xb) { 13236 continue; 13237 } 13238 13239 /* Accumulating op: handle accumulate step */ 13240 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13241 13242 switch (opcode) { 13243 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13244 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13245 break; 13246 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13247 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13248 break; 13249 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13250 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13251 /* fall through */ 13252 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13253 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13254 tcg_res[pass], 13255 tcg_passres); 13256 break; 13257 default: 13258 g_assert_not_reached(); 13259 } 13260 } 13261 13262 clear_vec_high(s, !is_scalar, rd); 13263 } else { 13264 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13265 13266 assert(size == 1); 13267 read_vec_element_i32(s, tcg_idx, rm, index, size); 13268 13269 if (!is_scalar) { 13270 /* The simplest way to handle the 16x16 indexed ops is to 13271 * duplicate the index into both halves of the 32 bit tcg_idx 13272 * and then use the usual Neon helpers. 13273 */ 13274 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13275 } 13276 13277 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13278 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13279 TCGv_i64 tcg_passres; 13280 13281 if (is_scalar) { 13282 read_vec_element_i32(s, tcg_op, rn, pass, size); 13283 } else { 13284 read_vec_element_i32(s, tcg_op, rn, 13285 pass + (is_q * 2), MO_32); 13286 } 13287 13288 tcg_res[pass] = tcg_temp_new_i64(); 13289 13290 if (opcode == 0xa || opcode == 0xb) { 13291 /* Non-accumulating ops */ 13292 tcg_passres = tcg_res[pass]; 13293 } else { 13294 tcg_passres = tcg_temp_new_i64(); 13295 } 13296 13297 if (memop & MO_SIGN) { 13298 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13299 } else { 13300 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13301 } 13302 if (satop) { 13303 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13304 tcg_passres, tcg_passres); 13305 } 13306 13307 if (opcode == 0xa || opcode == 0xb) { 13308 continue; 13309 } 13310 13311 /* Accumulating op: handle accumulate step */ 13312 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13313 13314 switch (opcode) { 13315 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13316 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13317 tcg_passres); 13318 break; 13319 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13320 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13321 tcg_passres); 13322 break; 13323 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13324 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13325 /* fall through */ 13326 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13327 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13328 tcg_res[pass], 13329 tcg_passres); 13330 break; 13331 default: 13332 g_assert_not_reached(); 13333 } 13334 } 13335 13336 if (is_scalar) { 13337 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13338 } 13339 } 13340 13341 if (is_scalar) { 13342 tcg_res[1] = tcg_constant_i64(0); 13343 } 13344 13345 for (pass = 0; pass < 2; pass++) { 13346 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13347 } 13348 } 13349 } 13350 13351 /* Crypto AES 13352 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13353 * +-----------------+------+-----------+--------+-----+------+------+ 13354 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13355 * +-----------------+------+-----------+--------+-----+------+------+ 13356 */ 13357 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13358 { 13359 int size = extract32(insn, 22, 2); 13360 int opcode = extract32(insn, 12, 5); 13361 int rn = extract32(insn, 5, 5); 13362 int rd = extract32(insn, 0, 5); 13363 gen_helper_gvec_2 *genfn2 = NULL; 13364 gen_helper_gvec_3 *genfn3 = NULL; 13365 13366 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13367 unallocated_encoding(s); 13368 return; 13369 } 13370 13371 switch (opcode) { 13372 case 0x4: /* AESE */ 13373 genfn3 = gen_helper_crypto_aese; 13374 break; 13375 case 0x6: /* AESMC */ 13376 genfn2 = gen_helper_crypto_aesmc; 13377 break; 13378 case 0x5: /* AESD */ 13379 genfn3 = gen_helper_crypto_aesd; 13380 break; 13381 case 0x7: /* AESIMC */ 13382 genfn2 = gen_helper_crypto_aesimc; 13383 break; 13384 default: 13385 unallocated_encoding(s); 13386 return; 13387 } 13388 13389 if (!fp_access_check(s)) { 13390 return; 13391 } 13392 if (genfn2) { 13393 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13394 } else { 13395 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13396 } 13397 } 13398 13399 /* Crypto three-reg SHA 13400 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13401 * +-----------------+------+---+------+---+--------+-----+------+------+ 13402 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13403 * +-----------------+------+---+------+---+--------+-----+------+------+ 13404 */ 13405 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13406 { 13407 int size = extract32(insn, 22, 2); 13408 int opcode = extract32(insn, 12, 3); 13409 int rm = extract32(insn, 16, 5); 13410 int rn = extract32(insn, 5, 5); 13411 int rd = extract32(insn, 0, 5); 13412 gen_helper_gvec_3 *genfn; 13413 bool feature; 13414 13415 if (size != 0) { 13416 unallocated_encoding(s); 13417 return; 13418 } 13419 13420 switch (opcode) { 13421 case 0: /* SHA1C */ 13422 genfn = gen_helper_crypto_sha1c; 13423 feature = dc_isar_feature(aa64_sha1, s); 13424 break; 13425 case 1: /* SHA1P */ 13426 genfn = gen_helper_crypto_sha1p; 13427 feature = dc_isar_feature(aa64_sha1, s); 13428 break; 13429 case 2: /* SHA1M */ 13430 genfn = gen_helper_crypto_sha1m; 13431 feature = dc_isar_feature(aa64_sha1, s); 13432 break; 13433 case 3: /* SHA1SU0 */ 13434 genfn = gen_helper_crypto_sha1su0; 13435 feature = dc_isar_feature(aa64_sha1, s); 13436 break; 13437 case 4: /* SHA256H */ 13438 genfn = gen_helper_crypto_sha256h; 13439 feature = dc_isar_feature(aa64_sha256, s); 13440 break; 13441 case 5: /* SHA256H2 */ 13442 genfn = gen_helper_crypto_sha256h2; 13443 feature = dc_isar_feature(aa64_sha256, s); 13444 break; 13445 case 6: /* SHA256SU1 */ 13446 genfn = gen_helper_crypto_sha256su1; 13447 feature = dc_isar_feature(aa64_sha256, s); 13448 break; 13449 default: 13450 unallocated_encoding(s); 13451 return; 13452 } 13453 13454 if (!feature) { 13455 unallocated_encoding(s); 13456 return; 13457 } 13458 13459 if (!fp_access_check(s)) { 13460 return; 13461 } 13462 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13463 } 13464 13465 /* Crypto two-reg SHA 13466 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13467 * +-----------------+------+-----------+--------+-----+------+------+ 13468 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13469 * +-----------------+------+-----------+--------+-----+------+------+ 13470 */ 13471 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13472 { 13473 int size = extract32(insn, 22, 2); 13474 int opcode = extract32(insn, 12, 5); 13475 int rn = extract32(insn, 5, 5); 13476 int rd = extract32(insn, 0, 5); 13477 gen_helper_gvec_2 *genfn; 13478 bool feature; 13479 13480 if (size != 0) { 13481 unallocated_encoding(s); 13482 return; 13483 } 13484 13485 switch (opcode) { 13486 case 0: /* SHA1H */ 13487 feature = dc_isar_feature(aa64_sha1, s); 13488 genfn = gen_helper_crypto_sha1h; 13489 break; 13490 case 1: /* SHA1SU1 */ 13491 feature = dc_isar_feature(aa64_sha1, s); 13492 genfn = gen_helper_crypto_sha1su1; 13493 break; 13494 case 2: /* SHA256SU0 */ 13495 feature = dc_isar_feature(aa64_sha256, s); 13496 genfn = gen_helper_crypto_sha256su0; 13497 break; 13498 default: 13499 unallocated_encoding(s); 13500 return; 13501 } 13502 13503 if (!feature) { 13504 unallocated_encoding(s); 13505 return; 13506 } 13507 13508 if (!fp_access_check(s)) { 13509 return; 13510 } 13511 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13512 } 13513 13514 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13515 { 13516 tcg_gen_rotli_i64(d, m, 1); 13517 tcg_gen_xor_i64(d, d, n); 13518 } 13519 13520 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13521 { 13522 tcg_gen_rotli_vec(vece, d, m, 1); 13523 tcg_gen_xor_vec(vece, d, d, n); 13524 } 13525 13526 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13527 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13528 { 13529 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13530 static const GVecGen3 op = { 13531 .fni8 = gen_rax1_i64, 13532 .fniv = gen_rax1_vec, 13533 .opt_opc = vecop_list, 13534 .fno = gen_helper_crypto_rax1, 13535 .vece = MO_64, 13536 }; 13537 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13538 } 13539 13540 /* Crypto three-reg SHA512 13541 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13542 * +-----------------------+------+---+---+-----+--------+------+------+ 13543 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13544 * +-----------------------+------+---+---+-----+--------+------+------+ 13545 */ 13546 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13547 { 13548 int opcode = extract32(insn, 10, 2); 13549 int o = extract32(insn, 14, 1); 13550 int rm = extract32(insn, 16, 5); 13551 int rn = extract32(insn, 5, 5); 13552 int rd = extract32(insn, 0, 5); 13553 bool feature; 13554 gen_helper_gvec_3 *oolfn = NULL; 13555 GVecGen3Fn *gvecfn = NULL; 13556 13557 if (o == 0) { 13558 switch (opcode) { 13559 case 0: /* SHA512H */ 13560 feature = dc_isar_feature(aa64_sha512, s); 13561 oolfn = gen_helper_crypto_sha512h; 13562 break; 13563 case 1: /* SHA512H2 */ 13564 feature = dc_isar_feature(aa64_sha512, s); 13565 oolfn = gen_helper_crypto_sha512h2; 13566 break; 13567 case 2: /* SHA512SU1 */ 13568 feature = dc_isar_feature(aa64_sha512, s); 13569 oolfn = gen_helper_crypto_sha512su1; 13570 break; 13571 case 3: /* RAX1 */ 13572 feature = dc_isar_feature(aa64_sha3, s); 13573 gvecfn = gen_gvec_rax1; 13574 break; 13575 default: 13576 g_assert_not_reached(); 13577 } 13578 } else { 13579 switch (opcode) { 13580 case 0: /* SM3PARTW1 */ 13581 feature = dc_isar_feature(aa64_sm3, s); 13582 oolfn = gen_helper_crypto_sm3partw1; 13583 break; 13584 case 1: /* SM3PARTW2 */ 13585 feature = dc_isar_feature(aa64_sm3, s); 13586 oolfn = gen_helper_crypto_sm3partw2; 13587 break; 13588 case 2: /* SM4EKEY */ 13589 feature = dc_isar_feature(aa64_sm4, s); 13590 oolfn = gen_helper_crypto_sm4ekey; 13591 break; 13592 default: 13593 unallocated_encoding(s); 13594 return; 13595 } 13596 } 13597 13598 if (!feature) { 13599 unallocated_encoding(s); 13600 return; 13601 } 13602 13603 if (!fp_access_check(s)) { 13604 return; 13605 } 13606 13607 if (oolfn) { 13608 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13609 } else { 13610 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13611 } 13612 } 13613 13614 /* Crypto two-reg SHA512 13615 * 31 12 11 10 9 5 4 0 13616 * +-----------------------------------------+--------+------+------+ 13617 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13618 * +-----------------------------------------+--------+------+------+ 13619 */ 13620 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13621 { 13622 int opcode = extract32(insn, 10, 2); 13623 int rn = extract32(insn, 5, 5); 13624 int rd = extract32(insn, 0, 5); 13625 bool feature; 13626 13627 switch (opcode) { 13628 case 0: /* SHA512SU0 */ 13629 feature = dc_isar_feature(aa64_sha512, s); 13630 break; 13631 case 1: /* SM4E */ 13632 feature = dc_isar_feature(aa64_sm4, s); 13633 break; 13634 default: 13635 unallocated_encoding(s); 13636 return; 13637 } 13638 13639 if (!feature) { 13640 unallocated_encoding(s); 13641 return; 13642 } 13643 13644 if (!fp_access_check(s)) { 13645 return; 13646 } 13647 13648 switch (opcode) { 13649 case 0: /* SHA512SU0 */ 13650 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13651 break; 13652 case 1: /* SM4E */ 13653 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13654 break; 13655 default: 13656 g_assert_not_reached(); 13657 } 13658 } 13659 13660 /* Crypto four-register 13661 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13662 * +-------------------+-----+------+---+------+------+------+ 13663 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13664 * +-------------------+-----+------+---+------+------+------+ 13665 */ 13666 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13667 { 13668 int op0 = extract32(insn, 21, 2); 13669 int rm = extract32(insn, 16, 5); 13670 int ra = extract32(insn, 10, 5); 13671 int rn = extract32(insn, 5, 5); 13672 int rd = extract32(insn, 0, 5); 13673 bool feature; 13674 13675 switch (op0) { 13676 case 0: /* EOR3 */ 13677 case 1: /* BCAX */ 13678 feature = dc_isar_feature(aa64_sha3, s); 13679 break; 13680 case 2: /* SM3SS1 */ 13681 feature = dc_isar_feature(aa64_sm3, s); 13682 break; 13683 default: 13684 unallocated_encoding(s); 13685 return; 13686 } 13687 13688 if (!feature) { 13689 unallocated_encoding(s); 13690 return; 13691 } 13692 13693 if (!fp_access_check(s)) { 13694 return; 13695 } 13696 13697 if (op0 < 2) { 13698 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13699 int pass; 13700 13701 tcg_op1 = tcg_temp_new_i64(); 13702 tcg_op2 = tcg_temp_new_i64(); 13703 tcg_op3 = tcg_temp_new_i64(); 13704 tcg_res[0] = tcg_temp_new_i64(); 13705 tcg_res[1] = tcg_temp_new_i64(); 13706 13707 for (pass = 0; pass < 2; pass++) { 13708 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13709 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13710 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13711 13712 if (op0 == 0) { 13713 /* EOR3 */ 13714 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13715 } else { 13716 /* BCAX */ 13717 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13718 } 13719 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13720 } 13721 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13722 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13723 } else { 13724 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13725 13726 tcg_op1 = tcg_temp_new_i32(); 13727 tcg_op2 = tcg_temp_new_i32(); 13728 tcg_op3 = tcg_temp_new_i32(); 13729 tcg_res = tcg_temp_new_i32(); 13730 tcg_zero = tcg_constant_i32(0); 13731 13732 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13733 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13734 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13735 13736 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13737 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13738 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13739 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13740 13741 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13742 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13743 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13744 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13745 } 13746 } 13747 13748 /* Crypto XAR 13749 * 31 21 20 16 15 10 9 5 4 0 13750 * +-----------------------+------+--------+------+------+ 13751 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13752 * +-----------------------+------+--------+------+------+ 13753 */ 13754 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13755 { 13756 int rm = extract32(insn, 16, 5); 13757 int imm6 = extract32(insn, 10, 6); 13758 int rn = extract32(insn, 5, 5); 13759 int rd = extract32(insn, 0, 5); 13760 13761 if (!dc_isar_feature(aa64_sha3, s)) { 13762 unallocated_encoding(s); 13763 return; 13764 } 13765 13766 if (!fp_access_check(s)) { 13767 return; 13768 } 13769 13770 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13771 vec_full_reg_offset(s, rn), 13772 vec_full_reg_offset(s, rm), imm6, 16, 13773 vec_full_reg_size(s)); 13774 } 13775 13776 /* Crypto three-reg imm2 13777 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13778 * +-----------------------+------+-----+------+--------+------+------+ 13779 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13780 * +-----------------------+------+-----+------+--------+------+------+ 13781 */ 13782 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13783 { 13784 static gen_helper_gvec_3 * const fns[4] = { 13785 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13786 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13787 }; 13788 int opcode = extract32(insn, 10, 2); 13789 int imm2 = extract32(insn, 12, 2); 13790 int rm = extract32(insn, 16, 5); 13791 int rn = extract32(insn, 5, 5); 13792 int rd = extract32(insn, 0, 5); 13793 13794 if (!dc_isar_feature(aa64_sm3, s)) { 13795 unallocated_encoding(s); 13796 return; 13797 } 13798 13799 if (!fp_access_check(s)) { 13800 return; 13801 } 13802 13803 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13804 } 13805 13806 /* C3.6 Data processing - SIMD, inc Crypto 13807 * 13808 * As the decode gets a little complex we are using a table based 13809 * approach for this part of the decode. 13810 */ 13811 static const AArch64DecodeTable data_proc_simd[] = { 13812 /* pattern , mask , fn */ 13813 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13814 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13815 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13816 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13817 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13818 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13819 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13820 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13821 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13822 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13823 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13824 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13825 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13826 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13827 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13828 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13829 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13830 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13831 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13832 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13833 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13834 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13835 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13836 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13837 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13838 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13839 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13840 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13841 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13842 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13843 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13844 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13845 { 0x00000000, 0x00000000, NULL } 13846 }; 13847 13848 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13849 { 13850 /* Note that this is called with all non-FP cases from 13851 * table C3-6 so it must UNDEF for entries not specifically 13852 * allocated to instructions in that table. 13853 */ 13854 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13855 if (fn) { 13856 fn(s, insn); 13857 } else { 13858 unallocated_encoding(s); 13859 } 13860 } 13861 13862 /* C3.6 Data processing - SIMD and floating point */ 13863 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13864 { 13865 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13866 disas_data_proc_fp(s, insn); 13867 } else { 13868 /* SIMD, including crypto */ 13869 disas_data_proc_simd(s, insn); 13870 } 13871 } 13872 13873 static bool trans_OK(DisasContext *s, arg_OK *a) 13874 { 13875 return true; 13876 } 13877 13878 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13879 { 13880 s->is_nonstreaming = true; 13881 return true; 13882 } 13883 13884 /** 13885 * is_guarded_page: 13886 * @env: The cpu environment 13887 * @s: The DisasContext 13888 * 13889 * Return true if the page is guarded. 13890 */ 13891 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13892 { 13893 uint64_t addr = s->base.pc_first; 13894 #ifdef CONFIG_USER_ONLY 13895 return page_get_flags(addr) & PAGE_BTI; 13896 #else 13897 CPUTLBEntryFull *full; 13898 void *host; 13899 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13900 int flags; 13901 13902 /* 13903 * We test this immediately after reading an insn, which means 13904 * that the TLB entry must be present and valid, and thus this 13905 * access will never raise an exception. 13906 */ 13907 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13908 false, &host, &full, 0); 13909 assert(!(flags & TLB_INVALID_MASK)); 13910 13911 return full->extra.arm.guarded; 13912 #endif 13913 } 13914 13915 /** 13916 * btype_destination_ok: 13917 * @insn: The instruction at the branch destination 13918 * @bt: SCTLR_ELx.BT 13919 * @btype: PSTATE.BTYPE, and is non-zero 13920 * 13921 * On a guarded page, there are a limited number of insns 13922 * that may be present at the branch target: 13923 * - branch target identifiers, 13924 * - paciasp, pacibsp, 13925 * - BRK insn 13926 * - HLT insn 13927 * Anything else causes a Branch Target Exception. 13928 * 13929 * Return true if the branch is compatible, false to raise BTITRAP. 13930 */ 13931 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13932 { 13933 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13934 /* HINT space */ 13935 switch (extract32(insn, 5, 7)) { 13936 case 0b011001: /* PACIASP */ 13937 case 0b011011: /* PACIBSP */ 13938 /* 13939 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13940 * with btype == 3. Otherwise all btype are ok. 13941 */ 13942 return !bt || btype != 3; 13943 case 0b100000: /* BTI */ 13944 /* Not compatible with any btype. */ 13945 return false; 13946 case 0b100010: /* BTI c */ 13947 /* Not compatible with btype == 3 */ 13948 return btype != 3; 13949 case 0b100100: /* BTI j */ 13950 /* Not compatible with btype == 2 */ 13951 return btype != 2; 13952 case 0b100110: /* BTI jc */ 13953 /* Compatible with any btype. */ 13954 return true; 13955 } 13956 } else { 13957 switch (insn & 0xffe0001fu) { 13958 case 0xd4200000u: /* BRK */ 13959 case 0xd4400000u: /* HLT */ 13960 /* Give priority to the breakpoint exception. */ 13961 return true; 13962 } 13963 } 13964 return false; 13965 } 13966 13967 /* C3.1 A64 instruction index by encoding */ 13968 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13969 { 13970 switch (extract32(insn, 25, 4)) { 13971 case 0x5: 13972 case 0xd: /* Data processing - register */ 13973 disas_data_proc_reg(s, insn); 13974 break; 13975 case 0x7: 13976 case 0xf: /* Data processing - SIMD and floating point */ 13977 disas_data_proc_simd_fp(s, insn); 13978 break; 13979 default: 13980 unallocated_encoding(s); 13981 break; 13982 } 13983 } 13984 13985 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13986 CPUState *cpu) 13987 { 13988 DisasContext *dc = container_of(dcbase, DisasContext, base); 13989 CPUARMState *env = cpu_env(cpu); 13990 ARMCPU *arm_cpu = env_archcpu(env); 13991 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13992 int bound, core_mmu_idx; 13993 13994 dc->isar = &arm_cpu->isar; 13995 dc->condjmp = 0; 13996 dc->pc_save = dc->base.pc_first; 13997 dc->aarch64 = true; 13998 dc->thumb = false; 13999 dc->sctlr_b = 0; 14000 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14001 dc->condexec_mask = 0; 14002 dc->condexec_cond = 0; 14003 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14004 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14005 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14006 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14007 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14008 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14009 #if !defined(CONFIG_USER_ONLY) 14010 dc->user = (dc->current_el == 0); 14011 #endif 14012 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14013 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14014 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14015 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14016 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14017 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14018 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14019 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14020 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14021 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14022 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14023 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14024 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14025 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14026 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14027 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14028 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14029 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14030 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14031 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14032 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14033 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14034 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14035 dc->vec_len = 0; 14036 dc->vec_stride = 0; 14037 dc->cp_regs = arm_cpu->cp_regs; 14038 dc->features = env->features; 14039 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14040 dc->gm_blocksize = arm_cpu->gm_blocksize; 14041 14042 #ifdef CONFIG_USER_ONLY 14043 /* In sve_probe_page, we assume TBI is enabled. */ 14044 tcg_debug_assert(dc->tbid & 1); 14045 #endif 14046 14047 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14048 14049 /* Single step state. The code-generation logic here is: 14050 * SS_ACTIVE == 0: 14051 * generate code with no special handling for single-stepping (except 14052 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14053 * this happens anyway because those changes are all system register or 14054 * PSTATE writes). 14055 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14056 * emit code for one insn 14057 * emit code to clear PSTATE.SS 14058 * emit code to generate software step exception for completed step 14059 * end TB (as usual for having generated an exception) 14060 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14061 * emit code to generate a software step exception 14062 * end the TB 14063 */ 14064 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14065 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14066 dc->is_ldex = false; 14067 14068 /* Bound the number of insns to execute to those left on the page. */ 14069 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14070 14071 /* If architectural single step active, limit to 1. */ 14072 if (dc->ss_active) { 14073 bound = 1; 14074 } 14075 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14076 } 14077 14078 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14079 { 14080 } 14081 14082 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14083 { 14084 DisasContext *dc = container_of(dcbase, DisasContext, base); 14085 target_ulong pc_arg = dc->base.pc_next; 14086 14087 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14088 pc_arg &= ~TARGET_PAGE_MASK; 14089 } 14090 tcg_gen_insn_start(pc_arg, 0, 0); 14091 dc->insn_start = tcg_last_op(); 14092 } 14093 14094 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14095 { 14096 DisasContext *s = container_of(dcbase, DisasContext, base); 14097 CPUARMState *env = cpu_env(cpu); 14098 uint64_t pc = s->base.pc_next; 14099 uint32_t insn; 14100 14101 /* Singlestep exceptions have the highest priority. */ 14102 if (s->ss_active && !s->pstate_ss) { 14103 /* Singlestep state is Active-pending. 14104 * If we're in this state at the start of a TB then either 14105 * a) we just took an exception to an EL which is being debugged 14106 * and this is the first insn in the exception handler 14107 * b) debug exceptions were masked and we just unmasked them 14108 * without changing EL (eg by clearing PSTATE.D) 14109 * In either case we're going to take a swstep exception in the 14110 * "did not step an insn" case, and so the syndrome ISV and EX 14111 * bits should be zero. 14112 */ 14113 assert(s->base.num_insns == 1); 14114 gen_swstep_exception(s, 0, 0); 14115 s->base.is_jmp = DISAS_NORETURN; 14116 s->base.pc_next = pc + 4; 14117 return; 14118 } 14119 14120 if (pc & 3) { 14121 /* 14122 * PC alignment fault. This has priority over the instruction abort 14123 * that we would receive from a translation fault via arm_ldl_code. 14124 * This should only be possible after an indirect branch, at the 14125 * start of the TB. 14126 */ 14127 assert(s->base.num_insns == 1); 14128 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14129 s->base.is_jmp = DISAS_NORETURN; 14130 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14131 return; 14132 } 14133 14134 s->pc_curr = pc; 14135 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14136 s->insn = insn; 14137 s->base.pc_next = pc + 4; 14138 14139 s->fp_access_checked = false; 14140 s->sve_access_checked = false; 14141 14142 if (s->pstate_il) { 14143 /* 14144 * Illegal execution state. This has priority over BTI 14145 * exceptions, but comes after instruction abort exceptions. 14146 */ 14147 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14148 return; 14149 } 14150 14151 if (dc_isar_feature(aa64_bti, s)) { 14152 if (s->base.num_insns == 1) { 14153 /* 14154 * At the first insn of the TB, compute s->guarded_page. 14155 * We delayed computing this until successfully reading 14156 * the first insn of the TB, above. This (mostly) ensures 14157 * that the softmmu tlb entry has been populated, and the 14158 * page table GP bit is available. 14159 * 14160 * Note that we need to compute this even if btype == 0, 14161 * because this value is used for BR instructions later 14162 * where ENV is not available. 14163 */ 14164 s->guarded_page = is_guarded_page(env, s); 14165 14166 /* First insn can have btype set to non-zero. */ 14167 tcg_debug_assert(s->btype >= 0); 14168 14169 /* 14170 * Note that the Branch Target Exception has fairly high 14171 * priority -- below debugging exceptions but above most 14172 * everything else. This allows us to handle this now 14173 * instead of waiting until the insn is otherwise decoded. 14174 */ 14175 if (s->btype != 0 14176 && s->guarded_page 14177 && !btype_destination_ok(insn, s->bt, s->btype)) { 14178 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14179 return; 14180 } 14181 } else { 14182 /* Not the first insn: btype must be 0. */ 14183 tcg_debug_assert(s->btype == 0); 14184 } 14185 } 14186 14187 s->is_nonstreaming = false; 14188 if (s->sme_trap_nonstreaming) { 14189 disas_sme_fa64(s, insn); 14190 } 14191 14192 if (!disas_a64(s, insn) && 14193 !disas_sme(s, insn) && 14194 !disas_sve(s, insn)) { 14195 disas_a64_legacy(s, insn); 14196 } 14197 14198 /* 14199 * After execution of most insns, btype is reset to 0. 14200 * Note that we set btype == -1 when the insn sets btype. 14201 */ 14202 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14203 reset_btype(s); 14204 } 14205 } 14206 14207 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14208 { 14209 DisasContext *dc = container_of(dcbase, DisasContext, base); 14210 14211 if (unlikely(dc->ss_active)) { 14212 /* Note that this means single stepping WFI doesn't halt the CPU. 14213 * For conditional branch insns this is harmless unreachable code as 14214 * gen_goto_tb() has already handled emitting the debug exception 14215 * (and thus a tb-jump is not possible when singlestepping). 14216 */ 14217 switch (dc->base.is_jmp) { 14218 default: 14219 gen_a64_update_pc(dc, 4); 14220 /* fall through */ 14221 case DISAS_EXIT: 14222 case DISAS_JUMP: 14223 gen_step_complete_exception(dc); 14224 break; 14225 case DISAS_NORETURN: 14226 break; 14227 } 14228 } else { 14229 switch (dc->base.is_jmp) { 14230 case DISAS_NEXT: 14231 case DISAS_TOO_MANY: 14232 gen_goto_tb(dc, 1, 4); 14233 break; 14234 default: 14235 case DISAS_UPDATE_EXIT: 14236 gen_a64_update_pc(dc, 4); 14237 /* fall through */ 14238 case DISAS_EXIT: 14239 tcg_gen_exit_tb(NULL, 0); 14240 break; 14241 case DISAS_UPDATE_NOCHAIN: 14242 gen_a64_update_pc(dc, 4); 14243 /* fall through */ 14244 case DISAS_JUMP: 14245 tcg_gen_lookup_and_goto_ptr(); 14246 break; 14247 case DISAS_NORETURN: 14248 case DISAS_SWI: 14249 break; 14250 case DISAS_WFE: 14251 gen_a64_update_pc(dc, 4); 14252 gen_helper_wfe(tcg_env); 14253 break; 14254 case DISAS_YIELD: 14255 gen_a64_update_pc(dc, 4); 14256 gen_helper_yield(tcg_env); 14257 break; 14258 case DISAS_WFI: 14259 /* 14260 * This is a special case because we don't want to just halt 14261 * the CPU if trying to debug across a WFI. 14262 */ 14263 gen_a64_update_pc(dc, 4); 14264 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14265 /* 14266 * The helper doesn't necessarily throw an exception, but we 14267 * must go back to the main loop to check for interrupts anyway. 14268 */ 14269 tcg_gen_exit_tb(NULL, 0); 14270 break; 14271 } 14272 } 14273 } 14274 14275 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14276 CPUState *cpu, FILE *logfile) 14277 { 14278 DisasContext *dc = container_of(dcbase, DisasContext, base); 14279 14280 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14281 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14282 } 14283 14284 const TranslatorOps aarch64_translator_ops = { 14285 .init_disas_context = aarch64_tr_init_disas_context, 14286 .tb_start = aarch64_tr_tb_start, 14287 .insn_start = aarch64_tr_insn_start, 14288 .translate_insn = aarch64_tr_translate_insn, 14289 .tb_stop = aarch64_tr_tb_stop, 14290 .disas_log = aarch64_tr_disas_log, 14291 }; 14292